intel_pm.c 206 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include <linux/cpufreq.h>
  28. #include "i915_drv.h"
  29. #include "intel_drv.h"
  30. #include "../../../platform/x86/intel_ips.h"
  31. #include <linux/module.h>
  32. /**
  33. * RC6 is a special power stage which allows the GPU to enter an very
  34. * low-voltage mode when idle, using down to 0V while at this stage. This
  35. * stage is entered automatically when the GPU is idle when RC6 support is
  36. * enabled, and as soon as new workload arises GPU wakes up automatically as well.
  37. *
  38. * There are different RC6 modes available in Intel GPU, which differentiate
  39. * among each other with the latency required to enter and leave RC6 and
  40. * voltage consumed by the GPU in different states.
  41. *
  42. * The combination of the following flags define which states GPU is allowed
  43. * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
  44. * RC6pp is deepest RC6. Their support by hardware varies according to the
  45. * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
  46. * which brings the most power savings; deeper states save more power, but
  47. * require higher latency to switch to and wake up.
  48. */
  49. #define INTEL_RC6_ENABLE (1<<0)
  50. #define INTEL_RC6p_ENABLE (1<<1)
  51. #define INTEL_RC6pp_ENABLE (1<<2)
  52. static void bxt_init_clock_gating(struct drm_device *dev)
  53. {
  54. struct drm_i915_private *dev_priv = dev->dev_private;
  55. /* WaDisableSDEUnitClockGating:bxt */
  56. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  57. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  58. /*
  59. * FIXME:
  60. * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
  61. */
  62. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  63. GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
  64. }
  65. static void i915_pineview_get_mem_freq(struct drm_device *dev)
  66. {
  67. struct drm_i915_private *dev_priv = dev->dev_private;
  68. u32 tmp;
  69. tmp = I915_READ(CLKCFG);
  70. switch (tmp & CLKCFG_FSB_MASK) {
  71. case CLKCFG_FSB_533:
  72. dev_priv->fsb_freq = 533; /* 133*4 */
  73. break;
  74. case CLKCFG_FSB_800:
  75. dev_priv->fsb_freq = 800; /* 200*4 */
  76. break;
  77. case CLKCFG_FSB_667:
  78. dev_priv->fsb_freq = 667; /* 167*4 */
  79. break;
  80. case CLKCFG_FSB_400:
  81. dev_priv->fsb_freq = 400; /* 100*4 */
  82. break;
  83. }
  84. switch (tmp & CLKCFG_MEM_MASK) {
  85. case CLKCFG_MEM_533:
  86. dev_priv->mem_freq = 533;
  87. break;
  88. case CLKCFG_MEM_667:
  89. dev_priv->mem_freq = 667;
  90. break;
  91. case CLKCFG_MEM_800:
  92. dev_priv->mem_freq = 800;
  93. break;
  94. }
  95. /* detect pineview DDR3 setting */
  96. tmp = I915_READ(CSHRDDR3CTL);
  97. dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
  98. }
  99. static void i915_ironlake_get_mem_freq(struct drm_device *dev)
  100. {
  101. struct drm_i915_private *dev_priv = dev->dev_private;
  102. u16 ddrpll, csipll;
  103. ddrpll = I915_READ16(DDRMPLL1);
  104. csipll = I915_READ16(CSIPLL0);
  105. switch (ddrpll & 0xff) {
  106. case 0xc:
  107. dev_priv->mem_freq = 800;
  108. break;
  109. case 0x10:
  110. dev_priv->mem_freq = 1066;
  111. break;
  112. case 0x14:
  113. dev_priv->mem_freq = 1333;
  114. break;
  115. case 0x18:
  116. dev_priv->mem_freq = 1600;
  117. break;
  118. default:
  119. DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
  120. ddrpll & 0xff);
  121. dev_priv->mem_freq = 0;
  122. break;
  123. }
  124. dev_priv->ips.r_t = dev_priv->mem_freq;
  125. switch (csipll & 0x3ff) {
  126. case 0x00c:
  127. dev_priv->fsb_freq = 3200;
  128. break;
  129. case 0x00e:
  130. dev_priv->fsb_freq = 3733;
  131. break;
  132. case 0x010:
  133. dev_priv->fsb_freq = 4266;
  134. break;
  135. case 0x012:
  136. dev_priv->fsb_freq = 4800;
  137. break;
  138. case 0x014:
  139. dev_priv->fsb_freq = 5333;
  140. break;
  141. case 0x016:
  142. dev_priv->fsb_freq = 5866;
  143. break;
  144. case 0x018:
  145. dev_priv->fsb_freq = 6400;
  146. break;
  147. default:
  148. DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
  149. csipll & 0x3ff);
  150. dev_priv->fsb_freq = 0;
  151. break;
  152. }
  153. if (dev_priv->fsb_freq == 3200) {
  154. dev_priv->ips.c_m = 0;
  155. } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
  156. dev_priv->ips.c_m = 1;
  157. } else {
  158. dev_priv->ips.c_m = 2;
  159. }
  160. }
  161. static const struct cxsr_latency cxsr_latency_table[] = {
  162. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  163. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  164. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  165. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  166. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  167. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  168. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  169. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  170. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  171. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  172. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  173. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  174. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  175. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  176. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  177. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  178. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  179. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  180. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  181. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  182. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  183. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  184. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  185. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  186. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  187. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  188. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  189. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  190. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  191. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  192. };
  193. static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
  194. int is_ddr3,
  195. int fsb,
  196. int mem)
  197. {
  198. const struct cxsr_latency *latency;
  199. int i;
  200. if (fsb == 0 || mem == 0)
  201. return NULL;
  202. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  203. latency = &cxsr_latency_table[i];
  204. if (is_desktop == latency->is_desktop &&
  205. is_ddr3 == latency->is_ddr3 &&
  206. fsb == latency->fsb_freq && mem == latency->mem_freq)
  207. return latency;
  208. }
  209. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  210. return NULL;
  211. }
  212. static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
  213. {
  214. u32 val;
  215. mutex_lock(&dev_priv->rps.hw_lock);
  216. val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
  217. if (enable)
  218. val &= ~FORCE_DDR_HIGH_FREQ;
  219. else
  220. val |= FORCE_DDR_HIGH_FREQ;
  221. val &= ~FORCE_DDR_LOW_FREQ;
  222. val |= FORCE_DDR_FREQ_REQ_ACK;
  223. vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
  224. if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
  225. FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
  226. DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
  227. mutex_unlock(&dev_priv->rps.hw_lock);
  228. }
  229. static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
  230. {
  231. u32 val;
  232. mutex_lock(&dev_priv->rps.hw_lock);
  233. val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
  234. if (enable)
  235. val |= DSP_MAXFIFO_PM5_ENABLE;
  236. else
  237. val &= ~DSP_MAXFIFO_PM5_ENABLE;
  238. vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
  239. mutex_unlock(&dev_priv->rps.hw_lock);
  240. }
  241. #define FW_WM(value, plane) \
  242. (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
  243. void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
  244. {
  245. struct drm_device *dev = dev_priv->dev;
  246. u32 val;
  247. if (IS_VALLEYVIEW(dev)) {
  248. I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
  249. POSTING_READ(FW_BLC_SELF_VLV);
  250. dev_priv->wm.vlv.cxsr = enable;
  251. } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
  252. I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
  253. POSTING_READ(FW_BLC_SELF);
  254. } else if (IS_PINEVIEW(dev)) {
  255. val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
  256. val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
  257. I915_WRITE(DSPFW3, val);
  258. POSTING_READ(DSPFW3);
  259. } else if (IS_I945G(dev) || IS_I945GM(dev)) {
  260. val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
  261. _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
  262. I915_WRITE(FW_BLC_SELF, val);
  263. POSTING_READ(FW_BLC_SELF);
  264. } else if (IS_I915GM(dev)) {
  265. val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
  266. _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
  267. I915_WRITE(INSTPM, val);
  268. POSTING_READ(INSTPM);
  269. } else {
  270. return;
  271. }
  272. DRM_DEBUG_KMS("memory self-refresh is %s\n",
  273. enable ? "enabled" : "disabled");
  274. }
  275. /*
  276. * Latency for FIFO fetches is dependent on several factors:
  277. * - memory configuration (speed, channels)
  278. * - chipset
  279. * - current MCH state
  280. * It can be fairly high in some situations, so here we assume a fairly
  281. * pessimal value. It's a tradeoff between extra memory fetches (if we
  282. * set this value too high, the FIFO will fetch frequently to stay full)
  283. * and power consumption (set it too low to save power and we might see
  284. * FIFO underruns and display "flicker").
  285. *
  286. * A value of 5us seems to be a good balance; safe for very low end
  287. * platforms but not overly aggressive on lower latency configs.
  288. */
  289. static const int pessimal_latency_ns = 5000;
  290. #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
  291. ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
  292. static int vlv_get_fifo_size(struct drm_device *dev,
  293. enum pipe pipe, int plane)
  294. {
  295. struct drm_i915_private *dev_priv = dev->dev_private;
  296. int sprite0_start, sprite1_start, size;
  297. switch (pipe) {
  298. uint32_t dsparb, dsparb2, dsparb3;
  299. case PIPE_A:
  300. dsparb = I915_READ(DSPARB);
  301. dsparb2 = I915_READ(DSPARB2);
  302. sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
  303. sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
  304. break;
  305. case PIPE_B:
  306. dsparb = I915_READ(DSPARB);
  307. dsparb2 = I915_READ(DSPARB2);
  308. sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
  309. sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
  310. break;
  311. case PIPE_C:
  312. dsparb2 = I915_READ(DSPARB2);
  313. dsparb3 = I915_READ(DSPARB3);
  314. sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
  315. sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
  316. break;
  317. default:
  318. return 0;
  319. }
  320. switch (plane) {
  321. case 0:
  322. size = sprite0_start;
  323. break;
  324. case 1:
  325. size = sprite1_start - sprite0_start;
  326. break;
  327. case 2:
  328. size = 512 - 1 - sprite1_start;
  329. break;
  330. default:
  331. return 0;
  332. }
  333. DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
  334. pipe_name(pipe), plane == 0 ? "primary" : "sprite",
  335. plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
  336. size);
  337. return size;
  338. }
  339. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  340. {
  341. struct drm_i915_private *dev_priv = dev->dev_private;
  342. uint32_t dsparb = I915_READ(DSPARB);
  343. int size;
  344. size = dsparb & 0x7f;
  345. if (plane)
  346. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  347. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  348. plane ? "B" : "A", size);
  349. return size;
  350. }
  351. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  352. {
  353. struct drm_i915_private *dev_priv = dev->dev_private;
  354. uint32_t dsparb = I915_READ(DSPARB);
  355. int size;
  356. size = dsparb & 0x1ff;
  357. if (plane)
  358. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  359. size >>= 1; /* Convert to cachelines */
  360. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  361. plane ? "B" : "A", size);
  362. return size;
  363. }
  364. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  365. {
  366. struct drm_i915_private *dev_priv = dev->dev_private;
  367. uint32_t dsparb = I915_READ(DSPARB);
  368. int size;
  369. size = dsparb & 0x7f;
  370. size >>= 2; /* Convert to cachelines */
  371. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  372. plane ? "B" : "A",
  373. size);
  374. return size;
  375. }
  376. /* Pineview has different values for various configs */
  377. static const struct intel_watermark_params pineview_display_wm = {
  378. .fifo_size = PINEVIEW_DISPLAY_FIFO,
  379. .max_wm = PINEVIEW_MAX_WM,
  380. .default_wm = PINEVIEW_DFT_WM,
  381. .guard_size = PINEVIEW_GUARD_WM,
  382. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  383. };
  384. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  385. .fifo_size = PINEVIEW_DISPLAY_FIFO,
  386. .max_wm = PINEVIEW_MAX_WM,
  387. .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
  388. .guard_size = PINEVIEW_GUARD_WM,
  389. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  390. };
  391. static const struct intel_watermark_params pineview_cursor_wm = {
  392. .fifo_size = PINEVIEW_CURSOR_FIFO,
  393. .max_wm = PINEVIEW_CURSOR_MAX_WM,
  394. .default_wm = PINEVIEW_CURSOR_DFT_WM,
  395. .guard_size = PINEVIEW_CURSOR_GUARD_WM,
  396. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  397. };
  398. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  399. .fifo_size = PINEVIEW_CURSOR_FIFO,
  400. .max_wm = PINEVIEW_CURSOR_MAX_WM,
  401. .default_wm = PINEVIEW_CURSOR_DFT_WM,
  402. .guard_size = PINEVIEW_CURSOR_GUARD_WM,
  403. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  404. };
  405. static const struct intel_watermark_params g4x_wm_info = {
  406. .fifo_size = G4X_FIFO_SIZE,
  407. .max_wm = G4X_MAX_WM,
  408. .default_wm = G4X_MAX_WM,
  409. .guard_size = 2,
  410. .cacheline_size = G4X_FIFO_LINE_SIZE,
  411. };
  412. static const struct intel_watermark_params g4x_cursor_wm_info = {
  413. .fifo_size = I965_CURSOR_FIFO,
  414. .max_wm = I965_CURSOR_MAX_WM,
  415. .default_wm = I965_CURSOR_DFT_WM,
  416. .guard_size = 2,
  417. .cacheline_size = G4X_FIFO_LINE_SIZE,
  418. };
  419. static const struct intel_watermark_params valleyview_wm_info = {
  420. .fifo_size = VALLEYVIEW_FIFO_SIZE,
  421. .max_wm = VALLEYVIEW_MAX_WM,
  422. .default_wm = VALLEYVIEW_MAX_WM,
  423. .guard_size = 2,
  424. .cacheline_size = G4X_FIFO_LINE_SIZE,
  425. };
  426. static const struct intel_watermark_params valleyview_cursor_wm_info = {
  427. .fifo_size = I965_CURSOR_FIFO,
  428. .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
  429. .default_wm = I965_CURSOR_DFT_WM,
  430. .guard_size = 2,
  431. .cacheline_size = G4X_FIFO_LINE_SIZE,
  432. };
  433. static const struct intel_watermark_params i965_cursor_wm_info = {
  434. .fifo_size = I965_CURSOR_FIFO,
  435. .max_wm = I965_CURSOR_MAX_WM,
  436. .default_wm = I965_CURSOR_DFT_WM,
  437. .guard_size = 2,
  438. .cacheline_size = I915_FIFO_LINE_SIZE,
  439. };
  440. static const struct intel_watermark_params i945_wm_info = {
  441. .fifo_size = I945_FIFO_SIZE,
  442. .max_wm = I915_MAX_WM,
  443. .default_wm = 1,
  444. .guard_size = 2,
  445. .cacheline_size = I915_FIFO_LINE_SIZE,
  446. };
  447. static const struct intel_watermark_params i915_wm_info = {
  448. .fifo_size = I915_FIFO_SIZE,
  449. .max_wm = I915_MAX_WM,
  450. .default_wm = 1,
  451. .guard_size = 2,
  452. .cacheline_size = I915_FIFO_LINE_SIZE,
  453. };
  454. static const struct intel_watermark_params i830_a_wm_info = {
  455. .fifo_size = I855GM_FIFO_SIZE,
  456. .max_wm = I915_MAX_WM,
  457. .default_wm = 1,
  458. .guard_size = 2,
  459. .cacheline_size = I830_FIFO_LINE_SIZE,
  460. };
  461. static const struct intel_watermark_params i830_bc_wm_info = {
  462. .fifo_size = I855GM_FIFO_SIZE,
  463. .max_wm = I915_MAX_WM/2,
  464. .default_wm = 1,
  465. .guard_size = 2,
  466. .cacheline_size = I830_FIFO_LINE_SIZE,
  467. };
  468. static const struct intel_watermark_params i845_wm_info = {
  469. .fifo_size = I830_FIFO_SIZE,
  470. .max_wm = I915_MAX_WM,
  471. .default_wm = 1,
  472. .guard_size = 2,
  473. .cacheline_size = I830_FIFO_LINE_SIZE,
  474. };
  475. /**
  476. * intel_calculate_wm - calculate watermark level
  477. * @clock_in_khz: pixel clock
  478. * @wm: chip FIFO params
  479. * @pixel_size: display pixel size
  480. * @latency_ns: memory latency for the platform
  481. *
  482. * Calculate the watermark level (the level at which the display plane will
  483. * start fetching from memory again). Each chip has a different display
  484. * FIFO size and allocation, so the caller needs to figure that out and pass
  485. * in the correct intel_watermark_params structure.
  486. *
  487. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  488. * on the pixel size. When it reaches the watermark level, it'll start
  489. * fetching FIFO line sized based chunks from memory until the FIFO fills
  490. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  491. * will occur, and a display engine hang could result.
  492. */
  493. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  494. const struct intel_watermark_params *wm,
  495. int fifo_size,
  496. int pixel_size,
  497. unsigned long latency_ns)
  498. {
  499. long entries_required, wm_size;
  500. /*
  501. * Note: we need to make sure we don't overflow for various clock &
  502. * latency values.
  503. * clocks go from a few thousand to several hundred thousand.
  504. * latency is usually a few thousand
  505. */
  506. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  507. 1000;
  508. entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
  509. DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
  510. wm_size = fifo_size - (entries_required + wm->guard_size);
  511. DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
  512. /* Don't promote wm_size to unsigned... */
  513. if (wm_size > (long)wm->max_wm)
  514. wm_size = wm->max_wm;
  515. if (wm_size <= 0)
  516. wm_size = wm->default_wm;
  517. /*
  518. * Bspec seems to indicate that the value shouldn't be lower than
  519. * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
  520. * Lets go for 8 which is the burst size since certain platforms
  521. * already use a hardcoded 8 (which is what the spec says should be
  522. * done).
  523. */
  524. if (wm_size <= 8)
  525. wm_size = 8;
  526. return wm_size;
  527. }
  528. static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
  529. {
  530. struct drm_crtc *crtc, *enabled = NULL;
  531. for_each_crtc(dev, crtc) {
  532. if (intel_crtc_active(crtc)) {
  533. if (enabled)
  534. return NULL;
  535. enabled = crtc;
  536. }
  537. }
  538. return enabled;
  539. }
  540. static void pineview_update_wm(struct drm_crtc *unused_crtc)
  541. {
  542. struct drm_device *dev = unused_crtc->dev;
  543. struct drm_i915_private *dev_priv = dev->dev_private;
  544. struct drm_crtc *crtc;
  545. const struct cxsr_latency *latency;
  546. u32 reg;
  547. unsigned long wm;
  548. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  549. dev_priv->fsb_freq, dev_priv->mem_freq);
  550. if (!latency) {
  551. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  552. intel_set_memory_cxsr(dev_priv, false);
  553. return;
  554. }
  555. crtc = single_enabled_crtc(dev);
  556. if (crtc) {
  557. const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  558. int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
  559. int clock = adjusted_mode->crtc_clock;
  560. /* Display SR */
  561. wm = intel_calculate_wm(clock, &pineview_display_wm,
  562. pineview_display_wm.fifo_size,
  563. pixel_size, latency->display_sr);
  564. reg = I915_READ(DSPFW1);
  565. reg &= ~DSPFW_SR_MASK;
  566. reg |= FW_WM(wm, SR);
  567. I915_WRITE(DSPFW1, reg);
  568. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  569. /* cursor SR */
  570. wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  571. pineview_display_wm.fifo_size,
  572. pixel_size, latency->cursor_sr);
  573. reg = I915_READ(DSPFW3);
  574. reg &= ~DSPFW_CURSOR_SR_MASK;
  575. reg |= FW_WM(wm, CURSOR_SR);
  576. I915_WRITE(DSPFW3, reg);
  577. /* Display HPLL off SR */
  578. wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  579. pineview_display_hplloff_wm.fifo_size,
  580. pixel_size, latency->display_hpll_disable);
  581. reg = I915_READ(DSPFW3);
  582. reg &= ~DSPFW_HPLL_SR_MASK;
  583. reg |= FW_WM(wm, HPLL_SR);
  584. I915_WRITE(DSPFW3, reg);
  585. /* cursor HPLL off SR */
  586. wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  587. pineview_display_hplloff_wm.fifo_size,
  588. pixel_size, latency->cursor_hpll_disable);
  589. reg = I915_READ(DSPFW3);
  590. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  591. reg |= FW_WM(wm, HPLL_CURSOR);
  592. I915_WRITE(DSPFW3, reg);
  593. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  594. intel_set_memory_cxsr(dev_priv, true);
  595. } else {
  596. intel_set_memory_cxsr(dev_priv, false);
  597. }
  598. }
  599. static bool g4x_compute_wm0(struct drm_device *dev,
  600. int plane,
  601. const struct intel_watermark_params *display,
  602. int display_latency_ns,
  603. const struct intel_watermark_params *cursor,
  604. int cursor_latency_ns,
  605. int *plane_wm,
  606. int *cursor_wm)
  607. {
  608. struct drm_crtc *crtc;
  609. const struct drm_display_mode *adjusted_mode;
  610. int htotal, hdisplay, clock, pixel_size;
  611. int line_time_us, line_count;
  612. int entries, tlb_miss;
  613. crtc = intel_get_crtc_for_plane(dev, plane);
  614. if (!intel_crtc_active(crtc)) {
  615. *cursor_wm = cursor->guard_size;
  616. *plane_wm = display->guard_size;
  617. return false;
  618. }
  619. adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  620. clock = adjusted_mode->crtc_clock;
  621. htotal = adjusted_mode->crtc_htotal;
  622. hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
  623. pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
  624. /* Use the small buffer method to calculate plane watermark */
  625. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  626. tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
  627. if (tlb_miss > 0)
  628. entries += tlb_miss;
  629. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  630. *plane_wm = entries + display->guard_size;
  631. if (*plane_wm > (int)display->max_wm)
  632. *plane_wm = display->max_wm;
  633. /* Use the large buffer method to calculate cursor watermark */
  634. line_time_us = max(htotal * 1000 / clock, 1);
  635. line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
  636. entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
  637. tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
  638. if (tlb_miss > 0)
  639. entries += tlb_miss;
  640. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  641. *cursor_wm = entries + cursor->guard_size;
  642. if (*cursor_wm > (int)cursor->max_wm)
  643. *cursor_wm = (int)cursor->max_wm;
  644. return true;
  645. }
  646. /*
  647. * Check the wm result.
  648. *
  649. * If any calculated watermark values is larger than the maximum value that
  650. * can be programmed into the associated watermark register, that watermark
  651. * must be disabled.
  652. */
  653. static bool g4x_check_srwm(struct drm_device *dev,
  654. int display_wm, int cursor_wm,
  655. const struct intel_watermark_params *display,
  656. const struct intel_watermark_params *cursor)
  657. {
  658. DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
  659. display_wm, cursor_wm);
  660. if (display_wm > display->max_wm) {
  661. DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
  662. display_wm, display->max_wm);
  663. return false;
  664. }
  665. if (cursor_wm > cursor->max_wm) {
  666. DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
  667. cursor_wm, cursor->max_wm);
  668. return false;
  669. }
  670. if (!(display_wm || cursor_wm)) {
  671. DRM_DEBUG_KMS("SR latency is 0, disabling\n");
  672. return false;
  673. }
  674. return true;
  675. }
  676. static bool g4x_compute_srwm(struct drm_device *dev,
  677. int plane,
  678. int latency_ns,
  679. const struct intel_watermark_params *display,
  680. const struct intel_watermark_params *cursor,
  681. int *display_wm, int *cursor_wm)
  682. {
  683. struct drm_crtc *crtc;
  684. const struct drm_display_mode *adjusted_mode;
  685. int hdisplay, htotal, pixel_size, clock;
  686. unsigned long line_time_us;
  687. int line_count, line_size;
  688. int small, large;
  689. int entries;
  690. if (!latency_ns) {
  691. *display_wm = *cursor_wm = 0;
  692. return false;
  693. }
  694. crtc = intel_get_crtc_for_plane(dev, plane);
  695. adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  696. clock = adjusted_mode->crtc_clock;
  697. htotal = adjusted_mode->crtc_htotal;
  698. hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
  699. pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
  700. line_time_us = max(htotal * 1000 / clock, 1);
  701. line_count = (latency_ns / line_time_us + 1000) / 1000;
  702. line_size = hdisplay * pixel_size;
  703. /* Use the minimum of the small and large buffer method for primary */
  704. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  705. large = line_count * line_size;
  706. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  707. *display_wm = entries + display->guard_size;
  708. /* calculate the self-refresh watermark for display cursor */
  709. entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
  710. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  711. *cursor_wm = entries + cursor->guard_size;
  712. return g4x_check_srwm(dev,
  713. *display_wm, *cursor_wm,
  714. display, cursor);
  715. }
  716. #define FW_WM_VLV(value, plane) \
  717. (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
  718. static void vlv_write_wm_values(struct intel_crtc *crtc,
  719. const struct vlv_wm_values *wm)
  720. {
  721. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  722. enum pipe pipe = crtc->pipe;
  723. I915_WRITE(VLV_DDL(pipe),
  724. (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
  725. (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
  726. (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
  727. (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
  728. I915_WRITE(DSPFW1,
  729. FW_WM(wm->sr.plane, SR) |
  730. FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
  731. FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
  732. FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
  733. I915_WRITE(DSPFW2,
  734. FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
  735. FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
  736. FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
  737. I915_WRITE(DSPFW3,
  738. FW_WM(wm->sr.cursor, CURSOR_SR));
  739. if (IS_CHERRYVIEW(dev_priv)) {
  740. I915_WRITE(DSPFW7_CHV,
  741. FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
  742. FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
  743. I915_WRITE(DSPFW8_CHV,
  744. FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
  745. FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
  746. I915_WRITE(DSPFW9_CHV,
  747. FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
  748. FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
  749. I915_WRITE(DSPHOWM,
  750. FW_WM(wm->sr.plane >> 9, SR_HI) |
  751. FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
  752. FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
  753. FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
  754. FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
  755. FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
  756. FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
  757. FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
  758. FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
  759. FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
  760. } else {
  761. I915_WRITE(DSPFW7,
  762. FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
  763. FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
  764. I915_WRITE(DSPHOWM,
  765. FW_WM(wm->sr.plane >> 9, SR_HI) |
  766. FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
  767. FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
  768. FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
  769. FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
  770. FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
  771. FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
  772. }
  773. /* zero (unused) WM1 watermarks */
  774. I915_WRITE(DSPFW4, 0);
  775. I915_WRITE(DSPFW5, 0);
  776. I915_WRITE(DSPFW6, 0);
  777. I915_WRITE(DSPHOWM1, 0);
  778. POSTING_READ(DSPFW1);
  779. }
  780. #undef FW_WM_VLV
  781. enum vlv_wm_level {
  782. VLV_WM_LEVEL_PM2,
  783. VLV_WM_LEVEL_PM5,
  784. VLV_WM_LEVEL_DDR_DVFS,
  785. };
  786. /* latency must be in 0.1us units. */
  787. static unsigned int vlv_wm_method2(unsigned int pixel_rate,
  788. unsigned int pipe_htotal,
  789. unsigned int horiz_pixels,
  790. unsigned int bytes_per_pixel,
  791. unsigned int latency)
  792. {
  793. unsigned int ret;
  794. ret = (latency * pixel_rate) / (pipe_htotal * 10000);
  795. ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
  796. ret = DIV_ROUND_UP(ret, 64);
  797. return ret;
  798. }
  799. static void vlv_setup_wm_latency(struct drm_device *dev)
  800. {
  801. struct drm_i915_private *dev_priv = dev->dev_private;
  802. /* all latencies in usec */
  803. dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
  804. dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
  805. if (IS_CHERRYVIEW(dev_priv)) {
  806. dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
  807. dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
  808. dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
  809. }
  810. }
  811. static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
  812. struct intel_crtc *crtc,
  813. const struct intel_plane_state *state,
  814. int level)
  815. {
  816. struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
  817. int clock, htotal, pixel_size, width, wm;
  818. if (dev_priv->wm.pri_latency[level] == 0)
  819. return USHRT_MAX;
  820. if (!state->visible)
  821. return 0;
  822. pixel_size = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
  823. clock = crtc->config->base.adjusted_mode.crtc_clock;
  824. htotal = crtc->config->base.adjusted_mode.crtc_htotal;
  825. width = crtc->config->pipe_src_w;
  826. if (WARN_ON(htotal == 0))
  827. htotal = 1;
  828. if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
  829. /*
  830. * FIXME the formula gives values that are
  831. * too big for the cursor FIFO, and hence we
  832. * would never be able to use cursors. For
  833. * now just hardcode the watermark.
  834. */
  835. wm = 63;
  836. } else {
  837. wm = vlv_wm_method2(clock, htotal, width, pixel_size,
  838. dev_priv->wm.pri_latency[level] * 10);
  839. }
  840. return min_t(int, wm, USHRT_MAX);
  841. }
  842. static void vlv_compute_fifo(struct intel_crtc *crtc)
  843. {
  844. struct drm_device *dev = crtc->base.dev;
  845. struct vlv_wm_state *wm_state = &crtc->wm_state;
  846. struct intel_plane *plane;
  847. unsigned int total_rate = 0;
  848. const int fifo_size = 512 - 1;
  849. int fifo_extra, fifo_left = fifo_size;
  850. for_each_intel_plane_on_crtc(dev, crtc, plane) {
  851. struct intel_plane_state *state =
  852. to_intel_plane_state(plane->base.state);
  853. if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
  854. continue;
  855. if (state->visible) {
  856. wm_state->num_active_planes++;
  857. total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
  858. }
  859. }
  860. for_each_intel_plane_on_crtc(dev, crtc, plane) {
  861. struct intel_plane_state *state =
  862. to_intel_plane_state(plane->base.state);
  863. unsigned int rate;
  864. if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
  865. plane->wm.fifo_size = 63;
  866. continue;
  867. }
  868. if (!state->visible) {
  869. plane->wm.fifo_size = 0;
  870. continue;
  871. }
  872. rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
  873. plane->wm.fifo_size = fifo_size * rate / total_rate;
  874. fifo_left -= plane->wm.fifo_size;
  875. }
  876. fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
  877. /* spread the remainder evenly */
  878. for_each_intel_plane_on_crtc(dev, crtc, plane) {
  879. int plane_extra;
  880. if (fifo_left == 0)
  881. break;
  882. if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
  883. continue;
  884. /* give it all to the first plane if none are active */
  885. if (plane->wm.fifo_size == 0 &&
  886. wm_state->num_active_planes)
  887. continue;
  888. plane_extra = min(fifo_extra, fifo_left);
  889. plane->wm.fifo_size += plane_extra;
  890. fifo_left -= plane_extra;
  891. }
  892. WARN_ON(fifo_left != 0);
  893. }
  894. static void vlv_invert_wms(struct intel_crtc *crtc)
  895. {
  896. struct vlv_wm_state *wm_state = &crtc->wm_state;
  897. int level;
  898. for (level = 0; level < wm_state->num_levels; level++) {
  899. struct drm_device *dev = crtc->base.dev;
  900. const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
  901. struct intel_plane *plane;
  902. wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
  903. wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
  904. for_each_intel_plane_on_crtc(dev, crtc, plane) {
  905. switch (plane->base.type) {
  906. int sprite;
  907. case DRM_PLANE_TYPE_CURSOR:
  908. wm_state->wm[level].cursor = plane->wm.fifo_size -
  909. wm_state->wm[level].cursor;
  910. break;
  911. case DRM_PLANE_TYPE_PRIMARY:
  912. wm_state->wm[level].primary = plane->wm.fifo_size -
  913. wm_state->wm[level].primary;
  914. break;
  915. case DRM_PLANE_TYPE_OVERLAY:
  916. sprite = plane->plane;
  917. wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
  918. wm_state->wm[level].sprite[sprite];
  919. break;
  920. }
  921. }
  922. }
  923. }
  924. static void vlv_compute_wm(struct intel_crtc *crtc)
  925. {
  926. struct drm_device *dev = crtc->base.dev;
  927. struct vlv_wm_state *wm_state = &crtc->wm_state;
  928. struct intel_plane *plane;
  929. int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
  930. int level;
  931. memset(wm_state, 0, sizeof(*wm_state));
  932. wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
  933. wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
  934. wm_state->num_active_planes = 0;
  935. vlv_compute_fifo(crtc);
  936. if (wm_state->num_active_planes != 1)
  937. wm_state->cxsr = false;
  938. if (wm_state->cxsr) {
  939. for (level = 0; level < wm_state->num_levels; level++) {
  940. wm_state->sr[level].plane = sr_fifo_size;
  941. wm_state->sr[level].cursor = 63;
  942. }
  943. }
  944. for_each_intel_plane_on_crtc(dev, crtc, plane) {
  945. struct intel_plane_state *state =
  946. to_intel_plane_state(plane->base.state);
  947. if (!state->visible)
  948. continue;
  949. /* normal watermarks */
  950. for (level = 0; level < wm_state->num_levels; level++) {
  951. int wm = vlv_compute_wm_level(plane, crtc, state, level);
  952. int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
  953. /* hack */
  954. if (WARN_ON(level == 0 && wm > max_wm))
  955. wm = max_wm;
  956. if (wm > plane->wm.fifo_size)
  957. break;
  958. switch (plane->base.type) {
  959. int sprite;
  960. case DRM_PLANE_TYPE_CURSOR:
  961. wm_state->wm[level].cursor = wm;
  962. break;
  963. case DRM_PLANE_TYPE_PRIMARY:
  964. wm_state->wm[level].primary = wm;
  965. break;
  966. case DRM_PLANE_TYPE_OVERLAY:
  967. sprite = plane->plane;
  968. wm_state->wm[level].sprite[sprite] = wm;
  969. break;
  970. }
  971. }
  972. wm_state->num_levels = level;
  973. if (!wm_state->cxsr)
  974. continue;
  975. /* maxfifo watermarks */
  976. switch (plane->base.type) {
  977. int sprite, level;
  978. case DRM_PLANE_TYPE_CURSOR:
  979. for (level = 0; level < wm_state->num_levels; level++)
  980. wm_state->sr[level].cursor =
  981. wm_state->wm[level].cursor;
  982. break;
  983. case DRM_PLANE_TYPE_PRIMARY:
  984. for (level = 0; level < wm_state->num_levels; level++)
  985. wm_state->sr[level].plane =
  986. min(wm_state->sr[level].plane,
  987. wm_state->wm[level].primary);
  988. break;
  989. case DRM_PLANE_TYPE_OVERLAY:
  990. sprite = plane->plane;
  991. for (level = 0; level < wm_state->num_levels; level++)
  992. wm_state->sr[level].plane =
  993. min(wm_state->sr[level].plane,
  994. wm_state->wm[level].sprite[sprite]);
  995. break;
  996. }
  997. }
  998. /* clear any (partially) filled invalid levels */
  999. for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
  1000. memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
  1001. memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
  1002. }
  1003. vlv_invert_wms(crtc);
  1004. }
  1005. #define VLV_FIFO(plane, value) \
  1006. (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
  1007. static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
  1008. {
  1009. struct drm_device *dev = crtc->base.dev;
  1010. struct drm_i915_private *dev_priv = to_i915(dev);
  1011. struct intel_plane *plane;
  1012. int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
  1013. for_each_intel_plane_on_crtc(dev, crtc, plane) {
  1014. if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
  1015. WARN_ON(plane->wm.fifo_size != 63);
  1016. continue;
  1017. }
  1018. if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
  1019. sprite0_start = plane->wm.fifo_size;
  1020. else if (plane->plane == 0)
  1021. sprite1_start = sprite0_start + plane->wm.fifo_size;
  1022. else
  1023. fifo_size = sprite1_start + plane->wm.fifo_size;
  1024. }
  1025. WARN_ON(fifo_size != 512 - 1);
  1026. DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
  1027. pipe_name(crtc->pipe), sprite0_start,
  1028. sprite1_start, fifo_size);
  1029. switch (crtc->pipe) {
  1030. uint32_t dsparb, dsparb2, dsparb3;
  1031. case PIPE_A:
  1032. dsparb = I915_READ(DSPARB);
  1033. dsparb2 = I915_READ(DSPARB2);
  1034. dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
  1035. VLV_FIFO(SPRITEB, 0xff));
  1036. dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
  1037. VLV_FIFO(SPRITEB, sprite1_start));
  1038. dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
  1039. VLV_FIFO(SPRITEB_HI, 0x1));
  1040. dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
  1041. VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
  1042. I915_WRITE(DSPARB, dsparb);
  1043. I915_WRITE(DSPARB2, dsparb2);
  1044. break;
  1045. case PIPE_B:
  1046. dsparb = I915_READ(DSPARB);
  1047. dsparb2 = I915_READ(DSPARB2);
  1048. dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
  1049. VLV_FIFO(SPRITED, 0xff));
  1050. dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
  1051. VLV_FIFO(SPRITED, sprite1_start));
  1052. dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
  1053. VLV_FIFO(SPRITED_HI, 0xff));
  1054. dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
  1055. VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
  1056. I915_WRITE(DSPARB, dsparb);
  1057. I915_WRITE(DSPARB2, dsparb2);
  1058. break;
  1059. case PIPE_C:
  1060. dsparb3 = I915_READ(DSPARB3);
  1061. dsparb2 = I915_READ(DSPARB2);
  1062. dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
  1063. VLV_FIFO(SPRITEF, 0xff));
  1064. dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
  1065. VLV_FIFO(SPRITEF, sprite1_start));
  1066. dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
  1067. VLV_FIFO(SPRITEF_HI, 0xff));
  1068. dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
  1069. VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
  1070. I915_WRITE(DSPARB3, dsparb3);
  1071. I915_WRITE(DSPARB2, dsparb2);
  1072. break;
  1073. default:
  1074. break;
  1075. }
  1076. }
  1077. #undef VLV_FIFO
  1078. static void vlv_merge_wm(struct drm_device *dev,
  1079. struct vlv_wm_values *wm)
  1080. {
  1081. struct intel_crtc *crtc;
  1082. int num_active_crtcs = 0;
  1083. wm->level = to_i915(dev)->wm.max_level;
  1084. wm->cxsr = true;
  1085. for_each_intel_crtc(dev, crtc) {
  1086. const struct vlv_wm_state *wm_state = &crtc->wm_state;
  1087. if (!crtc->active)
  1088. continue;
  1089. if (!wm_state->cxsr)
  1090. wm->cxsr = false;
  1091. num_active_crtcs++;
  1092. wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
  1093. }
  1094. if (num_active_crtcs != 1)
  1095. wm->cxsr = false;
  1096. if (num_active_crtcs > 1)
  1097. wm->level = VLV_WM_LEVEL_PM2;
  1098. for_each_intel_crtc(dev, crtc) {
  1099. struct vlv_wm_state *wm_state = &crtc->wm_state;
  1100. enum pipe pipe = crtc->pipe;
  1101. if (!crtc->active)
  1102. continue;
  1103. wm->pipe[pipe] = wm_state->wm[wm->level];
  1104. if (wm->cxsr)
  1105. wm->sr = wm_state->sr[wm->level];
  1106. wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
  1107. wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
  1108. wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
  1109. wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
  1110. }
  1111. }
  1112. static void vlv_update_wm(struct drm_crtc *crtc)
  1113. {
  1114. struct drm_device *dev = crtc->dev;
  1115. struct drm_i915_private *dev_priv = dev->dev_private;
  1116. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1117. enum pipe pipe = intel_crtc->pipe;
  1118. struct vlv_wm_values wm = {};
  1119. vlv_compute_wm(intel_crtc);
  1120. vlv_merge_wm(dev, &wm);
  1121. if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
  1122. /* FIXME should be part of crtc atomic commit */
  1123. vlv_pipe_set_fifo_size(intel_crtc);
  1124. return;
  1125. }
  1126. if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
  1127. dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
  1128. chv_set_memory_dvfs(dev_priv, false);
  1129. if (wm.level < VLV_WM_LEVEL_PM5 &&
  1130. dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
  1131. chv_set_memory_pm5(dev_priv, false);
  1132. if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
  1133. intel_set_memory_cxsr(dev_priv, false);
  1134. /* FIXME should be part of crtc atomic commit */
  1135. vlv_pipe_set_fifo_size(intel_crtc);
  1136. vlv_write_wm_values(intel_crtc, &wm);
  1137. DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
  1138. "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
  1139. pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
  1140. wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
  1141. wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
  1142. if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
  1143. intel_set_memory_cxsr(dev_priv, true);
  1144. if (wm.level >= VLV_WM_LEVEL_PM5 &&
  1145. dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
  1146. chv_set_memory_pm5(dev_priv, true);
  1147. if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
  1148. dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
  1149. chv_set_memory_dvfs(dev_priv, true);
  1150. dev_priv->wm.vlv = wm;
  1151. }
  1152. #define single_plane_enabled(mask) is_power_of_2(mask)
  1153. static void g4x_update_wm(struct drm_crtc *crtc)
  1154. {
  1155. struct drm_device *dev = crtc->dev;
  1156. static const int sr_latency_ns = 12000;
  1157. struct drm_i915_private *dev_priv = dev->dev_private;
  1158. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1159. int plane_sr, cursor_sr;
  1160. unsigned int enabled = 0;
  1161. bool cxsr_enabled;
  1162. if (g4x_compute_wm0(dev, PIPE_A,
  1163. &g4x_wm_info, pessimal_latency_ns,
  1164. &g4x_cursor_wm_info, pessimal_latency_ns,
  1165. &planea_wm, &cursora_wm))
  1166. enabled |= 1 << PIPE_A;
  1167. if (g4x_compute_wm0(dev, PIPE_B,
  1168. &g4x_wm_info, pessimal_latency_ns,
  1169. &g4x_cursor_wm_info, pessimal_latency_ns,
  1170. &planeb_wm, &cursorb_wm))
  1171. enabled |= 1 << PIPE_B;
  1172. if (single_plane_enabled(enabled) &&
  1173. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1174. sr_latency_ns,
  1175. &g4x_wm_info,
  1176. &g4x_cursor_wm_info,
  1177. &plane_sr, &cursor_sr)) {
  1178. cxsr_enabled = true;
  1179. } else {
  1180. cxsr_enabled = false;
  1181. intel_set_memory_cxsr(dev_priv, false);
  1182. plane_sr = cursor_sr = 0;
  1183. }
  1184. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
  1185. "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1186. planea_wm, cursora_wm,
  1187. planeb_wm, cursorb_wm,
  1188. plane_sr, cursor_sr);
  1189. I915_WRITE(DSPFW1,
  1190. FW_WM(plane_sr, SR) |
  1191. FW_WM(cursorb_wm, CURSORB) |
  1192. FW_WM(planeb_wm, PLANEB) |
  1193. FW_WM(planea_wm, PLANEA));
  1194. I915_WRITE(DSPFW2,
  1195. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1196. FW_WM(cursora_wm, CURSORA));
  1197. /* HPLL off in SR has some issues on G4x... disable it */
  1198. I915_WRITE(DSPFW3,
  1199. (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
  1200. FW_WM(cursor_sr, CURSOR_SR));
  1201. if (cxsr_enabled)
  1202. intel_set_memory_cxsr(dev_priv, true);
  1203. }
  1204. static void i965_update_wm(struct drm_crtc *unused_crtc)
  1205. {
  1206. struct drm_device *dev = unused_crtc->dev;
  1207. struct drm_i915_private *dev_priv = dev->dev_private;
  1208. struct drm_crtc *crtc;
  1209. int srwm = 1;
  1210. int cursor_sr = 16;
  1211. bool cxsr_enabled;
  1212. /* Calc sr entries for one plane configs */
  1213. crtc = single_enabled_crtc(dev);
  1214. if (crtc) {
  1215. /* self-refresh has much higher latency */
  1216. static const int sr_latency_ns = 12000;
  1217. const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  1218. int clock = adjusted_mode->crtc_clock;
  1219. int htotal = adjusted_mode->crtc_htotal;
  1220. int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
  1221. int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
  1222. unsigned long line_time_us;
  1223. int entries;
  1224. line_time_us = max(htotal * 1000 / clock, 1);
  1225. /* Use ns/us then divide to preserve precision */
  1226. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1227. pixel_size * hdisplay;
  1228. entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  1229. srwm = I965_FIFO_SIZE - entries;
  1230. if (srwm < 0)
  1231. srwm = 1;
  1232. srwm &= 0x1ff;
  1233. DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  1234. entries, srwm);
  1235. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1236. pixel_size * crtc->cursor->state->crtc_w;
  1237. entries = DIV_ROUND_UP(entries,
  1238. i965_cursor_wm_info.cacheline_size);
  1239. cursor_sr = i965_cursor_wm_info.fifo_size -
  1240. (entries + i965_cursor_wm_info.guard_size);
  1241. if (cursor_sr > i965_cursor_wm_info.max_wm)
  1242. cursor_sr = i965_cursor_wm_info.max_wm;
  1243. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  1244. "cursor %d\n", srwm, cursor_sr);
  1245. cxsr_enabled = true;
  1246. } else {
  1247. cxsr_enabled = false;
  1248. /* Turn off self refresh if both pipes are enabled */
  1249. intel_set_memory_cxsr(dev_priv, false);
  1250. }
  1251. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  1252. srwm);
  1253. /* 965 has limitations... */
  1254. I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
  1255. FW_WM(8, CURSORB) |
  1256. FW_WM(8, PLANEB) |
  1257. FW_WM(8, PLANEA));
  1258. I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
  1259. FW_WM(8, PLANEC_OLD));
  1260. /* update cursor SR watermark */
  1261. I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
  1262. if (cxsr_enabled)
  1263. intel_set_memory_cxsr(dev_priv, true);
  1264. }
  1265. #undef FW_WM
  1266. static void i9xx_update_wm(struct drm_crtc *unused_crtc)
  1267. {
  1268. struct drm_device *dev = unused_crtc->dev;
  1269. struct drm_i915_private *dev_priv = dev->dev_private;
  1270. const struct intel_watermark_params *wm_info;
  1271. uint32_t fwater_lo;
  1272. uint32_t fwater_hi;
  1273. int cwm, srwm = 1;
  1274. int fifo_size;
  1275. int planea_wm, planeb_wm;
  1276. struct drm_crtc *crtc, *enabled = NULL;
  1277. if (IS_I945GM(dev))
  1278. wm_info = &i945_wm_info;
  1279. else if (!IS_GEN2(dev))
  1280. wm_info = &i915_wm_info;
  1281. else
  1282. wm_info = &i830_a_wm_info;
  1283. fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  1284. crtc = intel_get_crtc_for_plane(dev, 0);
  1285. if (intel_crtc_active(crtc)) {
  1286. const struct drm_display_mode *adjusted_mode;
  1287. int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
  1288. if (IS_GEN2(dev))
  1289. cpp = 4;
  1290. adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  1291. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1292. wm_info, fifo_size, cpp,
  1293. pessimal_latency_ns);
  1294. enabled = crtc;
  1295. } else {
  1296. planea_wm = fifo_size - wm_info->guard_size;
  1297. if (planea_wm > (long)wm_info->max_wm)
  1298. planea_wm = wm_info->max_wm;
  1299. }
  1300. if (IS_GEN2(dev))
  1301. wm_info = &i830_bc_wm_info;
  1302. fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  1303. crtc = intel_get_crtc_for_plane(dev, 1);
  1304. if (intel_crtc_active(crtc)) {
  1305. const struct drm_display_mode *adjusted_mode;
  1306. int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
  1307. if (IS_GEN2(dev))
  1308. cpp = 4;
  1309. adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  1310. planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1311. wm_info, fifo_size, cpp,
  1312. pessimal_latency_ns);
  1313. if (enabled == NULL)
  1314. enabled = crtc;
  1315. else
  1316. enabled = NULL;
  1317. } else {
  1318. planeb_wm = fifo_size - wm_info->guard_size;
  1319. if (planeb_wm > (long)wm_info->max_wm)
  1320. planeb_wm = wm_info->max_wm;
  1321. }
  1322. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  1323. if (IS_I915GM(dev) && enabled) {
  1324. struct drm_i915_gem_object *obj;
  1325. obj = intel_fb_obj(enabled->primary->state->fb);
  1326. /* self-refresh seems busted with untiled */
  1327. if (obj->tiling_mode == I915_TILING_NONE)
  1328. enabled = NULL;
  1329. }
  1330. /*
  1331. * Overlay gets an aggressive default since video jitter is bad.
  1332. */
  1333. cwm = 2;
  1334. /* Play safe and disable self-refresh before adjusting watermarks. */
  1335. intel_set_memory_cxsr(dev_priv, false);
  1336. /* Calc sr entries for one plane configs */
  1337. if (HAS_FW_BLC(dev) && enabled) {
  1338. /* self-refresh has much higher latency */
  1339. static const int sr_latency_ns = 6000;
  1340. const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
  1341. int clock = adjusted_mode->crtc_clock;
  1342. int htotal = adjusted_mode->crtc_htotal;
  1343. int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
  1344. int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
  1345. unsigned long line_time_us;
  1346. int entries;
  1347. line_time_us = max(htotal * 1000 / clock, 1);
  1348. /* Use ns/us then divide to preserve precision */
  1349. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1350. pixel_size * hdisplay;
  1351. entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  1352. DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  1353. srwm = wm_info->fifo_size - entries;
  1354. if (srwm < 0)
  1355. srwm = 1;
  1356. if (IS_I945G(dev) || IS_I945GM(dev))
  1357. I915_WRITE(FW_BLC_SELF,
  1358. FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  1359. else if (IS_I915GM(dev))
  1360. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  1361. }
  1362. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  1363. planea_wm, planeb_wm, cwm, srwm);
  1364. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  1365. fwater_hi = (cwm & 0x1f);
  1366. /* Set request length to 8 cachelines per fetch */
  1367. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  1368. fwater_hi = fwater_hi | (1 << 8);
  1369. I915_WRITE(FW_BLC, fwater_lo);
  1370. I915_WRITE(FW_BLC2, fwater_hi);
  1371. if (enabled)
  1372. intel_set_memory_cxsr(dev_priv, true);
  1373. }
  1374. static void i845_update_wm(struct drm_crtc *unused_crtc)
  1375. {
  1376. struct drm_device *dev = unused_crtc->dev;
  1377. struct drm_i915_private *dev_priv = dev->dev_private;
  1378. struct drm_crtc *crtc;
  1379. const struct drm_display_mode *adjusted_mode;
  1380. uint32_t fwater_lo;
  1381. int planea_wm;
  1382. crtc = single_enabled_crtc(dev);
  1383. if (crtc == NULL)
  1384. return;
  1385. adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  1386. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1387. &i845_wm_info,
  1388. dev_priv->display.get_fifo_size(dev, 0),
  1389. 4, pessimal_latency_ns);
  1390. fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  1391. fwater_lo |= (3<<8) | planea_wm;
  1392. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  1393. I915_WRITE(FW_BLC, fwater_lo);
  1394. }
  1395. uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
  1396. {
  1397. uint32_t pixel_rate;
  1398. pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
  1399. /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
  1400. * adjust the pixel_rate here. */
  1401. if (pipe_config->pch_pfit.enabled) {
  1402. uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
  1403. uint32_t pfit_size = pipe_config->pch_pfit.size;
  1404. pipe_w = pipe_config->pipe_src_w;
  1405. pipe_h = pipe_config->pipe_src_h;
  1406. pfit_w = (pfit_size >> 16) & 0xFFFF;
  1407. pfit_h = pfit_size & 0xFFFF;
  1408. if (pipe_w < pfit_w)
  1409. pipe_w = pfit_w;
  1410. if (pipe_h < pfit_h)
  1411. pipe_h = pfit_h;
  1412. pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
  1413. pfit_w * pfit_h);
  1414. }
  1415. return pixel_rate;
  1416. }
  1417. /* latency must be in 0.1us units. */
  1418. static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
  1419. uint32_t latency)
  1420. {
  1421. uint64_t ret;
  1422. if (WARN(latency == 0, "Latency value missing\n"))
  1423. return UINT_MAX;
  1424. ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
  1425. ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
  1426. return ret;
  1427. }
  1428. /* latency must be in 0.1us units. */
  1429. static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
  1430. uint32_t horiz_pixels, uint8_t bytes_per_pixel,
  1431. uint32_t latency)
  1432. {
  1433. uint32_t ret;
  1434. if (WARN(latency == 0, "Latency value missing\n"))
  1435. return UINT_MAX;
  1436. ret = (latency * pixel_rate) / (pipe_htotal * 10000);
  1437. ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
  1438. ret = DIV_ROUND_UP(ret, 64) + 2;
  1439. return ret;
  1440. }
  1441. static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
  1442. uint8_t bytes_per_pixel)
  1443. {
  1444. return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
  1445. }
  1446. struct skl_pipe_wm_parameters {
  1447. bool active;
  1448. uint32_t pipe_htotal;
  1449. uint32_t pixel_rate; /* in KHz */
  1450. struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
  1451. };
  1452. struct ilk_wm_maximums {
  1453. uint16_t pri;
  1454. uint16_t spr;
  1455. uint16_t cur;
  1456. uint16_t fbc;
  1457. };
  1458. /* used in computing the new watermarks state */
  1459. struct intel_wm_config {
  1460. unsigned int num_pipes_active;
  1461. bool sprites_enabled;
  1462. bool sprites_scaled;
  1463. };
  1464. /*
  1465. * For both WM_PIPE and WM_LP.
  1466. * mem_value must be in 0.1us units.
  1467. */
  1468. static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
  1469. const struct intel_plane_state *pstate,
  1470. uint32_t mem_value,
  1471. bool is_lp)
  1472. {
  1473. int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
  1474. uint32_t method1, method2;
  1475. if (!cstate->base.active || !pstate->visible)
  1476. return 0;
  1477. method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
  1478. if (!is_lp)
  1479. return method1;
  1480. method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
  1481. cstate->base.adjusted_mode.crtc_htotal,
  1482. drm_rect_width(&pstate->dst),
  1483. bpp,
  1484. mem_value);
  1485. return min(method1, method2);
  1486. }
  1487. /*
  1488. * For both WM_PIPE and WM_LP.
  1489. * mem_value must be in 0.1us units.
  1490. */
  1491. static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
  1492. const struct intel_plane_state *pstate,
  1493. uint32_t mem_value)
  1494. {
  1495. int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
  1496. uint32_t method1, method2;
  1497. if (!cstate->base.active || !pstate->visible)
  1498. return 0;
  1499. method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
  1500. method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
  1501. cstate->base.adjusted_mode.crtc_htotal,
  1502. drm_rect_width(&pstate->dst),
  1503. bpp,
  1504. mem_value);
  1505. return min(method1, method2);
  1506. }
  1507. /*
  1508. * For both WM_PIPE and WM_LP.
  1509. * mem_value must be in 0.1us units.
  1510. */
  1511. static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
  1512. const struct intel_plane_state *pstate,
  1513. uint32_t mem_value)
  1514. {
  1515. int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
  1516. if (!cstate->base.active || !pstate->visible)
  1517. return 0;
  1518. return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
  1519. cstate->base.adjusted_mode.crtc_htotal,
  1520. drm_rect_width(&pstate->dst),
  1521. bpp,
  1522. mem_value);
  1523. }
  1524. /* Only for WM_LP. */
  1525. static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
  1526. const struct intel_plane_state *pstate,
  1527. uint32_t pri_val)
  1528. {
  1529. int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
  1530. if (!cstate->base.active || !pstate->visible)
  1531. return 0;
  1532. return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), bpp);
  1533. }
  1534. static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
  1535. {
  1536. if (INTEL_INFO(dev)->gen >= 8)
  1537. return 3072;
  1538. else if (INTEL_INFO(dev)->gen >= 7)
  1539. return 768;
  1540. else
  1541. return 512;
  1542. }
  1543. static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
  1544. int level, bool is_sprite)
  1545. {
  1546. if (INTEL_INFO(dev)->gen >= 8)
  1547. /* BDW primary/sprite plane watermarks */
  1548. return level == 0 ? 255 : 2047;
  1549. else if (INTEL_INFO(dev)->gen >= 7)
  1550. /* IVB/HSW primary/sprite plane watermarks */
  1551. return level == 0 ? 127 : 1023;
  1552. else if (!is_sprite)
  1553. /* ILK/SNB primary plane watermarks */
  1554. return level == 0 ? 127 : 511;
  1555. else
  1556. /* ILK/SNB sprite plane watermarks */
  1557. return level == 0 ? 63 : 255;
  1558. }
  1559. static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
  1560. int level)
  1561. {
  1562. if (INTEL_INFO(dev)->gen >= 7)
  1563. return level == 0 ? 63 : 255;
  1564. else
  1565. return level == 0 ? 31 : 63;
  1566. }
  1567. static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
  1568. {
  1569. if (INTEL_INFO(dev)->gen >= 8)
  1570. return 31;
  1571. else
  1572. return 15;
  1573. }
  1574. /* Calculate the maximum primary/sprite plane watermark */
  1575. static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
  1576. int level,
  1577. const struct intel_wm_config *config,
  1578. enum intel_ddb_partitioning ddb_partitioning,
  1579. bool is_sprite)
  1580. {
  1581. unsigned int fifo_size = ilk_display_fifo_size(dev);
  1582. /* if sprites aren't enabled, sprites get nothing */
  1583. if (is_sprite && !config->sprites_enabled)
  1584. return 0;
  1585. /* HSW allows LP1+ watermarks even with multiple pipes */
  1586. if (level == 0 || config->num_pipes_active > 1) {
  1587. fifo_size /= INTEL_INFO(dev)->num_pipes;
  1588. /*
  1589. * For some reason the non self refresh
  1590. * FIFO size is only half of the self
  1591. * refresh FIFO size on ILK/SNB.
  1592. */
  1593. if (INTEL_INFO(dev)->gen <= 6)
  1594. fifo_size /= 2;
  1595. }
  1596. if (config->sprites_enabled) {
  1597. /* level 0 is always calculated with 1:1 split */
  1598. if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
  1599. if (is_sprite)
  1600. fifo_size *= 5;
  1601. fifo_size /= 6;
  1602. } else {
  1603. fifo_size /= 2;
  1604. }
  1605. }
  1606. /* clamp to max that the registers can hold */
  1607. return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
  1608. }
  1609. /* Calculate the maximum cursor plane watermark */
  1610. static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
  1611. int level,
  1612. const struct intel_wm_config *config)
  1613. {
  1614. /* HSW LP1+ watermarks w/ multiple pipes */
  1615. if (level > 0 && config->num_pipes_active > 1)
  1616. return 64;
  1617. /* otherwise just report max that registers can hold */
  1618. return ilk_cursor_wm_reg_max(dev, level);
  1619. }
  1620. static void ilk_compute_wm_maximums(const struct drm_device *dev,
  1621. int level,
  1622. const struct intel_wm_config *config,
  1623. enum intel_ddb_partitioning ddb_partitioning,
  1624. struct ilk_wm_maximums *max)
  1625. {
  1626. max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
  1627. max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
  1628. max->cur = ilk_cursor_wm_max(dev, level, config);
  1629. max->fbc = ilk_fbc_wm_reg_max(dev);
  1630. }
  1631. static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
  1632. int level,
  1633. struct ilk_wm_maximums *max)
  1634. {
  1635. max->pri = ilk_plane_wm_reg_max(dev, level, false);
  1636. max->spr = ilk_plane_wm_reg_max(dev, level, true);
  1637. max->cur = ilk_cursor_wm_reg_max(dev, level);
  1638. max->fbc = ilk_fbc_wm_reg_max(dev);
  1639. }
  1640. static bool ilk_validate_wm_level(int level,
  1641. const struct ilk_wm_maximums *max,
  1642. struct intel_wm_level *result)
  1643. {
  1644. bool ret;
  1645. /* already determined to be invalid? */
  1646. if (!result->enable)
  1647. return false;
  1648. result->enable = result->pri_val <= max->pri &&
  1649. result->spr_val <= max->spr &&
  1650. result->cur_val <= max->cur;
  1651. ret = result->enable;
  1652. /*
  1653. * HACK until we can pre-compute everything,
  1654. * and thus fail gracefully if LP0 watermarks
  1655. * are exceeded...
  1656. */
  1657. if (level == 0 && !result->enable) {
  1658. if (result->pri_val > max->pri)
  1659. DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
  1660. level, result->pri_val, max->pri);
  1661. if (result->spr_val > max->spr)
  1662. DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
  1663. level, result->spr_val, max->spr);
  1664. if (result->cur_val > max->cur)
  1665. DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
  1666. level, result->cur_val, max->cur);
  1667. result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
  1668. result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
  1669. result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
  1670. result->enable = true;
  1671. }
  1672. return ret;
  1673. }
  1674. static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
  1675. const struct intel_crtc *intel_crtc,
  1676. int level,
  1677. struct intel_crtc_state *cstate,
  1678. struct intel_wm_level *result)
  1679. {
  1680. struct intel_plane *intel_plane;
  1681. uint16_t pri_latency = dev_priv->wm.pri_latency[level];
  1682. uint16_t spr_latency = dev_priv->wm.spr_latency[level];
  1683. uint16_t cur_latency = dev_priv->wm.cur_latency[level];
  1684. /* WM1+ latency values stored in 0.5us units */
  1685. if (level > 0) {
  1686. pri_latency *= 5;
  1687. spr_latency *= 5;
  1688. cur_latency *= 5;
  1689. }
  1690. for_each_intel_plane_on_crtc(dev_priv->dev, intel_crtc, intel_plane) {
  1691. struct intel_plane_state *pstate =
  1692. to_intel_plane_state(intel_plane->base.state);
  1693. switch (intel_plane->base.type) {
  1694. case DRM_PLANE_TYPE_PRIMARY:
  1695. result->pri_val = ilk_compute_pri_wm(cstate, pstate,
  1696. pri_latency,
  1697. level);
  1698. result->fbc_val = ilk_compute_fbc_wm(cstate, pstate,
  1699. result->pri_val);
  1700. break;
  1701. case DRM_PLANE_TYPE_OVERLAY:
  1702. result->spr_val = ilk_compute_spr_wm(cstate, pstate,
  1703. spr_latency);
  1704. break;
  1705. case DRM_PLANE_TYPE_CURSOR:
  1706. result->cur_val = ilk_compute_cur_wm(cstate, pstate,
  1707. cur_latency);
  1708. break;
  1709. }
  1710. }
  1711. result->enable = true;
  1712. }
  1713. static uint32_t
  1714. hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
  1715. {
  1716. struct drm_i915_private *dev_priv = dev->dev_private;
  1717. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1718. const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
  1719. u32 linetime, ips_linetime;
  1720. if (!intel_crtc->active)
  1721. return 0;
  1722. /* The WM are computed with base on how long it takes to fill a single
  1723. * row at the given clock rate, multiplied by 8.
  1724. * */
  1725. linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
  1726. adjusted_mode->crtc_clock);
  1727. ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
  1728. dev_priv->cdclk_freq);
  1729. return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
  1730. PIPE_WM_LINETIME_TIME(linetime);
  1731. }
  1732. static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
  1733. {
  1734. struct drm_i915_private *dev_priv = dev->dev_private;
  1735. if (IS_GEN9(dev)) {
  1736. uint32_t val;
  1737. int ret, i;
  1738. int level, max_level = ilk_wm_max_level(dev);
  1739. /* read the first set of memory latencies[0:3] */
  1740. val = 0; /* data0 to be programmed to 0 for first set */
  1741. mutex_lock(&dev_priv->rps.hw_lock);
  1742. ret = sandybridge_pcode_read(dev_priv,
  1743. GEN9_PCODE_READ_MEM_LATENCY,
  1744. &val);
  1745. mutex_unlock(&dev_priv->rps.hw_lock);
  1746. if (ret) {
  1747. DRM_ERROR("SKL Mailbox read error = %d\n", ret);
  1748. return;
  1749. }
  1750. wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
  1751. wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
  1752. GEN9_MEM_LATENCY_LEVEL_MASK;
  1753. wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
  1754. GEN9_MEM_LATENCY_LEVEL_MASK;
  1755. wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
  1756. GEN9_MEM_LATENCY_LEVEL_MASK;
  1757. /* read the second set of memory latencies[4:7] */
  1758. val = 1; /* data0 to be programmed to 1 for second set */
  1759. mutex_lock(&dev_priv->rps.hw_lock);
  1760. ret = sandybridge_pcode_read(dev_priv,
  1761. GEN9_PCODE_READ_MEM_LATENCY,
  1762. &val);
  1763. mutex_unlock(&dev_priv->rps.hw_lock);
  1764. if (ret) {
  1765. DRM_ERROR("SKL Mailbox read error = %d\n", ret);
  1766. return;
  1767. }
  1768. wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
  1769. wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
  1770. GEN9_MEM_LATENCY_LEVEL_MASK;
  1771. wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
  1772. GEN9_MEM_LATENCY_LEVEL_MASK;
  1773. wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
  1774. GEN9_MEM_LATENCY_LEVEL_MASK;
  1775. /*
  1776. * WaWmMemoryReadLatency:skl
  1777. *
  1778. * punit doesn't take into account the read latency so we need
  1779. * to add 2us to the various latency levels we retrieve from
  1780. * the punit.
  1781. * - W0 is a bit special in that it's the only level that
  1782. * can't be disabled if we want to have display working, so
  1783. * we always add 2us there.
  1784. * - For levels >=1, punit returns 0us latency when they are
  1785. * disabled, so we respect that and don't add 2us then
  1786. *
  1787. * Additionally, if a level n (n > 1) has a 0us latency, all
  1788. * levels m (m >= n) need to be disabled. We make sure to
  1789. * sanitize the values out of the punit to satisfy this
  1790. * requirement.
  1791. */
  1792. wm[0] += 2;
  1793. for (level = 1; level <= max_level; level++)
  1794. if (wm[level] != 0)
  1795. wm[level] += 2;
  1796. else {
  1797. for (i = level + 1; i <= max_level; i++)
  1798. wm[i] = 0;
  1799. break;
  1800. }
  1801. } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  1802. uint64_t sskpd = I915_READ64(MCH_SSKPD);
  1803. wm[0] = (sskpd >> 56) & 0xFF;
  1804. if (wm[0] == 0)
  1805. wm[0] = sskpd & 0xF;
  1806. wm[1] = (sskpd >> 4) & 0xFF;
  1807. wm[2] = (sskpd >> 12) & 0xFF;
  1808. wm[3] = (sskpd >> 20) & 0x1FF;
  1809. wm[4] = (sskpd >> 32) & 0x1FF;
  1810. } else if (INTEL_INFO(dev)->gen >= 6) {
  1811. uint32_t sskpd = I915_READ(MCH_SSKPD);
  1812. wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
  1813. wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
  1814. wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
  1815. wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
  1816. } else if (INTEL_INFO(dev)->gen >= 5) {
  1817. uint32_t mltr = I915_READ(MLTR_ILK);
  1818. /* ILK primary LP0 latency is 700 ns */
  1819. wm[0] = 7;
  1820. wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
  1821. wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
  1822. }
  1823. }
  1824. static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
  1825. {
  1826. /* ILK sprite LP0 latency is 1300 ns */
  1827. if (INTEL_INFO(dev)->gen == 5)
  1828. wm[0] = 13;
  1829. }
  1830. static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
  1831. {
  1832. /* ILK cursor LP0 latency is 1300 ns */
  1833. if (INTEL_INFO(dev)->gen == 5)
  1834. wm[0] = 13;
  1835. /* WaDoubleCursorLP3Latency:ivb */
  1836. if (IS_IVYBRIDGE(dev))
  1837. wm[3] *= 2;
  1838. }
  1839. int ilk_wm_max_level(const struct drm_device *dev)
  1840. {
  1841. /* how many WM levels are we expecting */
  1842. if (INTEL_INFO(dev)->gen >= 9)
  1843. return 7;
  1844. else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1845. return 4;
  1846. else if (INTEL_INFO(dev)->gen >= 6)
  1847. return 3;
  1848. else
  1849. return 2;
  1850. }
  1851. static void intel_print_wm_latency(struct drm_device *dev,
  1852. const char *name,
  1853. const uint16_t wm[8])
  1854. {
  1855. int level, max_level = ilk_wm_max_level(dev);
  1856. for (level = 0; level <= max_level; level++) {
  1857. unsigned int latency = wm[level];
  1858. if (latency == 0) {
  1859. DRM_ERROR("%s WM%d latency not provided\n",
  1860. name, level);
  1861. continue;
  1862. }
  1863. /*
  1864. * - latencies are in us on gen9.
  1865. * - before then, WM1+ latency values are in 0.5us units
  1866. */
  1867. if (IS_GEN9(dev))
  1868. latency *= 10;
  1869. else if (level > 0)
  1870. latency *= 5;
  1871. DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
  1872. name, level, wm[level],
  1873. latency / 10, latency % 10);
  1874. }
  1875. }
  1876. static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
  1877. uint16_t wm[5], uint16_t min)
  1878. {
  1879. int level, max_level = ilk_wm_max_level(dev_priv->dev);
  1880. if (wm[0] >= min)
  1881. return false;
  1882. wm[0] = max(wm[0], min);
  1883. for (level = 1; level <= max_level; level++)
  1884. wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
  1885. return true;
  1886. }
  1887. static void snb_wm_latency_quirk(struct drm_device *dev)
  1888. {
  1889. struct drm_i915_private *dev_priv = dev->dev_private;
  1890. bool changed;
  1891. /*
  1892. * The BIOS provided WM memory latency values are often
  1893. * inadequate for high resolution displays. Adjust them.
  1894. */
  1895. changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
  1896. ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
  1897. ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
  1898. if (!changed)
  1899. return;
  1900. DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
  1901. intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
  1902. intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
  1903. intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
  1904. }
  1905. static void ilk_setup_wm_latency(struct drm_device *dev)
  1906. {
  1907. struct drm_i915_private *dev_priv = dev->dev_private;
  1908. intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
  1909. memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
  1910. sizeof(dev_priv->wm.pri_latency));
  1911. memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
  1912. sizeof(dev_priv->wm.pri_latency));
  1913. intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
  1914. intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
  1915. intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
  1916. intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
  1917. intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
  1918. if (IS_GEN6(dev))
  1919. snb_wm_latency_quirk(dev);
  1920. }
  1921. static void skl_setup_wm_latency(struct drm_device *dev)
  1922. {
  1923. struct drm_i915_private *dev_priv = dev->dev_private;
  1924. intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
  1925. intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
  1926. }
  1927. static void ilk_compute_wm_config(struct drm_device *dev,
  1928. struct intel_wm_config *config)
  1929. {
  1930. struct intel_crtc *intel_crtc;
  1931. /* Compute the currently _active_ config */
  1932. for_each_intel_crtc(dev, intel_crtc) {
  1933. const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
  1934. if (!wm->pipe_enabled)
  1935. continue;
  1936. config->sprites_enabled |= wm->sprites_enabled;
  1937. config->sprites_scaled |= wm->sprites_scaled;
  1938. config->num_pipes_active++;
  1939. }
  1940. }
  1941. /* Compute new watermarks for the pipe */
  1942. static bool intel_compute_pipe_wm(struct intel_crtc_state *cstate,
  1943. struct intel_pipe_wm *pipe_wm)
  1944. {
  1945. struct drm_crtc *crtc = cstate->base.crtc;
  1946. struct drm_device *dev = crtc->dev;
  1947. const struct drm_i915_private *dev_priv = dev->dev_private;
  1948. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1949. struct intel_plane *intel_plane;
  1950. struct intel_plane_state *sprstate = NULL;
  1951. int level, max_level = ilk_wm_max_level(dev);
  1952. /* LP0 watermark maximums depend on this pipe alone */
  1953. struct intel_wm_config config = {
  1954. .num_pipes_active = 1,
  1955. };
  1956. struct ilk_wm_maximums max;
  1957. for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
  1958. if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY) {
  1959. sprstate = to_intel_plane_state(intel_plane->base.state);
  1960. break;
  1961. }
  1962. }
  1963. config.sprites_enabled = sprstate->visible;
  1964. config.sprites_scaled = sprstate->visible &&
  1965. (drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
  1966. drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
  1967. pipe_wm->pipe_enabled = cstate->base.active;
  1968. pipe_wm->sprites_enabled = sprstate->visible;
  1969. pipe_wm->sprites_scaled = config.sprites_scaled;
  1970. /* ILK/SNB: LP2+ watermarks only w/o sprites */
  1971. if (INTEL_INFO(dev)->gen <= 6 && sprstate->visible)
  1972. max_level = 1;
  1973. /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
  1974. if (config.sprites_scaled)
  1975. max_level = 0;
  1976. ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate, &pipe_wm->wm[0]);
  1977. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1978. pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
  1979. /* LP0 watermarks always use 1/2 DDB partitioning */
  1980. ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
  1981. /* At least LP0 must be valid */
  1982. if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
  1983. return false;
  1984. ilk_compute_wm_reg_maximums(dev, 1, &max);
  1985. for (level = 1; level <= max_level; level++) {
  1986. struct intel_wm_level wm = {};
  1987. ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate, &wm);
  1988. /*
  1989. * Disable any watermark level that exceeds the
  1990. * register maximums since such watermarks are
  1991. * always invalid.
  1992. */
  1993. if (!ilk_validate_wm_level(level, &max, &wm))
  1994. break;
  1995. pipe_wm->wm[level] = wm;
  1996. }
  1997. return true;
  1998. }
  1999. /*
  2000. * Merge the watermarks from all active pipes for a specific level.
  2001. */
  2002. static void ilk_merge_wm_level(struct drm_device *dev,
  2003. int level,
  2004. struct intel_wm_level *ret_wm)
  2005. {
  2006. const struct intel_crtc *intel_crtc;
  2007. ret_wm->enable = true;
  2008. for_each_intel_crtc(dev, intel_crtc) {
  2009. const struct intel_pipe_wm *active = &intel_crtc->wm.active;
  2010. const struct intel_wm_level *wm = &active->wm[level];
  2011. if (!active->pipe_enabled)
  2012. continue;
  2013. /*
  2014. * The watermark values may have been used in the past,
  2015. * so we must maintain them in the registers for some
  2016. * time even if the level is now disabled.
  2017. */
  2018. if (!wm->enable)
  2019. ret_wm->enable = false;
  2020. ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
  2021. ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
  2022. ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
  2023. ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
  2024. }
  2025. }
  2026. /*
  2027. * Merge all low power watermarks for all active pipes.
  2028. */
  2029. static void ilk_wm_merge(struct drm_device *dev,
  2030. const struct intel_wm_config *config,
  2031. const struct ilk_wm_maximums *max,
  2032. struct intel_pipe_wm *merged)
  2033. {
  2034. struct drm_i915_private *dev_priv = dev->dev_private;
  2035. int level, max_level = ilk_wm_max_level(dev);
  2036. int last_enabled_level = max_level;
  2037. /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
  2038. if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
  2039. config->num_pipes_active > 1)
  2040. return;
  2041. /* ILK: FBC WM must be disabled always */
  2042. merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
  2043. /* merge each WM1+ level */
  2044. for (level = 1; level <= max_level; level++) {
  2045. struct intel_wm_level *wm = &merged->wm[level];
  2046. ilk_merge_wm_level(dev, level, wm);
  2047. if (level > last_enabled_level)
  2048. wm->enable = false;
  2049. else if (!ilk_validate_wm_level(level, max, wm))
  2050. /* make sure all following levels get disabled */
  2051. last_enabled_level = level - 1;
  2052. /*
  2053. * The spec says it is preferred to disable
  2054. * FBC WMs instead of disabling a WM level.
  2055. */
  2056. if (wm->fbc_val > max->fbc) {
  2057. if (wm->enable)
  2058. merged->fbc_wm_enabled = false;
  2059. wm->fbc_val = 0;
  2060. }
  2061. }
  2062. /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
  2063. /*
  2064. * FIXME this is racy. FBC might get enabled later.
  2065. * What we should check here is whether FBC can be
  2066. * enabled sometime later.
  2067. */
  2068. if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
  2069. intel_fbc_enabled(dev_priv)) {
  2070. for (level = 2; level <= max_level; level++) {
  2071. struct intel_wm_level *wm = &merged->wm[level];
  2072. wm->enable = false;
  2073. }
  2074. }
  2075. }
  2076. static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
  2077. {
  2078. /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
  2079. return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
  2080. }
  2081. /* The value we need to program into the WM_LPx latency field */
  2082. static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
  2083. {
  2084. struct drm_i915_private *dev_priv = dev->dev_private;
  2085. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  2086. return 2 * level;
  2087. else
  2088. return dev_priv->wm.pri_latency[level];
  2089. }
  2090. static void ilk_compute_wm_results(struct drm_device *dev,
  2091. const struct intel_pipe_wm *merged,
  2092. enum intel_ddb_partitioning partitioning,
  2093. struct ilk_wm_values *results)
  2094. {
  2095. struct intel_crtc *intel_crtc;
  2096. int level, wm_lp;
  2097. results->enable_fbc_wm = merged->fbc_wm_enabled;
  2098. results->partitioning = partitioning;
  2099. /* LP1+ register values */
  2100. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2101. const struct intel_wm_level *r;
  2102. level = ilk_wm_lp_to_level(wm_lp, merged);
  2103. r = &merged->wm[level];
  2104. /*
  2105. * Maintain the watermark values even if the level is
  2106. * disabled. Doing otherwise could cause underruns.
  2107. */
  2108. results->wm_lp[wm_lp - 1] =
  2109. (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
  2110. (r->pri_val << WM1_LP_SR_SHIFT) |
  2111. r->cur_val;
  2112. if (r->enable)
  2113. results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
  2114. if (INTEL_INFO(dev)->gen >= 8)
  2115. results->wm_lp[wm_lp - 1] |=
  2116. r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
  2117. else
  2118. results->wm_lp[wm_lp - 1] |=
  2119. r->fbc_val << WM1_LP_FBC_SHIFT;
  2120. /*
  2121. * Always set WM1S_LP_EN when spr_val != 0, even if the
  2122. * level is disabled. Doing otherwise could cause underruns.
  2123. */
  2124. if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
  2125. WARN_ON(wm_lp != 1);
  2126. results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
  2127. } else
  2128. results->wm_lp_spr[wm_lp - 1] = r->spr_val;
  2129. }
  2130. /* LP0 register values */
  2131. for_each_intel_crtc(dev, intel_crtc) {
  2132. enum pipe pipe = intel_crtc->pipe;
  2133. const struct intel_wm_level *r =
  2134. &intel_crtc->wm.active.wm[0];
  2135. if (WARN_ON(!r->enable))
  2136. continue;
  2137. results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
  2138. results->wm_pipe[pipe] =
  2139. (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
  2140. (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
  2141. r->cur_val;
  2142. }
  2143. }
  2144. /* Find the result with the highest level enabled. Check for enable_fbc_wm in
  2145. * case both are at the same level. Prefer r1 in case they're the same. */
  2146. static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
  2147. struct intel_pipe_wm *r1,
  2148. struct intel_pipe_wm *r2)
  2149. {
  2150. int level, max_level = ilk_wm_max_level(dev);
  2151. int level1 = 0, level2 = 0;
  2152. for (level = 1; level <= max_level; level++) {
  2153. if (r1->wm[level].enable)
  2154. level1 = level;
  2155. if (r2->wm[level].enable)
  2156. level2 = level;
  2157. }
  2158. if (level1 == level2) {
  2159. if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
  2160. return r2;
  2161. else
  2162. return r1;
  2163. } else if (level1 > level2) {
  2164. return r1;
  2165. } else {
  2166. return r2;
  2167. }
  2168. }
  2169. /* dirty bits used to track which watermarks need changes */
  2170. #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
  2171. #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
  2172. #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
  2173. #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
  2174. #define WM_DIRTY_FBC (1 << 24)
  2175. #define WM_DIRTY_DDB (1 << 25)
  2176. static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
  2177. const struct ilk_wm_values *old,
  2178. const struct ilk_wm_values *new)
  2179. {
  2180. unsigned int dirty = 0;
  2181. enum pipe pipe;
  2182. int wm_lp;
  2183. for_each_pipe(dev_priv, pipe) {
  2184. if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
  2185. dirty |= WM_DIRTY_LINETIME(pipe);
  2186. /* Must disable LP1+ watermarks too */
  2187. dirty |= WM_DIRTY_LP_ALL;
  2188. }
  2189. if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
  2190. dirty |= WM_DIRTY_PIPE(pipe);
  2191. /* Must disable LP1+ watermarks too */
  2192. dirty |= WM_DIRTY_LP_ALL;
  2193. }
  2194. }
  2195. if (old->enable_fbc_wm != new->enable_fbc_wm) {
  2196. dirty |= WM_DIRTY_FBC;
  2197. /* Must disable LP1+ watermarks too */
  2198. dirty |= WM_DIRTY_LP_ALL;
  2199. }
  2200. if (old->partitioning != new->partitioning) {
  2201. dirty |= WM_DIRTY_DDB;
  2202. /* Must disable LP1+ watermarks too */
  2203. dirty |= WM_DIRTY_LP_ALL;
  2204. }
  2205. /* LP1+ watermarks already deemed dirty, no need to continue */
  2206. if (dirty & WM_DIRTY_LP_ALL)
  2207. return dirty;
  2208. /* Find the lowest numbered LP1+ watermark in need of an update... */
  2209. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2210. if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
  2211. old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
  2212. break;
  2213. }
  2214. /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
  2215. for (; wm_lp <= 3; wm_lp++)
  2216. dirty |= WM_DIRTY_LP(wm_lp);
  2217. return dirty;
  2218. }
  2219. static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
  2220. unsigned int dirty)
  2221. {
  2222. struct ilk_wm_values *previous = &dev_priv->wm.hw;
  2223. bool changed = false;
  2224. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
  2225. previous->wm_lp[2] &= ~WM1_LP_SR_EN;
  2226. I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
  2227. changed = true;
  2228. }
  2229. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
  2230. previous->wm_lp[1] &= ~WM1_LP_SR_EN;
  2231. I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
  2232. changed = true;
  2233. }
  2234. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
  2235. previous->wm_lp[0] &= ~WM1_LP_SR_EN;
  2236. I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
  2237. changed = true;
  2238. }
  2239. /*
  2240. * Don't touch WM1S_LP_EN here.
  2241. * Doing so could cause underruns.
  2242. */
  2243. return changed;
  2244. }
  2245. /*
  2246. * The spec says we shouldn't write when we don't need, because every write
  2247. * causes WMs to be re-evaluated, expending some power.
  2248. */
  2249. static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
  2250. struct ilk_wm_values *results)
  2251. {
  2252. struct drm_device *dev = dev_priv->dev;
  2253. struct ilk_wm_values *previous = &dev_priv->wm.hw;
  2254. unsigned int dirty;
  2255. uint32_t val;
  2256. dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
  2257. if (!dirty)
  2258. return;
  2259. _ilk_disable_lp_wm(dev_priv, dirty);
  2260. if (dirty & WM_DIRTY_PIPE(PIPE_A))
  2261. I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
  2262. if (dirty & WM_DIRTY_PIPE(PIPE_B))
  2263. I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
  2264. if (dirty & WM_DIRTY_PIPE(PIPE_C))
  2265. I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
  2266. if (dirty & WM_DIRTY_LINETIME(PIPE_A))
  2267. I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
  2268. if (dirty & WM_DIRTY_LINETIME(PIPE_B))
  2269. I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
  2270. if (dirty & WM_DIRTY_LINETIME(PIPE_C))
  2271. I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
  2272. if (dirty & WM_DIRTY_DDB) {
  2273. if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  2274. val = I915_READ(WM_MISC);
  2275. if (results->partitioning == INTEL_DDB_PART_1_2)
  2276. val &= ~WM_MISC_DATA_PARTITION_5_6;
  2277. else
  2278. val |= WM_MISC_DATA_PARTITION_5_6;
  2279. I915_WRITE(WM_MISC, val);
  2280. } else {
  2281. val = I915_READ(DISP_ARB_CTL2);
  2282. if (results->partitioning == INTEL_DDB_PART_1_2)
  2283. val &= ~DISP_DATA_PARTITION_5_6;
  2284. else
  2285. val |= DISP_DATA_PARTITION_5_6;
  2286. I915_WRITE(DISP_ARB_CTL2, val);
  2287. }
  2288. }
  2289. if (dirty & WM_DIRTY_FBC) {
  2290. val = I915_READ(DISP_ARB_CTL);
  2291. if (results->enable_fbc_wm)
  2292. val &= ~DISP_FBC_WM_DIS;
  2293. else
  2294. val |= DISP_FBC_WM_DIS;
  2295. I915_WRITE(DISP_ARB_CTL, val);
  2296. }
  2297. if (dirty & WM_DIRTY_LP(1) &&
  2298. previous->wm_lp_spr[0] != results->wm_lp_spr[0])
  2299. I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
  2300. if (INTEL_INFO(dev)->gen >= 7) {
  2301. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
  2302. I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
  2303. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
  2304. I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
  2305. }
  2306. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
  2307. I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
  2308. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
  2309. I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
  2310. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
  2311. I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
  2312. dev_priv->wm.hw = *results;
  2313. }
  2314. static bool ilk_disable_lp_wm(struct drm_device *dev)
  2315. {
  2316. struct drm_i915_private *dev_priv = dev->dev_private;
  2317. return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
  2318. }
  2319. /*
  2320. * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
  2321. * different active planes.
  2322. */
  2323. #define SKL_DDB_SIZE 896 /* in blocks */
  2324. #define BXT_DDB_SIZE 512
  2325. static void
  2326. skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
  2327. struct drm_crtc *for_crtc,
  2328. const struct intel_wm_config *config,
  2329. const struct skl_pipe_wm_parameters *params,
  2330. struct skl_ddb_entry *alloc /* out */)
  2331. {
  2332. struct drm_crtc *crtc;
  2333. unsigned int pipe_size, ddb_size;
  2334. int nth_active_pipe;
  2335. if (!params->active) {
  2336. alloc->start = 0;
  2337. alloc->end = 0;
  2338. return;
  2339. }
  2340. if (IS_BROXTON(dev))
  2341. ddb_size = BXT_DDB_SIZE;
  2342. else
  2343. ddb_size = SKL_DDB_SIZE;
  2344. ddb_size -= 4; /* 4 blocks for bypass path allocation */
  2345. nth_active_pipe = 0;
  2346. for_each_crtc(dev, crtc) {
  2347. if (!to_intel_crtc(crtc)->active)
  2348. continue;
  2349. if (crtc == for_crtc)
  2350. break;
  2351. nth_active_pipe++;
  2352. }
  2353. pipe_size = ddb_size / config->num_pipes_active;
  2354. alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
  2355. alloc->end = alloc->start + pipe_size;
  2356. }
  2357. static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
  2358. {
  2359. if (config->num_pipes_active == 1)
  2360. return 32;
  2361. return 8;
  2362. }
  2363. static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
  2364. {
  2365. entry->start = reg & 0x3ff;
  2366. entry->end = (reg >> 16) & 0x3ff;
  2367. if (entry->end)
  2368. entry->end += 1;
  2369. }
  2370. void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
  2371. struct skl_ddb_allocation *ddb /* out */)
  2372. {
  2373. enum pipe pipe;
  2374. int plane;
  2375. u32 val;
  2376. memset(ddb, 0, sizeof(*ddb));
  2377. for_each_pipe(dev_priv, pipe) {
  2378. if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe)))
  2379. continue;
  2380. for_each_plane(dev_priv, pipe, plane) {
  2381. val = I915_READ(PLANE_BUF_CFG(pipe, plane));
  2382. skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
  2383. val);
  2384. }
  2385. val = I915_READ(CUR_BUF_CFG(pipe));
  2386. skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
  2387. val);
  2388. }
  2389. }
  2390. static unsigned int
  2391. skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p, int y)
  2392. {
  2393. /* for planar format */
  2394. if (p->y_bytes_per_pixel) {
  2395. if (y) /* y-plane data rate */
  2396. return p->horiz_pixels * p->vert_pixels * p->y_bytes_per_pixel;
  2397. else /* uv-plane data rate */
  2398. return (p->horiz_pixels/2) * (p->vert_pixels/2) * p->bytes_per_pixel;
  2399. }
  2400. /* for packed formats */
  2401. return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
  2402. }
  2403. /*
  2404. * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
  2405. * a 8192x4096@32bpp framebuffer:
  2406. * 3 * 4096 * 8192 * 4 < 2^32
  2407. */
  2408. static unsigned int
  2409. skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
  2410. const struct skl_pipe_wm_parameters *params)
  2411. {
  2412. unsigned int total_data_rate = 0;
  2413. int plane;
  2414. for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
  2415. const struct intel_plane_wm_parameters *p;
  2416. p = &params->plane[plane];
  2417. if (!p->enabled)
  2418. continue;
  2419. total_data_rate += skl_plane_relative_data_rate(p, 0); /* packed/uv */
  2420. if (p->y_bytes_per_pixel) {
  2421. total_data_rate += skl_plane_relative_data_rate(p, 1); /* y-plane */
  2422. }
  2423. }
  2424. return total_data_rate;
  2425. }
  2426. static void
  2427. skl_allocate_pipe_ddb(struct drm_crtc *crtc,
  2428. const struct intel_wm_config *config,
  2429. const struct skl_pipe_wm_parameters *params,
  2430. struct skl_ddb_allocation *ddb /* out */)
  2431. {
  2432. struct drm_device *dev = crtc->dev;
  2433. struct drm_i915_private *dev_priv = dev->dev_private;
  2434. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2435. enum pipe pipe = intel_crtc->pipe;
  2436. struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
  2437. uint16_t alloc_size, start, cursor_blocks;
  2438. uint16_t minimum[I915_MAX_PLANES];
  2439. uint16_t y_minimum[I915_MAX_PLANES];
  2440. unsigned int total_data_rate;
  2441. int plane;
  2442. skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
  2443. alloc_size = skl_ddb_entry_size(alloc);
  2444. if (alloc_size == 0) {
  2445. memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
  2446. memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
  2447. sizeof(ddb->plane[pipe][PLANE_CURSOR]));
  2448. return;
  2449. }
  2450. cursor_blocks = skl_cursor_allocation(config);
  2451. ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
  2452. ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
  2453. alloc_size -= cursor_blocks;
  2454. alloc->end -= cursor_blocks;
  2455. /* 1. Allocate the mininum required blocks for each active plane */
  2456. for_each_plane(dev_priv, pipe, plane) {
  2457. const struct intel_plane_wm_parameters *p;
  2458. p = &params->plane[plane];
  2459. if (!p->enabled)
  2460. continue;
  2461. minimum[plane] = 8;
  2462. alloc_size -= minimum[plane];
  2463. y_minimum[plane] = p->y_bytes_per_pixel ? 8 : 0;
  2464. alloc_size -= y_minimum[plane];
  2465. }
  2466. /*
  2467. * 2. Distribute the remaining space in proportion to the amount of
  2468. * data each plane needs to fetch from memory.
  2469. *
  2470. * FIXME: we may not allocate every single block here.
  2471. */
  2472. total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);
  2473. start = alloc->start;
  2474. for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
  2475. const struct intel_plane_wm_parameters *p;
  2476. unsigned int data_rate, y_data_rate;
  2477. uint16_t plane_blocks, y_plane_blocks = 0;
  2478. p = &params->plane[plane];
  2479. if (!p->enabled)
  2480. continue;
  2481. data_rate = skl_plane_relative_data_rate(p, 0);
  2482. /*
  2483. * allocation for (packed formats) or (uv-plane part of planar format):
  2484. * promote the expression to 64 bits to avoid overflowing, the
  2485. * result is < available as data_rate / total_data_rate < 1
  2486. */
  2487. plane_blocks = minimum[plane];
  2488. plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
  2489. total_data_rate);
  2490. ddb->plane[pipe][plane].start = start;
  2491. ddb->plane[pipe][plane].end = start + plane_blocks;
  2492. start += plane_blocks;
  2493. /*
  2494. * allocation for y_plane part of planar format:
  2495. */
  2496. if (p->y_bytes_per_pixel) {
  2497. y_data_rate = skl_plane_relative_data_rate(p, 1);
  2498. y_plane_blocks = y_minimum[plane];
  2499. y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
  2500. total_data_rate);
  2501. ddb->y_plane[pipe][plane].start = start;
  2502. ddb->y_plane[pipe][plane].end = start + y_plane_blocks;
  2503. start += y_plane_blocks;
  2504. }
  2505. }
  2506. }
  2507. static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
  2508. {
  2509. /* TODO: Take into account the scalers once we support them */
  2510. return config->base.adjusted_mode.crtc_clock;
  2511. }
  2512. /*
  2513. * The max latency should be 257 (max the punit can code is 255 and we add 2us
  2514. * for the read latency) and bytes_per_pixel should always be <= 8, so that
  2515. * should allow pixel_rate up to ~2 GHz which seems sufficient since max
  2516. * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
  2517. */
  2518. static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
  2519. uint32_t latency)
  2520. {
  2521. uint32_t wm_intermediate_val, ret;
  2522. if (latency == 0)
  2523. return UINT_MAX;
  2524. wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
  2525. ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
  2526. return ret;
  2527. }
  2528. static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
  2529. uint32_t horiz_pixels, uint8_t bytes_per_pixel,
  2530. uint64_t tiling, uint32_t latency)
  2531. {
  2532. uint32_t ret;
  2533. uint32_t plane_bytes_per_line, plane_blocks_per_line;
  2534. uint32_t wm_intermediate_val;
  2535. if (latency == 0)
  2536. return UINT_MAX;
  2537. plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
  2538. if (tiling == I915_FORMAT_MOD_Y_TILED ||
  2539. tiling == I915_FORMAT_MOD_Yf_TILED) {
  2540. plane_bytes_per_line *= 4;
  2541. plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
  2542. plane_blocks_per_line /= 4;
  2543. } else {
  2544. plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
  2545. }
  2546. wm_intermediate_val = latency * pixel_rate;
  2547. ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
  2548. plane_blocks_per_line;
  2549. return ret;
  2550. }
  2551. static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
  2552. const struct intel_crtc *intel_crtc)
  2553. {
  2554. struct drm_device *dev = intel_crtc->base.dev;
  2555. struct drm_i915_private *dev_priv = dev->dev_private;
  2556. const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
  2557. enum pipe pipe = intel_crtc->pipe;
  2558. if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
  2559. sizeof(new_ddb->plane[pipe])))
  2560. return true;
  2561. if (memcmp(&new_ddb->plane[pipe][PLANE_CURSOR], &cur_ddb->plane[pipe][PLANE_CURSOR],
  2562. sizeof(new_ddb->plane[pipe][PLANE_CURSOR])))
  2563. return true;
  2564. return false;
  2565. }
  2566. static void skl_compute_wm_global_parameters(struct drm_device *dev,
  2567. struct intel_wm_config *config)
  2568. {
  2569. struct drm_crtc *crtc;
  2570. struct drm_plane *plane;
  2571. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
  2572. config->num_pipes_active += to_intel_crtc(crtc)->active;
  2573. /* FIXME: I don't think we need those two global parameters on SKL */
  2574. list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
  2575. struct intel_plane *intel_plane = to_intel_plane(plane);
  2576. config->sprites_enabled |= intel_plane->wm.enabled;
  2577. config->sprites_scaled |= intel_plane->wm.scaled;
  2578. }
  2579. }
  2580. static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
  2581. struct skl_pipe_wm_parameters *p)
  2582. {
  2583. struct drm_device *dev = crtc->dev;
  2584. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2585. enum pipe pipe = intel_crtc->pipe;
  2586. struct drm_plane *plane;
  2587. struct drm_framebuffer *fb;
  2588. int i = 1; /* Index for sprite planes start */
  2589. p->active = intel_crtc->active;
  2590. if (p->active) {
  2591. p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
  2592. p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);
  2593. fb = crtc->primary->state->fb;
  2594. /* For planar: Bpp is for uv plane, y_Bpp is for y plane */
  2595. if (fb) {
  2596. p->plane[0].enabled = true;
  2597. p->plane[0].bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
  2598. drm_format_plane_cpp(fb->pixel_format, 1) :
  2599. drm_format_plane_cpp(fb->pixel_format, 0);
  2600. p->plane[0].y_bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
  2601. drm_format_plane_cpp(fb->pixel_format, 0) : 0;
  2602. p->plane[0].tiling = fb->modifier[0];
  2603. } else {
  2604. p->plane[0].enabled = false;
  2605. p->plane[0].bytes_per_pixel = 0;
  2606. p->plane[0].y_bytes_per_pixel = 0;
  2607. p->plane[0].tiling = DRM_FORMAT_MOD_NONE;
  2608. }
  2609. p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
  2610. p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
  2611. p->plane[0].rotation = crtc->primary->state->rotation;
  2612. fb = crtc->cursor->state->fb;
  2613. p->plane[PLANE_CURSOR].y_bytes_per_pixel = 0;
  2614. if (fb) {
  2615. p->plane[PLANE_CURSOR].enabled = true;
  2616. p->plane[PLANE_CURSOR].bytes_per_pixel = fb->bits_per_pixel / 8;
  2617. p->plane[PLANE_CURSOR].horiz_pixels = crtc->cursor->state->crtc_w;
  2618. p->plane[PLANE_CURSOR].vert_pixels = crtc->cursor->state->crtc_h;
  2619. } else {
  2620. p->plane[PLANE_CURSOR].enabled = false;
  2621. p->plane[PLANE_CURSOR].bytes_per_pixel = 0;
  2622. p->plane[PLANE_CURSOR].horiz_pixels = 64;
  2623. p->plane[PLANE_CURSOR].vert_pixels = 64;
  2624. }
  2625. }
  2626. list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
  2627. struct intel_plane *intel_plane = to_intel_plane(plane);
  2628. if (intel_plane->pipe == pipe &&
  2629. plane->type == DRM_PLANE_TYPE_OVERLAY)
  2630. p->plane[i++] = intel_plane->wm;
  2631. }
  2632. }
  2633. static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
  2634. struct skl_pipe_wm_parameters *p,
  2635. struct intel_plane_wm_parameters *p_params,
  2636. uint16_t ddb_allocation,
  2637. int level,
  2638. uint16_t *out_blocks, /* out */
  2639. uint8_t *out_lines /* out */)
  2640. {
  2641. uint32_t latency = dev_priv->wm.skl_latency[level];
  2642. uint32_t method1, method2;
  2643. uint32_t plane_bytes_per_line, plane_blocks_per_line;
  2644. uint32_t res_blocks, res_lines;
  2645. uint32_t selected_result;
  2646. uint8_t bytes_per_pixel;
  2647. if (latency == 0 || !p->active || !p_params->enabled)
  2648. return false;
  2649. bytes_per_pixel = p_params->y_bytes_per_pixel ?
  2650. p_params->y_bytes_per_pixel :
  2651. p_params->bytes_per_pixel;
  2652. method1 = skl_wm_method1(p->pixel_rate,
  2653. bytes_per_pixel,
  2654. latency);
  2655. method2 = skl_wm_method2(p->pixel_rate,
  2656. p->pipe_htotal,
  2657. p_params->horiz_pixels,
  2658. bytes_per_pixel,
  2659. p_params->tiling,
  2660. latency);
  2661. plane_bytes_per_line = p_params->horiz_pixels * bytes_per_pixel;
  2662. plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
  2663. if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
  2664. p_params->tiling == I915_FORMAT_MOD_Yf_TILED) {
  2665. uint32_t min_scanlines = 4;
  2666. uint32_t y_tile_minimum;
  2667. if (intel_rotation_90_or_270(p_params->rotation)) {
  2668. switch (p_params->bytes_per_pixel) {
  2669. case 1:
  2670. min_scanlines = 16;
  2671. break;
  2672. case 2:
  2673. min_scanlines = 8;
  2674. break;
  2675. case 8:
  2676. WARN(1, "Unsupported pixel depth for rotation");
  2677. }
  2678. }
  2679. y_tile_minimum = plane_blocks_per_line * min_scanlines;
  2680. selected_result = max(method2, y_tile_minimum);
  2681. } else {
  2682. if ((ddb_allocation / plane_blocks_per_line) >= 1)
  2683. selected_result = min(method1, method2);
  2684. else
  2685. selected_result = method1;
  2686. }
  2687. res_blocks = selected_result + 1;
  2688. res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
  2689. if (level >= 1 && level <= 7) {
  2690. if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
  2691. p_params->tiling == I915_FORMAT_MOD_Yf_TILED)
  2692. res_lines += 4;
  2693. else
  2694. res_blocks++;
  2695. }
  2696. if (res_blocks >= ddb_allocation || res_lines > 31)
  2697. return false;
  2698. *out_blocks = res_blocks;
  2699. *out_lines = res_lines;
  2700. return true;
  2701. }
  2702. static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
  2703. struct skl_ddb_allocation *ddb,
  2704. struct skl_pipe_wm_parameters *p,
  2705. enum pipe pipe,
  2706. int level,
  2707. int num_planes,
  2708. struct skl_wm_level *result)
  2709. {
  2710. uint16_t ddb_blocks;
  2711. int i;
  2712. for (i = 0; i < num_planes; i++) {
  2713. ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
  2714. result->plane_en[i] = skl_compute_plane_wm(dev_priv,
  2715. p, &p->plane[i],
  2716. ddb_blocks,
  2717. level,
  2718. &result->plane_res_b[i],
  2719. &result->plane_res_l[i]);
  2720. }
  2721. ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][PLANE_CURSOR]);
  2722. result->plane_en[PLANE_CURSOR] = skl_compute_plane_wm(dev_priv, p,
  2723. &p->plane[PLANE_CURSOR],
  2724. ddb_blocks, level,
  2725. &result->plane_res_b[PLANE_CURSOR],
  2726. &result->plane_res_l[PLANE_CURSOR]);
  2727. }
  2728. static uint32_t
  2729. skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
  2730. {
  2731. if (!to_intel_crtc(crtc)->active)
  2732. return 0;
  2733. if (WARN_ON(p->pixel_rate == 0))
  2734. return 0;
  2735. return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);
  2736. }
  2737. static void skl_compute_transition_wm(struct drm_crtc *crtc,
  2738. struct skl_pipe_wm_parameters *params,
  2739. struct skl_wm_level *trans_wm /* out */)
  2740. {
  2741. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2742. int i;
  2743. if (!params->active)
  2744. return;
  2745. /* Until we know more, just disable transition WMs */
  2746. for (i = 0; i < intel_num_planes(intel_crtc); i++)
  2747. trans_wm->plane_en[i] = false;
  2748. trans_wm->plane_en[PLANE_CURSOR] = false;
  2749. }
  2750. static void skl_compute_pipe_wm(struct drm_crtc *crtc,
  2751. struct skl_ddb_allocation *ddb,
  2752. struct skl_pipe_wm_parameters *params,
  2753. struct skl_pipe_wm *pipe_wm)
  2754. {
  2755. struct drm_device *dev = crtc->dev;
  2756. const struct drm_i915_private *dev_priv = dev->dev_private;
  2757. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2758. int level, max_level = ilk_wm_max_level(dev);
  2759. for (level = 0; level <= max_level; level++) {
  2760. skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
  2761. level, intel_num_planes(intel_crtc),
  2762. &pipe_wm->wm[level]);
  2763. }
  2764. pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);
  2765. skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
  2766. }
  2767. static void skl_compute_wm_results(struct drm_device *dev,
  2768. struct skl_pipe_wm_parameters *p,
  2769. struct skl_pipe_wm *p_wm,
  2770. struct skl_wm_values *r,
  2771. struct intel_crtc *intel_crtc)
  2772. {
  2773. int level, max_level = ilk_wm_max_level(dev);
  2774. enum pipe pipe = intel_crtc->pipe;
  2775. uint32_t temp;
  2776. int i;
  2777. for (level = 0; level <= max_level; level++) {
  2778. for (i = 0; i < intel_num_planes(intel_crtc); i++) {
  2779. temp = 0;
  2780. temp |= p_wm->wm[level].plane_res_l[i] <<
  2781. PLANE_WM_LINES_SHIFT;
  2782. temp |= p_wm->wm[level].plane_res_b[i];
  2783. if (p_wm->wm[level].plane_en[i])
  2784. temp |= PLANE_WM_EN;
  2785. r->plane[pipe][i][level] = temp;
  2786. }
  2787. temp = 0;
  2788. temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
  2789. temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
  2790. if (p_wm->wm[level].plane_en[PLANE_CURSOR])
  2791. temp |= PLANE_WM_EN;
  2792. r->plane[pipe][PLANE_CURSOR][level] = temp;
  2793. }
  2794. /* transition WMs */
  2795. for (i = 0; i < intel_num_planes(intel_crtc); i++) {
  2796. temp = 0;
  2797. temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
  2798. temp |= p_wm->trans_wm.plane_res_b[i];
  2799. if (p_wm->trans_wm.plane_en[i])
  2800. temp |= PLANE_WM_EN;
  2801. r->plane_trans[pipe][i] = temp;
  2802. }
  2803. temp = 0;
  2804. temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
  2805. temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
  2806. if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
  2807. temp |= PLANE_WM_EN;
  2808. r->plane_trans[pipe][PLANE_CURSOR] = temp;
  2809. r->wm_linetime[pipe] = p_wm->linetime;
  2810. }
  2811. static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
  2812. const struct skl_ddb_entry *entry)
  2813. {
  2814. if (entry->end)
  2815. I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
  2816. else
  2817. I915_WRITE(reg, 0);
  2818. }
  2819. static void skl_write_wm_values(struct drm_i915_private *dev_priv,
  2820. const struct skl_wm_values *new)
  2821. {
  2822. struct drm_device *dev = dev_priv->dev;
  2823. struct intel_crtc *crtc;
  2824. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  2825. int i, level, max_level = ilk_wm_max_level(dev);
  2826. enum pipe pipe = crtc->pipe;
  2827. if (!new->dirty[pipe])
  2828. continue;
  2829. I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
  2830. for (level = 0; level <= max_level; level++) {
  2831. for (i = 0; i < intel_num_planes(crtc); i++)
  2832. I915_WRITE(PLANE_WM(pipe, i, level),
  2833. new->plane[pipe][i][level]);
  2834. I915_WRITE(CUR_WM(pipe, level),
  2835. new->plane[pipe][PLANE_CURSOR][level]);
  2836. }
  2837. for (i = 0; i < intel_num_planes(crtc); i++)
  2838. I915_WRITE(PLANE_WM_TRANS(pipe, i),
  2839. new->plane_trans[pipe][i]);
  2840. I915_WRITE(CUR_WM_TRANS(pipe),
  2841. new->plane_trans[pipe][PLANE_CURSOR]);
  2842. for (i = 0; i < intel_num_planes(crtc); i++) {
  2843. skl_ddb_entry_write(dev_priv,
  2844. PLANE_BUF_CFG(pipe, i),
  2845. &new->ddb.plane[pipe][i]);
  2846. skl_ddb_entry_write(dev_priv,
  2847. PLANE_NV12_BUF_CFG(pipe, i),
  2848. &new->ddb.y_plane[pipe][i]);
  2849. }
  2850. skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
  2851. &new->ddb.plane[pipe][PLANE_CURSOR]);
  2852. }
  2853. }
  2854. /*
  2855. * When setting up a new DDB allocation arrangement, we need to correctly
  2856. * sequence the times at which the new allocations for the pipes are taken into
  2857. * account or we'll have pipes fetching from space previously allocated to
  2858. * another pipe.
  2859. *
  2860. * Roughly the sequence looks like:
  2861. * 1. re-allocate the pipe(s) with the allocation being reduced and not
  2862. * overlapping with a previous light-up pipe (another way to put it is:
  2863. * pipes with their new allocation strickly included into their old ones).
  2864. * 2. re-allocate the other pipes that get their allocation reduced
  2865. * 3. allocate the pipes having their allocation increased
  2866. *
  2867. * Steps 1. and 2. are here to take care of the following case:
  2868. * - Initially DDB looks like this:
  2869. * | B | C |
  2870. * - enable pipe A.
  2871. * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
  2872. * allocation
  2873. * | A | B | C |
  2874. *
  2875. * We need to sequence the re-allocation: C, B, A (and not B, C, A).
  2876. */
  2877. static void
  2878. skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
  2879. {
  2880. int plane;
  2881. DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
  2882. for_each_plane(dev_priv, pipe, plane) {
  2883. I915_WRITE(PLANE_SURF(pipe, plane),
  2884. I915_READ(PLANE_SURF(pipe, plane)));
  2885. }
  2886. I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
  2887. }
  2888. static bool
  2889. skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
  2890. const struct skl_ddb_allocation *new,
  2891. enum pipe pipe)
  2892. {
  2893. uint16_t old_size, new_size;
  2894. old_size = skl_ddb_entry_size(&old->pipe[pipe]);
  2895. new_size = skl_ddb_entry_size(&new->pipe[pipe]);
  2896. return old_size != new_size &&
  2897. new->pipe[pipe].start >= old->pipe[pipe].start &&
  2898. new->pipe[pipe].end <= old->pipe[pipe].end;
  2899. }
  2900. static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
  2901. struct skl_wm_values *new_values)
  2902. {
  2903. struct drm_device *dev = dev_priv->dev;
  2904. struct skl_ddb_allocation *cur_ddb, *new_ddb;
  2905. bool reallocated[I915_MAX_PIPES] = {};
  2906. struct intel_crtc *crtc;
  2907. enum pipe pipe;
  2908. new_ddb = &new_values->ddb;
  2909. cur_ddb = &dev_priv->wm.skl_hw.ddb;
  2910. /*
  2911. * First pass: flush the pipes with the new allocation contained into
  2912. * the old space.
  2913. *
  2914. * We'll wait for the vblank on those pipes to ensure we can safely
  2915. * re-allocate the freed space without this pipe fetching from it.
  2916. */
  2917. for_each_intel_crtc(dev, crtc) {
  2918. if (!crtc->active)
  2919. continue;
  2920. pipe = crtc->pipe;
  2921. if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
  2922. continue;
  2923. skl_wm_flush_pipe(dev_priv, pipe, 1);
  2924. intel_wait_for_vblank(dev, pipe);
  2925. reallocated[pipe] = true;
  2926. }
  2927. /*
  2928. * Second pass: flush the pipes that are having their allocation
  2929. * reduced, but overlapping with a previous allocation.
  2930. *
  2931. * Here as well we need to wait for the vblank to make sure the freed
  2932. * space is not used anymore.
  2933. */
  2934. for_each_intel_crtc(dev, crtc) {
  2935. if (!crtc->active)
  2936. continue;
  2937. pipe = crtc->pipe;
  2938. if (reallocated[pipe])
  2939. continue;
  2940. if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
  2941. skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
  2942. skl_wm_flush_pipe(dev_priv, pipe, 2);
  2943. intel_wait_for_vblank(dev, pipe);
  2944. reallocated[pipe] = true;
  2945. }
  2946. }
  2947. /*
  2948. * Third pass: flush the pipes that got more space allocated.
  2949. *
  2950. * We don't need to actively wait for the update here, next vblank
  2951. * will just get more DDB space with the correct WM values.
  2952. */
  2953. for_each_intel_crtc(dev, crtc) {
  2954. if (!crtc->active)
  2955. continue;
  2956. pipe = crtc->pipe;
  2957. /*
  2958. * At this point, only the pipes more space than before are
  2959. * left to re-allocate.
  2960. */
  2961. if (reallocated[pipe])
  2962. continue;
  2963. skl_wm_flush_pipe(dev_priv, pipe, 3);
  2964. }
  2965. }
  2966. static bool skl_update_pipe_wm(struct drm_crtc *crtc,
  2967. struct skl_pipe_wm_parameters *params,
  2968. struct intel_wm_config *config,
  2969. struct skl_ddb_allocation *ddb, /* out */
  2970. struct skl_pipe_wm *pipe_wm /* out */)
  2971. {
  2972. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2973. skl_compute_wm_pipe_parameters(crtc, params);
  2974. skl_allocate_pipe_ddb(crtc, config, params, ddb);
  2975. skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);
  2976. if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
  2977. return false;
  2978. intel_crtc->wm.skl_active = *pipe_wm;
  2979. return true;
  2980. }
  2981. static void skl_update_other_pipe_wm(struct drm_device *dev,
  2982. struct drm_crtc *crtc,
  2983. struct intel_wm_config *config,
  2984. struct skl_wm_values *r)
  2985. {
  2986. struct intel_crtc *intel_crtc;
  2987. struct intel_crtc *this_crtc = to_intel_crtc(crtc);
  2988. /*
  2989. * If the WM update hasn't changed the allocation for this_crtc (the
  2990. * crtc we are currently computing the new WM values for), other
  2991. * enabled crtcs will keep the same allocation and we don't need to
  2992. * recompute anything for them.
  2993. */
  2994. if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
  2995. return;
  2996. /*
  2997. * Otherwise, because of this_crtc being freshly enabled/disabled, the
  2998. * other active pipes need new DDB allocation and WM values.
  2999. */
  3000. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  3001. base.head) {
  3002. struct skl_pipe_wm_parameters params = {};
  3003. struct skl_pipe_wm pipe_wm = {};
  3004. bool wm_changed;
  3005. if (this_crtc->pipe == intel_crtc->pipe)
  3006. continue;
  3007. if (!intel_crtc->active)
  3008. continue;
  3009. wm_changed = skl_update_pipe_wm(&intel_crtc->base,
  3010. &params, config,
  3011. &r->ddb, &pipe_wm);
  3012. /*
  3013. * If we end up re-computing the other pipe WM values, it's
  3014. * because it was really needed, so we expect the WM values to
  3015. * be different.
  3016. */
  3017. WARN_ON(!wm_changed);
  3018. skl_compute_wm_results(dev, &params, &pipe_wm, r, intel_crtc);
  3019. r->dirty[intel_crtc->pipe] = true;
  3020. }
  3021. }
  3022. static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
  3023. {
  3024. watermarks->wm_linetime[pipe] = 0;
  3025. memset(watermarks->plane[pipe], 0,
  3026. sizeof(uint32_t) * 8 * I915_MAX_PLANES);
  3027. memset(watermarks->plane_trans[pipe],
  3028. 0, sizeof(uint32_t) * I915_MAX_PLANES);
  3029. watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
  3030. /* Clear ddb entries for pipe */
  3031. memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
  3032. memset(&watermarks->ddb.plane[pipe], 0,
  3033. sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
  3034. memset(&watermarks->ddb.y_plane[pipe], 0,
  3035. sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
  3036. memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
  3037. sizeof(struct skl_ddb_entry));
  3038. }
  3039. static void skl_update_wm(struct drm_crtc *crtc)
  3040. {
  3041. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3042. struct drm_device *dev = crtc->dev;
  3043. struct drm_i915_private *dev_priv = dev->dev_private;
  3044. struct skl_pipe_wm_parameters params = {};
  3045. struct skl_wm_values *results = &dev_priv->wm.skl_results;
  3046. struct skl_pipe_wm pipe_wm = {};
  3047. struct intel_wm_config config = {};
  3048. /* Clear all dirty flags */
  3049. memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);
  3050. skl_clear_wm(results, intel_crtc->pipe);
  3051. skl_compute_wm_global_parameters(dev, &config);
  3052. if (!skl_update_pipe_wm(crtc, &params, &config,
  3053. &results->ddb, &pipe_wm))
  3054. return;
  3055. skl_compute_wm_results(dev, &params, &pipe_wm, results, intel_crtc);
  3056. results->dirty[intel_crtc->pipe] = true;
  3057. skl_update_other_pipe_wm(dev, crtc, &config, results);
  3058. skl_write_wm_values(dev_priv, results);
  3059. skl_flush_wm_values(dev_priv, results);
  3060. /* store the new configuration */
  3061. dev_priv->wm.skl_hw = *results;
  3062. }
  3063. static void
  3064. skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
  3065. uint32_t sprite_width, uint32_t sprite_height,
  3066. int pixel_size, bool enabled, bool scaled)
  3067. {
  3068. struct intel_plane *intel_plane = to_intel_plane(plane);
  3069. struct drm_framebuffer *fb = plane->state->fb;
  3070. intel_plane->wm.enabled = enabled;
  3071. intel_plane->wm.scaled = scaled;
  3072. intel_plane->wm.horiz_pixels = sprite_width;
  3073. intel_plane->wm.vert_pixels = sprite_height;
  3074. intel_plane->wm.tiling = DRM_FORMAT_MOD_NONE;
  3075. /* For planar: Bpp is for UV plane, y_Bpp is for Y plane */
  3076. intel_plane->wm.bytes_per_pixel =
  3077. (fb && fb->pixel_format == DRM_FORMAT_NV12) ?
  3078. drm_format_plane_cpp(plane->state->fb->pixel_format, 1) : pixel_size;
  3079. intel_plane->wm.y_bytes_per_pixel =
  3080. (fb && fb->pixel_format == DRM_FORMAT_NV12) ?
  3081. drm_format_plane_cpp(plane->state->fb->pixel_format, 0) : 0;
  3082. /*
  3083. * Framebuffer can be NULL on plane disable, but it does not
  3084. * matter for watermarks if we assume no tiling in that case.
  3085. */
  3086. if (fb)
  3087. intel_plane->wm.tiling = fb->modifier[0];
  3088. intel_plane->wm.rotation = plane->state->rotation;
  3089. skl_update_wm(crtc);
  3090. }
  3091. static void ilk_update_wm(struct drm_crtc *crtc)
  3092. {
  3093. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3094. struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
  3095. struct drm_device *dev = crtc->dev;
  3096. struct drm_i915_private *dev_priv = dev->dev_private;
  3097. struct ilk_wm_maximums max;
  3098. struct ilk_wm_values results = {};
  3099. enum intel_ddb_partitioning partitioning;
  3100. struct intel_pipe_wm pipe_wm = {};
  3101. struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
  3102. struct intel_wm_config config = {};
  3103. WARN_ON(cstate->base.active != intel_crtc->active);
  3104. intel_compute_pipe_wm(cstate, &pipe_wm);
  3105. if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
  3106. return;
  3107. intel_crtc->wm.active = pipe_wm;
  3108. ilk_compute_wm_config(dev, &config);
  3109. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
  3110. ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
  3111. /* 5/6 split only in single pipe config on IVB+ */
  3112. if (INTEL_INFO(dev)->gen >= 7 &&
  3113. config.num_pipes_active == 1 && config.sprites_enabled) {
  3114. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
  3115. ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
  3116. best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
  3117. } else {
  3118. best_lp_wm = &lp_wm_1_2;
  3119. }
  3120. partitioning = (best_lp_wm == &lp_wm_1_2) ?
  3121. INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
  3122. ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
  3123. ilk_write_wm_values(dev_priv, &results);
  3124. }
  3125. static void
  3126. ilk_update_sprite_wm(struct drm_plane *plane,
  3127. struct drm_crtc *crtc,
  3128. uint32_t sprite_width, uint32_t sprite_height,
  3129. int pixel_size, bool enabled, bool scaled)
  3130. {
  3131. struct drm_device *dev = plane->dev;
  3132. struct intel_plane *intel_plane = to_intel_plane(plane);
  3133. /*
  3134. * IVB workaround: must disable low power watermarks for at least
  3135. * one frame before enabling scaling. LP watermarks can be re-enabled
  3136. * when scaling is disabled.
  3137. *
  3138. * WaCxSRDisabledForSpriteScaling:ivb
  3139. */
  3140. if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
  3141. intel_wait_for_vblank(dev, intel_plane->pipe);
  3142. ilk_update_wm(crtc);
  3143. }
  3144. static void skl_pipe_wm_active_state(uint32_t val,
  3145. struct skl_pipe_wm *active,
  3146. bool is_transwm,
  3147. bool is_cursor,
  3148. int i,
  3149. int level)
  3150. {
  3151. bool is_enabled = (val & PLANE_WM_EN) != 0;
  3152. if (!is_transwm) {
  3153. if (!is_cursor) {
  3154. active->wm[level].plane_en[i] = is_enabled;
  3155. active->wm[level].plane_res_b[i] =
  3156. val & PLANE_WM_BLOCKS_MASK;
  3157. active->wm[level].plane_res_l[i] =
  3158. (val >> PLANE_WM_LINES_SHIFT) &
  3159. PLANE_WM_LINES_MASK;
  3160. } else {
  3161. active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
  3162. active->wm[level].plane_res_b[PLANE_CURSOR] =
  3163. val & PLANE_WM_BLOCKS_MASK;
  3164. active->wm[level].plane_res_l[PLANE_CURSOR] =
  3165. (val >> PLANE_WM_LINES_SHIFT) &
  3166. PLANE_WM_LINES_MASK;
  3167. }
  3168. } else {
  3169. if (!is_cursor) {
  3170. active->trans_wm.plane_en[i] = is_enabled;
  3171. active->trans_wm.plane_res_b[i] =
  3172. val & PLANE_WM_BLOCKS_MASK;
  3173. active->trans_wm.plane_res_l[i] =
  3174. (val >> PLANE_WM_LINES_SHIFT) &
  3175. PLANE_WM_LINES_MASK;
  3176. } else {
  3177. active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
  3178. active->trans_wm.plane_res_b[PLANE_CURSOR] =
  3179. val & PLANE_WM_BLOCKS_MASK;
  3180. active->trans_wm.plane_res_l[PLANE_CURSOR] =
  3181. (val >> PLANE_WM_LINES_SHIFT) &
  3182. PLANE_WM_LINES_MASK;
  3183. }
  3184. }
  3185. }
  3186. static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
  3187. {
  3188. struct drm_device *dev = crtc->dev;
  3189. struct drm_i915_private *dev_priv = dev->dev_private;
  3190. struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
  3191. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3192. struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
  3193. enum pipe pipe = intel_crtc->pipe;
  3194. int level, i, max_level;
  3195. uint32_t temp;
  3196. max_level = ilk_wm_max_level(dev);
  3197. hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
  3198. for (level = 0; level <= max_level; level++) {
  3199. for (i = 0; i < intel_num_planes(intel_crtc); i++)
  3200. hw->plane[pipe][i][level] =
  3201. I915_READ(PLANE_WM(pipe, i, level));
  3202. hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
  3203. }
  3204. for (i = 0; i < intel_num_planes(intel_crtc); i++)
  3205. hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
  3206. hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
  3207. if (!intel_crtc->active)
  3208. return;
  3209. hw->dirty[pipe] = true;
  3210. active->linetime = hw->wm_linetime[pipe];
  3211. for (level = 0; level <= max_level; level++) {
  3212. for (i = 0; i < intel_num_planes(intel_crtc); i++) {
  3213. temp = hw->plane[pipe][i][level];
  3214. skl_pipe_wm_active_state(temp, active, false,
  3215. false, i, level);
  3216. }
  3217. temp = hw->plane[pipe][PLANE_CURSOR][level];
  3218. skl_pipe_wm_active_state(temp, active, false, true, i, level);
  3219. }
  3220. for (i = 0; i < intel_num_planes(intel_crtc); i++) {
  3221. temp = hw->plane_trans[pipe][i];
  3222. skl_pipe_wm_active_state(temp, active, true, false, i, 0);
  3223. }
  3224. temp = hw->plane_trans[pipe][PLANE_CURSOR];
  3225. skl_pipe_wm_active_state(temp, active, true, true, i, 0);
  3226. }
  3227. void skl_wm_get_hw_state(struct drm_device *dev)
  3228. {
  3229. struct drm_i915_private *dev_priv = dev->dev_private;
  3230. struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
  3231. struct drm_crtc *crtc;
  3232. skl_ddb_get_hw_state(dev_priv, ddb);
  3233. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
  3234. skl_pipe_wm_get_hw_state(crtc);
  3235. }
  3236. static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
  3237. {
  3238. struct drm_device *dev = crtc->dev;
  3239. struct drm_i915_private *dev_priv = dev->dev_private;
  3240. struct ilk_wm_values *hw = &dev_priv->wm.hw;
  3241. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3242. struct intel_pipe_wm *active = &intel_crtc->wm.active;
  3243. enum pipe pipe = intel_crtc->pipe;
  3244. static const unsigned int wm0_pipe_reg[] = {
  3245. [PIPE_A] = WM0_PIPEA_ILK,
  3246. [PIPE_B] = WM0_PIPEB_ILK,
  3247. [PIPE_C] = WM0_PIPEC_IVB,
  3248. };
  3249. hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
  3250. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  3251. hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
  3252. active->pipe_enabled = intel_crtc->active;
  3253. if (active->pipe_enabled) {
  3254. u32 tmp = hw->wm_pipe[pipe];
  3255. /*
  3256. * For active pipes LP0 watermark is marked as
  3257. * enabled, and LP1+ watermaks as disabled since
  3258. * we can't really reverse compute them in case
  3259. * multiple pipes are active.
  3260. */
  3261. active->wm[0].enable = true;
  3262. active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
  3263. active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
  3264. active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
  3265. active->linetime = hw->wm_linetime[pipe];
  3266. } else {
  3267. int level, max_level = ilk_wm_max_level(dev);
  3268. /*
  3269. * For inactive pipes, all watermark levels
  3270. * should be marked as enabled but zeroed,
  3271. * which is what we'd compute them to.
  3272. */
  3273. for (level = 0; level <= max_level; level++)
  3274. active->wm[level].enable = true;
  3275. }
  3276. }
  3277. #define _FW_WM(value, plane) \
  3278. (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
  3279. #define _FW_WM_VLV(value, plane) \
  3280. (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
  3281. static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
  3282. struct vlv_wm_values *wm)
  3283. {
  3284. enum pipe pipe;
  3285. uint32_t tmp;
  3286. for_each_pipe(dev_priv, pipe) {
  3287. tmp = I915_READ(VLV_DDL(pipe));
  3288. wm->ddl[pipe].primary =
  3289. (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
  3290. wm->ddl[pipe].cursor =
  3291. (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
  3292. wm->ddl[pipe].sprite[0] =
  3293. (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
  3294. wm->ddl[pipe].sprite[1] =
  3295. (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
  3296. }
  3297. tmp = I915_READ(DSPFW1);
  3298. wm->sr.plane = _FW_WM(tmp, SR);
  3299. wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
  3300. wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
  3301. wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
  3302. tmp = I915_READ(DSPFW2);
  3303. wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
  3304. wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
  3305. wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
  3306. tmp = I915_READ(DSPFW3);
  3307. wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
  3308. if (IS_CHERRYVIEW(dev_priv)) {
  3309. tmp = I915_READ(DSPFW7_CHV);
  3310. wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
  3311. wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
  3312. tmp = I915_READ(DSPFW8_CHV);
  3313. wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
  3314. wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
  3315. tmp = I915_READ(DSPFW9_CHV);
  3316. wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
  3317. wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
  3318. tmp = I915_READ(DSPHOWM);
  3319. wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
  3320. wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
  3321. wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
  3322. wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
  3323. wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
  3324. wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
  3325. wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
  3326. wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
  3327. wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
  3328. wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
  3329. } else {
  3330. tmp = I915_READ(DSPFW7);
  3331. wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
  3332. wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
  3333. tmp = I915_READ(DSPHOWM);
  3334. wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
  3335. wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
  3336. wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
  3337. wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
  3338. wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
  3339. wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
  3340. wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
  3341. }
  3342. }
  3343. #undef _FW_WM
  3344. #undef _FW_WM_VLV
  3345. void vlv_wm_get_hw_state(struct drm_device *dev)
  3346. {
  3347. struct drm_i915_private *dev_priv = to_i915(dev);
  3348. struct vlv_wm_values *wm = &dev_priv->wm.vlv;
  3349. struct intel_plane *plane;
  3350. enum pipe pipe;
  3351. u32 val;
  3352. vlv_read_wm_values(dev_priv, wm);
  3353. for_each_intel_plane(dev, plane) {
  3354. switch (plane->base.type) {
  3355. int sprite;
  3356. case DRM_PLANE_TYPE_CURSOR:
  3357. plane->wm.fifo_size = 63;
  3358. break;
  3359. case DRM_PLANE_TYPE_PRIMARY:
  3360. plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
  3361. break;
  3362. case DRM_PLANE_TYPE_OVERLAY:
  3363. sprite = plane->plane;
  3364. plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
  3365. break;
  3366. }
  3367. }
  3368. wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
  3369. wm->level = VLV_WM_LEVEL_PM2;
  3370. if (IS_CHERRYVIEW(dev_priv)) {
  3371. mutex_lock(&dev_priv->rps.hw_lock);
  3372. val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
  3373. if (val & DSP_MAXFIFO_PM5_ENABLE)
  3374. wm->level = VLV_WM_LEVEL_PM5;
  3375. /*
  3376. * If DDR DVFS is disabled in the BIOS, Punit
  3377. * will never ack the request. So if that happens
  3378. * assume we don't have to enable/disable DDR DVFS
  3379. * dynamically. To test that just set the REQ_ACK
  3380. * bit to poke the Punit, but don't change the
  3381. * HIGH/LOW bits so that we don't actually change
  3382. * the current state.
  3383. */
  3384. val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
  3385. val |= FORCE_DDR_FREQ_REQ_ACK;
  3386. vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
  3387. if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
  3388. FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
  3389. DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
  3390. "assuming DDR DVFS is disabled\n");
  3391. dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
  3392. } else {
  3393. val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
  3394. if ((val & FORCE_DDR_HIGH_FREQ) == 0)
  3395. wm->level = VLV_WM_LEVEL_DDR_DVFS;
  3396. }
  3397. mutex_unlock(&dev_priv->rps.hw_lock);
  3398. }
  3399. for_each_pipe(dev_priv, pipe)
  3400. DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
  3401. pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
  3402. wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
  3403. DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
  3404. wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
  3405. }
  3406. void ilk_wm_get_hw_state(struct drm_device *dev)
  3407. {
  3408. struct drm_i915_private *dev_priv = dev->dev_private;
  3409. struct ilk_wm_values *hw = &dev_priv->wm.hw;
  3410. struct drm_crtc *crtc;
  3411. for_each_crtc(dev, crtc)
  3412. ilk_pipe_wm_get_hw_state(crtc);
  3413. hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
  3414. hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
  3415. hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
  3416. hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
  3417. if (INTEL_INFO(dev)->gen >= 7) {
  3418. hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
  3419. hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
  3420. }
  3421. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  3422. hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
  3423. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  3424. else if (IS_IVYBRIDGE(dev))
  3425. hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
  3426. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  3427. hw->enable_fbc_wm =
  3428. !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
  3429. }
  3430. /**
  3431. * intel_update_watermarks - update FIFO watermark values based on current modes
  3432. *
  3433. * Calculate watermark values for the various WM regs based on current mode
  3434. * and plane configuration.
  3435. *
  3436. * There are several cases to deal with here:
  3437. * - normal (i.e. non-self-refresh)
  3438. * - self-refresh (SR) mode
  3439. * - lines are large relative to FIFO size (buffer can hold up to 2)
  3440. * - lines are small relative to FIFO size (buffer can hold more than 2
  3441. * lines), so need to account for TLB latency
  3442. *
  3443. * The normal calculation is:
  3444. * watermark = dotclock * bytes per pixel * latency
  3445. * where latency is platform & configuration dependent (we assume pessimal
  3446. * values here).
  3447. *
  3448. * The SR calculation is:
  3449. * watermark = (trunc(latency/line time)+1) * surface width *
  3450. * bytes per pixel
  3451. * where
  3452. * line time = htotal / dotclock
  3453. * surface width = hdisplay for normal plane and 64 for cursor
  3454. * and latency is assumed to be high, as above.
  3455. *
  3456. * The final value programmed to the register should always be rounded up,
  3457. * and include an extra 2 entries to account for clock crossings.
  3458. *
  3459. * We don't use the sprite, so we can ignore that. And on Crestline we have
  3460. * to set the non-SR watermarks to 8.
  3461. */
  3462. void intel_update_watermarks(struct drm_crtc *crtc)
  3463. {
  3464. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  3465. if (dev_priv->display.update_wm)
  3466. dev_priv->display.update_wm(crtc);
  3467. }
  3468. void intel_update_sprite_watermarks(struct drm_plane *plane,
  3469. struct drm_crtc *crtc,
  3470. uint32_t sprite_width,
  3471. uint32_t sprite_height,
  3472. int pixel_size,
  3473. bool enabled, bool scaled)
  3474. {
  3475. struct drm_i915_private *dev_priv = plane->dev->dev_private;
  3476. if (dev_priv->display.update_sprite_wm)
  3477. dev_priv->display.update_sprite_wm(plane, crtc,
  3478. sprite_width, sprite_height,
  3479. pixel_size, enabled, scaled);
  3480. }
  3481. /**
  3482. * Lock protecting IPS related data structures
  3483. */
  3484. DEFINE_SPINLOCK(mchdev_lock);
  3485. /* Global for IPS driver to get at the current i915 device. Protected by
  3486. * mchdev_lock. */
  3487. static struct drm_i915_private *i915_mch_dev;
  3488. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  3489. {
  3490. struct drm_i915_private *dev_priv = dev->dev_private;
  3491. u16 rgvswctl;
  3492. assert_spin_locked(&mchdev_lock);
  3493. rgvswctl = I915_READ16(MEMSWCTL);
  3494. if (rgvswctl & MEMCTL_CMD_STS) {
  3495. DRM_DEBUG("gpu busy, RCS change rejected\n");
  3496. return false; /* still busy with another command */
  3497. }
  3498. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  3499. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  3500. I915_WRITE16(MEMSWCTL, rgvswctl);
  3501. POSTING_READ16(MEMSWCTL);
  3502. rgvswctl |= MEMCTL_CMD_STS;
  3503. I915_WRITE16(MEMSWCTL, rgvswctl);
  3504. return true;
  3505. }
  3506. static void ironlake_enable_drps(struct drm_device *dev)
  3507. {
  3508. struct drm_i915_private *dev_priv = dev->dev_private;
  3509. u32 rgvmodectl = I915_READ(MEMMODECTL);
  3510. u8 fmax, fmin, fstart, vstart;
  3511. spin_lock_irq(&mchdev_lock);
  3512. /* Enable temp reporting */
  3513. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  3514. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  3515. /* 100ms RC evaluation intervals */
  3516. I915_WRITE(RCUPEI, 100000);
  3517. I915_WRITE(RCDNEI, 100000);
  3518. /* Set max/min thresholds to 90ms and 80ms respectively */
  3519. I915_WRITE(RCBMAXAVG, 90000);
  3520. I915_WRITE(RCBMINAVG, 80000);
  3521. I915_WRITE(MEMIHYST, 1);
  3522. /* Set up min, max, and cur for interrupt handling */
  3523. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  3524. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  3525. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  3526. MEMMODE_FSTART_SHIFT;
  3527. vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
  3528. PXVFREQ_PX_SHIFT;
  3529. dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
  3530. dev_priv->ips.fstart = fstart;
  3531. dev_priv->ips.max_delay = fstart;
  3532. dev_priv->ips.min_delay = fmin;
  3533. dev_priv->ips.cur_delay = fstart;
  3534. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  3535. fmax, fmin, fstart);
  3536. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  3537. /*
  3538. * Interrupts will be enabled in ironlake_irq_postinstall
  3539. */
  3540. I915_WRITE(VIDSTART, vstart);
  3541. POSTING_READ(VIDSTART);
  3542. rgvmodectl |= MEMMODE_SWMODE_EN;
  3543. I915_WRITE(MEMMODECTL, rgvmodectl);
  3544. if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  3545. DRM_ERROR("stuck trying to change perf mode\n");
  3546. mdelay(1);
  3547. ironlake_set_drps(dev, fstart);
  3548. dev_priv->ips.last_count1 = I915_READ(DMIEC) +
  3549. I915_READ(DDREC) + I915_READ(CSIEC);
  3550. dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
  3551. dev_priv->ips.last_count2 = I915_READ(GFXEC);
  3552. dev_priv->ips.last_time2 = ktime_get_raw_ns();
  3553. spin_unlock_irq(&mchdev_lock);
  3554. }
  3555. static void ironlake_disable_drps(struct drm_device *dev)
  3556. {
  3557. struct drm_i915_private *dev_priv = dev->dev_private;
  3558. u16 rgvswctl;
  3559. spin_lock_irq(&mchdev_lock);
  3560. rgvswctl = I915_READ16(MEMSWCTL);
  3561. /* Ack interrupts, disable EFC interrupt */
  3562. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  3563. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  3564. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  3565. I915_WRITE(DEIIR, DE_PCU_EVENT);
  3566. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  3567. /* Go back to the starting frequency */
  3568. ironlake_set_drps(dev, dev_priv->ips.fstart);
  3569. mdelay(1);
  3570. rgvswctl |= MEMCTL_CMD_STS;
  3571. I915_WRITE(MEMSWCTL, rgvswctl);
  3572. mdelay(1);
  3573. spin_unlock_irq(&mchdev_lock);
  3574. }
  3575. /* There's a funny hw issue where the hw returns all 0 when reading from
  3576. * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
  3577. * ourselves, instead of doing a rmw cycle (which might result in us clearing
  3578. * all limits and the gpu stuck at whatever frequency it is at atm).
  3579. */
  3580. static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
  3581. {
  3582. u32 limits;
  3583. /* Only set the down limit when we've reached the lowest level to avoid
  3584. * getting more interrupts, otherwise leave this clear. This prevents a
  3585. * race in the hw when coming out of rc6: There's a tiny window where
  3586. * the hw runs at the minimal clock before selecting the desired
  3587. * frequency, if the down threshold expires in that window we will not
  3588. * receive a down interrupt. */
  3589. if (IS_GEN9(dev_priv->dev)) {
  3590. limits = (dev_priv->rps.max_freq_softlimit) << 23;
  3591. if (val <= dev_priv->rps.min_freq_softlimit)
  3592. limits |= (dev_priv->rps.min_freq_softlimit) << 14;
  3593. } else {
  3594. limits = dev_priv->rps.max_freq_softlimit << 24;
  3595. if (val <= dev_priv->rps.min_freq_softlimit)
  3596. limits |= dev_priv->rps.min_freq_softlimit << 16;
  3597. }
  3598. return limits;
  3599. }
  3600. static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
  3601. {
  3602. int new_power;
  3603. u32 threshold_up = 0, threshold_down = 0; /* in % */
  3604. u32 ei_up = 0, ei_down = 0;
  3605. new_power = dev_priv->rps.power;
  3606. switch (dev_priv->rps.power) {
  3607. case LOW_POWER:
  3608. if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
  3609. new_power = BETWEEN;
  3610. break;
  3611. case BETWEEN:
  3612. if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
  3613. new_power = LOW_POWER;
  3614. else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
  3615. new_power = HIGH_POWER;
  3616. break;
  3617. case HIGH_POWER:
  3618. if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
  3619. new_power = BETWEEN;
  3620. break;
  3621. }
  3622. /* Max/min bins are special */
  3623. if (val <= dev_priv->rps.min_freq_softlimit)
  3624. new_power = LOW_POWER;
  3625. if (val >= dev_priv->rps.max_freq_softlimit)
  3626. new_power = HIGH_POWER;
  3627. if (new_power == dev_priv->rps.power)
  3628. return;
  3629. /* Note the units here are not exactly 1us, but 1280ns. */
  3630. switch (new_power) {
  3631. case LOW_POWER:
  3632. /* Upclock if more than 95% busy over 16ms */
  3633. ei_up = 16000;
  3634. threshold_up = 95;
  3635. /* Downclock if less than 85% busy over 32ms */
  3636. ei_down = 32000;
  3637. threshold_down = 85;
  3638. break;
  3639. case BETWEEN:
  3640. /* Upclock if more than 90% busy over 13ms */
  3641. ei_up = 13000;
  3642. threshold_up = 90;
  3643. /* Downclock if less than 75% busy over 32ms */
  3644. ei_down = 32000;
  3645. threshold_down = 75;
  3646. break;
  3647. case HIGH_POWER:
  3648. /* Upclock if more than 85% busy over 10ms */
  3649. ei_up = 10000;
  3650. threshold_up = 85;
  3651. /* Downclock if less than 60% busy over 32ms */
  3652. ei_down = 32000;
  3653. threshold_down = 60;
  3654. break;
  3655. }
  3656. I915_WRITE(GEN6_RP_UP_EI,
  3657. GT_INTERVAL_FROM_US(dev_priv, ei_up));
  3658. I915_WRITE(GEN6_RP_UP_THRESHOLD,
  3659. GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
  3660. I915_WRITE(GEN6_RP_DOWN_EI,
  3661. GT_INTERVAL_FROM_US(dev_priv, ei_down));
  3662. I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
  3663. GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
  3664. I915_WRITE(GEN6_RP_CONTROL,
  3665. GEN6_RP_MEDIA_TURBO |
  3666. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3667. GEN6_RP_MEDIA_IS_GFX |
  3668. GEN6_RP_ENABLE |
  3669. GEN6_RP_UP_BUSY_AVG |
  3670. GEN6_RP_DOWN_IDLE_AVG);
  3671. dev_priv->rps.power = new_power;
  3672. dev_priv->rps.up_threshold = threshold_up;
  3673. dev_priv->rps.down_threshold = threshold_down;
  3674. dev_priv->rps.last_adj = 0;
  3675. }
  3676. static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
  3677. {
  3678. u32 mask = 0;
  3679. if (val > dev_priv->rps.min_freq_softlimit)
  3680. mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
  3681. if (val < dev_priv->rps.max_freq_softlimit)
  3682. mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
  3683. mask &= dev_priv->pm_rps_events;
  3684. return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
  3685. }
  3686. /* gen6_set_rps is called to update the frequency request, but should also be
  3687. * called when the range (min_delay and max_delay) is modified so that we can
  3688. * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
  3689. static void gen6_set_rps(struct drm_device *dev, u8 val)
  3690. {
  3691. struct drm_i915_private *dev_priv = dev->dev_private;
  3692. /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
  3693. if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0))
  3694. return;
  3695. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3696. WARN_ON(val > dev_priv->rps.max_freq);
  3697. WARN_ON(val < dev_priv->rps.min_freq);
  3698. /* min/max delay may still have been modified so be sure to
  3699. * write the limits value.
  3700. */
  3701. if (val != dev_priv->rps.cur_freq) {
  3702. gen6_set_rps_thresholds(dev_priv, val);
  3703. if (IS_GEN9(dev))
  3704. I915_WRITE(GEN6_RPNSWREQ,
  3705. GEN9_FREQUENCY(val));
  3706. else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  3707. I915_WRITE(GEN6_RPNSWREQ,
  3708. HSW_FREQUENCY(val));
  3709. else
  3710. I915_WRITE(GEN6_RPNSWREQ,
  3711. GEN6_FREQUENCY(val) |
  3712. GEN6_OFFSET(0) |
  3713. GEN6_AGGRESSIVE_TURBO);
  3714. }
  3715. /* Make sure we continue to get interrupts
  3716. * until we hit the minimum or maximum frequencies.
  3717. */
  3718. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
  3719. I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
  3720. POSTING_READ(GEN6_RPNSWREQ);
  3721. dev_priv->rps.cur_freq = val;
  3722. trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
  3723. }
  3724. static void valleyview_set_rps(struct drm_device *dev, u8 val)
  3725. {
  3726. struct drm_i915_private *dev_priv = dev->dev_private;
  3727. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3728. WARN_ON(val > dev_priv->rps.max_freq);
  3729. WARN_ON(val < dev_priv->rps.min_freq);
  3730. if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
  3731. "Odd GPU freq value\n"))
  3732. val &= ~1;
  3733. I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
  3734. if (val != dev_priv->rps.cur_freq) {
  3735. vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
  3736. if (!IS_CHERRYVIEW(dev_priv))
  3737. gen6_set_rps_thresholds(dev_priv, val);
  3738. }
  3739. dev_priv->rps.cur_freq = val;
  3740. trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
  3741. }
  3742. /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
  3743. *
  3744. * * If Gfx is Idle, then
  3745. * 1. Forcewake Media well.
  3746. * 2. Request idle freq.
  3747. * 3. Release Forcewake of Media well.
  3748. */
  3749. static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
  3750. {
  3751. u32 val = dev_priv->rps.idle_freq;
  3752. if (dev_priv->rps.cur_freq <= val)
  3753. return;
  3754. /* Wake up the media well, as that takes a lot less
  3755. * power than the Render well. */
  3756. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
  3757. valleyview_set_rps(dev_priv->dev, val);
  3758. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
  3759. }
  3760. void gen6_rps_busy(struct drm_i915_private *dev_priv)
  3761. {
  3762. mutex_lock(&dev_priv->rps.hw_lock);
  3763. if (dev_priv->rps.enabled) {
  3764. if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
  3765. gen6_rps_reset_ei(dev_priv);
  3766. I915_WRITE(GEN6_PMINTRMSK,
  3767. gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
  3768. }
  3769. mutex_unlock(&dev_priv->rps.hw_lock);
  3770. }
  3771. void gen6_rps_idle(struct drm_i915_private *dev_priv)
  3772. {
  3773. struct drm_device *dev = dev_priv->dev;
  3774. mutex_lock(&dev_priv->rps.hw_lock);
  3775. if (dev_priv->rps.enabled) {
  3776. if (IS_VALLEYVIEW(dev))
  3777. vlv_set_rps_idle(dev_priv);
  3778. else
  3779. gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
  3780. dev_priv->rps.last_adj = 0;
  3781. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  3782. }
  3783. mutex_unlock(&dev_priv->rps.hw_lock);
  3784. spin_lock(&dev_priv->rps.client_lock);
  3785. while (!list_empty(&dev_priv->rps.clients))
  3786. list_del_init(dev_priv->rps.clients.next);
  3787. spin_unlock(&dev_priv->rps.client_lock);
  3788. }
  3789. void gen6_rps_boost(struct drm_i915_private *dev_priv,
  3790. struct intel_rps_client *rps,
  3791. unsigned long submitted)
  3792. {
  3793. /* This is intentionally racy! We peek at the state here, then
  3794. * validate inside the RPS worker.
  3795. */
  3796. if (!(dev_priv->mm.busy &&
  3797. dev_priv->rps.enabled &&
  3798. dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
  3799. return;
  3800. /* Force a RPS boost (and don't count it against the client) if
  3801. * the GPU is severely congested.
  3802. */
  3803. if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
  3804. rps = NULL;
  3805. spin_lock(&dev_priv->rps.client_lock);
  3806. if (rps == NULL || list_empty(&rps->link)) {
  3807. spin_lock_irq(&dev_priv->irq_lock);
  3808. if (dev_priv->rps.interrupts_enabled) {
  3809. dev_priv->rps.client_boost = true;
  3810. queue_work(dev_priv->wq, &dev_priv->rps.work);
  3811. }
  3812. spin_unlock_irq(&dev_priv->irq_lock);
  3813. if (rps != NULL) {
  3814. list_add(&rps->link, &dev_priv->rps.clients);
  3815. rps->boosts++;
  3816. } else
  3817. dev_priv->rps.boosts++;
  3818. }
  3819. spin_unlock(&dev_priv->rps.client_lock);
  3820. }
  3821. void intel_set_rps(struct drm_device *dev, u8 val)
  3822. {
  3823. if (IS_VALLEYVIEW(dev))
  3824. valleyview_set_rps(dev, val);
  3825. else
  3826. gen6_set_rps(dev, val);
  3827. }
  3828. static void gen9_disable_rps(struct drm_device *dev)
  3829. {
  3830. struct drm_i915_private *dev_priv = dev->dev_private;
  3831. I915_WRITE(GEN6_RC_CONTROL, 0);
  3832. I915_WRITE(GEN9_PG_ENABLE, 0);
  3833. }
  3834. static void gen6_disable_rps(struct drm_device *dev)
  3835. {
  3836. struct drm_i915_private *dev_priv = dev->dev_private;
  3837. I915_WRITE(GEN6_RC_CONTROL, 0);
  3838. I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  3839. }
  3840. static void cherryview_disable_rps(struct drm_device *dev)
  3841. {
  3842. struct drm_i915_private *dev_priv = dev->dev_private;
  3843. I915_WRITE(GEN6_RC_CONTROL, 0);
  3844. }
  3845. static void valleyview_disable_rps(struct drm_device *dev)
  3846. {
  3847. struct drm_i915_private *dev_priv = dev->dev_private;
  3848. /* we're doing forcewake before Disabling RC6,
  3849. * This what the BIOS expects when going into suspend */
  3850. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  3851. I915_WRITE(GEN6_RC_CONTROL, 0);
  3852. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  3853. }
  3854. static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
  3855. {
  3856. if (IS_VALLEYVIEW(dev)) {
  3857. if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
  3858. mode = GEN6_RC_CTL_RC6_ENABLE;
  3859. else
  3860. mode = 0;
  3861. }
  3862. if (HAS_RC6p(dev))
  3863. DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
  3864. (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
  3865. (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
  3866. (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
  3867. else
  3868. DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
  3869. (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
  3870. }
  3871. static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
  3872. {
  3873. /* No RC6 before Ironlake and code is gone for ilk. */
  3874. if (INTEL_INFO(dev)->gen < 6)
  3875. return 0;
  3876. /* Respect the kernel parameter if it is set */
  3877. if (enable_rc6 >= 0) {
  3878. int mask;
  3879. if (HAS_RC6p(dev))
  3880. mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
  3881. INTEL_RC6pp_ENABLE;
  3882. else
  3883. mask = INTEL_RC6_ENABLE;
  3884. if ((enable_rc6 & mask) != enable_rc6)
  3885. DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
  3886. enable_rc6 & mask, enable_rc6, mask);
  3887. return enable_rc6 & mask;
  3888. }
  3889. if (IS_IVYBRIDGE(dev))
  3890. return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
  3891. return INTEL_RC6_ENABLE;
  3892. }
  3893. int intel_enable_rc6(const struct drm_device *dev)
  3894. {
  3895. return i915.enable_rc6;
  3896. }
  3897. static void gen6_init_rps_frequencies(struct drm_device *dev)
  3898. {
  3899. struct drm_i915_private *dev_priv = dev->dev_private;
  3900. uint32_t rp_state_cap;
  3901. u32 ddcc_status = 0;
  3902. int ret;
  3903. /* All of these values are in units of 50MHz */
  3904. dev_priv->rps.cur_freq = 0;
  3905. /* static values from HW: RP0 > RP1 > RPn (min_freq) */
  3906. if (IS_BROXTON(dev)) {
  3907. rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
  3908. dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
  3909. dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
  3910. dev_priv->rps.min_freq = (rp_state_cap >> 0) & 0xff;
  3911. } else {
  3912. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  3913. dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
  3914. dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
  3915. dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
  3916. }
  3917. /* hw_max = RP0 until we check for overclocking */
  3918. dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
  3919. dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
  3920. if (IS_HASWELL(dev) || IS_BROADWELL(dev) || IS_SKYLAKE(dev)) {
  3921. ret = sandybridge_pcode_read(dev_priv,
  3922. HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
  3923. &ddcc_status);
  3924. if (0 == ret)
  3925. dev_priv->rps.efficient_freq =
  3926. clamp_t(u8,
  3927. ((ddcc_status >> 8) & 0xff),
  3928. dev_priv->rps.min_freq,
  3929. dev_priv->rps.max_freq);
  3930. }
  3931. if (IS_SKYLAKE(dev)) {
  3932. /* Store the frequency values in 16.66 MHZ units, which is
  3933. the natural hardware unit for SKL */
  3934. dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
  3935. dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
  3936. dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
  3937. dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
  3938. dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
  3939. }
  3940. dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
  3941. /* Preserve min/max settings in case of re-init */
  3942. if (dev_priv->rps.max_freq_softlimit == 0)
  3943. dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  3944. if (dev_priv->rps.min_freq_softlimit == 0) {
  3945. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  3946. dev_priv->rps.min_freq_softlimit =
  3947. max_t(int, dev_priv->rps.efficient_freq,
  3948. intel_freq_opcode(dev_priv, 450));
  3949. else
  3950. dev_priv->rps.min_freq_softlimit =
  3951. dev_priv->rps.min_freq;
  3952. }
  3953. }
  3954. /* See the Gen9_GT_PM_Programming_Guide doc for the below */
  3955. static void gen9_enable_rps(struct drm_device *dev)
  3956. {
  3957. struct drm_i915_private *dev_priv = dev->dev_private;
  3958. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  3959. gen6_init_rps_frequencies(dev);
  3960. /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
  3961. if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) {
  3962. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  3963. return;
  3964. }
  3965. /* Program defaults and thresholds for RPS*/
  3966. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  3967. GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
  3968. /* 1 second timeout*/
  3969. I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
  3970. GT_INTERVAL_FROM_US(dev_priv, 1000000));
  3971. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
  3972. /* Leaning on the below call to gen6_set_rps to program/setup the
  3973. * Up/Down EI & threshold registers, as well as the RP_CONTROL,
  3974. * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
  3975. dev_priv->rps.power = HIGH_POWER; /* force a reset */
  3976. gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
  3977. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  3978. }
  3979. static void gen9_enable_rc6(struct drm_device *dev)
  3980. {
  3981. struct drm_i915_private *dev_priv = dev->dev_private;
  3982. struct intel_engine_cs *ring;
  3983. uint32_t rc6_mask = 0;
  3984. int unused;
  3985. /* 1a: Software RC state - RC0 */
  3986. I915_WRITE(GEN6_RC_STATE, 0);
  3987. /* 1b: Get forcewake during program sequence. Although the driver
  3988. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  3989. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  3990. /* 2a: Disable RC states. */
  3991. I915_WRITE(GEN6_RC_CONTROL, 0);
  3992. /* 2b: Program RC6 thresholds.*/
  3993. /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
  3994. if (IS_SKYLAKE(dev))
  3995. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
  3996. else
  3997. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
  3998. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  3999. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  4000. for_each_ring(ring, dev_priv, unused)
  4001. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  4002. if (HAS_GUC_UCODE(dev))
  4003. I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
  4004. I915_WRITE(GEN6_RC_SLEEP, 0);
  4005. /* 2c: Program Coarse Power Gating Policies. */
  4006. I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
  4007. I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
  4008. /* 3a: Enable RC6 */
  4009. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  4010. rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
  4011. DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
  4012. "on" : "off");
  4013. /* WaRsUseTimeoutMode */
  4014. if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_D0) ||
  4015. (IS_BROXTON(dev) && INTEL_REVID(dev) <= BXT_REVID_A0)) {
  4016. I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
  4017. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  4018. GEN7_RC_CTL_TO_MODE |
  4019. rc6_mask);
  4020. } else {
  4021. I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
  4022. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  4023. GEN6_RC_CTL_EI_MODE(1) |
  4024. rc6_mask);
  4025. }
  4026. /*
  4027. * 3b: Enable Coarse Power Gating only when RC6 is enabled.
  4028. * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
  4029. */
  4030. if ((IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) ||
  4031. ((IS_SKL_GT3(dev) || IS_SKL_GT4(dev)) && (INTEL_REVID(dev) <= SKL_REVID_F0)))
  4032. I915_WRITE(GEN9_PG_ENABLE, 0);
  4033. else
  4034. I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
  4035. (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
  4036. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4037. }
  4038. static void gen8_enable_rps(struct drm_device *dev)
  4039. {
  4040. struct drm_i915_private *dev_priv = dev->dev_private;
  4041. struct intel_engine_cs *ring;
  4042. uint32_t rc6_mask = 0;
  4043. int unused;
  4044. /* 1a: Software RC state - RC0 */
  4045. I915_WRITE(GEN6_RC_STATE, 0);
  4046. /* 1c & 1d: Get forcewake during program sequence. Although the driver
  4047. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  4048. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4049. /* 2a: Disable RC states. */
  4050. I915_WRITE(GEN6_RC_CONTROL, 0);
  4051. /* Initialize rps frequencies */
  4052. gen6_init_rps_frequencies(dev);
  4053. /* 2b: Program RC6 thresholds.*/
  4054. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
  4055. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  4056. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  4057. for_each_ring(ring, dev_priv, unused)
  4058. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  4059. I915_WRITE(GEN6_RC_SLEEP, 0);
  4060. if (IS_BROADWELL(dev))
  4061. I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
  4062. else
  4063. I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
  4064. /* 3: Enable RC6 */
  4065. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  4066. rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
  4067. intel_print_rc6_info(dev, rc6_mask);
  4068. if (IS_BROADWELL(dev))
  4069. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  4070. GEN7_RC_CTL_TO_MODE |
  4071. rc6_mask);
  4072. else
  4073. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  4074. GEN6_RC_CTL_EI_MODE(1) |
  4075. rc6_mask);
  4076. /* 4 Program defaults and thresholds for RPS*/
  4077. I915_WRITE(GEN6_RPNSWREQ,
  4078. HSW_FREQUENCY(dev_priv->rps.rp1_freq));
  4079. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  4080. HSW_FREQUENCY(dev_priv->rps.rp1_freq));
  4081. /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
  4082. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
  4083. /* Docs recommend 900MHz, and 300 MHz respectively */
  4084. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
  4085. dev_priv->rps.max_freq_softlimit << 24 |
  4086. dev_priv->rps.min_freq_softlimit << 16);
  4087. I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
  4088. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
  4089. I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
  4090. I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
  4091. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  4092. /* 5: Enable RPS */
  4093. I915_WRITE(GEN6_RP_CONTROL,
  4094. GEN6_RP_MEDIA_TURBO |
  4095. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  4096. GEN6_RP_MEDIA_IS_GFX |
  4097. GEN6_RP_ENABLE |
  4098. GEN6_RP_UP_BUSY_AVG |
  4099. GEN6_RP_DOWN_IDLE_AVG);
  4100. /* 6: Ring frequency + overclocking (our driver does this later */
  4101. dev_priv->rps.power = HIGH_POWER; /* force a reset */
  4102. gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
  4103. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4104. }
  4105. static void gen6_enable_rps(struct drm_device *dev)
  4106. {
  4107. struct drm_i915_private *dev_priv = dev->dev_private;
  4108. struct intel_engine_cs *ring;
  4109. u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
  4110. u32 gtfifodbg;
  4111. int rc6_mode;
  4112. int i, ret;
  4113. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4114. /* Here begins a magic sequence of register writes to enable
  4115. * auto-downclocking.
  4116. *
  4117. * Perhaps there might be some value in exposing these to
  4118. * userspace...
  4119. */
  4120. I915_WRITE(GEN6_RC_STATE, 0);
  4121. /* Clear the DBG now so we don't confuse earlier errors */
  4122. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  4123. DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
  4124. I915_WRITE(GTFIFODBG, gtfifodbg);
  4125. }
  4126. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4127. /* Initialize rps frequencies */
  4128. gen6_init_rps_frequencies(dev);
  4129. /* disable the counters and set deterministic thresholds */
  4130. I915_WRITE(GEN6_RC_CONTROL, 0);
  4131. I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  4132. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  4133. I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  4134. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  4135. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  4136. for_each_ring(ring, dev_priv, i)
  4137. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  4138. I915_WRITE(GEN6_RC_SLEEP, 0);
  4139. I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  4140. if (IS_IVYBRIDGE(dev))
  4141. I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
  4142. else
  4143. I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  4144. I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
  4145. I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  4146. /* Check if we are enabling RC6 */
  4147. rc6_mode = intel_enable_rc6(dev_priv->dev);
  4148. if (rc6_mode & INTEL_RC6_ENABLE)
  4149. rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
  4150. /* We don't use those on Haswell */
  4151. if (!IS_HASWELL(dev)) {
  4152. if (rc6_mode & INTEL_RC6p_ENABLE)
  4153. rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
  4154. if (rc6_mode & INTEL_RC6pp_ENABLE)
  4155. rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
  4156. }
  4157. intel_print_rc6_info(dev, rc6_mask);
  4158. I915_WRITE(GEN6_RC_CONTROL,
  4159. rc6_mask |
  4160. GEN6_RC_CTL_EI_MODE(1) |
  4161. GEN6_RC_CTL_HW_ENABLE);
  4162. /* Power down if completely idle for over 50ms */
  4163. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
  4164. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  4165. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
  4166. if (ret)
  4167. DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
  4168. ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
  4169. if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
  4170. DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
  4171. (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
  4172. (pcu_mbox & 0xff) * 50);
  4173. dev_priv->rps.max_freq = pcu_mbox & 0xff;
  4174. }
  4175. dev_priv->rps.power = HIGH_POWER; /* force a reset */
  4176. gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
  4177. rc6vids = 0;
  4178. ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  4179. if (IS_GEN6(dev) && ret) {
  4180. DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
  4181. } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
  4182. DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
  4183. GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
  4184. rc6vids &= 0xffff00;
  4185. rc6vids |= GEN6_ENCODE_RC6_VID(450);
  4186. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
  4187. if (ret)
  4188. DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
  4189. }
  4190. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4191. }
  4192. static void __gen6_update_ring_freq(struct drm_device *dev)
  4193. {
  4194. struct drm_i915_private *dev_priv = dev->dev_private;
  4195. int min_freq = 15;
  4196. unsigned int gpu_freq;
  4197. unsigned int max_ia_freq, min_ring_freq;
  4198. unsigned int max_gpu_freq, min_gpu_freq;
  4199. int scaling_factor = 180;
  4200. struct cpufreq_policy *policy;
  4201. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4202. policy = cpufreq_cpu_get(0);
  4203. if (policy) {
  4204. max_ia_freq = policy->cpuinfo.max_freq;
  4205. cpufreq_cpu_put(policy);
  4206. } else {
  4207. /*
  4208. * Default to measured freq if none found, PCU will ensure we
  4209. * don't go over
  4210. */
  4211. max_ia_freq = tsc_khz;
  4212. }
  4213. /* Convert from kHz to MHz */
  4214. max_ia_freq /= 1000;
  4215. min_ring_freq = I915_READ(DCLK) & 0xf;
  4216. /* convert DDR frequency from units of 266.6MHz to bandwidth */
  4217. min_ring_freq = mult_frac(min_ring_freq, 8, 3);
  4218. if (IS_SKYLAKE(dev)) {
  4219. /* Convert GT frequency to 50 HZ units */
  4220. min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
  4221. max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
  4222. } else {
  4223. min_gpu_freq = dev_priv->rps.min_freq;
  4224. max_gpu_freq = dev_priv->rps.max_freq;
  4225. }
  4226. /*
  4227. * For each potential GPU frequency, load a ring frequency we'd like
  4228. * to use for memory access. We do this by specifying the IA frequency
  4229. * the PCU should use as a reference to determine the ring frequency.
  4230. */
  4231. for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
  4232. int diff = max_gpu_freq - gpu_freq;
  4233. unsigned int ia_freq = 0, ring_freq = 0;
  4234. if (IS_SKYLAKE(dev)) {
  4235. /*
  4236. * ring_freq = 2 * GT. ring_freq is in 100MHz units
  4237. * No floor required for ring frequency on SKL.
  4238. */
  4239. ring_freq = gpu_freq;
  4240. } else if (INTEL_INFO(dev)->gen >= 8) {
  4241. /* max(2 * GT, DDR). NB: GT is 50MHz units */
  4242. ring_freq = max(min_ring_freq, gpu_freq);
  4243. } else if (IS_HASWELL(dev)) {
  4244. ring_freq = mult_frac(gpu_freq, 5, 4);
  4245. ring_freq = max(min_ring_freq, ring_freq);
  4246. /* leave ia_freq as the default, chosen by cpufreq */
  4247. } else {
  4248. /* On older processors, there is no separate ring
  4249. * clock domain, so in order to boost the bandwidth
  4250. * of the ring, we need to upclock the CPU (ia_freq).
  4251. *
  4252. * For GPU frequencies less than 750MHz,
  4253. * just use the lowest ring freq.
  4254. */
  4255. if (gpu_freq < min_freq)
  4256. ia_freq = 800;
  4257. else
  4258. ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
  4259. ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
  4260. }
  4261. sandybridge_pcode_write(dev_priv,
  4262. GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
  4263. ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
  4264. ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
  4265. gpu_freq);
  4266. }
  4267. }
  4268. void gen6_update_ring_freq(struct drm_device *dev)
  4269. {
  4270. struct drm_i915_private *dev_priv = dev->dev_private;
  4271. if (!HAS_CORE_RING_FREQ(dev))
  4272. return;
  4273. mutex_lock(&dev_priv->rps.hw_lock);
  4274. __gen6_update_ring_freq(dev);
  4275. mutex_unlock(&dev_priv->rps.hw_lock);
  4276. }
  4277. static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
  4278. {
  4279. struct drm_device *dev = dev_priv->dev;
  4280. u32 val, rp0;
  4281. val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
  4282. switch (INTEL_INFO(dev)->eu_total) {
  4283. case 8:
  4284. /* (2 * 4) config */
  4285. rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
  4286. break;
  4287. case 12:
  4288. /* (2 * 6) config */
  4289. rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
  4290. break;
  4291. case 16:
  4292. /* (2 * 8) config */
  4293. default:
  4294. /* Setting (2 * 8) Min RP0 for any other combination */
  4295. rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
  4296. break;
  4297. }
  4298. rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
  4299. return rp0;
  4300. }
  4301. static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  4302. {
  4303. u32 val, rpe;
  4304. val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
  4305. rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
  4306. return rpe;
  4307. }
  4308. static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
  4309. {
  4310. u32 val, rp1;
  4311. val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
  4312. rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
  4313. return rp1;
  4314. }
  4315. static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
  4316. {
  4317. u32 val, rp1;
  4318. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  4319. rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
  4320. return rp1;
  4321. }
  4322. static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
  4323. {
  4324. u32 val, rp0;
  4325. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  4326. rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
  4327. /* Clamp to max */
  4328. rp0 = min_t(u32, rp0, 0xea);
  4329. return rp0;
  4330. }
  4331. static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  4332. {
  4333. u32 val, rpe;
  4334. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
  4335. rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
  4336. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
  4337. rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
  4338. return rpe;
  4339. }
  4340. static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
  4341. {
  4342. return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
  4343. }
  4344. /* Check that the pctx buffer wasn't move under us. */
  4345. static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
  4346. {
  4347. unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
  4348. WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
  4349. dev_priv->vlv_pctx->stolen->start);
  4350. }
  4351. /* Check that the pcbr address is not empty. */
  4352. static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
  4353. {
  4354. unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
  4355. WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
  4356. }
  4357. static void cherryview_setup_pctx(struct drm_device *dev)
  4358. {
  4359. struct drm_i915_private *dev_priv = dev->dev_private;
  4360. unsigned long pctx_paddr, paddr;
  4361. struct i915_gtt *gtt = &dev_priv->gtt;
  4362. u32 pcbr;
  4363. int pctx_size = 32*1024;
  4364. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  4365. pcbr = I915_READ(VLV_PCBR);
  4366. if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
  4367. DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
  4368. paddr = (dev_priv->mm.stolen_base +
  4369. (gtt->stolen_size - pctx_size));
  4370. pctx_paddr = (paddr & (~4095));
  4371. I915_WRITE(VLV_PCBR, pctx_paddr);
  4372. }
  4373. DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
  4374. }
  4375. static void valleyview_setup_pctx(struct drm_device *dev)
  4376. {
  4377. struct drm_i915_private *dev_priv = dev->dev_private;
  4378. struct drm_i915_gem_object *pctx;
  4379. unsigned long pctx_paddr;
  4380. u32 pcbr;
  4381. int pctx_size = 24*1024;
  4382. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  4383. pcbr = I915_READ(VLV_PCBR);
  4384. if (pcbr) {
  4385. /* BIOS set it up already, grab the pre-alloc'd space */
  4386. int pcbr_offset;
  4387. pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
  4388. pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
  4389. pcbr_offset,
  4390. I915_GTT_OFFSET_NONE,
  4391. pctx_size);
  4392. goto out;
  4393. }
  4394. DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
  4395. /*
  4396. * From the Gunit register HAS:
  4397. * The Gfx driver is expected to program this register and ensure
  4398. * proper allocation within Gfx stolen memory. For example, this
  4399. * register should be programmed such than the PCBR range does not
  4400. * overlap with other ranges, such as the frame buffer, protected
  4401. * memory, or any other relevant ranges.
  4402. */
  4403. pctx = i915_gem_object_create_stolen(dev, pctx_size);
  4404. if (!pctx) {
  4405. DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
  4406. return;
  4407. }
  4408. pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
  4409. I915_WRITE(VLV_PCBR, pctx_paddr);
  4410. out:
  4411. DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
  4412. dev_priv->vlv_pctx = pctx;
  4413. }
  4414. static void valleyview_cleanup_pctx(struct drm_device *dev)
  4415. {
  4416. struct drm_i915_private *dev_priv = dev->dev_private;
  4417. if (WARN_ON(!dev_priv->vlv_pctx))
  4418. return;
  4419. drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
  4420. dev_priv->vlv_pctx = NULL;
  4421. }
  4422. static void valleyview_init_gt_powersave(struct drm_device *dev)
  4423. {
  4424. struct drm_i915_private *dev_priv = dev->dev_private;
  4425. u32 val;
  4426. valleyview_setup_pctx(dev);
  4427. mutex_lock(&dev_priv->rps.hw_lock);
  4428. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  4429. switch ((val >> 6) & 3) {
  4430. case 0:
  4431. case 1:
  4432. dev_priv->mem_freq = 800;
  4433. break;
  4434. case 2:
  4435. dev_priv->mem_freq = 1066;
  4436. break;
  4437. case 3:
  4438. dev_priv->mem_freq = 1333;
  4439. break;
  4440. }
  4441. DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
  4442. dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
  4443. dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
  4444. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  4445. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
  4446. dev_priv->rps.max_freq);
  4447. dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
  4448. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  4449. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  4450. dev_priv->rps.efficient_freq);
  4451. dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
  4452. DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
  4453. intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
  4454. dev_priv->rps.rp1_freq);
  4455. dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
  4456. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  4457. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  4458. dev_priv->rps.min_freq);
  4459. dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
  4460. /* Preserve min/max settings in case of re-init */
  4461. if (dev_priv->rps.max_freq_softlimit == 0)
  4462. dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  4463. if (dev_priv->rps.min_freq_softlimit == 0)
  4464. dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
  4465. mutex_unlock(&dev_priv->rps.hw_lock);
  4466. }
  4467. static void cherryview_init_gt_powersave(struct drm_device *dev)
  4468. {
  4469. struct drm_i915_private *dev_priv = dev->dev_private;
  4470. u32 val;
  4471. cherryview_setup_pctx(dev);
  4472. mutex_lock(&dev_priv->rps.hw_lock);
  4473. mutex_lock(&dev_priv->sb_lock);
  4474. val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
  4475. mutex_unlock(&dev_priv->sb_lock);
  4476. switch ((val >> 2) & 0x7) {
  4477. case 3:
  4478. dev_priv->mem_freq = 2000;
  4479. break;
  4480. default:
  4481. dev_priv->mem_freq = 1600;
  4482. break;
  4483. }
  4484. DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
  4485. dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
  4486. dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
  4487. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  4488. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
  4489. dev_priv->rps.max_freq);
  4490. dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
  4491. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  4492. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  4493. dev_priv->rps.efficient_freq);
  4494. dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
  4495. DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
  4496. intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
  4497. dev_priv->rps.rp1_freq);
  4498. /* PUnit validated range is only [RPe, RP0] */
  4499. dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
  4500. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  4501. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  4502. dev_priv->rps.min_freq);
  4503. WARN_ONCE((dev_priv->rps.max_freq |
  4504. dev_priv->rps.efficient_freq |
  4505. dev_priv->rps.rp1_freq |
  4506. dev_priv->rps.min_freq) & 1,
  4507. "Odd GPU freq values\n");
  4508. dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
  4509. /* Preserve min/max settings in case of re-init */
  4510. if (dev_priv->rps.max_freq_softlimit == 0)
  4511. dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  4512. if (dev_priv->rps.min_freq_softlimit == 0)
  4513. dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
  4514. mutex_unlock(&dev_priv->rps.hw_lock);
  4515. }
  4516. static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
  4517. {
  4518. valleyview_cleanup_pctx(dev);
  4519. }
  4520. static void cherryview_enable_rps(struct drm_device *dev)
  4521. {
  4522. struct drm_i915_private *dev_priv = dev->dev_private;
  4523. struct intel_engine_cs *ring;
  4524. u32 gtfifodbg, val, rc6_mode = 0, pcbr;
  4525. int i;
  4526. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4527. gtfifodbg = I915_READ(GTFIFODBG);
  4528. if (gtfifodbg) {
  4529. DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  4530. gtfifodbg);
  4531. I915_WRITE(GTFIFODBG, gtfifodbg);
  4532. }
  4533. cherryview_check_pctx(dev_priv);
  4534. /* 1a & 1b: Get forcewake during program sequence. Although the driver
  4535. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  4536. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4537. /* Disable RC states. */
  4538. I915_WRITE(GEN6_RC_CONTROL, 0);
  4539. /* 2a: Program RC6 thresholds.*/
  4540. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
  4541. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  4542. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  4543. for_each_ring(ring, dev_priv, i)
  4544. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  4545. I915_WRITE(GEN6_RC_SLEEP, 0);
  4546. /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
  4547. I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
  4548. /* allows RC6 residency counter to work */
  4549. I915_WRITE(VLV_COUNTER_CONTROL,
  4550. _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
  4551. VLV_MEDIA_RC6_COUNT_EN |
  4552. VLV_RENDER_RC6_COUNT_EN));
  4553. /* For now we assume BIOS is allocating and populating the PCBR */
  4554. pcbr = I915_READ(VLV_PCBR);
  4555. /* 3: Enable RC6 */
  4556. if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
  4557. (pcbr >> VLV_PCBR_ADDR_SHIFT))
  4558. rc6_mode = GEN7_RC_CTL_TO_MODE;
  4559. I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  4560. /* 4 Program defaults and thresholds for RPS*/
  4561. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
  4562. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  4563. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  4564. I915_WRITE(GEN6_RP_UP_EI, 66000);
  4565. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  4566. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  4567. /* 5: Enable RPS */
  4568. I915_WRITE(GEN6_RP_CONTROL,
  4569. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  4570. GEN6_RP_MEDIA_IS_GFX |
  4571. GEN6_RP_ENABLE |
  4572. GEN6_RP_UP_BUSY_AVG |
  4573. GEN6_RP_DOWN_IDLE_AVG);
  4574. /* Setting Fixed Bias */
  4575. val = VLV_OVERRIDE_EN |
  4576. VLV_SOC_TDP_EN |
  4577. CHV_BIAS_CPU_50_SOC_50;
  4578. vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
  4579. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  4580. /* RPS code assumes GPLL is used */
  4581. WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
  4582. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
  4583. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  4584. dev_priv->rps.cur_freq = (val >> 8) & 0xff;
  4585. DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
  4586. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
  4587. dev_priv->rps.cur_freq);
  4588. DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
  4589. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  4590. dev_priv->rps.efficient_freq);
  4591. valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
  4592. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4593. }
  4594. static void valleyview_enable_rps(struct drm_device *dev)
  4595. {
  4596. struct drm_i915_private *dev_priv = dev->dev_private;
  4597. struct intel_engine_cs *ring;
  4598. u32 gtfifodbg, val, rc6_mode = 0;
  4599. int i;
  4600. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4601. valleyview_check_pctx(dev_priv);
  4602. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  4603. DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  4604. gtfifodbg);
  4605. I915_WRITE(GTFIFODBG, gtfifodbg);
  4606. }
  4607. /* If VLV, Forcewake all wells, else re-direct to regular path */
  4608. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4609. /* Disable RC states. */
  4610. I915_WRITE(GEN6_RC_CONTROL, 0);
  4611. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
  4612. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  4613. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  4614. I915_WRITE(GEN6_RP_UP_EI, 66000);
  4615. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  4616. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  4617. I915_WRITE(GEN6_RP_CONTROL,
  4618. GEN6_RP_MEDIA_TURBO |
  4619. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  4620. GEN6_RP_MEDIA_IS_GFX |
  4621. GEN6_RP_ENABLE |
  4622. GEN6_RP_UP_BUSY_AVG |
  4623. GEN6_RP_DOWN_IDLE_CONT);
  4624. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
  4625. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  4626. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  4627. for_each_ring(ring, dev_priv, i)
  4628. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  4629. I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
  4630. /* allows RC6 residency counter to work */
  4631. I915_WRITE(VLV_COUNTER_CONTROL,
  4632. _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
  4633. VLV_RENDER_RC0_COUNT_EN |
  4634. VLV_MEDIA_RC6_COUNT_EN |
  4635. VLV_RENDER_RC6_COUNT_EN));
  4636. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  4637. rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
  4638. intel_print_rc6_info(dev, rc6_mode);
  4639. I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  4640. /* Setting Fixed Bias */
  4641. val = VLV_OVERRIDE_EN |
  4642. VLV_SOC_TDP_EN |
  4643. VLV_BIAS_CPU_125_SOC_875;
  4644. vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
  4645. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  4646. /* RPS code assumes GPLL is used */
  4647. WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
  4648. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
  4649. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  4650. dev_priv->rps.cur_freq = (val >> 8) & 0xff;
  4651. DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
  4652. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
  4653. dev_priv->rps.cur_freq);
  4654. DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
  4655. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  4656. dev_priv->rps.efficient_freq);
  4657. valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
  4658. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4659. }
  4660. static unsigned long intel_pxfreq(u32 vidfreq)
  4661. {
  4662. unsigned long freq;
  4663. int div = (vidfreq & 0x3f0000) >> 16;
  4664. int post = (vidfreq & 0x3000) >> 12;
  4665. int pre = (vidfreq & 0x7);
  4666. if (!pre)
  4667. return 0;
  4668. freq = ((div * 133333) / ((1<<post) * pre));
  4669. return freq;
  4670. }
  4671. static const struct cparams {
  4672. u16 i;
  4673. u16 t;
  4674. u16 m;
  4675. u16 c;
  4676. } cparams[] = {
  4677. { 1, 1333, 301, 28664 },
  4678. { 1, 1066, 294, 24460 },
  4679. { 1, 800, 294, 25192 },
  4680. { 0, 1333, 276, 27605 },
  4681. { 0, 1066, 276, 27605 },
  4682. { 0, 800, 231, 23784 },
  4683. };
  4684. static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
  4685. {
  4686. u64 total_count, diff, ret;
  4687. u32 count1, count2, count3, m = 0, c = 0;
  4688. unsigned long now = jiffies_to_msecs(jiffies), diff1;
  4689. int i;
  4690. assert_spin_locked(&mchdev_lock);
  4691. diff1 = now - dev_priv->ips.last_time1;
  4692. /* Prevent division-by-zero if we are asking too fast.
  4693. * Also, we don't get interesting results if we are polling
  4694. * faster than once in 10ms, so just return the saved value
  4695. * in such cases.
  4696. */
  4697. if (diff1 <= 10)
  4698. return dev_priv->ips.chipset_power;
  4699. count1 = I915_READ(DMIEC);
  4700. count2 = I915_READ(DDREC);
  4701. count3 = I915_READ(CSIEC);
  4702. total_count = count1 + count2 + count3;
  4703. /* FIXME: handle per-counter overflow */
  4704. if (total_count < dev_priv->ips.last_count1) {
  4705. diff = ~0UL - dev_priv->ips.last_count1;
  4706. diff += total_count;
  4707. } else {
  4708. diff = total_count - dev_priv->ips.last_count1;
  4709. }
  4710. for (i = 0; i < ARRAY_SIZE(cparams); i++) {
  4711. if (cparams[i].i == dev_priv->ips.c_m &&
  4712. cparams[i].t == dev_priv->ips.r_t) {
  4713. m = cparams[i].m;
  4714. c = cparams[i].c;
  4715. break;
  4716. }
  4717. }
  4718. diff = div_u64(diff, diff1);
  4719. ret = ((m * diff) + c);
  4720. ret = div_u64(ret, 10);
  4721. dev_priv->ips.last_count1 = total_count;
  4722. dev_priv->ips.last_time1 = now;
  4723. dev_priv->ips.chipset_power = ret;
  4724. return ret;
  4725. }
  4726. unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
  4727. {
  4728. struct drm_device *dev = dev_priv->dev;
  4729. unsigned long val;
  4730. if (INTEL_INFO(dev)->gen != 5)
  4731. return 0;
  4732. spin_lock_irq(&mchdev_lock);
  4733. val = __i915_chipset_val(dev_priv);
  4734. spin_unlock_irq(&mchdev_lock);
  4735. return val;
  4736. }
  4737. unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
  4738. {
  4739. unsigned long m, x, b;
  4740. u32 tsfs;
  4741. tsfs = I915_READ(TSFS);
  4742. m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
  4743. x = I915_READ8(TR1);
  4744. b = tsfs & TSFS_INTR_MASK;
  4745. return ((m * x) / 127) - b;
  4746. }
  4747. static int _pxvid_to_vd(u8 pxvid)
  4748. {
  4749. if (pxvid == 0)
  4750. return 0;
  4751. if (pxvid >= 8 && pxvid < 31)
  4752. pxvid = 31;
  4753. return (pxvid + 2) * 125;
  4754. }
  4755. static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
  4756. {
  4757. struct drm_device *dev = dev_priv->dev;
  4758. const int vd = _pxvid_to_vd(pxvid);
  4759. const int vm = vd - 1125;
  4760. if (INTEL_INFO(dev)->is_mobile)
  4761. return vm > 0 ? vm : 0;
  4762. return vd;
  4763. }
  4764. static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
  4765. {
  4766. u64 now, diff, diffms;
  4767. u32 count;
  4768. assert_spin_locked(&mchdev_lock);
  4769. now = ktime_get_raw_ns();
  4770. diffms = now - dev_priv->ips.last_time2;
  4771. do_div(diffms, NSEC_PER_MSEC);
  4772. /* Don't divide by 0 */
  4773. if (!diffms)
  4774. return;
  4775. count = I915_READ(GFXEC);
  4776. if (count < dev_priv->ips.last_count2) {
  4777. diff = ~0UL - dev_priv->ips.last_count2;
  4778. diff += count;
  4779. } else {
  4780. diff = count - dev_priv->ips.last_count2;
  4781. }
  4782. dev_priv->ips.last_count2 = count;
  4783. dev_priv->ips.last_time2 = now;
  4784. /* More magic constants... */
  4785. diff = diff * 1181;
  4786. diff = div_u64(diff, diffms * 10);
  4787. dev_priv->ips.gfx_power = diff;
  4788. }
  4789. void i915_update_gfx_val(struct drm_i915_private *dev_priv)
  4790. {
  4791. struct drm_device *dev = dev_priv->dev;
  4792. if (INTEL_INFO(dev)->gen != 5)
  4793. return;
  4794. spin_lock_irq(&mchdev_lock);
  4795. __i915_update_gfx_val(dev_priv);
  4796. spin_unlock_irq(&mchdev_lock);
  4797. }
  4798. static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
  4799. {
  4800. unsigned long t, corr, state1, corr2, state2;
  4801. u32 pxvid, ext_v;
  4802. assert_spin_locked(&mchdev_lock);
  4803. pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
  4804. pxvid = (pxvid >> 24) & 0x7f;
  4805. ext_v = pvid_to_extvid(dev_priv, pxvid);
  4806. state1 = ext_v;
  4807. t = i915_mch_val(dev_priv);
  4808. /* Revel in the empirically derived constants */
  4809. /* Correction factor in 1/100000 units */
  4810. if (t > 80)
  4811. corr = ((t * 2349) + 135940);
  4812. else if (t >= 50)
  4813. corr = ((t * 964) + 29317);
  4814. else /* < 50 */
  4815. corr = ((t * 301) + 1004);
  4816. corr = corr * ((150142 * state1) / 10000 - 78642);
  4817. corr /= 100000;
  4818. corr2 = (corr * dev_priv->ips.corr);
  4819. state2 = (corr2 * state1) / 10000;
  4820. state2 /= 100; /* convert to mW */
  4821. __i915_update_gfx_val(dev_priv);
  4822. return dev_priv->ips.gfx_power + state2;
  4823. }
  4824. unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
  4825. {
  4826. struct drm_device *dev = dev_priv->dev;
  4827. unsigned long val;
  4828. if (INTEL_INFO(dev)->gen != 5)
  4829. return 0;
  4830. spin_lock_irq(&mchdev_lock);
  4831. val = __i915_gfx_val(dev_priv);
  4832. spin_unlock_irq(&mchdev_lock);
  4833. return val;
  4834. }
  4835. /**
  4836. * i915_read_mch_val - return value for IPS use
  4837. *
  4838. * Calculate and return a value for the IPS driver to use when deciding whether
  4839. * we have thermal and power headroom to increase CPU or GPU power budget.
  4840. */
  4841. unsigned long i915_read_mch_val(void)
  4842. {
  4843. struct drm_i915_private *dev_priv;
  4844. unsigned long chipset_val, graphics_val, ret = 0;
  4845. spin_lock_irq(&mchdev_lock);
  4846. if (!i915_mch_dev)
  4847. goto out_unlock;
  4848. dev_priv = i915_mch_dev;
  4849. chipset_val = __i915_chipset_val(dev_priv);
  4850. graphics_val = __i915_gfx_val(dev_priv);
  4851. ret = chipset_val + graphics_val;
  4852. out_unlock:
  4853. spin_unlock_irq(&mchdev_lock);
  4854. return ret;
  4855. }
  4856. EXPORT_SYMBOL_GPL(i915_read_mch_val);
  4857. /**
  4858. * i915_gpu_raise - raise GPU frequency limit
  4859. *
  4860. * Raise the limit; IPS indicates we have thermal headroom.
  4861. */
  4862. bool i915_gpu_raise(void)
  4863. {
  4864. struct drm_i915_private *dev_priv;
  4865. bool ret = true;
  4866. spin_lock_irq(&mchdev_lock);
  4867. if (!i915_mch_dev) {
  4868. ret = false;
  4869. goto out_unlock;
  4870. }
  4871. dev_priv = i915_mch_dev;
  4872. if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
  4873. dev_priv->ips.max_delay--;
  4874. out_unlock:
  4875. spin_unlock_irq(&mchdev_lock);
  4876. return ret;
  4877. }
  4878. EXPORT_SYMBOL_GPL(i915_gpu_raise);
  4879. /**
  4880. * i915_gpu_lower - lower GPU frequency limit
  4881. *
  4882. * IPS indicates we're close to a thermal limit, so throttle back the GPU
  4883. * frequency maximum.
  4884. */
  4885. bool i915_gpu_lower(void)
  4886. {
  4887. struct drm_i915_private *dev_priv;
  4888. bool ret = true;
  4889. spin_lock_irq(&mchdev_lock);
  4890. if (!i915_mch_dev) {
  4891. ret = false;
  4892. goto out_unlock;
  4893. }
  4894. dev_priv = i915_mch_dev;
  4895. if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
  4896. dev_priv->ips.max_delay++;
  4897. out_unlock:
  4898. spin_unlock_irq(&mchdev_lock);
  4899. return ret;
  4900. }
  4901. EXPORT_SYMBOL_GPL(i915_gpu_lower);
  4902. /**
  4903. * i915_gpu_busy - indicate GPU business to IPS
  4904. *
  4905. * Tell the IPS driver whether or not the GPU is busy.
  4906. */
  4907. bool i915_gpu_busy(void)
  4908. {
  4909. struct drm_i915_private *dev_priv;
  4910. struct intel_engine_cs *ring;
  4911. bool ret = false;
  4912. int i;
  4913. spin_lock_irq(&mchdev_lock);
  4914. if (!i915_mch_dev)
  4915. goto out_unlock;
  4916. dev_priv = i915_mch_dev;
  4917. for_each_ring(ring, dev_priv, i)
  4918. ret |= !list_empty(&ring->request_list);
  4919. out_unlock:
  4920. spin_unlock_irq(&mchdev_lock);
  4921. return ret;
  4922. }
  4923. EXPORT_SYMBOL_GPL(i915_gpu_busy);
  4924. /**
  4925. * i915_gpu_turbo_disable - disable graphics turbo
  4926. *
  4927. * Disable graphics turbo by resetting the max frequency and setting the
  4928. * current frequency to the default.
  4929. */
  4930. bool i915_gpu_turbo_disable(void)
  4931. {
  4932. struct drm_i915_private *dev_priv;
  4933. bool ret = true;
  4934. spin_lock_irq(&mchdev_lock);
  4935. if (!i915_mch_dev) {
  4936. ret = false;
  4937. goto out_unlock;
  4938. }
  4939. dev_priv = i915_mch_dev;
  4940. dev_priv->ips.max_delay = dev_priv->ips.fstart;
  4941. if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
  4942. ret = false;
  4943. out_unlock:
  4944. spin_unlock_irq(&mchdev_lock);
  4945. return ret;
  4946. }
  4947. EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
  4948. /**
  4949. * Tells the intel_ips driver that the i915 driver is now loaded, if
  4950. * IPS got loaded first.
  4951. *
  4952. * This awkward dance is so that neither module has to depend on the
  4953. * other in order for IPS to do the appropriate communication of
  4954. * GPU turbo limits to i915.
  4955. */
  4956. static void
  4957. ips_ping_for_i915_load(void)
  4958. {
  4959. void (*link)(void);
  4960. link = symbol_get(ips_link_to_i915_driver);
  4961. if (link) {
  4962. link();
  4963. symbol_put(ips_link_to_i915_driver);
  4964. }
  4965. }
  4966. void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
  4967. {
  4968. /* We only register the i915 ips part with intel-ips once everything is
  4969. * set up, to avoid intel-ips sneaking in and reading bogus values. */
  4970. spin_lock_irq(&mchdev_lock);
  4971. i915_mch_dev = dev_priv;
  4972. spin_unlock_irq(&mchdev_lock);
  4973. ips_ping_for_i915_load();
  4974. }
  4975. void intel_gpu_ips_teardown(void)
  4976. {
  4977. spin_lock_irq(&mchdev_lock);
  4978. i915_mch_dev = NULL;
  4979. spin_unlock_irq(&mchdev_lock);
  4980. }
  4981. static void intel_init_emon(struct drm_device *dev)
  4982. {
  4983. struct drm_i915_private *dev_priv = dev->dev_private;
  4984. u32 lcfuse;
  4985. u8 pxw[16];
  4986. int i;
  4987. /* Disable to program */
  4988. I915_WRITE(ECR, 0);
  4989. POSTING_READ(ECR);
  4990. /* Program energy weights for various events */
  4991. I915_WRITE(SDEW, 0x15040d00);
  4992. I915_WRITE(CSIEW0, 0x007f0000);
  4993. I915_WRITE(CSIEW1, 0x1e220004);
  4994. I915_WRITE(CSIEW2, 0x04000004);
  4995. for (i = 0; i < 5; i++)
  4996. I915_WRITE(PEW(i), 0);
  4997. for (i = 0; i < 3; i++)
  4998. I915_WRITE(DEW(i), 0);
  4999. /* Program P-state weights to account for frequency power adjustment */
  5000. for (i = 0; i < 16; i++) {
  5001. u32 pxvidfreq = I915_READ(PXVFREQ(i));
  5002. unsigned long freq = intel_pxfreq(pxvidfreq);
  5003. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  5004. PXVFREQ_PX_SHIFT;
  5005. unsigned long val;
  5006. val = vid * vid;
  5007. val *= (freq / 1000);
  5008. val *= 255;
  5009. val /= (127*127*900);
  5010. if (val > 0xff)
  5011. DRM_ERROR("bad pxval: %ld\n", val);
  5012. pxw[i] = val;
  5013. }
  5014. /* Render standby states get 0 weight */
  5015. pxw[14] = 0;
  5016. pxw[15] = 0;
  5017. for (i = 0; i < 4; i++) {
  5018. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  5019. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  5020. I915_WRITE(PXW(i), val);
  5021. }
  5022. /* Adjust magic regs to magic values (more experimental results) */
  5023. I915_WRITE(OGW0, 0);
  5024. I915_WRITE(OGW1, 0);
  5025. I915_WRITE(EG0, 0x00007f00);
  5026. I915_WRITE(EG1, 0x0000000e);
  5027. I915_WRITE(EG2, 0x000e0000);
  5028. I915_WRITE(EG3, 0x68000300);
  5029. I915_WRITE(EG4, 0x42000000);
  5030. I915_WRITE(EG5, 0x00140031);
  5031. I915_WRITE(EG6, 0);
  5032. I915_WRITE(EG7, 0);
  5033. for (i = 0; i < 8; i++)
  5034. I915_WRITE(PXWL(i), 0);
  5035. /* Enable PMON + select events */
  5036. I915_WRITE(ECR, 0x80000019);
  5037. lcfuse = I915_READ(LCFUSE02);
  5038. dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
  5039. }
  5040. void intel_init_gt_powersave(struct drm_device *dev)
  5041. {
  5042. i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
  5043. if (IS_CHERRYVIEW(dev))
  5044. cherryview_init_gt_powersave(dev);
  5045. else if (IS_VALLEYVIEW(dev))
  5046. valleyview_init_gt_powersave(dev);
  5047. }
  5048. void intel_cleanup_gt_powersave(struct drm_device *dev)
  5049. {
  5050. if (IS_CHERRYVIEW(dev))
  5051. return;
  5052. else if (IS_VALLEYVIEW(dev))
  5053. valleyview_cleanup_gt_powersave(dev);
  5054. }
  5055. static void gen6_suspend_rps(struct drm_device *dev)
  5056. {
  5057. struct drm_i915_private *dev_priv = dev->dev_private;
  5058. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  5059. gen6_disable_rps_interrupts(dev);
  5060. }
  5061. /**
  5062. * intel_suspend_gt_powersave - suspend PM work and helper threads
  5063. * @dev: drm device
  5064. *
  5065. * We don't want to disable RC6 or other features here, we just want
  5066. * to make sure any work we've queued has finished and won't bother
  5067. * us while we're suspended.
  5068. */
  5069. void intel_suspend_gt_powersave(struct drm_device *dev)
  5070. {
  5071. struct drm_i915_private *dev_priv = dev->dev_private;
  5072. if (INTEL_INFO(dev)->gen < 6)
  5073. return;
  5074. gen6_suspend_rps(dev);
  5075. /* Force GPU to min freq during suspend */
  5076. gen6_rps_idle(dev_priv);
  5077. }
  5078. void intel_disable_gt_powersave(struct drm_device *dev)
  5079. {
  5080. struct drm_i915_private *dev_priv = dev->dev_private;
  5081. if (IS_IRONLAKE_M(dev)) {
  5082. ironlake_disable_drps(dev);
  5083. } else if (INTEL_INFO(dev)->gen >= 6) {
  5084. intel_suspend_gt_powersave(dev);
  5085. mutex_lock(&dev_priv->rps.hw_lock);
  5086. if (INTEL_INFO(dev)->gen >= 9)
  5087. gen9_disable_rps(dev);
  5088. else if (IS_CHERRYVIEW(dev))
  5089. cherryview_disable_rps(dev);
  5090. else if (IS_VALLEYVIEW(dev))
  5091. valleyview_disable_rps(dev);
  5092. else
  5093. gen6_disable_rps(dev);
  5094. dev_priv->rps.enabled = false;
  5095. mutex_unlock(&dev_priv->rps.hw_lock);
  5096. }
  5097. }
  5098. static void intel_gen6_powersave_work(struct work_struct *work)
  5099. {
  5100. struct drm_i915_private *dev_priv =
  5101. container_of(work, struct drm_i915_private,
  5102. rps.delayed_resume_work.work);
  5103. struct drm_device *dev = dev_priv->dev;
  5104. mutex_lock(&dev_priv->rps.hw_lock);
  5105. gen6_reset_rps_interrupts(dev);
  5106. if (IS_CHERRYVIEW(dev)) {
  5107. cherryview_enable_rps(dev);
  5108. } else if (IS_VALLEYVIEW(dev)) {
  5109. valleyview_enable_rps(dev);
  5110. } else if (INTEL_INFO(dev)->gen >= 9) {
  5111. gen9_enable_rc6(dev);
  5112. gen9_enable_rps(dev);
  5113. if (IS_SKYLAKE(dev))
  5114. __gen6_update_ring_freq(dev);
  5115. } else if (IS_BROADWELL(dev)) {
  5116. gen8_enable_rps(dev);
  5117. __gen6_update_ring_freq(dev);
  5118. } else {
  5119. gen6_enable_rps(dev);
  5120. __gen6_update_ring_freq(dev);
  5121. }
  5122. WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
  5123. WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
  5124. WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
  5125. WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
  5126. dev_priv->rps.enabled = true;
  5127. gen6_enable_rps_interrupts(dev);
  5128. mutex_unlock(&dev_priv->rps.hw_lock);
  5129. intel_runtime_pm_put(dev_priv);
  5130. }
  5131. void intel_enable_gt_powersave(struct drm_device *dev)
  5132. {
  5133. struct drm_i915_private *dev_priv = dev->dev_private;
  5134. /* Powersaving is controlled by the host when inside a VM */
  5135. if (intel_vgpu_active(dev))
  5136. return;
  5137. if (IS_IRONLAKE_M(dev)) {
  5138. mutex_lock(&dev->struct_mutex);
  5139. ironlake_enable_drps(dev);
  5140. intel_init_emon(dev);
  5141. mutex_unlock(&dev->struct_mutex);
  5142. } else if (INTEL_INFO(dev)->gen >= 6) {
  5143. /*
  5144. * PCU communication is slow and this doesn't need to be
  5145. * done at any specific time, so do this out of our fast path
  5146. * to make resume and init faster.
  5147. *
  5148. * We depend on the HW RC6 power context save/restore
  5149. * mechanism when entering D3 through runtime PM suspend. So
  5150. * disable RPM until RPS/RC6 is properly setup. We can only
  5151. * get here via the driver load/system resume/runtime resume
  5152. * paths, so the _noresume version is enough (and in case of
  5153. * runtime resume it's necessary).
  5154. */
  5155. if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
  5156. round_jiffies_up_relative(HZ)))
  5157. intel_runtime_pm_get_noresume(dev_priv);
  5158. }
  5159. }
  5160. void intel_reset_gt_powersave(struct drm_device *dev)
  5161. {
  5162. struct drm_i915_private *dev_priv = dev->dev_private;
  5163. if (INTEL_INFO(dev)->gen < 6)
  5164. return;
  5165. gen6_suspend_rps(dev);
  5166. dev_priv->rps.enabled = false;
  5167. }
  5168. static void ibx_init_clock_gating(struct drm_device *dev)
  5169. {
  5170. struct drm_i915_private *dev_priv = dev->dev_private;
  5171. /*
  5172. * On Ibex Peak and Cougar Point, we need to disable clock
  5173. * gating for the panel power sequencer or it will fail to
  5174. * start up when no ports are active.
  5175. */
  5176. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  5177. }
  5178. static void g4x_disable_trickle_feed(struct drm_device *dev)
  5179. {
  5180. struct drm_i915_private *dev_priv = dev->dev_private;
  5181. enum pipe pipe;
  5182. for_each_pipe(dev_priv, pipe) {
  5183. I915_WRITE(DSPCNTR(pipe),
  5184. I915_READ(DSPCNTR(pipe)) |
  5185. DISPPLANE_TRICKLE_FEED_DISABLE);
  5186. I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
  5187. POSTING_READ(DSPSURF(pipe));
  5188. }
  5189. }
  5190. static void ilk_init_lp_watermarks(struct drm_device *dev)
  5191. {
  5192. struct drm_i915_private *dev_priv = dev->dev_private;
  5193. I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
  5194. I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
  5195. I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
  5196. /*
  5197. * Don't touch WM1S_LP_EN here.
  5198. * Doing so could cause underruns.
  5199. */
  5200. }
  5201. static void ironlake_init_clock_gating(struct drm_device *dev)
  5202. {
  5203. struct drm_i915_private *dev_priv = dev->dev_private;
  5204. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  5205. /*
  5206. * Required for FBC
  5207. * WaFbcDisableDpfcClockGating:ilk
  5208. */
  5209. dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
  5210. ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
  5211. ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
  5212. I915_WRITE(PCH_3DCGDIS0,
  5213. MARIUNIT_CLOCK_GATE_DISABLE |
  5214. SVSMUNIT_CLOCK_GATE_DISABLE);
  5215. I915_WRITE(PCH_3DCGDIS1,
  5216. VFMUNIT_CLOCK_GATE_DISABLE);
  5217. /*
  5218. * According to the spec the following bits should be set in
  5219. * order to enable memory self-refresh
  5220. * The bit 22/21 of 0x42004
  5221. * The bit 5 of 0x42020
  5222. * The bit 15 of 0x45000
  5223. */
  5224. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  5225. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  5226. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  5227. dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
  5228. I915_WRITE(DISP_ARB_CTL,
  5229. (I915_READ(DISP_ARB_CTL) |
  5230. DISP_FBC_WM_DIS));
  5231. ilk_init_lp_watermarks(dev);
  5232. /*
  5233. * Based on the document from hardware guys the following bits
  5234. * should be set unconditionally in order to enable FBC.
  5235. * The bit 22 of 0x42000
  5236. * The bit 22 of 0x42004
  5237. * The bit 7,8,9 of 0x42020.
  5238. */
  5239. if (IS_IRONLAKE_M(dev)) {
  5240. /* WaFbcAsynchFlipDisableFbcQueue:ilk */
  5241. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  5242. I915_READ(ILK_DISPLAY_CHICKEN1) |
  5243. ILK_FBCQ_DIS);
  5244. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  5245. I915_READ(ILK_DISPLAY_CHICKEN2) |
  5246. ILK_DPARB_GATE);
  5247. }
  5248. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  5249. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  5250. I915_READ(ILK_DISPLAY_CHICKEN2) |
  5251. ILK_ELPIN_409_SELECT);
  5252. I915_WRITE(_3D_CHICKEN2,
  5253. _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  5254. _3D_CHICKEN2_WM_READ_PIPELINED);
  5255. /* WaDisableRenderCachePipelinedFlush:ilk */
  5256. I915_WRITE(CACHE_MODE_0,
  5257. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  5258. /* WaDisable_RenderCache_OperationalFlush:ilk */
  5259. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5260. g4x_disable_trickle_feed(dev);
  5261. ibx_init_clock_gating(dev);
  5262. }
  5263. static void cpt_init_clock_gating(struct drm_device *dev)
  5264. {
  5265. struct drm_i915_private *dev_priv = dev->dev_private;
  5266. int pipe;
  5267. uint32_t val;
  5268. /*
  5269. * On Ibex Peak and Cougar Point, we need to disable clock
  5270. * gating for the panel power sequencer or it will fail to
  5271. * start up when no ports are active.
  5272. */
  5273. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
  5274. PCH_DPLUNIT_CLOCK_GATE_DISABLE |
  5275. PCH_CPUNIT_CLOCK_GATE_DISABLE);
  5276. I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
  5277. DPLS_EDP_PPS_FIX_DIS);
  5278. /* The below fixes the weird display corruption, a few pixels shifted
  5279. * downward, on (only) LVDS of some HP laptops with IVY.
  5280. */
  5281. for_each_pipe(dev_priv, pipe) {
  5282. val = I915_READ(TRANS_CHICKEN2(pipe));
  5283. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  5284. val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  5285. if (dev_priv->vbt.fdi_rx_polarity_inverted)
  5286. val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  5287. val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
  5288. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
  5289. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
  5290. I915_WRITE(TRANS_CHICKEN2(pipe), val);
  5291. }
  5292. /* WADP0ClockGatingDisable */
  5293. for_each_pipe(dev_priv, pipe) {
  5294. I915_WRITE(TRANS_CHICKEN1(pipe),
  5295. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  5296. }
  5297. }
  5298. static void gen6_check_mch_setup(struct drm_device *dev)
  5299. {
  5300. struct drm_i915_private *dev_priv = dev->dev_private;
  5301. uint32_t tmp;
  5302. tmp = I915_READ(MCH_SSKPD);
  5303. if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
  5304. DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
  5305. tmp);
  5306. }
  5307. static void gen6_init_clock_gating(struct drm_device *dev)
  5308. {
  5309. struct drm_i915_private *dev_priv = dev->dev_private;
  5310. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  5311. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  5312. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  5313. I915_READ(ILK_DISPLAY_CHICKEN2) |
  5314. ILK_ELPIN_409_SELECT);
  5315. /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
  5316. I915_WRITE(_3D_CHICKEN,
  5317. _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
  5318. /* WaDisable_RenderCache_OperationalFlush:snb */
  5319. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5320. /*
  5321. * BSpec recoomends 8x4 when MSAA is used,
  5322. * however in practice 16x4 seems fastest.
  5323. *
  5324. * Note that PS/WM thread counts depend on the WIZ hashing
  5325. * disable bit, which we don't touch here, but it's good
  5326. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  5327. */
  5328. I915_WRITE(GEN6_GT_MODE,
  5329. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  5330. ilk_init_lp_watermarks(dev);
  5331. I915_WRITE(CACHE_MODE_0,
  5332. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  5333. I915_WRITE(GEN6_UCGCTL1,
  5334. I915_READ(GEN6_UCGCTL1) |
  5335. GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
  5336. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  5337. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  5338. * gating disable must be set. Failure to set it results in
  5339. * flickering pixels due to Z write ordering failures after
  5340. * some amount of runtime in the Mesa "fire" demo, and Unigine
  5341. * Sanctuary and Tropics, and apparently anything else with
  5342. * alpha test or pixel discard.
  5343. *
  5344. * According to the spec, bit 11 (RCCUNIT) must also be set,
  5345. * but we didn't debug actual testcases to find it out.
  5346. *
  5347. * WaDisableRCCUnitClockGating:snb
  5348. * WaDisableRCPBUnitClockGating:snb
  5349. */
  5350. I915_WRITE(GEN6_UCGCTL2,
  5351. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  5352. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  5353. /* WaStripsFansDisableFastClipPerformanceFix:snb */
  5354. I915_WRITE(_3D_CHICKEN3,
  5355. _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
  5356. /*
  5357. * Bspec says:
  5358. * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
  5359. * 3DSTATE_SF number of SF output attributes is more than 16."
  5360. */
  5361. I915_WRITE(_3D_CHICKEN3,
  5362. _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
  5363. /*
  5364. * According to the spec the following bits should be
  5365. * set in order to enable memory self-refresh and fbc:
  5366. * The bit21 and bit22 of 0x42000
  5367. * The bit21 and bit22 of 0x42004
  5368. * The bit5 and bit7 of 0x42020
  5369. * The bit14 of 0x70180
  5370. * The bit14 of 0x71180
  5371. *
  5372. * WaFbcAsynchFlipDisableFbcQueue:snb
  5373. */
  5374. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  5375. I915_READ(ILK_DISPLAY_CHICKEN1) |
  5376. ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  5377. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  5378. I915_READ(ILK_DISPLAY_CHICKEN2) |
  5379. ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  5380. I915_WRITE(ILK_DSPCLK_GATE_D,
  5381. I915_READ(ILK_DSPCLK_GATE_D) |
  5382. ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
  5383. ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
  5384. g4x_disable_trickle_feed(dev);
  5385. cpt_init_clock_gating(dev);
  5386. gen6_check_mch_setup(dev);
  5387. }
  5388. static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
  5389. {
  5390. uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
  5391. /*
  5392. * WaVSThreadDispatchOverride:ivb,vlv
  5393. *
  5394. * This actually overrides the dispatch
  5395. * mode for all thread types.
  5396. */
  5397. reg &= ~GEN7_FF_SCHED_MASK;
  5398. reg |= GEN7_FF_TS_SCHED_HW;
  5399. reg |= GEN7_FF_VS_SCHED_HW;
  5400. reg |= GEN7_FF_DS_SCHED_HW;
  5401. I915_WRITE(GEN7_FF_THREAD_MODE, reg);
  5402. }
  5403. static void lpt_init_clock_gating(struct drm_device *dev)
  5404. {
  5405. struct drm_i915_private *dev_priv = dev->dev_private;
  5406. /*
  5407. * TODO: this bit should only be enabled when really needed, then
  5408. * disabled when not needed anymore in order to save power.
  5409. */
  5410. if (HAS_PCH_LPT_LP(dev))
  5411. I915_WRITE(SOUTH_DSPCLK_GATE_D,
  5412. I915_READ(SOUTH_DSPCLK_GATE_D) |
  5413. PCH_LP_PARTITION_LEVEL_DISABLE);
  5414. /* WADPOClockGatingDisable:hsw */
  5415. I915_WRITE(TRANS_CHICKEN1(PIPE_A),
  5416. I915_READ(TRANS_CHICKEN1(PIPE_A)) |
  5417. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  5418. }
  5419. static void lpt_suspend_hw(struct drm_device *dev)
  5420. {
  5421. struct drm_i915_private *dev_priv = dev->dev_private;
  5422. if (HAS_PCH_LPT_LP(dev)) {
  5423. uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
  5424. val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  5425. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  5426. }
  5427. }
  5428. static void broadwell_init_clock_gating(struct drm_device *dev)
  5429. {
  5430. struct drm_i915_private *dev_priv = dev->dev_private;
  5431. enum pipe pipe;
  5432. uint32_t misccpctl;
  5433. ilk_init_lp_watermarks(dev);
  5434. /* WaSwitchSolVfFArbitrationPriority:bdw */
  5435. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  5436. /* WaPsrDPAMaskVBlankInSRD:bdw */
  5437. I915_WRITE(CHICKEN_PAR1_1,
  5438. I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
  5439. /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
  5440. for_each_pipe(dev_priv, pipe) {
  5441. I915_WRITE(CHICKEN_PIPESL_1(pipe),
  5442. I915_READ(CHICKEN_PIPESL_1(pipe)) |
  5443. BDW_DPRS_MASK_VBLANK_SRD);
  5444. }
  5445. /* WaVSRefCountFullforceMissDisable:bdw */
  5446. /* WaDSRefCountFullforceMissDisable:bdw */
  5447. I915_WRITE(GEN7_FF_THREAD_MODE,
  5448. I915_READ(GEN7_FF_THREAD_MODE) &
  5449. ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
  5450. I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
  5451. _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
  5452. /* WaDisableSDEUnitClockGating:bdw */
  5453. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  5454. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  5455. /*
  5456. * WaProgramL3SqcReg1Default:bdw
  5457. * WaTempDisableDOPClkGating:bdw
  5458. */
  5459. misccpctl = I915_READ(GEN7_MISCCPCTL);
  5460. I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
  5461. I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
  5462. I915_WRITE(GEN7_MISCCPCTL, misccpctl);
  5463. /*
  5464. * WaGttCachingOffByDefault:bdw
  5465. * GTT cache may not work with big pages, so if those
  5466. * are ever enabled GTT cache may need to be disabled.
  5467. */
  5468. I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
  5469. lpt_init_clock_gating(dev);
  5470. }
  5471. static void haswell_init_clock_gating(struct drm_device *dev)
  5472. {
  5473. struct drm_i915_private *dev_priv = dev->dev_private;
  5474. ilk_init_lp_watermarks(dev);
  5475. /* L3 caching of data atomics doesn't work -- disable it. */
  5476. I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
  5477. I915_WRITE(HSW_ROW_CHICKEN3,
  5478. _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
  5479. /* This is required by WaCatErrorRejectionIssue:hsw */
  5480. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  5481. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  5482. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  5483. /* WaVSRefCountFullforceMissDisable:hsw */
  5484. I915_WRITE(GEN7_FF_THREAD_MODE,
  5485. I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
  5486. /* WaDisable_RenderCache_OperationalFlush:hsw */
  5487. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5488. /* enable HiZ Raw Stall Optimization */
  5489. I915_WRITE(CACHE_MODE_0_GEN7,
  5490. _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
  5491. /* WaDisable4x2SubspanOptimization:hsw */
  5492. I915_WRITE(CACHE_MODE_1,
  5493. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  5494. /*
  5495. * BSpec recommends 8x4 when MSAA is used,
  5496. * however in practice 16x4 seems fastest.
  5497. *
  5498. * Note that PS/WM thread counts depend on the WIZ hashing
  5499. * disable bit, which we don't touch here, but it's good
  5500. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  5501. */
  5502. I915_WRITE(GEN7_GT_MODE,
  5503. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  5504. /* WaSampleCChickenBitEnable:hsw */
  5505. I915_WRITE(HALF_SLICE_CHICKEN3,
  5506. _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
  5507. /* WaSwitchSolVfFArbitrationPriority:hsw */
  5508. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  5509. /* WaRsPkgCStateDisplayPMReq:hsw */
  5510. I915_WRITE(CHICKEN_PAR1_1,
  5511. I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
  5512. lpt_init_clock_gating(dev);
  5513. }
  5514. static void ivybridge_init_clock_gating(struct drm_device *dev)
  5515. {
  5516. struct drm_i915_private *dev_priv = dev->dev_private;
  5517. uint32_t snpcr;
  5518. ilk_init_lp_watermarks(dev);
  5519. I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
  5520. /* WaDisableEarlyCull:ivb */
  5521. I915_WRITE(_3D_CHICKEN3,
  5522. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  5523. /* WaDisableBackToBackFlipFix:ivb */
  5524. I915_WRITE(IVB_CHICKEN3,
  5525. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  5526. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  5527. /* WaDisablePSDDualDispatchEnable:ivb */
  5528. if (IS_IVB_GT1(dev))
  5529. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  5530. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  5531. /* WaDisable_RenderCache_OperationalFlush:ivb */
  5532. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5533. /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
  5534. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  5535. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  5536. /* WaApplyL3ControlAndL3ChickenMode:ivb */
  5537. I915_WRITE(GEN7_L3CNTLREG1,
  5538. GEN7_WA_FOR_GEN7_L3_CONTROL);
  5539. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  5540. GEN7_WA_L3_CHICKEN_MODE);
  5541. if (IS_IVB_GT1(dev))
  5542. I915_WRITE(GEN7_ROW_CHICKEN2,
  5543. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  5544. else {
  5545. /* must write both registers */
  5546. I915_WRITE(GEN7_ROW_CHICKEN2,
  5547. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  5548. I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
  5549. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  5550. }
  5551. /* WaForceL3Serialization:ivb */
  5552. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  5553. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  5554. /*
  5555. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  5556. * This implements the WaDisableRCZUnitClockGating:ivb workaround.
  5557. */
  5558. I915_WRITE(GEN6_UCGCTL2,
  5559. GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  5560. /* This is required by WaCatErrorRejectionIssue:ivb */
  5561. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  5562. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  5563. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  5564. g4x_disable_trickle_feed(dev);
  5565. gen7_setup_fixed_func_scheduler(dev_priv);
  5566. if (0) { /* causes HiZ corruption on ivb:gt1 */
  5567. /* enable HiZ Raw Stall Optimization */
  5568. I915_WRITE(CACHE_MODE_0_GEN7,
  5569. _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
  5570. }
  5571. /* WaDisable4x2SubspanOptimization:ivb */
  5572. I915_WRITE(CACHE_MODE_1,
  5573. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  5574. /*
  5575. * BSpec recommends 8x4 when MSAA is used,
  5576. * however in practice 16x4 seems fastest.
  5577. *
  5578. * Note that PS/WM thread counts depend on the WIZ hashing
  5579. * disable bit, which we don't touch here, but it's good
  5580. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  5581. */
  5582. I915_WRITE(GEN7_GT_MODE,
  5583. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  5584. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  5585. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  5586. snpcr |= GEN6_MBC_SNPCR_MED;
  5587. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  5588. if (!HAS_PCH_NOP(dev))
  5589. cpt_init_clock_gating(dev);
  5590. gen6_check_mch_setup(dev);
  5591. }
  5592. static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
  5593. {
  5594. I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
  5595. /*
  5596. * Disable trickle feed and enable pnd deadline calculation
  5597. */
  5598. I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
  5599. I915_WRITE(CBR1_VLV, 0);
  5600. }
  5601. static void valleyview_init_clock_gating(struct drm_device *dev)
  5602. {
  5603. struct drm_i915_private *dev_priv = dev->dev_private;
  5604. vlv_init_display_clock_gating(dev_priv);
  5605. /* WaDisableEarlyCull:vlv */
  5606. I915_WRITE(_3D_CHICKEN3,
  5607. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  5608. /* WaDisableBackToBackFlipFix:vlv */
  5609. I915_WRITE(IVB_CHICKEN3,
  5610. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  5611. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  5612. /* WaPsdDispatchEnable:vlv */
  5613. /* WaDisablePSDDualDispatchEnable:vlv */
  5614. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  5615. _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
  5616. GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  5617. /* WaDisable_RenderCache_OperationalFlush:vlv */
  5618. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5619. /* WaForceL3Serialization:vlv */
  5620. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  5621. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  5622. /* WaDisableDopClockGating:vlv */
  5623. I915_WRITE(GEN7_ROW_CHICKEN2,
  5624. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  5625. /* This is required by WaCatErrorRejectionIssue:vlv */
  5626. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  5627. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  5628. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  5629. gen7_setup_fixed_func_scheduler(dev_priv);
  5630. /*
  5631. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  5632. * This implements the WaDisableRCZUnitClockGating:vlv workaround.
  5633. */
  5634. I915_WRITE(GEN6_UCGCTL2,
  5635. GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  5636. /* WaDisableL3Bank2xClockGate:vlv
  5637. * Disabling L3 clock gating- MMIO 940c[25] = 1
  5638. * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
  5639. I915_WRITE(GEN7_UCGCTL4,
  5640. I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
  5641. /*
  5642. * BSpec says this must be set, even though
  5643. * WaDisable4x2SubspanOptimization isn't listed for VLV.
  5644. */
  5645. I915_WRITE(CACHE_MODE_1,
  5646. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  5647. /*
  5648. * BSpec recommends 8x4 when MSAA is used,
  5649. * however in practice 16x4 seems fastest.
  5650. *
  5651. * Note that PS/WM thread counts depend on the WIZ hashing
  5652. * disable bit, which we don't touch here, but it's good
  5653. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  5654. */
  5655. I915_WRITE(GEN7_GT_MODE,
  5656. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  5657. /*
  5658. * WaIncreaseL3CreditsForVLVB0:vlv
  5659. * This is the hardware default actually.
  5660. */
  5661. I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
  5662. /*
  5663. * WaDisableVLVClockGating_VBIIssue:vlv
  5664. * Disable clock gating on th GCFG unit to prevent a delay
  5665. * in the reporting of vblank events.
  5666. */
  5667. I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
  5668. }
  5669. static void cherryview_init_clock_gating(struct drm_device *dev)
  5670. {
  5671. struct drm_i915_private *dev_priv = dev->dev_private;
  5672. vlv_init_display_clock_gating(dev_priv);
  5673. /* WaVSRefCountFullforceMissDisable:chv */
  5674. /* WaDSRefCountFullforceMissDisable:chv */
  5675. I915_WRITE(GEN7_FF_THREAD_MODE,
  5676. I915_READ(GEN7_FF_THREAD_MODE) &
  5677. ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
  5678. /* WaDisableSemaphoreAndSyncFlipWait:chv */
  5679. I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
  5680. _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
  5681. /* WaDisableCSUnitClockGating:chv */
  5682. I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
  5683. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  5684. /* WaDisableSDEUnitClockGating:chv */
  5685. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  5686. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  5687. /*
  5688. * GTT cache may not work with big pages, so if those
  5689. * are ever enabled GTT cache may need to be disabled.
  5690. */
  5691. I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
  5692. }
  5693. static void g4x_init_clock_gating(struct drm_device *dev)
  5694. {
  5695. struct drm_i915_private *dev_priv = dev->dev_private;
  5696. uint32_t dspclk_gate;
  5697. I915_WRITE(RENCLK_GATE_D1, 0);
  5698. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  5699. GS_UNIT_CLOCK_GATE_DISABLE |
  5700. CL_UNIT_CLOCK_GATE_DISABLE);
  5701. I915_WRITE(RAMCLK_GATE_D, 0);
  5702. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  5703. OVRUNIT_CLOCK_GATE_DISABLE |
  5704. OVCUNIT_CLOCK_GATE_DISABLE;
  5705. if (IS_GM45(dev))
  5706. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  5707. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  5708. /* WaDisableRenderCachePipelinedFlush */
  5709. I915_WRITE(CACHE_MODE_0,
  5710. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  5711. /* WaDisable_RenderCache_OperationalFlush:g4x */
  5712. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5713. g4x_disable_trickle_feed(dev);
  5714. }
  5715. static void crestline_init_clock_gating(struct drm_device *dev)
  5716. {
  5717. struct drm_i915_private *dev_priv = dev->dev_private;
  5718. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  5719. I915_WRITE(RENCLK_GATE_D2, 0);
  5720. I915_WRITE(DSPCLK_GATE_D, 0);
  5721. I915_WRITE(RAMCLK_GATE_D, 0);
  5722. I915_WRITE16(DEUC, 0);
  5723. I915_WRITE(MI_ARB_STATE,
  5724. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  5725. /* WaDisable_RenderCache_OperationalFlush:gen4 */
  5726. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5727. }
  5728. static void broadwater_init_clock_gating(struct drm_device *dev)
  5729. {
  5730. struct drm_i915_private *dev_priv = dev->dev_private;
  5731. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  5732. I965_RCC_CLOCK_GATE_DISABLE |
  5733. I965_RCPB_CLOCK_GATE_DISABLE |
  5734. I965_ISC_CLOCK_GATE_DISABLE |
  5735. I965_FBC_CLOCK_GATE_DISABLE);
  5736. I915_WRITE(RENCLK_GATE_D2, 0);
  5737. I915_WRITE(MI_ARB_STATE,
  5738. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  5739. /* WaDisable_RenderCache_OperationalFlush:gen4 */
  5740. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5741. }
  5742. static void gen3_init_clock_gating(struct drm_device *dev)
  5743. {
  5744. struct drm_i915_private *dev_priv = dev->dev_private;
  5745. u32 dstate = I915_READ(D_STATE);
  5746. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  5747. DSTATE_DOT_CLOCK_GATING;
  5748. I915_WRITE(D_STATE, dstate);
  5749. if (IS_PINEVIEW(dev))
  5750. I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
  5751. /* IIR "flip pending" means done if this bit is set */
  5752. I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
  5753. /* interrupts should cause a wake up from C3 */
  5754. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
  5755. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  5756. I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
  5757. I915_WRITE(MI_ARB_STATE,
  5758. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  5759. }
  5760. static void i85x_init_clock_gating(struct drm_device *dev)
  5761. {
  5762. struct drm_i915_private *dev_priv = dev->dev_private;
  5763. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  5764. /* interrupts should cause a wake up from C3 */
  5765. I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
  5766. _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
  5767. I915_WRITE(MEM_MODE,
  5768. _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
  5769. }
  5770. static void i830_init_clock_gating(struct drm_device *dev)
  5771. {
  5772. struct drm_i915_private *dev_priv = dev->dev_private;
  5773. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  5774. I915_WRITE(MEM_MODE,
  5775. _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
  5776. _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
  5777. }
  5778. void intel_init_clock_gating(struct drm_device *dev)
  5779. {
  5780. struct drm_i915_private *dev_priv = dev->dev_private;
  5781. if (dev_priv->display.init_clock_gating)
  5782. dev_priv->display.init_clock_gating(dev);
  5783. }
  5784. void intel_suspend_hw(struct drm_device *dev)
  5785. {
  5786. if (HAS_PCH_LPT(dev))
  5787. lpt_suspend_hw(dev);
  5788. }
  5789. /* Set up chip specific power management-related functions */
  5790. void intel_init_pm(struct drm_device *dev)
  5791. {
  5792. struct drm_i915_private *dev_priv = dev->dev_private;
  5793. intel_fbc_init(dev_priv);
  5794. /* For cxsr */
  5795. if (IS_PINEVIEW(dev))
  5796. i915_pineview_get_mem_freq(dev);
  5797. else if (IS_GEN5(dev))
  5798. i915_ironlake_get_mem_freq(dev);
  5799. /* For FIFO watermark updates */
  5800. if (INTEL_INFO(dev)->gen >= 9) {
  5801. skl_setup_wm_latency(dev);
  5802. if (IS_BROXTON(dev))
  5803. dev_priv->display.init_clock_gating =
  5804. bxt_init_clock_gating;
  5805. dev_priv->display.update_wm = skl_update_wm;
  5806. dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
  5807. } else if (HAS_PCH_SPLIT(dev)) {
  5808. ilk_setup_wm_latency(dev);
  5809. if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
  5810. dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
  5811. (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
  5812. dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
  5813. dev_priv->display.update_wm = ilk_update_wm;
  5814. dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
  5815. } else {
  5816. DRM_DEBUG_KMS("Failed to read display plane latency. "
  5817. "Disable CxSR\n");
  5818. }
  5819. if (IS_GEN5(dev))
  5820. dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
  5821. else if (IS_GEN6(dev))
  5822. dev_priv->display.init_clock_gating = gen6_init_clock_gating;
  5823. else if (IS_IVYBRIDGE(dev))
  5824. dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
  5825. else if (IS_HASWELL(dev))
  5826. dev_priv->display.init_clock_gating = haswell_init_clock_gating;
  5827. else if (INTEL_INFO(dev)->gen == 8)
  5828. dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
  5829. } else if (IS_CHERRYVIEW(dev)) {
  5830. vlv_setup_wm_latency(dev);
  5831. dev_priv->display.update_wm = vlv_update_wm;
  5832. dev_priv->display.init_clock_gating =
  5833. cherryview_init_clock_gating;
  5834. } else if (IS_VALLEYVIEW(dev)) {
  5835. vlv_setup_wm_latency(dev);
  5836. dev_priv->display.update_wm = vlv_update_wm;
  5837. dev_priv->display.init_clock_gating =
  5838. valleyview_init_clock_gating;
  5839. } else if (IS_PINEVIEW(dev)) {
  5840. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  5841. dev_priv->is_ddr3,
  5842. dev_priv->fsb_freq,
  5843. dev_priv->mem_freq)) {
  5844. DRM_INFO("failed to find known CxSR latency "
  5845. "(found ddr%s fsb freq %d, mem freq %d), "
  5846. "disabling CxSR\n",
  5847. (dev_priv->is_ddr3 == 1) ? "3" : "2",
  5848. dev_priv->fsb_freq, dev_priv->mem_freq);
  5849. /* Disable CxSR and never update its watermark again */
  5850. intel_set_memory_cxsr(dev_priv, false);
  5851. dev_priv->display.update_wm = NULL;
  5852. } else
  5853. dev_priv->display.update_wm = pineview_update_wm;
  5854. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  5855. } else if (IS_G4X(dev)) {
  5856. dev_priv->display.update_wm = g4x_update_wm;
  5857. dev_priv->display.init_clock_gating = g4x_init_clock_gating;
  5858. } else if (IS_GEN4(dev)) {
  5859. dev_priv->display.update_wm = i965_update_wm;
  5860. if (IS_CRESTLINE(dev))
  5861. dev_priv->display.init_clock_gating = crestline_init_clock_gating;
  5862. else if (IS_BROADWATER(dev))
  5863. dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
  5864. } else if (IS_GEN3(dev)) {
  5865. dev_priv->display.update_wm = i9xx_update_wm;
  5866. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  5867. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  5868. } else if (IS_GEN2(dev)) {
  5869. if (INTEL_INFO(dev)->num_pipes == 1) {
  5870. dev_priv->display.update_wm = i845_update_wm;
  5871. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  5872. } else {
  5873. dev_priv->display.update_wm = i9xx_update_wm;
  5874. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  5875. }
  5876. if (IS_I85X(dev) || IS_I865G(dev))
  5877. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  5878. else
  5879. dev_priv->display.init_clock_gating = i830_init_clock_gating;
  5880. } else {
  5881. DRM_ERROR("unexpected fall-through in intel_init_pm\n");
  5882. }
  5883. }
  5884. int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
  5885. {
  5886. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  5887. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  5888. DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
  5889. return -EAGAIN;
  5890. }
  5891. I915_WRITE(GEN6_PCODE_DATA, *val);
  5892. I915_WRITE(GEN6_PCODE_DATA1, 0);
  5893. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  5894. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  5895. 500)) {
  5896. DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
  5897. return -ETIMEDOUT;
  5898. }
  5899. *val = I915_READ(GEN6_PCODE_DATA);
  5900. I915_WRITE(GEN6_PCODE_DATA, 0);
  5901. return 0;
  5902. }
  5903. int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
  5904. {
  5905. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  5906. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  5907. DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
  5908. return -EAGAIN;
  5909. }
  5910. I915_WRITE(GEN6_PCODE_DATA, val);
  5911. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  5912. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  5913. 500)) {
  5914. DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
  5915. return -ETIMEDOUT;
  5916. }
  5917. I915_WRITE(GEN6_PCODE_DATA, 0);
  5918. return 0;
  5919. }
  5920. static int vlv_gpu_freq_div(unsigned int czclk_freq)
  5921. {
  5922. switch (czclk_freq) {
  5923. case 200:
  5924. return 10;
  5925. case 267:
  5926. return 12;
  5927. case 320:
  5928. case 333:
  5929. return 16;
  5930. case 400:
  5931. return 20;
  5932. default:
  5933. return -1;
  5934. }
  5935. }
  5936. static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
  5937. {
  5938. int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
  5939. div = vlv_gpu_freq_div(czclk_freq);
  5940. if (div < 0)
  5941. return div;
  5942. return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
  5943. }
  5944. static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
  5945. {
  5946. int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
  5947. mul = vlv_gpu_freq_div(czclk_freq);
  5948. if (mul < 0)
  5949. return mul;
  5950. return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
  5951. }
  5952. static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
  5953. {
  5954. int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
  5955. div = vlv_gpu_freq_div(czclk_freq) / 2;
  5956. if (div < 0)
  5957. return div;
  5958. return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
  5959. }
  5960. static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
  5961. {
  5962. int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
  5963. mul = vlv_gpu_freq_div(czclk_freq) / 2;
  5964. if (mul < 0)
  5965. return mul;
  5966. /* CHV needs even values */
  5967. return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
  5968. }
  5969. int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
  5970. {
  5971. if (IS_GEN9(dev_priv->dev))
  5972. return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
  5973. GEN9_FREQ_SCALER);
  5974. else if (IS_CHERRYVIEW(dev_priv->dev))
  5975. return chv_gpu_freq(dev_priv, val);
  5976. else if (IS_VALLEYVIEW(dev_priv->dev))
  5977. return byt_gpu_freq(dev_priv, val);
  5978. else
  5979. return val * GT_FREQUENCY_MULTIPLIER;
  5980. }
  5981. int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
  5982. {
  5983. if (IS_GEN9(dev_priv->dev))
  5984. return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
  5985. GT_FREQUENCY_MULTIPLIER);
  5986. else if (IS_CHERRYVIEW(dev_priv->dev))
  5987. return chv_freq_opcode(dev_priv, val);
  5988. else if (IS_VALLEYVIEW(dev_priv->dev))
  5989. return byt_freq_opcode(dev_priv, val);
  5990. else
  5991. return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
  5992. }
  5993. struct request_boost {
  5994. struct work_struct work;
  5995. struct drm_i915_gem_request *req;
  5996. };
  5997. static void __intel_rps_boost_work(struct work_struct *work)
  5998. {
  5999. struct request_boost *boost = container_of(work, struct request_boost, work);
  6000. struct drm_i915_gem_request *req = boost->req;
  6001. if (!i915_gem_request_completed(req, true))
  6002. gen6_rps_boost(to_i915(req->ring->dev), NULL,
  6003. req->emitted_jiffies);
  6004. i915_gem_request_unreference__unlocked(req);
  6005. kfree(boost);
  6006. }
  6007. void intel_queue_rps_boost_for_request(struct drm_device *dev,
  6008. struct drm_i915_gem_request *req)
  6009. {
  6010. struct request_boost *boost;
  6011. if (req == NULL || INTEL_INFO(dev)->gen < 6)
  6012. return;
  6013. if (i915_gem_request_completed(req, true))
  6014. return;
  6015. boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
  6016. if (boost == NULL)
  6017. return;
  6018. i915_gem_request_reference(req);
  6019. boost->req = req;
  6020. INIT_WORK(&boost->work, __intel_rps_boost_work);
  6021. queue_work(to_i915(dev)->wq, &boost->work);
  6022. }
  6023. void intel_pm_setup(struct drm_device *dev)
  6024. {
  6025. struct drm_i915_private *dev_priv = dev->dev_private;
  6026. mutex_init(&dev_priv->rps.hw_lock);
  6027. spin_lock_init(&dev_priv->rps.client_lock);
  6028. INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
  6029. intel_gen6_powersave_work);
  6030. INIT_LIST_HEAD(&dev_priv->rps.clients);
  6031. INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
  6032. INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
  6033. dev_priv->pm.suspended = false;
  6034. }