dm-thin.c 77 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133
  1. /*
  2. * Copyright (C) 2011-2012 Red Hat UK.
  3. *
  4. * This file is released under the GPL.
  5. */
  6. #include "dm-thin-metadata.h"
  7. #include "dm-bio-prison.h"
  8. #include "dm.h"
  9. #include <linux/device-mapper.h>
  10. #include <linux/dm-io.h>
  11. #include <linux/dm-kcopyd.h>
  12. #include <linux/list.h>
  13. #include <linux/init.h>
  14. #include <linux/module.h>
  15. #include <linux/slab.h>
  16. #define DM_MSG_PREFIX "thin"
  17. /*
  18. * Tunable constants
  19. */
  20. #define ENDIO_HOOK_POOL_SIZE 1024
  21. #define MAPPING_POOL_SIZE 1024
  22. #define PRISON_CELLS 1024
  23. #define COMMIT_PERIOD HZ
  24. DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
  25. "A percentage of time allocated for copy on write");
  26. /*
  27. * The block size of the device holding pool data must be
  28. * between 64KB and 1GB.
  29. */
  30. #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
  31. #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
  32. /*
  33. * Device id is restricted to 24 bits.
  34. */
  35. #define MAX_DEV_ID ((1 << 24) - 1)
  36. /*
  37. * How do we handle breaking sharing of data blocks?
  38. * =================================================
  39. *
  40. * We use a standard copy-on-write btree to store the mappings for the
  41. * devices (note I'm talking about copy-on-write of the metadata here, not
  42. * the data). When you take an internal snapshot you clone the root node
  43. * of the origin btree. After this there is no concept of an origin or a
  44. * snapshot. They are just two device trees that happen to point to the
  45. * same data blocks.
  46. *
  47. * When we get a write in we decide if it's to a shared data block using
  48. * some timestamp magic. If it is, we have to break sharing.
  49. *
  50. * Let's say we write to a shared block in what was the origin. The
  51. * steps are:
  52. *
  53. * i) plug io further to this physical block. (see bio_prison code).
  54. *
  55. * ii) quiesce any read io to that shared data block. Obviously
  56. * including all devices that share this block. (see dm_deferred_set code)
  57. *
  58. * iii) copy the data block to a newly allocate block. This step can be
  59. * missed out if the io covers the block. (schedule_copy).
  60. *
  61. * iv) insert the new mapping into the origin's btree
  62. * (process_prepared_mapping). This act of inserting breaks some
  63. * sharing of btree nodes between the two devices. Breaking sharing only
  64. * effects the btree of that specific device. Btrees for the other
  65. * devices that share the block never change. The btree for the origin
  66. * device as it was after the last commit is untouched, ie. we're using
  67. * persistent data structures in the functional programming sense.
  68. *
  69. * v) unplug io to this physical block, including the io that triggered
  70. * the breaking of sharing.
  71. *
  72. * Steps (ii) and (iii) occur in parallel.
  73. *
  74. * The metadata _doesn't_ need to be committed before the io continues. We
  75. * get away with this because the io is always written to a _new_ block.
  76. * If there's a crash, then:
  77. *
  78. * - The origin mapping will point to the old origin block (the shared
  79. * one). This will contain the data as it was before the io that triggered
  80. * the breaking of sharing came in.
  81. *
  82. * - The snap mapping still points to the old block. As it would after
  83. * the commit.
  84. *
  85. * The downside of this scheme is the timestamp magic isn't perfect, and
  86. * will continue to think that data block in the snapshot device is shared
  87. * even after the write to the origin has broken sharing. I suspect data
  88. * blocks will typically be shared by many different devices, so we're
  89. * breaking sharing n + 1 times, rather than n, where n is the number of
  90. * devices that reference this data block. At the moment I think the
  91. * benefits far, far outweigh the disadvantages.
  92. */
  93. /*----------------------------------------------------------------*/
  94. /*
  95. * Key building.
  96. */
  97. static void build_data_key(struct dm_thin_device *td,
  98. dm_block_t b, struct dm_cell_key *key)
  99. {
  100. key->virtual = 0;
  101. key->dev = dm_thin_dev_id(td);
  102. key->block = b;
  103. }
  104. static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
  105. struct dm_cell_key *key)
  106. {
  107. key->virtual = 1;
  108. key->dev = dm_thin_dev_id(td);
  109. key->block = b;
  110. }
  111. /*----------------------------------------------------------------*/
  112. /*
  113. * A pool device ties together a metadata device and a data device. It
  114. * also provides the interface for creating and destroying internal
  115. * devices.
  116. */
  117. struct dm_thin_new_mapping;
  118. /*
  119. * The pool runs in 3 modes. Ordered in degraded order for comparisons.
  120. */
  121. enum pool_mode {
  122. PM_WRITE, /* metadata may be changed */
  123. PM_READ_ONLY, /* metadata may not be changed */
  124. PM_FAIL, /* all I/O fails */
  125. };
  126. struct pool_features {
  127. enum pool_mode mode;
  128. bool zero_new_blocks:1;
  129. bool discard_enabled:1;
  130. bool discard_passdown:1;
  131. bool error_if_no_space:1;
  132. };
  133. struct thin_c;
  134. typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
  135. typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
  136. struct pool {
  137. struct list_head list;
  138. struct dm_target *ti; /* Only set if a pool target is bound */
  139. struct mapped_device *pool_md;
  140. struct block_device *md_dev;
  141. struct dm_pool_metadata *pmd;
  142. dm_block_t low_water_blocks;
  143. uint32_t sectors_per_block;
  144. int sectors_per_block_shift;
  145. struct pool_features pf;
  146. bool low_water_triggered:1; /* A dm event has been sent */
  147. struct dm_bio_prison *prison;
  148. struct dm_kcopyd_client *copier;
  149. struct workqueue_struct *wq;
  150. struct work_struct worker;
  151. struct delayed_work waker;
  152. unsigned long last_commit_jiffies;
  153. unsigned ref_count;
  154. spinlock_t lock;
  155. struct bio_list deferred_bios;
  156. struct bio_list deferred_flush_bios;
  157. struct list_head prepared_mappings;
  158. struct list_head prepared_discards;
  159. struct bio_list retry_on_resume_list;
  160. struct dm_deferred_set *shared_read_ds;
  161. struct dm_deferred_set *all_io_ds;
  162. struct dm_thin_new_mapping *next_mapping;
  163. mempool_t *mapping_pool;
  164. process_bio_fn process_bio;
  165. process_bio_fn process_discard;
  166. process_mapping_fn process_prepared_mapping;
  167. process_mapping_fn process_prepared_discard;
  168. };
  169. static enum pool_mode get_pool_mode(struct pool *pool);
  170. static void out_of_data_space(struct pool *pool);
  171. static void metadata_operation_failed(struct pool *pool, const char *op, int r);
  172. /*
  173. * Target context for a pool.
  174. */
  175. struct pool_c {
  176. struct dm_target *ti;
  177. struct pool *pool;
  178. struct dm_dev *data_dev;
  179. struct dm_dev *metadata_dev;
  180. struct dm_target_callbacks callbacks;
  181. dm_block_t low_water_blocks;
  182. struct pool_features requested_pf; /* Features requested during table load */
  183. struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
  184. };
  185. /*
  186. * Target context for a thin.
  187. */
  188. struct thin_c {
  189. struct dm_dev *pool_dev;
  190. struct dm_dev *origin_dev;
  191. dm_thin_id dev_id;
  192. struct pool *pool;
  193. struct dm_thin_device *td;
  194. };
  195. /*----------------------------------------------------------------*/
  196. /*
  197. * wake_worker() is used when new work is queued and when pool_resume is
  198. * ready to continue deferred IO processing.
  199. */
  200. static void wake_worker(struct pool *pool)
  201. {
  202. queue_work(pool->wq, &pool->worker);
  203. }
  204. /*----------------------------------------------------------------*/
  205. static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
  206. struct dm_bio_prison_cell **cell_result)
  207. {
  208. int r;
  209. struct dm_bio_prison_cell *cell_prealloc;
  210. /*
  211. * Allocate a cell from the prison's mempool.
  212. * This might block but it can't fail.
  213. */
  214. cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
  215. r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
  216. if (r)
  217. /*
  218. * We reused an old cell; we can get rid of
  219. * the new one.
  220. */
  221. dm_bio_prison_free_cell(pool->prison, cell_prealloc);
  222. return r;
  223. }
  224. static void cell_release(struct pool *pool,
  225. struct dm_bio_prison_cell *cell,
  226. struct bio_list *bios)
  227. {
  228. dm_cell_release(pool->prison, cell, bios);
  229. dm_bio_prison_free_cell(pool->prison, cell);
  230. }
  231. static void cell_release_no_holder(struct pool *pool,
  232. struct dm_bio_prison_cell *cell,
  233. struct bio_list *bios)
  234. {
  235. dm_cell_release_no_holder(pool->prison, cell, bios);
  236. dm_bio_prison_free_cell(pool->prison, cell);
  237. }
  238. static void cell_defer_no_holder_no_free(struct thin_c *tc,
  239. struct dm_bio_prison_cell *cell)
  240. {
  241. struct pool *pool = tc->pool;
  242. unsigned long flags;
  243. spin_lock_irqsave(&pool->lock, flags);
  244. dm_cell_release_no_holder(pool->prison, cell, &pool->deferred_bios);
  245. spin_unlock_irqrestore(&pool->lock, flags);
  246. wake_worker(pool);
  247. }
  248. static void cell_error(struct pool *pool,
  249. struct dm_bio_prison_cell *cell)
  250. {
  251. dm_cell_error(pool->prison, cell);
  252. dm_bio_prison_free_cell(pool->prison, cell);
  253. }
  254. /*----------------------------------------------------------------*/
  255. /*
  256. * A global list of pools that uses a struct mapped_device as a key.
  257. */
  258. static struct dm_thin_pool_table {
  259. struct mutex mutex;
  260. struct list_head pools;
  261. } dm_thin_pool_table;
  262. static void pool_table_init(void)
  263. {
  264. mutex_init(&dm_thin_pool_table.mutex);
  265. INIT_LIST_HEAD(&dm_thin_pool_table.pools);
  266. }
  267. static void __pool_table_insert(struct pool *pool)
  268. {
  269. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  270. list_add(&pool->list, &dm_thin_pool_table.pools);
  271. }
  272. static void __pool_table_remove(struct pool *pool)
  273. {
  274. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  275. list_del(&pool->list);
  276. }
  277. static struct pool *__pool_table_lookup(struct mapped_device *md)
  278. {
  279. struct pool *pool = NULL, *tmp;
  280. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  281. list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
  282. if (tmp->pool_md == md) {
  283. pool = tmp;
  284. break;
  285. }
  286. }
  287. return pool;
  288. }
  289. static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
  290. {
  291. struct pool *pool = NULL, *tmp;
  292. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  293. list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
  294. if (tmp->md_dev == md_dev) {
  295. pool = tmp;
  296. break;
  297. }
  298. }
  299. return pool;
  300. }
  301. /*----------------------------------------------------------------*/
  302. struct dm_thin_endio_hook {
  303. struct thin_c *tc;
  304. struct dm_deferred_entry *shared_read_entry;
  305. struct dm_deferred_entry *all_io_entry;
  306. struct dm_thin_new_mapping *overwrite_mapping;
  307. };
  308. static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
  309. {
  310. struct bio *bio;
  311. struct bio_list bios;
  312. bio_list_init(&bios);
  313. bio_list_merge(&bios, master);
  314. bio_list_init(master);
  315. while ((bio = bio_list_pop(&bios))) {
  316. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  317. if (h->tc == tc)
  318. bio_endio(bio, DM_ENDIO_REQUEUE);
  319. else
  320. bio_list_add(master, bio);
  321. }
  322. }
  323. static void requeue_io(struct thin_c *tc)
  324. {
  325. struct pool *pool = tc->pool;
  326. unsigned long flags;
  327. spin_lock_irqsave(&pool->lock, flags);
  328. __requeue_bio_list(tc, &pool->deferred_bios);
  329. __requeue_bio_list(tc, &pool->retry_on_resume_list);
  330. spin_unlock_irqrestore(&pool->lock, flags);
  331. }
  332. /*
  333. * This section of code contains the logic for processing a thin device's IO.
  334. * Much of the code depends on pool object resources (lists, workqueues, etc)
  335. * but most is exclusively called from the thin target rather than the thin-pool
  336. * target.
  337. */
  338. static bool block_size_is_power_of_two(struct pool *pool)
  339. {
  340. return pool->sectors_per_block_shift >= 0;
  341. }
  342. static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
  343. {
  344. struct pool *pool = tc->pool;
  345. sector_t block_nr = bio->bi_iter.bi_sector;
  346. if (block_size_is_power_of_two(pool))
  347. block_nr >>= pool->sectors_per_block_shift;
  348. else
  349. (void) sector_div(block_nr, pool->sectors_per_block);
  350. return block_nr;
  351. }
  352. static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
  353. {
  354. struct pool *pool = tc->pool;
  355. sector_t bi_sector = bio->bi_iter.bi_sector;
  356. bio->bi_bdev = tc->pool_dev->bdev;
  357. if (block_size_is_power_of_two(pool))
  358. bio->bi_iter.bi_sector =
  359. (block << pool->sectors_per_block_shift) |
  360. (bi_sector & (pool->sectors_per_block - 1));
  361. else
  362. bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
  363. sector_div(bi_sector, pool->sectors_per_block);
  364. }
  365. static void remap_to_origin(struct thin_c *tc, struct bio *bio)
  366. {
  367. bio->bi_bdev = tc->origin_dev->bdev;
  368. }
  369. static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
  370. {
  371. return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
  372. dm_thin_changed_this_transaction(tc->td);
  373. }
  374. static void inc_all_io_entry(struct pool *pool, struct bio *bio)
  375. {
  376. struct dm_thin_endio_hook *h;
  377. if (bio->bi_rw & REQ_DISCARD)
  378. return;
  379. h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  380. h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
  381. }
  382. static void issue(struct thin_c *tc, struct bio *bio)
  383. {
  384. struct pool *pool = tc->pool;
  385. unsigned long flags;
  386. if (!bio_triggers_commit(tc, bio)) {
  387. generic_make_request(bio);
  388. return;
  389. }
  390. /*
  391. * Complete bio with an error if earlier I/O caused changes to
  392. * the metadata that can't be committed e.g, due to I/O errors
  393. * on the metadata device.
  394. */
  395. if (dm_thin_aborted_changes(tc->td)) {
  396. bio_io_error(bio);
  397. return;
  398. }
  399. /*
  400. * Batch together any bios that trigger commits and then issue a
  401. * single commit for them in process_deferred_bios().
  402. */
  403. spin_lock_irqsave(&pool->lock, flags);
  404. bio_list_add(&pool->deferred_flush_bios, bio);
  405. spin_unlock_irqrestore(&pool->lock, flags);
  406. }
  407. static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
  408. {
  409. remap_to_origin(tc, bio);
  410. issue(tc, bio);
  411. }
  412. static void remap_and_issue(struct thin_c *tc, struct bio *bio,
  413. dm_block_t block)
  414. {
  415. remap(tc, bio, block);
  416. issue(tc, bio);
  417. }
  418. /*----------------------------------------------------------------*/
  419. /*
  420. * Bio endio functions.
  421. */
  422. struct dm_thin_new_mapping {
  423. struct list_head list;
  424. bool quiesced:1;
  425. bool prepared:1;
  426. bool pass_discard:1;
  427. bool definitely_not_shared:1;
  428. int err;
  429. struct thin_c *tc;
  430. dm_block_t virt_block;
  431. dm_block_t data_block;
  432. struct dm_bio_prison_cell *cell, *cell2;
  433. /*
  434. * If the bio covers the whole area of a block then we can avoid
  435. * zeroing or copying. Instead this bio is hooked. The bio will
  436. * still be in the cell, so care has to be taken to avoid issuing
  437. * the bio twice.
  438. */
  439. struct bio *bio;
  440. bio_end_io_t *saved_bi_end_io;
  441. };
  442. static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
  443. {
  444. struct pool *pool = m->tc->pool;
  445. if (m->quiesced && m->prepared) {
  446. list_add_tail(&m->list, &pool->prepared_mappings);
  447. wake_worker(pool);
  448. }
  449. }
  450. static void copy_complete(int read_err, unsigned long write_err, void *context)
  451. {
  452. unsigned long flags;
  453. struct dm_thin_new_mapping *m = context;
  454. struct pool *pool = m->tc->pool;
  455. m->err = read_err || write_err ? -EIO : 0;
  456. spin_lock_irqsave(&pool->lock, flags);
  457. m->prepared = true;
  458. __maybe_add_mapping(m);
  459. spin_unlock_irqrestore(&pool->lock, flags);
  460. }
  461. static void overwrite_endio(struct bio *bio, int err)
  462. {
  463. unsigned long flags;
  464. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  465. struct dm_thin_new_mapping *m = h->overwrite_mapping;
  466. struct pool *pool = m->tc->pool;
  467. m->err = err;
  468. spin_lock_irqsave(&pool->lock, flags);
  469. m->prepared = true;
  470. __maybe_add_mapping(m);
  471. spin_unlock_irqrestore(&pool->lock, flags);
  472. }
  473. /*----------------------------------------------------------------*/
  474. /*
  475. * Workqueue.
  476. */
  477. /*
  478. * Prepared mapping jobs.
  479. */
  480. /*
  481. * This sends the bios in the cell back to the deferred_bios list.
  482. */
  483. static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
  484. {
  485. struct pool *pool = tc->pool;
  486. unsigned long flags;
  487. spin_lock_irqsave(&pool->lock, flags);
  488. cell_release(pool, cell, &pool->deferred_bios);
  489. spin_unlock_irqrestore(&tc->pool->lock, flags);
  490. wake_worker(pool);
  491. }
  492. /*
  493. * Same as cell_defer above, except it omits the original holder of the cell.
  494. */
  495. static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
  496. {
  497. struct pool *pool = tc->pool;
  498. unsigned long flags;
  499. spin_lock_irqsave(&pool->lock, flags);
  500. cell_release_no_holder(pool, cell, &pool->deferred_bios);
  501. spin_unlock_irqrestore(&pool->lock, flags);
  502. wake_worker(pool);
  503. }
  504. static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
  505. {
  506. if (m->bio) {
  507. m->bio->bi_end_io = m->saved_bi_end_io;
  508. atomic_inc(&m->bio->bi_remaining);
  509. }
  510. cell_error(m->tc->pool, m->cell);
  511. list_del(&m->list);
  512. mempool_free(m, m->tc->pool->mapping_pool);
  513. }
  514. static void process_prepared_mapping(struct dm_thin_new_mapping *m)
  515. {
  516. struct thin_c *tc = m->tc;
  517. struct pool *pool = tc->pool;
  518. struct bio *bio;
  519. int r;
  520. bio = m->bio;
  521. if (bio) {
  522. bio->bi_end_io = m->saved_bi_end_io;
  523. atomic_inc(&bio->bi_remaining);
  524. }
  525. if (m->err) {
  526. cell_error(pool, m->cell);
  527. goto out;
  528. }
  529. /*
  530. * Commit the prepared block into the mapping btree.
  531. * Any I/O for this block arriving after this point will get
  532. * remapped to it directly.
  533. */
  534. r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
  535. if (r) {
  536. metadata_operation_failed(pool, "dm_thin_insert_block", r);
  537. cell_error(pool, m->cell);
  538. goto out;
  539. }
  540. /*
  541. * Release any bios held while the block was being provisioned.
  542. * If we are processing a write bio that completely covers the block,
  543. * we already processed it so can ignore it now when processing
  544. * the bios in the cell.
  545. */
  546. if (bio) {
  547. cell_defer_no_holder(tc, m->cell);
  548. bio_endio(bio, 0);
  549. } else
  550. cell_defer(tc, m->cell);
  551. out:
  552. list_del(&m->list);
  553. mempool_free(m, pool->mapping_pool);
  554. }
  555. static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
  556. {
  557. struct thin_c *tc = m->tc;
  558. bio_io_error(m->bio);
  559. cell_defer_no_holder(tc, m->cell);
  560. cell_defer_no_holder(tc, m->cell2);
  561. mempool_free(m, tc->pool->mapping_pool);
  562. }
  563. static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
  564. {
  565. struct thin_c *tc = m->tc;
  566. inc_all_io_entry(tc->pool, m->bio);
  567. cell_defer_no_holder(tc, m->cell);
  568. cell_defer_no_holder(tc, m->cell2);
  569. if (m->pass_discard)
  570. if (m->definitely_not_shared)
  571. remap_and_issue(tc, m->bio, m->data_block);
  572. else {
  573. bool used = false;
  574. if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
  575. bio_endio(m->bio, 0);
  576. else
  577. remap_and_issue(tc, m->bio, m->data_block);
  578. }
  579. else
  580. bio_endio(m->bio, 0);
  581. mempool_free(m, tc->pool->mapping_pool);
  582. }
  583. static void process_prepared_discard(struct dm_thin_new_mapping *m)
  584. {
  585. int r;
  586. struct thin_c *tc = m->tc;
  587. r = dm_thin_remove_block(tc->td, m->virt_block);
  588. if (r)
  589. DMERR_LIMIT("dm_thin_remove_block() failed");
  590. process_prepared_discard_passdown(m);
  591. }
  592. static void process_prepared(struct pool *pool, struct list_head *head,
  593. process_mapping_fn *fn)
  594. {
  595. unsigned long flags;
  596. struct list_head maps;
  597. struct dm_thin_new_mapping *m, *tmp;
  598. INIT_LIST_HEAD(&maps);
  599. spin_lock_irqsave(&pool->lock, flags);
  600. list_splice_init(head, &maps);
  601. spin_unlock_irqrestore(&pool->lock, flags);
  602. list_for_each_entry_safe(m, tmp, &maps, list)
  603. (*fn)(m);
  604. }
  605. /*
  606. * Deferred bio jobs.
  607. */
  608. static int io_overlaps_block(struct pool *pool, struct bio *bio)
  609. {
  610. return bio->bi_iter.bi_size ==
  611. (pool->sectors_per_block << SECTOR_SHIFT);
  612. }
  613. static int io_overwrites_block(struct pool *pool, struct bio *bio)
  614. {
  615. return (bio_data_dir(bio) == WRITE) &&
  616. io_overlaps_block(pool, bio);
  617. }
  618. static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
  619. bio_end_io_t *fn)
  620. {
  621. *save = bio->bi_end_io;
  622. bio->bi_end_io = fn;
  623. }
  624. static int ensure_next_mapping(struct pool *pool)
  625. {
  626. if (pool->next_mapping)
  627. return 0;
  628. pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
  629. return pool->next_mapping ? 0 : -ENOMEM;
  630. }
  631. static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
  632. {
  633. struct dm_thin_new_mapping *m = pool->next_mapping;
  634. BUG_ON(!pool->next_mapping);
  635. memset(m, 0, sizeof(struct dm_thin_new_mapping));
  636. INIT_LIST_HEAD(&m->list);
  637. m->bio = NULL;
  638. pool->next_mapping = NULL;
  639. return m;
  640. }
  641. static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
  642. struct dm_dev *origin, dm_block_t data_origin,
  643. dm_block_t data_dest,
  644. struct dm_bio_prison_cell *cell, struct bio *bio)
  645. {
  646. int r;
  647. struct pool *pool = tc->pool;
  648. struct dm_thin_new_mapping *m = get_next_mapping(pool);
  649. m->tc = tc;
  650. m->virt_block = virt_block;
  651. m->data_block = data_dest;
  652. m->cell = cell;
  653. if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
  654. m->quiesced = true;
  655. /*
  656. * IO to pool_dev remaps to the pool target's data_dev.
  657. *
  658. * If the whole block of data is being overwritten, we can issue the
  659. * bio immediately. Otherwise we use kcopyd to clone the data first.
  660. */
  661. if (io_overwrites_block(pool, bio)) {
  662. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  663. h->overwrite_mapping = m;
  664. m->bio = bio;
  665. save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
  666. inc_all_io_entry(pool, bio);
  667. remap_and_issue(tc, bio, data_dest);
  668. } else {
  669. struct dm_io_region from, to;
  670. from.bdev = origin->bdev;
  671. from.sector = data_origin * pool->sectors_per_block;
  672. from.count = pool->sectors_per_block;
  673. to.bdev = tc->pool_dev->bdev;
  674. to.sector = data_dest * pool->sectors_per_block;
  675. to.count = pool->sectors_per_block;
  676. r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
  677. 0, copy_complete, m);
  678. if (r < 0) {
  679. mempool_free(m, pool->mapping_pool);
  680. DMERR_LIMIT("dm_kcopyd_copy() failed");
  681. cell_error(pool, cell);
  682. }
  683. }
  684. }
  685. static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
  686. dm_block_t data_origin, dm_block_t data_dest,
  687. struct dm_bio_prison_cell *cell, struct bio *bio)
  688. {
  689. schedule_copy(tc, virt_block, tc->pool_dev,
  690. data_origin, data_dest, cell, bio);
  691. }
  692. static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
  693. dm_block_t data_dest,
  694. struct dm_bio_prison_cell *cell, struct bio *bio)
  695. {
  696. schedule_copy(tc, virt_block, tc->origin_dev,
  697. virt_block, data_dest, cell, bio);
  698. }
  699. static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
  700. dm_block_t data_block, struct dm_bio_prison_cell *cell,
  701. struct bio *bio)
  702. {
  703. struct pool *pool = tc->pool;
  704. struct dm_thin_new_mapping *m = get_next_mapping(pool);
  705. m->quiesced = true;
  706. m->prepared = false;
  707. m->tc = tc;
  708. m->virt_block = virt_block;
  709. m->data_block = data_block;
  710. m->cell = cell;
  711. /*
  712. * If the whole block of data is being overwritten or we are not
  713. * zeroing pre-existing data, we can issue the bio immediately.
  714. * Otherwise we use kcopyd to zero the data first.
  715. */
  716. if (!pool->pf.zero_new_blocks)
  717. process_prepared_mapping(m);
  718. else if (io_overwrites_block(pool, bio)) {
  719. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  720. h->overwrite_mapping = m;
  721. m->bio = bio;
  722. save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
  723. inc_all_io_entry(pool, bio);
  724. remap_and_issue(tc, bio, data_block);
  725. } else {
  726. int r;
  727. struct dm_io_region to;
  728. to.bdev = tc->pool_dev->bdev;
  729. to.sector = data_block * pool->sectors_per_block;
  730. to.count = pool->sectors_per_block;
  731. r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
  732. if (r < 0) {
  733. mempool_free(m, pool->mapping_pool);
  734. DMERR_LIMIT("dm_kcopyd_zero() failed");
  735. cell_error(pool, cell);
  736. }
  737. }
  738. }
  739. /*
  740. * A non-zero return indicates read_only or fail_io mode.
  741. * Many callers don't care about the return value.
  742. */
  743. static int commit(struct pool *pool)
  744. {
  745. int r;
  746. if (get_pool_mode(pool) != PM_WRITE)
  747. return -EINVAL;
  748. r = dm_pool_commit_metadata(pool->pmd);
  749. if (r)
  750. metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
  751. return r;
  752. }
  753. static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
  754. {
  755. unsigned long flags;
  756. if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
  757. DMWARN("%s: reached low water mark for data device: sending event.",
  758. dm_device_name(pool->pool_md));
  759. spin_lock_irqsave(&pool->lock, flags);
  760. pool->low_water_triggered = true;
  761. spin_unlock_irqrestore(&pool->lock, flags);
  762. dm_table_event(pool->ti->table);
  763. }
  764. }
  765. static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
  766. {
  767. int r;
  768. dm_block_t free_blocks;
  769. struct pool *pool = tc->pool;
  770. if (get_pool_mode(pool) != PM_WRITE)
  771. return -EINVAL;
  772. r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
  773. if (r) {
  774. metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
  775. return r;
  776. }
  777. check_low_water_mark(pool, free_blocks);
  778. if (!free_blocks) {
  779. /*
  780. * Try to commit to see if that will free up some
  781. * more space.
  782. */
  783. r = commit(pool);
  784. if (r)
  785. return r;
  786. r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
  787. if (r) {
  788. metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
  789. return r;
  790. }
  791. if (!free_blocks) {
  792. out_of_data_space(pool);
  793. return -ENOSPC;
  794. }
  795. }
  796. r = dm_pool_alloc_data_block(pool->pmd, result);
  797. if (r) {
  798. metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
  799. return r;
  800. }
  801. return 0;
  802. }
  803. /*
  804. * If we have run out of space, queue bios until the device is
  805. * resumed, presumably after having been reloaded with more space.
  806. */
  807. static void retry_on_resume(struct bio *bio)
  808. {
  809. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  810. struct thin_c *tc = h->tc;
  811. struct pool *pool = tc->pool;
  812. unsigned long flags;
  813. spin_lock_irqsave(&pool->lock, flags);
  814. bio_list_add(&pool->retry_on_resume_list, bio);
  815. spin_unlock_irqrestore(&pool->lock, flags);
  816. }
  817. static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
  818. {
  819. /*
  820. * When pool is read-only, no cell locking is needed because
  821. * nothing is changing.
  822. */
  823. WARN_ON_ONCE(get_pool_mode(pool) != PM_READ_ONLY);
  824. if (pool->pf.error_if_no_space)
  825. bio_io_error(bio);
  826. else
  827. retry_on_resume(bio);
  828. }
  829. static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
  830. {
  831. struct bio *bio;
  832. struct bio_list bios;
  833. bio_list_init(&bios);
  834. cell_release(pool, cell, &bios);
  835. while ((bio = bio_list_pop(&bios)))
  836. handle_unserviceable_bio(pool, bio);
  837. }
  838. static void process_discard(struct thin_c *tc, struct bio *bio)
  839. {
  840. int r;
  841. unsigned long flags;
  842. struct pool *pool = tc->pool;
  843. struct dm_bio_prison_cell *cell, *cell2;
  844. struct dm_cell_key key, key2;
  845. dm_block_t block = get_bio_block(tc, bio);
  846. struct dm_thin_lookup_result lookup_result;
  847. struct dm_thin_new_mapping *m;
  848. build_virtual_key(tc->td, block, &key);
  849. if (bio_detain(tc->pool, &key, bio, &cell))
  850. return;
  851. r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
  852. switch (r) {
  853. case 0:
  854. /*
  855. * Check nobody is fiddling with this pool block. This can
  856. * happen if someone's in the process of breaking sharing
  857. * on this block.
  858. */
  859. build_data_key(tc->td, lookup_result.block, &key2);
  860. if (bio_detain(tc->pool, &key2, bio, &cell2)) {
  861. cell_defer_no_holder(tc, cell);
  862. break;
  863. }
  864. if (io_overlaps_block(pool, bio)) {
  865. /*
  866. * IO may still be going to the destination block. We must
  867. * quiesce before we can do the removal.
  868. */
  869. m = get_next_mapping(pool);
  870. m->tc = tc;
  871. m->pass_discard = pool->pf.discard_passdown;
  872. m->definitely_not_shared = !lookup_result.shared;
  873. m->virt_block = block;
  874. m->data_block = lookup_result.block;
  875. m->cell = cell;
  876. m->cell2 = cell2;
  877. m->bio = bio;
  878. if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
  879. spin_lock_irqsave(&pool->lock, flags);
  880. list_add_tail(&m->list, &pool->prepared_discards);
  881. spin_unlock_irqrestore(&pool->lock, flags);
  882. wake_worker(pool);
  883. }
  884. } else {
  885. inc_all_io_entry(pool, bio);
  886. cell_defer_no_holder(tc, cell);
  887. cell_defer_no_holder(tc, cell2);
  888. /*
  889. * The DM core makes sure that the discard doesn't span
  890. * a block boundary. So we submit the discard of a
  891. * partial block appropriately.
  892. */
  893. if ((!lookup_result.shared) && pool->pf.discard_passdown)
  894. remap_and_issue(tc, bio, lookup_result.block);
  895. else
  896. bio_endio(bio, 0);
  897. }
  898. break;
  899. case -ENODATA:
  900. /*
  901. * It isn't provisioned, just forget it.
  902. */
  903. cell_defer_no_holder(tc, cell);
  904. bio_endio(bio, 0);
  905. break;
  906. default:
  907. DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
  908. __func__, r);
  909. cell_defer_no_holder(tc, cell);
  910. bio_io_error(bio);
  911. break;
  912. }
  913. }
  914. static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
  915. struct dm_cell_key *key,
  916. struct dm_thin_lookup_result *lookup_result,
  917. struct dm_bio_prison_cell *cell)
  918. {
  919. int r;
  920. dm_block_t data_block;
  921. struct pool *pool = tc->pool;
  922. r = alloc_data_block(tc, &data_block);
  923. switch (r) {
  924. case 0:
  925. schedule_internal_copy(tc, block, lookup_result->block,
  926. data_block, cell, bio);
  927. break;
  928. case -ENOSPC:
  929. retry_bios_on_resume(pool, cell);
  930. break;
  931. default:
  932. DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
  933. __func__, r);
  934. cell_error(pool, cell);
  935. break;
  936. }
  937. }
  938. static void process_shared_bio(struct thin_c *tc, struct bio *bio,
  939. dm_block_t block,
  940. struct dm_thin_lookup_result *lookup_result)
  941. {
  942. struct dm_bio_prison_cell *cell;
  943. struct pool *pool = tc->pool;
  944. struct dm_cell_key key;
  945. /*
  946. * If cell is already occupied, then sharing is already in the process
  947. * of being broken so we have nothing further to do here.
  948. */
  949. build_data_key(tc->td, lookup_result->block, &key);
  950. if (bio_detain(pool, &key, bio, &cell))
  951. return;
  952. if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size)
  953. break_sharing(tc, bio, block, &key, lookup_result, cell);
  954. else {
  955. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  956. h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
  957. inc_all_io_entry(pool, bio);
  958. cell_defer_no_holder(tc, cell);
  959. remap_and_issue(tc, bio, lookup_result->block);
  960. }
  961. }
  962. static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
  963. struct dm_bio_prison_cell *cell)
  964. {
  965. int r;
  966. dm_block_t data_block;
  967. struct pool *pool = tc->pool;
  968. /*
  969. * Remap empty bios (flushes) immediately, without provisioning.
  970. */
  971. if (!bio->bi_iter.bi_size) {
  972. inc_all_io_entry(pool, bio);
  973. cell_defer_no_holder(tc, cell);
  974. remap_and_issue(tc, bio, 0);
  975. return;
  976. }
  977. /*
  978. * Fill read bios with zeroes and complete them immediately.
  979. */
  980. if (bio_data_dir(bio) == READ) {
  981. zero_fill_bio(bio);
  982. cell_defer_no_holder(tc, cell);
  983. bio_endio(bio, 0);
  984. return;
  985. }
  986. r = alloc_data_block(tc, &data_block);
  987. switch (r) {
  988. case 0:
  989. if (tc->origin_dev)
  990. schedule_external_copy(tc, block, data_block, cell, bio);
  991. else
  992. schedule_zero(tc, block, data_block, cell, bio);
  993. break;
  994. case -ENOSPC:
  995. retry_bios_on_resume(pool, cell);
  996. break;
  997. default:
  998. DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
  999. __func__, r);
  1000. cell_error(pool, cell);
  1001. break;
  1002. }
  1003. }
  1004. static void process_bio(struct thin_c *tc, struct bio *bio)
  1005. {
  1006. int r;
  1007. struct pool *pool = tc->pool;
  1008. dm_block_t block = get_bio_block(tc, bio);
  1009. struct dm_bio_prison_cell *cell;
  1010. struct dm_cell_key key;
  1011. struct dm_thin_lookup_result lookup_result;
  1012. /*
  1013. * If cell is already occupied, then the block is already
  1014. * being provisioned so we have nothing further to do here.
  1015. */
  1016. build_virtual_key(tc->td, block, &key);
  1017. if (bio_detain(pool, &key, bio, &cell))
  1018. return;
  1019. r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
  1020. switch (r) {
  1021. case 0:
  1022. if (lookup_result.shared) {
  1023. process_shared_bio(tc, bio, block, &lookup_result);
  1024. cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
  1025. } else {
  1026. inc_all_io_entry(pool, bio);
  1027. cell_defer_no_holder(tc, cell);
  1028. remap_and_issue(tc, bio, lookup_result.block);
  1029. }
  1030. break;
  1031. case -ENODATA:
  1032. if (bio_data_dir(bio) == READ && tc->origin_dev) {
  1033. inc_all_io_entry(pool, bio);
  1034. cell_defer_no_holder(tc, cell);
  1035. remap_to_origin_and_issue(tc, bio);
  1036. } else
  1037. provision_block(tc, bio, block, cell);
  1038. break;
  1039. default:
  1040. DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
  1041. __func__, r);
  1042. cell_defer_no_holder(tc, cell);
  1043. bio_io_error(bio);
  1044. break;
  1045. }
  1046. }
  1047. static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
  1048. {
  1049. int r;
  1050. int rw = bio_data_dir(bio);
  1051. dm_block_t block = get_bio_block(tc, bio);
  1052. struct dm_thin_lookup_result lookup_result;
  1053. r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
  1054. switch (r) {
  1055. case 0:
  1056. if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size)
  1057. handle_unserviceable_bio(tc->pool, bio);
  1058. else {
  1059. inc_all_io_entry(tc->pool, bio);
  1060. remap_and_issue(tc, bio, lookup_result.block);
  1061. }
  1062. break;
  1063. case -ENODATA:
  1064. if (rw != READ) {
  1065. handle_unserviceable_bio(tc->pool, bio);
  1066. break;
  1067. }
  1068. if (tc->origin_dev) {
  1069. inc_all_io_entry(tc->pool, bio);
  1070. remap_to_origin_and_issue(tc, bio);
  1071. break;
  1072. }
  1073. zero_fill_bio(bio);
  1074. bio_endio(bio, 0);
  1075. break;
  1076. default:
  1077. DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
  1078. __func__, r);
  1079. bio_io_error(bio);
  1080. break;
  1081. }
  1082. }
  1083. static void process_bio_fail(struct thin_c *tc, struct bio *bio)
  1084. {
  1085. bio_io_error(bio);
  1086. }
  1087. /*
  1088. * FIXME: should we also commit due to size of transaction, measured in
  1089. * metadata blocks?
  1090. */
  1091. static int need_commit_due_to_time(struct pool *pool)
  1092. {
  1093. return jiffies < pool->last_commit_jiffies ||
  1094. jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
  1095. }
  1096. static void process_deferred_bios(struct pool *pool)
  1097. {
  1098. unsigned long flags;
  1099. struct bio *bio;
  1100. struct bio_list bios;
  1101. bio_list_init(&bios);
  1102. spin_lock_irqsave(&pool->lock, flags);
  1103. bio_list_merge(&bios, &pool->deferred_bios);
  1104. bio_list_init(&pool->deferred_bios);
  1105. spin_unlock_irqrestore(&pool->lock, flags);
  1106. while ((bio = bio_list_pop(&bios))) {
  1107. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  1108. struct thin_c *tc = h->tc;
  1109. /*
  1110. * If we've got no free new_mapping structs, and processing
  1111. * this bio might require one, we pause until there are some
  1112. * prepared mappings to process.
  1113. */
  1114. if (ensure_next_mapping(pool)) {
  1115. spin_lock_irqsave(&pool->lock, flags);
  1116. bio_list_merge(&pool->deferred_bios, &bios);
  1117. spin_unlock_irqrestore(&pool->lock, flags);
  1118. break;
  1119. }
  1120. if (bio->bi_rw & REQ_DISCARD)
  1121. pool->process_discard(tc, bio);
  1122. else
  1123. pool->process_bio(tc, bio);
  1124. }
  1125. /*
  1126. * If there are any deferred flush bios, we must commit
  1127. * the metadata before issuing them.
  1128. */
  1129. bio_list_init(&bios);
  1130. spin_lock_irqsave(&pool->lock, flags);
  1131. bio_list_merge(&bios, &pool->deferred_flush_bios);
  1132. bio_list_init(&pool->deferred_flush_bios);
  1133. spin_unlock_irqrestore(&pool->lock, flags);
  1134. if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
  1135. return;
  1136. if (commit(pool)) {
  1137. while ((bio = bio_list_pop(&bios)))
  1138. bio_io_error(bio);
  1139. return;
  1140. }
  1141. pool->last_commit_jiffies = jiffies;
  1142. while ((bio = bio_list_pop(&bios)))
  1143. generic_make_request(bio);
  1144. }
  1145. static void do_worker(struct work_struct *ws)
  1146. {
  1147. struct pool *pool = container_of(ws, struct pool, worker);
  1148. process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
  1149. process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
  1150. process_deferred_bios(pool);
  1151. }
  1152. /*
  1153. * We want to commit periodically so that not too much
  1154. * unwritten data builds up.
  1155. */
  1156. static void do_waker(struct work_struct *ws)
  1157. {
  1158. struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
  1159. wake_worker(pool);
  1160. queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
  1161. }
  1162. /*----------------------------------------------------------------*/
  1163. static enum pool_mode get_pool_mode(struct pool *pool)
  1164. {
  1165. return pool->pf.mode;
  1166. }
  1167. static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
  1168. {
  1169. int r;
  1170. enum pool_mode old_mode = pool->pf.mode;
  1171. switch (new_mode) {
  1172. case PM_FAIL:
  1173. if (old_mode != new_mode)
  1174. DMERR("%s: switching pool to failure mode",
  1175. dm_device_name(pool->pool_md));
  1176. dm_pool_metadata_read_only(pool->pmd);
  1177. pool->process_bio = process_bio_fail;
  1178. pool->process_discard = process_bio_fail;
  1179. pool->process_prepared_mapping = process_prepared_mapping_fail;
  1180. pool->process_prepared_discard = process_prepared_discard_fail;
  1181. break;
  1182. case PM_READ_ONLY:
  1183. if (old_mode != new_mode)
  1184. DMERR("%s: switching pool to read-only mode",
  1185. dm_device_name(pool->pool_md));
  1186. r = dm_pool_abort_metadata(pool->pmd);
  1187. if (r) {
  1188. DMERR("%s: aborting transaction failed",
  1189. dm_device_name(pool->pool_md));
  1190. new_mode = PM_FAIL;
  1191. set_pool_mode(pool, new_mode);
  1192. } else {
  1193. dm_pool_metadata_read_only(pool->pmd);
  1194. pool->process_bio = process_bio_read_only;
  1195. pool->process_discard = process_discard;
  1196. pool->process_prepared_mapping = process_prepared_mapping_fail;
  1197. pool->process_prepared_discard = process_prepared_discard_passdown;
  1198. }
  1199. break;
  1200. case PM_WRITE:
  1201. if (old_mode != new_mode)
  1202. DMINFO("%s: switching pool to write mode",
  1203. dm_device_name(pool->pool_md));
  1204. dm_pool_metadata_read_write(pool->pmd);
  1205. pool->process_bio = process_bio;
  1206. pool->process_discard = process_discard;
  1207. pool->process_prepared_mapping = process_prepared_mapping;
  1208. pool->process_prepared_discard = process_prepared_discard;
  1209. break;
  1210. }
  1211. pool->pf.mode = new_mode;
  1212. }
  1213. /*
  1214. * Rather than calling set_pool_mode directly, use these which describe the
  1215. * reason for mode degradation.
  1216. */
  1217. static void out_of_data_space(struct pool *pool)
  1218. {
  1219. DMERR_LIMIT("%s: no free data space available.",
  1220. dm_device_name(pool->pool_md));
  1221. set_pool_mode(pool, PM_READ_ONLY);
  1222. }
  1223. static void metadata_operation_failed(struct pool *pool, const char *op, int r)
  1224. {
  1225. dm_block_t free_blocks;
  1226. DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
  1227. dm_device_name(pool->pool_md), op, r);
  1228. if (r == -ENOSPC &&
  1229. !dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks) &&
  1230. !free_blocks)
  1231. DMERR_LIMIT("%s: no free metadata space available.",
  1232. dm_device_name(pool->pool_md));
  1233. set_pool_mode(pool, PM_READ_ONLY);
  1234. }
  1235. /*----------------------------------------------------------------*/
  1236. /*
  1237. * Mapping functions.
  1238. */
  1239. /*
  1240. * Called only while mapping a thin bio to hand it over to the workqueue.
  1241. */
  1242. static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
  1243. {
  1244. unsigned long flags;
  1245. struct pool *pool = tc->pool;
  1246. spin_lock_irqsave(&pool->lock, flags);
  1247. bio_list_add(&pool->deferred_bios, bio);
  1248. spin_unlock_irqrestore(&pool->lock, flags);
  1249. wake_worker(pool);
  1250. }
  1251. static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
  1252. {
  1253. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  1254. h->tc = tc;
  1255. h->shared_read_entry = NULL;
  1256. h->all_io_entry = NULL;
  1257. h->overwrite_mapping = NULL;
  1258. }
  1259. /*
  1260. * Non-blocking function called from the thin target's map function.
  1261. */
  1262. static int thin_bio_map(struct dm_target *ti, struct bio *bio)
  1263. {
  1264. int r;
  1265. struct thin_c *tc = ti->private;
  1266. dm_block_t block = get_bio_block(tc, bio);
  1267. struct dm_thin_device *td = tc->td;
  1268. struct dm_thin_lookup_result result;
  1269. struct dm_bio_prison_cell cell1, cell2;
  1270. struct dm_bio_prison_cell *cell_result;
  1271. struct dm_cell_key key;
  1272. thin_hook_bio(tc, bio);
  1273. if (get_pool_mode(tc->pool) == PM_FAIL) {
  1274. bio_io_error(bio);
  1275. return DM_MAPIO_SUBMITTED;
  1276. }
  1277. if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
  1278. thin_defer_bio(tc, bio);
  1279. return DM_MAPIO_SUBMITTED;
  1280. }
  1281. r = dm_thin_find_block(td, block, 0, &result);
  1282. /*
  1283. * Note that we defer readahead too.
  1284. */
  1285. switch (r) {
  1286. case 0:
  1287. if (unlikely(result.shared)) {
  1288. /*
  1289. * We have a race condition here between the
  1290. * result.shared value returned by the lookup and
  1291. * snapshot creation, which may cause new
  1292. * sharing.
  1293. *
  1294. * To avoid this always quiesce the origin before
  1295. * taking the snap. You want to do this anyway to
  1296. * ensure a consistent application view
  1297. * (i.e. lockfs).
  1298. *
  1299. * More distant ancestors are irrelevant. The
  1300. * shared flag will be set in their case.
  1301. */
  1302. thin_defer_bio(tc, bio);
  1303. return DM_MAPIO_SUBMITTED;
  1304. }
  1305. build_virtual_key(tc->td, block, &key);
  1306. if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
  1307. return DM_MAPIO_SUBMITTED;
  1308. build_data_key(tc->td, result.block, &key);
  1309. if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
  1310. cell_defer_no_holder_no_free(tc, &cell1);
  1311. return DM_MAPIO_SUBMITTED;
  1312. }
  1313. inc_all_io_entry(tc->pool, bio);
  1314. cell_defer_no_holder_no_free(tc, &cell2);
  1315. cell_defer_no_holder_no_free(tc, &cell1);
  1316. remap(tc, bio, result.block);
  1317. return DM_MAPIO_REMAPPED;
  1318. case -ENODATA:
  1319. if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
  1320. /*
  1321. * This block isn't provisioned, and we have no way
  1322. * of doing so.
  1323. */
  1324. handle_unserviceable_bio(tc->pool, bio);
  1325. return DM_MAPIO_SUBMITTED;
  1326. }
  1327. /* fall through */
  1328. case -EWOULDBLOCK:
  1329. /*
  1330. * In future, the failed dm_thin_find_block above could
  1331. * provide the hint to load the metadata into cache.
  1332. */
  1333. thin_defer_bio(tc, bio);
  1334. return DM_MAPIO_SUBMITTED;
  1335. default:
  1336. /*
  1337. * Must always call bio_io_error on failure.
  1338. * dm_thin_find_block can fail with -EINVAL if the
  1339. * pool is switched to fail-io mode.
  1340. */
  1341. bio_io_error(bio);
  1342. return DM_MAPIO_SUBMITTED;
  1343. }
  1344. }
  1345. static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
  1346. {
  1347. int r;
  1348. unsigned long flags;
  1349. struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
  1350. spin_lock_irqsave(&pt->pool->lock, flags);
  1351. r = !bio_list_empty(&pt->pool->retry_on_resume_list);
  1352. spin_unlock_irqrestore(&pt->pool->lock, flags);
  1353. if (!r) {
  1354. struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
  1355. r = bdi_congested(&q->backing_dev_info, bdi_bits);
  1356. }
  1357. return r;
  1358. }
  1359. static void __requeue_bios(struct pool *pool)
  1360. {
  1361. bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
  1362. bio_list_init(&pool->retry_on_resume_list);
  1363. }
  1364. /*----------------------------------------------------------------
  1365. * Binding of control targets to a pool object
  1366. *--------------------------------------------------------------*/
  1367. static bool data_dev_supports_discard(struct pool_c *pt)
  1368. {
  1369. struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
  1370. return q && blk_queue_discard(q);
  1371. }
  1372. static bool is_factor(sector_t block_size, uint32_t n)
  1373. {
  1374. return !sector_div(block_size, n);
  1375. }
  1376. /*
  1377. * If discard_passdown was enabled verify that the data device
  1378. * supports discards. Disable discard_passdown if not.
  1379. */
  1380. static void disable_passdown_if_not_supported(struct pool_c *pt)
  1381. {
  1382. struct pool *pool = pt->pool;
  1383. struct block_device *data_bdev = pt->data_dev->bdev;
  1384. struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
  1385. sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
  1386. const char *reason = NULL;
  1387. char buf[BDEVNAME_SIZE];
  1388. if (!pt->adjusted_pf.discard_passdown)
  1389. return;
  1390. if (!data_dev_supports_discard(pt))
  1391. reason = "discard unsupported";
  1392. else if (data_limits->max_discard_sectors < pool->sectors_per_block)
  1393. reason = "max discard sectors smaller than a block";
  1394. else if (data_limits->discard_granularity > block_size)
  1395. reason = "discard granularity larger than a block";
  1396. else if (!is_factor(block_size, data_limits->discard_granularity))
  1397. reason = "discard granularity not a factor of block size";
  1398. if (reason) {
  1399. DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
  1400. pt->adjusted_pf.discard_passdown = false;
  1401. }
  1402. }
  1403. static int bind_control_target(struct pool *pool, struct dm_target *ti)
  1404. {
  1405. struct pool_c *pt = ti->private;
  1406. /*
  1407. * We want to make sure that a pool in PM_FAIL mode is never upgraded.
  1408. */
  1409. enum pool_mode old_mode = pool->pf.mode;
  1410. enum pool_mode new_mode = pt->adjusted_pf.mode;
  1411. /*
  1412. * Don't change the pool's mode until set_pool_mode() below.
  1413. * Otherwise the pool's process_* function pointers may
  1414. * not match the desired pool mode.
  1415. */
  1416. pt->adjusted_pf.mode = old_mode;
  1417. pool->ti = ti;
  1418. pool->pf = pt->adjusted_pf;
  1419. pool->low_water_blocks = pt->low_water_blocks;
  1420. /*
  1421. * If we were in PM_FAIL mode, rollback of metadata failed. We're
  1422. * not going to recover without a thin_repair. So we never let the
  1423. * pool move out of the old mode. On the other hand a PM_READ_ONLY
  1424. * may have been due to a lack of metadata or data space, and may
  1425. * now work (ie. if the underlying devices have been resized).
  1426. */
  1427. if (old_mode == PM_FAIL)
  1428. new_mode = old_mode;
  1429. set_pool_mode(pool, new_mode);
  1430. return 0;
  1431. }
  1432. static void unbind_control_target(struct pool *pool, struct dm_target *ti)
  1433. {
  1434. if (pool->ti == ti)
  1435. pool->ti = NULL;
  1436. }
  1437. /*----------------------------------------------------------------
  1438. * Pool creation
  1439. *--------------------------------------------------------------*/
  1440. /* Initialize pool features. */
  1441. static void pool_features_init(struct pool_features *pf)
  1442. {
  1443. pf->mode = PM_WRITE;
  1444. pf->zero_new_blocks = true;
  1445. pf->discard_enabled = true;
  1446. pf->discard_passdown = true;
  1447. pf->error_if_no_space = false;
  1448. }
  1449. static void __pool_destroy(struct pool *pool)
  1450. {
  1451. __pool_table_remove(pool);
  1452. if (dm_pool_metadata_close(pool->pmd) < 0)
  1453. DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
  1454. dm_bio_prison_destroy(pool->prison);
  1455. dm_kcopyd_client_destroy(pool->copier);
  1456. if (pool->wq)
  1457. destroy_workqueue(pool->wq);
  1458. if (pool->next_mapping)
  1459. mempool_free(pool->next_mapping, pool->mapping_pool);
  1460. mempool_destroy(pool->mapping_pool);
  1461. dm_deferred_set_destroy(pool->shared_read_ds);
  1462. dm_deferred_set_destroy(pool->all_io_ds);
  1463. kfree(pool);
  1464. }
  1465. static struct kmem_cache *_new_mapping_cache;
  1466. static struct pool *pool_create(struct mapped_device *pool_md,
  1467. struct block_device *metadata_dev,
  1468. unsigned long block_size,
  1469. int read_only, char **error)
  1470. {
  1471. int r;
  1472. void *err_p;
  1473. struct pool *pool;
  1474. struct dm_pool_metadata *pmd;
  1475. bool format_device = read_only ? false : true;
  1476. pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
  1477. if (IS_ERR(pmd)) {
  1478. *error = "Error creating metadata object";
  1479. return (struct pool *)pmd;
  1480. }
  1481. pool = kmalloc(sizeof(*pool), GFP_KERNEL);
  1482. if (!pool) {
  1483. *error = "Error allocating memory for pool";
  1484. err_p = ERR_PTR(-ENOMEM);
  1485. goto bad_pool;
  1486. }
  1487. pool->pmd = pmd;
  1488. pool->sectors_per_block = block_size;
  1489. if (block_size & (block_size - 1))
  1490. pool->sectors_per_block_shift = -1;
  1491. else
  1492. pool->sectors_per_block_shift = __ffs(block_size);
  1493. pool->low_water_blocks = 0;
  1494. pool_features_init(&pool->pf);
  1495. pool->prison = dm_bio_prison_create(PRISON_CELLS);
  1496. if (!pool->prison) {
  1497. *error = "Error creating pool's bio prison";
  1498. err_p = ERR_PTR(-ENOMEM);
  1499. goto bad_prison;
  1500. }
  1501. pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
  1502. if (IS_ERR(pool->copier)) {
  1503. r = PTR_ERR(pool->copier);
  1504. *error = "Error creating pool's kcopyd client";
  1505. err_p = ERR_PTR(r);
  1506. goto bad_kcopyd_client;
  1507. }
  1508. /*
  1509. * Create singlethreaded workqueue that will service all devices
  1510. * that use this metadata.
  1511. */
  1512. pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
  1513. if (!pool->wq) {
  1514. *error = "Error creating pool's workqueue";
  1515. err_p = ERR_PTR(-ENOMEM);
  1516. goto bad_wq;
  1517. }
  1518. INIT_WORK(&pool->worker, do_worker);
  1519. INIT_DELAYED_WORK(&pool->waker, do_waker);
  1520. spin_lock_init(&pool->lock);
  1521. bio_list_init(&pool->deferred_bios);
  1522. bio_list_init(&pool->deferred_flush_bios);
  1523. INIT_LIST_HEAD(&pool->prepared_mappings);
  1524. INIT_LIST_HEAD(&pool->prepared_discards);
  1525. pool->low_water_triggered = false;
  1526. bio_list_init(&pool->retry_on_resume_list);
  1527. pool->shared_read_ds = dm_deferred_set_create();
  1528. if (!pool->shared_read_ds) {
  1529. *error = "Error creating pool's shared read deferred set";
  1530. err_p = ERR_PTR(-ENOMEM);
  1531. goto bad_shared_read_ds;
  1532. }
  1533. pool->all_io_ds = dm_deferred_set_create();
  1534. if (!pool->all_io_ds) {
  1535. *error = "Error creating pool's all io deferred set";
  1536. err_p = ERR_PTR(-ENOMEM);
  1537. goto bad_all_io_ds;
  1538. }
  1539. pool->next_mapping = NULL;
  1540. pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
  1541. _new_mapping_cache);
  1542. if (!pool->mapping_pool) {
  1543. *error = "Error creating pool's mapping mempool";
  1544. err_p = ERR_PTR(-ENOMEM);
  1545. goto bad_mapping_pool;
  1546. }
  1547. pool->ref_count = 1;
  1548. pool->last_commit_jiffies = jiffies;
  1549. pool->pool_md = pool_md;
  1550. pool->md_dev = metadata_dev;
  1551. __pool_table_insert(pool);
  1552. return pool;
  1553. bad_mapping_pool:
  1554. dm_deferred_set_destroy(pool->all_io_ds);
  1555. bad_all_io_ds:
  1556. dm_deferred_set_destroy(pool->shared_read_ds);
  1557. bad_shared_read_ds:
  1558. destroy_workqueue(pool->wq);
  1559. bad_wq:
  1560. dm_kcopyd_client_destroy(pool->copier);
  1561. bad_kcopyd_client:
  1562. dm_bio_prison_destroy(pool->prison);
  1563. bad_prison:
  1564. kfree(pool);
  1565. bad_pool:
  1566. if (dm_pool_metadata_close(pmd))
  1567. DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
  1568. return err_p;
  1569. }
  1570. static void __pool_inc(struct pool *pool)
  1571. {
  1572. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  1573. pool->ref_count++;
  1574. }
  1575. static void __pool_dec(struct pool *pool)
  1576. {
  1577. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  1578. BUG_ON(!pool->ref_count);
  1579. if (!--pool->ref_count)
  1580. __pool_destroy(pool);
  1581. }
  1582. static struct pool *__pool_find(struct mapped_device *pool_md,
  1583. struct block_device *metadata_dev,
  1584. unsigned long block_size, int read_only,
  1585. char **error, int *created)
  1586. {
  1587. struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
  1588. if (pool) {
  1589. if (pool->pool_md != pool_md) {
  1590. *error = "metadata device already in use by a pool";
  1591. return ERR_PTR(-EBUSY);
  1592. }
  1593. __pool_inc(pool);
  1594. } else {
  1595. pool = __pool_table_lookup(pool_md);
  1596. if (pool) {
  1597. if (pool->md_dev != metadata_dev) {
  1598. *error = "different pool cannot replace a pool";
  1599. return ERR_PTR(-EINVAL);
  1600. }
  1601. __pool_inc(pool);
  1602. } else {
  1603. pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
  1604. *created = 1;
  1605. }
  1606. }
  1607. return pool;
  1608. }
  1609. /*----------------------------------------------------------------
  1610. * Pool target methods
  1611. *--------------------------------------------------------------*/
  1612. static void pool_dtr(struct dm_target *ti)
  1613. {
  1614. struct pool_c *pt = ti->private;
  1615. mutex_lock(&dm_thin_pool_table.mutex);
  1616. unbind_control_target(pt->pool, ti);
  1617. __pool_dec(pt->pool);
  1618. dm_put_device(ti, pt->metadata_dev);
  1619. dm_put_device(ti, pt->data_dev);
  1620. kfree(pt);
  1621. mutex_unlock(&dm_thin_pool_table.mutex);
  1622. }
  1623. static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
  1624. struct dm_target *ti)
  1625. {
  1626. int r;
  1627. unsigned argc;
  1628. const char *arg_name;
  1629. static struct dm_arg _args[] = {
  1630. {0, 4, "Invalid number of pool feature arguments"},
  1631. };
  1632. /*
  1633. * No feature arguments supplied.
  1634. */
  1635. if (!as->argc)
  1636. return 0;
  1637. r = dm_read_arg_group(_args, as, &argc, &ti->error);
  1638. if (r)
  1639. return -EINVAL;
  1640. while (argc && !r) {
  1641. arg_name = dm_shift_arg(as);
  1642. argc--;
  1643. if (!strcasecmp(arg_name, "skip_block_zeroing"))
  1644. pf->zero_new_blocks = false;
  1645. else if (!strcasecmp(arg_name, "ignore_discard"))
  1646. pf->discard_enabled = false;
  1647. else if (!strcasecmp(arg_name, "no_discard_passdown"))
  1648. pf->discard_passdown = false;
  1649. else if (!strcasecmp(arg_name, "read_only"))
  1650. pf->mode = PM_READ_ONLY;
  1651. else if (!strcasecmp(arg_name, "error_if_no_space"))
  1652. pf->error_if_no_space = true;
  1653. else {
  1654. ti->error = "Unrecognised pool feature requested";
  1655. r = -EINVAL;
  1656. break;
  1657. }
  1658. }
  1659. return r;
  1660. }
  1661. static void metadata_low_callback(void *context)
  1662. {
  1663. struct pool *pool = context;
  1664. DMWARN("%s: reached low water mark for metadata device: sending event.",
  1665. dm_device_name(pool->pool_md));
  1666. dm_table_event(pool->ti->table);
  1667. }
  1668. static sector_t get_metadata_dev_size(struct block_device *bdev)
  1669. {
  1670. sector_t metadata_dev_size = i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
  1671. char buffer[BDEVNAME_SIZE];
  1672. if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) {
  1673. DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
  1674. bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
  1675. metadata_dev_size = THIN_METADATA_MAX_SECTORS_WARNING;
  1676. }
  1677. return metadata_dev_size;
  1678. }
  1679. static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
  1680. {
  1681. sector_t metadata_dev_size = get_metadata_dev_size(bdev);
  1682. sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
  1683. return metadata_dev_size;
  1684. }
  1685. /*
  1686. * When a metadata threshold is crossed a dm event is triggered, and
  1687. * userland should respond by growing the metadata device. We could let
  1688. * userland set the threshold, like we do with the data threshold, but I'm
  1689. * not sure they know enough to do this well.
  1690. */
  1691. static dm_block_t calc_metadata_threshold(struct pool_c *pt)
  1692. {
  1693. /*
  1694. * 4M is ample for all ops with the possible exception of thin
  1695. * device deletion which is harmless if it fails (just retry the
  1696. * delete after you've grown the device).
  1697. */
  1698. dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
  1699. return min((dm_block_t)1024ULL /* 4M */, quarter);
  1700. }
  1701. /*
  1702. * thin-pool <metadata dev> <data dev>
  1703. * <data block size (sectors)>
  1704. * <low water mark (blocks)>
  1705. * [<#feature args> [<arg>]*]
  1706. *
  1707. * Optional feature arguments are:
  1708. * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
  1709. * ignore_discard: disable discard
  1710. * no_discard_passdown: don't pass discards down to the data device
  1711. * read_only: Don't allow any changes to be made to the pool metadata.
  1712. * error_if_no_space: error IOs, instead of queueing, if no space.
  1713. */
  1714. static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
  1715. {
  1716. int r, pool_created = 0;
  1717. struct pool_c *pt;
  1718. struct pool *pool;
  1719. struct pool_features pf;
  1720. struct dm_arg_set as;
  1721. struct dm_dev *data_dev;
  1722. unsigned long block_size;
  1723. dm_block_t low_water_blocks;
  1724. struct dm_dev *metadata_dev;
  1725. fmode_t metadata_mode;
  1726. /*
  1727. * FIXME Remove validation from scope of lock.
  1728. */
  1729. mutex_lock(&dm_thin_pool_table.mutex);
  1730. if (argc < 4) {
  1731. ti->error = "Invalid argument count";
  1732. r = -EINVAL;
  1733. goto out_unlock;
  1734. }
  1735. as.argc = argc;
  1736. as.argv = argv;
  1737. /*
  1738. * Set default pool features.
  1739. */
  1740. pool_features_init(&pf);
  1741. dm_consume_args(&as, 4);
  1742. r = parse_pool_features(&as, &pf, ti);
  1743. if (r)
  1744. goto out_unlock;
  1745. metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
  1746. r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
  1747. if (r) {
  1748. ti->error = "Error opening metadata block device";
  1749. goto out_unlock;
  1750. }
  1751. /*
  1752. * Run for the side-effect of possibly issuing a warning if the
  1753. * device is too big.
  1754. */
  1755. (void) get_metadata_dev_size(metadata_dev->bdev);
  1756. r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
  1757. if (r) {
  1758. ti->error = "Error getting data device";
  1759. goto out_metadata;
  1760. }
  1761. if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
  1762. block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
  1763. block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
  1764. block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
  1765. ti->error = "Invalid block size";
  1766. r = -EINVAL;
  1767. goto out;
  1768. }
  1769. if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
  1770. ti->error = "Invalid low water mark";
  1771. r = -EINVAL;
  1772. goto out;
  1773. }
  1774. pt = kzalloc(sizeof(*pt), GFP_KERNEL);
  1775. if (!pt) {
  1776. r = -ENOMEM;
  1777. goto out;
  1778. }
  1779. pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
  1780. block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
  1781. if (IS_ERR(pool)) {
  1782. r = PTR_ERR(pool);
  1783. goto out_free_pt;
  1784. }
  1785. /*
  1786. * 'pool_created' reflects whether this is the first table load.
  1787. * Top level discard support is not allowed to be changed after
  1788. * initial load. This would require a pool reload to trigger thin
  1789. * device changes.
  1790. */
  1791. if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
  1792. ti->error = "Discard support cannot be disabled once enabled";
  1793. r = -EINVAL;
  1794. goto out_flags_changed;
  1795. }
  1796. pt->pool = pool;
  1797. pt->ti = ti;
  1798. pt->metadata_dev = metadata_dev;
  1799. pt->data_dev = data_dev;
  1800. pt->low_water_blocks = low_water_blocks;
  1801. pt->adjusted_pf = pt->requested_pf = pf;
  1802. ti->num_flush_bios = 1;
  1803. /*
  1804. * Only need to enable discards if the pool should pass
  1805. * them down to the data device. The thin device's discard
  1806. * processing will cause mappings to be removed from the btree.
  1807. */
  1808. ti->discard_zeroes_data_unsupported = true;
  1809. if (pf.discard_enabled && pf.discard_passdown) {
  1810. ti->num_discard_bios = 1;
  1811. /*
  1812. * Setting 'discards_supported' circumvents the normal
  1813. * stacking of discard limits (this keeps the pool and
  1814. * thin devices' discard limits consistent).
  1815. */
  1816. ti->discards_supported = true;
  1817. }
  1818. ti->private = pt;
  1819. r = dm_pool_register_metadata_threshold(pt->pool->pmd,
  1820. calc_metadata_threshold(pt),
  1821. metadata_low_callback,
  1822. pool);
  1823. if (r)
  1824. goto out_free_pt;
  1825. pt->callbacks.congested_fn = pool_is_congested;
  1826. dm_table_add_target_callbacks(ti->table, &pt->callbacks);
  1827. mutex_unlock(&dm_thin_pool_table.mutex);
  1828. return 0;
  1829. out_flags_changed:
  1830. __pool_dec(pool);
  1831. out_free_pt:
  1832. kfree(pt);
  1833. out:
  1834. dm_put_device(ti, data_dev);
  1835. out_metadata:
  1836. dm_put_device(ti, metadata_dev);
  1837. out_unlock:
  1838. mutex_unlock(&dm_thin_pool_table.mutex);
  1839. return r;
  1840. }
  1841. static int pool_map(struct dm_target *ti, struct bio *bio)
  1842. {
  1843. int r;
  1844. struct pool_c *pt = ti->private;
  1845. struct pool *pool = pt->pool;
  1846. unsigned long flags;
  1847. /*
  1848. * As this is a singleton target, ti->begin is always zero.
  1849. */
  1850. spin_lock_irqsave(&pool->lock, flags);
  1851. bio->bi_bdev = pt->data_dev->bdev;
  1852. r = DM_MAPIO_REMAPPED;
  1853. spin_unlock_irqrestore(&pool->lock, flags);
  1854. return r;
  1855. }
  1856. static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
  1857. {
  1858. int r;
  1859. struct pool_c *pt = ti->private;
  1860. struct pool *pool = pt->pool;
  1861. sector_t data_size = ti->len;
  1862. dm_block_t sb_data_size;
  1863. *need_commit = false;
  1864. (void) sector_div(data_size, pool->sectors_per_block);
  1865. r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
  1866. if (r) {
  1867. DMERR("%s: failed to retrieve data device size",
  1868. dm_device_name(pool->pool_md));
  1869. return r;
  1870. }
  1871. if (data_size < sb_data_size) {
  1872. DMERR("%s: pool target (%llu blocks) too small: expected %llu",
  1873. dm_device_name(pool->pool_md),
  1874. (unsigned long long)data_size, sb_data_size);
  1875. return -EINVAL;
  1876. } else if (data_size > sb_data_size) {
  1877. if (sb_data_size)
  1878. DMINFO("%s: growing the data device from %llu to %llu blocks",
  1879. dm_device_name(pool->pool_md),
  1880. sb_data_size, (unsigned long long)data_size);
  1881. r = dm_pool_resize_data_dev(pool->pmd, data_size);
  1882. if (r) {
  1883. metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
  1884. return r;
  1885. }
  1886. *need_commit = true;
  1887. }
  1888. return 0;
  1889. }
  1890. static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
  1891. {
  1892. int r;
  1893. struct pool_c *pt = ti->private;
  1894. struct pool *pool = pt->pool;
  1895. dm_block_t metadata_dev_size, sb_metadata_dev_size;
  1896. *need_commit = false;
  1897. metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
  1898. r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
  1899. if (r) {
  1900. DMERR("%s: failed to retrieve metadata device size",
  1901. dm_device_name(pool->pool_md));
  1902. return r;
  1903. }
  1904. if (metadata_dev_size < sb_metadata_dev_size) {
  1905. DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
  1906. dm_device_name(pool->pool_md),
  1907. metadata_dev_size, sb_metadata_dev_size);
  1908. return -EINVAL;
  1909. } else if (metadata_dev_size > sb_metadata_dev_size) {
  1910. DMINFO("%s: growing the metadata device from %llu to %llu blocks",
  1911. dm_device_name(pool->pool_md),
  1912. sb_metadata_dev_size, metadata_dev_size);
  1913. r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
  1914. if (r) {
  1915. metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
  1916. return r;
  1917. }
  1918. *need_commit = true;
  1919. }
  1920. return 0;
  1921. }
  1922. /*
  1923. * Retrieves the number of blocks of the data device from
  1924. * the superblock and compares it to the actual device size,
  1925. * thus resizing the data device in case it has grown.
  1926. *
  1927. * This both copes with opening preallocated data devices in the ctr
  1928. * being followed by a resume
  1929. * -and-
  1930. * calling the resume method individually after userspace has
  1931. * grown the data device in reaction to a table event.
  1932. */
  1933. static int pool_preresume(struct dm_target *ti)
  1934. {
  1935. int r;
  1936. bool need_commit1, need_commit2;
  1937. struct pool_c *pt = ti->private;
  1938. struct pool *pool = pt->pool;
  1939. /*
  1940. * Take control of the pool object.
  1941. */
  1942. r = bind_control_target(pool, ti);
  1943. if (r)
  1944. return r;
  1945. r = maybe_resize_data_dev(ti, &need_commit1);
  1946. if (r)
  1947. return r;
  1948. r = maybe_resize_metadata_dev(ti, &need_commit2);
  1949. if (r)
  1950. return r;
  1951. if (need_commit1 || need_commit2)
  1952. (void) commit(pool);
  1953. return 0;
  1954. }
  1955. static void pool_resume(struct dm_target *ti)
  1956. {
  1957. struct pool_c *pt = ti->private;
  1958. struct pool *pool = pt->pool;
  1959. unsigned long flags;
  1960. spin_lock_irqsave(&pool->lock, flags);
  1961. pool->low_water_triggered = false;
  1962. __requeue_bios(pool);
  1963. spin_unlock_irqrestore(&pool->lock, flags);
  1964. do_waker(&pool->waker.work);
  1965. }
  1966. static void pool_postsuspend(struct dm_target *ti)
  1967. {
  1968. struct pool_c *pt = ti->private;
  1969. struct pool *pool = pt->pool;
  1970. cancel_delayed_work(&pool->waker);
  1971. flush_workqueue(pool->wq);
  1972. (void) commit(pool);
  1973. }
  1974. static int check_arg_count(unsigned argc, unsigned args_required)
  1975. {
  1976. if (argc != args_required) {
  1977. DMWARN("Message received with %u arguments instead of %u.",
  1978. argc, args_required);
  1979. return -EINVAL;
  1980. }
  1981. return 0;
  1982. }
  1983. static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
  1984. {
  1985. if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
  1986. *dev_id <= MAX_DEV_ID)
  1987. return 0;
  1988. if (warning)
  1989. DMWARN("Message received with invalid device id: %s", arg);
  1990. return -EINVAL;
  1991. }
  1992. static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
  1993. {
  1994. dm_thin_id dev_id;
  1995. int r;
  1996. r = check_arg_count(argc, 2);
  1997. if (r)
  1998. return r;
  1999. r = read_dev_id(argv[1], &dev_id, 1);
  2000. if (r)
  2001. return r;
  2002. r = dm_pool_create_thin(pool->pmd, dev_id);
  2003. if (r) {
  2004. DMWARN("Creation of new thinly-provisioned device with id %s failed.",
  2005. argv[1]);
  2006. return r;
  2007. }
  2008. return 0;
  2009. }
  2010. static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
  2011. {
  2012. dm_thin_id dev_id;
  2013. dm_thin_id origin_dev_id;
  2014. int r;
  2015. r = check_arg_count(argc, 3);
  2016. if (r)
  2017. return r;
  2018. r = read_dev_id(argv[1], &dev_id, 1);
  2019. if (r)
  2020. return r;
  2021. r = read_dev_id(argv[2], &origin_dev_id, 1);
  2022. if (r)
  2023. return r;
  2024. r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
  2025. if (r) {
  2026. DMWARN("Creation of new snapshot %s of device %s failed.",
  2027. argv[1], argv[2]);
  2028. return r;
  2029. }
  2030. return 0;
  2031. }
  2032. static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
  2033. {
  2034. dm_thin_id dev_id;
  2035. int r;
  2036. r = check_arg_count(argc, 2);
  2037. if (r)
  2038. return r;
  2039. r = read_dev_id(argv[1], &dev_id, 1);
  2040. if (r)
  2041. return r;
  2042. r = dm_pool_delete_thin_device(pool->pmd, dev_id);
  2043. if (r)
  2044. DMWARN("Deletion of thin device %s failed.", argv[1]);
  2045. return r;
  2046. }
  2047. static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
  2048. {
  2049. dm_thin_id old_id, new_id;
  2050. int r;
  2051. r = check_arg_count(argc, 3);
  2052. if (r)
  2053. return r;
  2054. if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
  2055. DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
  2056. return -EINVAL;
  2057. }
  2058. if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
  2059. DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
  2060. return -EINVAL;
  2061. }
  2062. r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
  2063. if (r) {
  2064. DMWARN("Failed to change transaction id from %s to %s.",
  2065. argv[1], argv[2]);
  2066. return r;
  2067. }
  2068. return 0;
  2069. }
  2070. static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
  2071. {
  2072. int r;
  2073. r = check_arg_count(argc, 1);
  2074. if (r)
  2075. return r;
  2076. (void) commit(pool);
  2077. r = dm_pool_reserve_metadata_snap(pool->pmd);
  2078. if (r)
  2079. DMWARN("reserve_metadata_snap message failed.");
  2080. return r;
  2081. }
  2082. static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
  2083. {
  2084. int r;
  2085. r = check_arg_count(argc, 1);
  2086. if (r)
  2087. return r;
  2088. r = dm_pool_release_metadata_snap(pool->pmd);
  2089. if (r)
  2090. DMWARN("release_metadata_snap message failed.");
  2091. return r;
  2092. }
  2093. /*
  2094. * Messages supported:
  2095. * create_thin <dev_id>
  2096. * create_snap <dev_id> <origin_id>
  2097. * delete <dev_id>
  2098. * trim <dev_id> <new_size_in_sectors>
  2099. * set_transaction_id <current_trans_id> <new_trans_id>
  2100. * reserve_metadata_snap
  2101. * release_metadata_snap
  2102. */
  2103. static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
  2104. {
  2105. int r = -EINVAL;
  2106. struct pool_c *pt = ti->private;
  2107. struct pool *pool = pt->pool;
  2108. if (!strcasecmp(argv[0], "create_thin"))
  2109. r = process_create_thin_mesg(argc, argv, pool);
  2110. else if (!strcasecmp(argv[0], "create_snap"))
  2111. r = process_create_snap_mesg(argc, argv, pool);
  2112. else if (!strcasecmp(argv[0], "delete"))
  2113. r = process_delete_mesg(argc, argv, pool);
  2114. else if (!strcasecmp(argv[0], "set_transaction_id"))
  2115. r = process_set_transaction_id_mesg(argc, argv, pool);
  2116. else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
  2117. r = process_reserve_metadata_snap_mesg(argc, argv, pool);
  2118. else if (!strcasecmp(argv[0], "release_metadata_snap"))
  2119. r = process_release_metadata_snap_mesg(argc, argv, pool);
  2120. else
  2121. DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
  2122. if (!r)
  2123. (void) commit(pool);
  2124. return r;
  2125. }
  2126. static void emit_flags(struct pool_features *pf, char *result,
  2127. unsigned sz, unsigned maxlen)
  2128. {
  2129. unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
  2130. !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
  2131. pf->error_if_no_space;
  2132. DMEMIT("%u ", count);
  2133. if (!pf->zero_new_blocks)
  2134. DMEMIT("skip_block_zeroing ");
  2135. if (!pf->discard_enabled)
  2136. DMEMIT("ignore_discard ");
  2137. if (!pf->discard_passdown)
  2138. DMEMIT("no_discard_passdown ");
  2139. if (pf->mode == PM_READ_ONLY)
  2140. DMEMIT("read_only ");
  2141. if (pf->error_if_no_space)
  2142. DMEMIT("error_if_no_space ");
  2143. }
  2144. /*
  2145. * Status line is:
  2146. * <transaction id> <used metadata sectors>/<total metadata sectors>
  2147. * <used data sectors>/<total data sectors> <held metadata root>
  2148. */
  2149. static void pool_status(struct dm_target *ti, status_type_t type,
  2150. unsigned status_flags, char *result, unsigned maxlen)
  2151. {
  2152. int r;
  2153. unsigned sz = 0;
  2154. uint64_t transaction_id;
  2155. dm_block_t nr_free_blocks_data;
  2156. dm_block_t nr_free_blocks_metadata;
  2157. dm_block_t nr_blocks_data;
  2158. dm_block_t nr_blocks_metadata;
  2159. dm_block_t held_root;
  2160. char buf[BDEVNAME_SIZE];
  2161. char buf2[BDEVNAME_SIZE];
  2162. struct pool_c *pt = ti->private;
  2163. struct pool *pool = pt->pool;
  2164. switch (type) {
  2165. case STATUSTYPE_INFO:
  2166. if (get_pool_mode(pool) == PM_FAIL) {
  2167. DMEMIT("Fail");
  2168. break;
  2169. }
  2170. /* Commit to ensure statistics aren't out-of-date */
  2171. if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
  2172. (void) commit(pool);
  2173. r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
  2174. if (r) {
  2175. DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
  2176. dm_device_name(pool->pool_md), r);
  2177. goto err;
  2178. }
  2179. r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
  2180. if (r) {
  2181. DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
  2182. dm_device_name(pool->pool_md), r);
  2183. goto err;
  2184. }
  2185. r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
  2186. if (r) {
  2187. DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
  2188. dm_device_name(pool->pool_md), r);
  2189. goto err;
  2190. }
  2191. r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
  2192. if (r) {
  2193. DMERR("%s: dm_pool_get_free_block_count returned %d",
  2194. dm_device_name(pool->pool_md), r);
  2195. goto err;
  2196. }
  2197. r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
  2198. if (r) {
  2199. DMERR("%s: dm_pool_get_data_dev_size returned %d",
  2200. dm_device_name(pool->pool_md), r);
  2201. goto err;
  2202. }
  2203. r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
  2204. if (r) {
  2205. DMERR("%s: dm_pool_get_metadata_snap returned %d",
  2206. dm_device_name(pool->pool_md), r);
  2207. goto err;
  2208. }
  2209. DMEMIT("%llu %llu/%llu %llu/%llu ",
  2210. (unsigned long long)transaction_id,
  2211. (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
  2212. (unsigned long long)nr_blocks_metadata,
  2213. (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
  2214. (unsigned long long)nr_blocks_data);
  2215. if (held_root)
  2216. DMEMIT("%llu ", held_root);
  2217. else
  2218. DMEMIT("- ");
  2219. if (pool->pf.mode == PM_READ_ONLY)
  2220. DMEMIT("ro ");
  2221. else
  2222. DMEMIT("rw ");
  2223. if (!pool->pf.discard_enabled)
  2224. DMEMIT("ignore_discard ");
  2225. else if (pool->pf.discard_passdown)
  2226. DMEMIT("discard_passdown ");
  2227. else
  2228. DMEMIT("no_discard_passdown ");
  2229. if (pool->pf.error_if_no_space)
  2230. DMEMIT("error_if_no_space ");
  2231. else
  2232. DMEMIT("queue_if_no_space ");
  2233. break;
  2234. case STATUSTYPE_TABLE:
  2235. DMEMIT("%s %s %lu %llu ",
  2236. format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
  2237. format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
  2238. (unsigned long)pool->sectors_per_block,
  2239. (unsigned long long)pt->low_water_blocks);
  2240. emit_flags(&pt->requested_pf, result, sz, maxlen);
  2241. break;
  2242. }
  2243. return;
  2244. err:
  2245. DMEMIT("Error");
  2246. }
  2247. static int pool_iterate_devices(struct dm_target *ti,
  2248. iterate_devices_callout_fn fn, void *data)
  2249. {
  2250. struct pool_c *pt = ti->private;
  2251. return fn(ti, pt->data_dev, 0, ti->len, data);
  2252. }
  2253. static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
  2254. struct bio_vec *biovec, int max_size)
  2255. {
  2256. struct pool_c *pt = ti->private;
  2257. struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
  2258. if (!q->merge_bvec_fn)
  2259. return max_size;
  2260. bvm->bi_bdev = pt->data_dev->bdev;
  2261. return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
  2262. }
  2263. static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
  2264. {
  2265. struct pool *pool = pt->pool;
  2266. struct queue_limits *data_limits;
  2267. limits->max_discard_sectors = pool->sectors_per_block;
  2268. /*
  2269. * discard_granularity is just a hint, and not enforced.
  2270. */
  2271. if (pt->adjusted_pf.discard_passdown) {
  2272. data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
  2273. limits->discard_granularity = data_limits->discard_granularity;
  2274. } else
  2275. limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
  2276. }
  2277. static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
  2278. {
  2279. struct pool_c *pt = ti->private;
  2280. struct pool *pool = pt->pool;
  2281. uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
  2282. /*
  2283. * If the system-determined stacked limits are compatible with the
  2284. * pool's blocksize (io_opt is a factor) do not override them.
  2285. */
  2286. if (io_opt_sectors < pool->sectors_per_block ||
  2287. do_div(io_opt_sectors, pool->sectors_per_block)) {
  2288. blk_limits_io_min(limits, 0);
  2289. blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
  2290. }
  2291. /*
  2292. * pt->adjusted_pf is a staging area for the actual features to use.
  2293. * They get transferred to the live pool in bind_control_target()
  2294. * called from pool_preresume().
  2295. */
  2296. if (!pt->adjusted_pf.discard_enabled) {
  2297. /*
  2298. * Must explicitly disallow stacking discard limits otherwise the
  2299. * block layer will stack them if pool's data device has support.
  2300. * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
  2301. * user to see that, so make sure to set all discard limits to 0.
  2302. */
  2303. limits->discard_granularity = 0;
  2304. return;
  2305. }
  2306. disable_passdown_if_not_supported(pt);
  2307. set_discard_limits(pt, limits);
  2308. }
  2309. static struct target_type pool_target = {
  2310. .name = "thin-pool",
  2311. .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
  2312. DM_TARGET_IMMUTABLE,
  2313. .version = {1, 10, 0},
  2314. .module = THIS_MODULE,
  2315. .ctr = pool_ctr,
  2316. .dtr = pool_dtr,
  2317. .map = pool_map,
  2318. .postsuspend = pool_postsuspend,
  2319. .preresume = pool_preresume,
  2320. .resume = pool_resume,
  2321. .message = pool_message,
  2322. .status = pool_status,
  2323. .merge = pool_merge,
  2324. .iterate_devices = pool_iterate_devices,
  2325. .io_hints = pool_io_hints,
  2326. };
  2327. /*----------------------------------------------------------------
  2328. * Thin target methods
  2329. *--------------------------------------------------------------*/
  2330. static void thin_dtr(struct dm_target *ti)
  2331. {
  2332. struct thin_c *tc = ti->private;
  2333. mutex_lock(&dm_thin_pool_table.mutex);
  2334. __pool_dec(tc->pool);
  2335. dm_pool_close_thin_device(tc->td);
  2336. dm_put_device(ti, tc->pool_dev);
  2337. if (tc->origin_dev)
  2338. dm_put_device(ti, tc->origin_dev);
  2339. kfree(tc);
  2340. mutex_unlock(&dm_thin_pool_table.mutex);
  2341. }
  2342. /*
  2343. * Thin target parameters:
  2344. *
  2345. * <pool_dev> <dev_id> [origin_dev]
  2346. *
  2347. * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
  2348. * dev_id: the internal device identifier
  2349. * origin_dev: a device external to the pool that should act as the origin
  2350. *
  2351. * If the pool device has discards disabled, they get disabled for the thin
  2352. * device as well.
  2353. */
  2354. static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
  2355. {
  2356. int r;
  2357. struct thin_c *tc;
  2358. struct dm_dev *pool_dev, *origin_dev;
  2359. struct mapped_device *pool_md;
  2360. mutex_lock(&dm_thin_pool_table.mutex);
  2361. if (argc != 2 && argc != 3) {
  2362. ti->error = "Invalid argument count";
  2363. r = -EINVAL;
  2364. goto out_unlock;
  2365. }
  2366. tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
  2367. if (!tc) {
  2368. ti->error = "Out of memory";
  2369. r = -ENOMEM;
  2370. goto out_unlock;
  2371. }
  2372. if (argc == 3) {
  2373. r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
  2374. if (r) {
  2375. ti->error = "Error opening origin device";
  2376. goto bad_origin_dev;
  2377. }
  2378. tc->origin_dev = origin_dev;
  2379. }
  2380. r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
  2381. if (r) {
  2382. ti->error = "Error opening pool device";
  2383. goto bad_pool_dev;
  2384. }
  2385. tc->pool_dev = pool_dev;
  2386. if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
  2387. ti->error = "Invalid device id";
  2388. r = -EINVAL;
  2389. goto bad_common;
  2390. }
  2391. pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
  2392. if (!pool_md) {
  2393. ti->error = "Couldn't get pool mapped device";
  2394. r = -EINVAL;
  2395. goto bad_common;
  2396. }
  2397. tc->pool = __pool_table_lookup(pool_md);
  2398. if (!tc->pool) {
  2399. ti->error = "Couldn't find pool object";
  2400. r = -EINVAL;
  2401. goto bad_pool_lookup;
  2402. }
  2403. __pool_inc(tc->pool);
  2404. if (get_pool_mode(tc->pool) == PM_FAIL) {
  2405. ti->error = "Couldn't open thin device, Pool is in fail mode";
  2406. goto bad_thin_open;
  2407. }
  2408. r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
  2409. if (r) {
  2410. ti->error = "Couldn't open thin internal device";
  2411. goto bad_thin_open;
  2412. }
  2413. r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
  2414. if (r)
  2415. goto bad_thin_open;
  2416. ti->num_flush_bios = 1;
  2417. ti->flush_supported = true;
  2418. ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
  2419. /* In case the pool supports discards, pass them on. */
  2420. ti->discard_zeroes_data_unsupported = true;
  2421. if (tc->pool->pf.discard_enabled) {
  2422. ti->discards_supported = true;
  2423. ti->num_discard_bios = 1;
  2424. /* Discard bios must be split on a block boundary */
  2425. ti->split_discard_bios = true;
  2426. }
  2427. dm_put(pool_md);
  2428. mutex_unlock(&dm_thin_pool_table.mutex);
  2429. return 0;
  2430. bad_thin_open:
  2431. __pool_dec(tc->pool);
  2432. bad_pool_lookup:
  2433. dm_put(pool_md);
  2434. bad_common:
  2435. dm_put_device(ti, tc->pool_dev);
  2436. bad_pool_dev:
  2437. if (tc->origin_dev)
  2438. dm_put_device(ti, tc->origin_dev);
  2439. bad_origin_dev:
  2440. kfree(tc);
  2441. out_unlock:
  2442. mutex_unlock(&dm_thin_pool_table.mutex);
  2443. return r;
  2444. }
  2445. static int thin_map(struct dm_target *ti, struct bio *bio)
  2446. {
  2447. bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
  2448. return thin_bio_map(ti, bio);
  2449. }
  2450. static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
  2451. {
  2452. unsigned long flags;
  2453. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  2454. struct list_head work;
  2455. struct dm_thin_new_mapping *m, *tmp;
  2456. struct pool *pool = h->tc->pool;
  2457. if (h->shared_read_entry) {
  2458. INIT_LIST_HEAD(&work);
  2459. dm_deferred_entry_dec(h->shared_read_entry, &work);
  2460. spin_lock_irqsave(&pool->lock, flags);
  2461. list_for_each_entry_safe(m, tmp, &work, list) {
  2462. list_del(&m->list);
  2463. m->quiesced = true;
  2464. __maybe_add_mapping(m);
  2465. }
  2466. spin_unlock_irqrestore(&pool->lock, flags);
  2467. }
  2468. if (h->all_io_entry) {
  2469. INIT_LIST_HEAD(&work);
  2470. dm_deferred_entry_dec(h->all_io_entry, &work);
  2471. if (!list_empty(&work)) {
  2472. spin_lock_irqsave(&pool->lock, flags);
  2473. list_for_each_entry_safe(m, tmp, &work, list)
  2474. list_add_tail(&m->list, &pool->prepared_discards);
  2475. spin_unlock_irqrestore(&pool->lock, flags);
  2476. wake_worker(pool);
  2477. }
  2478. }
  2479. return 0;
  2480. }
  2481. static void thin_postsuspend(struct dm_target *ti)
  2482. {
  2483. if (dm_noflush_suspending(ti))
  2484. requeue_io((struct thin_c *)ti->private);
  2485. }
  2486. /*
  2487. * <nr mapped sectors> <highest mapped sector>
  2488. */
  2489. static void thin_status(struct dm_target *ti, status_type_t type,
  2490. unsigned status_flags, char *result, unsigned maxlen)
  2491. {
  2492. int r;
  2493. ssize_t sz = 0;
  2494. dm_block_t mapped, highest;
  2495. char buf[BDEVNAME_SIZE];
  2496. struct thin_c *tc = ti->private;
  2497. if (get_pool_mode(tc->pool) == PM_FAIL) {
  2498. DMEMIT("Fail");
  2499. return;
  2500. }
  2501. if (!tc->td)
  2502. DMEMIT("-");
  2503. else {
  2504. switch (type) {
  2505. case STATUSTYPE_INFO:
  2506. r = dm_thin_get_mapped_count(tc->td, &mapped);
  2507. if (r) {
  2508. DMERR("dm_thin_get_mapped_count returned %d", r);
  2509. goto err;
  2510. }
  2511. r = dm_thin_get_highest_mapped_block(tc->td, &highest);
  2512. if (r < 0) {
  2513. DMERR("dm_thin_get_highest_mapped_block returned %d", r);
  2514. goto err;
  2515. }
  2516. DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
  2517. if (r)
  2518. DMEMIT("%llu", ((highest + 1) *
  2519. tc->pool->sectors_per_block) - 1);
  2520. else
  2521. DMEMIT("-");
  2522. break;
  2523. case STATUSTYPE_TABLE:
  2524. DMEMIT("%s %lu",
  2525. format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
  2526. (unsigned long) tc->dev_id);
  2527. if (tc->origin_dev)
  2528. DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
  2529. break;
  2530. }
  2531. }
  2532. return;
  2533. err:
  2534. DMEMIT("Error");
  2535. }
  2536. static int thin_iterate_devices(struct dm_target *ti,
  2537. iterate_devices_callout_fn fn, void *data)
  2538. {
  2539. sector_t blocks;
  2540. struct thin_c *tc = ti->private;
  2541. struct pool *pool = tc->pool;
  2542. /*
  2543. * We can't call dm_pool_get_data_dev_size() since that blocks. So
  2544. * we follow a more convoluted path through to the pool's target.
  2545. */
  2546. if (!pool->ti)
  2547. return 0; /* nothing is bound */
  2548. blocks = pool->ti->len;
  2549. (void) sector_div(blocks, pool->sectors_per_block);
  2550. if (blocks)
  2551. return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
  2552. return 0;
  2553. }
  2554. static struct target_type thin_target = {
  2555. .name = "thin",
  2556. .version = {1, 10, 0},
  2557. .module = THIS_MODULE,
  2558. .ctr = thin_ctr,
  2559. .dtr = thin_dtr,
  2560. .map = thin_map,
  2561. .end_io = thin_endio,
  2562. .postsuspend = thin_postsuspend,
  2563. .status = thin_status,
  2564. .iterate_devices = thin_iterate_devices,
  2565. };
  2566. /*----------------------------------------------------------------*/
  2567. static int __init dm_thin_init(void)
  2568. {
  2569. int r;
  2570. pool_table_init();
  2571. r = dm_register_target(&thin_target);
  2572. if (r)
  2573. return r;
  2574. r = dm_register_target(&pool_target);
  2575. if (r)
  2576. goto bad_pool_target;
  2577. r = -ENOMEM;
  2578. _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
  2579. if (!_new_mapping_cache)
  2580. goto bad_new_mapping_cache;
  2581. return 0;
  2582. bad_new_mapping_cache:
  2583. dm_unregister_target(&pool_target);
  2584. bad_pool_target:
  2585. dm_unregister_target(&thin_target);
  2586. return r;
  2587. }
  2588. static void dm_thin_exit(void)
  2589. {
  2590. dm_unregister_target(&thin_target);
  2591. dm_unregister_target(&pool_target);
  2592. kmem_cache_destroy(_new_mapping_cache);
  2593. }
  2594. module_init(dm_thin_init);
  2595. module_exit(dm_thin_exit);
  2596. MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
  2597. MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
  2598. MODULE_LICENSE("GPL");