page_alloc.c 208 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/compiler.h>
  25. #include <linux/kernel.h>
  26. #include <linux/kmemcheck.h>
  27. #include <linux/kasan.h>
  28. #include <linux/module.h>
  29. #include <linux/suspend.h>
  30. #include <linux/pagevec.h>
  31. #include <linux/blkdev.h>
  32. #include <linux/slab.h>
  33. #include <linux/ratelimit.h>
  34. #include <linux/oom.h>
  35. #include <linux/notifier.h>
  36. #include <linux/topology.h>
  37. #include <linux/sysctl.h>
  38. #include <linux/cpu.h>
  39. #include <linux/cpuset.h>
  40. #include <linux/memory_hotplug.h>
  41. #include <linux/nodemask.h>
  42. #include <linux/vmalloc.h>
  43. #include <linux/vmstat.h>
  44. #include <linux/mempolicy.h>
  45. #include <linux/memremap.h>
  46. #include <linux/stop_machine.h>
  47. #include <linux/sort.h>
  48. #include <linux/pfn.h>
  49. #include <linux/backing-dev.h>
  50. #include <linux/fault-inject.h>
  51. #include <linux/page-isolation.h>
  52. #include <linux/page_ext.h>
  53. #include <linux/debugobjects.h>
  54. #include <linux/kmemleak.h>
  55. #include <linux/compaction.h>
  56. #include <trace/events/kmem.h>
  57. #include <trace/events/oom.h>
  58. #include <linux/prefetch.h>
  59. #include <linux/mm_inline.h>
  60. #include <linux/migrate.h>
  61. #include <linux/hugetlb.h>
  62. #include <linux/sched/rt.h>
  63. #include <linux/sched/mm.h>
  64. #include <linux/page_owner.h>
  65. #include <linux/kthread.h>
  66. #include <linux/memcontrol.h>
  67. #include <asm/sections.h>
  68. #include <asm/tlbflush.h>
  69. #include <asm/div64.h>
  70. #include "internal.h"
  71. /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  72. static DEFINE_MUTEX(pcp_batch_high_lock);
  73. #define MIN_PERCPU_PAGELIST_FRACTION (8)
  74. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  75. DEFINE_PER_CPU(int, numa_node);
  76. EXPORT_PER_CPU_SYMBOL(numa_node);
  77. #endif
  78. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  79. /*
  80. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  81. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  82. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  83. * defined in <linux/topology.h>.
  84. */
  85. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  86. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  87. int _node_numa_mem_[MAX_NUMNODES];
  88. #endif
  89. /* work_structs for global per-cpu drains */
  90. DEFINE_MUTEX(pcpu_drain_mutex);
  91. DEFINE_PER_CPU(struct work_struct, pcpu_drain);
  92. #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
  93. volatile unsigned long latent_entropy __latent_entropy;
  94. EXPORT_SYMBOL(latent_entropy);
  95. #endif
  96. /*
  97. * Array of node states.
  98. */
  99. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  100. [N_POSSIBLE] = NODE_MASK_ALL,
  101. [N_ONLINE] = { { [0] = 1UL } },
  102. #ifndef CONFIG_NUMA
  103. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  104. #ifdef CONFIG_HIGHMEM
  105. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  106. #endif
  107. #ifdef CONFIG_MOVABLE_NODE
  108. [N_MEMORY] = { { [0] = 1UL } },
  109. #endif
  110. [N_CPU] = { { [0] = 1UL } },
  111. #endif /* NUMA */
  112. };
  113. EXPORT_SYMBOL(node_states);
  114. /* Protect totalram_pages and zone->managed_pages */
  115. static DEFINE_SPINLOCK(managed_page_count_lock);
  116. unsigned long totalram_pages __read_mostly;
  117. unsigned long totalreserve_pages __read_mostly;
  118. unsigned long totalcma_pages __read_mostly;
  119. int percpu_pagelist_fraction;
  120. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  121. /*
  122. * A cached value of the page's pageblock's migratetype, used when the page is
  123. * put on a pcplist. Used to avoid the pageblock migratetype lookup when
  124. * freeing from pcplists in most cases, at the cost of possibly becoming stale.
  125. * Also the migratetype set in the page does not necessarily match the pcplist
  126. * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
  127. * other index - this ensures that it will be put on the correct CMA freelist.
  128. */
  129. static inline int get_pcppage_migratetype(struct page *page)
  130. {
  131. return page->index;
  132. }
  133. static inline void set_pcppage_migratetype(struct page *page, int migratetype)
  134. {
  135. page->index = migratetype;
  136. }
  137. #ifdef CONFIG_PM_SLEEP
  138. /*
  139. * The following functions are used by the suspend/hibernate code to temporarily
  140. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  141. * while devices are suspended. To avoid races with the suspend/hibernate code,
  142. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  143. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  144. * guaranteed not to run in parallel with that modification).
  145. */
  146. static gfp_t saved_gfp_mask;
  147. void pm_restore_gfp_mask(void)
  148. {
  149. WARN_ON(!mutex_is_locked(&pm_mutex));
  150. if (saved_gfp_mask) {
  151. gfp_allowed_mask = saved_gfp_mask;
  152. saved_gfp_mask = 0;
  153. }
  154. }
  155. void pm_restrict_gfp_mask(void)
  156. {
  157. WARN_ON(!mutex_is_locked(&pm_mutex));
  158. WARN_ON(saved_gfp_mask);
  159. saved_gfp_mask = gfp_allowed_mask;
  160. gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
  161. }
  162. bool pm_suspended_storage(void)
  163. {
  164. if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
  165. return false;
  166. return true;
  167. }
  168. #endif /* CONFIG_PM_SLEEP */
  169. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  170. unsigned int pageblock_order __read_mostly;
  171. #endif
  172. static void __free_pages_ok(struct page *page, unsigned int order);
  173. /*
  174. * results with 256, 32 in the lowmem_reserve sysctl:
  175. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  176. * 1G machine -> (16M dma, 784M normal, 224M high)
  177. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  178. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  179. * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
  180. *
  181. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  182. * don't need any ZONE_NORMAL reservation
  183. */
  184. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  185. #ifdef CONFIG_ZONE_DMA
  186. 256,
  187. #endif
  188. #ifdef CONFIG_ZONE_DMA32
  189. 256,
  190. #endif
  191. #ifdef CONFIG_HIGHMEM
  192. 32,
  193. #endif
  194. 32,
  195. };
  196. EXPORT_SYMBOL(totalram_pages);
  197. static char * const zone_names[MAX_NR_ZONES] = {
  198. #ifdef CONFIG_ZONE_DMA
  199. "DMA",
  200. #endif
  201. #ifdef CONFIG_ZONE_DMA32
  202. "DMA32",
  203. #endif
  204. "Normal",
  205. #ifdef CONFIG_HIGHMEM
  206. "HighMem",
  207. #endif
  208. "Movable",
  209. #ifdef CONFIG_ZONE_DEVICE
  210. "Device",
  211. #endif
  212. };
  213. char * const migratetype_names[MIGRATE_TYPES] = {
  214. "Unmovable",
  215. "Movable",
  216. "Reclaimable",
  217. "HighAtomic",
  218. #ifdef CONFIG_CMA
  219. "CMA",
  220. #endif
  221. #ifdef CONFIG_MEMORY_ISOLATION
  222. "Isolate",
  223. #endif
  224. };
  225. compound_page_dtor * const compound_page_dtors[] = {
  226. NULL,
  227. free_compound_page,
  228. #ifdef CONFIG_HUGETLB_PAGE
  229. free_huge_page,
  230. #endif
  231. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  232. free_transhuge_page,
  233. #endif
  234. };
  235. int min_free_kbytes = 1024;
  236. int user_min_free_kbytes = -1;
  237. int watermark_scale_factor = 10;
  238. static unsigned long __meminitdata nr_kernel_pages;
  239. static unsigned long __meminitdata nr_all_pages;
  240. static unsigned long __meminitdata dma_reserve;
  241. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  242. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  243. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  244. static unsigned long __initdata required_kernelcore;
  245. static unsigned long __initdata required_movablecore;
  246. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  247. static bool mirrored_kernelcore;
  248. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  249. int movable_zone;
  250. EXPORT_SYMBOL(movable_zone);
  251. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  252. #if MAX_NUMNODES > 1
  253. int nr_node_ids __read_mostly = MAX_NUMNODES;
  254. int nr_online_nodes __read_mostly = 1;
  255. EXPORT_SYMBOL(nr_node_ids);
  256. EXPORT_SYMBOL(nr_online_nodes);
  257. #endif
  258. int page_group_by_mobility_disabled __read_mostly;
  259. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  260. static inline void reset_deferred_meminit(pg_data_t *pgdat)
  261. {
  262. pgdat->first_deferred_pfn = ULONG_MAX;
  263. }
  264. /* Returns true if the struct page for the pfn is uninitialised */
  265. static inline bool __meminit early_page_uninitialised(unsigned long pfn)
  266. {
  267. int nid = early_pfn_to_nid(pfn);
  268. if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
  269. return true;
  270. return false;
  271. }
  272. /*
  273. * Returns false when the remaining initialisation should be deferred until
  274. * later in the boot cycle when it can be parallelised.
  275. */
  276. static inline bool update_defer_init(pg_data_t *pgdat,
  277. unsigned long pfn, unsigned long zone_end,
  278. unsigned long *nr_initialised)
  279. {
  280. unsigned long max_initialise;
  281. /* Always populate low zones for address-contrained allocations */
  282. if (zone_end < pgdat_end_pfn(pgdat))
  283. return true;
  284. /*
  285. * Initialise at least 2G of a node but also take into account that
  286. * two large system hashes that can take up 1GB for 0.25TB/node.
  287. */
  288. max_initialise = max(2UL << (30 - PAGE_SHIFT),
  289. (pgdat->node_spanned_pages >> 8));
  290. (*nr_initialised)++;
  291. if ((*nr_initialised > max_initialise) &&
  292. (pfn & (PAGES_PER_SECTION - 1)) == 0) {
  293. pgdat->first_deferred_pfn = pfn;
  294. return false;
  295. }
  296. return true;
  297. }
  298. #else
  299. static inline void reset_deferred_meminit(pg_data_t *pgdat)
  300. {
  301. }
  302. static inline bool early_page_uninitialised(unsigned long pfn)
  303. {
  304. return false;
  305. }
  306. static inline bool update_defer_init(pg_data_t *pgdat,
  307. unsigned long pfn, unsigned long zone_end,
  308. unsigned long *nr_initialised)
  309. {
  310. return true;
  311. }
  312. #endif
  313. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  314. static inline unsigned long *get_pageblock_bitmap(struct page *page,
  315. unsigned long pfn)
  316. {
  317. #ifdef CONFIG_SPARSEMEM
  318. return __pfn_to_section(pfn)->pageblock_flags;
  319. #else
  320. return page_zone(page)->pageblock_flags;
  321. #endif /* CONFIG_SPARSEMEM */
  322. }
  323. static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
  324. {
  325. #ifdef CONFIG_SPARSEMEM
  326. pfn &= (PAGES_PER_SECTION-1);
  327. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  328. #else
  329. pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
  330. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  331. #endif /* CONFIG_SPARSEMEM */
  332. }
  333. /**
  334. * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
  335. * @page: The page within the block of interest
  336. * @pfn: The target page frame number
  337. * @end_bitidx: The last bit of interest to retrieve
  338. * @mask: mask of bits that the caller is interested in
  339. *
  340. * Return: pageblock_bits flags
  341. */
  342. static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
  343. unsigned long pfn,
  344. unsigned long end_bitidx,
  345. unsigned long mask)
  346. {
  347. unsigned long *bitmap;
  348. unsigned long bitidx, word_bitidx;
  349. unsigned long word;
  350. bitmap = get_pageblock_bitmap(page, pfn);
  351. bitidx = pfn_to_bitidx(page, pfn);
  352. word_bitidx = bitidx / BITS_PER_LONG;
  353. bitidx &= (BITS_PER_LONG-1);
  354. word = bitmap[word_bitidx];
  355. bitidx += end_bitidx;
  356. return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
  357. }
  358. unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
  359. unsigned long end_bitidx,
  360. unsigned long mask)
  361. {
  362. return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
  363. }
  364. static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
  365. {
  366. return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
  367. }
  368. /**
  369. * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
  370. * @page: The page within the block of interest
  371. * @flags: The flags to set
  372. * @pfn: The target page frame number
  373. * @end_bitidx: The last bit of interest
  374. * @mask: mask of bits that the caller is interested in
  375. */
  376. void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
  377. unsigned long pfn,
  378. unsigned long end_bitidx,
  379. unsigned long mask)
  380. {
  381. unsigned long *bitmap;
  382. unsigned long bitidx, word_bitidx;
  383. unsigned long old_word, word;
  384. BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
  385. bitmap = get_pageblock_bitmap(page, pfn);
  386. bitidx = pfn_to_bitidx(page, pfn);
  387. word_bitidx = bitidx / BITS_PER_LONG;
  388. bitidx &= (BITS_PER_LONG-1);
  389. VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
  390. bitidx += end_bitidx;
  391. mask <<= (BITS_PER_LONG - bitidx - 1);
  392. flags <<= (BITS_PER_LONG - bitidx - 1);
  393. word = READ_ONCE(bitmap[word_bitidx]);
  394. for (;;) {
  395. old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
  396. if (word == old_word)
  397. break;
  398. word = old_word;
  399. }
  400. }
  401. void set_pageblock_migratetype(struct page *page, int migratetype)
  402. {
  403. if (unlikely(page_group_by_mobility_disabled &&
  404. migratetype < MIGRATE_PCPTYPES))
  405. migratetype = MIGRATE_UNMOVABLE;
  406. set_pageblock_flags_group(page, (unsigned long)migratetype,
  407. PB_migrate, PB_migrate_end);
  408. }
  409. #ifdef CONFIG_DEBUG_VM
  410. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  411. {
  412. int ret = 0;
  413. unsigned seq;
  414. unsigned long pfn = page_to_pfn(page);
  415. unsigned long sp, start_pfn;
  416. do {
  417. seq = zone_span_seqbegin(zone);
  418. start_pfn = zone->zone_start_pfn;
  419. sp = zone->spanned_pages;
  420. if (!zone_spans_pfn(zone, pfn))
  421. ret = 1;
  422. } while (zone_span_seqretry(zone, seq));
  423. if (ret)
  424. pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
  425. pfn, zone_to_nid(zone), zone->name,
  426. start_pfn, start_pfn + sp);
  427. return ret;
  428. }
  429. static int page_is_consistent(struct zone *zone, struct page *page)
  430. {
  431. if (!pfn_valid_within(page_to_pfn(page)))
  432. return 0;
  433. if (zone != page_zone(page))
  434. return 0;
  435. return 1;
  436. }
  437. /*
  438. * Temporary debugging check for pages not lying within a given zone.
  439. */
  440. static int bad_range(struct zone *zone, struct page *page)
  441. {
  442. if (page_outside_zone_boundaries(zone, page))
  443. return 1;
  444. if (!page_is_consistent(zone, page))
  445. return 1;
  446. return 0;
  447. }
  448. #else
  449. static inline int bad_range(struct zone *zone, struct page *page)
  450. {
  451. return 0;
  452. }
  453. #endif
  454. static void bad_page(struct page *page, const char *reason,
  455. unsigned long bad_flags)
  456. {
  457. static unsigned long resume;
  458. static unsigned long nr_shown;
  459. static unsigned long nr_unshown;
  460. /*
  461. * Allow a burst of 60 reports, then keep quiet for that minute;
  462. * or allow a steady drip of one report per second.
  463. */
  464. if (nr_shown == 60) {
  465. if (time_before(jiffies, resume)) {
  466. nr_unshown++;
  467. goto out;
  468. }
  469. if (nr_unshown) {
  470. pr_alert(
  471. "BUG: Bad page state: %lu messages suppressed\n",
  472. nr_unshown);
  473. nr_unshown = 0;
  474. }
  475. nr_shown = 0;
  476. }
  477. if (nr_shown++ == 0)
  478. resume = jiffies + 60 * HZ;
  479. pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
  480. current->comm, page_to_pfn(page));
  481. __dump_page(page, reason);
  482. bad_flags &= page->flags;
  483. if (bad_flags)
  484. pr_alert("bad because of flags: %#lx(%pGp)\n",
  485. bad_flags, &bad_flags);
  486. dump_page_owner(page);
  487. print_modules();
  488. dump_stack();
  489. out:
  490. /* Leave bad fields for debug, except PageBuddy could make trouble */
  491. page_mapcount_reset(page); /* remove PageBuddy */
  492. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  493. }
  494. /*
  495. * Higher-order pages are called "compound pages". They are structured thusly:
  496. *
  497. * The first PAGE_SIZE page is called the "head page" and have PG_head set.
  498. *
  499. * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
  500. * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
  501. *
  502. * The first tail page's ->compound_dtor holds the offset in array of compound
  503. * page destructors. See compound_page_dtors.
  504. *
  505. * The first tail page's ->compound_order holds the order of allocation.
  506. * This usage means that zero-order pages may not be compound.
  507. */
  508. void free_compound_page(struct page *page)
  509. {
  510. __free_pages_ok(page, compound_order(page));
  511. }
  512. void prep_compound_page(struct page *page, unsigned int order)
  513. {
  514. int i;
  515. int nr_pages = 1 << order;
  516. set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
  517. set_compound_order(page, order);
  518. __SetPageHead(page);
  519. for (i = 1; i < nr_pages; i++) {
  520. struct page *p = page + i;
  521. set_page_count(p, 0);
  522. p->mapping = TAIL_MAPPING;
  523. set_compound_head(p, page);
  524. }
  525. atomic_set(compound_mapcount_ptr(page), -1);
  526. }
  527. #ifdef CONFIG_DEBUG_PAGEALLOC
  528. unsigned int _debug_guardpage_minorder;
  529. bool _debug_pagealloc_enabled __read_mostly
  530. = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
  531. EXPORT_SYMBOL(_debug_pagealloc_enabled);
  532. bool _debug_guardpage_enabled __read_mostly;
  533. static int __init early_debug_pagealloc(char *buf)
  534. {
  535. if (!buf)
  536. return -EINVAL;
  537. return kstrtobool(buf, &_debug_pagealloc_enabled);
  538. }
  539. early_param("debug_pagealloc", early_debug_pagealloc);
  540. static bool need_debug_guardpage(void)
  541. {
  542. /* If we don't use debug_pagealloc, we don't need guard page */
  543. if (!debug_pagealloc_enabled())
  544. return false;
  545. if (!debug_guardpage_minorder())
  546. return false;
  547. return true;
  548. }
  549. static void init_debug_guardpage(void)
  550. {
  551. if (!debug_pagealloc_enabled())
  552. return;
  553. if (!debug_guardpage_minorder())
  554. return;
  555. _debug_guardpage_enabled = true;
  556. }
  557. struct page_ext_operations debug_guardpage_ops = {
  558. .need = need_debug_guardpage,
  559. .init = init_debug_guardpage,
  560. };
  561. static int __init debug_guardpage_minorder_setup(char *buf)
  562. {
  563. unsigned long res;
  564. if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
  565. pr_err("Bad debug_guardpage_minorder value\n");
  566. return 0;
  567. }
  568. _debug_guardpage_minorder = res;
  569. pr_info("Setting debug_guardpage_minorder to %lu\n", res);
  570. return 0;
  571. }
  572. early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
  573. static inline bool set_page_guard(struct zone *zone, struct page *page,
  574. unsigned int order, int migratetype)
  575. {
  576. struct page_ext *page_ext;
  577. if (!debug_guardpage_enabled())
  578. return false;
  579. if (order >= debug_guardpage_minorder())
  580. return false;
  581. page_ext = lookup_page_ext(page);
  582. if (unlikely(!page_ext))
  583. return false;
  584. __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  585. INIT_LIST_HEAD(&page->lru);
  586. set_page_private(page, order);
  587. /* Guard pages are not available for any usage */
  588. __mod_zone_freepage_state(zone, -(1 << order), migratetype);
  589. return true;
  590. }
  591. static inline void clear_page_guard(struct zone *zone, struct page *page,
  592. unsigned int order, int migratetype)
  593. {
  594. struct page_ext *page_ext;
  595. if (!debug_guardpage_enabled())
  596. return;
  597. page_ext = lookup_page_ext(page);
  598. if (unlikely(!page_ext))
  599. return;
  600. __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  601. set_page_private(page, 0);
  602. if (!is_migrate_isolate(migratetype))
  603. __mod_zone_freepage_state(zone, (1 << order), migratetype);
  604. }
  605. #else
  606. struct page_ext_operations debug_guardpage_ops;
  607. static inline bool set_page_guard(struct zone *zone, struct page *page,
  608. unsigned int order, int migratetype) { return false; }
  609. static inline void clear_page_guard(struct zone *zone, struct page *page,
  610. unsigned int order, int migratetype) {}
  611. #endif
  612. static inline void set_page_order(struct page *page, unsigned int order)
  613. {
  614. set_page_private(page, order);
  615. __SetPageBuddy(page);
  616. }
  617. static inline void rmv_page_order(struct page *page)
  618. {
  619. __ClearPageBuddy(page);
  620. set_page_private(page, 0);
  621. }
  622. /*
  623. * This function checks whether a page is free && is the buddy
  624. * we can do coalesce a page and its buddy if
  625. * (a) the buddy is not in a hole (check before calling!) &&
  626. * (b) the buddy is in the buddy system &&
  627. * (c) a page and its buddy have the same order &&
  628. * (d) a page and its buddy are in the same zone.
  629. *
  630. * For recording whether a page is in the buddy system, we set ->_mapcount
  631. * PAGE_BUDDY_MAPCOUNT_VALUE.
  632. * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
  633. * serialized by zone->lock.
  634. *
  635. * For recording page's order, we use page_private(page).
  636. */
  637. static inline int page_is_buddy(struct page *page, struct page *buddy,
  638. unsigned int order)
  639. {
  640. if (page_is_guard(buddy) && page_order(buddy) == order) {
  641. if (page_zone_id(page) != page_zone_id(buddy))
  642. return 0;
  643. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  644. return 1;
  645. }
  646. if (PageBuddy(buddy) && page_order(buddy) == order) {
  647. /*
  648. * zone check is done late to avoid uselessly
  649. * calculating zone/node ids for pages that could
  650. * never merge.
  651. */
  652. if (page_zone_id(page) != page_zone_id(buddy))
  653. return 0;
  654. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  655. return 1;
  656. }
  657. return 0;
  658. }
  659. /*
  660. * Freeing function for a buddy system allocator.
  661. *
  662. * The concept of a buddy system is to maintain direct-mapped table
  663. * (containing bit values) for memory blocks of various "orders".
  664. * The bottom level table contains the map for the smallest allocatable
  665. * units of memory (here, pages), and each level above it describes
  666. * pairs of units from the levels below, hence, "buddies".
  667. * At a high level, all that happens here is marking the table entry
  668. * at the bottom level available, and propagating the changes upward
  669. * as necessary, plus some accounting needed to play nicely with other
  670. * parts of the VM system.
  671. * At each level, we keep a list of pages, which are heads of continuous
  672. * free pages of length of (1 << order) and marked with _mapcount
  673. * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
  674. * field.
  675. * So when we are allocating or freeing one, we can derive the state of the
  676. * other. That is, if we allocate a small block, and both were
  677. * free, the remainder of the region must be split into blocks.
  678. * If a block is freed, and its buddy is also free, then this
  679. * triggers coalescing into a block of larger size.
  680. *
  681. * -- nyc
  682. */
  683. static inline void __free_one_page(struct page *page,
  684. unsigned long pfn,
  685. struct zone *zone, unsigned int order,
  686. int migratetype)
  687. {
  688. unsigned long combined_pfn;
  689. unsigned long uninitialized_var(buddy_pfn);
  690. struct page *buddy;
  691. unsigned int max_order;
  692. max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
  693. VM_BUG_ON(!zone_is_initialized(zone));
  694. VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
  695. VM_BUG_ON(migratetype == -1);
  696. if (likely(!is_migrate_isolate(migratetype)))
  697. __mod_zone_freepage_state(zone, 1 << order, migratetype);
  698. VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
  699. VM_BUG_ON_PAGE(bad_range(zone, page), page);
  700. continue_merging:
  701. while (order < max_order - 1) {
  702. buddy_pfn = __find_buddy_pfn(pfn, order);
  703. buddy = page + (buddy_pfn - pfn);
  704. if (!pfn_valid_within(buddy_pfn))
  705. goto done_merging;
  706. if (!page_is_buddy(page, buddy, order))
  707. goto done_merging;
  708. /*
  709. * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
  710. * merge with it and move up one order.
  711. */
  712. if (page_is_guard(buddy)) {
  713. clear_page_guard(zone, buddy, order, migratetype);
  714. } else {
  715. list_del(&buddy->lru);
  716. zone->free_area[order].nr_free--;
  717. rmv_page_order(buddy);
  718. }
  719. combined_pfn = buddy_pfn & pfn;
  720. page = page + (combined_pfn - pfn);
  721. pfn = combined_pfn;
  722. order++;
  723. }
  724. if (max_order < MAX_ORDER) {
  725. /* If we are here, it means order is >= pageblock_order.
  726. * We want to prevent merge between freepages on isolate
  727. * pageblock and normal pageblock. Without this, pageblock
  728. * isolation could cause incorrect freepage or CMA accounting.
  729. *
  730. * We don't want to hit this code for the more frequent
  731. * low-order merging.
  732. */
  733. if (unlikely(has_isolate_pageblock(zone))) {
  734. int buddy_mt;
  735. buddy_pfn = __find_buddy_pfn(pfn, order);
  736. buddy = page + (buddy_pfn - pfn);
  737. buddy_mt = get_pageblock_migratetype(buddy);
  738. if (migratetype != buddy_mt
  739. && (is_migrate_isolate(migratetype) ||
  740. is_migrate_isolate(buddy_mt)))
  741. goto done_merging;
  742. }
  743. max_order++;
  744. goto continue_merging;
  745. }
  746. done_merging:
  747. set_page_order(page, order);
  748. /*
  749. * If this is not the largest possible page, check if the buddy
  750. * of the next-highest order is free. If it is, it's possible
  751. * that pages are being freed that will coalesce soon. In case,
  752. * that is happening, add the free page to the tail of the list
  753. * so it's less likely to be used soon and more likely to be merged
  754. * as a higher order page
  755. */
  756. if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
  757. struct page *higher_page, *higher_buddy;
  758. combined_pfn = buddy_pfn & pfn;
  759. higher_page = page + (combined_pfn - pfn);
  760. buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
  761. higher_buddy = higher_page + (buddy_pfn - combined_pfn);
  762. if (pfn_valid_within(buddy_pfn) &&
  763. page_is_buddy(higher_page, higher_buddy, order + 1)) {
  764. list_add_tail(&page->lru,
  765. &zone->free_area[order].free_list[migratetype]);
  766. goto out;
  767. }
  768. }
  769. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  770. out:
  771. zone->free_area[order].nr_free++;
  772. }
  773. /*
  774. * A bad page could be due to a number of fields. Instead of multiple branches,
  775. * try and check multiple fields with one check. The caller must do a detailed
  776. * check if necessary.
  777. */
  778. static inline bool page_expected_state(struct page *page,
  779. unsigned long check_flags)
  780. {
  781. if (unlikely(atomic_read(&page->_mapcount) != -1))
  782. return false;
  783. if (unlikely((unsigned long)page->mapping |
  784. page_ref_count(page) |
  785. #ifdef CONFIG_MEMCG
  786. (unsigned long)page->mem_cgroup |
  787. #endif
  788. (page->flags & check_flags)))
  789. return false;
  790. return true;
  791. }
  792. static void free_pages_check_bad(struct page *page)
  793. {
  794. const char *bad_reason;
  795. unsigned long bad_flags;
  796. bad_reason = NULL;
  797. bad_flags = 0;
  798. if (unlikely(atomic_read(&page->_mapcount) != -1))
  799. bad_reason = "nonzero mapcount";
  800. if (unlikely(page->mapping != NULL))
  801. bad_reason = "non-NULL mapping";
  802. if (unlikely(page_ref_count(page) != 0))
  803. bad_reason = "nonzero _refcount";
  804. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
  805. bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
  806. bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
  807. }
  808. #ifdef CONFIG_MEMCG
  809. if (unlikely(page->mem_cgroup))
  810. bad_reason = "page still charged to cgroup";
  811. #endif
  812. bad_page(page, bad_reason, bad_flags);
  813. }
  814. static inline int free_pages_check(struct page *page)
  815. {
  816. if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
  817. return 0;
  818. /* Something has gone sideways, find it */
  819. free_pages_check_bad(page);
  820. return 1;
  821. }
  822. static int free_tail_pages_check(struct page *head_page, struct page *page)
  823. {
  824. int ret = 1;
  825. /*
  826. * We rely page->lru.next never has bit 0 set, unless the page
  827. * is PageTail(). Let's make sure that's true even for poisoned ->lru.
  828. */
  829. BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
  830. if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
  831. ret = 0;
  832. goto out;
  833. }
  834. switch (page - head_page) {
  835. case 1:
  836. /* the first tail page: ->mapping is compound_mapcount() */
  837. if (unlikely(compound_mapcount(page))) {
  838. bad_page(page, "nonzero compound_mapcount", 0);
  839. goto out;
  840. }
  841. break;
  842. case 2:
  843. /*
  844. * the second tail page: ->mapping is
  845. * page_deferred_list().next -- ignore value.
  846. */
  847. break;
  848. default:
  849. if (page->mapping != TAIL_MAPPING) {
  850. bad_page(page, "corrupted mapping in tail page", 0);
  851. goto out;
  852. }
  853. break;
  854. }
  855. if (unlikely(!PageTail(page))) {
  856. bad_page(page, "PageTail not set", 0);
  857. goto out;
  858. }
  859. if (unlikely(compound_head(page) != head_page)) {
  860. bad_page(page, "compound_head not consistent", 0);
  861. goto out;
  862. }
  863. ret = 0;
  864. out:
  865. page->mapping = NULL;
  866. clear_compound_head(page);
  867. return ret;
  868. }
  869. static __always_inline bool free_pages_prepare(struct page *page,
  870. unsigned int order, bool check_free)
  871. {
  872. int bad = 0;
  873. VM_BUG_ON_PAGE(PageTail(page), page);
  874. trace_mm_page_free(page, order);
  875. kmemcheck_free_shadow(page, order);
  876. /*
  877. * Check tail pages before head page information is cleared to
  878. * avoid checking PageCompound for order-0 pages.
  879. */
  880. if (unlikely(order)) {
  881. bool compound = PageCompound(page);
  882. int i;
  883. VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
  884. if (compound)
  885. ClearPageDoubleMap(page);
  886. for (i = 1; i < (1 << order); i++) {
  887. if (compound)
  888. bad += free_tail_pages_check(page, page + i);
  889. if (unlikely(free_pages_check(page + i))) {
  890. bad++;
  891. continue;
  892. }
  893. (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  894. }
  895. }
  896. if (PageMappingFlags(page))
  897. page->mapping = NULL;
  898. if (memcg_kmem_enabled() && PageKmemcg(page))
  899. memcg_kmem_uncharge(page, order);
  900. if (check_free)
  901. bad += free_pages_check(page);
  902. if (bad)
  903. return false;
  904. page_cpupid_reset_last(page);
  905. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  906. reset_page_owner(page, order);
  907. if (!PageHighMem(page)) {
  908. debug_check_no_locks_freed(page_address(page),
  909. PAGE_SIZE << order);
  910. debug_check_no_obj_freed(page_address(page),
  911. PAGE_SIZE << order);
  912. }
  913. arch_free_page(page, order);
  914. kernel_poison_pages(page, 1 << order, 0);
  915. kernel_map_pages(page, 1 << order, 0);
  916. kasan_free_pages(page, order);
  917. return true;
  918. }
  919. #ifdef CONFIG_DEBUG_VM
  920. static inline bool free_pcp_prepare(struct page *page)
  921. {
  922. return free_pages_prepare(page, 0, true);
  923. }
  924. static inline bool bulkfree_pcp_prepare(struct page *page)
  925. {
  926. return false;
  927. }
  928. #else
  929. static bool free_pcp_prepare(struct page *page)
  930. {
  931. return free_pages_prepare(page, 0, false);
  932. }
  933. static bool bulkfree_pcp_prepare(struct page *page)
  934. {
  935. return free_pages_check(page);
  936. }
  937. #endif /* CONFIG_DEBUG_VM */
  938. /*
  939. * Frees a number of pages from the PCP lists
  940. * Assumes all pages on list are in same zone, and of same order.
  941. * count is the number of pages to free.
  942. *
  943. * If the zone was previously in an "all pages pinned" state then look to
  944. * see if this freeing clears that state.
  945. *
  946. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  947. * pinned" detection logic.
  948. */
  949. static void free_pcppages_bulk(struct zone *zone, int count,
  950. struct per_cpu_pages *pcp)
  951. {
  952. int migratetype = 0;
  953. int batch_free = 0;
  954. unsigned long nr_scanned, flags;
  955. bool isolated_pageblocks;
  956. spin_lock_irqsave(&zone->lock, flags);
  957. isolated_pageblocks = has_isolate_pageblock(zone);
  958. nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
  959. if (nr_scanned)
  960. __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
  961. while (count) {
  962. struct page *page;
  963. struct list_head *list;
  964. /*
  965. * Remove pages from lists in a round-robin fashion. A
  966. * batch_free count is maintained that is incremented when an
  967. * empty list is encountered. This is so more pages are freed
  968. * off fuller lists instead of spinning excessively around empty
  969. * lists
  970. */
  971. do {
  972. batch_free++;
  973. if (++migratetype == MIGRATE_PCPTYPES)
  974. migratetype = 0;
  975. list = &pcp->lists[migratetype];
  976. } while (list_empty(list));
  977. /* This is the only non-empty list. Free them all. */
  978. if (batch_free == MIGRATE_PCPTYPES)
  979. batch_free = count;
  980. do {
  981. int mt; /* migratetype of the to-be-freed page */
  982. page = list_last_entry(list, struct page, lru);
  983. /* must delete as __free_one_page list manipulates */
  984. list_del(&page->lru);
  985. mt = get_pcppage_migratetype(page);
  986. /* MIGRATE_ISOLATE page should not go to pcplists */
  987. VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
  988. /* Pageblock could have been isolated meanwhile */
  989. if (unlikely(isolated_pageblocks))
  990. mt = get_pageblock_migratetype(page);
  991. if (bulkfree_pcp_prepare(page))
  992. continue;
  993. __free_one_page(page, page_to_pfn(page), zone, 0, mt);
  994. trace_mm_page_pcpu_drain(page, 0, mt);
  995. } while (--count && --batch_free && !list_empty(list));
  996. }
  997. spin_unlock_irqrestore(&zone->lock, flags);
  998. }
  999. static void free_one_page(struct zone *zone,
  1000. struct page *page, unsigned long pfn,
  1001. unsigned int order,
  1002. int migratetype)
  1003. {
  1004. unsigned long nr_scanned, flags;
  1005. spin_lock_irqsave(&zone->lock, flags);
  1006. __count_vm_events(PGFREE, 1 << order);
  1007. nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
  1008. if (nr_scanned)
  1009. __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
  1010. if (unlikely(has_isolate_pageblock(zone) ||
  1011. is_migrate_isolate(migratetype))) {
  1012. migratetype = get_pfnblock_migratetype(page, pfn);
  1013. }
  1014. __free_one_page(page, pfn, zone, order, migratetype);
  1015. spin_unlock_irqrestore(&zone->lock, flags);
  1016. }
  1017. static void __meminit __init_single_page(struct page *page, unsigned long pfn,
  1018. unsigned long zone, int nid)
  1019. {
  1020. set_page_links(page, zone, nid, pfn);
  1021. init_page_count(page);
  1022. page_mapcount_reset(page);
  1023. page_cpupid_reset_last(page);
  1024. INIT_LIST_HEAD(&page->lru);
  1025. #ifdef WANT_PAGE_VIRTUAL
  1026. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  1027. if (!is_highmem_idx(zone))
  1028. set_page_address(page, __va(pfn << PAGE_SHIFT));
  1029. #endif
  1030. }
  1031. static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
  1032. int nid)
  1033. {
  1034. return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
  1035. }
  1036. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  1037. static void init_reserved_page(unsigned long pfn)
  1038. {
  1039. pg_data_t *pgdat;
  1040. int nid, zid;
  1041. if (!early_page_uninitialised(pfn))
  1042. return;
  1043. nid = early_pfn_to_nid(pfn);
  1044. pgdat = NODE_DATA(nid);
  1045. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  1046. struct zone *zone = &pgdat->node_zones[zid];
  1047. if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
  1048. break;
  1049. }
  1050. __init_single_pfn(pfn, zid, nid);
  1051. }
  1052. #else
  1053. static inline void init_reserved_page(unsigned long pfn)
  1054. {
  1055. }
  1056. #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
  1057. /*
  1058. * Initialised pages do not have PageReserved set. This function is
  1059. * called for each range allocated by the bootmem allocator and
  1060. * marks the pages PageReserved. The remaining valid pages are later
  1061. * sent to the buddy page allocator.
  1062. */
  1063. void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
  1064. {
  1065. unsigned long start_pfn = PFN_DOWN(start);
  1066. unsigned long end_pfn = PFN_UP(end);
  1067. for (; start_pfn < end_pfn; start_pfn++) {
  1068. if (pfn_valid(start_pfn)) {
  1069. struct page *page = pfn_to_page(start_pfn);
  1070. init_reserved_page(start_pfn);
  1071. /* Avoid false-positive PageTail() */
  1072. INIT_LIST_HEAD(&page->lru);
  1073. SetPageReserved(page);
  1074. }
  1075. }
  1076. }
  1077. static void __free_pages_ok(struct page *page, unsigned int order)
  1078. {
  1079. int migratetype;
  1080. unsigned long pfn = page_to_pfn(page);
  1081. if (!free_pages_prepare(page, order, true))
  1082. return;
  1083. migratetype = get_pfnblock_migratetype(page, pfn);
  1084. free_one_page(page_zone(page), page, pfn, order, migratetype);
  1085. }
  1086. static void __init __free_pages_boot_core(struct page *page, unsigned int order)
  1087. {
  1088. unsigned int nr_pages = 1 << order;
  1089. struct page *p = page;
  1090. unsigned int loop;
  1091. prefetchw(p);
  1092. for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
  1093. prefetchw(p + 1);
  1094. __ClearPageReserved(p);
  1095. set_page_count(p, 0);
  1096. }
  1097. __ClearPageReserved(p);
  1098. set_page_count(p, 0);
  1099. page_zone(page)->managed_pages += nr_pages;
  1100. set_page_refcounted(page);
  1101. __free_pages(page, order);
  1102. }
  1103. #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
  1104. defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
  1105. static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
  1106. int __meminit early_pfn_to_nid(unsigned long pfn)
  1107. {
  1108. static DEFINE_SPINLOCK(early_pfn_lock);
  1109. int nid;
  1110. spin_lock(&early_pfn_lock);
  1111. nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
  1112. if (nid < 0)
  1113. nid = first_online_node;
  1114. spin_unlock(&early_pfn_lock);
  1115. return nid;
  1116. }
  1117. #endif
  1118. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  1119. static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
  1120. struct mminit_pfnnid_cache *state)
  1121. {
  1122. int nid;
  1123. nid = __early_pfn_to_nid(pfn, state);
  1124. if (nid >= 0 && nid != node)
  1125. return false;
  1126. return true;
  1127. }
  1128. /* Only safe to use early in boot when initialisation is single-threaded */
  1129. static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  1130. {
  1131. return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
  1132. }
  1133. #else
  1134. static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  1135. {
  1136. return true;
  1137. }
  1138. static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
  1139. struct mminit_pfnnid_cache *state)
  1140. {
  1141. return true;
  1142. }
  1143. #endif
  1144. void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
  1145. unsigned int order)
  1146. {
  1147. if (early_page_uninitialised(pfn))
  1148. return;
  1149. return __free_pages_boot_core(page, order);
  1150. }
  1151. /*
  1152. * Check that the whole (or subset of) a pageblock given by the interval of
  1153. * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
  1154. * with the migration of free compaction scanner. The scanners then need to
  1155. * use only pfn_valid_within() check for arches that allow holes within
  1156. * pageblocks.
  1157. *
  1158. * Return struct page pointer of start_pfn, or NULL if checks were not passed.
  1159. *
  1160. * It's possible on some configurations to have a setup like node0 node1 node0
  1161. * i.e. it's possible that all pages within a zones range of pages do not
  1162. * belong to a single zone. We assume that a border between node0 and node1
  1163. * can occur within a single pageblock, but not a node0 node1 node0
  1164. * interleaving within a single pageblock. It is therefore sufficient to check
  1165. * the first and last page of a pageblock and avoid checking each individual
  1166. * page in a pageblock.
  1167. */
  1168. struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
  1169. unsigned long end_pfn, struct zone *zone)
  1170. {
  1171. struct page *start_page;
  1172. struct page *end_page;
  1173. /* end_pfn is one past the range we are checking */
  1174. end_pfn--;
  1175. if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
  1176. return NULL;
  1177. start_page = pfn_to_page(start_pfn);
  1178. if (page_zone(start_page) != zone)
  1179. return NULL;
  1180. end_page = pfn_to_page(end_pfn);
  1181. /* This gives a shorter code than deriving page_zone(end_page) */
  1182. if (page_zone_id(start_page) != page_zone_id(end_page))
  1183. return NULL;
  1184. return start_page;
  1185. }
  1186. void set_zone_contiguous(struct zone *zone)
  1187. {
  1188. unsigned long block_start_pfn = zone->zone_start_pfn;
  1189. unsigned long block_end_pfn;
  1190. block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
  1191. for (; block_start_pfn < zone_end_pfn(zone);
  1192. block_start_pfn = block_end_pfn,
  1193. block_end_pfn += pageblock_nr_pages) {
  1194. block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
  1195. if (!__pageblock_pfn_to_page(block_start_pfn,
  1196. block_end_pfn, zone))
  1197. return;
  1198. }
  1199. /* We confirm that there is no hole */
  1200. zone->contiguous = true;
  1201. }
  1202. void clear_zone_contiguous(struct zone *zone)
  1203. {
  1204. zone->contiguous = false;
  1205. }
  1206. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  1207. static void __init deferred_free_range(struct page *page,
  1208. unsigned long pfn, int nr_pages)
  1209. {
  1210. int i;
  1211. if (!page)
  1212. return;
  1213. /* Free a large naturally-aligned chunk if possible */
  1214. if (nr_pages == pageblock_nr_pages &&
  1215. (pfn & (pageblock_nr_pages - 1)) == 0) {
  1216. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  1217. __free_pages_boot_core(page, pageblock_order);
  1218. return;
  1219. }
  1220. for (i = 0; i < nr_pages; i++, page++, pfn++) {
  1221. if ((pfn & (pageblock_nr_pages - 1)) == 0)
  1222. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  1223. __free_pages_boot_core(page, 0);
  1224. }
  1225. }
  1226. /* Completion tracking for deferred_init_memmap() threads */
  1227. static atomic_t pgdat_init_n_undone __initdata;
  1228. static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
  1229. static inline void __init pgdat_init_report_one_done(void)
  1230. {
  1231. if (atomic_dec_and_test(&pgdat_init_n_undone))
  1232. complete(&pgdat_init_all_done_comp);
  1233. }
  1234. /* Initialise remaining memory on a node */
  1235. static int __init deferred_init_memmap(void *data)
  1236. {
  1237. pg_data_t *pgdat = data;
  1238. int nid = pgdat->node_id;
  1239. struct mminit_pfnnid_cache nid_init_state = { };
  1240. unsigned long start = jiffies;
  1241. unsigned long nr_pages = 0;
  1242. unsigned long walk_start, walk_end;
  1243. int i, zid;
  1244. struct zone *zone;
  1245. unsigned long first_init_pfn = pgdat->first_deferred_pfn;
  1246. const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
  1247. if (first_init_pfn == ULONG_MAX) {
  1248. pgdat_init_report_one_done();
  1249. return 0;
  1250. }
  1251. /* Bind memory initialisation thread to a local node if possible */
  1252. if (!cpumask_empty(cpumask))
  1253. set_cpus_allowed_ptr(current, cpumask);
  1254. /* Sanity check boundaries */
  1255. BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
  1256. BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
  1257. pgdat->first_deferred_pfn = ULONG_MAX;
  1258. /* Only the highest zone is deferred so find it */
  1259. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  1260. zone = pgdat->node_zones + zid;
  1261. if (first_init_pfn < zone_end_pfn(zone))
  1262. break;
  1263. }
  1264. for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
  1265. unsigned long pfn, end_pfn;
  1266. struct page *page = NULL;
  1267. struct page *free_base_page = NULL;
  1268. unsigned long free_base_pfn = 0;
  1269. int nr_to_free = 0;
  1270. end_pfn = min(walk_end, zone_end_pfn(zone));
  1271. pfn = first_init_pfn;
  1272. if (pfn < walk_start)
  1273. pfn = walk_start;
  1274. if (pfn < zone->zone_start_pfn)
  1275. pfn = zone->zone_start_pfn;
  1276. for (; pfn < end_pfn; pfn++) {
  1277. if (!pfn_valid_within(pfn))
  1278. goto free_range;
  1279. /*
  1280. * Ensure pfn_valid is checked every
  1281. * pageblock_nr_pages for memory holes
  1282. */
  1283. if ((pfn & (pageblock_nr_pages - 1)) == 0) {
  1284. if (!pfn_valid(pfn)) {
  1285. page = NULL;
  1286. goto free_range;
  1287. }
  1288. }
  1289. if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
  1290. page = NULL;
  1291. goto free_range;
  1292. }
  1293. /* Minimise pfn page lookups and scheduler checks */
  1294. if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
  1295. page++;
  1296. } else {
  1297. nr_pages += nr_to_free;
  1298. deferred_free_range(free_base_page,
  1299. free_base_pfn, nr_to_free);
  1300. free_base_page = NULL;
  1301. free_base_pfn = nr_to_free = 0;
  1302. page = pfn_to_page(pfn);
  1303. cond_resched();
  1304. }
  1305. if (page->flags) {
  1306. VM_BUG_ON(page_zone(page) != zone);
  1307. goto free_range;
  1308. }
  1309. __init_single_page(page, pfn, zid, nid);
  1310. if (!free_base_page) {
  1311. free_base_page = page;
  1312. free_base_pfn = pfn;
  1313. nr_to_free = 0;
  1314. }
  1315. nr_to_free++;
  1316. /* Where possible, batch up pages for a single free */
  1317. continue;
  1318. free_range:
  1319. /* Free the current block of pages to allocator */
  1320. nr_pages += nr_to_free;
  1321. deferred_free_range(free_base_page, free_base_pfn,
  1322. nr_to_free);
  1323. free_base_page = NULL;
  1324. free_base_pfn = nr_to_free = 0;
  1325. }
  1326. /* Free the last block of pages to allocator */
  1327. nr_pages += nr_to_free;
  1328. deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
  1329. first_init_pfn = max(end_pfn, first_init_pfn);
  1330. }
  1331. /* Sanity check that the next zone really is unpopulated */
  1332. WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
  1333. pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
  1334. jiffies_to_msecs(jiffies - start));
  1335. pgdat_init_report_one_done();
  1336. return 0;
  1337. }
  1338. #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
  1339. void __init page_alloc_init_late(void)
  1340. {
  1341. struct zone *zone;
  1342. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  1343. int nid;
  1344. /* There will be num_node_state(N_MEMORY) threads */
  1345. atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
  1346. for_each_node_state(nid, N_MEMORY) {
  1347. kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
  1348. }
  1349. /* Block until all are initialised */
  1350. wait_for_completion(&pgdat_init_all_done_comp);
  1351. /* Reinit limits that are based on free pages after the kernel is up */
  1352. files_maxfiles_init();
  1353. #endif
  1354. for_each_populated_zone(zone)
  1355. set_zone_contiguous(zone);
  1356. }
  1357. #ifdef CONFIG_CMA
  1358. /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
  1359. void __init init_cma_reserved_pageblock(struct page *page)
  1360. {
  1361. unsigned i = pageblock_nr_pages;
  1362. struct page *p = page;
  1363. do {
  1364. __ClearPageReserved(p);
  1365. set_page_count(p, 0);
  1366. } while (++p, --i);
  1367. set_pageblock_migratetype(page, MIGRATE_CMA);
  1368. if (pageblock_order >= MAX_ORDER) {
  1369. i = pageblock_nr_pages;
  1370. p = page;
  1371. do {
  1372. set_page_refcounted(p);
  1373. __free_pages(p, MAX_ORDER - 1);
  1374. p += MAX_ORDER_NR_PAGES;
  1375. } while (i -= MAX_ORDER_NR_PAGES);
  1376. } else {
  1377. set_page_refcounted(page);
  1378. __free_pages(page, pageblock_order);
  1379. }
  1380. adjust_managed_page_count(page, pageblock_nr_pages);
  1381. }
  1382. #endif
  1383. /*
  1384. * The order of subdivision here is critical for the IO subsystem.
  1385. * Please do not alter this order without good reasons and regression
  1386. * testing. Specifically, as large blocks of memory are subdivided,
  1387. * the order in which smaller blocks are delivered depends on the order
  1388. * they're subdivided in this function. This is the primary factor
  1389. * influencing the order in which pages are delivered to the IO
  1390. * subsystem according to empirical testing, and this is also justified
  1391. * by considering the behavior of a buddy system containing a single
  1392. * large block of memory acted on by a series of small allocations.
  1393. * This behavior is a critical factor in sglist merging's success.
  1394. *
  1395. * -- nyc
  1396. */
  1397. static inline void expand(struct zone *zone, struct page *page,
  1398. int low, int high, struct free_area *area,
  1399. int migratetype)
  1400. {
  1401. unsigned long size = 1 << high;
  1402. while (high > low) {
  1403. area--;
  1404. high--;
  1405. size >>= 1;
  1406. VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
  1407. /*
  1408. * Mark as guard pages (or page), that will allow to
  1409. * merge back to allocator when buddy will be freed.
  1410. * Corresponding page table entries will not be touched,
  1411. * pages will stay not present in virtual address space
  1412. */
  1413. if (set_page_guard(zone, &page[size], high, migratetype))
  1414. continue;
  1415. list_add(&page[size].lru, &area->free_list[migratetype]);
  1416. area->nr_free++;
  1417. set_page_order(&page[size], high);
  1418. }
  1419. }
  1420. static void check_new_page_bad(struct page *page)
  1421. {
  1422. const char *bad_reason = NULL;
  1423. unsigned long bad_flags = 0;
  1424. if (unlikely(atomic_read(&page->_mapcount) != -1))
  1425. bad_reason = "nonzero mapcount";
  1426. if (unlikely(page->mapping != NULL))
  1427. bad_reason = "non-NULL mapping";
  1428. if (unlikely(page_ref_count(page) != 0))
  1429. bad_reason = "nonzero _count";
  1430. if (unlikely(page->flags & __PG_HWPOISON)) {
  1431. bad_reason = "HWPoisoned (hardware-corrupted)";
  1432. bad_flags = __PG_HWPOISON;
  1433. /* Don't complain about hwpoisoned pages */
  1434. page_mapcount_reset(page); /* remove PageBuddy */
  1435. return;
  1436. }
  1437. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
  1438. bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
  1439. bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
  1440. }
  1441. #ifdef CONFIG_MEMCG
  1442. if (unlikely(page->mem_cgroup))
  1443. bad_reason = "page still charged to cgroup";
  1444. #endif
  1445. bad_page(page, bad_reason, bad_flags);
  1446. }
  1447. /*
  1448. * This page is about to be returned from the page allocator
  1449. */
  1450. static inline int check_new_page(struct page *page)
  1451. {
  1452. if (likely(page_expected_state(page,
  1453. PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
  1454. return 0;
  1455. check_new_page_bad(page);
  1456. return 1;
  1457. }
  1458. static inline bool free_pages_prezeroed(bool poisoned)
  1459. {
  1460. return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
  1461. page_poisoning_enabled() && poisoned;
  1462. }
  1463. #ifdef CONFIG_DEBUG_VM
  1464. static bool check_pcp_refill(struct page *page)
  1465. {
  1466. return false;
  1467. }
  1468. static bool check_new_pcp(struct page *page)
  1469. {
  1470. return check_new_page(page);
  1471. }
  1472. #else
  1473. static bool check_pcp_refill(struct page *page)
  1474. {
  1475. return check_new_page(page);
  1476. }
  1477. static bool check_new_pcp(struct page *page)
  1478. {
  1479. return false;
  1480. }
  1481. #endif /* CONFIG_DEBUG_VM */
  1482. static bool check_new_pages(struct page *page, unsigned int order)
  1483. {
  1484. int i;
  1485. for (i = 0; i < (1 << order); i++) {
  1486. struct page *p = page + i;
  1487. if (unlikely(check_new_page(p)))
  1488. return true;
  1489. }
  1490. return false;
  1491. }
  1492. inline void post_alloc_hook(struct page *page, unsigned int order,
  1493. gfp_t gfp_flags)
  1494. {
  1495. set_page_private(page, 0);
  1496. set_page_refcounted(page);
  1497. arch_alloc_page(page, order);
  1498. kernel_map_pages(page, 1 << order, 1);
  1499. kernel_poison_pages(page, 1 << order, 1);
  1500. kasan_alloc_pages(page, order);
  1501. set_page_owner(page, order, gfp_flags);
  1502. }
  1503. static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
  1504. unsigned int alloc_flags)
  1505. {
  1506. int i;
  1507. bool poisoned = true;
  1508. for (i = 0; i < (1 << order); i++) {
  1509. struct page *p = page + i;
  1510. if (poisoned)
  1511. poisoned &= page_is_poisoned(p);
  1512. }
  1513. post_alloc_hook(page, order, gfp_flags);
  1514. if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
  1515. for (i = 0; i < (1 << order); i++)
  1516. clear_highpage(page + i);
  1517. if (order && (gfp_flags & __GFP_COMP))
  1518. prep_compound_page(page, order);
  1519. /*
  1520. * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
  1521. * allocate the page. The expectation is that the caller is taking
  1522. * steps that will free more memory. The caller should avoid the page
  1523. * being used for !PFMEMALLOC purposes.
  1524. */
  1525. if (alloc_flags & ALLOC_NO_WATERMARKS)
  1526. set_page_pfmemalloc(page);
  1527. else
  1528. clear_page_pfmemalloc(page);
  1529. }
  1530. /*
  1531. * Go through the free lists for the given migratetype and remove
  1532. * the smallest available page from the freelists
  1533. */
  1534. static inline
  1535. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  1536. int migratetype)
  1537. {
  1538. unsigned int current_order;
  1539. struct free_area *area;
  1540. struct page *page;
  1541. /* Find a page of the appropriate size in the preferred list */
  1542. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  1543. area = &(zone->free_area[current_order]);
  1544. page = list_first_entry_or_null(&area->free_list[migratetype],
  1545. struct page, lru);
  1546. if (!page)
  1547. continue;
  1548. list_del(&page->lru);
  1549. rmv_page_order(page);
  1550. area->nr_free--;
  1551. expand(zone, page, order, current_order, area, migratetype);
  1552. set_pcppage_migratetype(page, migratetype);
  1553. return page;
  1554. }
  1555. return NULL;
  1556. }
  1557. /*
  1558. * This array describes the order lists are fallen back to when
  1559. * the free lists for the desirable migrate type are depleted
  1560. */
  1561. static int fallbacks[MIGRATE_TYPES][4] = {
  1562. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
  1563. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
  1564. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
  1565. #ifdef CONFIG_CMA
  1566. [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
  1567. #endif
  1568. #ifdef CONFIG_MEMORY_ISOLATION
  1569. [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
  1570. #endif
  1571. };
  1572. #ifdef CONFIG_CMA
  1573. static struct page *__rmqueue_cma_fallback(struct zone *zone,
  1574. unsigned int order)
  1575. {
  1576. return __rmqueue_smallest(zone, order, MIGRATE_CMA);
  1577. }
  1578. #else
  1579. static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
  1580. unsigned int order) { return NULL; }
  1581. #endif
  1582. /*
  1583. * Move the free pages in a range to the free lists of the requested type.
  1584. * Note that start_page and end_pages are not aligned on a pageblock
  1585. * boundary. If alignment is required, use move_freepages_block()
  1586. */
  1587. int move_freepages(struct zone *zone,
  1588. struct page *start_page, struct page *end_page,
  1589. int migratetype)
  1590. {
  1591. struct page *page;
  1592. unsigned int order;
  1593. int pages_moved = 0;
  1594. #ifndef CONFIG_HOLES_IN_ZONE
  1595. /*
  1596. * page_zone is not safe to call in this context when
  1597. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  1598. * anyway as we check zone boundaries in move_freepages_block().
  1599. * Remove at a later date when no bug reports exist related to
  1600. * grouping pages by mobility
  1601. */
  1602. VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
  1603. #endif
  1604. for (page = start_page; page <= end_page;) {
  1605. if (!pfn_valid_within(page_to_pfn(page))) {
  1606. page++;
  1607. continue;
  1608. }
  1609. /* Make sure we are not inadvertently changing nodes */
  1610. VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
  1611. if (!PageBuddy(page)) {
  1612. page++;
  1613. continue;
  1614. }
  1615. order = page_order(page);
  1616. list_move(&page->lru,
  1617. &zone->free_area[order].free_list[migratetype]);
  1618. page += 1 << order;
  1619. pages_moved += 1 << order;
  1620. }
  1621. return pages_moved;
  1622. }
  1623. int move_freepages_block(struct zone *zone, struct page *page,
  1624. int migratetype)
  1625. {
  1626. unsigned long start_pfn, end_pfn;
  1627. struct page *start_page, *end_page;
  1628. start_pfn = page_to_pfn(page);
  1629. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  1630. start_page = pfn_to_page(start_pfn);
  1631. end_page = start_page + pageblock_nr_pages - 1;
  1632. end_pfn = start_pfn + pageblock_nr_pages - 1;
  1633. /* Do not cross zone boundaries */
  1634. if (!zone_spans_pfn(zone, start_pfn))
  1635. start_page = page;
  1636. if (!zone_spans_pfn(zone, end_pfn))
  1637. return 0;
  1638. return move_freepages(zone, start_page, end_page, migratetype);
  1639. }
  1640. static void change_pageblock_range(struct page *pageblock_page,
  1641. int start_order, int migratetype)
  1642. {
  1643. int nr_pageblocks = 1 << (start_order - pageblock_order);
  1644. while (nr_pageblocks--) {
  1645. set_pageblock_migratetype(pageblock_page, migratetype);
  1646. pageblock_page += pageblock_nr_pages;
  1647. }
  1648. }
  1649. /*
  1650. * When we are falling back to another migratetype during allocation, try to
  1651. * steal extra free pages from the same pageblocks to satisfy further
  1652. * allocations, instead of polluting multiple pageblocks.
  1653. *
  1654. * If we are stealing a relatively large buddy page, it is likely there will
  1655. * be more free pages in the pageblock, so try to steal them all. For
  1656. * reclaimable and unmovable allocations, we steal regardless of page size,
  1657. * as fragmentation caused by those allocations polluting movable pageblocks
  1658. * is worse than movable allocations stealing from unmovable and reclaimable
  1659. * pageblocks.
  1660. */
  1661. static bool can_steal_fallback(unsigned int order, int start_mt)
  1662. {
  1663. /*
  1664. * Leaving this order check is intended, although there is
  1665. * relaxed order check in next check. The reason is that
  1666. * we can actually steal whole pageblock if this condition met,
  1667. * but, below check doesn't guarantee it and that is just heuristic
  1668. * so could be changed anytime.
  1669. */
  1670. if (order >= pageblock_order)
  1671. return true;
  1672. if (order >= pageblock_order / 2 ||
  1673. start_mt == MIGRATE_RECLAIMABLE ||
  1674. start_mt == MIGRATE_UNMOVABLE ||
  1675. page_group_by_mobility_disabled)
  1676. return true;
  1677. return false;
  1678. }
  1679. /*
  1680. * This function implements actual steal behaviour. If order is large enough,
  1681. * we can steal whole pageblock. If not, we first move freepages in this
  1682. * pageblock and check whether half of pages are moved or not. If half of
  1683. * pages are moved, we can change migratetype of pageblock and permanently
  1684. * use it's pages as requested migratetype in the future.
  1685. */
  1686. static void steal_suitable_fallback(struct zone *zone, struct page *page,
  1687. int start_type)
  1688. {
  1689. unsigned int current_order = page_order(page);
  1690. int pages;
  1691. /* Take ownership for orders >= pageblock_order */
  1692. if (current_order >= pageblock_order) {
  1693. change_pageblock_range(page, current_order, start_type);
  1694. return;
  1695. }
  1696. pages = move_freepages_block(zone, page, start_type);
  1697. /* Claim the whole block if over half of it is free */
  1698. if (pages >= (1 << (pageblock_order-1)) ||
  1699. page_group_by_mobility_disabled)
  1700. set_pageblock_migratetype(page, start_type);
  1701. }
  1702. /*
  1703. * Check whether there is a suitable fallback freepage with requested order.
  1704. * If only_stealable is true, this function returns fallback_mt only if
  1705. * we can steal other freepages all together. This would help to reduce
  1706. * fragmentation due to mixed migratetype pages in one pageblock.
  1707. */
  1708. int find_suitable_fallback(struct free_area *area, unsigned int order,
  1709. int migratetype, bool only_stealable, bool *can_steal)
  1710. {
  1711. int i;
  1712. int fallback_mt;
  1713. if (area->nr_free == 0)
  1714. return -1;
  1715. *can_steal = false;
  1716. for (i = 0;; i++) {
  1717. fallback_mt = fallbacks[migratetype][i];
  1718. if (fallback_mt == MIGRATE_TYPES)
  1719. break;
  1720. if (list_empty(&area->free_list[fallback_mt]))
  1721. continue;
  1722. if (can_steal_fallback(order, migratetype))
  1723. *can_steal = true;
  1724. if (!only_stealable)
  1725. return fallback_mt;
  1726. if (*can_steal)
  1727. return fallback_mt;
  1728. }
  1729. return -1;
  1730. }
  1731. /*
  1732. * Reserve a pageblock for exclusive use of high-order atomic allocations if
  1733. * there are no empty page blocks that contain a page with a suitable order
  1734. */
  1735. static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
  1736. unsigned int alloc_order)
  1737. {
  1738. int mt;
  1739. unsigned long max_managed, flags;
  1740. /*
  1741. * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
  1742. * Check is race-prone but harmless.
  1743. */
  1744. max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
  1745. if (zone->nr_reserved_highatomic >= max_managed)
  1746. return;
  1747. spin_lock_irqsave(&zone->lock, flags);
  1748. /* Recheck the nr_reserved_highatomic limit under the lock */
  1749. if (zone->nr_reserved_highatomic >= max_managed)
  1750. goto out_unlock;
  1751. /* Yoink! */
  1752. mt = get_pageblock_migratetype(page);
  1753. if (mt != MIGRATE_HIGHATOMIC &&
  1754. !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
  1755. zone->nr_reserved_highatomic += pageblock_nr_pages;
  1756. set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
  1757. move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
  1758. }
  1759. out_unlock:
  1760. spin_unlock_irqrestore(&zone->lock, flags);
  1761. }
  1762. /*
  1763. * Used when an allocation is about to fail under memory pressure. This
  1764. * potentially hurts the reliability of high-order allocations when under
  1765. * intense memory pressure but failed atomic allocations should be easier
  1766. * to recover from than an OOM.
  1767. *
  1768. * If @force is true, try to unreserve a pageblock even though highatomic
  1769. * pageblock is exhausted.
  1770. */
  1771. static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
  1772. bool force)
  1773. {
  1774. struct zonelist *zonelist = ac->zonelist;
  1775. unsigned long flags;
  1776. struct zoneref *z;
  1777. struct zone *zone;
  1778. struct page *page;
  1779. int order;
  1780. bool ret;
  1781. for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
  1782. ac->nodemask) {
  1783. /*
  1784. * Preserve at least one pageblock unless memory pressure
  1785. * is really high.
  1786. */
  1787. if (!force && zone->nr_reserved_highatomic <=
  1788. pageblock_nr_pages)
  1789. continue;
  1790. spin_lock_irqsave(&zone->lock, flags);
  1791. for (order = 0; order < MAX_ORDER; order++) {
  1792. struct free_area *area = &(zone->free_area[order]);
  1793. page = list_first_entry_or_null(
  1794. &area->free_list[MIGRATE_HIGHATOMIC],
  1795. struct page, lru);
  1796. if (!page)
  1797. continue;
  1798. /*
  1799. * In page freeing path, migratetype change is racy so
  1800. * we can counter several free pages in a pageblock
  1801. * in this loop althoug we changed the pageblock type
  1802. * from highatomic to ac->migratetype. So we should
  1803. * adjust the count once.
  1804. */
  1805. if (get_pageblock_migratetype(page) ==
  1806. MIGRATE_HIGHATOMIC) {
  1807. /*
  1808. * It should never happen but changes to
  1809. * locking could inadvertently allow a per-cpu
  1810. * drain to add pages to MIGRATE_HIGHATOMIC
  1811. * while unreserving so be safe and watch for
  1812. * underflows.
  1813. */
  1814. zone->nr_reserved_highatomic -= min(
  1815. pageblock_nr_pages,
  1816. zone->nr_reserved_highatomic);
  1817. }
  1818. /*
  1819. * Convert to ac->migratetype and avoid the normal
  1820. * pageblock stealing heuristics. Minimally, the caller
  1821. * is doing the work and needs the pages. More
  1822. * importantly, if the block was always converted to
  1823. * MIGRATE_UNMOVABLE or another type then the number
  1824. * of pageblocks that cannot be completely freed
  1825. * may increase.
  1826. */
  1827. set_pageblock_migratetype(page, ac->migratetype);
  1828. ret = move_freepages_block(zone, page, ac->migratetype);
  1829. if (ret) {
  1830. spin_unlock_irqrestore(&zone->lock, flags);
  1831. return ret;
  1832. }
  1833. }
  1834. spin_unlock_irqrestore(&zone->lock, flags);
  1835. }
  1836. return false;
  1837. }
  1838. /* Remove an element from the buddy allocator from the fallback list */
  1839. static inline struct page *
  1840. __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
  1841. {
  1842. struct free_area *area;
  1843. unsigned int current_order;
  1844. struct page *page;
  1845. int fallback_mt;
  1846. bool can_steal;
  1847. /* Find the largest possible block of pages in the other list */
  1848. for (current_order = MAX_ORDER-1;
  1849. current_order >= order && current_order <= MAX_ORDER-1;
  1850. --current_order) {
  1851. area = &(zone->free_area[current_order]);
  1852. fallback_mt = find_suitable_fallback(area, current_order,
  1853. start_migratetype, false, &can_steal);
  1854. if (fallback_mt == -1)
  1855. continue;
  1856. page = list_first_entry(&area->free_list[fallback_mt],
  1857. struct page, lru);
  1858. if (can_steal &&
  1859. get_pageblock_migratetype(page) != MIGRATE_HIGHATOMIC)
  1860. steal_suitable_fallback(zone, page, start_migratetype);
  1861. /* Remove the page from the freelists */
  1862. area->nr_free--;
  1863. list_del(&page->lru);
  1864. rmv_page_order(page);
  1865. expand(zone, page, order, current_order, area,
  1866. start_migratetype);
  1867. /*
  1868. * The pcppage_migratetype may differ from pageblock's
  1869. * migratetype depending on the decisions in
  1870. * find_suitable_fallback(). This is OK as long as it does not
  1871. * differ for MIGRATE_CMA pageblocks. Those can be used as
  1872. * fallback only via special __rmqueue_cma_fallback() function
  1873. */
  1874. set_pcppage_migratetype(page, start_migratetype);
  1875. trace_mm_page_alloc_extfrag(page, order, current_order,
  1876. start_migratetype, fallback_mt);
  1877. return page;
  1878. }
  1879. return NULL;
  1880. }
  1881. /*
  1882. * Do the hard work of removing an element from the buddy allocator.
  1883. * Call me with the zone->lock already held.
  1884. */
  1885. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  1886. int migratetype)
  1887. {
  1888. struct page *page;
  1889. page = __rmqueue_smallest(zone, order, migratetype);
  1890. if (unlikely(!page)) {
  1891. if (migratetype == MIGRATE_MOVABLE)
  1892. page = __rmqueue_cma_fallback(zone, order);
  1893. if (!page)
  1894. page = __rmqueue_fallback(zone, order, migratetype);
  1895. }
  1896. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  1897. return page;
  1898. }
  1899. /*
  1900. * Obtain a specified number of elements from the buddy allocator, all under
  1901. * a single hold of the lock, for efficiency. Add them to the supplied list.
  1902. * Returns the number of new pages which were placed at *list.
  1903. */
  1904. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  1905. unsigned long count, struct list_head *list,
  1906. int migratetype, bool cold)
  1907. {
  1908. int i, alloced = 0;
  1909. unsigned long flags;
  1910. spin_lock_irqsave(&zone->lock, flags);
  1911. for (i = 0; i < count; ++i) {
  1912. struct page *page = __rmqueue(zone, order, migratetype);
  1913. if (unlikely(page == NULL))
  1914. break;
  1915. if (unlikely(check_pcp_refill(page)))
  1916. continue;
  1917. /*
  1918. * Split buddy pages returned by expand() are received here
  1919. * in physical page order. The page is added to the callers and
  1920. * list and the list head then moves forward. From the callers
  1921. * perspective, the linked list is ordered by page number in
  1922. * some conditions. This is useful for IO devices that can
  1923. * merge IO requests if the physical pages are ordered
  1924. * properly.
  1925. */
  1926. if (likely(!cold))
  1927. list_add(&page->lru, list);
  1928. else
  1929. list_add_tail(&page->lru, list);
  1930. list = &page->lru;
  1931. alloced++;
  1932. if (is_migrate_cma(get_pcppage_migratetype(page)))
  1933. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
  1934. -(1 << order));
  1935. }
  1936. /*
  1937. * i pages were removed from the buddy list even if some leak due
  1938. * to check_pcp_refill failing so adjust NR_FREE_PAGES based
  1939. * on i. Do not confuse with 'alloced' which is the number of
  1940. * pages added to the pcp list.
  1941. */
  1942. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  1943. spin_unlock_irqrestore(&zone->lock, flags);
  1944. return alloced;
  1945. }
  1946. #ifdef CONFIG_NUMA
  1947. /*
  1948. * Called from the vmstat counter updater to drain pagesets of this
  1949. * currently executing processor on remote nodes after they have
  1950. * expired.
  1951. *
  1952. * Note that this function must be called with the thread pinned to
  1953. * a single processor.
  1954. */
  1955. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  1956. {
  1957. unsigned long flags;
  1958. int to_drain, batch;
  1959. local_irq_save(flags);
  1960. batch = READ_ONCE(pcp->batch);
  1961. to_drain = min(pcp->count, batch);
  1962. if (to_drain > 0) {
  1963. free_pcppages_bulk(zone, to_drain, pcp);
  1964. pcp->count -= to_drain;
  1965. }
  1966. local_irq_restore(flags);
  1967. }
  1968. #endif
  1969. /*
  1970. * Drain pcplists of the indicated processor and zone.
  1971. *
  1972. * The processor must either be the current processor and the
  1973. * thread pinned to the current processor or a processor that
  1974. * is not online.
  1975. */
  1976. static void drain_pages_zone(unsigned int cpu, struct zone *zone)
  1977. {
  1978. unsigned long flags;
  1979. struct per_cpu_pageset *pset;
  1980. struct per_cpu_pages *pcp;
  1981. local_irq_save(flags);
  1982. pset = per_cpu_ptr(zone->pageset, cpu);
  1983. pcp = &pset->pcp;
  1984. if (pcp->count) {
  1985. free_pcppages_bulk(zone, pcp->count, pcp);
  1986. pcp->count = 0;
  1987. }
  1988. local_irq_restore(flags);
  1989. }
  1990. /*
  1991. * Drain pcplists of all zones on the indicated processor.
  1992. *
  1993. * The processor must either be the current processor and the
  1994. * thread pinned to the current processor or a processor that
  1995. * is not online.
  1996. */
  1997. static void drain_pages(unsigned int cpu)
  1998. {
  1999. struct zone *zone;
  2000. for_each_populated_zone(zone) {
  2001. drain_pages_zone(cpu, zone);
  2002. }
  2003. }
  2004. /*
  2005. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  2006. *
  2007. * The CPU has to be pinned. When zone parameter is non-NULL, spill just
  2008. * the single zone's pages.
  2009. */
  2010. void drain_local_pages(struct zone *zone)
  2011. {
  2012. int cpu = smp_processor_id();
  2013. if (zone)
  2014. drain_pages_zone(cpu, zone);
  2015. else
  2016. drain_pages(cpu);
  2017. }
  2018. static void drain_local_pages_wq(struct work_struct *work)
  2019. {
  2020. /*
  2021. * drain_all_pages doesn't use proper cpu hotplug protection so
  2022. * we can race with cpu offline when the WQ can move this from
  2023. * a cpu pinned worker to an unbound one. We can operate on a different
  2024. * cpu which is allright but we also have to make sure to not move to
  2025. * a different one.
  2026. */
  2027. preempt_disable();
  2028. drain_local_pages(NULL);
  2029. preempt_enable();
  2030. }
  2031. /*
  2032. * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
  2033. *
  2034. * When zone parameter is non-NULL, spill just the single zone's pages.
  2035. *
  2036. * Note that this can be extremely slow as the draining happens in a workqueue.
  2037. */
  2038. void drain_all_pages(struct zone *zone)
  2039. {
  2040. int cpu;
  2041. /*
  2042. * Allocate in the BSS so we wont require allocation in
  2043. * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
  2044. */
  2045. static cpumask_t cpus_with_pcps;
  2046. /*
  2047. * Make sure nobody triggers this path before mm_percpu_wq is fully
  2048. * initialized.
  2049. */
  2050. if (WARN_ON_ONCE(!mm_percpu_wq))
  2051. return;
  2052. /* Workqueues cannot recurse */
  2053. if (current->flags & PF_WQ_WORKER)
  2054. return;
  2055. /*
  2056. * Do not drain if one is already in progress unless it's specific to
  2057. * a zone. Such callers are primarily CMA and memory hotplug and need
  2058. * the drain to be complete when the call returns.
  2059. */
  2060. if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
  2061. if (!zone)
  2062. return;
  2063. mutex_lock(&pcpu_drain_mutex);
  2064. }
  2065. /*
  2066. * We don't care about racing with CPU hotplug event
  2067. * as offline notification will cause the notified
  2068. * cpu to drain that CPU pcps and on_each_cpu_mask
  2069. * disables preemption as part of its processing
  2070. */
  2071. for_each_online_cpu(cpu) {
  2072. struct per_cpu_pageset *pcp;
  2073. struct zone *z;
  2074. bool has_pcps = false;
  2075. if (zone) {
  2076. pcp = per_cpu_ptr(zone->pageset, cpu);
  2077. if (pcp->pcp.count)
  2078. has_pcps = true;
  2079. } else {
  2080. for_each_populated_zone(z) {
  2081. pcp = per_cpu_ptr(z->pageset, cpu);
  2082. if (pcp->pcp.count) {
  2083. has_pcps = true;
  2084. break;
  2085. }
  2086. }
  2087. }
  2088. if (has_pcps)
  2089. cpumask_set_cpu(cpu, &cpus_with_pcps);
  2090. else
  2091. cpumask_clear_cpu(cpu, &cpus_with_pcps);
  2092. }
  2093. for_each_cpu(cpu, &cpus_with_pcps) {
  2094. struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
  2095. INIT_WORK(work, drain_local_pages_wq);
  2096. queue_work_on(cpu, mm_percpu_wq, work);
  2097. }
  2098. for_each_cpu(cpu, &cpus_with_pcps)
  2099. flush_work(per_cpu_ptr(&pcpu_drain, cpu));
  2100. mutex_unlock(&pcpu_drain_mutex);
  2101. }
  2102. #ifdef CONFIG_HIBERNATION
  2103. void mark_free_pages(struct zone *zone)
  2104. {
  2105. unsigned long pfn, max_zone_pfn;
  2106. unsigned long flags;
  2107. unsigned int order, t;
  2108. struct page *page;
  2109. if (zone_is_empty(zone))
  2110. return;
  2111. spin_lock_irqsave(&zone->lock, flags);
  2112. max_zone_pfn = zone_end_pfn(zone);
  2113. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  2114. if (pfn_valid(pfn)) {
  2115. page = pfn_to_page(pfn);
  2116. if (page_zone(page) != zone)
  2117. continue;
  2118. if (!swsusp_page_is_forbidden(page))
  2119. swsusp_unset_page_free(page);
  2120. }
  2121. for_each_migratetype_order(order, t) {
  2122. list_for_each_entry(page,
  2123. &zone->free_area[order].free_list[t], lru) {
  2124. unsigned long i;
  2125. pfn = page_to_pfn(page);
  2126. for (i = 0; i < (1UL << order); i++)
  2127. swsusp_set_page_free(pfn_to_page(pfn + i));
  2128. }
  2129. }
  2130. spin_unlock_irqrestore(&zone->lock, flags);
  2131. }
  2132. #endif /* CONFIG_PM */
  2133. /*
  2134. * Free a 0-order page
  2135. * cold == true ? free a cold page : free a hot page
  2136. */
  2137. void free_hot_cold_page(struct page *page, bool cold)
  2138. {
  2139. struct zone *zone = page_zone(page);
  2140. struct per_cpu_pages *pcp;
  2141. unsigned long pfn = page_to_pfn(page);
  2142. int migratetype;
  2143. if (in_interrupt()) {
  2144. __free_pages_ok(page, 0);
  2145. return;
  2146. }
  2147. if (!free_pcp_prepare(page))
  2148. return;
  2149. migratetype = get_pfnblock_migratetype(page, pfn);
  2150. set_pcppage_migratetype(page, migratetype);
  2151. preempt_disable();
  2152. /*
  2153. * We only track unmovable, reclaimable and movable on pcp lists.
  2154. * Free ISOLATE pages back to the allocator because they are being
  2155. * offlined but treat RESERVE as movable pages so we can get those
  2156. * areas back if necessary. Otherwise, we may have to free
  2157. * excessively into the page allocator
  2158. */
  2159. if (migratetype >= MIGRATE_PCPTYPES) {
  2160. if (unlikely(is_migrate_isolate(migratetype))) {
  2161. free_one_page(zone, page, pfn, 0, migratetype);
  2162. goto out;
  2163. }
  2164. migratetype = MIGRATE_MOVABLE;
  2165. }
  2166. __count_vm_event(PGFREE);
  2167. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  2168. if (!cold)
  2169. list_add(&page->lru, &pcp->lists[migratetype]);
  2170. else
  2171. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  2172. pcp->count++;
  2173. if (pcp->count >= pcp->high) {
  2174. unsigned long batch = READ_ONCE(pcp->batch);
  2175. free_pcppages_bulk(zone, batch, pcp);
  2176. pcp->count -= batch;
  2177. }
  2178. out:
  2179. preempt_enable();
  2180. }
  2181. /*
  2182. * Free a list of 0-order pages
  2183. */
  2184. void free_hot_cold_page_list(struct list_head *list, bool cold)
  2185. {
  2186. struct page *page, *next;
  2187. list_for_each_entry_safe(page, next, list, lru) {
  2188. trace_mm_page_free_batched(page, cold);
  2189. free_hot_cold_page(page, cold);
  2190. }
  2191. }
  2192. /*
  2193. * split_page takes a non-compound higher-order page, and splits it into
  2194. * n (1<<order) sub-pages: page[0..n]
  2195. * Each sub-page must be freed individually.
  2196. *
  2197. * Note: this is probably too low level an operation for use in drivers.
  2198. * Please consult with lkml before using this in your driver.
  2199. */
  2200. void split_page(struct page *page, unsigned int order)
  2201. {
  2202. int i;
  2203. VM_BUG_ON_PAGE(PageCompound(page), page);
  2204. VM_BUG_ON_PAGE(!page_count(page), page);
  2205. #ifdef CONFIG_KMEMCHECK
  2206. /*
  2207. * Split shadow pages too, because free(page[0]) would
  2208. * otherwise free the whole shadow.
  2209. */
  2210. if (kmemcheck_page_is_tracked(page))
  2211. split_page(virt_to_page(page[0].shadow), order);
  2212. #endif
  2213. for (i = 1; i < (1 << order); i++)
  2214. set_page_refcounted(page + i);
  2215. split_page_owner(page, order);
  2216. }
  2217. EXPORT_SYMBOL_GPL(split_page);
  2218. int __isolate_free_page(struct page *page, unsigned int order)
  2219. {
  2220. unsigned long watermark;
  2221. struct zone *zone;
  2222. int mt;
  2223. BUG_ON(!PageBuddy(page));
  2224. zone = page_zone(page);
  2225. mt = get_pageblock_migratetype(page);
  2226. if (!is_migrate_isolate(mt)) {
  2227. /*
  2228. * Obey watermarks as if the page was being allocated. We can
  2229. * emulate a high-order watermark check with a raised order-0
  2230. * watermark, because we already know our high-order page
  2231. * exists.
  2232. */
  2233. watermark = min_wmark_pages(zone) + (1UL << order);
  2234. if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
  2235. return 0;
  2236. __mod_zone_freepage_state(zone, -(1UL << order), mt);
  2237. }
  2238. /* Remove page from free list */
  2239. list_del(&page->lru);
  2240. zone->free_area[order].nr_free--;
  2241. rmv_page_order(page);
  2242. /*
  2243. * Set the pageblock if the isolated page is at least half of a
  2244. * pageblock
  2245. */
  2246. if (order >= pageblock_order - 1) {
  2247. struct page *endpage = page + (1 << order) - 1;
  2248. for (; page < endpage; page += pageblock_nr_pages) {
  2249. int mt = get_pageblock_migratetype(page);
  2250. if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
  2251. && mt != MIGRATE_HIGHATOMIC)
  2252. set_pageblock_migratetype(page,
  2253. MIGRATE_MOVABLE);
  2254. }
  2255. }
  2256. return 1UL << order;
  2257. }
  2258. /*
  2259. * Update NUMA hit/miss statistics
  2260. *
  2261. * Must be called with interrupts disabled.
  2262. */
  2263. static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
  2264. {
  2265. #ifdef CONFIG_NUMA
  2266. enum zone_stat_item local_stat = NUMA_LOCAL;
  2267. if (z->node != numa_node_id())
  2268. local_stat = NUMA_OTHER;
  2269. if (z->node == preferred_zone->node)
  2270. __inc_zone_state(z, NUMA_HIT);
  2271. else {
  2272. __inc_zone_state(z, NUMA_MISS);
  2273. __inc_zone_state(preferred_zone, NUMA_FOREIGN);
  2274. }
  2275. __inc_zone_state(z, local_stat);
  2276. #endif
  2277. }
  2278. /* Remove page from the per-cpu list, caller must protect the list */
  2279. static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
  2280. bool cold, struct per_cpu_pages *pcp,
  2281. struct list_head *list)
  2282. {
  2283. struct page *page;
  2284. VM_BUG_ON(in_interrupt());
  2285. do {
  2286. if (list_empty(list)) {
  2287. pcp->count += rmqueue_bulk(zone, 0,
  2288. pcp->batch, list,
  2289. migratetype, cold);
  2290. if (unlikely(list_empty(list)))
  2291. return NULL;
  2292. }
  2293. if (cold)
  2294. page = list_last_entry(list, struct page, lru);
  2295. else
  2296. page = list_first_entry(list, struct page, lru);
  2297. list_del(&page->lru);
  2298. pcp->count--;
  2299. } while (check_new_pcp(page));
  2300. return page;
  2301. }
  2302. /* Lock and remove page from the per-cpu list */
  2303. static struct page *rmqueue_pcplist(struct zone *preferred_zone,
  2304. struct zone *zone, unsigned int order,
  2305. gfp_t gfp_flags, int migratetype)
  2306. {
  2307. struct per_cpu_pages *pcp;
  2308. struct list_head *list;
  2309. bool cold = ((gfp_flags & __GFP_COLD) != 0);
  2310. struct page *page;
  2311. preempt_disable();
  2312. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  2313. list = &pcp->lists[migratetype];
  2314. page = __rmqueue_pcplist(zone, migratetype, cold, pcp, list);
  2315. if (page) {
  2316. __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
  2317. zone_statistics(preferred_zone, zone);
  2318. }
  2319. preempt_enable();
  2320. return page;
  2321. }
  2322. /*
  2323. * Allocate a page from the given zone. Use pcplists for order-0 allocations.
  2324. */
  2325. static inline
  2326. struct page *rmqueue(struct zone *preferred_zone,
  2327. struct zone *zone, unsigned int order,
  2328. gfp_t gfp_flags, unsigned int alloc_flags,
  2329. int migratetype)
  2330. {
  2331. unsigned long flags;
  2332. struct page *page;
  2333. if (likely(order == 0) && !in_interrupt()) {
  2334. page = rmqueue_pcplist(preferred_zone, zone, order,
  2335. gfp_flags, migratetype);
  2336. goto out;
  2337. }
  2338. /*
  2339. * We most definitely don't want callers attempting to
  2340. * allocate greater than order-1 page units with __GFP_NOFAIL.
  2341. */
  2342. WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
  2343. spin_lock_irqsave(&zone->lock, flags);
  2344. do {
  2345. page = NULL;
  2346. if (alloc_flags & ALLOC_HARDER) {
  2347. page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
  2348. if (page)
  2349. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  2350. }
  2351. if (!page)
  2352. page = __rmqueue(zone, order, migratetype);
  2353. } while (page && check_new_pages(page, order));
  2354. spin_unlock(&zone->lock);
  2355. if (!page)
  2356. goto failed;
  2357. __mod_zone_freepage_state(zone, -(1 << order),
  2358. get_pcppage_migratetype(page));
  2359. __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
  2360. zone_statistics(preferred_zone, zone);
  2361. local_irq_restore(flags);
  2362. out:
  2363. VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
  2364. return page;
  2365. failed:
  2366. local_irq_restore(flags);
  2367. return NULL;
  2368. }
  2369. #ifdef CONFIG_FAIL_PAGE_ALLOC
  2370. static struct {
  2371. struct fault_attr attr;
  2372. bool ignore_gfp_highmem;
  2373. bool ignore_gfp_reclaim;
  2374. u32 min_order;
  2375. } fail_page_alloc = {
  2376. .attr = FAULT_ATTR_INITIALIZER,
  2377. .ignore_gfp_reclaim = true,
  2378. .ignore_gfp_highmem = true,
  2379. .min_order = 1,
  2380. };
  2381. static int __init setup_fail_page_alloc(char *str)
  2382. {
  2383. return setup_fault_attr(&fail_page_alloc.attr, str);
  2384. }
  2385. __setup("fail_page_alloc=", setup_fail_page_alloc);
  2386. static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  2387. {
  2388. if (order < fail_page_alloc.min_order)
  2389. return false;
  2390. if (gfp_mask & __GFP_NOFAIL)
  2391. return false;
  2392. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  2393. return false;
  2394. if (fail_page_alloc.ignore_gfp_reclaim &&
  2395. (gfp_mask & __GFP_DIRECT_RECLAIM))
  2396. return false;
  2397. return should_fail(&fail_page_alloc.attr, 1 << order);
  2398. }
  2399. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  2400. static int __init fail_page_alloc_debugfs(void)
  2401. {
  2402. umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  2403. struct dentry *dir;
  2404. dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
  2405. &fail_page_alloc.attr);
  2406. if (IS_ERR(dir))
  2407. return PTR_ERR(dir);
  2408. if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
  2409. &fail_page_alloc.ignore_gfp_reclaim))
  2410. goto fail;
  2411. if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  2412. &fail_page_alloc.ignore_gfp_highmem))
  2413. goto fail;
  2414. if (!debugfs_create_u32("min-order", mode, dir,
  2415. &fail_page_alloc.min_order))
  2416. goto fail;
  2417. return 0;
  2418. fail:
  2419. debugfs_remove_recursive(dir);
  2420. return -ENOMEM;
  2421. }
  2422. late_initcall(fail_page_alloc_debugfs);
  2423. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  2424. #else /* CONFIG_FAIL_PAGE_ALLOC */
  2425. static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  2426. {
  2427. return false;
  2428. }
  2429. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  2430. /*
  2431. * Return true if free base pages are above 'mark'. For high-order checks it
  2432. * will return true of the order-0 watermark is reached and there is at least
  2433. * one free page of a suitable size. Checking now avoids taking the zone lock
  2434. * to check in the allocation paths if no pages are free.
  2435. */
  2436. bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
  2437. int classzone_idx, unsigned int alloc_flags,
  2438. long free_pages)
  2439. {
  2440. long min = mark;
  2441. int o;
  2442. const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
  2443. /* free_pages may go negative - that's OK */
  2444. free_pages -= (1 << order) - 1;
  2445. if (alloc_flags & ALLOC_HIGH)
  2446. min -= min / 2;
  2447. /*
  2448. * If the caller does not have rights to ALLOC_HARDER then subtract
  2449. * the high-atomic reserves. This will over-estimate the size of the
  2450. * atomic reserve but it avoids a search.
  2451. */
  2452. if (likely(!alloc_harder))
  2453. free_pages -= z->nr_reserved_highatomic;
  2454. else
  2455. min -= min / 4;
  2456. #ifdef CONFIG_CMA
  2457. /* If allocation can't use CMA areas don't use free CMA pages */
  2458. if (!(alloc_flags & ALLOC_CMA))
  2459. free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
  2460. #endif
  2461. /*
  2462. * Check watermarks for an order-0 allocation request. If these
  2463. * are not met, then a high-order request also cannot go ahead
  2464. * even if a suitable page happened to be free.
  2465. */
  2466. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  2467. return false;
  2468. /* If this is an order-0 request then the watermark is fine */
  2469. if (!order)
  2470. return true;
  2471. /* For a high-order request, check at least one suitable page is free */
  2472. for (o = order; o < MAX_ORDER; o++) {
  2473. struct free_area *area = &z->free_area[o];
  2474. int mt;
  2475. if (!area->nr_free)
  2476. continue;
  2477. if (alloc_harder)
  2478. return true;
  2479. for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
  2480. if (!list_empty(&area->free_list[mt]))
  2481. return true;
  2482. }
  2483. #ifdef CONFIG_CMA
  2484. if ((alloc_flags & ALLOC_CMA) &&
  2485. !list_empty(&area->free_list[MIGRATE_CMA])) {
  2486. return true;
  2487. }
  2488. #endif
  2489. }
  2490. return false;
  2491. }
  2492. bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
  2493. int classzone_idx, unsigned int alloc_flags)
  2494. {
  2495. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  2496. zone_page_state(z, NR_FREE_PAGES));
  2497. }
  2498. static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
  2499. unsigned long mark, int classzone_idx, unsigned int alloc_flags)
  2500. {
  2501. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  2502. long cma_pages = 0;
  2503. #ifdef CONFIG_CMA
  2504. /* If allocation can't use CMA areas don't use free CMA pages */
  2505. if (!(alloc_flags & ALLOC_CMA))
  2506. cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
  2507. #endif
  2508. /*
  2509. * Fast check for order-0 only. If this fails then the reserves
  2510. * need to be calculated. There is a corner case where the check
  2511. * passes but only the high-order atomic reserve are free. If
  2512. * the caller is !atomic then it'll uselessly search the free
  2513. * list. That corner case is then slower but it is harmless.
  2514. */
  2515. if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
  2516. return true;
  2517. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  2518. free_pages);
  2519. }
  2520. bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
  2521. unsigned long mark, int classzone_idx)
  2522. {
  2523. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  2524. if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
  2525. free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
  2526. return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
  2527. free_pages);
  2528. }
  2529. #ifdef CONFIG_NUMA
  2530. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  2531. {
  2532. return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
  2533. RECLAIM_DISTANCE;
  2534. }
  2535. #else /* CONFIG_NUMA */
  2536. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  2537. {
  2538. return true;
  2539. }
  2540. #endif /* CONFIG_NUMA */
  2541. /*
  2542. * get_page_from_freelist goes through the zonelist trying to allocate
  2543. * a page.
  2544. */
  2545. static struct page *
  2546. get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
  2547. const struct alloc_context *ac)
  2548. {
  2549. struct zoneref *z = ac->preferred_zoneref;
  2550. struct zone *zone;
  2551. struct pglist_data *last_pgdat_dirty_limit = NULL;
  2552. /*
  2553. * Scan zonelist, looking for a zone with enough free.
  2554. * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
  2555. */
  2556. for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
  2557. ac->nodemask) {
  2558. struct page *page;
  2559. unsigned long mark;
  2560. if (cpusets_enabled() &&
  2561. (alloc_flags & ALLOC_CPUSET) &&
  2562. !__cpuset_zone_allowed(zone, gfp_mask))
  2563. continue;
  2564. /*
  2565. * When allocating a page cache page for writing, we
  2566. * want to get it from a node that is within its dirty
  2567. * limit, such that no single node holds more than its
  2568. * proportional share of globally allowed dirty pages.
  2569. * The dirty limits take into account the node's
  2570. * lowmem reserves and high watermark so that kswapd
  2571. * should be able to balance it without having to
  2572. * write pages from its LRU list.
  2573. *
  2574. * XXX: For now, allow allocations to potentially
  2575. * exceed the per-node dirty limit in the slowpath
  2576. * (spread_dirty_pages unset) before going into reclaim,
  2577. * which is important when on a NUMA setup the allowed
  2578. * nodes are together not big enough to reach the
  2579. * global limit. The proper fix for these situations
  2580. * will require awareness of nodes in the
  2581. * dirty-throttling and the flusher threads.
  2582. */
  2583. if (ac->spread_dirty_pages) {
  2584. if (last_pgdat_dirty_limit == zone->zone_pgdat)
  2585. continue;
  2586. if (!node_dirty_ok(zone->zone_pgdat)) {
  2587. last_pgdat_dirty_limit = zone->zone_pgdat;
  2588. continue;
  2589. }
  2590. }
  2591. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  2592. if (!zone_watermark_fast(zone, order, mark,
  2593. ac_classzone_idx(ac), alloc_flags)) {
  2594. int ret;
  2595. /* Checked here to keep the fast path fast */
  2596. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  2597. if (alloc_flags & ALLOC_NO_WATERMARKS)
  2598. goto try_this_zone;
  2599. if (node_reclaim_mode == 0 ||
  2600. !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
  2601. continue;
  2602. ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
  2603. switch (ret) {
  2604. case NODE_RECLAIM_NOSCAN:
  2605. /* did not scan */
  2606. continue;
  2607. case NODE_RECLAIM_FULL:
  2608. /* scanned but unreclaimable */
  2609. continue;
  2610. default:
  2611. /* did we reclaim enough */
  2612. if (zone_watermark_ok(zone, order, mark,
  2613. ac_classzone_idx(ac), alloc_flags))
  2614. goto try_this_zone;
  2615. continue;
  2616. }
  2617. }
  2618. try_this_zone:
  2619. page = rmqueue(ac->preferred_zoneref->zone, zone, order,
  2620. gfp_mask, alloc_flags, ac->migratetype);
  2621. if (page) {
  2622. prep_new_page(page, order, gfp_mask, alloc_flags);
  2623. /*
  2624. * If this is a high-order atomic allocation then check
  2625. * if the pageblock should be reserved for the future
  2626. */
  2627. if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
  2628. reserve_highatomic_pageblock(page, zone, order);
  2629. return page;
  2630. }
  2631. }
  2632. return NULL;
  2633. }
  2634. /*
  2635. * Large machines with many possible nodes should not always dump per-node
  2636. * meminfo in irq context.
  2637. */
  2638. static inline bool should_suppress_show_mem(void)
  2639. {
  2640. bool ret = false;
  2641. #if NODES_SHIFT > 8
  2642. ret = in_interrupt();
  2643. #endif
  2644. return ret;
  2645. }
  2646. static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
  2647. {
  2648. unsigned int filter = SHOW_MEM_FILTER_NODES;
  2649. static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
  2650. if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
  2651. return;
  2652. /*
  2653. * This documents exceptions given to allocations in certain
  2654. * contexts that are allowed to allocate outside current's set
  2655. * of allowed nodes.
  2656. */
  2657. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2658. if (test_thread_flag(TIF_MEMDIE) ||
  2659. (current->flags & (PF_MEMALLOC | PF_EXITING)))
  2660. filter &= ~SHOW_MEM_FILTER_NODES;
  2661. if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
  2662. filter &= ~SHOW_MEM_FILTER_NODES;
  2663. show_mem(filter, nodemask);
  2664. }
  2665. void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
  2666. {
  2667. struct va_format vaf;
  2668. va_list args;
  2669. static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
  2670. DEFAULT_RATELIMIT_BURST);
  2671. if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
  2672. debug_guardpage_minorder() > 0)
  2673. return;
  2674. pr_warn("%s: ", current->comm);
  2675. va_start(args, fmt);
  2676. vaf.fmt = fmt;
  2677. vaf.va = &args;
  2678. pr_cont("%pV", &vaf);
  2679. va_end(args);
  2680. pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
  2681. if (nodemask)
  2682. pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
  2683. else
  2684. pr_cont("(null)\n");
  2685. cpuset_print_current_mems_allowed();
  2686. dump_stack();
  2687. warn_alloc_show_mem(gfp_mask, nodemask);
  2688. }
  2689. static inline struct page *
  2690. __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
  2691. unsigned int alloc_flags,
  2692. const struct alloc_context *ac)
  2693. {
  2694. struct page *page;
  2695. page = get_page_from_freelist(gfp_mask, order,
  2696. alloc_flags|ALLOC_CPUSET, ac);
  2697. /*
  2698. * fallback to ignore cpuset restriction if our nodes
  2699. * are depleted
  2700. */
  2701. if (!page)
  2702. page = get_page_from_freelist(gfp_mask, order,
  2703. alloc_flags, ac);
  2704. return page;
  2705. }
  2706. static inline struct page *
  2707. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  2708. const struct alloc_context *ac, unsigned long *did_some_progress)
  2709. {
  2710. struct oom_control oc = {
  2711. .zonelist = ac->zonelist,
  2712. .nodemask = ac->nodemask,
  2713. .memcg = NULL,
  2714. .gfp_mask = gfp_mask,
  2715. .order = order,
  2716. };
  2717. struct page *page;
  2718. *did_some_progress = 0;
  2719. /*
  2720. * Acquire the oom lock. If that fails, somebody else is
  2721. * making progress for us.
  2722. */
  2723. if (!mutex_trylock(&oom_lock)) {
  2724. *did_some_progress = 1;
  2725. schedule_timeout_uninterruptible(1);
  2726. return NULL;
  2727. }
  2728. /*
  2729. * Go through the zonelist yet one more time, keep very high watermark
  2730. * here, this is only to catch a parallel oom killing, we must fail if
  2731. * we're still under heavy pressure.
  2732. */
  2733. page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
  2734. ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
  2735. if (page)
  2736. goto out;
  2737. /* Coredumps can quickly deplete all memory reserves */
  2738. if (current->flags & PF_DUMPCORE)
  2739. goto out;
  2740. /* The OOM killer will not help higher order allocs */
  2741. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2742. goto out;
  2743. /* The OOM killer does not needlessly kill tasks for lowmem */
  2744. if (ac->high_zoneidx < ZONE_NORMAL)
  2745. goto out;
  2746. if (pm_suspended_storage())
  2747. goto out;
  2748. /*
  2749. * XXX: GFP_NOFS allocations should rather fail than rely on
  2750. * other request to make a forward progress.
  2751. * We are in an unfortunate situation where out_of_memory cannot
  2752. * do much for this context but let's try it to at least get
  2753. * access to memory reserved if the current task is killed (see
  2754. * out_of_memory). Once filesystems are ready to handle allocation
  2755. * failures more gracefully we should just bail out here.
  2756. */
  2757. /* The OOM killer may not free memory on a specific node */
  2758. if (gfp_mask & __GFP_THISNODE)
  2759. goto out;
  2760. /* Exhausted what can be done so it's blamo time */
  2761. if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
  2762. *did_some_progress = 1;
  2763. /*
  2764. * Help non-failing allocations by giving them access to memory
  2765. * reserves
  2766. */
  2767. if (gfp_mask & __GFP_NOFAIL)
  2768. page = __alloc_pages_cpuset_fallback(gfp_mask, order,
  2769. ALLOC_NO_WATERMARKS, ac);
  2770. }
  2771. out:
  2772. mutex_unlock(&oom_lock);
  2773. return page;
  2774. }
  2775. /*
  2776. * Maximum number of compaction retries wit a progress before OOM
  2777. * killer is consider as the only way to move forward.
  2778. */
  2779. #define MAX_COMPACT_RETRIES 16
  2780. #ifdef CONFIG_COMPACTION
  2781. /* Try memory compaction for high-order allocations before reclaim */
  2782. static struct page *
  2783. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  2784. unsigned int alloc_flags, const struct alloc_context *ac,
  2785. enum compact_priority prio, enum compact_result *compact_result)
  2786. {
  2787. struct page *page;
  2788. if (!order)
  2789. return NULL;
  2790. current->flags |= PF_MEMALLOC;
  2791. *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
  2792. prio);
  2793. current->flags &= ~PF_MEMALLOC;
  2794. if (*compact_result <= COMPACT_INACTIVE)
  2795. return NULL;
  2796. /*
  2797. * At least in one zone compaction wasn't deferred or skipped, so let's
  2798. * count a compaction stall
  2799. */
  2800. count_vm_event(COMPACTSTALL);
  2801. page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
  2802. if (page) {
  2803. struct zone *zone = page_zone(page);
  2804. zone->compact_blockskip_flush = false;
  2805. compaction_defer_reset(zone, order, true);
  2806. count_vm_event(COMPACTSUCCESS);
  2807. return page;
  2808. }
  2809. /*
  2810. * It's bad if compaction run occurs and fails. The most likely reason
  2811. * is that pages exist, but not enough to satisfy watermarks.
  2812. */
  2813. count_vm_event(COMPACTFAIL);
  2814. cond_resched();
  2815. return NULL;
  2816. }
  2817. static inline bool
  2818. should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
  2819. enum compact_result compact_result,
  2820. enum compact_priority *compact_priority,
  2821. int *compaction_retries)
  2822. {
  2823. int max_retries = MAX_COMPACT_RETRIES;
  2824. int min_priority;
  2825. bool ret = false;
  2826. int retries = *compaction_retries;
  2827. enum compact_priority priority = *compact_priority;
  2828. if (!order)
  2829. return false;
  2830. if (compaction_made_progress(compact_result))
  2831. (*compaction_retries)++;
  2832. /*
  2833. * compaction considers all the zone as desperately out of memory
  2834. * so it doesn't really make much sense to retry except when the
  2835. * failure could be caused by insufficient priority
  2836. */
  2837. if (compaction_failed(compact_result))
  2838. goto check_priority;
  2839. /*
  2840. * make sure the compaction wasn't deferred or didn't bail out early
  2841. * due to locks contention before we declare that we should give up.
  2842. * But do not retry if the given zonelist is not suitable for
  2843. * compaction.
  2844. */
  2845. if (compaction_withdrawn(compact_result)) {
  2846. ret = compaction_zonelist_suitable(ac, order, alloc_flags);
  2847. goto out;
  2848. }
  2849. /*
  2850. * !costly requests are much more important than __GFP_REPEAT
  2851. * costly ones because they are de facto nofail and invoke OOM
  2852. * killer to move on while costly can fail and users are ready
  2853. * to cope with that. 1/4 retries is rather arbitrary but we
  2854. * would need much more detailed feedback from compaction to
  2855. * make a better decision.
  2856. */
  2857. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2858. max_retries /= 4;
  2859. if (*compaction_retries <= max_retries) {
  2860. ret = true;
  2861. goto out;
  2862. }
  2863. /*
  2864. * Make sure there are attempts at the highest priority if we exhausted
  2865. * all retries or failed at the lower priorities.
  2866. */
  2867. check_priority:
  2868. min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
  2869. MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
  2870. if (*compact_priority > min_priority) {
  2871. (*compact_priority)--;
  2872. *compaction_retries = 0;
  2873. ret = true;
  2874. }
  2875. out:
  2876. trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
  2877. return ret;
  2878. }
  2879. #else
  2880. static inline struct page *
  2881. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  2882. unsigned int alloc_flags, const struct alloc_context *ac,
  2883. enum compact_priority prio, enum compact_result *compact_result)
  2884. {
  2885. *compact_result = COMPACT_SKIPPED;
  2886. return NULL;
  2887. }
  2888. static inline bool
  2889. should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
  2890. enum compact_result compact_result,
  2891. enum compact_priority *compact_priority,
  2892. int *compaction_retries)
  2893. {
  2894. struct zone *zone;
  2895. struct zoneref *z;
  2896. if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
  2897. return false;
  2898. /*
  2899. * There are setups with compaction disabled which would prefer to loop
  2900. * inside the allocator rather than hit the oom killer prematurely.
  2901. * Let's give them a good hope and keep retrying while the order-0
  2902. * watermarks are OK.
  2903. */
  2904. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
  2905. ac->nodemask) {
  2906. if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
  2907. ac_classzone_idx(ac), alloc_flags))
  2908. return true;
  2909. }
  2910. return false;
  2911. }
  2912. #endif /* CONFIG_COMPACTION */
  2913. /* Perform direct synchronous page reclaim */
  2914. static int
  2915. __perform_reclaim(gfp_t gfp_mask, unsigned int order,
  2916. const struct alloc_context *ac)
  2917. {
  2918. struct reclaim_state reclaim_state;
  2919. int progress;
  2920. cond_resched();
  2921. /* We now go into synchronous reclaim */
  2922. cpuset_memory_pressure_bump();
  2923. current->flags |= PF_MEMALLOC;
  2924. lockdep_set_current_reclaim_state(gfp_mask);
  2925. reclaim_state.reclaimed_slab = 0;
  2926. current->reclaim_state = &reclaim_state;
  2927. progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
  2928. ac->nodemask);
  2929. current->reclaim_state = NULL;
  2930. lockdep_clear_current_reclaim_state();
  2931. current->flags &= ~PF_MEMALLOC;
  2932. cond_resched();
  2933. return progress;
  2934. }
  2935. /* The really slow allocator path where we enter direct reclaim */
  2936. static inline struct page *
  2937. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  2938. unsigned int alloc_flags, const struct alloc_context *ac,
  2939. unsigned long *did_some_progress)
  2940. {
  2941. struct page *page = NULL;
  2942. bool drained = false;
  2943. *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
  2944. if (unlikely(!(*did_some_progress)))
  2945. return NULL;
  2946. retry:
  2947. page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
  2948. /*
  2949. * If an allocation failed after direct reclaim, it could be because
  2950. * pages are pinned on the per-cpu lists or in high alloc reserves.
  2951. * Shrink them them and try again
  2952. */
  2953. if (!page && !drained) {
  2954. unreserve_highatomic_pageblock(ac, false);
  2955. drain_all_pages(NULL);
  2956. drained = true;
  2957. goto retry;
  2958. }
  2959. return page;
  2960. }
  2961. static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
  2962. {
  2963. struct zoneref *z;
  2964. struct zone *zone;
  2965. pg_data_t *last_pgdat = NULL;
  2966. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
  2967. ac->high_zoneidx, ac->nodemask) {
  2968. if (last_pgdat != zone->zone_pgdat)
  2969. wakeup_kswapd(zone, order, ac->high_zoneidx);
  2970. last_pgdat = zone->zone_pgdat;
  2971. }
  2972. }
  2973. static inline unsigned int
  2974. gfp_to_alloc_flags(gfp_t gfp_mask)
  2975. {
  2976. unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  2977. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  2978. BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
  2979. /*
  2980. * The caller may dip into page reserves a bit more if the caller
  2981. * cannot run direct reclaim, or if the caller has realtime scheduling
  2982. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  2983. * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
  2984. */
  2985. alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
  2986. if (gfp_mask & __GFP_ATOMIC) {
  2987. /*
  2988. * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
  2989. * if it can't schedule.
  2990. */
  2991. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2992. alloc_flags |= ALLOC_HARDER;
  2993. /*
  2994. * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
  2995. * comment for __cpuset_node_allowed().
  2996. */
  2997. alloc_flags &= ~ALLOC_CPUSET;
  2998. } else if (unlikely(rt_task(current)) && !in_interrupt())
  2999. alloc_flags |= ALLOC_HARDER;
  3000. #ifdef CONFIG_CMA
  3001. if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
  3002. alloc_flags |= ALLOC_CMA;
  3003. #endif
  3004. return alloc_flags;
  3005. }
  3006. bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
  3007. {
  3008. if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
  3009. return false;
  3010. if (gfp_mask & __GFP_MEMALLOC)
  3011. return true;
  3012. if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
  3013. return true;
  3014. if (!in_interrupt() &&
  3015. ((current->flags & PF_MEMALLOC) ||
  3016. unlikely(test_thread_flag(TIF_MEMDIE))))
  3017. return true;
  3018. return false;
  3019. }
  3020. /*
  3021. * Maximum number of reclaim retries without any progress before OOM killer
  3022. * is consider as the only way to move forward.
  3023. */
  3024. #define MAX_RECLAIM_RETRIES 16
  3025. /*
  3026. * Checks whether it makes sense to retry the reclaim to make a forward progress
  3027. * for the given allocation request.
  3028. * The reclaim feedback represented by did_some_progress (any progress during
  3029. * the last reclaim round) and no_progress_loops (number of reclaim rounds without
  3030. * any progress in a row) is considered as well as the reclaimable pages on the
  3031. * applicable zone list (with a backoff mechanism which is a function of
  3032. * no_progress_loops).
  3033. *
  3034. * Returns true if a retry is viable or false to enter the oom path.
  3035. */
  3036. static inline bool
  3037. should_reclaim_retry(gfp_t gfp_mask, unsigned order,
  3038. struct alloc_context *ac, int alloc_flags,
  3039. bool did_some_progress, int *no_progress_loops)
  3040. {
  3041. struct zone *zone;
  3042. struct zoneref *z;
  3043. /*
  3044. * Costly allocations might have made a progress but this doesn't mean
  3045. * their order will become available due to high fragmentation so
  3046. * always increment the no progress counter for them
  3047. */
  3048. if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
  3049. *no_progress_loops = 0;
  3050. else
  3051. (*no_progress_loops)++;
  3052. /*
  3053. * Make sure we converge to OOM if we cannot make any progress
  3054. * several times in the row.
  3055. */
  3056. if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
  3057. /* Before OOM, exhaust highatomic_reserve */
  3058. return unreserve_highatomic_pageblock(ac, true);
  3059. }
  3060. /*
  3061. * Keep reclaiming pages while there is a chance this will lead
  3062. * somewhere. If none of the target zones can satisfy our allocation
  3063. * request even if all reclaimable pages are considered then we are
  3064. * screwed and have to go OOM.
  3065. */
  3066. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
  3067. ac->nodemask) {
  3068. unsigned long available;
  3069. unsigned long reclaimable;
  3070. unsigned long min_wmark = min_wmark_pages(zone);
  3071. bool wmark;
  3072. available = reclaimable = zone_reclaimable_pages(zone);
  3073. available -= DIV_ROUND_UP((*no_progress_loops) * available,
  3074. MAX_RECLAIM_RETRIES);
  3075. available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
  3076. /*
  3077. * Would the allocation succeed if we reclaimed the whole
  3078. * available?
  3079. */
  3080. wmark = __zone_watermark_ok(zone, order, min_wmark,
  3081. ac_classzone_idx(ac), alloc_flags, available);
  3082. trace_reclaim_retry_zone(z, order, reclaimable,
  3083. available, min_wmark, *no_progress_loops, wmark);
  3084. if (wmark) {
  3085. /*
  3086. * If we didn't make any progress and have a lot of
  3087. * dirty + writeback pages then we should wait for
  3088. * an IO to complete to slow down the reclaim and
  3089. * prevent from pre mature OOM
  3090. */
  3091. if (!did_some_progress) {
  3092. unsigned long write_pending;
  3093. write_pending = zone_page_state_snapshot(zone,
  3094. NR_ZONE_WRITE_PENDING);
  3095. if (2 * write_pending > reclaimable) {
  3096. congestion_wait(BLK_RW_ASYNC, HZ/10);
  3097. return true;
  3098. }
  3099. }
  3100. /*
  3101. * Memory allocation/reclaim might be called from a WQ
  3102. * context and the current implementation of the WQ
  3103. * concurrency control doesn't recognize that
  3104. * a particular WQ is congested if the worker thread is
  3105. * looping without ever sleeping. Therefore we have to
  3106. * do a short sleep here rather than calling
  3107. * cond_resched().
  3108. */
  3109. if (current->flags & PF_WQ_WORKER)
  3110. schedule_timeout_uninterruptible(1);
  3111. else
  3112. cond_resched();
  3113. return true;
  3114. }
  3115. }
  3116. return false;
  3117. }
  3118. static inline struct page *
  3119. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  3120. struct alloc_context *ac)
  3121. {
  3122. bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
  3123. struct page *page = NULL;
  3124. unsigned int alloc_flags;
  3125. unsigned long did_some_progress;
  3126. enum compact_priority compact_priority;
  3127. enum compact_result compact_result;
  3128. int compaction_retries;
  3129. int no_progress_loops;
  3130. unsigned long alloc_start = jiffies;
  3131. unsigned int stall_timeout = 10 * HZ;
  3132. unsigned int cpuset_mems_cookie;
  3133. /*
  3134. * In the slowpath, we sanity check order to avoid ever trying to
  3135. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  3136. * be using allocators in order of preference for an area that is
  3137. * too large.
  3138. */
  3139. if (order >= MAX_ORDER) {
  3140. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  3141. return NULL;
  3142. }
  3143. /*
  3144. * We also sanity check to catch abuse of atomic reserves being used by
  3145. * callers that are not in atomic context.
  3146. */
  3147. if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
  3148. (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
  3149. gfp_mask &= ~__GFP_ATOMIC;
  3150. retry_cpuset:
  3151. compaction_retries = 0;
  3152. no_progress_loops = 0;
  3153. compact_priority = DEF_COMPACT_PRIORITY;
  3154. cpuset_mems_cookie = read_mems_allowed_begin();
  3155. /*
  3156. * The fast path uses conservative alloc_flags to succeed only until
  3157. * kswapd needs to be woken up, and to avoid the cost of setting up
  3158. * alloc_flags precisely. So we do that now.
  3159. */
  3160. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  3161. /*
  3162. * We need to recalculate the starting point for the zonelist iterator
  3163. * because we might have used different nodemask in the fast path, or
  3164. * there was a cpuset modification and we are retrying - otherwise we
  3165. * could end up iterating over non-eligible zones endlessly.
  3166. */
  3167. ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
  3168. ac->high_zoneidx, ac->nodemask);
  3169. if (!ac->preferred_zoneref->zone)
  3170. goto nopage;
  3171. if (gfp_mask & __GFP_KSWAPD_RECLAIM)
  3172. wake_all_kswapds(order, ac);
  3173. /*
  3174. * The adjusted alloc_flags might result in immediate success, so try
  3175. * that first
  3176. */
  3177. page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
  3178. if (page)
  3179. goto got_pg;
  3180. /*
  3181. * For costly allocations, try direct compaction first, as it's likely
  3182. * that we have enough base pages and don't need to reclaim. Don't try
  3183. * that for allocations that are allowed to ignore watermarks, as the
  3184. * ALLOC_NO_WATERMARKS attempt didn't yet happen.
  3185. */
  3186. if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
  3187. !gfp_pfmemalloc_allowed(gfp_mask)) {
  3188. page = __alloc_pages_direct_compact(gfp_mask, order,
  3189. alloc_flags, ac,
  3190. INIT_COMPACT_PRIORITY,
  3191. &compact_result);
  3192. if (page)
  3193. goto got_pg;
  3194. /*
  3195. * Checks for costly allocations with __GFP_NORETRY, which
  3196. * includes THP page fault allocations
  3197. */
  3198. if (gfp_mask & __GFP_NORETRY) {
  3199. /*
  3200. * If compaction is deferred for high-order allocations,
  3201. * it is because sync compaction recently failed. If
  3202. * this is the case and the caller requested a THP
  3203. * allocation, we do not want to heavily disrupt the
  3204. * system, so we fail the allocation instead of entering
  3205. * direct reclaim.
  3206. */
  3207. if (compact_result == COMPACT_DEFERRED)
  3208. goto nopage;
  3209. /*
  3210. * Looks like reclaim/compaction is worth trying, but
  3211. * sync compaction could be very expensive, so keep
  3212. * using async compaction.
  3213. */
  3214. compact_priority = INIT_COMPACT_PRIORITY;
  3215. }
  3216. }
  3217. retry:
  3218. /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
  3219. if (gfp_mask & __GFP_KSWAPD_RECLAIM)
  3220. wake_all_kswapds(order, ac);
  3221. if (gfp_pfmemalloc_allowed(gfp_mask))
  3222. alloc_flags = ALLOC_NO_WATERMARKS;
  3223. /*
  3224. * Reset the zonelist iterators if memory policies can be ignored.
  3225. * These allocations are high priority and system rather than user
  3226. * orientated.
  3227. */
  3228. if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
  3229. ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
  3230. ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
  3231. ac->high_zoneidx, ac->nodemask);
  3232. }
  3233. /* Attempt with potentially adjusted zonelist and alloc_flags */
  3234. page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
  3235. if (page)
  3236. goto got_pg;
  3237. /* Caller is not willing to reclaim, we can't balance anything */
  3238. if (!can_direct_reclaim)
  3239. goto nopage;
  3240. /* Make sure we know about allocations which stall for too long */
  3241. if (time_after(jiffies, alloc_start + stall_timeout)) {
  3242. warn_alloc(gfp_mask, ac->nodemask,
  3243. "page allocation stalls for %ums, order:%u",
  3244. jiffies_to_msecs(jiffies-alloc_start), order);
  3245. stall_timeout += 10 * HZ;
  3246. }
  3247. /* Avoid recursion of direct reclaim */
  3248. if (current->flags & PF_MEMALLOC)
  3249. goto nopage;
  3250. /* Try direct reclaim and then allocating */
  3251. page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
  3252. &did_some_progress);
  3253. if (page)
  3254. goto got_pg;
  3255. /* Try direct compaction and then allocating */
  3256. page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
  3257. compact_priority, &compact_result);
  3258. if (page)
  3259. goto got_pg;
  3260. /* Do not loop if specifically requested */
  3261. if (gfp_mask & __GFP_NORETRY)
  3262. goto nopage;
  3263. /*
  3264. * Do not retry costly high order allocations unless they are
  3265. * __GFP_REPEAT
  3266. */
  3267. if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
  3268. goto nopage;
  3269. if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
  3270. did_some_progress > 0, &no_progress_loops))
  3271. goto retry;
  3272. /*
  3273. * It doesn't make any sense to retry for the compaction if the order-0
  3274. * reclaim is not able to make any progress because the current
  3275. * implementation of the compaction depends on the sufficient amount
  3276. * of free memory (see __compaction_suitable)
  3277. */
  3278. if (did_some_progress > 0 &&
  3279. should_compact_retry(ac, order, alloc_flags,
  3280. compact_result, &compact_priority,
  3281. &compaction_retries))
  3282. goto retry;
  3283. /*
  3284. * It's possible we raced with cpuset update so the OOM would be
  3285. * premature (see below the nopage: label for full explanation).
  3286. */
  3287. if (read_mems_allowed_retry(cpuset_mems_cookie))
  3288. goto retry_cpuset;
  3289. /* Reclaim has failed us, start killing things */
  3290. page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
  3291. if (page)
  3292. goto got_pg;
  3293. /* Avoid allocations with no watermarks from looping endlessly */
  3294. if (test_thread_flag(TIF_MEMDIE))
  3295. goto nopage;
  3296. /* Retry as long as the OOM killer is making progress */
  3297. if (did_some_progress) {
  3298. no_progress_loops = 0;
  3299. goto retry;
  3300. }
  3301. nopage:
  3302. /*
  3303. * When updating a task's mems_allowed or mempolicy nodemask, it is
  3304. * possible to race with parallel threads in such a way that our
  3305. * allocation can fail while the mask is being updated. If we are about
  3306. * to fail, check if the cpuset changed during allocation and if so,
  3307. * retry.
  3308. */
  3309. if (read_mems_allowed_retry(cpuset_mems_cookie))
  3310. goto retry_cpuset;
  3311. /*
  3312. * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
  3313. * we always retry
  3314. */
  3315. if (gfp_mask & __GFP_NOFAIL) {
  3316. /*
  3317. * All existing users of the __GFP_NOFAIL are blockable, so warn
  3318. * of any new users that actually require GFP_NOWAIT
  3319. */
  3320. if (WARN_ON_ONCE(!can_direct_reclaim))
  3321. goto fail;
  3322. /*
  3323. * PF_MEMALLOC request from this context is rather bizarre
  3324. * because we cannot reclaim anything and only can loop waiting
  3325. * for somebody to do a work for us
  3326. */
  3327. WARN_ON_ONCE(current->flags & PF_MEMALLOC);
  3328. /*
  3329. * non failing costly orders are a hard requirement which we
  3330. * are not prepared for much so let's warn about these users
  3331. * so that we can identify them and convert them to something
  3332. * else.
  3333. */
  3334. WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
  3335. /*
  3336. * Help non-failing allocations by giving them access to memory
  3337. * reserves but do not use ALLOC_NO_WATERMARKS because this
  3338. * could deplete whole memory reserves which would just make
  3339. * the situation worse
  3340. */
  3341. page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
  3342. if (page)
  3343. goto got_pg;
  3344. cond_resched();
  3345. goto retry;
  3346. }
  3347. fail:
  3348. warn_alloc(gfp_mask, ac->nodemask,
  3349. "page allocation failure: order:%u", order);
  3350. got_pg:
  3351. return page;
  3352. }
  3353. static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
  3354. struct zonelist *zonelist, nodemask_t *nodemask,
  3355. struct alloc_context *ac, gfp_t *alloc_mask,
  3356. unsigned int *alloc_flags)
  3357. {
  3358. ac->high_zoneidx = gfp_zone(gfp_mask);
  3359. ac->zonelist = zonelist;
  3360. ac->nodemask = nodemask;
  3361. ac->migratetype = gfpflags_to_migratetype(gfp_mask);
  3362. if (cpusets_enabled()) {
  3363. *alloc_mask |= __GFP_HARDWALL;
  3364. if (!ac->nodemask)
  3365. ac->nodemask = &cpuset_current_mems_allowed;
  3366. else
  3367. *alloc_flags |= ALLOC_CPUSET;
  3368. }
  3369. lockdep_trace_alloc(gfp_mask);
  3370. might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
  3371. if (should_fail_alloc_page(gfp_mask, order))
  3372. return false;
  3373. if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
  3374. *alloc_flags |= ALLOC_CMA;
  3375. return true;
  3376. }
  3377. /* Determine whether to spread dirty pages and what the first usable zone */
  3378. static inline void finalise_ac(gfp_t gfp_mask,
  3379. unsigned int order, struct alloc_context *ac)
  3380. {
  3381. /* Dirty zone balancing only done in the fast path */
  3382. ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
  3383. /*
  3384. * The preferred zone is used for statistics but crucially it is
  3385. * also used as the starting point for the zonelist iterator. It
  3386. * may get reset for allocations that ignore memory policies.
  3387. */
  3388. ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
  3389. ac->high_zoneidx, ac->nodemask);
  3390. }
  3391. /*
  3392. * This is the 'heart' of the zoned buddy allocator.
  3393. */
  3394. struct page *
  3395. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  3396. struct zonelist *zonelist, nodemask_t *nodemask)
  3397. {
  3398. struct page *page;
  3399. unsigned int alloc_flags = ALLOC_WMARK_LOW;
  3400. gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
  3401. struct alloc_context ac = { };
  3402. gfp_mask &= gfp_allowed_mask;
  3403. if (!prepare_alloc_pages(gfp_mask, order, zonelist, nodemask, &ac, &alloc_mask, &alloc_flags))
  3404. return NULL;
  3405. finalise_ac(gfp_mask, order, &ac);
  3406. /* First allocation attempt */
  3407. page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
  3408. if (likely(page))
  3409. goto out;
  3410. /*
  3411. * Runtime PM, block IO and its error handling path can deadlock
  3412. * because I/O on the device might not complete.
  3413. */
  3414. alloc_mask = memalloc_noio_flags(gfp_mask);
  3415. ac.spread_dirty_pages = false;
  3416. /*
  3417. * Restore the original nodemask if it was potentially replaced with
  3418. * &cpuset_current_mems_allowed to optimize the fast-path attempt.
  3419. */
  3420. if (unlikely(ac.nodemask != nodemask))
  3421. ac.nodemask = nodemask;
  3422. page = __alloc_pages_slowpath(alloc_mask, order, &ac);
  3423. out:
  3424. if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
  3425. unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
  3426. __free_pages(page, order);
  3427. page = NULL;
  3428. }
  3429. if (kmemcheck_enabled && page)
  3430. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  3431. trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
  3432. return page;
  3433. }
  3434. EXPORT_SYMBOL(__alloc_pages_nodemask);
  3435. /*
  3436. * Common helper functions.
  3437. */
  3438. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  3439. {
  3440. struct page *page;
  3441. /*
  3442. * __get_free_pages() returns a 32-bit address, which cannot represent
  3443. * a highmem page
  3444. */
  3445. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  3446. page = alloc_pages(gfp_mask, order);
  3447. if (!page)
  3448. return 0;
  3449. return (unsigned long) page_address(page);
  3450. }
  3451. EXPORT_SYMBOL(__get_free_pages);
  3452. unsigned long get_zeroed_page(gfp_t gfp_mask)
  3453. {
  3454. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  3455. }
  3456. EXPORT_SYMBOL(get_zeroed_page);
  3457. void __free_pages(struct page *page, unsigned int order)
  3458. {
  3459. if (put_page_testzero(page)) {
  3460. if (order == 0)
  3461. free_hot_cold_page(page, false);
  3462. else
  3463. __free_pages_ok(page, order);
  3464. }
  3465. }
  3466. EXPORT_SYMBOL(__free_pages);
  3467. void free_pages(unsigned long addr, unsigned int order)
  3468. {
  3469. if (addr != 0) {
  3470. VM_BUG_ON(!virt_addr_valid((void *)addr));
  3471. __free_pages(virt_to_page((void *)addr), order);
  3472. }
  3473. }
  3474. EXPORT_SYMBOL(free_pages);
  3475. /*
  3476. * Page Fragment:
  3477. * An arbitrary-length arbitrary-offset area of memory which resides
  3478. * within a 0 or higher order page. Multiple fragments within that page
  3479. * are individually refcounted, in the page's reference counter.
  3480. *
  3481. * The page_frag functions below provide a simple allocation framework for
  3482. * page fragments. This is used by the network stack and network device
  3483. * drivers to provide a backing region of memory for use as either an
  3484. * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
  3485. */
  3486. static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
  3487. gfp_t gfp_mask)
  3488. {
  3489. struct page *page = NULL;
  3490. gfp_t gfp = gfp_mask;
  3491. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  3492. gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
  3493. __GFP_NOMEMALLOC;
  3494. page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
  3495. PAGE_FRAG_CACHE_MAX_ORDER);
  3496. nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
  3497. #endif
  3498. if (unlikely(!page))
  3499. page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
  3500. nc->va = page ? page_address(page) : NULL;
  3501. return page;
  3502. }
  3503. void __page_frag_cache_drain(struct page *page, unsigned int count)
  3504. {
  3505. VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
  3506. if (page_ref_sub_and_test(page, count)) {
  3507. unsigned int order = compound_order(page);
  3508. if (order == 0)
  3509. free_hot_cold_page(page, false);
  3510. else
  3511. __free_pages_ok(page, order);
  3512. }
  3513. }
  3514. EXPORT_SYMBOL(__page_frag_cache_drain);
  3515. void *page_frag_alloc(struct page_frag_cache *nc,
  3516. unsigned int fragsz, gfp_t gfp_mask)
  3517. {
  3518. unsigned int size = PAGE_SIZE;
  3519. struct page *page;
  3520. int offset;
  3521. if (unlikely(!nc->va)) {
  3522. refill:
  3523. page = __page_frag_cache_refill(nc, gfp_mask);
  3524. if (!page)
  3525. return NULL;
  3526. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  3527. /* if size can vary use size else just use PAGE_SIZE */
  3528. size = nc->size;
  3529. #endif
  3530. /* Even if we own the page, we do not use atomic_set().
  3531. * This would break get_page_unless_zero() users.
  3532. */
  3533. page_ref_add(page, size - 1);
  3534. /* reset page count bias and offset to start of new frag */
  3535. nc->pfmemalloc = page_is_pfmemalloc(page);
  3536. nc->pagecnt_bias = size;
  3537. nc->offset = size;
  3538. }
  3539. offset = nc->offset - fragsz;
  3540. if (unlikely(offset < 0)) {
  3541. page = virt_to_page(nc->va);
  3542. if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
  3543. goto refill;
  3544. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  3545. /* if size can vary use size else just use PAGE_SIZE */
  3546. size = nc->size;
  3547. #endif
  3548. /* OK, page count is 0, we can safely set it */
  3549. set_page_count(page, size);
  3550. /* reset page count bias and offset to start of new frag */
  3551. nc->pagecnt_bias = size;
  3552. offset = size - fragsz;
  3553. }
  3554. nc->pagecnt_bias--;
  3555. nc->offset = offset;
  3556. return nc->va + offset;
  3557. }
  3558. EXPORT_SYMBOL(page_frag_alloc);
  3559. /*
  3560. * Frees a page fragment allocated out of either a compound or order 0 page.
  3561. */
  3562. void page_frag_free(void *addr)
  3563. {
  3564. struct page *page = virt_to_head_page(addr);
  3565. if (unlikely(put_page_testzero(page)))
  3566. __free_pages_ok(page, compound_order(page));
  3567. }
  3568. EXPORT_SYMBOL(page_frag_free);
  3569. static void *make_alloc_exact(unsigned long addr, unsigned int order,
  3570. size_t size)
  3571. {
  3572. if (addr) {
  3573. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  3574. unsigned long used = addr + PAGE_ALIGN(size);
  3575. split_page(virt_to_page((void *)addr), order);
  3576. while (used < alloc_end) {
  3577. free_page(used);
  3578. used += PAGE_SIZE;
  3579. }
  3580. }
  3581. return (void *)addr;
  3582. }
  3583. /**
  3584. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  3585. * @size: the number of bytes to allocate
  3586. * @gfp_mask: GFP flags for the allocation
  3587. *
  3588. * This function is similar to alloc_pages(), except that it allocates the
  3589. * minimum number of pages to satisfy the request. alloc_pages() can only
  3590. * allocate memory in power-of-two pages.
  3591. *
  3592. * This function is also limited by MAX_ORDER.
  3593. *
  3594. * Memory allocated by this function must be released by free_pages_exact().
  3595. */
  3596. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  3597. {
  3598. unsigned int order = get_order(size);
  3599. unsigned long addr;
  3600. addr = __get_free_pages(gfp_mask, order);
  3601. return make_alloc_exact(addr, order, size);
  3602. }
  3603. EXPORT_SYMBOL(alloc_pages_exact);
  3604. /**
  3605. * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
  3606. * pages on a node.
  3607. * @nid: the preferred node ID where memory should be allocated
  3608. * @size: the number of bytes to allocate
  3609. * @gfp_mask: GFP flags for the allocation
  3610. *
  3611. * Like alloc_pages_exact(), but try to allocate on node nid first before falling
  3612. * back.
  3613. */
  3614. void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
  3615. {
  3616. unsigned int order = get_order(size);
  3617. struct page *p = alloc_pages_node(nid, gfp_mask, order);
  3618. if (!p)
  3619. return NULL;
  3620. return make_alloc_exact((unsigned long)page_address(p), order, size);
  3621. }
  3622. /**
  3623. * free_pages_exact - release memory allocated via alloc_pages_exact()
  3624. * @virt: the value returned by alloc_pages_exact.
  3625. * @size: size of allocation, same value as passed to alloc_pages_exact().
  3626. *
  3627. * Release the memory allocated by a previous call to alloc_pages_exact.
  3628. */
  3629. void free_pages_exact(void *virt, size_t size)
  3630. {
  3631. unsigned long addr = (unsigned long)virt;
  3632. unsigned long end = addr + PAGE_ALIGN(size);
  3633. while (addr < end) {
  3634. free_page(addr);
  3635. addr += PAGE_SIZE;
  3636. }
  3637. }
  3638. EXPORT_SYMBOL(free_pages_exact);
  3639. /**
  3640. * nr_free_zone_pages - count number of pages beyond high watermark
  3641. * @offset: The zone index of the highest zone
  3642. *
  3643. * nr_free_zone_pages() counts the number of counts pages which are beyond the
  3644. * high watermark within all zones at or below a given zone index. For each
  3645. * zone, the number of pages is calculated as:
  3646. * managed_pages - high_pages
  3647. */
  3648. static unsigned long nr_free_zone_pages(int offset)
  3649. {
  3650. struct zoneref *z;
  3651. struct zone *zone;
  3652. /* Just pick one node, since fallback list is circular */
  3653. unsigned long sum = 0;
  3654. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  3655. for_each_zone_zonelist(zone, z, zonelist, offset) {
  3656. unsigned long size = zone->managed_pages;
  3657. unsigned long high = high_wmark_pages(zone);
  3658. if (size > high)
  3659. sum += size - high;
  3660. }
  3661. return sum;
  3662. }
  3663. /**
  3664. * nr_free_buffer_pages - count number of pages beyond high watermark
  3665. *
  3666. * nr_free_buffer_pages() counts the number of pages which are beyond the high
  3667. * watermark within ZONE_DMA and ZONE_NORMAL.
  3668. */
  3669. unsigned long nr_free_buffer_pages(void)
  3670. {
  3671. return nr_free_zone_pages(gfp_zone(GFP_USER));
  3672. }
  3673. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  3674. /**
  3675. * nr_free_pagecache_pages - count number of pages beyond high watermark
  3676. *
  3677. * nr_free_pagecache_pages() counts the number of pages which are beyond the
  3678. * high watermark within all zones.
  3679. */
  3680. unsigned long nr_free_pagecache_pages(void)
  3681. {
  3682. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  3683. }
  3684. static inline void show_node(struct zone *zone)
  3685. {
  3686. if (IS_ENABLED(CONFIG_NUMA))
  3687. printk("Node %d ", zone_to_nid(zone));
  3688. }
  3689. long si_mem_available(void)
  3690. {
  3691. long available;
  3692. unsigned long pagecache;
  3693. unsigned long wmark_low = 0;
  3694. unsigned long pages[NR_LRU_LISTS];
  3695. struct zone *zone;
  3696. int lru;
  3697. for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
  3698. pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
  3699. for_each_zone(zone)
  3700. wmark_low += zone->watermark[WMARK_LOW];
  3701. /*
  3702. * Estimate the amount of memory available for userspace allocations,
  3703. * without causing swapping.
  3704. */
  3705. available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
  3706. /*
  3707. * Not all the page cache can be freed, otherwise the system will
  3708. * start swapping. Assume at least half of the page cache, or the
  3709. * low watermark worth of cache, needs to stay.
  3710. */
  3711. pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
  3712. pagecache -= min(pagecache / 2, wmark_low);
  3713. available += pagecache;
  3714. /*
  3715. * Part of the reclaimable slab consists of items that are in use,
  3716. * and cannot be freed. Cap this estimate at the low watermark.
  3717. */
  3718. available += global_page_state(NR_SLAB_RECLAIMABLE) -
  3719. min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
  3720. if (available < 0)
  3721. available = 0;
  3722. return available;
  3723. }
  3724. EXPORT_SYMBOL_GPL(si_mem_available);
  3725. void si_meminfo(struct sysinfo *val)
  3726. {
  3727. val->totalram = totalram_pages;
  3728. val->sharedram = global_node_page_state(NR_SHMEM);
  3729. val->freeram = global_page_state(NR_FREE_PAGES);
  3730. val->bufferram = nr_blockdev_pages();
  3731. val->totalhigh = totalhigh_pages;
  3732. val->freehigh = nr_free_highpages();
  3733. val->mem_unit = PAGE_SIZE;
  3734. }
  3735. EXPORT_SYMBOL(si_meminfo);
  3736. #ifdef CONFIG_NUMA
  3737. void si_meminfo_node(struct sysinfo *val, int nid)
  3738. {
  3739. int zone_type; /* needs to be signed */
  3740. unsigned long managed_pages = 0;
  3741. unsigned long managed_highpages = 0;
  3742. unsigned long free_highpages = 0;
  3743. pg_data_t *pgdat = NODE_DATA(nid);
  3744. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
  3745. managed_pages += pgdat->node_zones[zone_type].managed_pages;
  3746. val->totalram = managed_pages;
  3747. val->sharedram = node_page_state(pgdat, NR_SHMEM);
  3748. val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
  3749. #ifdef CONFIG_HIGHMEM
  3750. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  3751. struct zone *zone = &pgdat->node_zones[zone_type];
  3752. if (is_highmem(zone)) {
  3753. managed_highpages += zone->managed_pages;
  3754. free_highpages += zone_page_state(zone, NR_FREE_PAGES);
  3755. }
  3756. }
  3757. val->totalhigh = managed_highpages;
  3758. val->freehigh = free_highpages;
  3759. #else
  3760. val->totalhigh = managed_highpages;
  3761. val->freehigh = free_highpages;
  3762. #endif
  3763. val->mem_unit = PAGE_SIZE;
  3764. }
  3765. #endif
  3766. /*
  3767. * Determine whether the node should be displayed or not, depending on whether
  3768. * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
  3769. */
  3770. static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
  3771. {
  3772. if (!(flags & SHOW_MEM_FILTER_NODES))
  3773. return false;
  3774. /*
  3775. * no node mask - aka implicit memory numa policy. Do not bother with
  3776. * the synchronization - read_mems_allowed_begin - because we do not
  3777. * have to be precise here.
  3778. */
  3779. if (!nodemask)
  3780. nodemask = &cpuset_current_mems_allowed;
  3781. return !node_isset(nid, *nodemask);
  3782. }
  3783. #define K(x) ((x) << (PAGE_SHIFT-10))
  3784. static void show_migration_types(unsigned char type)
  3785. {
  3786. static const char types[MIGRATE_TYPES] = {
  3787. [MIGRATE_UNMOVABLE] = 'U',
  3788. [MIGRATE_MOVABLE] = 'M',
  3789. [MIGRATE_RECLAIMABLE] = 'E',
  3790. [MIGRATE_HIGHATOMIC] = 'H',
  3791. #ifdef CONFIG_CMA
  3792. [MIGRATE_CMA] = 'C',
  3793. #endif
  3794. #ifdef CONFIG_MEMORY_ISOLATION
  3795. [MIGRATE_ISOLATE] = 'I',
  3796. #endif
  3797. };
  3798. char tmp[MIGRATE_TYPES + 1];
  3799. char *p = tmp;
  3800. int i;
  3801. for (i = 0; i < MIGRATE_TYPES; i++) {
  3802. if (type & (1 << i))
  3803. *p++ = types[i];
  3804. }
  3805. *p = '\0';
  3806. printk(KERN_CONT "(%s) ", tmp);
  3807. }
  3808. /*
  3809. * Show free area list (used inside shift_scroll-lock stuff)
  3810. * We also calculate the percentage fragmentation. We do this by counting the
  3811. * memory on each free list with the exception of the first item on the list.
  3812. *
  3813. * Bits in @filter:
  3814. * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
  3815. * cpuset.
  3816. */
  3817. void show_free_areas(unsigned int filter, nodemask_t *nodemask)
  3818. {
  3819. unsigned long free_pcp = 0;
  3820. int cpu;
  3821. struct zone *zone;
  3822. pg_data_t *pgdat;
  3823. for_each_populated_zone(zone) {
  3824. if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
  3825. continue;
  3826. for_each_online_cpu(cpu)
  3827. free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
  3828. }
  3829. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  3830. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  3831. " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
  3832. " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  3833. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
  3834. " free:%lu free_pcp:%lu free_cma:%lu\n",
  3835. global_node_page_state(NR_ACTIVE_ANON),
  3836. global_node_page_state(NR_INACTIVE_ANON),
  3837. global_node_page_state(NR_ISOLATED_ANON),
  3838. global_node_page_state(NR_ACTIVE_FILE),
  3839. global_node_page_state(NR_INACTIVE_FILE),
  3840. global_node_page_state(NR_ISOLATED_FILE),
  3841. global_node_page_state(NR_UNEVICTABLE),
  3842. global_node_page_state(NR_FILE_DIRTY),
  3843. global_node_page_state(NR_WRITEBACK),
  3844. global_node_page_state(NR_UNSTABLE_NFS),
  3845. global_page_state(NR_SLAB_RECLAIMABLE),
  3846. global_page_state(NR_SLAB_UNRECLAIMABLE),
  3847. global_node_page_state(NR_FILE_MAPPED),
  3848. global_node_page_state(NR_SHMEM),
  3849. global_page_state(NR_PAGETABLE),
  3850. global_page_state(NR_BOUNCE),
  3851. global_page_state(NR_FREE_PAGES),
  3852. free_pcp,
  3853. global_page_state(NR_FREE_CMA_PAGES));
  3854. for_each_online_pgdat(pgdat) {
  3855. if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
  3856. continue;
  3857. printk("Node %d"
  3858. " active_anon:%lukB"
  3859. " inactive_anon:%lukB"
  3860. " active_file:%lukB"
  3861. " inactive_file:%lukB"
  3862. " unevictable:%lukB"
  3863. " isolated(anon):%lukB"
  3864. " isolated(file):%lukB"
  3865. " mapped:%lukB"
  3866. " dirty:%lukB"
  3867. " writeback:%lukB"
  3868. " shmem:%lukB"
  3869. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  3870. " shmem_thp: %lukB"
  3871. " shmem_pmdmapped: %lukB"
  3872. " anon_thp: %lukB"
  3873. #endif
  3874. " writeback_tmp:%lukB"
  3875. " unstable:%lukB"
  3876. " pages_scanned:%lu"
  3877. " all_unreclaimable? %s"
  3878. "\n",
  3879. pgdat->node_id,
  3880. K(node_page_state(pgdat, NR_ACTIVE_ANON)),
  3881. K(node_page_state(pgdat, NR_INACTIVE_ANON)),
  3882. K(node_page_state(pgdat, NR_ACTIVE_FILE)),
  3883. K(node_page_state(pgdat, NR_INACTIVE_FILE)),
  3884. K(node_page_state(pgdat, NR_UNEVICTABLE)),
  3885. K(node_page_state(pgdat, NR_ISOLATED_ANON)),
  3886. K(node_page_state(pgdat, NR_ISOLATED_FILE)),
  3887. K(node_page_state(pgdat, NR_FILE_MAPPED)),
  3888. K(node_page_state(pgdat, NR_FILE_DIRTY)),
  3889. K(node_page_state(pgdat, NR_WRITEBACK)),
  3890. K(node_page_state(pgdat, NR_SHMEM)),
  3891. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  3892. K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
  3893. K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
  3894. * HPAGE_PMD_NR),
  3895. K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
  3896. #endif
  3897. K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
  3898. K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
  3899. node_page_state(pgdat, NR_PAGES_SCANNED),
  3900. !pgdat_reclaimable(pgdat) ? "yes" : "no");
  3901. }
  3902. for_each_populated_zone(zone) {
  3903. int i;
  3904. if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
  3905. continue;
  3906. free_pcp = 0;
  3907. for_each_online_cpu(cpu)
  3908. free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
  3909. show_node(zone);
  3910. printk(KERN_CONT
  3911. "%s"
  3912. " free:%lukB"
  3913. " min:%lukB"
  3914. " low:%lukB"
  3915. " high:%lukB"
  3916. " active_anon:%lukB"
  3917. " inactive_anon:%lukB"
  3918. " active_file:%lukB"
  3919. " inactive_file:%lukB"
  3920. " unevictable:%lukB"
  3921. " writepending:%lukB"
  3922. " present:%lukB"
  3923. " managed:%lukB"
  3924. " mlocked:%lukB"
  3925. " slab_reclaimable:%lukB"
  3926. " slab_unreclaimable:%lukB"
  3927. " kernel_stack:%lukB"
  3928. " pagetables:%lukB"
  3929. " bounce:%lukB"
  3930. " free_pcp:%lukB"
  3931. " local_pcp:%ukB"
  3932. " free_cma:%lukB"
  3933. "\n",
  3934. zone->name,
  3935. K(zone_page_state(zone, NR_FREE_PAGES)),
  3936. K(min_wmark_pages(zone)),
  3937. K(low_wmark_pages(zone)),
  3938. K(high_wmark_pages(zone)),
  3939. K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
  3940. K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
  3941. K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
  3942. K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
  3943. K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
  3944. K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
  3945. K(zone->present_pages),
  3946. K(zone->managed_pages),
  3947. K(zone_page_state(zone, NR_MLOCK)),
  3948. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  3949. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  3950. zone_page_state(zone, NR_KERNEL_STACK_KB),
  3951. K(zone_page_state(zone, NR_PAGETABLE)),
  3952. K(zone_page_state(zone, NR_BOUNCE)),
  3953. K(free_pcp),
  3954. K(this_cpu_read(zone->pageset->pcp.count)),
  3955. K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
  3956. printk("lowmem_reserve[]:");
  3957. for (i = 0; i < MAX_NR_ZONES; i++)
  3958. printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
  3959. printk(KERN_CONT "\n");
  3960. }
  3961. for_each_populated_zone(zone) {
  3962. unsigned int order;
  3963. unsigned long nr[MAX_ORDER], flags, total = 0;
  3964. unsigned char types[MAX_ORDER];
  3965. if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
  3966. continue;
  3967. show_node(zone);
  3968. printk(KERN_CONT "%s: ", zone->name);
  3969. spin_lock_irqsave(&zone->lock, flags);
  3970. for (order = 0; order < MAX_ORDER; order++) {
  3971. struct free_area *area = &zone->free_area[order];
  3972. int type;
  3973. nr[order] = area->nr_free;
  3974. total += nr[order] << order;
  3975. types[order] = 0;
  3976. for (type = 0; type < MIGRATE_TYPES; type++) {
  3977. if (!list_empty(&area->free_list[type]))
  3978. types[order] |= 1 << type;
  3979. }
  3980. }
  3981. spin_unlock_irqrestore(&zone->lock, flags);
  3982. for (order = 0; order < MAX_ORDER; order++) {
  3983. printk(KERN_CONT "%lu*%lukB ",
  3984. nr[order], K(1UL) << order);
  3985. if (nr[order])
  3986. show_migration_types(types[order]);
  3987. }
  3988. printk(KERN_CONT "= %lukB\n", K(total));
  3989. }
  3990. hugetlb_show_meminfo();
  3991. printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
  3992. show_swap_cache_info();
  3993. }
  3994. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  3995. {
  3996. zoneref->zone = zone;
  3997. zoneref->zone_idx = zone_idx(zone);
  3998. }
  3999. /*
  4000. * Builds allocation fallback zone lists.
  4001. *
  4002. * Add all populated zones of a node to the zonelist.
  4003. */
  4004. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  4005. int nr_zones)
  4006. {
  4007. struct zone *zone;
  4008. enum zone_type zone_type = MAX_NR_ZONES;
  4009. do {
  4010. zone_type--;
  4011. zone = pgdat->node_zones + zone_type;
  4012. if (managed_zone(zone)) {
  4013. zoneref_set_zone(zone,
  4014. &zonelist->_zonerefs[nr_zones++]);
  4015. check_highest_zone(zone_type);
  4016. }
  4017. } while (zone_type);
  4018. return nr_zones;
  4019. }
  4020. /*
  4021. * zonelist_order:
  4022. * 0 = automatic detection of better ordering.
  4023. * 1 = order by ([node] distance, -zonetype)
  4024. * 2 = order by (-zonetype, [node] distance)
  4025. *
  4026. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  4027. * the same zonelist. So only NUMA can configure this param.
  4028. */
  4029. #define ZONELIST_ORDER_DEFAULT 0
  4030. #define ZONELIST_ORDER_NODE 1
  4031. #define ZONELIST_ORDER_ZONE 2
  4032. /* zonelist order in the kernel.
  4033. * set_zonelist_order() will set this to NODE or ZONE.
  4034. */
  4035. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  4036. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  4037. #ifdef CONFIG_NUMA
  4038. /* The value user specified ....changed by config */
  4039. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  4040. /* string for sysctl */
  4041. #define NUMA_ZONELIST_ORDER_LEN 16
  4042. char numa_zonelist_order[16] = "default";
  4043. /*
  4044. * interface for configure zonelist ordering.
  4045. * command line option "numa_zonelist_order"
  4046. * = "[dD]efault - default, automatic configuration.
  4047. * = "[nN]ode - order by node locality, then by zone within node
  4048. * = "[zZ]one - order by zone, then by locality within zone
  4049. */
  4050. static int __parse_numa_zonelist_order(char *s)
  4051. {
  4052. if (*s == 'd' || *s == 'D') {
  4053. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  4054. } else if (*s == 'n' || *s == 'N') {
  4055. user_zonelist_order = ZONELIST_ORDER_NODE;
  4056. } else if (*s == 'z' || *s == 'Z') {
  4057. user_zonelist_order = ZONELIST_ORDER_ZONE;
  4058. } else {
  4059. pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
  4060. return -EINVAL;
  4061. }
  4062. return 0;
  4063. }
  4064. static __init int setup_numa_zonelist_order(char *s)
  4065. {
  4066. int ret;
  4067. if (!s)
  4068. return 0;
  4069. ret = __parse_numa_zonelist_order(s);
  4070. if (ret == 0)
  4071. strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
  4072. return ret;
  4073. }
  4074. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  4075. /*
  4076. * sysctl handler for numa_zonelist_order
  4077. */
  4078. int numa_zonelist_order_handler(struct ctl_table *table, int write,
  4079. void __user *buffer, size_t *length,
  4080. loff_t *ppos)
  4081. {
  4082. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  4083. int ret;
  4084. static DEFINE_MUTEX(zl_order_mutex);
  4085. mutex_lock(&zl_order_mutex);
  4086. if (write) {
  4087. if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
  4088. ret = -EINVAL;
  4089. goto out;
  4090. }
  4091. strcpy(saved_string, (char *)table->data);
  4092. }
  4093. ret = proc_dostring(table, write, buffer, length, ppos);
  4094. if (ret)
  4095. goto out;
  4096. if (write) {
  4097. int oldval = user_zonelist_order;
  4098. ret = __parse_numa_zonelist_order((char *)table->data);
  4099. if (ret) {
  4100. /*
  4101. * bogus value. restore saved string
  4102. */
  4103. strncpy((char *)table->data, saved_string,
  4104. NUMA_ZONELIST_ORDER_LEN);
  4105. user_zonelist_order = oldval;
  4106. } else if (oldval != user_zonelist_order) {
  4107. mutex_lock(&zonelists_mutex);
  4108. build_all_zonelists(NULL, NULL);
  4109. mutex_unlock(&zonelists_mutex);
  4110. }
  4111. }
  4112. out:
  4113. mutex_unlock(&zl_order_mutex);
  4114. return ret;
  4115. }
  4116. #define MAX_NODE_LOAD (nr_online_nodes)
  4117. static int node_load[MAX_NUMNODES];
  4118. /**
  4119. * find_next_best_node - find the next node that should appear in a given node's fallback list
  4120. * @node: node whose fallback list we're appending
  4121. * @used_node_mask: nodemask_t of already used nodes
  4122. *
  4123. * We use a number of factors to determine which is the next node that should
  4124. * appear on a given node's fallback list. The node should not have appeared
  4125. * already in @node's fallback list, and it should be the next closest node
  4126. * according to the distance array (which contains arbitrary distance values
  4127. * from each node to each node in the system), and should also prefer nodes
  4128. * with no CPUs, since presumably they'll have very little allocation pressure
  4129. * on them otherwise.
  4130. * It returns -1 if no node is found.
  4131. */
  4132. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  4133. {
  4134. int n, val;
  4135. int min_val = INT_MAX;
  4136. int best_node = NUMA_NO_NODE;
  4137. const struct cpumask *tmp = cpumask_of_node(0);
  4138. /* Use the local node if we haven't already */
  4139. if (!node_isset(node, *used_node_mask)) {
  4140. node_set(node, *used_node_mask);
  4141. return node;
  4142. }
  4143. for_each_node_state(n, N_MEMORY) {
  4144. /* Don't want a node to appear more than once */
  4145. if (node_isset(n, *used_node_mask))
  4146. continue;
  4147. /* Use the distance array to find the distance */
  4148. val = node_distance(node, n);
  4149. /* Penalize nodes under us ("prefer the next node") */
  4150. val += (n < node);
  4151. /* Give preference to headless and unused nodes */
  4152. tmp = cpumask_of_node(n);
  4153. if (!cpumask_empty(tmp))
  4154. val += PENALTY_FOR_NODE_WITH_CPUS;
  4155. /* Slight preference for less loaded node */
  4156. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  4157. val += node_load[n];
  4158. if (val < min_val) {
  4159. min_val = val;
  4160. best_node = n;
  4161. }
  4162. }
  4163. if (best_node >= 0)
  4164. node_set(best_node, *used_node_mask);
  4165. return best_node;
  4166. }
  4167. /*
  4168. * Build zonelists ordered by node and zones within node.
  4169. * This results in maximum locality--normal zone overflows into local
  4170. * DMA zone, if any--but risks exhausting DMA zone.
  4171. */
  4172. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  4173. {
  4174. int j;
  4175. struct zonelist *zonelist;
  4176. zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
  4177. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  4178. ;
  4179. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  4180. zonelist->_zonerefs[j].zone = NULL;
  4181. zonelist->_zonerefs[j].zone_idx = 0;
  4182. }
  4183. /*
  4184. * Build gfp_thisnode zonelists
  4185. */
  4186. static void build_thisnode_zonelists(pg_data_t *pgdat)
  4187. {
  4188. int j;
  4189. struct zonelist *zonelist;
  4190. zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
  4191. j = build_zonelists_node(pgdat, zonelist, 0);
  4192. zonelist->_zonerefs[j].zone = NULL;
  4193. zonelist->_zonerefs[j].zone_idx = 0;
  4194. }
  4195. /*
  4196. * Build zonelists ordered by zone and nodes within zones.
  4197. * This results in conserving DMA zone[s] until all Normal memory is
  4198. * exhausted, but results in overflowing to remote node while memory
  4199. * may still exist in local DMA zone.
  4200. */
  4201. static int node_order[MAX_NUMNODES];
  4202. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  4203. {
  4204. int pos, j, node;
  4205. int zone_type; /* needs to be signed */
  4206. struct zone *z;
  4207. struct zonelist *zonelist;
  4208. zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
  4209. pos = 0;
  4210. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  4211. for (j = 0; j < nr_nodes; j++) {
  4212. node = node_order[j];
  4213. z = &NODE_DATA(node)->node_zones[zone_type];
  4214. if (managed_zone(z)) {
  4215. zoneref_set_zone(z,
  4216. &zonelist->_zonerefs[pos++]);
  4217. check_highest_zone(zone_type);
  4218. }
  4219. }
  4220. }
  4221. zonelist->_zonerefs[pos].zone = NULL;
  4222. zonelist->_zonerefs[pos].zone_idx = 0;
  4223. }
  4224. #if defined(CONFIG_64BIT)
  4225. /*
  4226. * Devices that require DMA32/DMA are relatively rare and do not justify a
  4227. * penalty to every machine in case the specialised case applies. Default
  4228. * to Node-ordering on 64-bit NUMA machines
  4229. */
  4230. static int default_zonelist_order(void)
  4231. {
  4232. return ZONELIST_ORDER_NODE;
  4233. }
  4234. #else
  4235. /*
  4236. * On 32-bit, the Normal zone needs to be preserved for allocations accessible
  4237. * by the kernel. If processes running on node 0 deplete the low memory zone
  4238. * then reclaim will occur more frequency increasing stalls and potentially
  4239. * be easier to OOM if a large percentage of the zone is under writeback or
  4240. * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
  4241. * Hence, default to zone ordering on 32-bit.
  4242. */
  4243. static int default_zonelist_order(void)
  4244. {
  4245. return ZONELIST_ORDER_ZONE;
  4246. }
  4247. #endif /* CONFIG_64BIT */
  4248. static void set_zonelist_order(void)
  4249. {
  4250. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  4251. current_zonelist_order = default_zonelist_order();
  4252. else
  4253. current_zonelist_order = user_zonelist_order;
  4254. }
  4255. static void build_zonelists(pg_data_t *pgdat)
  4256. {
  4257. int i, node, load;
  4258. nodemask_t used_mask;
  4259. int local_node, prev_node;
  4260. struct zonelist *zonelist;
  4261. unsigned int order = current_zonelist_order;
  4262. /* initialize zonelists */
  4263. for (i = 0; i < MAX_ZONELISTS; i++) {
  4264. zonelist = pgdat->node_zonelists + i;
  4265. zonelist->_zonerefs[0].zone = NULL;
  4266. zonelist->_zonerefs[0].zone_idx = 0;
  4267. }
  4268. /* NUMA-aware ordering of nodes */
  4269. local_node = pgdat->node_id;
  4270. load = nr_online_nodes;
  4271. prev_node = local_node;
  4272. nodes_clear(used_mask);
  4273. memset(node_order, 0, sizeof(node_order));
  4274. i = 0;
  4275. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  4276. /*
  4277. * We don't want to pressure a particular node.
  4278. * So adding penalty to the first node in same
  4279. * distance group to make it round-robin.
  4280. */
  4281. if (node_distance(local_node, node) !=
  4282. node_distance(local_node, prev_node))
  4283. node_load[node] = load;
  4284. prev_node = node;
  4285. load--;
  4286. if (order == ZONELIST_ORDER_NODE)
  4287. build_zonelists_in_node_order(pgdat, node);
  4288. else
  4289. node_order[i++] = node; /* remember order */
  4290. }
  4291. if (order == ZONELIST_ORDER_ZONE) {
  4292. /* calculate node order -- i.e., DMA last! */
  4293. build_zonelists_in_zone_order(pgdat, i);
  4294. }
  4295. build_thisnode_zonelists(pgdat);
  4296. }
  4297. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  4298. /*
  4299. * Return node id of node used for "local" allocations.
  4300. * I.e., first node id of first zone in arg node's generic zonelist.
  4301. * Used for initializing percpu 'numa_mem', which is used primarily
  4302. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  4303. */
  4304. int local_memory_node(int node)
  4305. {
  4306. struct zoneref *z;
  4307. z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  4308. gfp_zone(GFP_KERNEL),
  4309. NULL);
  4310. return z->zone->node;
  4311. }
  4312. #endif
  4313. static void setup_min_unmapped_ratio(void);
  4314. static void setup_min_slab_ratio(void);
  4315. #else /* CONFIG_NUMA */
  4316. static void set_zonelist_order(void)
  4317. {
  4318. current_zonelist_order = ZONELIST_ORDER_ZONE;
  4319. }
  4320. static void build_zonelists(pg_data_t *pgdat)
  4321. {
  4322. int node, local_node;
  4323. enum zone_type j;
  4324. struct zonelist *zonelist;
  4325. local_node = pgdat->node_id;
  4326. zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
  4327. j = build_zonelists_node(pgdat, zonelist, 0);
  4328. /*
  4329. * Now we build the zonelist so that it contains the zones
  4330. * of all the other nodes.
  4331. * We don't want to pressure a particular node, so when
  4332. * building the zones for node N, we make sure that the
  4333. * zones coming right after the local ones are those from
  4334. * node N+1 (modulo N)
  4335. */
  4336. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  4337. if (!node_online(node))
  4338. continue;
  4339. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  4340. }
  4341. for (node = 0; node < local_node; node++) {
  4342. if (!node_online(node))
  4343. continue;
  4344. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  4345. }
  4346. zonelist->_zonerefs[j].zone = NULL;
  4347. zonelist->_zonerefs[j].zone_idx = 0;
  4348. }
  4349. #endif /* CONFIG_NUMA */
  4350. /*
  4351. * Boot pageset table. One per cpu which is going to be used for all
  4352. * zones and all nodes. The parameters will be set in such a way
  4353. * that an item put on a list will immediately be handed over to
  4354. * the buddy list. This is safe since pageset manipulation is done
  4355. * with interrupts disabled.
  4356. *
  4357. * The boot_pagesets must be kept even after bootup is complete for
  4358. * unused processors and/or zones. They do play a role for bootstrapping
  4359. * hotplugged processors.
  4360. *
  4361. * zoneinfo_show() and maybe other functions do
  4362. * not check if the processor is online before following the pageset pointer.
  4363. * Other parts of the kernel may not check if the zone is available.
  4364. */
  4365. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  4366. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  4367. static void setup_zone_pageset(struct zone *zone);
  4368. /*
  4369. * Global mutex to protect against size modification of zonelists
  4370. * as well as to serialize pageset setup for the new populated zone.
  4371. */
  4372. DEFINE_MUTEX(zonelists_mutex);
  4373. /* return values int ....just for stop_machine() */
  4374. static int __build_all_zonelists(void *data)
  4375. {
  4376. int nid;
  4377. int cpu;
  4378. pg_data_t *self = data;
  4379. #ifdef CONFIG_NUMA
  4380. memset(node_load, 0, sizeof(node_load));
  4381. #endif
  4382. if (self && !node_online(self->node_id)) {
  4383. build_zonelists(self);
  4384. }
  4385. for_each_online_node(nid) {
  4386. pg_data_t *pgdat = NODE_DATA(nid);
  4387. build_zonelists(pgdat);
  4388. }
  4389. /*
  4390. * Initialize the boot_pagesets that are going to be used
  4391. * for bootstrapping processors. The real pagesets for
  4392. * each zone will be allocated later when the per cpu
  4393. * allocator is available.
  4394. *
  4395. * boot_pagesets are used also for bootstrapping offline
  4396. * cpus if the system is already booted because the pagesets
  4397. * are needed to initialize allocators on a specific cpu too.
  4398. * F.e. the percpu allocator needs the page allocator which
  4399. * needs the percpu allocator in order to allocate its pagesets
  4400. * (a chicken-egg dilemma).
  4401. */
  4402. for_each_possible_cpu(cpu) {
  4403. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  4404. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  4405. /*
  4406. * We now know the "local memory node" for each node--
  4407. * i.e., the node of the first zone in the generic zonelist.
  4408. * Set up numa_mem percpu variable for on-line cpus. During
  4409. * boot, only the boot cpu should be on-line; we'll init the
  4410. * secondary cpus' numa_mem as they come on-line. During
  4411. * node/memory hotplug, we'll fixup all on-line cpus.
  4412. */
  4413. if (cpu_online(cpu))
  4414. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  4415. #endif
  4416. }
  4417. return 0;
  4418. }
  4419. static noinline void __init
  4420. build_all_zonelists_init(void)
  4421. {
  4422. __build_all_zonelists(NULL);
  4423. mminit_verify_zonelist();
  4424. cpuset_init_current_mems_allowed();
  4425. }
  4426. /*
  4427. * Called with zonelists_mutex held always
  4428. * unless system_state == SYSTEM_BOOTING.
  4429. *
  4430. * __ref due to (1) call of __meminit annotated setup_zone_pageset
  4431. * [we're only called with non-NULL zone through __meminit paths] and
  4432. * (2) call of __init annotated helper build_all_zonelists_init
  4433. * [protected by SYSTEM_BOOTING].
  4434. */
  4435. void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
  4436. {
  4437. set_zonelist_order();
  4438. if (system_state == SYSTEM_BOOTING) {
  4439. build_all_zonelists_init();
  4440. } else {
  4441. #ifdef CONFIG_MEMORY_HOTPLUG
  4442. if (zone)
  4443. setup_zone_pageset(zone);
  4444. #endif
  4445. /* we have to stop all cpus to guarantee there is no user
  4446. of zonelist */
  4447. stop_machine(__build_all_zonelists, pgdat, NULL);
  4448. /* cpuset refresh routine should be here */
  4449. }
  4450. vm_total_pages = nr_free_pagecache_pages();
  4451. /*
  4452. * Disable grouping by mobility if the number of pages in the
  4453. * system is too low to allow the mechanism to work. It would be
  4454. * more accurate, but expensive to check per-zone. This check is
  4455. * made on memory-hotadd so a system can start with mobility
  4456. * disabled and enable it later
  4457. */
  4458. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  4459. page_group_by_mobility_disabled = 1;
  4460. else
  4461. page_group_by_mobility_disabled = 0;
  4462. pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
  4463. nr_online_nodes,
  4464. zonelist_order_name[current_zonelist_order],
  4465. page_group_by_mobility_disabled ? "off" : "on",
  4466. vm_total_pages);
  4467. #ifdef CONFIG_NUMA
  4468. pr_info("Policy zone: %s\n", zone_names[policy_zone]);
  4469. #endif
  4470. }
  4471. /*
  4472. * Initially all pages are reserved - free ones are freed
  4473. * up by free_all_bootmem() once the early boot process is
  4474. * done. Non-atomic initialization, single-pass.
  4475. */
  4476. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  4477. unsigned long start_pfn, enum memmap_context context)
  4478. {
  4479. struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
  4480. unsigned long end_pfn = start_pfn + size;
  4481. pg_data_t *pgdat = NODE_DATA(nid);
  4482. unsigned long pfn;
  4483. unsigned long nr_initialised = 0;
  4484. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4485. struct memblock_region *r = NULL, *tmp;
  4486. #endif
  4487. if (highest_memmap_pfn < end_pfn - 1)
  4488. highest_memmap_pfn = end_pfn - 1;
  4489. /*
  4490. * Honor reservation requested by the driver for this ZONE_DEVICE
  4491. * memory
  4492. */
  4493. if (altmap && start_pfn == altmap->base_pfn)
  4494. start_pfn += altmap->reserve;
  4495. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  4496. /*
  4497. * There can be holes in boot-time mem_map[]s handed to this
  4498. * function. They do not exist on hotplugged memory.
  4499. */
  4500. if (context != MEMMAP_EARLY)
  4501. goto not_early;
  4502. if (!early_pfn_valid(pfn)) {
  4503. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4504. /*
  4505. * Skip to the pfn preceding the next valid one (or
  4506. * end_pfn), such that we hit a valid pfn (or end_pfn)
  4507. * on our next iteration of the loop.
  4508. */
  4509. pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
  4510. #endif
  4511. continue;
  4512. }
  4513. if (!early_pfn_in_nid(pfn, nid))
  4514. continue;
  4515. if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
  4516. break;
  4517. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4518. /*
  4519. * Check given memblock attribute by firmware which can affect
  4520. * kernel memory layout. If zone==ZONE_MOVABLE but memory is
  4521. * mirrored, it's an overlapped memmap init. skip it.
  4522. */
  4523. if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
  4524. if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
  4525. for_each_memblock(memory, tmp)
  4526. if (pfn < memblock_region_memory_end_pfn(tmp))
  4527. break;
  4528. r = tmp;
  4529. }
  4530. if (pfn >= memblock_region_memory_base_pfn(r) &&
  4531. memblock_is_mirror(r)) {
  4532. /* already initialized as NORMAL */
  4533. pfn = memblock_region_memory_end_pfn(r);
  4534. continue;
  4535. }
  4536. }
  4537. #endif
  4538. not_early:
  4539. /*
  4540. * Mark the block movable so that blocks are reserved for
  4541. * movable at startup. This will force kernel allocations
  4542. * to reserve their blocks rather than leaking throughout
  4543. * the address space during boot when many long-lived
  4544. * kernel allocations are made.
  4545. *
  4546. * bitmap is created for zone's valid pfn range. but memmap
  4547. * can be created for invalid pages (for alignment)
  4548. * check here not to call set_pageblock_migratetype() against
  4549. * pfn out of zone.
  4550. */
  4551. if (!(pfn & (pageblock_nr_pages - 1))) {
  4552. struct page *page = pfn_to_page(pfn);
  4553. __init_single_page(page, pfn, zone, nid);
  4554. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  4555. } else {
  4556. __init_single_pfn(pfn, zone, nid);
  4557. }
  4558. }
  4559. }
  4560. static void __meminit zone_init_free_lists(struct zone *zone)
  4561. {
  4562. unsigned int order, t;
  4563. for_each_migratetype_order(order, t) {
  4564. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  4565. zone->free_area[order].nr_free = 0;
  4566. }
  4567. }
  4568. #ifndef __HAVE_ARCH_MEMMAP_INIT
  4569. #define memmap_init(size, nid, zone, start_pfn) \
  4570. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  4571. #endif
  4572. static int zone_batchsize(struct zone *zone)
  4573. {
  4574. #ifdef CONFIG_MMU
  4575. int batch;
  4576. /*
  4577. * The per-cpu-pages pools are set to around 1000th of the
  4578. * size of the zone. But no more than 1/2 of a meg.
  4579. *
  4580. * OK, so we don't know how big the cache is. So guess.
  4581. */
  4582. batch = zone->managed_pages / 1024;
  4583. if (batch * PAGE_SIZE > 512 * 1024)
  4584. batch = (512 * 1024) / PAGE_SIZE;
  4585. batch /= 4; /* We effectively *= 4 below */
  4586. if (batch < 1)
  4587. batch = 1;
  4588. /*
  4589. * Clamp the batch to a 2^n - 1 value. Having a power
  4590. * of 2 value was found to be more likely to have
  4591. * suboptimal cache aliasing properties in some cases.
  4592. *
  4593. * For example if 2 tasks are alternately allocating
  4594. * batches of pages, one task can end up with a lot
  4595. * of pages of one half of the possible page colors
  4596. * and the other with pages of the other colors.
  4597. */
  4598. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  4599. return batch;
  4600. #else
  4601. /* The deferral and batching of frees should be suppressed under NOMMU
  4602. * conditions.
  4603. *
  4604. * The problem is that NOMMU needs to be able to allocate large chunks
  4605. * of contiguous memory as there's no hardware page translation to
  4606. * assemble apparent contiguous memory from discontiguous pages.
  4607. *
  4608. * Queueing large contiguous runs of pages for batching, however,
  4609. * causes the pages to actually be freed in smaller chunks. As there
  4610. * can be a significant delay between the individual batches being
  4611. * recycled, this leads to the once large chunks of space being
  4612. * fragmented and becoming unavailable for high-order allocations.
  4613. */
  4614. return 0;
  4615. #endif
  4616. }
  4617. /*
  4618. * pcp->high and pcp->batch values are related and dependent on one another:
  4619. * ->batch must never be higher then ->high.
  4620. * The following function updates them in a safe manner without read side
  4621. * locking.
  4622. *
  4623. * Any new users of pcp->batch and pcp->high should ensure they can cope with
  4624. * those fields changing asynchronously (acording the the above rule).
  4625. *
  4626. * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
  4627. * outside of boot time (or some other assurance that no concurrent updaters
  4628. * exist).
  4629. */
  4630. static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
  4631. unsigned long batch)
  4632. {
  4633. /* start with a fail safe value for batch */
  4634. pcp->batch = 1;
  4635. smp_wmb();
  4636. /* Update high, then batch, in order */
  4637. pcp->high = high;
  4638. smp_wmb();
  4639. pcp->batch = batch;
  4640. }
  4641. /* a companion to pageset_set_high() */
  4642. static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
  4643. {
  4644. pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
  4645. }
  4646. static void pageset_init(struct per_cpu_pageset *p)
  4647. {
  4648. struct per_cpu_pages *pcp;
  4649. int migratetype;
  4650. memset(p, 0, sizeof(*p));
  4651. pcp = &p->pcp;
  4652. pcp->count = 0;
  4653. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  4654. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  4655. }
  4656. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  4657. {
  4658. pageset_init(p);
  4659. pageset_set_batch(p, batch);
  4660. }
  4661. /*
  4662. * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
  4663. * to the value high for the pageset p.
  4664. */
  4665. static void pageset_set_high(struct per_cpu_pageset *p,
  4666. unsigned long high)
  4667. {
  4668. unsigned long batch = max(1UL, high / 4);
  4669. if ((high / 4) > (PAGE_SHIFT * 8))
  4670. batch = PAGE_SHIFT * 8;
  4671. pageset_update(&p->pcp, high, batch);
  4672. }
  4673. static void pageset_set_high_and_batch(struct zone *zone,
  4674. struct per_cpu_pageset *pcp)
  4675. {
  4676. if (percpu_pagelist_fraction)
  4677. pageset_set_high(pcp,
  4678. (zone->managed_pages /
  4679. percpu_pagelist_fraction));
  4680. else
  4681. pageset_set_batch(pcp, zone_batchsize(zone));
  4682. }
  4683. static void __meminit zone_pageset_init(struct zone *zone, int cpu)
  4684. {
  4685. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  4686. pageset_init(pcp);
  4687. pageset_set_high_and_batch(zone, pcp);
  4688. }
  4689. static void __meminit setup_zone_pageset(struct zone *zone)
  4690. {
  4691. int cpu;
  4692. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  4693. for_each_possible_cpu(cpu)
  4694. zone_pageset_init(zone, cpu);
  4695. }
  4696. /*
  4697. * Allocate per cpu pagesets and initialize them.
  4698. * Before this call only boot pagesets were available.
  4699. */
  4700. void __init setup_per_cpu_pageset(void)
  4701. {
  4702. struct pglist_data *pgdat;
  4703. struct zone *zone;
  4704. for_each_populated_zone(zone)
  4705. setup_zone_pageset(zone);
  4706. for_each_online_pgdat(pgdat)
  4707. pgdat->per_cpu_nodestats =
  4708. alloc_percpu(struct per_cpu_nodestat);
  4709. }
  4710. static __meminit void zone_pcp_init(struct zone *zone)
  4711. {
  4712. /*
  4713. * per cpu subsystem is not up at this point. The following code
  4714. * relies on the ability of the linker to provide the
  4715. * offset of a (static) per cpu variable into the per cpu area.
  4716. */
  4717. zone->pageset = &boot_pageset;
  4718. if (populated_zone(zone))
  4719. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  4720. zone->name, zone->present_pages,
  4721. zone_batchsize(zone));
  4722. }
  4723. int __meminit init_currently_empty_zone(struct zone *zone,
  4724. unsigned long zone_start_pfn,
  4725. unsigned long size)
  4726. {
  4727. struct pglist_data *pgdat = zone->zone_pgdat;
  4728. pgdat->nr_zones = zone_idx(zone) + 1;
  4729. zone->zone_start_pfn = zone_start_pfn;
  4730. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  4731. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  4732. pgdat->node_id,
  4733. (unsigned long)zone_idx(zone),
  4734. zone_start_pfn, (zone_start_pfn + size));
  4735. zone_init_free_lists(zone);
  4736. zone->initialized = 1;
  4737. return 0;
  4738. }
  4739. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4740. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  4741. /*
  4742. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  4743. */
  4744. int __meminit __early_pfn_to_nid(unsigned long pfn,
  4745. struct mminit_pfnnid_cache *state)
  4746. {
  4747. unsigned long start_pfn, end_pfn;
  4748. int nid;
  4749. if (state->last_start <= pfn && pfn < state->last_end)
  4750. return state->last_nid;
  4751. nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
  4752. if (nid != -1) {
  4753. state->last_start = start_pfn;
  4754. state->last_end = end_pfn;
  4755. state->last_nid = nid;
  4756. }
  4757. return nid;
  4758. }
  4759. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  4760. /**
  4761. * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
  4762. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  4763. * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
  4764. *
  4765. * If an architecture guarantees that all ranges registered contain no holes
  4766. * and may be freed, this this function may be used instead of calling
  4767. * memblock_free_early_nid() manually.
  4768. */
  4769. void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
  4770. {
  4771. unsigned long start_pfn, end_pfn;
  4772. int i, this_nid;
  4773. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
  4774. start_pfn = min(start_pfn, max_low_pfn);
  4775. end_pfn = min(end_pfn, max_low_pfn);
  4776. if (start_pfn < end_pfn)
  4777. memblock_free_early_nid(PFN_PHYS(start_pfn),
  4778. (end_pfn - start_pfn) << PAGE_SHIFT,
  4779. this_nid);
  4780. }
  4781. }
  4782. /**
  4783. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  4784. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  4785. *
  4786. * If an architecture guarantees that all ranges registered contain no holes and may
  4787. * be freed, this function may be used instead of calling memory_present() manually.
  4788. */
  4789. void __init sparse_memory_present_with_active_regions(int nid)
  4790. {
  4791. unsigned long start_pfn, end_pfn;
  4792. int i, this_nid;
  4793. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
  4794. memory_present(this_nid, start_pfn, end_pfn);
  4795. }
  4796. /**
  4797. * get_pfn_range_for_nid - Return the start and end page frames for a node
  4798. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  4799. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  4800. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  4801. *
  4802. * It returns the start and end page frame of a node based on information
  4803. * provided by memblock_set_node(). If called for a node
  4804. * with no available memory, a warning is printed and the start and end
  4805. * PFNs will be 0.
  4806. */
  4807. void __meminit get_pfn_range_for_nid(unsigned int nid,
  4808. unsigned long *start_pfn, unsigned long *end_pfn)
  4809. {
  4810. unsigned long this_start_pfn, this_end_pfn;
  4811. int i;
  4812. *start_pfn = -1UL;
  4813. *end_pfn = 0;
  4814. for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
  4815. *start_pfn = min(*start_pfn, this_start_pfn);
  4816. *end_pfn = max(*end_pfn, this_end_pfn);
  4817. }
  4818. if (*start_pfn == -1UL)
  4819. *start_pfn = 0;
  4820. }
  4821. /*
  4822. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  4823. * assumption is made that zones within a node are ordered in monotonic
  4824. * increasing memory addresses so that the "highest" populated zone is used
  4825. */
  4826. static void __init find_usable_zone_for_movable(void)
  4827. {
  4828. int zone_index;
  4829. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  4830. if (zone_index == ZONE_MOVABLE)
  4831. continue;
  4832. if (arch_zone_highest_possible_pfn[zone_index] >
  4833. arch_zone_lowest_possible_pfn[zone_index])
  4834. break;
  4835. }
  4836. VM_BUG_ON(zone_index == -1);
  4837. movable_zone = zone_index;
  4838. }
  4839. /*
  4840. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  4841. * because it is sized independent of architecture. Unlike the other zones,
  4842. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  4843. * in each node depending on the size of each node and how evenly kernelcore
  4844. * is distributed. This helper function adjusts the zone ranges
  4845. * provided by the architecture for a given node by using the end of the
  4846. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  4847. * zones within a node are in order of monotonic increases memory addresses
  4848. */
  4849. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  4850. unsigned long zone_type,
  4851. unsigned long node_start_pfn,
  4852. unsigned long node_end_pfn,
  4853. unsigned long *zone_start_pfn,
  4854. unsigned long *zone_end_pfn)
  4855. {
  4856. /* Only adjust if ZONE_MOVABLE is on this node */
  4857. if (zone_movable_pfn[nid]) {
  4858. /* Size ZONE_MOVABLE */
  4859. if (zone_type == ZONE_MOVABLE) {
  4860. *zone_start_pfn = zone_movable_pfn[nid];
  4861. *zone_end_pfn = min(node_end_pfn,
  4862. arch_zone_highest_possible_pfn[movable_zone]);
  4863. /* Adjust for ZONE_MOVABLE starting within this range */
  4864. } else if (!mirrored_kernelcore &&
  4865. *zone_start_pfn < zone_movable_pfn[nid] &&
  4866. *zone_end_pfn > zone_movable_pfn[nid]) {
  4867. *zone_end_pfn = zone_movable_pfn[nid];
  4868. /* Check if this whole range is within ZONE_MOVABLE */
  4869. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  4870. *zone_start_pfn = *zone_end_pfn;
  4871. }
  4872. }
  4873. /*
  4874. * Return the number of pages a zone spans in a node, including holes
  4875. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  4876. */
  4877. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  4878. unsigned long zone_type,
  4879. unsigned long node_start_pfn,
  4880. unsigned long node_end_pfn,
  4881. unsigned long *zone_start_pfn,
  4882. unsigned long *zone_end_pfn,
  4883. unsigned long *ignored)
  4884. {
  4885. /* When hotadd a new node from cpu_up(), the node should be empty */
  4886. if (!node_start_pfn && !node_end_pfn)
  4887. return 0;
  4888. /* Get the start and end of the zone */
  4889. *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  4890. *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  4891. adjust_zone_range_for_zone_movable(nid, zone_type,
  4892. node_start_pfn, node_end_pfn,
  4893. zone_start_pfn, zone_end_pfn);
  4894. /* Check that this node has pages within the zone's required range */
  4895. if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
  4896. return 0;
  4897. /* Move the zone boundaries inside the node if necessary */
  4898. *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
  4899. *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
  4900. /* Return the spanned pages */
  4901. return *zone_end_pfn - *zone_start_pfn;
  4902. }
  4903. /*
  4904. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  4905. * then all holes in the requested range will be accounted for.
  4906. */
  4907. unsigned long __meminit __absent_pages_in_range(int nid,
  4908. unsigned long range_start_pfn,
  4909. unsigned long range_end_pfn)
  4910. {
  4911. unsigned long nr_absent = range_end_pfn - range_start_pfn;
  4912. unsigned long start_pfn, end_pfn;
  4913. int i;
  4914. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  4915. start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
  4916. end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
  4917. nr_absent -= end_pfn - start_pfn;
  4918. }
  4919. return nr_absent;
  4920. }
  4921. /**
  4922. * absent_pages_in_range - Return number of page frames in holes within a range
  4923. * @start_pfn: The start PFN to start searching for holes
  4924. * @end_pfn: The end PFN to stop searching for holes
  4925. *
  4926. * It returns the number of pages frames in memory holes within a range.
  4927. */
  4928. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  4929. unsigned long end_pfn)
  4930. {
  4931. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  4932. }
  4933. /* Return the number of page frames in holes in a zone on a node */
  4934. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  4935. unsigned long zone_type,
  4936. unsigned long node_start_pfn,
  4937. unsigned long node_end_pfn,
  4938. unsigned long *ignored)
  4939. {
  4940. unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
  4941. unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
  4942. unsigned long zone_start_pfn, zone_end_pfn;
  4943. unsigned long nr_absent;
  4944. /* When hotadd a new node from cpu_up(), the node should be empty */
  4945. if (!node_start_pfn && !node_end_pfn)
  4946. return 0;
  4947. zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
  4948. zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
  4949. adjust_zone_range_for_zone_movable(nid, zone_type,
  4950. node_start_pfn, node_end_pfn,
  4951. &zone_start_pfn, &zone_end_pfn);
  4952. nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  4953. /*
  4954. * ZONE_MOVABLE handling.
  4955. * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
  4956. * and vice versa.
  4957. */
  4958. if (mirrored_kernelcore && zone_movable_pfn[nid]) {
  4959. unsigned long start_pfn, end_pfn;
  4960. struct memblock_region *r;
  4961. for_each_memblock(memory, r) {
  4962. start_pfn = clamp(memblock_region_memory_base_pfn(r),
  4963. zone_start_pfn, zone_end_pfn);
  4964. end_pfn = clamp(memblock_region_memory_end_pfn(r),
  4965. zone_start_pfn, zone_end_pfn);
  4966. if (zone_type == ZONE_MOVABLE &&
  4967. memblock_is_mirror(r))
  4968. nr_absent += end_pfn - start_pfn;
  4969. if (zone_type == ZONE_NORMAL &&
  4970. !memblock_is_mirror(r))
  4971. nr_absent += end_pfn - start_pfn;
  4972. }
  4973. }
  4974. return nr_absent;
  4975. }
  4976. #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4977. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  4978. unsigned long zone_type,
  4979. unsigned long node_start_pfn,
  4980. unsigned long node_end_pfn,
  4981. unsigned long *zone_start_pfn,
  4982. unsigned long *zone_end_pfn,
  4983. unsigned long *zones_size)
  4984. {
  4985. unsigned int zone;
  4986. *zone_start_pfn = node_start_pfn;
  4987. for (zone = 0; zone < zone_type; zone++)
  4988. *zone_start_pfn += zones_size[zone];
  4989. *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
  4990. return zones_size[zone_type];
  4991. }
  4992. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  4993. unsigned long zone_type,
  4994. unsigned long node_start_pfn,
  4995. unsigned long node_end_pfn,
  4996. unsigned long *zholes_size)
  4997. {
  4998. if (!zholes_size)
  4999. return 0;
  5000. return zholes_size[zone_type];
  5001. }
  5002. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  5003. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  5004. unsigned long node_start_pfn,
  5005. unsigned long node_end_pfn,
  5006. unsigned long *zones_size,
  5007. unsigned long *zholes_size)
  5008. {
  5009. unsigned long realtotalpages = 0, totalpages = 0;
  5010. enum zone_type i;
  5011. for (i = 0; i < MAX_NR_ZONES; i++) {
  5012. struct zone *zone = pgdat->node_zones + i;
  5013. unsigned long zone_start_pfn, zone_end_pfn;
  5014. unsigned long size, real_size;
  5015. size = zone_spanned_pages_in_node(pgdat->node_id, i,
  5016. node_start_pfn,
  5017. node_end_pfn,
  5018. &zone_start_pfn,
  5019. &zone_end_pfn,
  5020. zones_size);
  5021. real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
  5022. node_start_pfn, node_end_pfn,
  5023. zholes_size);
  5024. if (size)
  5025. zone->zone_start_pfn = zone_start_pfn;
  5026. else
  5027. zone->zone_start_pfn = 0;
  5028. zone->spanned_pages = size;
  5029. zone->present_pages = real_size;
  5030. totalpages += size;
  5031. realtotalpages += real_size;
  5032. }
  5033. pgdat->node_spanned_pages = totalpages;
  5034. pgdat->node_present_pages = realtotalpages;
  5035. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  5036. realtotalpages);
  5037. }
  5038. #ifndef CONFIG_SPARSEMEM
  5039. /*
  5040. * Calculate the size of the zone->blockflags rounded to an unsigned long
  5041. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  5042. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  5043. * round what is now in bits to nearest long in bits, then return it in
  5044. * bytes.
  5045. */
  5046. static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
  5047. {
  5048. unsigned long usemapsize;
  5049. zonesize += zone_start_pfn & (pageblock_nr_pages-1);
  5050. usemapsize = roundup(zonesize, pageblock_nr_pages);
  5051. usemapsize = usemapsize >> pageblock_order;
  5052. usemapsize *= NR_PAGEBLOCK_BITS;
  5053. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  5054. return usemapsize / 8;
  5055. }
  5056. static void __init setup_usemap(struct pglist_data *pgdat,
  5057. struct zone *zone,
  5058. unsigned long zone_start_pfn,
  5059. unsigned long zonesize)
  5060. {
  5061. unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
  5062. zone->pageblock_flags = NULL;
  5063. if (usemapsize)
  5064. zone->pageblock_flags =
  5065. memblock_virt_alloc_node_nopanic(usemapsize,
  5066. pgdat->node_id);
  5067. }
  5068. #else
  5069. static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
  5070. unsigned long zone_start_pfn, unsigned long zonesize) {}
  5071. #endif /* CONFIG_SPARSEMEM */
  5072. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  5073. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  5074. void __paginginit set_pageblock_order(void)
  5075. {
  5076. unsigned int order;
  5077. /* Check that pageblock_nr_pages has not already been setup */
  5078. if (pageblock_order)
  5079. return;
  5080. if (HPAGE_SHIFT > PAGE_SHIFT)
  5081. order = HUGETLB_PAGE_ORDER;
  5082. else
  5083. order = MAX_ORDER - 1;
  5084. /*
  5085. * Assume the largest contiguous order of interest is a huge page.
  5086. * This value may be variable depending on boot parameters on IA64 and
  5087. * powerpc.
  5088. */
  5089. pageblock_order = order;
  5090. }
  5091. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  5092. /*
  5093. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  5094. * is unused as pageblock_order is set at compile-time. See
  5095. * include/linux/pageblock-flags.h for the values of pageblock_order based on
  5096. * the kernel config
  5097. */
  5098. void __paginginit set_pageblock_order(void)
  5099. {
  5100. }
  5101. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  5102. static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
  5103. unsigned long present_pages)
  5104. {
  5105. unsigned long pages = spanned_pages;
  5106. /*
  5107. * Provide a more accurate estimation if there are holes within
  5108. * the zone and SPARSEMEM is in use. If there are holes within the
  5109. * zone, each populated memory region may cost us one or two extra
  5110. * memmap pages due to alignment because memmap pages for each
  5111. * populated regions may not be naturally aligned on page boundary.
  5112. * So the (present_pages >> 4) heuristic is a tradeoff for that.
  5113. */
  5114. if (spanned_pages > present_pages + (present_pages >> 4) &&
  5115. IS_ENABLED(CONFIG_SPARSEMEM))
  5116. pages = present_pages;
  5117. return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
  5118. }
  5119. /*
  5120. * Set up the zone data structures:
  5121. * - mark all pages reserved
  5122. * - mark all memory queues empty
  5123. * - clear the memory bitmaps
  5124. *
  5125. * NOTE: pgdat should get zeroed by caller.
  5126. */
  5127. static void __paginginit free_area_init_core(struct pglist_data *pgdat)
  5128. {
  5129. enum zone_type j;
  5130. int nid = pgdat->node_id;
  5131. int ret;
  5132. pgdat_resize_init(pgdat);
  5133. #ifdef CONFIG_NUMA_BALANCING
  5134. spin_lock_init(&pgdat->numabalancing_migrate_lock);
  5135. pgdat->numabalancing_migrate_nr_pages = 0;
  5136. pgdat->numabalancing_migrate_next_window = jiffies;
  5137. #endif
  5138. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  5139. spin_lock_init(&pgdat->split_queue_lock);
  5140. INIT_LIST_HEAD(&pgdat->split_queue);
  5141. pgdat->split_queue_len = 0;
  5142. #endif
  5143. init_waitqueue_head(&pgdat->kswapd_wait);
  5144. init_waitqueue_head(&pgdat->pfmemalloc_wait);
  5145. #ifdef CONFIG_COMPACTION
  5146. init_waitqueue_head(&pgdat->kcompactd_wait);
  5147. #endif
  5148. pgdat_page_ext_init(pgdat);
  5149. spin_lock_init(&pgdat->lru_lock);
  5150. lruvec_init(node_lruvec(pgdat));
  5151. for (j = 0; j < MAX_NR_ZONES; j++) {
  5152. struct zone *zone = pgdat->node_zones + j;
  5153. unsigned long size, realsize, freesize, memmap_pages;
  5154. unsigned long zone_start_pfn = zone->zone_start_pfn;
  5155. size = zone->spanned_pages;
  5156. realsize = freesize = zone->present_pages;
  5157. /*
  5158. * Adjust freesize so that it accounts for how much memory
  5159. * is used by this zone for memmap. This affects the watermark
  5160. * and per-cpu initialisations
  5161. */
  5162. memmap_pages = calc_memmap_size(size, realsize);
  5163. if (!is_highmem_idx(j)) {
  5164. if (freesize >= memmap_pages) {
  5165. freesize -= memmap_pages;
  5166. if (memmap_pages)
  5167. printk(KERN_DEBUG
  5168. " %s zone: %lu pages used for memmap\n",
  5169. zone_names[j], memmap_pages);
  5170. } else
  5171. pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
  5172. zone_names[j], memmap_pages, freesize);
  5173. }
  5174. /* Account for reserved pages */
  5175. if (j == 0 && freesize > dma_reserve) {
  5176. freesize -= dma_reserve;
  5177. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  5178. zone_names[0], dma_reserve);
  5179. }
  5180. if (!is_highmem_idx(j))
  5181. nr_kernel_pages += freesize;
  5182. /* Charge for highmem memmap if there are enough kernel pages */
  5183. else if (nr_kernel_pages > memmap_pages * 2)
  5184. nr_kernel_pages -= memmap_pages;
  5185. nr_all_pages += freesize;
  5186. /*
  5187. * Set an approximate value for lowmem here, it will be adjusted
  5188. * when the bootmem allocator frees pages into the buddy system.
  5189. * And all highmem pages will be managed by the buddy system.
  5190. */
  5191. zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
  5192. #ifdef CONFIG_NUMA
  5193. zone->node = nid;
  5194. #endif
  5195. zone->name = zone_names[j];
  5196. zone->zone_pgdat = pgdat;
  5197. spin_lock_init(&zone->lock);
  5198. zone_seqlock_init(zone);
  5199. zone_pcp_init(zone);
  5200. if (!size)
  5201. continue;
  5202. set_pageblock_order();
  5203. setup_usemap(pgdat, zone, zone_start_pfn, size);
  5204. ret = init_currently_empty_zone(zone, zone_start_pfn, size);
  5205. BUG_ON(ret);
  5206. memmap_init(size, nid, j, zone_start_pfn);
  5207. }
  5208. }
  5209. static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
  5210. {
  5211. unsigned long __maybe_unused start = 0;
  5212. unsigned long __maybe_unused offset = 0;
  5213. /* Skip empty nodes */
  5214. if (!pgdat->node_spanned_pages)
  5215. return;
  5216. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  5217. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  5218. offset = pgdat->node_start_pfn - start;
  5219. /* ia64 gets its own node_mem_map, before this, without bootmem */
  5220. if (!pgdat->node_mem_map) {
  5221. unsigned long size, end;
  5222. struct page *map;
  5223. /*
  5224. * The zone's endpoints aren't required to be MAX_ORDER
  5225. * aligned but the node_mem_map endpoints must be in order
  5226. * for the buddy allocator to function correctly.
  5227. */
  5228. end = pgdat_end_pfn(pgdat);
  5229. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  5230. size = (end - start) * sizeof(struct page);
  5231. map = alloc_remap(pgdat->node_id, size);
  5232. if (!map)
  5233. map = memblock_virt_alloc_node_nopanic(size,
  5234. pgdat->node_id);
  5235. pgdat->node_mem_map = map + offset;
  5236. }
  5237. #ifndef CONFIG_NEED_MULTIPLE_NODES
  5238. /*
  5239. * With no DISCONTIG, the global mem_map is just set as node 0's
  5240. */
  5241. if (pgdat == NODE_DATA(0)) {
  5242. mem_map = NODE_DATA(0)->node_mem_map;
  5243. #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
  5244. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  5245. mem_map -= offset;
  5246. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  5247. }
  5248. #endif
  5249. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  5250. }
  5251. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  5252. unsigned long node_start_pfn, unsigned long *zholes_size)
  5253. {
  5254. pg_data_t *pgdat = NODE_DATA(nid);
  5255. unsigned long start_pfn = 0;
  5256. unsigned long end_pfn = 0;
  5257. /* pg_data_t should be reset to zero when it's allocated */
  5258. WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
  5259. reset_deferred_meminit(pgdat);
  5260. pgdat->node_id = nid;
  5261. pgdat->node_start_pfn = node_start_pfn;
  5262. pgdat->per_cpu_nodestats = NULL;
  5263. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  5264. get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
  5265. pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
  5266. (u64)start_pfn << PAGE_SHIFT,
  5267. end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
  5268. #else
  5269. start_pfn = node_start_pfn;
  5270. #endif
  5271. calculate_node_totalpages(pgdat, start_pfn, end_pfn,
  5272. zones_size, zholes_size);
  5273. alloc_node_mem_map(pgdat);
  5274. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  5275. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  5276. nid, (unsigned long)pgdat,
  5277. (unsigned long)pgdat->node_mem_map);
  5278. #endif
  5279. free_area_init_core(pgdat);
  5280. }
  5281. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  5282. #if MAX_NUMNODES > 1
  5283. /*
  5284. * Figure out the number of possible node ids.
  5285. */
  5286. void __init setup_nr_node_ids(void)
  5287. {
  5288. unsigned int highest;
  5289. highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
  5290. nr_node_ids = highest + 1;
  5291. }
  5292. #endif
  5293. /**
  5294. * node_map_pfn_alignment - determine the maximum internode alignment
  5295. *
  5296. * This function should be called after node map is populated and sorted.
  5297. * It calculates the maximum power of two alignment which can distinguish
  5298. * all the nodes.
  5299. *
  5300. * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
  5301. * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
  5302. * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
  5303. * shifted, 1GiB is enough and this function will indicate so.
  5304. *
  5305. * This is used to test whether pfn -> nid mapping of the chosen memory
  5306. * model has fine enough granularity to avoid incorrect mapping for the
  5307. * populated node map.
  5308. *
  5309. * Returns the determined alignment in pfn's. 0 if there is no alignment
  5310. * requirement (single node).
  5311. */
  5312. unsigned long __init node_map_pfn_alignment(void)
  5313. {
  5314. unsigned long accl_mask = 0, last_end = 0;
  5315. unsigned long start, end, mask;
  5316. int last_nid = -1;
  5317. int i, nid;
  5318. for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
  5319. if (!start || last_nid < 0 || last_nid == nid) {
  5320. last_nid = nid;
  5321. last_end = end;
  5322. continue;
  5323. }
  5324. /*
  5325. * Start with a mask granular enough to pin-point to the
  5326. * start pfn and tick off bits one-by-one until it becomes
  5327. * too coarse to separate the current node from the last.
  5328. */
  5329. mask = ~((1 << __ffs(start)) - 1);
  5330. while (mask && last_end <= (start & (mask << 1)))
  5331. mask <<= 1;
  5332. /* accumulate all internode masks */
  5333. accl_mask |= mask;
  5334. }
  5335. /* convert mask to number of pages */
  5336. return ~accl_mask + 1;
  5337. }
  5338. /* Find the lowest pfn for a node */
  5339. static unsigned long __init find_min_pfn_for_node(int nid)
  5340. {
  5341. unsigned long min_pfn = ULONG_MAX;
  5342. unsigned long start_pfn;
  5343. int i;
  5344. for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
  5345. min_pfn = min(min_pfn, start_pfn);
  5346. if (min_pfn == ULONG_MAX) {
  5347. pr_warn("Could not find start_pfn for node %d\n", nid);
  5348. return 0;
  5349. }
  5350. return min_pfn;
  5351. }
  5352. /**
  5353. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  5354. *
  5355. * It returns the minimum PFN based on information provided via
  5356. * memblock_set_node().
  5357. */
  5358. unsigned long __init find_min_pfn_with_active_regions(void)
  5359. {
  5360. return find_min_pfn_for_node(MAX_NUMNODES);
  5361. }
  5362. /*
  5363. * early_calculate_totalpages()
  5364. * Sum pages in active regions for movable zone.
  5365. * Populate N_MEMORY for calculating usable_nodes.
  5366. */
  5367. static unsigned long __init early_calculate_totalpages(void)
  5368. {
  5369. unsigned long totalpages = 0;
  5370. unsigned long start_pfn, end_pfn;
  5371. int i, nid;
  5372. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
  5373. unsigned long pages = end_pfn - start_pfn;
  5374. totalpages += pages;
  5375. if (pages)
  5376. node_set_state(nid, N_MEMORY);
  5377. }
  5378. return totalpages;
  5379. }
  5380. /*
  5381. * Find the PFN the Movable zone begins in each node. Kernel memory
  5382. * is spread evenly between nodes as long as the nodes have enough
  5383. * memory. When they don't, some nodes will have more kernelcore than
  5384. * others
  5385. */
  5386. static void __init find_zone_movable_pfns_for_nodes(void)
  5387. {
  5388. int i, nid;
  5389. unsigned long usable_startpfn;
  5390. unsigned long kernelcore_node, kernelcore_remaining;
  5391. /* save the state before borrow the nodemask */
  5392. nodemask_t saved_node_state = node_states[N_MEMORY];
  5393. unsigned long totalpages = early_calculate_totalpages();
  5394. int usable_nodes = nodes_weight(node_states[N_MEMORY]);
  5395. struct memblock_region *r;
  5396. /* Need to find movable_zone earlier when movable_node is specified. */
  5397. find_usable_zone_for_movable();
  5398. /*
  5399. * If movable_node is specified, ignore kernelcore and movablecore
  5400. * options.
  5401. */
  5402. if (movable_node_is_enabled()) {
  5403. for_each_memblock(memory, r) {
  5404. if (!memblock_is_hotpluggable(r))
  5405. continue;
  5406. nid = r->nid;
  5407. usable_startpfn = PFN_DOWN(r->base);
  5408. zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
  5409. min(usable_startpfn, zone_movable_pfn[nid]) :
  5410. usable_startpfn;
  5411. }
  5412. goto out2;
  5413. }
  5414. /*
  5415. * If kernelcore=mirror is specified, ignore movablecore option
  5416. */
  5417. if (mirrored_kernelcore) {
  5418. bool mem_below_4gb_not_mirrored = false;
  5419. for_each_memblock(memory, r) {
  5420. if (memblock_is_mirror(r))
  5421. continue;
  5422. nid = r->nid;
  5423. usable_startpfn = memblock_region_memory_base_pfn(r);
  5424. if (usable_startpfn < 0x100000) {
  5425. mem_below_4gb_not_mirrored = true;
  5426. continue;
  5427. }
  5428. zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
  5429. min(usable_startpfn, zone_movable_pfn[nid]) :
  5430. usable_startpfn;
  5431. }
  5432. if (mem_below_4gb_not_mirrored)
  5433. pr_warn("This configuration results in unmirrored kernel memory.");
  5434. goto out2;
  5435. }
  5436. /*
  5437. * If movablecore=nn[KMG] was specified, calculate what size of
  5438. * kernelcore that corresponds so that memory usable for
  5439. * any allocation type is evenly spread. If both kernelcore
  5440. * and movablecore are specified, then the value of kernelcore
  5441. * will be used for required_kernelcore if it's greater than
  5442. * what movablecore would have allowed.
  5443. */
  5444. if (required_movablecore) {
  5445. unsigned long corepages;
  5446. /*
  5447. * Round-up so that ZONE_MOVABLE is at least as large as what
  5448. * was requested by the user
  5449. */
  5450. required_movablecore =
  5451. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  5452. required_movablecore = min(totalpages, required_movablecore);
  5453. corepages = totalpages - required_movablecore;
  5454. required_kernelcore = max(required_kernelcore, corepages);
  5455. }
  5456. /*
  5457. * If kernelcore was not specified or kernelcore size is larger
  5458. * than totalpages, there is no ZONE_MOVABLE.
  5459. */
  5460. if (!required_kernelcore || required_kernelcore >= totalpages)
  5461. goto out;
  5462. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  5463. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  5464. restart:
  5465. /* Spread kernelcore memory as evenly as possible throughout nodes */
  5466. kernelcore_node = required_kernelcore / usable_nodes;
  5467. for_each_node_state(nid, N_MEMORY) {
  5468. unsigned long start_pfn, end_pfn;
  5469. /*
  5470. * Recalculate kernelcore_node if the division per node
  5471. * now exceeds what is necessary to satisfy the requested
  5472. * amount of memory for the kernel
  5473. */
  5474. if (required_kernelcore < kernelcore_node)
  5475. kernelcore_node = required_kernelcore / usable_nodes;
  5476. /*
  5477. * As the map is walked, we track how much memory is usable
  5478. * by the kernel using kernelcore_remaining. When it is
  5479. * 0, the rest of the node is usable by ZONE_MOVABLE
  5480. */
  5481. kernelcore_remaining = kernelcore_node;
  5482. /* Go through each range of PFNs within this node */
  5483. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  5484. unsigned long size_pages;
  5485. start_pfn = max(start_pfn, zone_movable_pfn[nid]);
  5486. if (start_pfn >= end_pfn)
  5487. continue;
  5488. /* Account for what is only usable for kernelcore */
  5489. if (start_pfn < usable_startpfn) {
  5490. unsigned long kernel_pages;
  5491. kernel_pages = min(end_pfn, usable_startpfn)
  5492. - start_pfn;
  5493. kernelcore_remaining -= min(kernel_pages,
  5494. kernelcore_remaining);
  5495. required_kernelcore -= min(kernel_pages,
  5496. required_kernelcore);
  5497. /* Continue if range is now fully accounted */
  5498. if (end_pfn <= usable_startpfn) {
  5499. /*
  5500. * Push zone_movable_pfn to the end so
  5501. * that if we have to rebalance
  5502. * kernelcore across nodes, we will
  5503. * not double account here
  5504. */
  5505. zone_movable_pfn[nid] = end_pfn;
  5506. continue;
  5507. }
  5508. start_pfn = usable_startpfn;
  5509. }
  5510. /*
  5511. * The usable PFN range for ZONE_MOVABLE is from
  5512. * start_pfn->end_pfn. Calculate size_pages as the
  5513. * number of pages used as kernelcore
  5514. */
  5515. size_pages = end_pfn - start_pfn;
  5516. if (size_pages > kernelcore_remaining)
  5517. size_pages = kernelcore_remaining;
  5518. zone_movable_pfn[nid] = start_pfn + size_pages;
  5519. /*
  5520. * Some kernelcore has been met, update counts and
  5521. * break if the kernelcore for this node has been
  5522. * satisfied
  5523. */
  5524. required_kernelcore -= min(required_kernelcore,
  5525. size_pages);
  5526. kernelcore_remaining -= size_pages;
  5527. if (!kernelcore_remaining)
  5528. break;
  5529. }
  5530. }
  5531. /*
  5532. * If there is still required_kernelcore, we do another pass with one
  5533. * less node in the count. This will push zone_movable_pfn[nid] further
  5534. * along on the nodes that still have memory until kernelcore is
  5535. * satisfied
  5536. */
  5537. usable_nodes--;
  5538. if (usable_nodes && required_kernelcore > usable_nodes)
  5539. goto restart;
  5540. out2:
  5541. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  5542. for (nid = 0; nid < MAX_NUMNODES; nid++)
  5543. zone_movable_pfn[nid] =
  5544. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  5545. out:
  5546. /* restore the node_state */
  5547. node_states[N_MEMORY] = saved_node_state;
  5548. }
  5549. /* Any regular or high memory on that node ? */
  5550. static void check_for_memory(pg_data_t *pgdat, int nid)
  5551. {
  5552. enum zone_type zone_type;
  5553. if (N_MEMORY == N_NORMAL_MEMORY)
  5554. return;
  5555. for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
  5556. struct zone *zone = &pgdat->node_zones[zone_type];
  5557. if (populated_zone(zone)) {
  5558. node_set_state(nid, N_HIGH_MEMORY);
  5559. if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
  5560. zone_type <= ZONE_NORMAL)
  5561. node_set_state(nid, N_NORMAL_MEMORY);
  5562. break;
  5563. }
  5564. }
  5565. }
  5566. /**
  5567. * free_area_init_nodes - Initialise all pg_data_t and zone data
  5568. * @max_zone_pfn: an array of max PFNs for each zone
  5569. *
  5570. * This will call free_area_init_node() for each active node in the system.
  5571. * Using the page ranges provided by memblock_set_node(), the size of each
  5572. * zone in each node and their holes is calculated. If the maximum PFN
  5573. * between two adjacent zones match, it is assumed that the zone is empty.
  5574. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  5575. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  5576. * starts where the previous one ended. For example, ZONE_DMA32 starts
  5577. * at arch_max_dma_pfn.
  5578. */
  5579. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  5580. {
  5581. unsigned long start_pfn, end_pfn;
  5582. int i, nid;
  5583. /* Record where the zone boundaries are */
  5584. memset(arch_zone_lowest_possible_pfn, 0,
  5585. sizeof(arch_zone_lowest_possible_pfn));
  5586. memset(arch_zone_highest_possible_pfn, 0,
  5587. sizeof(arch_zone_highest_possible_pfn));
  5588. start_pfn = find_min_pfn_with_active_regions();
  5589. for (i = 0; i < MAX_NR_ZONES; i++) {
  5590. if (i == ZONE_MOVABLE)
  5591. continue;
  5592. end_pfn = max(max_zone_pfn[i], start_pfn);
  5593. arch_zone_lowest_possible_pfn[i] = start_pfn;
  5594. arch_zone_highest_possible_pfn[i] = end_pfn;
  5595. start_pfn = end_pfn;
  5596. }
  5597. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  5598. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  5599. find_zone_movable_pfns_for_nodes();
  5600. /* Print out the zone ranges */
  5601. pr_info("Zone ranges:\n");
  5602. for (i = 0; i < MAX_NR_ZONES; i++) {
  5603. if (i == ZONE_MOVABLE)
  5604. continue;
  5605. pr_info(" %-8s ", zone_names[i]);
  5606. if (arch_zone_lowest_possible_pfn[i] ==
  5607. arch_zone_highest_possible_pfn[i])
  5608. pr_cont("empty\n");
  5609. else
  5610. pr_cont("[mem %#018Lx-%#018Lx]\n",
  5611. (u64)arch_zone_lowest_possible_pfn[i]
  5612. << PAGE_SHIFT,
  5613. ((u64)arch_zone_highest_possible_pfn[i]
  5614. << PAGE_SHIFT) - 1);
  5615. }
  5616. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  5617. pr_info("Movable zone start for each node\n");
  5618. for (i = 0; i < MAX_NUMNODES; i++) {
  5619. if (zone_movable_pfn[i])
  5620. pr_info(" Node %d: %#018Lx\n", i,
  5621. (u64)zone_movable_pfn[i] << PAGE_SHIFT);
  5622. }
  5623. /* Print out the early node map */
  5624. pr_info("Early memory node ranges\n");
  5625. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  5626. pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
  5627. (u64)start_pfn << PAGE_SHIFT,
  5628. ((u64)end_pfn << PAGE_SHIFT) - 1);
  5629. /* Initialise every node */
  5630. mminit_verify_pageflags_layout();
  5631. setup_nr_node_ids();
  5632. for_each_online_node(nid) {
  5633. pg_data_t *pgdat = NODE_DATA(nid);
  5634. free_area_init_node(nid, NULL,
  5635. find_min_pfn_for_node(nid), NULL);
  5636. /* Any memory on that node */
  5637. if (pgdat->node_present_pages)
  5638. node_set_state(nid, N_MEMORY);
  5639. check_for_memory(pgdat, nid);
  5640. }
  5641. }
  5642. static int __init cmdline_parse_core(char *p, unsigned long *core)
  5643. {
  5644. unsigned long long coremem;
  5645. if (!p)
  5646. return -EINVAL;
  5647. coremem = memparse(p, &p);
  5648. *core = coremem >> PAGE_SHIFT;
  5649. /* Paranoid check that UL is enough for the coremem value */
  5650. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  5651. return 0;
  5652. }
  5653. /*
  5654. * kernelcore=size sets the amount of memory for use for allocations that
  5655. * cannot be reclaimed or migrated.
  5656. */
  5657. static int __init cmdline_parse_kernelcore(char *p)
  5658. {
  5659. /* parse kernelcore=mirror */
  5660. if (parse_option_str(p, "mirror")) {
  5661. mirrored_kernelcore = true;
  5662. return 0;
  5663. }
  5664. return cmdline_parse_core(p, &required_kernelcore);
  5665. }
  5666. /*
  5667. * movablecore=size sets the amount of memory for use for allocations that
  5668. * can be reclaimed or migrated.
  5669. */
  5670. static int __init cmdline_parse_movablecore(char *p)
  5671. {
  5672. return cmdline_parse_core(p, &required_movablecore);
  5673. }
  5674. early_param("kernelcore", cmdline_parse_kernelcore);
  5675. early_param("movablecore", cmdline_parse_movablecore);
  5676. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  5677. void adjust_managed_page_count(struct page *page, long count)
  5678. {
  5679. spin_lock(&managed_page_count_lock);
  5680. page_zone(page)->managed_pages += count;
  5681. totalram_pages += count;
  5682. #ifdef CONFIG_HIGHMEM
  5683. if (PageHighMem(page))
  5684. totalhigh_pages += count;
  5685. #endif
  5686. spin_unlock(&managed_page_count_lock);
  5687. }
  5688. EXPORT_SYMBOL(adjust_managed_page_count);
  5689. unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
  5690. {
  5691. void *pos;
  5692. unsigned long pages = 0;
  5693. start = (void *)PAGE_ALIGN((unsigned long)start);
  5694. end = (void *)((unsigned long)end & PAGE_MASK);
  5695. for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
  5696. if ((unsigned int)poison <= 0xFF)
  5697. memset(pos, poison, PAGE_SIZE);
  5698. free_reserved_page(virt_to_page(pos));
  5699. }
  5700. if (pages && s)
  5701. pr_info("Freeing %s memory: %ldK\n",
  5702. s, pages << (PAGE_SHIFT - 10));
  5703. return pages;
  5704. }
  5705. EXPORT_SYMBOL(free_reserved_area);
  5706. #ifdef CONFIG_HIGHMEM
  5707. void free_highmem_page(struct page *page)
  5708. {
  5709. __free_reserved_page(page);
  5710. totalram_pages++;
  5711. page_zone(page)->managed_pages++;
  5712. totalhigh_pages++;
  5713. }
  5714. #endif
  5715. void __init mem_init_print_info(const char *str)
  5716. {
  5717. unsigned long physpages, codesize, datasize, rosize, bss_size;
  5718. unsigned long init_code_size, init_data_size;
  5719. physpages = get_num_physpages();
  5720. codesize = _etext - _stext;
  5721. datasize = _edata - _sdata;
  5722. rosize = __end_rodata - __start_rodata;
  5723. bss_size = __bss_stop - __bss_start;
  5724. init_data_size = __init_end - __init_begin;
  5725. init_code_size = _einittext - _sinittext;
  5726. /*
  5727. * Detect special cases and adjust section sizes accordingly:
  5728. * 1) .init.* may be embedded into .data sections
  5729. * 2) .init.text.* may be out of [__init_begin, __init_end],
  5730. * please refer to arch/tile/kernel/vmlinux.lds.S.
  5731. * 3) .rodata.* may be embedded into .text or .data sections.
  5732. */
  5733. #define adj_init_size(start, end, size, pos, adj) \
  5734. do { \
  5735. if (start <= pos && pos < end && size > adj) \
  5736. size -= adj; \
  5737. } while (0)
  5738. adj_init_size(__init_begin, __init_end, init_data_size,
  5739. _sinittext, init_code_size);
  5740. adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
  5741. adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
  5742. adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
  5743. adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
  5744. #undef adj_init_size
  5745. pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
  5746. #ifdef CONFIG_HIGHMEM
  5747. ", %luK highmem"
  5748. #endif
  5749. "%s%s)\n",
  5750. nr_free_pages() << (PAGE_SHIFT - 10),
  5751. physpages << (PAGE_SHIFT - 10),
  5752. codesize >> 10, datasize >> 10, rosize >> 10,
  5753. (init_data_size + init_code_size) >> 10, bss_size >> 10,
  5754. (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
  5755. totalcma_pages << (PAGE_SHIFT - 10),
  5756. #ifdef CONFIG_HIGHMEM
  5757. totalhigh_pages << (PAGE_SHIFT - 10),
  5758. #endif
  5759. str ? ", " : "", str ? str : "");
  5760. }
  5761. /**
  5762. * set_dma_reserve - set the specified number of pages reserved in the first zone
  5763. * @new_dma_reserve: The number of pages to mark reserved
  5764. *
  5765. * The per-cpu batchsize and zone watermarks are determined by managed_pages.
  5766. * In the DMA zone, a significant percentage may be consumed by kernel image
  5767. * and other unfreeable allocations which can skew the watermarks badly. This
  5768. * function may optionally be used to account for unfreeable pages in the
  5769. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  5770. * smaller per-cpu batchsize.
  5771. */
  5772. void __init set_dma_reserve(unsigned long new_dma_reserve)
  5773. {
  5774. dma_reserve = new_dma_reserve;
  5775. }
  5776. void __init free_area_init(unsigned long *zones_size)
  5777. {
  5778. free_area_init_node(0, zones_size,
  5779. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  5780. }
  5781. static int page_alloc_cpu_dead(unsigned int cpu)
  5782. {
  5783. lru_add_drain_cpu(cpu);
  5784. drain_pages(cpu);
  5785. /*
  5786. * Spill the event counters of the dead processor
  5787. * into the current processors event counters.
  5788. * This artificially elevates the count of the current
  5789. * processor.
  5790. */
  5791. vm_events_fold_cpu(cpu);
  5792. /*
  5793. * Zero the differential counters of the dead processor
  5794. * so that the vm statistics are consistent.
  5795. *
  5796. * This is only okay since the processor is dead and cannot
  5797. * race with what we are doing.
  5798. */
  5799. cpu_vm_stats_fold(cpu);
  5800. return 0;
  5801. }
  5802. void __init page_alloc_init(void)
  5803. {
  5804. int ret;
  5805. ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
  5806. "mm/page_alloc:dead", NULL,
  5807. page_alloc_cpu_dead);
  5808. WARN_ON(ret < 0);
  5809. }
  5810. /*
  5811. * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
  5812. * or min_free_kbytes changes.
  5813. */
  5814. static void calculate_totalreserve_pages(void)
  5815. {
  5816. struct pglist_data *pgdat;
  5817. unsigned long reserve_pages = 0;
  5818. enum zone_type i, j;
  5819. for_each_online_pgdat(pgdat) {
  5820. pgdat->totalreserve_pages = 0;
  5821. for (i = 0; i < MAX_NR_ZONES; i++) {
  5822. struct zone *zone = pgdat->node_zones + i;
  5823. long max = 0;
  5824. /* Find valid and maximum lowmem_reserve in the zone */
  5825. for (j = i; j < MAX_NR_ZONES; j++) {
  5826. if (zone->lowmem_reserve[j] > max)
  5827. max = zone->lowmem_reserve[j];
  5828. }
  5829. /* we treat the high watermark as reserved pages. */
  5830. max += high_wmark_pages(zone);
  5831. if (max > zone->managed_pages)
  5832. max = zone->managed_pages;
  5833. pgdat->totalreserve_pages += max;
  5834. reserve_pages += max;
  5835. }
  5836. }
  5837. totalreserve_pages = reserve_pages;
  5838. }
  5839. /*
  5840. * setup_per_zone_lowmem_reserve - called whenever
  5841. * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
  5842. * has a correct pages reserved value, so an adequate number of
  5843. * pages are left in the zone after a successful __alloc_pages().
  5844. */
  5845. static void setup_per_zone_lowmem_reserve(void)
  5846. {
  5847. struct pglist_data *pgdat;
  5848. enum zone_type j, idx;
  5849. for_each_online_pgdat(pgdat) {
  5850. for (j = 0; j < MAX_NR_ZONES; j++) {
  5851. struct zone *zone = pgdat->node_zones + j;
  5852. unsigned long managed_pages = zone->managed_pages;
  5853. zone->lowmem_reserve[j] = 0;
  5854. idx = j;
  5855. while (idx) {
  5856. struct zone *lower_zone;
  5857. idx--;
  5858. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  5859. sysctl_lowmem_reserve_ratio[idx] = 1;
  5860. lower_zone = pgdat->node_zones + idx;
  5861. lower_zone->lowmem_reserve[j] = managed_pages /
  5862. sysctl_lowmem_reserve_ratio[idx];
  5863. managed_pages += lower_zone->managed_pages;
  5864. }
  5865. }
  5866. }
  5867. /* update totalreserve_pages */
  5868. calculate_totalreserve_pages();
  5869. }
  5870. static void __setup_per_zone_wmarks(void)
  5871. {
  5872. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  5873. unsigned long lowmem_pages = 0;
  5874. struct zone *zone;
  5875. unsigned long flags;
  5876. /* Calculate total number of !ZONE_HIGHMEM pages */
  5877. for_each_zone(zone) {
  5878. if (!is_highmem(zone))
  5879. lowmem_pages += zone->managed_pages;
  5880. }
  5881. for_each_zone(zone) {
  5882. u64 tmp;
  5883. spin_lock_irqsave(&zone->lock, flags);
  5884. tmp = (u64)pages_min * zone->managed_pages;
  5885. do_div(tmp, lowmem_pages);
  5886. if (is_highmem(zone)) {
  5887. /*
  5888. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  5889. * need highmem pages, so cap pages_min to a small
  5890. * value here.
  5891. *
  5892. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  5893. * deltas control asynch page reclaim, and so should
  5894. * not be capped for highmem.
  5895. */
  5896. unsigned long min_pages;
  5897. min_pages = zone->managed_pages / 1024;
  5898. min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
  5899. zone->watermark[WMARK_MIN] = min_pages;
  5900. } else {
  5901. /*
  5902. * If it's a lowmem zone, reserve a number of pages
  5903. * proportionate to the zone's size.
  5904. */
  5905. zone->watermark[WMARK_MIN] = tmp;
  5906. }
  5907. /*
  5908. * Set the kswapd watermarks distance according to the
  5909. * scale factor in proportion to available memory, but
  5910. * ensure a minimum size on small systems.
  5911. */
  5912. tmp = max_t(u64, tmp >> 2,
  5913. mult_frac(zone->managed_pages,
  5914. watermark_scale_factor, 10000));
  5915. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
  5916. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
  5917. spin_unlock_irqrestore(&zone->lock, flags);
  5918. }
  5919. /* update totalreserve_pages */
  5920. calculate_totalreserve_pages();
  5921. }
  5922. /**
  5923. * setup_per_zone_wmarks - called when min_free_kbytes changes
  5924. * or when memory is hot-{added|removed}
  5925. *
  5926. * Ensures that the watermark[min,low,high] values for each zone are set
  5927. * correctly with respect to min_free_kbytes.
  5928. */
  5929. void setup_per_zone_wmarks(void)
  5930. {
  5931. mutex_lock(&zonelists_mutex);
  5932. __setup_per_zone_wmarks();
  5933. mutex_unlock(&zonelists_mutex);
  5934. }
  5935. /*
  5936. * Initialise min_free_kbytes.
  5937. *
  5938. * For small machines we want it small (128k min). For large machines
  5939. * we want it large (64MB max). But it is not linear, because network
  5940. * bandwidth does not increase linearly with machine size. We use
  5941. *
  5942. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  5943. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  5944. *
  5945. * which yields
  5946. *
  5947. * 16MB: 512k
  5948. * 32MB: 724k
  5949. * 64MB: 1024k
  5950. * 128MB: 1448k
  5951. * 256MB: 2048k
  5952. * 512MB: 2896k
  5953. * 1024MB: 4096k
  5954. * 2048MB: 5792k
  5955. * 4096MB: 8192k
  5956. * 8192MB: 11584k
  5957. * 16384MB: 16384k
  5958. */
  5959. int __meminit init_per_zone_wmark_min(void)
  5960. {
  5961. unsigned long lowmem_kbytes;
  5962. int new_min_free_kbytes;
  5963. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  5964. new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  5965. if (new_min_free_kbytes > user_min_free_kbytes) {
  5966. min_free_kbytes = new_min_free_kbytes;
  5967. if (min_free_kbytes < 128)
  5968. min_free_kbytes = 128;
  5969. if (min_free_kbytes > 65536)
  5970. min_free_kbytes = 65536;
  5971. } else {
  5972. pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
  5973. new_min_free_kbytes, user_min_free_kbytes);
  5974. }
  5975. setup_per_zone_wmarks();
  5976. refresh_zone_stat_thresholds();
  5977. setup_per_zone_lowmem_reserve();
  5978. #ifdef CONFIG_NUMA
  5979. setup_min_unmapped_ratio();
  5980. setup_min_slab_ratio();
  5981. #endif
  5982. return 0;
  5983. }
  5984. core_initcall(init_per_zone_wmark_min)
  5985. /*
  5986. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  5987. * that we can call two helper functions whenever min_free_kbytes
  5988. * changes.
  5989. */
  5990. int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
  5991. void __user *buffer, size_t *length, loff_t *ppos)
  5992. {
  5993. int rc;
  5994. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5995. if (rc)
  5996. return rc;
  5997. if (write) {
  5998. user_min_free_kbytes = min_free_kbytes;
  5999. setup_per_zone_wmarks();
  6000. }
  6001. return 0;
  6002. }
  6003. int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
  6004. void __user *buffer, size_t *length, loff_t *ppos)
  6005. {
  6006. int rc;
  6007. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  6008. if (rc)
  6009. return rc;
  6010. if (write)
  6011. setup_per_zone_wmarks();
  6012. return 0;
  6013. }
  6014. #ifdef CONFIG_NUMA
  6015. static void setup_min_unmapped_ratio(void)
  6016. {
  6017. pg_data_t *pgdat;
  6018. struct zone *zone;
  6019. for_each_online_pgdat(pgdat)
  6020. pgdat->min_unmapped_pages = 0;
  6021. for_each_zone(zone)
  6022. zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
  6023. sysctl_min_unmapped_ratio) / 100;
  6024. }
  6025. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
  6026. void __user *buffer, size_t *length, loff_t *ppos)
  6027. {
  6028. int rc;
  6029. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  6030. if (rc)
  6031. return rc;
  6032. setup_min_unmapped_ratio();
  6033. return 0;
  6034. }
  6035. static void setup_min_slab_ratio(void)
  6036. {
  6037. pg_data_t *pgdat;
  6038. struct zone *zone;
  6039. for_each_online_pgdat(pgdat)
  6040. pgdat->min_slab_pages = 0;
  6041. for_each_zone(zone)
  6042. zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
  6043. sysctl_min_slab_ratio) / 100;
  6044. }
  6045. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
  6046. void __user *buffer, size_t *length, loff_t *ppos)
  6047. {
  6048. int rc;
  6049. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  6050. if (rc)
  6051. return rc;
  6052. setup_min_slab_ratio();
  6053. return 0;
  6054. }
  6055. #endif
  6056. /*
  6057. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  6058. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  6059. * whenever sysctl_lowmem_reserve_ratio changes.
  6060. *
  6061. * The reserve ratio obviously has absolutely no relation with the
  6062. * minimum watermarks. The lowmem reserve ratio can only make sense
  6063. * if in function of the boot time zone sizes.
  6064. */
  6065. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
  6066. void __user *buffer, size_t *length, loff_t *ppos)
  6067. {
  6068. proc_dointvec_minmax(table, write, buffer, length, ppos);
  6069. setup_per_zone_lowmem_reserve();
  6070. return 0;
  6071. }
  6072. /*
  6073. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  6074. * cpu. It is the fraction of total pages in each zone that a hot per cpu
  6075. * pagelist can have before it gets flushed back to buddy allocator.
  6076. */
  6077. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
  6078. void __user *buffer, size_t *length, loff_t *ppos)
  6079. {
  6080. struct zone *zone;
  6081. int old_percpu_pagelist_fraction;
  6082. int ret;
  6083. mutex_lock(&pcp_batch_high_lock);
  6084. old_percpu_pagelist_fraction = percpu_pagelist_fraction;
  6085. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  6086. if (!write || ret < 0)
  6087. goto out;
  6088. /* Sanity checking to avoid pcp imbalance */
  6089. if (percpu_pagelist_fraction &&
  6090. percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
  6091. percpu_pagelist_fraction = old_percpu_pagelist_fraction;
  6092. ret = -EINVAL;
  6093. goto out;
  6094. }
  6095. /* No change? */
  6096. if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
  6097. goto out;
  6098. for_each_populated_zone(zone) {
  6099. unsigned int cpu;
  6100. for_each_possible_cpu(cpu)
  6101. pageset_set_high_and_batch(zone,
  6102. per_cpu_ptr(zone->pageset, cpu));
  6103. }
  6104. out:
  6105. mutex_unlock(&pcp_batch_high_lock);
  6106. return ret;
  6107. }
  6108. #ifdef CONFIG_NUMA
  6109. int hashdist = HASHDIST_DEFAULT;
  6110. static int __init set_hashdist(char *str)
  6111. {
  6112. if (!str)
  6113. return 0;
  6114. hashdist = simple_strtoul(str, &str, 0);
  6115. return 1;
  6116. }
  6117. __setup("hashdist=", set_hashdist);
  6118. #endif
  6119. #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
  6120. /*
  6121. * Returns the number of pages that arch has reserved but
  6122. * is not known to alloc_large_system_hash().
  6123. */
  6124. static unsigned long __init arch_reserved_kernel_pages(void)
  6125. {
  6126. return 0;
  6127. }
  6128. #endif
  6129. /*
  6130. * allocate a large system hash table from bootmem
  6131. * - it is assumed that the hash table must contain an exact power-of-2
  6132. * quantity of entries
  6133. * - limit is the number of hash buckets, not the total allocation size
  6134. */
  6135. void *__init alloc_large_system_hash(const char *tablename,
  6136. unsigned long bucketsize,
  6137. unsigned long numentries,
  6138. int scale,
  6139. int flags,
  6140. unsigned int *_hash_shift,
  6141. unsigned int *_hash_mask,
  6142. unsigned long low_limit,
  6143. unsigned long high_limit)
  6144. {
  6145. unsigned long long max = high_limit;
  6146. unsigned long log2qty, size;
  6147. void *table = NULL;
  6148. /* allow the kernel cmdline to have a say */
  6149. if (!numentries) {
  6150. /* round applicable memory size up to nearest megabyte */
  6151. numentries = nr_kernel_pages;
  6152. numentries -= arch_reserved_kernel_pages();
  6153. /* It isn't necessary when PAGE_SIZE >= 1MB */
  6154. if (PAGE_SHIFT < 20)
  6155. numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
  6156. /* limit to 1 bucket per 2^scale bytes of low memory */
  6157. if (scale > PAGE_SHIFT)
  6158. numentries >>= (scale - PAGE_SHIFT);
  6159. else
  6160. numentries <<= (PAGE_SHIFT - scale);
  6161. /* Make sure we've got at least a 0-order allocation.. */
  6162. if (unlikely(flags & HASH_SMALL)) {
  6163. /* Makes no sense without HASH_EARLY */
  6164. WARN_ON(!(flags & HASH_EARLY));
  6165. if (!(numentries >> *_hash_shift)) {
  6166. numentries = 1UL << *_hash_shift;
  6167. BUG_ON(!numentries);
  6168. }
  6169. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  6170. numentries = PAGE_SIZE / bucketsize;
  6171. }
  6172. numentries = roundup_pow_of_two(numentries);
  6173. /* limit allocation size to 1/16 total memory by default */
  6174. if (max == 0) {
  6175. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  6176. do_div(max, bucketsize);
  6177. }
  6178. max = min(max, 0x80000000ULL);
  6179. if (numentries < low_limit)
  6180. numentries = low_limit;
  6181. if (numentries > max)
  6182. numentries = max;
  6183. log2qty = ilog2(numentries);
  6184. do {
  6185. size = bucketsize << log2qty;
  6186. if (flags & HASH_EARLY)
  6187. table = memblock_virt_alloc_nopanic(size, 0);
  6188. else if (hashdist)
  6189. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  6190. else {
  6191. /*
  6192. * If bucketsize is not a power-of-two, we may free
  6193. * some pages at the end of hash table which
  6194. * alloc_pages_exact() automatically does
  6195. */
  6196. if (get_order(size) < MAX_ORDER) {
  6197. table = alloc_pages_exact(size, GFP_ATOMIC);
  6198. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  6199. }
  6200. }
  6201. } while (!table && size > PAGE_SIZE && --log2qty);
  6202. if (!table)
  6203. panic("Failed to allocate %s hash table\n", tablename);
  6204. pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
  6205. tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
  6206. if (_hash_shift)
  6207. *_hash_shift = log2qty;
  6208. if (_hash_mask)
  6209. *_hash_mask = (1 << log2qty) - 1;
  6210. return table;
  6211. }
  6212. /*
  6213. * This function checks whether pageblock includes unmovable pages or not.
  6214. * If @count is not zero, it is okay to include less @count unmovable pages
  6215. *
  6216. * PageLRU check without isolation or lru_lock could race so that
  6217. * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
  6218. * check without lock_page also may miss some movable non-lru pages at
  6219. * race condition. So you can't expect this function should be exact.
  6220. */
  6221. bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
  6222. bool skip_hwpoisoned_pages)
  6223. {
  6224. unsigned long pfn, iter, found;
  6225. int mt;
  6226. /*
  6227. * For avoiding noise data, lru_add_drain_all() should be called
  6228. * If ZONE_MOVABLE, the zone never contains unmovable pages
  6229. */
  6230. if (zone_idx(zone) == ZONE_MOVABLE)
  6231. return false;
  6232. mt = get_pageblock_migratetype(page);
  6233. if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
  6234. return false;
  6235. pfn = page_to_pfn(page);
  6236. for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
  6237. unsigned long check = pfn + iter;
  6238. if (!pfn_valid_within(check))
  6239. continue;
  6240. page = pfn_to_page(check);
  6241. /*
  6242. * Hugepages are not in LRU lists, but they're movable.
  6243. * We need not scan over tail pages bacause we don't
  6244. * handle each tail page individually in migration.
  6245. */
  6246. if (PageHuge(page)) {
  6247. iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
  6248. continue;
  6249. }
  6250. /*
  6251. * We can't use page_count without pin a page
  6252. * because another CPU can free compound page.
  6253. * This check already skips compound tails of THP
  6254. * because their page->_refcount is zero at all time.
  6255. */
  6256. if (!page_ref_count(page)) {
  6257. if (PageBuddy(page))
  6258. iter += (1 << page_order(page)) - 1;
  6259. continue;
  6260. }
  6261. /*
  6262. * The HWPoisoned page may be not in buddy system, and
  6263. * page_count() is not 0.
  6264. */
  6265. if (skip_hwpoisoned_pages && PageHWPoison(page))
  6266. continue;
  6267. if (__PageMovable(page))
  6268. continue;
  6269. if (!PageLRU(page))
  6270. found++;
  6271. /*
  6272. * If there are RECLAIMABLE pages, we need to check
  6273. * it. But now, memory offline itself doesn't call
  6274. * shrink_node_slabs() and it still to be fixed.
  6275. */
  6276. /*
  6277. * If the page is not RAM, page_count()should be 0.
  6278. * we don't need more check. This is an _used_ not-movable page.
  6279. *
  6280. * The problematic thing here is PG_reserved pages. PG_reserved
  6281. * is set to both of a memory hole page and a _used_ kernel
  6282. * page at boot.
  6283. */
  6284. if (found > count)
  6285. return true;
  6286. }
  6287. return false;
  6288. }
  6289. bool is_pageblock_removable_nolock(struct page *page)
  6290. {
  6291. struct zone *zone;
  6292. unsigned long pfn;
  6293. /*
  6294. * We have to be careful here because we are iterating over memory
  6295. * sections which are not zone aware so we might end up outside of
  6296. * the zone but still within the section.
  6297. * We have to take care about the node as well. If the node is offline
  6298. * its NODE_DATA will be NULL - see page_zone.
  6299. */
  6300. if (!node_online(page_to_nid(page)))
  6301. return false;
  6302. zone = page_zone(page);
  6303. pfn = page_to_pfn(page);
  6304. if (!zone_spans_pfn(zone, pfn))
  6305. return false;
  6306. return !has_unmovable_pages(zone, page, 0, true);
  6307. }
  6308. #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
  6309. static unsigned long pfn_max_align_down(unsigned long pfn)
  6310. {
  6311. return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
  6312. pageblock_nr_pages) - 1);
  6313. }
  6314. static unsigned long pfn_max_align_up(unsigned long pfn)
  6315. {
  6316. return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
  6317. pageblock_nr_pages));
  6318. }
  6319. /* [start, end) must belong to a single zone. */
  6320. static int __alloc_contig_migrate_range(struct compact_control *cc,
  6321. unsigned long start, unsigned long end)
  6322. {
  6323. /* This function is based on compact_zone() from compaction.c. */
  6324. unsigned long nr_reclaimed;
  6325. unsigned long pfn = start;
  6326. unsigned int tries = 0;
  6327. int ret = 0;
  6328. migrate_prep();
  6329. while (pfn < end || !list_empty(&cc->migratepages)) {
  6330. if (fatal_signal_pending(current)) {
  6331. ret = -EINTR;
  6332. break;
  6333. }
  6334. if (list_empty(&cc->migratepages)) {
  6335. cc->nr_migratepages = 0;
  6336. pfn = isolate_migratepages_range(cc, pfn, end);
  6337. if (!pfn) {
  6338. ret = -EINTR;
  6339. break;
  6340. }
  6341. tries = 0;
  6342. } else if (++tries == 5) {
  6343. ret = ret < 0 ? ret : -EBUSY;
  6344. break;
  6345. }
  6346. nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
  6347. &cc->migratepages);
  6348. cc->nr_migratepages -= nr_reclaimed;
  6349. ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
  6350. NULL, 0, cc->mode, MR_CMA);
  6351. }
  6352. if (ret < 0) {
  6353. putback_movable_pages(&cc->migratepages);
  6354. return ret;
  6355. }
  6356. return 0;
  6357. }
  6358. /**
  6359. * alloc_contig_range() -- tries to allocate given range of pages
  6360. * @start: start PFN to allocate
  6361. * @end: one-past-the-last PFN to allocate
  6362. * @migratetype: migratetype of the underlaying pageblocks (either
  6363. * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
  6364. * in range must have the same migratetype and it must
  6365. * be either of the two.
  6366. * @gfp_mask: GFP mask to use during compaction
  6367. *
  6368. * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
  6369. * aligned, however it's the caller's responsibility to guarantee that
  6370. * we are the only thread that changes migrate type of pageblocks the
  6371. * pages fall in.
  6372. *
  6373. * The PFN range must belong to a single zone.
  6374. *
  6375. * Returns zero on success or negative error code. On success all
  6376. * pages which PFN is in [start, end) are allocated for the caller and
  6377. * need to be freed with free_contig_range().
  6378. */
  6379. int alloc_contig_range(unsigned long start, unsigned long end,
  6380. unsigned migratetype, gfp_t gfp_mask)
  6381. {
  6382. unsigned long outer_start, outer_end;
  6383. unsigned int order;
  6384. int ret = 0;
  6385. struct compact_control cc = {
  6386. .nr_migratepages = 0,
  6387. .order = -1,
  6388. .zone = page_zone(pfn_to_page(start)),
  6389. .mode = MIGRATE_SYNC,
  6390. .ignore_skip_hint = true,
  6391. .gfp_mask = memalloc_noio_flags(gfp_mask),
  6392. };
  6393. INIT_LIST_HEAD(&cc.migratepages);
  6394. /*
  6395. * What we do here is we mark all pageblocks in range as
  6396. * MIGRATE_ISOLATE. Because pageblock and max order pages may
  6397. * have different sizes, and due to the way page allocator
  6398. * work, we align the range to biggest of the two pages so
  6399. * that page allocator won't try to merge buddies from
  6400. * different pageblocks and change MIGRATE_ISOLATE to some
  6401. * other migration type.
  6402. *
  6403. * Once the pageblocks are marked as MIGRATE_ISOLATE, we
  6404. * migrate the pages from an unaligned range (ie. pages that
  6405. * we are interested in). This will put all the pages in
  6406. * range back to page allocator as MIGRATE_ISOLATE.
  6407. *
  6408. * When this is done, we take the pages in range from page
  6409. * allocator removing them from the buddy system. This way
  6410. * page allocator will never consider using them.
  6411. *
  6412. * This lets us mark the pageblocks back as
  6413. * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
  6414. * aligned range but not in the unaligned, original range are
  6415. * put back to page allocator so that buddy can use them.
  6416. */
  6417. ret = start_isolate_page_range(pfn_max_align_down(start),
  6418. pfn_max_align_up(end), migratetype,
  6419. false);
  6420. if (ret)
  6421. return ret;
  6422. /*
  6423. * In case of -EBUSY, we'd like to know which page causes problem.
  6424. * So, just fall through. We will check it in test_pages_isolated().
  6425. */
  6426. ret = __alloc_contig_migrate_range(&cc, start, end);
  6427. if (ret && ret != -EBUSY)
  6428. goto done;
  6429. /*
  6430. * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
  6431. * aligned blocks that are marked as MIGRATE_ISOLATE. What's
  6432. * more, all pages in [start, end) are free in page allocator.
  6433. * What we are going to do is to allocate all pages from
  6434. * [start, end) (that is remove them from page allocator).
  6435. *
  6436. * The only problem is that pages at the beginning and at the
  6437. * end of interesting range may be not aligned with pages that
  6438. * page allocator holds, ie. they can be part of higher order
  6439. * pages. Because of this, we reserve the bigger range and
  6440. * once this is done free the pages we are not interested in.
  6441. *
  6442. * We don't have to hold zone->lock here because the pages are
  6443. * isolated thus they won't get removed from buddy.
  6444. */
  6445. lru_add_drain_all();
  6446. drain_all_pages(cc.zone);
  6447. order = 0;
  6448. outer_start = start;
  6449. while (!PageBuddy(pfn_to_page(outer_start))) {
  6450. if (++order >= MAX_ORDER) {
  6451. outer_start = start;
  6452. break;
  6453. }
  6454. outer_start &= ~0UL << order;
  6455. }
  6456. if (outer_start != start) {
  6457. order = page_order(pfn_to_page(outer_start));
  6458. /*
  6459. * outer_start page could be small order buddy page and
  6460. * it doesn't include start page. Adjust outer_start
  6461. * in this case to report failed page properly
  6462. * on tracepoint in test_pages_isolated()
  6463. */
  6464. if (outer_start + (1UL << order) <= start)
  6465. outer_start = start;
  6466. }
  6467. /* Make sure the range is really isolated. */
  6468. if (test_pages_isolated(outer_start, end, false)) {
  6469. pr_info("%s: [%lx, %lx) PFNs busy\n",
  6470. __func__, outer_start, end);
  6471. ret = -EBUSY;
  6472. goto done;
  6473. }
  6474. /* Grab isolated pages from freelists. */
  6475. outer_end = isolate_freepages_range(&cc, outer_start, end);
  6476. if (!outer_end) {
  6477. ret = -EBUSY;
  6478. goto done;
  6479. }
  6480. /* Free head and tail (if any) */
  6481. if (start != outer_start)
  6482. free_contig_range(outer_start, start - outer_start);
  6483. if (end != outer_end)
  6484. free_contig_range(end, outer_end - end);
  6485. done:
  6486. undo_isolate_page_range(pfn_max_align_down(start),
  6487. pfn_max_align_up(end), migratetype);
  6488. return ret;
  6489. }
  6490. void free_contig_range(unsigned long pfn, unsigned nr_pages)
  6491. {
  6492. unsigned int count = 0;
  6493. for (; nr_pages--; pfn++) {
  6494. struct page *page = pfn_to_page(pfn);
  6495. count += page_count(page) != 1;
  6496. __free_page(page);
  6497. }
  6498. WARN(count != 0, "%d pages are still in use!\n", count);
  6499. }
  6500. #endif
  6501. #ifdef CONFIG_MEMORY_HOTPLUG
  6502. /*
  6503. * The zone indicated has a new number of managed_pages; batch sizes and percpu
  6504. * page high values need to be recalulated.
  6505. */
  6506. void __meminit zone_pcp_update(struct zone *zone)
  6507. {
  6508. unsigned cpu;
  6509. mutex_lock(&pcp_batch_high_lock);
  6510. for_each_possible_cpu(cpu)
  6511. pageset_set_high_and_batch(zone,
  6512. per_cpu_ptr(zone->pageset, cpu));
  6513. mutex_unlock(&pcp_batch_high_lock);
  6514. }
  6515. #endif
  6516. void zone_pcp_reset(struct zone *zone)
  6517. {
  6518. unsigned long flags;
  6519. int cpu;
  6520. struct per_cpu_pageset *pset;
  6521. /* avoid races with drain_pages() */
  6522. local_irq_save(flags);
  6523. if (zone->pageset != &boot_pageset) {
  6524. for_each_online_cpu(cpu) {
  6525. pset = per_cpu_ptr(zone->pageset, cpu);
  6526. drain_zonestat(zone, pset);
  6527. }
  6528. free_percpu(zone->pageset);
  6529. zone->pageset = &boot_pageset;
  6530. }
  6531. local_irq_restore(flags);
  6532. }
  6533. #ifdef CONFIG_MEMORY_HOTREMOVE
  6534. /*
  6535. * All pages in the range must be in a single zone and isolated
  6536. * before calling this.
  6537. */
  6538. void
  6539. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  6540. {
  6541. struct page *page;
  6542. struct zone *zone;
  6543. unsigned int order, i;
  6544. unsigned long pfn;
  6545. unsigned long flags;
  6546. /* find the first valid pfn */
  6547. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  6548. if (pfn_valid(pfn))
  6549. break;
  6550. if (pfn == end_pfn)
  6551. return;
  6552. zone = page_zone(pfn_to_page(pfn));
  6553. spin_lock_irqsave(&zone->lock, flags);
  6554. pfn = start_pfn;
  6555. while (pfn < end_pfn) {
  6556. if (!pfn_valid(pfn)) {
  6557. pfn++;
  6558. continue;
  6559. }
  6560. page = pfn_to_page(pfn);
  6561. /*
  6562. * The HWPoisoned page may be not in buddy system, and
  6563. * page_count() is not 0.
  6564. */
  6565. if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
  6566. pfn++;
  6567. SetPageReserved(page);
  6568. continue;
  6569. }
  6570. BUG_ON(page_count(page));
  6571. BUG_ON(!PageBuddy(page));
  6572. order = page_order(page);
  6573. #ifdef CONFIG_DEBUG_VM
  6574. pr_info("remove from free list %lx %d %lx\n",
  6575. pfn, 1 << order, end_pfn);
  6576. #endif
  6577. list_del(&page->lru);
  6578. rmv_page_order(page);
  6579. zone->free_area[order].nr_free--;
  6580. for (i = 0; i < (1 << order); i++)
  6581. SetPageReserved((page+i));
  6582. pfn += (1 << order);
  6583. }
  6584. spin_unlock_irqrestore(&zone->lock, flags);
  6585. }
  6586. #endif
  6587. bool is_free_buddy_page(struct page *page)
  6588. {
  6589. struct zone *zone = page_zone(page);
  6590. unsigned long pfn = page_to_pfn(page);
  6591. unsigned long flags;
  6592. unsigned int order;
  6593. spin_lock_irqsave(&zone->lock, flags);
  6594. for (order = 0; order < MAX_ORDER; order++) {
  6595. struct page *page_head = page - (pfn & ((1 << order) - 1));
  6596. if (PageBuddy(page_head) && page_order(page_head) >= order)
  6597. break;
  6598. }
  6599. spin_unlock_irqrestore(&zone->lock, flags);
  6600. return order < MAX_ORDER;
  6601. }