skbuff.h 100 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569
  1. /*
  2. * Definitions for the 'struct sk_buff' memory handlers.
  3. *
  4. * Authors:
  5. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  6. * Florian La Roche, <rzsfl@rz.uni-sb.de>
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License
  10. * as published by the Free Software Foundation; either version
  11. * 2 of the License, or (at your option) any later version.
  12. */
  13. #ifndef _LINUX_SKBUFF_H
  14. #define _LINUX_SKBUFF_H
  15. #include <linux/kernel.h>
  16. #include <linux/kmemcheck.h>
  17. #include <linux/compiler.h>
  18. #include <linux/time.h>
  19. #include <linux/bug.h>
  20. #include <linux/cache.h>
  21. #include <linux/rbtree.h>
  22. #include <linux/socket.h>
  23. #include <linux/atomic.h>
  24. #include <asm/types.h>
  25. #include <linux/spinlock.h>
  26. #include <linux/net.h>
  27. #include <linux/textsearch.h>
  28. #include <net/checksum.h>
  29. #include <linux/rcupdate.h>
  30. #include <linux/hrtimer.h>
  31. #include <linux/dma-mapping.h>
  32. #include <linux/netdev_features.h>
  33. #include <linux/sched.h>
  34. #include <net/flow_dissector.h>
  35. #include <linux/splice.h>
  36. #include <linux/in6.h>
  37. #include <net/flow.h>
  38. /* A. Checksumming of received packets by device.
  39. *
  40. * CHECKSUM_NONE:
  41. *
  42. * Device failed to checksum this packet e.g. due to lack of capabilities.
  43. * The packet contains full (though not verified) checksum in packet but
  44. * not in skb->csum. Thus, skb->csum is undefined in this case.
  45. *
  46. * CHECKSUM_UNNECESSARY:
  47. *
  48. * The hardware you're dealing with doesn't calculate the full checksum
  49. * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
  50. * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
  51. * if their checksums are okay. skb->csum is still undefined in this case
  52. * though. It is a bad option, but, unfortunately, nowadays most vendors do
  53. * this. Apparently with the secret goal to sell you new devices, when you
  54. * will add new protocol to your host, f.e. IPv6 8)
  55. *
  56. * CHECKSUM_UNNECESSARY is applicable to following protocols:
  57. * TCP: IPv6 and IPv4.
  58. * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
  59. * zero UDP checksum for either IPv4 or IPv6, the networking stack
  60. * may perform further validation in this case.
  61. * GRE: only if the checksum is present in the header.
  62. * SCTP: indicates the CRC in SCTP header has been validated.
  63. *
  64. * skb->csum_level indicates the number of consecutive checksums found in
  65. * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
  66. * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
  67. * and a device is able to verify the checksums for UDP (possibly zero),
  68. * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
  69. * two. If the device were only able to verify the UDP checksum and not
  70. * GRE, either because it doesn't support GRE checksum of because GRE
  71. * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
  72. * not considered in this case).
  73. *
  74. * CHECKSUM_COMPLETE:
  75. *
  76. * This is the most generic way. The device supplied checksum of the _whole_
  77. * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
  78. * hardware doesn't need to parse L3/L4 headers to implement this.
  79. *
  80. * Note: Even if device supports only some protocols, but is able to produce
  81. * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
  82. *
  83. * CHECKSUM_PARTIAL:
  84. *
  85. * A checksum is set up to be offloaded to a device as described in the
  86. * output description for CHECKSUM_PARTIAL. This may occur on a packet
  87. * received directly from another Linux OS, e.g., a virtualized Linux kernel
  88. * on the same host, or it may be set in the input path in GRO or remote
  89. * checksum offload. For the purposes of checksum verification, the checksum
  90. * referred to by skb->csum_start + skb->csum_offset and any preceding
  91. * checksums in the packet are considered verified. Any checksums in the
  92. * packet that are after the checksum being offloaded are not considered to
  93. * be verified.
  94. *
  95. * B. Checksumming on output.
  96. *
  97. * CHECKSUM_NONE:
  98. *
  99. * The skb was already checksummed by the protocol, or a checksum is not
  100. * required.
  101. *
  102. * CHECKSUM_PARTIAL:
  103. *
  104. * The device is required to checksum the packet as seen by hard_start_xmit()
  105. * from skb->csum_start up to the end, and to record/write the checksum at
  106. * offset skb->csum_start + skb->csum_offset.
  107. *
  108. * The device must show its capabilities in dev->features, set up at device
  109. * setup time, e.g. netdev_features.h:
  110. *
  111. * NETIF_F_HW_CSUM - It's a clever device, it's able to checksum everything.
  112. * NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over
  113. * IPv4. Sigh. Vendors like this way for an unknown reason.
  114. * Though, see comment above about CHECKSUM_UNNECESSARY. 8)
  115. * NETIF_F_IPV6_CSUM - About as dumb as the last one but does IPv6 instead.
  116. * NETIF_F_... - Well, you get the picture.
  117. *
  118. * CHECKSUM_UNNECESSARY:
  119. *
  120. * Normally, the device will do per protocol specific checksumming. Protocol
  121. * implementations that do not want the NIC to perform the checksum
  122. * calculation should use this flag in their outgoing skbs.
  123. *
  124. * NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC
  125. * offload. Correspondingly, the FCoE protocol driver
  126. * stack should use CHECKSUM_UNNECESSARY.
  127. *
  128. * Any questions? No questions, good. --ANK
  129. */
  130. /* Don't change this without changing skb_csum_unnecessary! */
  131. #define CHECKSUM_NONE 0
  132. #define CHECKSUM_UNNECESSARY 1
  133. #define CHECKSUM_COMPLETE 2
  134. #define CHECKSUM_PARTIAL 3
  135. /* Maximum value in skb->csum_level */
  136. #define SKB_MAX_CSUM_LEVEL 3
  137. #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
  138. #define SKB_WITH_OVERHEAD(X) \
  139. ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  140. #define SKB_MAX_ORDER(X, ORDER) \
  141. SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
  142. #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
  143. #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
  144. /* return minimum truesize of one skb containing X bytes of data */
  145. #define SKB_TRUESIZE(X) ((X) + \
  146. SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
  147. SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  148. struct net_device;
  149. struct scatterlist;
  150. struct pipe_inode_info;
  151. struct iov_iter;
  152. struct napi_struct;
  153. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  154. struct nf_conntrack {
  155. atomic_t use;
  156. };
  157. #endif
  158. #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
  159. struct nf_bridge_info {
  160. atomic_t use;
  161. enum {
  162. BRNF_PROTO_UNCHANGED,
  163. BRNF_PROTO_8021Q,
  164. BRNF_PROTO_PPPOE
  165. } orig_proto:8;
  166. u8 pkt_otherhost:1;
  167. u8 in_prerouting:1;
  168. u8 bridged_dnat:1;
  169. __u16 frag_max_size;
  170. struct net_device *physindev;
  171. union {
  172. /* prerouting: detect dnat in orig/reply direction */
  173. __be32 ipv4_daddr;
  174. struct in6_addr ipv6_daddr;
  175. /* after prerouting + nat detected: store original source
  176. * mac since neigh resolution overwrites it, only used while
  177. * skb is out in neigh layer.
  178. */
  179. char neigh_header[8];
  180. /* always valid & non-NULL from FORWARD on, for physdev match */
  181. struct net_device *physoutdev;
  182. };
  183. };
  184. #endif
  185. struct sk_buff_head {
  186. /* These two members must be first. */
  187. struct sk_buff *next;
  188. struct sk_buff *prev;
  189. __u32 qlen;
  190. spinlock_t lock;
  191. };
  192. struct sk_buff;
  193. /* To allow 64K frame to be packed as single skb without frag_list we
  194. * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
  195. * buffers which do not start on a page boundary.
  196. *
  197. * Since GRO uses frags we allocate at least 16 regardless of page
  198. * size.
  199. */
  200. #if (65536/PAGE_SIZE + 1) < 16
  201. #define MAX_SKB_FRAGS 16UL
  202. #else
  203. #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
  204. #endif
  205. typedef struct skb_frag_struct skb_frag_t;
  206. struct skb_frag_struct {
  207. struct {
  208. struct page *p;
  209. } page;
  210. #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
  211. __u32 page_offset;
  212. __u32 size;
  213. #else
  214. __u16 page_offset;
  215. __u16 size;
  216. #endif
  217. };
  218. static inline unsigned int skb_frag_size(const skb_frag_t *frag)
  219. {
  220. return frag->size;
  221. }
  222. static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
  223. {
  224. frag->size = size;
  225. }
  226. static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
  227. {
  228. frag->size += delta;
  229. }
  230. static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
  231. {
  232. frag->size -= delta;
  233. }
  234. #define HAVE_HW_TIME_STAMP
  235. /**
  236. * struct skb_shared_hwtstamps - hardware time stamps
  237. * @hwtstamp: hardware time stamp transformed into duration
  238. * since arbitrary point in time
  239. *
  240. * Software time stamps generated by ktime_get_real() are stored in
  241. * skb->tstamp.
  242. *
  243. * hwtstamps can only be compared against other hwtstamps from
  244. * the same device.
  245. *
  246. * This structure is attached to packets as part of the
  247. * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
  248. */
  249. struct skb_shared_hwtstamps {
  250. ktime_t hwtstamp;
  251. };
  252. /* Definitions for tx_flags in struct skb_shared_info */
  253. enum {
  254. /* generate hardware time stamp */
  255. SKBTX_HW_TSTAMP = 1 << 0,
  256. /* generate software time stamp when queueing packet to NIC */
  257. SKBTX_SW_TSTAMP = 1 << 1,
  258. /* device driver is going to provide hardware time stamp */
  259. SKBTX_IN_PROGRESS = 1 << 2,
  260. /* device driver supports TX zero-copy buffers */
  261. SKBTX_DEV_ZEROCOPY = 1 << 3,
  262. /* generate wifi status information (where possible) */
  263. SKBTX_WIFI_STATUS = 1 << 4,
  264. /* This indicates at least one fragment might be overwritten
  265. * (as in vmsplice(), sendfile() ...)
  266. * If we need to compute a TX checksum, we'll need to copy
  267. * all frags to avoid possible bad checksum
  268. */
  269. SKBTX_SHARED_FRAG = 1 << 5,
  270. /* generate software time stamp when entering packet scheduling */
  271. SKBTX_SCHED_TSTAMP = 1 << 6,
  272. /* generate software timestamp on peer data acknowledgment */
  273. SKBTX_ACK_TSTAMP = 1 << 7,
  274. };
  275. #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
  276. SKBTX_SCHED_TSTAMP | \
  277. SKBTX_ACK_TSTAMP)
  278. #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
  279. /*
  280. * The callback notifies userspace to release buffers when skb DMA is done in
  281. * lower device, the skb last reference should be 0 when calling this.
  282. * The zerocopy_success argument is true if zero copy transmit occurred,
  283. * false on data copy or out of memory error caused by data copy attempt.
  284. * The ctx field is used to track device context.
  285. * The desc field is used to track userspace buffer index.
  286. */
  287. struct ubuf_info {
  288. void (*callback)(struct ubuf_info *, bool zerocopy_success);
  289. void *ctx;
  290. unsigned long desc;
  291. };
  292. /* This data is invariant across clones and lives at
  293. * the end of the header data, ie. at skb->end.
  294. */
  295. struct skb_shared_info {
  296. unsigned char nr_frags;
  297. __u8 tx_flags;
  298. unsigned short gso_size;
  299. /* Warning: this field is not always filled in (UFO)! */
  300. unsigned short gso_segs;
  301. unsigned short gso_type;
  302. struct sk_buff *frag_list;
  303. struct skb_shared_hwtstamps hwtstamps;
  304. u32 tskey;
  305. __be32 ip6_frag_id;
  306. /*
  307. * Warning : all fields before dataref are cleared in __alloc_skb()
  308. */
  309. atomic_t dataref;
  310. /* Intermediate layers must ensure that destructor_arg
  311. * remains valid until skb destructor */
  312. void * destructor_arg;
  313. /* must be last field, see pskb_expand_head() */
  314. skb_frag_t frags[MAX_SKB_FRAGS];
  315. };
  316. /* We divide dataref into two halves. The higher 16 bits hold references
  317. * to the payload part of skb->data. The lower 16 bits hold references to
  318. * the entire skb->data. A clone of a headerless skb holds the length of
  319. * the header in skb->hdr_len.
  320. *
  321. * All users must obey the rule that the skb->data reference count must be
  322. * greater than or equal to the payload reference count.
  323. *
  324. * Holding a reference to the payload part means that the user does not
  325. * care about modifications to the header part of skb->data.
  326. */
  327. #define SKB_DATAREF_SHIFT 16
  328. #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
  329. enum {
  330. SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
  331. SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
  332. SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
  333. };
  334. enum {
  335. SKB_GSO_TCPV4 = 1 << 0,
  336. SKB_GSO_UDP = 1 << 1,
  337. /* This indicates the skb is from an untrusted source. */
  338. SKB_GSO_DODGY = 1 << 2,
  339. /* This indicates the tcp segment has CWR set. */
  340. SKB_GSO_TCP_ECN = 1 << 3,
  341. SKB_GSO_TCPV6 = 1 << 4,
  342. SKB_GSO_FCOE = 1 << 5,
  343. SKB_GSO_GRE = 1 << 6,
  344. SKB_GSO_GRE_CSUM = 1 << 7,
  345. SKB_GSO_IPIP = 1 << 8,
  346. SKB_GSO_SIT = 1 << 9,
  347. SKB_GSO_UDP_TUNNEL = 1 << 10,
  348. SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
  349. SKB_GSO_TUNNEL_REMCSUM = 1 << 12,
  350. };
  351. #if BITS_PER_LONG > 32
  352. #define NET_SKBUFF_DATA_USES_OFFSET 1
  353. #endif
  354. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  355. typedef unsigned int sk_buff_data_t;
  356. #else
  357. typedef unsigned char *sk_buff_data_t;
  358. #endif
  359. /**
  360. * struct skb_mstamp - multi resolution time stamps
  361. * @stamp_us: timestamp in us resolution
  362. * @stamp_jiffies: timestamp in jiffies
  363. */
  364. struct skb_mstamp {
  365. union {
  366. u64 v64;
  367. struct {
  368. u32 stamp_us;
  369. u32 stamp_jiffies;
  370. };
  371. };
  372. };
  373. /**
  374. * skb_mstamp_get - get current timestamp
  375. * @cl: place to store timestamps
  376. */
  377. static inline void skb_mstamp_get(struct skb_mstamp *cl)
  378. {
  379. u64 val = local_clock();
  380. do_div(val, NSEC_PER_USEC);
  381. cl->stamp_us = (u32)val;
  382. cl->stamp_jiffies = (u32)jiffies;
  383. }
  384. /**
  385. * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
  386. * @t1: pointer to newest sample
  387. * @t0: pointer to oldest sample
  388. */
  389. static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
  390. const struct skb_mstamp *t0)
  391. {
  392. s32 delta_us = t1->stamp_us - t0->stamp_us;
  393. u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
  394. /* If delta_us is negative, this might be because interval is too big,
  395. * or local_clock() drift is too big : fallback using jiffies.
  396. */
  397. if (delta_us <= 0 ||
  398. delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
  399. delta_us = jiffies_to_usecs(delta_jiffies);
  400. return delta_us;
  401. }
  402. /**
  403. * struct sk_buff - socket buffer
  404. * @next: Next buffer in list
  405. * @prev: Previous buffer in list
  406. * @tstamp: Time we arrived/left
  407. * @rbnode: RB tree node, alternative to next/prev for netem/tcp
  408. * @sk: Socket we are owned by
  409. * @dev: Device we arrived on/are leaving by
  410. * @cb: Control buffer. Free for use by every layer. Put private vars here
  411. * @_skb_refdst: destination entry (with norefcount bit)
  412. * @sp: the security path, used for xfrm
  413. * @len: Length of actual data
  414. * @data_len: Data length
  415. * @mac_len: Length of link layer header
  416. * @hdr_len: writable header length of cloned skb
  417. * @csum: Checksum (must include start/offset pair)
  418. * @csum_start: Offset from skb->head where checksumming should start
  419. * @csum_offset: Offset from csum_start where checksum should be stored
  420. * @priority: Packet queueing priority
  421. * @ignore_df: allow local fragmentation
  422. * @cloned: Head may be cloned (check refcnt to be sure)
  423. * @ip_summed: Driver fed us an IP checksum
  424. * @nohdr: Payload reference only, must not modify header
  425. * @nfctinfo: Relationship of this skb to the connection
  426. * @pkt_type: Packet class
  427. * @fclone: skbuff clone status
  428. * @ipvs_property: skbuff is owned by ipvs
  429. * @peeked: this packet has been seen already, so stats have been
  430. * done for it, don't do them again
  431. * @nf_trace: netfilter packet trace flag
  432. * @protocol: Packet protocol from driver
  433. * @destructor: Destruct function
  434. * @nfct: Associated connection, if any
  435. * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
  436. * @skb_iif: ifindex of device we arrived on
  437. * @tc_index: Traffic control index
  438. * @tc_verd: traffic control verdict
  439. * @hash: the packet hash
  440. * @queue_mapping: Queue mapping for multiqueue devices
  441. * @xmit_more: More SKBs are pending for this queue
  442. * @ndisc_nodetype: router type (from link layer)
  443. * @ooo_okay: allow the mapping of a socket to a queue to be changed
  444. * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
  445. * ports.
  446. * @sw_hash: indicates hash was computed in software stack
  447. * @wifi_acked_valid: wifi_acked was set
  448. * @wifi_acked: whether frame was acked on wifi or not
  449. * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
  450. * @napi_id: id of the NAPI struct this skb came from
  451. * @secmark: security marking
  452. * @offload_fwd_mark: fwding offload mark
  453. * @mark: Generic packet mark
  454. * @vlan_proto: vlan encapsulation protocol
  455. * @vlan_tci: vlan tag control information
  456. * @inner_protocol: Protocol (encapsulation)
  457. * @inner_transport_header: Inner transport layer header (encapsulation)
  458. * @inner_network_header: Network layer header (encapsulation)
  459. * @inner_mac_header: Link layer header (encapsulation)
  460. * @transport_header: Transport layer header
  461. * @network_header: Network layer header
  462. * @mac_header: Link layer header
  463. * @tail: Tail pointer
  464. * @end: End pointer
  465. * @head: Head of buffer
  466. * @data: Data head pointer
  467. * @truesize: Buffer size
  468. * @users: User count - see {datagram,tcp}.c
  469. */
  470. struct sk_buff {
  471. union {
  472. struct {
  473. /* These two members must be first. */
  474. struct sk_buff *next;
  475. struct sk_buff *prev;
  476. union {
  477. ktime_t tstamp;
  478. struct skb_mstamp skb_mstamp;
  479. };
  480. };
  481. struct rb_node rbnode; /* used in netem & tcp stack */
  482. };
  483. struct sock *sk;
  484. struct net_device *dev;
  485. /*
  486. * This is the control buffer. It is free to use for every
  487. * layer. Please put your private variables there. If you
  488. * want to keep them across layers you have to do a skb_clone()
  489. * first. This is owned by whoever has the skb queued ATM.
  490. */
  491. char cb[48] __aligned(8);
  492. unsigned long _skb_refdst;
  493. void (*destructor)(struct sk_buff *skb);
  494. #ifdef CONFIG_XFRM
  495. struct sec_path *sp;
  496. #endif
  497. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  498. struct nf_conntrack *nfct;
  499. #endif
  500. #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
  501. struct nf_bridge_info *nf_bridge;
  502. #endif
  503. unsigned int len,
  504. data_len;
  505. __u16 mac_len,
  506. hdr_len;
  507. /* Following fields are _not_ copied in __copy_skb_header()
  508. * Note that queue_mapping is here mostly to fill a hole.
  509. */
  510. kmemcheck_bitfield_begin(flags1);
  511. __u16 queue_mapping;
  512. __u8 cloned:1,
  513. nohdr:1,
  514. fclone:2,
  515. peeked:1,
  516. head_frag:1,
  517. xmit_more:1;
  518. /* one bit hole */
  519. kmemcheck_bitfield_end(flags1);
  520. /* fields enclosed in headers_start/headers_end are copied
  521. * using a single memcpy() in __copy_skb_header()
  522. */
  523. /* private: */
  524. __u32 headers_start[0];
  525. /* public: */
  526. /* if you move pkt_type around you also must adapt those constants */
  527. #ifdef __BIG_ENDIAN_BITFIELD
  528. #define PKT_TYPE_MAX (7 << 5)
  529. #else
  530. #define PKT_TYPE_MAX 7
  531. #endif
  532. #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
  533. __u8 __pkt_type_offset[0];
  534. __u8 pkt_type:3;
  535. __u8 pfmemalloc:1;
  536. __u8 ignore_df:1;
  537. __u8 nfctinfo:3;
  538. __u8 nf_trace:1;
  539. __u8 ip_summed:2;
  540. __u8 ooo_okay:1;
  541. __u8 l4_hash:1;
  542. __u8 sw_hash:1;
  543. __u8 wifi_acked_valid:1;
  544. __u8 wifi_acked:1;
  545. __u8 no_fcs:1;
  546. /* Indicates the inner headers are valid in the skbuff. */
  547. __u8 encapsulation:1;
  548. __u8 encap_hdr_csum:1;
  549. __u8 csum_valid:1;
  550. __u8 csum_complete_sw:1;
  551. __u8 csum_level:2;
  552. __u8 csum_bad:1;
  553. #ifdef CONFIG_IPV6_NDISC_NODETYPE
  554. __u8 ndisc_nodetype:2;
  555. #endif
  556. __u8 ipvs_property:1;
  557. __u8 inner_protocol_type:1;
  558. __u8 remcsum_offload:1;
  559. /* 3 or 5 bit hole */
  560. #ifdef CONFIG_NET_SCHED
  561. __u16 tc_index; /* traffic control index */
  562. #ifdef CONFIG_NET_CLS_ACT
  563. __u16 tc_verd; /* traffic control verdict */
  564. #endif
  565. #endif
  566. union {
  567. __wsum csum;
  568. struct {
  569. __u16 csum_start;
  570. __u16 csum_offset;
  571. };
  572. };
  573. __u32 priority;
  574. int skb_iif;
  575. __u32 hash;
  576. __be16 vlan_proto;
  577. __u16 vlan_tci;
  578. #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
  579. union {
  580. unsigned int napi_id;
  581. unsigned int sender_cpu;
  582. };
  583. #endif
  584. union {
  585. #ifdef CONFIG_NETWORK_SECMARK
  586. __u32 secmark;
  587. #endif
  588. #ifdef CONFIG_NET_SWITCHDEV
  589. __u32 offload_fwd_mark;
  590. #endif
  591. };
  592. union {
  593. __u32 mark;
  594. __u32 reserved_tailroom;
  595. };
  596. union {
  597. __be16 inner_protocol;
  598. __u8 inner_ipproto;
  599. };
  600. __u16 inner_transport_header;
  601. __u16 inner_network_header;
  602. __u16 inner_mac_header;
  603. __be16 protocol;
  604. __u16 transport_header;
  605. __u16 network_header;
  606. __u16 mac_header;
  607. /* private: */
  608. __u32 headers_end[0];
  609. /* public: */
  610. /* These elements must be at the end, see alloc_skb() for details. */
  611. sk_buff_data_t tail;
  612. sk_buff_data_t end;
  613. unsigned char *head,
  614. *data;
  615. unsigned int truesize;
  616. atomic_t users;
  617. };
  618. #ifdef __KERNEL__
  619. /*
  620. * Handling routines are only of interest to the kernel
  621. */
  622. #include <linux/slab.h>
  623. #define SKB_ALLOC_FCLONE 0x01
  624. #define SKB_ALLOC_RX 0x02
  625. #define SKB_ALLOC_NAPI 0x04
  626. /* Returns true if the skb was allocated from PFMEMALLOC reserves */
  627. static inline bool skb_pfmemalloc(const struct sk_buff *skb)
  628. {
  629. return unlikely(skb->pfmemalloc);
  630. }
  631. /*
  632. * skb might have a dst pointer attached, refcounted or not.
  633. * _skb_refdst low order bit is set if refcount was _not_ taken
  634. */
  635. #define SKB_DST_NOREF 1UL
  636. #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
  637. /**
  638. * skb_dst - returns skb dst_entry
  639. * @skb: buffer
  640. *
  641. * Returns skb dst_entry, regardless of reference taken or not.
  642. */
  643. static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
  644. {
  645. /* If refdst was not refcounted, check we still are in a
  646. * rcu_read_lock section
  647. */
  648. WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
  649. !rcu_read_lock_held() &&
  650. !rcu_read_lock_bh_held());
  651. return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
  652. }
  653. /**
  654. * skb_dst_set - sets skb dst
  655. * @skb: buffer
  656. * @dst: dst entry
  657. *
  658. * Sets skb dst, assuming a reference was taken on dst and should
  659. * be released by skb_dst_drop()
  660. */
  661. static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
  662. {
  663. skb->_skb_refdst = (unsigned long)dst;
  664. }
  665. /**
  666. * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
  667. * @skb: buffer
  668. * @dst: dst entry
  669. *
  670. * Sets skb dst, assuming a reference was not taken on dst.
  671. * If dst entry is cached, we do not take reference and dst_release
  672. * will be avoided by refdst_drop. If dst entry is not cached, we take
  673. * reference, so that last dst_release can destroy the dst immediately.
  674. */
  675. static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
  676. {
  677. WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
  678. skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
  679. }
  680. /**
  681. * skb_dst_is_noref - Test if skb dst isn't refcounted
  682. * @skb: buffer
  683. */
  684. static inline bool skb_dst_is_noref(const struct sk_buff *skb)
  685. {
  686. return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
  687. }
  688. static inline struct rtable *skb_rtable(const struct sk_buff *skb)
  689. {
  690. return (struct rtable *)skb_dst(skb);
  691. }
  692. void kfree_skb(struct sk_buff *skb);
  693. void kfree_skb_list(struct sk_buff *segs);
  694. void skb_tx_error(struct sk_buff *skb);
  695. void consume_skb(struct sk_buff *skb);
  696. void __kfree_skb(struct sk_buff *skb);
  697. extern struct kmem_cache *skbuff_head_cache;
  698. void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
  699. bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
  700. bool *fragstolen, int *delta_truesize);
  701. struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
  702. int node);
  703. struct sk_buff *__build_skb(void *data, unsigned int frag_size);
  704. struct sk_buff *build_skb(void *data, unsigned int frag_size);
  705. static inline struct sk_buff *alloc_skb(unsigned int size,
  706. gfp_t priority)
  707. {
  708. return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
  709. }
  710. struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
  711. unsigned long data_len,
  712. int max_page_order,
  713. int *errcode,
  714. gfp_t gfp_mask);
  715. /* Layout of fast clones : [skb1][skb2][fclone_ref] */
  716. struct sk_buff_fclones {
  717. struct sk_buff skb1;
  718. struct sk_buff skb2;
  719. atomic_t fclone_ref;
  720. };
  721. /**
  722. * skb_fclone_busy - check if fclone is busy
  723. * @skb: buffer
  724. *
  725. * Returns true is skb is a fast clone, and its clone is not freed.
  726. * Some drivers call skb_orphan() in their ndo_start_xmit(),
  727. * so we also check that this didnt happen.
  728. */
  729. static inline bool skb_fclone_busy(const struct sock *sk,
  730. const struct sk_buff *skb)
  731. {
  732. const struct sk_buff_fclones *fclones;
  733. fclones = container_of(skb, struct sk_buff_fclones, skb1);
  734. return skb->fclone == SKB_FCLONE_ORIG &&
  735. atomic_read(&fclones->fclone_ref) > 1 &&
  736. fclones->skb2.sk == sk;
  737. }
  738. static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
  739. gfp_t priority)
  740. {
  741. return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
  742. }
  743. struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
  744. static inline struct sk_buff *alloc_skb_head(gfp_t priority)
  745. {
  746. return __alloc_skb_head(priority, -1);
  747. }
  748. struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
  749. int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
  750. struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
  751. struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
  752. struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
  753. gfp_t gfp_mask, bool fclone);
  754. static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
  755. gfp_t gfp_mask)
  756. {
  757. return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
  758. }
  759. int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
  760. struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
  761. unsigned int headroom);
  762. struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
  763. int newtailroom, gfp_t priority);
  764. int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
  765. int offset, int len);
  766. int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
  767. int len);
  768. int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
  769. int skb_pad(struct sk_buff *skb, int pad);
  770. #define dev_kfree_skb(a) consume_skb(a)
  771. int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
  772. int getfrag(void *from, char *to, int offset,
  773. int len, int odd, struct sk_buff *skb),
  774. void *from, int length);
  775. int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
  776. int offset, size_t size);
  777. struct skb_seq_state {
  778. __u32 lower_offset;
  779. __u32 upper_offset;
  780. __u32 frag_idx;
  781. __u32 stepped_offset;
  782. struct sk_buff *root_skb;
  783. struct sk_buff *cur_skb;
  784. __u8 *frag_data;
  785. };
  786. void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
  787. unsigned int to, struct skb_seq_state *st);
  788. unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
  789. struct skb_seq_state *st);
  790. void skb_abort_seq_read(struct skb_seq_state *st);
  791. unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
  792. unsigned int to, struct ts_config *config);
  793. /*
  794. * Packet hash types specify the type of hash in skb_set_hash.
  795. *
  796. * Hash types refer to the protocol layer addresses which are used to
  797. * construct a packet's hash. The hashes are used to differentiate or identify
  798. * flows of the protocol layer for the hash type. Hash types are either
  799. * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
  800. *
  801. * Properties of hashes:
  802. *
  803. * 1) Two packets in different flows have different hash values
  804. * 2) Two packets in the same flow should have the same hash value
  805. *
  806. * A hash at a higher layer is considered to be more specific. A driver should
  807. * set the most specific hash possible.
  808. *
  809. * A driver cannot indicate a more specific hash than the layer at which a hash
  810. * was computed. For instance an L3 hash cannot be set as an L4 hash.
  811. *
  812. * A driver may indicate a hash level which is less specific than the
  813. * actual layer the hash was computed on. For instance, a hash computed
  814. * at L4 may be considered an L3 hash. This should only be done if the
  815. * driver can't unambiguously determine that the HW computed the hash at
  816. * the higher layer. Note that the "should" in the second property above
  817. * permits this.
  818. */
  819. enum pkt_hash_types {
  820. PKT_HASH_TYPE_NONE, /* Undefined type */
  821. PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
  822. PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
  823. PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
  824. };
  825. static inline void skb_clear_hash(struct sk_buff *skb)
  826. {
  827. skb->hash = 0;
  828. skb->sw_hash = 0;
  829. skb->l4_hash = 0;
  830. }
  831. static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
  832. {
  833. if (!skb->l4_hash)
  834. skb_clear_hash(skb);
  835. }
  836. static inline void
  837. __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
  838. {
  839. skb->l4_hash = is_l4;
  840. skb->sw_hash = is_sw;
  841. skb->hash = hash;
  842. }
  843. static inline void
  844. skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
  845. {
  846. /* Used by drivers to set hash from HW */
  847. __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
  848. }
  849. static inline void
  850. __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
  851. {
  852. __skb_set_hash(skb, hash, true, is_l4);
  853. }
  854. void __skb_get_hash(struct sk_buff *skb);
  855. u32 skb_get_poff(const struct sk_buff *skb);
  856. u32 __skb_get_poff(const struct sk_buff *skb, void *data,
  857. const struct flow_keys *keys, int hlen);
  858. __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
  859. void *data, int hlen_proto);
  860. static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
  861. int thoff, u8 ip_proto)
  862. {
  863. return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
  864. }
  865. void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
  866. const struct flow_dissector_key *key,
  867. unsigned int key_count);
  868. bool __skb_flow_dissect(const struct sk_buff *skb,
  869. struct flow_dissector *flow_dissector,
  870. void *target_container,
  871. void *data, __be16 proto, int nhoff, int hlen,
  872. unsigned int flags);
  873. static inline bool skb_flow_dissect(const struct sk_buff *skb,
  874. struct flow_dissector *flow_dissector,
  875. void *target_container, unsigned int flags)
  876. {
  877. return __skb_flow_dissect(skb, flow_dissector, target_container,
  878. NULL, 0, 0, 0, flags);
  879. }
  880. static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
  881. struct flow_keys *flow,
  882. unsigned int flags)
  883. {
  884. memset(flow, 0, sizeof(*flow));
  885. return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
  886. NULL, 0, 0, 0, flags);
  887. }
  888. static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
  889. void *data, __be16 proto,
  890. int nhoff, int hlen,
  891. unsigned int flags)
  892. {
  893. memset(flow, 0, sizeof(*flow));
  894. return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
  895. data, proto, nhoff, hlen, flags);
  896. }
  897. static inline __u32 skb_get_hash(struct sk_buff *skb)
  898. {
  899. if (!skb->l4_hash && !skb->sw_hash)
  900. __skb_get_hash(skb);
  901. return skb->hash;
  902. }
  903. __u32 __skb_get_hash_flowi6(struct sk_buff *skb, struct flowi6 *fl6);
  904. static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, struct flowi6 *fl6)
  905. {
  906. if (!skb->l4_hash && !skb->sw_hash) {
  907. struct flow_keys keys;
  908. __skb_set_sw_hash(skb, __get_hash_from_flowi6(fl6, &keys),
  909. flow_keys_have_l4(&keys));
  910. }
  911. return skb->hash;
  912. }
  913. __u32 __skb_get_hash_flowi4(struct sk_buff *skb, struct flowi4 *fl);
  914. static inline __u32 skb_get_hash_flowi4(struct sk_buff *skb, struct flowi4 *fl4)
  915. {
  916. if (!skb->l4_hash && !skb->sw_hash) {
  917. struct flow_keys keys;
  918. __skb_set_sw_hash(skb, __get_hash_from_flowi4(fl4, &keys),
  919. flow_keys_have_l4(&keys));
  920. }
  921. return skb->hash;
  922. }
  923. __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
  924. static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
  925. {
  926. return skb->hash;
  927. }
  928. static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
  929. {
  930. to->hash = from->hash;
  931. to->sw_hash = from->sw_hash;
  932. to->l4_hash = from->l4_hash;
  933. };
  934. static inline void skb_sender_cpu_clear(struct sk_buff *skb)
  935. {
  936. #ifdef CONFIG_XPS
  937. skb->sender_cpu = 0;
  938. #endif
  939. }
  940. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  941. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  942. {
  943. return skb->head + skb->end;
  944. }
  945. static inline unsigned int skb_end_offset(const struct sk_buff *skb)
  946. {
  947. return skb->end;
  948. }
  949. #else
  950. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  951. {
  952. return skb->end;
  953. }
  954. static inline unsigned int skb_end_offset(const struct sk_buff *skb)
  955. {
  956. return skb->end - skb->head;
  957. }
  958. #endif
  959. /* Internal */
  960. #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
  961. static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
  962. {
  963. return &skb_shinfo(skb)->hwtstamps;
  964. }
  965. /**
  966. * skb_queue_empty - check if a queue is empty
  967. * @list: queue head
  968. *
  969. * Returns true if the queue is empty, false otherwise.
  970. */
  971. static inline int skb_queue_empty(const struct sk_buff_head *list)
  972. {
  973. return list->next == (const struct sk_buff *) list;
  974. }
  975. /**
  976. * skb_queue_is_last - check if skb is the last entry in the queue
  977. * @list: queue head
  978. * @skb: buffer
  979. *
  980. * Returns true if @skb is the last buffer on the list.
  981. */
  982. static inline bool skb_queue_is_last(const struct sk_buff_head *list,
  983. const struct sk_buff *skb)
  984. {
  985. return skb->next == (const struct sk_buff *) list;
  986. }
  987. /**
  988. * skb_queue_is_first - check if skb is the first entry in the queue
  989. * @list: queue head
  990. * @skb: buffer
  991. *
  992. * Returns true if @skb is the first buffer on the list.
  993. */
  994. static inline bool skb_queue_is_first(const struct sk_buff_head *list,
  995. const struct sk_buff *skb)
  996. {
  997. return skb->prev == (const struct sk_buff *) list;
  998. }
  999. /**
  1000. * skb_queue_next - return the next packet in the queue
  1001. * @list: queue head
  1002. * @skb: current buffer
  1003. *
  1004. * Return the next packet in @list after @skb. It is only valid to
  1005. * call this if skb_queue_is_last() evaluates to false.
  1006. */
  1007. static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
  1008. const struct sk_buff *skb)
  1009. {
  1010. /* This BUG_ON may seem severe, but if we just return then we
  1011. * are going to dereference garbage.
  1012. */
  1013. BUG_ON(skb_queue_is_last(list, skb));
  1014. return skb->next;
  1015. }
  1016. /**
  1017. * skb_queue_prev - return the prev packet in the queue
  1018. * @list: queue head
  1019. * @skb: current buffer
  1020. *
  1021. * Return the prev packet in @list before @skb. It is only valid to
  1022. * call this if skb_queue_is_first() evaluates to false.
  1023. */
  1024. static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
  1025. const struct sk_buff *skb)
  1026. {
  1027. /* This BUG_ON may seem severe, but if we just return then we
  1028. * are going to dereference garbage.
  1029. */
  1030. BUG_ON(skb_queue_is_first(list, skb));
  1031. return skb->prev;
  1032. }
  1033. /**
  1034. * skb_get - reference buffer
  1035. * @skb: buffer to reference
  1036. *
  1037. * Makes another reference to a socket buffer and returns a pointer
  1038. * to the buffer.
  1039. */
  1040. static inline struct sk_buff *skb_get(struct sk_buff *skb)
  1041. {
  1042. atomic_inc(&skb->users);
  1043. return skb;
  1044. }
  1045. /*
  1046. * If users == 1, we are the only owner and are can avoid redundant
  1047. * atomic change.
  1048. */
  1049. /**
  1050. * skb_cloned - is the buffer a clone
  1051. * @skb: buffer to check
  1052. *
  1053. * Returns true if the buffer was generated with skb_clone() and is
  1054. * one of multiple shared copies of the buffer. Cloned buffers are
  1055. * shared data so must not be written to under normal circumstances.
  1056. */
  1057. static inline int skb_cloned(const struct sk_buff *skb)
  1058. {
  1059. return skb->cloned &&
  1060. (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
  1061. }
  1062. static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
  1063. {
  1064. might_sleep_if(pri & __GFP_WAIT);
  1065. if (skb_cloned(skb))
  1066. return pskb_expand_head(skb, 0, 0, pri);
  1067. return 0;
  1068. }
  1069. /**
  1070. * skb_header_cloned - is the header a clone
  1071. * @skb: buffer to check
  1072. *
  1073. * Returns true if modifying the header part of the buffer requires
  1074. * the data to be copied.
  1075. */
  1076. static inline int skb_header_cloned(const struct sk_buff *skb)
  1077. {
  1078. int dataref;
  1079. if (!skb->cloned)
  1080. return 0;
  1081. dataref = atomic_read(&skb_shinfo(skb)->dataref);
  1082. dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
  1083. return dataref != 1;
  1084. }
  1085. /**
  1086. * skb_header_release - release reference to header
  1087. * @skb: buffer to operate on
  1088. *
  1089. * Drop a reference to the header part of the buffer. This is done
  1090. * by acquiring a payload reference. You must not read from the header
  1091. * part of skb->data after this.
  1092. * Note : Check if you can use __skb_header_release() instead.
  1093. */
  1094. static inline void skb_header_release(struct sk_buff *skb)
  1095. {
  1096. BUG_ON(skb->nohdr);
  1097. skb->nohdr = 1;
  1098. atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
  1099. }
  1100. /**
  1101. * __skb_header_release - release reference to header
  1102. * @skb: buffer to operate on
  1103. *
  1104. * Variant of skb_header_release() assuming skb is private to caller.
  1105. * We can avoid one atomic operation.
  1106. */
  1107. static inline void __skb_header_release(struct sk_buff *skb)
  1108. {
  1109. skb->nohdr = 1;
  1110. atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
  1111. }
  1112. /**
  1113. * skb_shared - is the buffer shared
  1114. * @skb: buffer to check
  1115. *
  1116. * Returns true if more than one person has a reference to this
  1117. * buffer.
  1118. */
  1119. static inline int skb_shared(const struct sk_buff *skb)
  1120. {
  1121. return atomic_read(&skb->users) != 1;
  1122. }
  1123. /**
  1124. * skb_share_check - check if buffer is shared and if so clone it
  1125. * @skb: buffer to check
  1126. * @pri: priority for memory allocation
  1127. *
  1128. * If the buffer is shared the buffer is cloned and the old copy
  1129. * drops a reference. A new clone with a single reference is returned.
  1130. * If the buffer is not shared the original buffer is returned. When
  1131. * being called from interrupt status or with spinlocks held pri must
  1132. * be GFP_ATOMIC.
  1133. *
  1134. * NULL is returned on a memory allocation failure.
  1135. */
  1136. static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
  1137. {
  1138. might_sleep_if(pri & __GFP_WAIT);
  1139. if (skb_shared(skb)) {
  1140. struct sk_buff *nskb = skb_clone(skb, pri);
  1141. if (likely(nskb))
  1142. consume_skb(skb);
  1143. else
  1144. kfree_skb(skb);
  1145. skb = nskb;
  1146. }
  1147. return skb;
  1148. }
  1149. /*
  1150. * Copy shared buffers into a new sk_buff. We effectively do COW on
  1151. * packets to handle cases where we have a local reader and forward
  1152. * and a couple of other messy ones. The normal one is tcpdumping
  1153. * a packet thats being forwarded.
  1154. */
  1155. /**
  1156. * skb_unshare - make a copy of a shared buffer
  1157. * @skb: buffer to check
  1158. * @pri: priority for memory allocation
  1159. *
  1160. * If the socket buffer is a clone then this function creates a new
  1161. * copy of the data, drops a reference count on the old copy and returns
  1162. * the new copy with the reference count at 1. If the buffer is not a clone
  1163. * the original buffer is returned. When called with a spinlock held or
  1164. * from interrupt state @pri must be %GFP_ATOMIC
  1165. *
  1166. * %NULL is returned on a memory allocation failure.
  1167. */
  1168. static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
  1169. gfp_t pri)
  1170. {
  1171. might_sleep_if(pri & __GFP_WAIT);
  1172. if (skb_cloned(skb)) {
  1173. struct sk_buff *nskb = skb_copy(skb, pri);
  1174. /* Free our shared copy */
  1175. if (likely(nskb))
  1176. consume_skb(skb);
  1177. else
  1178. kfree_skb(skb);
  1179. skb = nskb;
  1180. }
  1181. return skb;
  1182. }
  1183. /**
  1184. * skb_peek - peek at the head of an &sk_buff_head
  1185. * @list_: list to peek at
  1186. *
  1187. * Peek an &sk_buff. Unlike most other operations you _MUST_
  1188. * be careful with this one. A peek leaves the buffer on the
  1189. * list and someone else may run off with it. You must hold
  1190. * the appropriate locks or have a private queue to do this.
  1191. *
  1192. * Returns %NULL for an empty list or a pointer to the head element.
  1193. * The reference count is not incremented and the reference is therefore
  1194. * volatile. Use with caution.
  1195. */
  1196. static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
  1197. {
  1198. struct sk_buff *skb = list_->next;
  1199. if (skb == (struct sk_buff *)list_)
  1200. skb = NULL;
  1201. return skb;
  1202. }
  1203. /**
  1204. * skb_peek_next - peek skb following the given one from a queue
  1205. * @skb: skb to start from
  1206. * @list_: list to peek at
  1207. *
  1208. * Returns %NULL when the end of the list is met or a pointer to the
  1209. * next element. The reference count is not incremented and the
  1210. * reference is therefore volatile. Use with caution.
  1211. */
  1212. static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
  1213. const struct sk_buff_head *list_)
  1214. {
  1215. struct sk_buff *next = skb->next;
  1216. if (next == (struct sk_buff *)list_)
  1217. next = NULL;
  1218. return next;
  1219. }
  1220. /**
  1221. * skb_peek_tail - peek at the tail of an &sk_buff_head
  1222. * @list_: list to peek at
  1223. *
  1224. * Peek an &sk_buff. Unlike most other operations you _MUST_
  1225. * be careful with this one. A peek leaves the buffer on the
  1226. * list and someone else may run off with it. You must hold
  1227. * the appropriate locks or have a private queue to do this.
  1228. *
  1229. * Returns %NULL for an empty list or a pointer to the tail element.
  1230. * The reference count is not incremented and the reference is therefore
  1231. * volatile. Use with caution.
  1232. */
  1233. static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
  1234. {
  1235. struct sk_buff *skb = list_->prev;
  1236. if (skb == (struct sk_buff *)list_)
  1237. skb = NULL;
  1238. return skb;
  1239. }
  1240. /**
  1241. * skb_queue_len - get queue length
  1242. * @list_: list to measure
  1243. *
  1244. * Return the length of an &sk_buff queue.
  1245. */
  1246. static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
  1247. {
  1248. return list_->qlen;
  1249. }
  1250. /**
  1251. * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
  1252. * @list: queue to initialize
  1253. *
  1254. * This initializes only the list and queue length aspects of
  1255. * an sk_buff_head object. This allows to initialize the list
  1256. * aspects of an sk_buff_head without reinitializing things like
  1257. * the spinlock. It can also be used for on-stack sk_buff_head
  1258. * objects where the spinlock is known to not be used.
  1259. */
  1260. static inline void __skb_queue_head_init(struct sk_buff_head *list)
  1261. {
  1262. list->prev = list->next = (struct sk_buff *)list;
  1263. list->qlen = 0;
  1264. }
  1265. /*
  1266. * This function creates a split out lock class for each invocation;
  1267. * this is needed for now since a whole lot of users of the skb-queue
  1268. * infrastructure in drivers have different locking usage (in hardirq)
  1269. * than the networking core (in softirq only). In the long run either the
  1270. * network layer or drivers should need annotation to consolidate the
  1271. * main types of usage into 3 classes.
  1272. */
  1273. static inline void skb_queue_head_init(struct sk_buff_head *list)
  1274. {
  1275. spin_lock_init(&list->lock);
  1276. __skb_queue_head_init(list);
  1277. }
  1278. static inline void skb_queue_head_init_class(struct sk_buff_head *list,
  1279. struct lock_class_key *class)
  1280. {
  1281. skb_queue_head_init(list);
  1282. lockdep_set_class(&list->lock, class);
  1283. }
  1284. /*
  1285. * Insert an sk_buff on a list.
  1286. *
  1287. * The "__skb_xxxx()" functions are the non-atomic ones that
  1288. * can only be called with interrupts disabled.
  1289. */
  1290. void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
  1291. struct sk_buff_head *list);
  1292. static inline void __skb_insert(struct sk_buff *newsk,
  1293. struct sk_buff *prev, struct sk_buff *next,
  1294. struct sk_buff_head *list)
  1295. {
  1296. newsk->next = next;
  1297. newsk->prev = prev;
  1298. next->prev = prev->next = newsk;
  1299. list->qlen++;
  1300. }
  1301. static inline void __skb_queue_splice(const struct sk_buff_head *list,
  1302. struct sk_buff *prev,
  1303. struct sk_buff *next)
  1304. {
  1305. struct sk_buff *first = list->next;
  1306. struct sk_buff *last = list->prev;
  1307. first->prev = prev;
  1308. prev->next = first;
  1309. last->next = next;
  1310. next->prev = last;
  1311. }
  1312. /**
  1313. * skb_queue_splice - join two skb lists, this is designed for stacks
  1314. * @list: the new list to add
  1315. * @head: the place to add it in the first list
  1316. */
  1317. static inline void skb_queue_splice(const struct sk_buff_head *list,
  1318. struct sk_buff_head *head)
  1319. {
  1320. if (!skb_queue_empty(list)) {
  1321. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  1322. head->qlen += list->qlen;
  1323. }
  1324. }
  1325. /**
  1326. * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
  1327. * @list: the new list to add
  1328. * @head: the place to add it in the first list
  1329. *
  1330. * The list at @list is reinitialised
  1331. */
  1332. static inline void skb_queue_splice_init(struct sk_buff_head *list,
  1333. struct sk_buff_head *head)
  1334. {
  1335. if (!skb_queue_empty(list)) {
  1336. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  1337. head->qlen += list->qlen;
  1338. __skb_queue_head_init(list);
  1339. }
  1340. }
  1341. /**
  1342. * skb_queue_splice_tail - join two skb lists, each list being a queue
  1343. * @list: the new list to add
  1344. * @head: the place to add it in the first list
  1345. */
  1346. static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
  1347. struct sk_buff_head *head)
  1348. {
  1349. if (!skb_queue_empty(list)) {
  1350. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  1351. head->qlen += list->qlen;
  1352. }
  1353. }
  1354. /**
  1355. * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
  1356. * @list: the new list to add
  1357. * @head: the place to add it in the first list
  1358. *
  1359. * Each of the lists is a queue.
  1360. * The list at @list is reinitialised
  1361. */
  1362. static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
  1363. struct sk_buff_head *head)
  1364. {
  1365. if (!skb_queue_empty(list)) {
  1366. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  1367. head->qlen += list->qlen;
  1368. __skb_queue_head_init(list);
  1369. }
  1370. }
  1371. /**
  1372. * __skb_queue_after - queue a buffer at the list head
  1373. * @list: list to use
  1374. * @prev: place after this buffer
  1375. * @newsk: buffer to queue
  1376. *
  1377. * Queue a buffer int the middle of a list. This function takes no locks
  1378. * and you must therefore hold required locks before calling it.
  1379. *
  1380. * A buffer cannot be placed on two lists at the same time.
  1381. */
  1382. static inline void __skb_queue_after(struct sk_buff_head *list,
  1383. struct sk_buff *prev,
  1384. struct sk_buff *newsk)
  1385. {
  1386. __skb_insert(newsk, prev, prev->next, list);
  1387. }
  1388. void skb_append(struct sk_buff *old, struct sk_buff *newsk,
  1389. struct sk_buff_head *list);
  1390. static inline void __skb_queue_before(struct sk_buff_head *list,
  1391. struct sk_buff *next,
  1392. struct sk_buff *newsk)
  1393. {
  1394. __skb_insert(newsk, next->prev, next, list);
  1395. }
  1396. /**
  1397. * __skb_queue_head - queue a buffer at the list head
  1398. * @list: list to use
  1399. * @newsk: buffer to queue
  1400. *
  1401. * Queue a buffer at the start of a list. This function takes no locks
  1402. * and you must therefore hold required locks before calling it.
  1403. *
  1404. * A buffer cannot be placed on two lists at the same time.
  1405. */
  1406. void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
  1407. static inline void __skb_queue_head(struct sk_buff_head *list,
  1408. struct sk_buff *newsk)
  1409. {
  1410. __skb_queue_after(list, (struct sk_buff *)list, newsk);
  1411. }
  1412. /**
  1413. * __skb_queue_tail - queue a buffer at the list tail
  1414. * @list: list to use
  1415. * @newsk: buffer to queue
  1416. *
  1417. * Queue a buffer at the end of a list. This function takes no locks
  1418. * and you must therefore hold required locks before calling it.
  1419. *
  1420. * A buffer cannot be placed on two lists at the same time.
  1421. */
  1422. void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
  1423. static inline void __skb_queue_tail(struct sk_buff_head *list,
  1424. struct sk_buff *newsk)
  1425. {
  1426. __skb_queue_before(list, (struct sk_buff *)list, newsk);
  1427. }
  1428. /*
  1429. * remove sk_buff from list. _Must_ be called atomically, and with
  1430. * the list known..
  1431. */
  1432. void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
  1433. static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
  1434. {
  1435. struct sk_buff *next, *prev;
  1436. list->qlen--;
  1437. next = skb->next;
  1438. prev = skb->prev;
  1439. skb->next = skb->prev = NULL;
  1440. next->prev = prev;
  1441. prev->next = next;
  1442. }
  1443. /**
  1444. * __skb_dequeue - remove from the head of the queue
  1445. * @list: list to dequeue from
  1446. *
  1447. * Remove the head of the list. This function does not take any locks
  1448. * so must be used with appropriate locks held only. The head item is
  1449. * returned or %NULL if the list is empty.
  1450. */
  1451. struct sk_buff *skb_dequeue(struct sk_buff_head *list);
  1452. static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
  1453. {
  1454. struct sk_buff *skb = skb_peek(list);
  1455. if (skb)
  1456. __skb_unlink(skb, list);
  1457. return skb;
  1458. }
  1459. /**
  1460. * __skb_dequeue_tail - remove from the tail of the queue
  1461. * @list: list to dequeue from
  1462. *
  1463. * Remove the tail of the list. This function does not take any locks
  1464. * so must be used with appropriate locks held only. The tail item is
  1465. * returned or %NULL if the list is empty.
  1466. */
  1467. struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
  1468. static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
  1469. {
  1470. struct sk_buff *skb = skb_peek_tail(list);
  1471. if (skb)
  1472. __skb_unlink(skb, list);
  1473. return skb;
  1474. }
  1475. static inline bool skb_is_nonlinear(const struct sk_buff *skb)
  1476. {
  1477. return skb->data_len;
  1478. }
  1479. static inline unsigned int skb_headlen(const struct sk_buff *skb)
  1480. {
  1481. return skb->len - skb->data_len;
  1482. }
  1483. static inline int skb_pagelen(const struct sk_buff *skb)
  1484. {
  1485. int i, len = 0;
  1486. for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
  1487. len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
  1488. return len + skb_headlen(skb);
  1489. }
  1490. /**
  1491. * __skb_fill_page_desc - initialise a paged fragment in an skb
  1492. * @skb: buffer containing fragment to be initialised
  1493. * @i: paged fragment index to initialise
  1494. * @page: the page to use for this fragment
  1495. * @off: the offset to the data with @page
  1496. * @size: the length of the data
  1497. *
  1498. * Initialises the @i'th fragment of @skb to point to &size bytes at
  1499. * offset @off within @page.
  1500. *
  1501. * Does not take any additional reference on the fragment.
  1502. */
  1503. static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
  1504. struct page *page, int off, int size)
  1505. {
  1506. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1507. /*
  1508. * Propagate page pfmemalloc to the skb if we can. The problem is
  1509. * that not all callers have unique ownership of the page but rely
  1510. * on page_is_pfmemalloc doing the right thing(tm).
  1511. */
  1512. frag->page.p = page;
  1513. frag->page_offset = off;
  1514. skb_frag_size_set(frag, size);
  1515. page = compound_head(page);
  1516. if (page_is_pfmemalloc(page))
  1517. skb->pfmemalloc = true;
  1518. }
  1519. /**
  1520. * skb_fill_page_desc - initialise a paged fragment in an skb
  1521. * @skb: buffer containing fragment to be initialised
  1522. * @i: paged fragment index to initialise
  1523. * @page: the page to use for this fragment
  1524. * @off: the offset to the data with @page
  1525. * @size: the length of the data
  1526. *
  1527. * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
  1528. * @skb to point to @size bytes at offset @off within @page. In
  1529. * addition updates @skb such that @i is the last fragment.
  1530. *
  1531. * Does not take any additional reference on the fragment.
  1532. */
  1533. static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
  1534. struct page *page, int off, int size)
  1535. {
  1536. __skb_fill_page_desc(skb, i, page, off, size);
  1537. skb_shinfo(skb)->nr_frags = i + 1;
  1538. }
  1539. void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
  1540. int size, unsigned int truesize);
  1541. void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
  1542. unsigned int truesize);
  1543. #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
  1544. #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
  1545. #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
  1546. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  1547. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  1548. {
  1549. return skb->head + skb->tail;
  1550. }
  1551. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  1552. {
  1553. skb->tail = skb->data - skb->head;
  1554. }
  1555. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  1556. {
  1557. skb_reset_tail_pointer(skb);
  1558. skb->tail += offset;
  1559. }
  1560. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  1561. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  1562. {
  1563. return skb->tail;
  1564. }
  1565. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  1566. {
  1567. skb->tail = skb->data;
  1568. }
  1569. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  1570. {
  1571. skb->tail = skb->data + offset;
  1572. }
  1573. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  1574. /*
  1575. * Add data to an sk_buff
  1576. */
  1577. unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
  1578. unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
  1579. static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
  1580. {
  1581. unsigned char *tmp = skb_tail_pointer(skb);
  1582. SKB_LINEAR_ASSERT(skb);
  1583. skb->tail += len;
  1584. skb->len += len;
  1585. return tmp;
  1586. }
  1587. unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
  1588. static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
  1589. {
  1590. skb->data -= len;
  1591. skb->len += len;
  1592. return skb->data;
  1593. }
  1594. unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
  1595. static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
  1596. {
  1597. skb->len -= len;
  1598. BUG_ON(skb->len < skb->data_len);
  1599. return skb->data += len;
  1600. }
  1601. static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
  1602. {
  1603. return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
  1604. }
  1605. unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
  1606. static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
  1607. {
  1608. if (len > skb_headlen(skb) &&
  1609. !__pskb_pull_tail(skb, len - skb_headlen(skb)))
  1610. return NULL;
  1611. skb->len -= len;
  1612. return skb->data += len;
  1613. }
  1614. static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
  1615. {
  1616. return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
  1617. }
  1618. static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
  1619. {
  1620. if (likely(len <= skb_headlen(skb)))
  1621. return 1;
  1622. if (unlikely(len > skb->len))
  1623. return 0;
  1624. return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
  1625. }
  1626. /**
  1627. * skb_headroom - bytes at buffer head
  1628. * @skb: buffer to check
  1629. *
  1630. * Return the number of bytes of free space at the head of an &sk_buff.
  1631. */
  1632. static inline unsigned int skb_headroom(const struct sk_buff *skb)
  1633. {
  1634. return skb->data - skb->head;
  1635. }
  1636. /**
  1637. * skb_tailroom - bytes at buffer end
  1638. * @skb: buffer to check
  1639. *
  1640. * Return the number of bytes of free space at the tail of an sk_buff
  1641. */
  1642. static inline int skb_tailroom(const struct sk_buff *skb)
  1643. {
  1644. return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
  1645. }
  1646. /**
  1647. * skb_availroom - bytes at buffer end
  1648. * @skb: buffer to check
  1649. *
  1650. * Return the number of bytes of free space at the tail of an sk_buff
  1651. * allocated by sk_stream_alloc()
  1652. */
  1653. static inline int skb_availroom(const struct sk_buff *skb)
  1654. {
  1655. if (skb_is_nonlinear(skb))
  1656. return 0;
  1657. return skb->end - skb->tail - skb->reserved_tailroom;
  1658. }
  1659. /**
  1660. * skb_reserve - adjust headroom
  1661. * @skb: buffer to alter
  1662. * @len: bytes to move
  1663. *
  1664. * Increase the headroom of an empty &sk_buff by reducing the tail
  1665. * room. This is only allowed for an empty buffer.
  1666. */
  1667. static inline void skb_reserve(struct sk_buff *skb, int len)
  1668. {
  1669. skb->data += len;
  1670. skb->tail += len;
  1671. }
  1672. #define ENCAP_TYPE_ETHER 0
  1673. #define ENCAP_TYPE_IPPROTO 1
  1674. static inline void skb_set_inner_protocol(struct sk_buff *skb,
  1675. __be16 protocol)
  1676. {
  1677. skb->inner_protocol = protocol;
  1678. skb->inner_protocol_type = ENCAP_TYPE_ETHER;
  1679. }
  1680. static inline void skb_set_inner_ipproto(struct sk_buff *skb,
  1681. __u8 ipproto)
  1682. {
  1683. skb->inner_ipproto = ipproto;
  1684. skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
  1685. }
  1686. static inline void skb_reset_inner_headers(struct sk_buff *skb)
  1687. {
  1688. skb->inner_mac_header = skb->mac_header;
  1689. skb->inner_network_header = skb->network_header;
  1690. skb->inner_transport_header = skb->transport_header;
  1691. }
  1692. static inline void skb_reset_mac_len(struct sk_buff *skb)
  1693. {
  1694. skb->mac_len = skb->network_header - skb->mac_header;
  1695. }
  1696. static inline unsigned char *skb_inner_transport_header(const struct sk_buff
  1697. *skb)
  1698. {
  1699. return skb->head + skb->inner_transport_header;
  1700. }
  1701. static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
  1702. {
  1703. skb->inner_transport_header = skb->data - skb->head;
  1704. }
  1705. static inline void skb_set_inner_transport_header(struct sk_buff *skb,
  1706. const int offset)
  1707. {
  1708. skb_reset_inner_transport_header(skb);
  1709. skb->inner_transport_header += offset;
  1710. }
  1711. static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
  1712. {
  1713. return skb->head + skb->inner_network_header;
  1714. }
  1715. static inline void skb_reset_inner_network_header(struct sk_buff *skb)
  1716. {
  1717. skb->inner_network_header = skb->data - skb->head;
  1718. }
  1719. static inline void skb_set_inner_network_header(struct sk_buff *skb,
  1720. const int offset)
  1721. {
  1722. skb_reset_inner_network_header(skb);
  1723. skb->inner_network_header += offset;
  1724. }
  1725. static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
  1726. {
  1727. return skb->head + skb->inner_mac_header;
  1728. }
  1729. static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
  1730. {
  1731. skb->inner_mac_header = skb->data - skb->head;
  1732. }
  1733. static inline void skb_set_inner_mac_header(struct sk_buff *skb,
  1734. const int offset)
  1735. {
  1736. skb_reset_inner_mac_header(skb);
  1737. skb->inner_mac_header += offset;
  1738. }
  1739. static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
  1740. {
  1741. return skb->transport_header != (typeof(skb->transport_header))~0U;
  1742. }
  1743. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  1744. {
  1745. return skb->head + skb->transport_header;
  1746. }
  1747. static inline void skb_reset_transport_header(struct sk_buff *skb)
  1748. {
  1749. skb->transport_header = skb->data - skb->head;
  1750. }
  1751. static inline void skb_set_transport_header(struct sk_buff *skb,
  1752. const int offset)
  1753. {
  1754. skb_reset_transport_header(skb);
  1755. skb->transport_header += offset;
  1756. }
  1757. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  1758. {
  1759. return skb->head + skb->network_header;
  1760. }
  1761. static inline void skb_reset_network_header(struct sk_buff *skb)
  1762. {
  1763. skb->network_header = skb->data - skb->head;
  1764. }
  1765. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  1766. {
  1767. skb_reset_network_header(skb);
  1768. skb->network_header += offset;
  1769. }
  1770. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  1771. {
  1772. return skb->head + skb->mac_header;
  1773. }
  1774. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  1775. {
  1776. return skb->mac_header != (typeof(skb->mac_header))~0U;
  1777. }
  1778. static inline void skb_reset_mac_header(struct sk_buff *skb)
  1779. {
  1780. skb->mac_header = skb->data - skb->head;
  1781. }
  1782. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  1783. {
  1784. skb_reset_mac_header(skb);
  1785. skb->mac_header += offset;
  1786. }
  1787. static inline void skb_pop_mac_header(struct sk_buff *skb)
  1788. {
  1789. skb->mac_header = skb->network_header;
  1790. }
  1791. static inline void skb_probe_transport_header(struct sk_buff *skb,
  1792. const int offset_hint)
  1793. {
  1794. struct flow_keys keys;
  1795. if (skb_transport_header_was_set(skb))
  1796. return;
  1797. else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
  1798. skb_set_transport_header(skb, keys.control.thoff);
  1799. else
  1800. skb_set_transport_header(skb, offset_hint);
  1801. }
  1802. static inline void skb_mac_header_rebuild(struct sk_buff *skb)
  1803. {
  1804. if (skb_mac_header_was_set(skb)) {
  1805. const unsigned char *old_mac = skb_mac_header(skb);
  1806. skb_set_mac_header(skb, -skb->mac_len);
  1807. memmove(skb_mac_header(skb), old_mac, skb->mac_len);
  1808. }
  1809. }
  1810. static inline int skb_checksum_start_offset(const struct sk_buff *skb)
  1811. {
  1812. return skb->csum_start - skb_headroom(skb);
  1813. }
  1814. static inline int skb_transport_offset(const struct sk_buff *skb)
  1815. {
  1816. return skb_transport_header(skb) - skb->data;
  1817. }
  1818. static inline u32 skb_network_header_len(const struct sk_buff *skb)
  1819. {
  1820. return skb->transport_header - skb->network_header;
  1821. }
  1822. static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
  1823. {
  1824. return skb->inner_transport_header - skb->inner_network_header;
  1825. }
  1826. static inline int skb_network_offset(const struct sk_buff *skb)
  1827. {
  1828. return skb_network_header(skb) - skb->data;
  1829. }
  1830. static inline int skb_inner_network_offset(const struct sk_buff *skb)
  1831. {
  1832. return skb_inner_network_header(skb) - skb->data;
  1833. }
  1834. static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
  1835. {
  1836. return pskb_may_pull(skb, skb_network_offset(skb) + len);
  1837. }
  1838. /*
  1839. * CPUs often take a performance hit when accessing unaligned memory
  1840. * locations. The actual performance hit varies, it can be small if the
  1841. * hardware handles it or large if we have to take an exception and fix it
  1842. * in software.
  1843. *
  1844. * Since an ethernet header is 14 bytes network drivers often end up with
  1845. * the IP header at an unaligned offset. The IP header can be aligned by
  1846. * shifting the start of the packet by 2 bytes. Drivers should do this
  1847. * with:
  1848. *
  1849. * skb_reserve(skb, NET_IP_ALIGN);
  1850. *
  1851. * The downside to this alignment of the IP header is that the DMA is now
  1852. * unaligned. On some architectures the cost of an unaligned DMA is high
  1853. * and this cost outweighs the gains made by aligning the IP header.
  1854. *
  1855. * Since this trade off varies between architectures, we allow NET_IP_ALIGN
  1856. * to be overridden.
  1857. */
  1858. #ifndef NET_IP_ALIGN
  1859. #define NET_IP_ALIGN 2
  1860. #endif
  1861. /*
  1862. * The networking layer reserves some headroom in skb data (via
  1863. * dev_alloc_skb). This is used to avoid having to reallocate skb data when
  1864. * the header has to grow. In the default case, if the header has to grow
  1865. * 32 bytes or less we avoid the reallocation.
  1866. *
  1867. * Unfortunately this headroom changes the DMA alignment of the resulting
  1868. * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
  1869. * on some architectures. An architecture can override this value,
  1870. * perhaps setting it to a cacheline in size (since that will maintain
  1871. * cacheline alignment of the DMA). It must be a power of 2.
  1872. *
  1873. * Various parts of the networking layer expect at least 32 bytes of
  1874. * headroom, you should not reduce this.
  1875. *
  1876. * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
  1877. * to reduce average number of cache lines per packet.
  1878. * get_rps_cpus() for example only access one 64 bytes aligned block :
  1879. * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
  1880. */
  1881. #ifndef NET_SKB_PAD
  1882. #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
  1883. #endif
  1884. int ___pskb_trim(struct sk_buff *skb, unsigned int len);
  1885. static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
  1886. {
  1887. if (unlikely(skb_is_nonlinear(skb))) {
  1888. WARN_ON(1);
  1889. return;
  1890. }
  1891. skb->len = len;
  1892. skb_set_tail_pointer(skb, len);
  1893. }
  1894. void skb_trim(struct sk_buff *skb, unsigned int len);
  1895. static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
  1896. {
  1897. if (skb->data_len)
  1898. return ___pskb_trim(skb, len);
  1899. __skb_trim(skb, len);
  1900. return 0;
  1901. }
  1902. static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
  1903. {
  1904. return (len < skb->len) ? __pskb_trim(skb, len) : 0;
  1905. }
  1906. /**
  1907. * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
  1908. * @skb: buffer to alter
  1909. * @len: new length
  1910. *
  1911. * This is identical to pskb_trim except that the caller knows that
  1912. * the skb is not cloned so we should never get an error due to out-
  1913. * of-memory.
  1914. */
  1915. static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
  1916. {
  1917. int err = pskb_trim(skb, len);
  1918. BUG_ON(err);
  1919. }
  1920. /**
  1921. * skb_orphan - orphan a buffer
  1922. * @skb: buffer to orphan
  1923. *
  1924. * If a buffer currently has an owner then we call the owner's
  1925. * destructor function and make the @skb unowned. The buffer continues
  1926. * to exist but is no longer charged to its former owner.
  1927. */
  1928. static inline void skb_orphan(struct sk_buff *skb)
  1929. {
  1930. if (skb->destructor) {
  1931. skb->destructor(skb);
  1932. skb->destructor = NULL;
  1933. skb->sk = NULL;
  1934. } else {
  1935. BUG_ON(skb->sk);
  1936. }
  1937. }
  1938. /**
  1939. * skb_orphan_frags - orphan the frags contained in a buffer
  1940. * @skb: buffer to orphan frags from
  1941. * @gfp_mask: allocation mask for replacement pages
  1942. *
  1943. * For each frag in the SKB which needs a destructor (i.e. has an
  1944. * owner) create a copy of that frag and release the original
  1945. * page by calling the destructor.
  1946. */
  1947. static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
  1948. {
  1949. if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
  1950. return 0;
  1951. return skb_copy_ubufs(skb, gfp_mask);
  1952. }
  1953. /**
  1954. * __skb_queue_purge - empty a list
  1955. * @list: list to empty
  1956. *
  1957. * Delete all buffers on an &sk_buff list. Each buffer is removed from
  1958. * the list and one reference dropped. This function does not take the
  1959. * list lock and the caller must hold the relevant locks to use it.
  1960. */
  1961. void skb_queue_purge(struct sk_buff_head *list);
  1962. static inline void __skb_queue_purge(struct sk_buff_head *list)
  1963. {
  1964. struct sk_buff *skb;
  1965. while ((skb = __skb_dequeue(list)) != NULL)
  1966. kfree_skb(skb);
  1967. }
  1968. void *netdev_alloc_frag(unsigned int fragsz);
  1969. struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
  1970. gfp_t gfp_mask);
  1971. /**
  1972. * netdev_alloc_skb - allocate an skbuff for rx on a specific device
  1973. * @dev: network device to receive on
  1974. * @length: length to allocate
  1975. *
  1976. * Allocate a new &sk_buff and assign it a usage count of one. The
  1977. * buffer has unspecified headroom built in. Users should allocate
  1978. * the headroom they think they need without accounting for the
  1979. * built in space. The built in space is used for optimisations.
  1980. *
  1981. * %NULL is returned if there is no free memory. Although this function
  1982. * allocates memory it can be called from an interrupt.
  1983. */
  1984. static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
  1985. unsigned int length)
  1986. {
  1987. return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
  1988. }
  1989. /* legacy helper around __netdev_alloc_skb() */
  1990. static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
  1991. gfp_t gfp_mask)
  1992. {
  1993. return __netdev_alloc_skb(NULL, length, gfp_mask);
  1994. }
  1995. /* legacy helper around netdev_alloc_skb() */
  1996. static inline struct sk_buff *dev_alloc_skb(unsigned int length)
  1997. {
  1998. return netdev_alloc_skb(NULL, length);
  1999. }
  2000. static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
  2001. unsigned int length, gfp_t gfp)
  2002. {
  2003. struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
  2004. if (NET_IP_ALIGN && skb)
  2005. skb_reserve(skb, NET_IP_ALIGN);
  2006. return skb;
  2007. }
  2008. static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
  2009. unsigned int length)
  2010. {
  2011. return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
  2012. }
  2013. static inline void skb_free_frag(void *addr)
  2014. {
  2015. __free_page_frag(addr);
  2016. }
  2017. void *napi_alloc_frag(unsigned int fragsz);
  2018. struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
  2019. unsigned int length, gfp_t gfp_mask);
  2020. static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
  2021. unsigned int length)
  2022. {
  2023. return __napi_alloc_skb(napi, length, GFP_ATOMIC);
  2024. }
  2025. /**
  2026. * __dev_alloc_pages - allocate page for network Rx
  2027. * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
  2028. * @order: size of the allocation
  2029. *
  2030. * Allocate a new page.
  2031. *
  2032. * %NULL is returned if there is no free memory.
  2033. */
  2034. static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
  2035. unsigned int order)
  2036. {
  2037. /* This piece of code contains several assumptions.
  2038. * 1. This is for device Rx, therefor a cold page is preferred.
  2039. * 2. The expectation is the user wants a compound page.
  2040. * 3. If requesting a order 0 page it will not be compound
  2041. * due to the check to see if order has a value in prep_new_page
  2042. * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
  2043. * code in gfp_to_alloc_flags that should be enforcing this.
  2044. */
  2045. gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
  2046. return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
  2047. }
  2048. static inline struct page *dev_alloc_pages(unsigned int order)
  2049. {
  2050. return __dev_alloc_pages(GFP_ATOMIC, order);
  2051. }
  2052. /**
  2053. * __dev_alloc_page - allocate a page for network Rx
  2054. * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
  2055. *
  2056. * Allocate a new page.
  2057. *
  2058. * %NULL is returned if there is no free memory.
  2059. */
  2060. static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
  2061. {
  2062. return __dev_alloc_pages(gfp_mask, 0);
  2063. }
  2064. static inline struct page *dev_alloc_page(void)
  2065. {
  2066. return __dev_alloc_page(GFP_ATOMIC);
  2067. }
  2068. /**
  2069. * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
  2070. * @page: The page that was allocated from skb_alloc_page
  2071. * @skb: The skb that may need pfmemalloc set
  2072. */
  2073. static inline void skb_propagate_pfmemalloc(struct page *page,
  2074. struct sk_buff *skb)
  2075. {
  2076. if (page_is_pfmemalloc(page))
  2077. skb->pfmemalloc = true;
  2078. }
  2079. /**
  2080. * skb_frag_page - retrieve the page referred to by a paged fragment
  2081. * @frag: the paged fragment
  2082. *
  2083. * Returns the &struct page associated with @frag.
  2084. */
  2085. static inline struct page *skb_frag_page(const skb_frag_t *frag)
  2086. {
  2087. return frag->page.p;
  2088. }
  2089. /**
  2090. * __skb_frag_ref - take an addition reference on a paged fragment.
  2091. * @frag: the paged fragment
  2092. *
  2093. * Takes an additional reference on the paged fragment @frag.
  2094. */
  2095. static inline void __skb_frag_ref(skb_frag_t *frag)
  2096. {
  2097. get_page(skb_frag_page(frag));
  2098. }
  2099. /**
  2100. * skb_frag_ref - take an addition reference on a paged fragment of an skb.
  2101. * @skb: the buffer
  2102. * @f: the fragment offset.
  2103. *
  2104. * Takes an additional reference on the @f'th paged fragment of @skb.
  2105. */
  2106. static inline void skb_frag_ref(struct sk_buff *skb, int f)
  2107. {
  2108. __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
  2109. }
  2110. /**
  2111. * __skb_frag_unref - release a reference on a paged fragment.
  2112. * @frag: the paged fragment
  2113. *
  2114. * Releases a reference on the paged fragment @frag.
  2115. */
  2116. static inline void __skb_frag_unref(skb_frag_t *frag)
  2117. {
  2118. put_page(skb_frag_page(frag));
  2119. }
  2120. /**
  2121. * skb_frag_unref - release a reference on a paged fragment of an skb.
  2122. * @skb: the buffer
  2123. * @f: the fragment offset
  2124. *
  2125. * Releases a reference on the @f'th paged fragment of @skb.
  2126. */
  2127. static inline void skb_frag_unref(struct sk_buff *skb, int f)
  2128. {
  2129. __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
  2130. }
  2131. /**
  2132. * skb_frag_address - gets the address of the data contained in a paged fragment
  2133. * @frag: the paged fragment buffer
  2134. *
  2135. * Returns the address of the data within @frag. The page must already
  2136. * be mapped.
  2137. */
  2138. static inline void *skb_frag_address(const skb_frag_t *frag)
  2139. {
  2140. return page_address(skb_frag_page(frag)) + frag->page_offset;
  2141. }
  2142. /**
  2143. * skb_frag_address_safe - gets the address of the data contained in a paged fragment
  2144. * @frag: the paged fragment buffer
  2145. *
  2146. * Returns the address of the data within @frag. Checks that the page
  2147. * is mapped and returns %NULL otherwise.
  2148. */
  2149. static inline void *skb_frag_address_safe(const skb_frag_t *frag)
  2150. {
  2151. void *ptr = page_address(skb_frag_page(frag));
  2152. if (unlikely(!ptr))
  2153. return NULL;
  2154. return ptr + frag->page_offset;
  2155. }
  2156. /**
  2157. * __skb_frag_set_page - sets the page contained in a paged fragment
  2158. * @frag: the paged fragment
  2159. * @page: the page to set
  2160. *
  2161. * Sets the fragment @frag to contain @page.
  2162. */
  2163. static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
  2164. {
  2165. frag->page.p = page;
  2166. }
  2167. /**
  2168. * skb_frag_set_page - sets the page contained in a paged fragment of an skb
  2169. * @skb: the buffer
  2170. * @f: the fragment offset
  2171. * @page: the page to set
  2172. *
  2173. * Sets the @f'th fragment of @skb to contain @page.
  2174. */
  2175. static inline void skb_frag_set_page(struct sk_buff *skb, int f,
  2176. struct page *page)
  2177. {
  2178. __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
  2179. }
  2180. bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
  2181. /**
  2182. * skb_frag_dma_map - maps a paged fragment via the DMA API
  2183. * @dev: the device to map the fragment to
  2184. * @frag: the paged fragment to map
  2185. * @offset: the offset within the fragment (starting at the
  2186. * fragment's own offset)
  2187. * @size: the number of bytes to map
  2188. * @dir: the direction of the mapping (%PCI_DMA_*)
  2189. *
  2190. * Maps the page associated with @frag to @device.
  2191. */
  2192. static inline dma_addr_t skb_frag_dma_map(struct device *dev,
  2193. const skb_frag_t *frag,
  2194. size_t offset, size_t size,
  2195. enum dma_data_direction dir)
  2196. {
  2197. return dma_map_page(dev, skb_frag_page(frag),
  2198. frag->page_offset + offset, size, dir);
  2199. }
  2200. static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
  2201. gfp_t gfp_mask)
  2202. {
  2203. return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
  2204. }
  2205. static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
  2206. gfp_t gfp_mask)
  2207. {
  2208. return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
  2209. }
  2210. /**
  2211. * skb_clone_writable - is the header of a clone writable
  2212. * @skb: buffer to check
  2213. * @len: length up to which to write
  2214. *
  2215. * Returns true if modifying the header part of the cloned buffer
  2216. * does not requires the data to be copied.
  2217. */
  2218. static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
  2219. {
  2220. return !skb_header_cloned(skb) &&
  2221. skb_headroom(skb) + len <= skb->hdr_len;
  2222. }
  2223. static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
  2224. int cloned)
  2225. {
  2226. int delta = 0;
  2227. if (headroom > skb_headroom(skb))
  2228. delta = headroom - skb_headroom(skb);
  2229. if (delta || cloned)
  2230. return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
  2231. GFP_ATOMIC);
  2232. return 0;
  2233. }
  2234. /**
  2235. * skb_cow - copy header of skb when it is required
  2236. * @skb: buffer to cow
  2237. * @headroom: needed headroom
  2238. *
  2239. * If the skb passed lacks sufficient headroom or its data part
  2240. * is shared, data is reallocated. If reallocation fails, an error
  2241. * is returned and original skb is not changed.
  2242. *
  2243. * The result is skb with writable area skb->head...skb->tail
  2244. * and at least @headroom of space at head.
  2245. */
  2246. static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
  2247. {
  2248. return __skb_cow(skb, headroom, skb_cloned(skb));
  2249. }
  2250. /**
  2251. * skb_cow_head - skb_cow but only making the head writable
  2252. * @skb: buffer to cow
  2253. * @headroom: needed headroom
  2254. *
  2255. * This function is identical to skb_cow except that we replace the
  2256. * skb_cloned check by skb_header_cloned. It should be used when
  2257. * you only need to push on some header and do not need to modify
  2258. * the data.
  2259. */
  2260. static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
  2261. {
  2262. return __skb_cow(skb, headroom, skb_header_cloned(skb));
  2263. }
  2264. /**
  2265. * skb_padto - pad an skbuff up to a minimal size
  2266. * @skb: buffer to pad
  2267. * @len: minimal length
  2268. *
  2269. * Pads up a buffer to ensure the trailing bytes exist and are
  2270. * blanked. If the buffer already contains sufficient data it
  2271. * is untouched. Otherwise it is extended. Returns zero on
  2272. * success. The skb is freed on error.
  2273. */
  2274. static inline int skb_padto(struct sk_buff *skb, unsigned int len)
  2275. {
  2276. unsigned int size = skb->len;
  2277. if (likely(size >= len))
  2278. return 0;
  2279. return skb_pad(skb, len - size);
  2280. }
  2281. /**
  2282. * skb_put_padto - increase size and pad an skbuff up to a minimal size
  2283. * @skb: buffer to pad
  2284. * @len: minimal length
  2285. *
  2286. * Pads up a buffer to ensure the trailing bytes exist and are
  2287. * blanked. If the buffer already contains sufficient data it
  2288. * is untouched. Otherwise it is extended. Returns zero on
  2289. * success. The skb is freed on error.
  2290. */
  2291. static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
  2292. {
  2293. unsigned int size = skb->len;
  2294. if (unlikely(size < len)) {
  2295. len -= size;
  2296. if (skb_pad(skb, len))
  2297. return -ENOMEM;
  2298. __skb_put(skb, len);
  2299. }
  2300. return 0;
  2301. }
  2302. static inline int skb_add_data(struct sk_buff *skb,
  2303. struct iov_iter *from, int copy)
  2304. {
  2305. const int off = skb->len;
  2306. if (skb->ip_summed == CHECKSUM_NONE) {
  2307. __wsum csum = 0;
  2308. if (csum_and_copy_from_iter(skb_put(skb, copy), copy,
  2309. &csum, from) == copy) {
  2310. skb->csum = csum_block_add(skb->csum, csum, off);
  2311. return 0;
  2312. }
  2313. } else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy)
  2314. return 0;
  2315. __skb_trim(skb, off);
  2316. return -EFAULT;
  2317. }
  2318. static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
  2319. const struct page *page, int off)
  2320. {
  2321. if (i) {
  2322. const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
  2323. return page == skb_frag_page(frag) &&
  2324. off == frag->page_offset + skb_frag_size(frag);
  2325. }
  2326. return false;
  2327. }
  2328. static inline int __skb_linearize(struct sk_buff *skb)
  2329. {
  2330. return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
  2331. }
  2332. /**
  2333. * skb_linearize - convert paged skb to linear one
  2334. * @skb: buffer to linarize
  2335. *
  2336. * If there is no free memory -ENOMEM is returned, otherwise zero
  2337. * is returned and the old skb data released.
  2338. */
  2339. static inline int skb_linearize(struct sk_buff *skb)
  2340. {
  2341. return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
  2342. }
  2343. /**
  2344. * skb_has_shared_frag - can any frag be overwritten
  2345. * @skb: buffer to test
  2346. *
  2347. * Return true if the skb has at least one frag that might be modified
  2348. * by an external entity (as in vmsplice()/sendfile())
  2349. */
  2350. static inline bool skb_has_shared_frag(const struct sk_buff *skb)
  2351. {
  2352. return skb_is_nonlinear(skb) &&
  2353. skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
  2354. }
  2355. /**
  2356. * skb_linearize_cow - make sure skb is linear and writable
  2357. * @skb: buffer to process
  2358. *
  2359. * If there is no free memory -ENOMEM is returned, otherwise zero
  2360. * is returned and the old skb data released.
  2361. */
  2362. static inline int skb_linearize_cow(struct sk_buff *skb)
  2363. {
  2364. return skb_is_nonlinear(skb) || skb_cloned(skb) ?
  2365. __skb_linearize(skb) : 0;
  2366. }
  2367. /**
  2368. * skb_postpull_rcsum - update checksum for received skb after pull
  2369. * @skb: buffer to update
  2370. * @start: start of data before pull
  2371. * @len: length of data pulled
  2372. *
  2373. * After doing a pull on a received packet, you need to call this to
  2374. * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
  2375. * CHECKSUM_NONE so that it can be recomputed from scratch.
  2376. */
  2377. static inline void skb_postpull_rcsum(struct sk_buff *skb,
  2378. const void *start, unsigned int len)
  2379. {
  2380. if (skb->ip_summed == CHECKSUM_COMPLETE)
  2381. skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
  2382. }
  2383. unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
  2384. /**
  2385. * pskb_trim_rcsum - trim received skb and update checksum
  2386. * @skb: buffer to trim
  2387. * @len: new length
  2388. *
  2389. * This is exactly the same as pskb_trim except that it ensures the
  2390. * checksum of received packets are still valid after the operation.
  2391. */
  2392. static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
  2393. {
  2394. if (likely(len >= skb->len))
  2395. return 0;
  2396. if (skb->ip_summed == CHECKSUM_COMPLETE)
  2397. skb->ip_summed = CHECKSUM_NONE;
  2398. return __pskb_trim(skb, len);
  2399. }
  2400. #define skb_queue_walk(queue, skb) \
  2401. for (skb = (queue)->next; \
  2402. skb != (struct sk_buff *)(queue); \
  2403. skb = skb->next)
  2404. #define skb_queue_walk_safe(queue, skb, tmp) \
  2405. for (skb = (queue)->next, tmp = skb->next; \
  2406. skb != (struct sk_buff *)(queue); \
  2407. skb = tmp, tmp = skb->next)
  2408. #define skb_queue_walk_from(queue, skb) \
  2409. for (; skb != (struct sk_buff *)(queue); \
  2410. skb = skb->next)
  2411. #define skb_queue_walk_from_safe(queue, skb, tmp) \
  2412. for (tmp = skb->next; \
  2413. skb != (struct sk_buff *)(queue); \
  2414. skb = tmp, tmp = skb->next)
  2415. #define skb_queue_reverse_walk(queue, skb) \
  2416. for (skb = (queue)->prev; \
  2417. skb != (struct sk_buff *)(queue); \
  2418. skb = skb->prev)
  2419. #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
  2420. for (skb = (queue)->prev, tmp = skb->prev; \
  2421. skb != (struct sk_buff *)(queue); \
  2422. skb = tmp, tmp = skb->prev)
  2423. #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
  2424. for (tmp = skb->prev; \
  2425. skb != (struct sk_buff *)(queue); \
  2426. skb = tmp, tmp = skb->prev)
  2427. static inline bool skb_has_frag_list(const struct sk_buff *skb)
  2428. {
  2429. return skb_shinfo(skb)->frag_list != NULL;
  2430. }
  2431. static inline void skb_frag_list_init(struct sk_buff *skb)
  2432. {
  2433. skb_shinfo(skb)->frag_list = NULL;
  2434. }
  2435. #define skb_walk_frags(skb, iter) \
  2436. for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
  2437. struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
  2438. int *peeked, int *off, int *err);
  2439. struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
  2440. int *err);
  2441. unsigned int datagram_poll(struct file *file, struct socket *sock,
  2442. struct poll_table_struct *wait);
  2443. int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
  2444. struct iov_iter *to, int size);
  2445. static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
  2446. struct msghdr *msg, int size)
  2447. {
  2448. return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
  2449. }
  2450. int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
  2451. struct msghdr *msg);
  2452. int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
  2453. struct iov_iter *from, int len);
  2454. int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
  2455. void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
  2456. void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb);
  2457. int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
  2458. int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
  2459. int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
  2460. __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
  2461. int len, __wsum csum);
  2462. ssize_t skb_socket_splice(struct sock *sk,
  2463. struct pipe_inode_info *pipe,
  2464. struct splice_pipe_desc *spd);
  2465. int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
  2466. struct pipe_inode_info *pipe, unsigned int len,
  2467. unsigned int flags,
  2468. ssize_t (*splice_cb)(struct sock *,
  2469. struct pipe_inode_info *,
  2470. struct splice_pipe_desc *));
  2471. void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
  2472. unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
  2473. int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
  2474. int len, int hlen);
  2475. void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
  2476. int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
  2477. void skb_scrub_packet(struct sk_buff *skb, bool xnet);
  2478. unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
  2479. struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
  2480. struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
  2481. int skb_ensure_writable(struct sk_buff *skb, int write_len);
  2482. int skb_vlan_pop(struct sk_buff *skb);
  2483. int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
  2484. static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
  2485. {
  2486. return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
  2487. }
  2488. static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
  2489. {
  2490. return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
  2491. }
  2492. struct skb_checksum_ops {
  2493. __wsum (*update)(const void *mem, int len, __wsum wsum);
  2494. __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
  2495. };
  2496. __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
  2497. __wsum csum, const struct skb_checksum_ops *ops);
  2498. __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
  2499. __wsum csum);
  2500. static inline void * __must_check
  2501. __skb_header_pointer(const struct sk_buff *skb, int offset,
  2502. int len, void *data, int hlen, void *buffer)
  2503. {
  2504. if (hlen - offset >= len)
  2505. return data + offset;
  2506. if (!skb ||
  2507. skb_copy_bits(skb, offset, buffer, len) < 0)
  2508. return NULL;
  2509. return buffer;
  2510. }
  2511. static inline void * __must_check
  2512. skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
  2513. {
  2514. return __skb_header_pointer(skb, offset, len, skb->data,
  2515. skb_headlen(skb), buffer);
  2516. }
  2517. /**
  2518. * skb_needs_linearize - check if we need to linearize a given skb
  2519. * depending on the given device features.
  2520. * @skb: socket buffer to check
  2521. * @features: net device features
  2522. *
  2523. * Returns true if either:
  2524. * 1. skb has frag_list and the device doesn't support FRAGLIST, or
  2525. * 2. skb is fragmented and the device does not support SG.
  2526. */
  2527. static inline bool skb_needs_linearize(struct sk_buff *skb,
  2528. netdev_features_t features)
  2529. {
  2530. return skb_is_nonlinear(skb) &&
  2531. ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
  2532. (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
  2533. }
  2534. static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
  2535. void *to,
  2536. const unsigned int len)
  2537. {
  2538. memcpy(to, skb->data, len);
  2539. }
  2540. static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
  2541. const int offset, void *to,
  2542. const unsigned int len)
  2543. {
  2544. memcpy(to, skb->data + offset, len);
  2545. }
  2546. static inline void skb_copy_to_linear_data(struct sk_buff *skb,
  2547. const void *from,
  2548. const unsigned int len)
  2549. {
  2550. memcpy(skb->data, from, len);
  2551. }
  2552. static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
  2553. const int offset,
  2554. const void *from,
  2555. const unsigned int len)
  2556. {
  2557. memcpy(skb->data + offset, from, len);
  2558. }
  2559. void skb_init(void);
  2560. static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
  2561. {
  2562. return skb->tstamp;
  2563. }
  2564. /**
  2565. * skb_get_timestamp - get timestamp from a skb
  2566. * @skb: skb to get stamp from
  2567. * @stamp: pointer to struct timeval to store stamp in
  2568. *
  2569. * Timestamps are stored in the skb as offsets to a base timestamp.
  2570. * This function converts the offset back to a struct timeval and stores
  2571. * it in stamp.
  2572. */
  2573. static inline void skb_get_timestamp(const struct sk_buff *skb,
  2574. struct timeval *stamp)
  2575. {
  2576. *stamp = ktime_to_timeval(skb->tstamp);
  2577. }
  2578. static inline void skb_get_timestampns(const struct sk_buff *skb,
  2579. struct timespec *stamp)
  2580. {
  2581. *stamp = ktime_to_timespec(skb->tstamp);
  2582. }
  2583. static inline void __net_timestamp(struct sk_buff *skb)
  2584. {
  2585. skb->tstamp = ktime_get_real();
  2586. }
  2587. static inline ktime_t net_timedelta(ktime_t t)
  2588. {
  2589. return ktime_sub(ktime_get_real(), t);
  2590. }
  2591. static inline ktime_t net_invalid_timestamp(void)
  2592. {
  2593. return ktime_set(0, 0);
  2594. }
  2595. struct sk_buff *skb_clone_sk(struct sk_buff *skb);
  2596. #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
  2597. void skb_clone_tx_timestamp(struct sk_buff *skb);
  2598. bool skb_defer_rx_timestamp(struct sk_buff *skb);
  2599. #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
  2600. static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
  2601. {
  2602. }
  2603. static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
  2604. {
  2605. return false;
  2606. }
  2607. #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
  2608. /**
  2609. * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
  2610. *
  2611. * PHY drivers may accept clones of transmitted packets for
  2612. * timestamping via their phy_driver.txtstamp method. These drivers
  2613. * must call this function to return the skb back to the stack with a
  2614. * timestamp.
  2615. *
  2616. * @skb: clone of the the original outgoing packet
  2617. * @hwtstamps: hardware time stamps
  2618. *
  2619. */
  2620. void skb_complete_tx_timestamp(struct sk_buff *skb,
  2621. struct skb_shared_hwtstamps *hwtstamps);
  2622. void __skb_tstamp_tx(struct sk_buff *orig_skb,
  2623. struct skb_shared_hwtstamps *hwtstamps,
  2624. struct sock *sk, int tstype);
  2625. /**
  2626. * skb_tstamp_tx - queue clone of skb with send time stamps
  2627. * @orig_skb: the original outgoing packet
  2628. * @hwtstamps: hardware time stamps, may be NULL if not available
  2629. *
  2630. * If the skb has a socket associated, then this function clones the
  2631. * skb (thus sharing the actual data and optional structures), stores
  2632. * the optional hardware time stamping information (if non NULL) or
  2633. * generates a software time stamp (otherwise), then queues the clone
  2634. * to the error queue of the socket. Errors are silently ignored.
  2635. */
  2636. void skb_tstamp_tx(struct sk_buff *orig_skb,
  2637. struct skb_shared_hwtstamps *hwtstamps);
  2638. static inline void sw_tx_timestamp(struct sk_buff *skb)
  2639. {
  2640. if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
  2641. !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
  2642. skb_tstamp_tx(skb, NULL);
  2643. }
  2644. /**
  2645. * skb_tx_timestamp() - Driver hook for transmit timestamping
  2646. *
  2647. * Ethernet MAC Drivers should call this function in their hard_xmit()
  2648. * function immediately before giving the sk_buff to the MAC hardware.
  2649. *
  2650. * Specifically, one should make absolutely sure that this function is
  2651. * called before TX completion of this packet can trigger. Otherwise
  2652. * the packet could potentially already be freed.
  2653. *
  2654. * @skb: A socket buffer.
  2655. */
  2656. static inline void skb_tx_timestamp(struct sk_buff *skb)
  2657. {
  2658. skb_clone_tx_timestamp(skb);
  2659. sw_tx_timestamp(skb);
  2660. }
  2661. /**
  2662. * skb_complete_wifi_ack - deliver skb with wifi status
  2663. *
  2664. * @skb: the original outgoing packet
  2665. * @acked: ack status
  2666. *
  2667. */
  2668. void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
  2669. __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
  2670. __sum16 __skb_checksum_complete(struct sk_buff *skb);
  2671. static inline int skb_csum_unnecessary(const struct sk_buff *skb)
  2672. {
  2673. return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
  2674. skb->csum_valid ||
  2675. (skb->ip_summed == CHECKSUM_PARTIAL &&
  2676. skb_checksum_start_offset(skb) >= 0));
  2677. }
  2678. /**
  2679. * skb_checksum_complete - Calculate checksum of an entire packet
  2680. * @skb: packet to process
  2681. *
  2682. * This function calculates the checksum over the entire packet plus
  2683. * the value of skb->csum. The latter can be used to supply the
  2684. * checksum of a pseudo header as used by TCP/UDP. It returns the
  2685. * checksum.
  2686. *
  2687. * For protocols that contain complete checksums such as ICMP/TCP/UDP,
  2688. * this function can be used to verify that checksum on received
  2689. * packets. In that case the function should return zero if the
  2690. * checksum is correct. In particular, this function will return zero
  2691. * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
  2692. * hardware has already verified the correctness of the checksum.
  2693. */
  2694. static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
  2695. {
  2696. return skb_csum_unnecessary(skb) ?
  2697. 0 : __skb_checksum_complete(skb);
  2698. }
  2699. static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
  2700. {
  2701. if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
  2702. if (skb->csum_level == 0)
  2703. skb->ip_summed = CHECKSUM_NONE;
  2704. else
  2705. skb->csum_level--;
  2706. }
  2707. }
  2708. static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
  2709. {
  2710. if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
  2711. if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
  2712. skb->csum_level++;
  2713. } else if (skb->ip_summed == CHECKSUM_NONE) {
  2714. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2715. skb->csum_level = 0;
  2716. }
  2717. }
  2718. static inline void __skb_mark_checksum_bad(struct sk_buff *skb)
  2719. {
  2720. /* Mark current checksum as bad (typically called from GRO
  2721. * path). In the case that ip_summed is CHECKSUM_NONE
  2722. * this must be the first checksum encountered in the packet.
  2723. * When ip_summed is CHECKSUM_UNNECESSARY, this is the first
  2724. * checksum after the last one validated. For UDP, a zero
  2725. * checksum can not be marked as bad.
  2726. */
  2727. if (skb->ip_summed == CHECKSUM_NONE ||
  2728. skb->ip_summed == CHECKSUM_UNNECESSARY)
  2729. skb->csum_bad = 1;
  2730. }
  2731. /* Check if we need to perform checksum complete validation.
  2732. *
  2733. * Returns true if checksum complete is needed, false otherwise
  2734. * (either checksum is unnecessary or zero checksum is allowed).
  2735. */
  2736. static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
  2737. bool zero_okay,
  2738. __sum16 check)
  2739. {
  2740. if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
  2741. skb->csum_valid = 1;
  2742. __skb_decr_checksum_unnecessary(skb);
  2743. return false;
  2744. }
  2745. return true;
  2746. }
  2747. /* For small packets <= CHECKSUM_BREAK peform checksum complete directly
  2748. * in checksum_init.
  2749. */
  2750. #define CHECKSUM_BREAK 76
  2751. /* Unset checksum-complete
  2752. *
  2753. * Unset checksum complete can be done when packet is being modified
  2754. * (uncompressed for instance) and checksum-complete value is
  2755. * invalidated.
  2756. */
  2757. static inline void skb_checksum_complete_unset(struct sk_buff *skb)
  2758. {
  2759. if (skb->ip_summed == CHECKSUM_COMPLETE)
  2760. skb->ip_summed = CHECKSUM_NONE;
  2761. }
  2762. /* Validate (init) checksum based on checksum complete.
  2763. *
  2764. * Return values:
  2765. * 0: checksum is validated or try to in skb_checksum_complete. In the latter
  2766. * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
  2767. * checksum is stored in skb->csum for use in __skb_checksum_complete
  2768. * non-zero: value of invalid checksum
  2769. *
  2770. */
  2771. static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
  2772. bool complete,
  2773. __wsum psum)
  2774. {
  2775. if (skb->ip_summed == CHECKSUM_COMPLETE) {
  2776. if (!csum_fold(csum_add(psum, skb->csum))) {
  2777. skb->csum_valid = 1;
  2778. return 0;
  2779. }
  2780. } else if (skb->csum_bad) {
  2781. /* ip_summed == CHECKSUM_NONE in this case */
  2782. return (__force __sum16)1;
  2783. }
  2784. skb->csum = psum;
  2785. if (complete || skb->len <= CHECKSUM_BREAK) {
  2786. __sum16 csum;
  2787. csum = __skb_checksum_complete(skb);
  2788. skb->csum_valid = !csum;
  2789. return csum;
  2790. }
  2791. return 0;
  2792. }
  2793. static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
  2794. {
  2795. return 0;
  2796. }
  2797. /* Perform checksum validate (init). Note that this is a macro since we only
  2798. * want to calculate the pseudo header which is an input function if necessary.
  2799. * First we try to validate without any computation (checksum unnecessary) and
  2800. * then calculate based on checksum complete calling the function to compute
  2801. * pseudo header.
  2802. *
  2803. * Return values:
  2804. * 0: checksum is validated or try to in skb_checksum_complete
  2805. * non-zero: value of invalid checksum
  2806. */
  2807. #define __skb_checksum_validate(skb, proto, complete, \
  2808. zero_okay, check, compute_pseudo) \
  2809. ({ \
  2810. __sum16 __ret = 0; \
  2811. skb->csum_valid = 0; \
  2812. if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
  2813. __ret = __skb_checksum_validate_complete(skb, \
  2814. complete, compute_pseudo(skb, proto)); \
  2815. __ret; \
  2816. })
  2817. #define skb_checksum_init(skb, proto, compute_pseudo) \
  2818. __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
  2819. #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
  2820. __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
  2821. #define skb_checksum_validate(skb, proto, compute_pseudo) \
  2822. __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
  2823. #define skb_checksum_validate_zero_check(skb, proto, check, \
  2824. compute_pseudo) \
  2825. __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
  2826. #define skb_checksum_simple_validate(skb) \
  2827. __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
  2828. static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
  2829. {
  2830. return (skb->ip_summed == CHECKSUM_NONE &&
  2831. skb->csum_valid && !skb->csum_bad);
  2832. }
  2833. static inline void __skb_checksum_convert(struct sk_buff *skb,
  2834. __sum16 check, __wsum pseudo)
  2835. {
  2836. skb->csum = ~pseudo;
  2837. skb->ip_summed = CHECKSUM_COMPLETE;
  2838. }
  2839. #define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \
  2840. do { \
  2841. if (__skb_checksum_convert_check(skb)) \
  2842. __skb_checksum_convert(skb, check, \
  2843. compute_pseudo(skb, proto)); \
  2844. } while (0)
  2845. static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
  2846. u16 start, u16 offset)
  2847. {
  2848. skb->ip_summed = CHECKSUM_PARTIAL;
  2849. skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
  2850. skb->csum_offset = offset - start;
  2851. }
  2852. /* Update skbuf and packet to reflect the remote checksum offload operation.
  2853. * When called, ptr indicates the starting point for skb->csum when
  2854. * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
  2855. * here, skb_postpull_rcsum is done so skb->csum start is ptr.
  2856. */
  2857. static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
  2858. int start, int offset, bool nopartial)
  2859. {
  2860. __wsum delta;
  2861. if (!nopartial) {
  2862. skb_remcsum_adjust_partial(skb, ptr, start, offset);
  2863. return;
  2864. }
  2865. if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
  2866. __skb_checksum_complete(skb);
  2867. skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
  2868. }
  2869. delta = remcsum_adjust(ptr, skb->csum, start, offset);
  2870. /* Adjust skb->csum since we changed the packet */
  2871. skb->csum = csum_add(skb->csum, delta);
  2872. }
  2873. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2874. void nf_conntrack_destroy(struct nf_conntrack *nfct);
  2875. static inline void nf_conntrack_put(struct nf_conntrack *nfct)
  2876. {
  2877. if (nfct && atomic_dec_and_test(&nfct->use))
  2878. nf_conntrack_destroy(nfct);
  2879. }
  2880. static inline void nf_conntrack_get(struct nf_conntrack *nfct)
  2881. {
  2882. if (nfct)
  2883. atomic_inc(&nfct->use);
  2884. }
  2885. #endif
  2886. #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
  2887. static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
  2888. {
  2889. if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
  2890. kfree(nf_bridge);
  2891. }
  2892. static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
  2893. {
  2894. if (nf_bridge)
  2895. atomic_inc(&nf_bridge->use);
  2896. }
  2897. #endif /* CONFIG_BRIDGE_NETFILTER */
  2898. static inline void nf_reset(struct sk_buff *skb)
  2899. {
  2900. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2901. nf_conntrack_put(skb->nfct);
  2902. skb->nfct = NULL;
  2903. #endif
  2904. #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
  2905. nf_bridge_put(skb->nf_bridge);
  2906. skb->nf_bridge = NULL;
  2907. #endif
  2908. }
  2909. static inline void nf_reset_trace(struct sk_buff *skb)
  2910. {
  2911. #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
  2912. skb->nf_trace = 0;
  2913. #endif
  2914. }
  2915. /* Note: This doesn't put any conntrack and bridge info in dst. */
  2916. static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
  2917. bool copy)
  2918. {
  2919. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2920. dst->nfct = src->nfct;
  2921. nf_conntrack_get(src->nfct);
  2922. if (copy)
  2923. dst->nfctinfo = src->nfctinfo;
  2924. #endif
  2925. #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
  2926. dst->nf_bridge = src->nf_bridge;
  2927. nf_bridge_get(src->nf_bridge);
  2928. #endif
  2929. #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
  2930. if (copy)
  2931. dst->nf_trace = src->nf_trace;
  2932. #endif
  2933. }
  2934. static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  2935. {
  2936. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2937. nf_conntrack_put(dst->nfct);
  2938. #endif
  2939. #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
  2940. nf_bridge_put(dst->nf_bridge);
  2941. #endif
  2942. __nf_copy(dst, src, true);
  2943. }
  2944. #ifdef CONFIG_NETWORK_SECMARK
  2945. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  2946. {
  2947. to->secmark = from->secmark;
  2948. }
  2949. static inline void skb_init_secmark(struct sk_buff *skb)
  2950. {
  2951. skb->secmark = 0;
  2952. }
  2953. #else
  2954. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  2955. { }
  2956. static inline void skb_init_secmark(struct sk_buff *skb)
  2957. { }
  2958. #endif
  2959. static inline bool skb_irq_freeable(const struct sk_buff *skb)
  2960. {
  2961. return !skb->destructor &&
  2962. #if IS_ENABLED(CONFIG_XFRM)
  2963. !skb->sp &&
  2964. #endif
  2965. #if IS_ENABLED(CONFIG_NF_CONNTRACK)
  2966. !skb->nfct &&
  2967. #endif
  2968. !skb->_skb_refdst &&
  2969. !skb_has_frag_list(skb);
  2970. }
  2971. static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
  2972. {
  2973. skb->queue_mapping = queue_mapping;
  2974. }
  2975. static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
  2976. {
  2977. return skb->queue_mapping;
  2978. }
  2979. static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
  2980. {
  2981. to->queue_mapping = from->queue_mapping;
  2982. }
  2983. static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
  2984. {
  2985. skb->queue_mapping = rx_queue + 1;
  2986. }
  2987. static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
  2988. {
  2989. return skb->queue_mapping - 1;
  2990. }
  2991. static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
  2992. {
  2993. return skb->queue_mapping != 0;
  2994. }
  2995. static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
  2996. {
  2997. #ifdef CONFIG_XFRM
  2998. return skb->sp;
  2999. #else
  3000. return NULL;
  3001. #endif
  3002. }
  3003. /* Keeps track of mac header offset relative to skb->head.
  3004. * It is useful for TSO of Tunneling protocol. e.g. GRE.
  3005. * For non-tunnel skb it points to skb_mac_header() and for
  3006. * tunnel skb it points to outer mac header.
  3007. * Keeps track of level of encapsulation of network headers.
  3008. */
  3009. struct skb_gso_cb {
  3010. int mac_offset;
  3011. int encap_level;
  3012. __u16 csum_start;
  3013. };
  3014. #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb)
  3015. static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
  3016. {
  3017. return (skb_mac_header(inner_skb) - inner_skb->head) -
  3018. SKB_GSO_CB(inner_skb)->mac_offset;
  3019. }
  3020. static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
  3021. {
  3022. int new_headroom, headroom;
  3023. int ret;
  3024. headroom = skb_headroom(skb);
  3025. ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
  3026. if (ret)
  3027. return ret;
  3028. new_headroom = skb_headroom(skb);
  3029. SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
  3030. return 0;
  3031. }
  3032. /* Compute the checksum for a gso segment. First compute the checksum value
  3033. * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
  3034. * then add in skb->csum (checksum from csum_start to end of packet).
  3035. * skb->csum and csum_start are then updated to reflect the checksum of the
  3036. * resultant packet starting from the transport header-- the resultant checksum
  3037. * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
  3038. * header.
  3039. */
  3040. static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
  3041. {
  3042. int plen = SKB_GSO_CB(skb)->csum_start - skb_headroom(skb) -
  3043. skb_transport_offset(skb);
  3044. __wsum partial;
  3045. partial = csum_partial(skb_transport_header(skb), plen, skb->csum);
  3046. skb->csum = res;
  3047. SKB_GSO_CB(skb)->csum_start -= plen;
  3048. return csum_fold(partial);
  3049. }
  3050. static inline bool skb_is_gso(const struct sk_buff *skb)
  3051. {
  3052. return skb_shinfo(skb)->gso_size;
  3053. }
  3054. /* Note: Should be called only if skb_is_gso(skb) is true */
  3055. static inline bool skb_is_gso_v6(const struct sk_buff *skb)
  3056. {
  3057. return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
  3058. }
  3059. void __skb_warn_lro_forwarding(const struct sk_buff *skb);
  3060. static inline bool skb_warn_if_lro(const struct sk_buff *skb)
  3061. {
  3062. /* LRO sets gso_size but not gso_type, whereas if GSO is really
  3063. * wanted then gso_type will be set. */
  3064. const struct skb_shared_info *shinfo = skb_shinfo(skb);
  3065. if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
  3066. unlikely(shinfo->gso_type == 0)) {
  3067. __skb_warn_lro_forwarding(skb);
  3068. return true;
  3069. }
  3070. return false;
  3071. }
  3072. static inline void skb_forward_csum(struct sk_buff *skb)
  3073. {
  3074. /* Unfortunately we don't support this one. Any brave souls? */
  3075. if (skb->ip_summed == CHECKSUM_COMPLETE)
  3076. skb->ip_summed = CHECKSUM_NONE;
  3077. }
  3078. /**
  3079. * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
  3080. * @skb: skb to check
  3081. *
  3082. * fresh skbs have their ip_summed set to CHECKSUM_NONE.
  3083. * Instead of forcing ip_summed to CHECKSUM_NONE, we can
  3084. * use this helper, to document places where we make this assertion.
  3085. */
  3086. static inline void skb_checksum_none_assert(const struct sk_buff *skb)
  3087. {
  3088. #ifdef DEBUG
  3089. BUG_ON(skb->ip_summed != CHECKSUM_NONE);
  3090. #endif
  3091. }
  3092. bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
  3093. int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
  3094. struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
  3095. unsigned int transport_len,
  3096. __sum16(*skb_chkf)(struct sk_buff *skb));
  3097. /**
  3098. * skb_head_is_locked - Determine if the skb->head is locked down
  3099. * @skb: skb to check
  3100. *
  3101. * The head on skbs build around a head frag can be removed if they are
  3102. * not cloned. This function returns true if the skb head is locked down
  3103. * due to either being allocated via kmalloc, or by being a clone with
  3104. * multiple references to the head.
  3105. */
  3106. static inline bool skb_head_is_locked(const struct sk_buff *skb)
  3107. {
  3108. return !skb->head_frag || skb_cloned(skb);
  3109. }
  3110. /**
  3111. * skb_gso_network_seglen - Return length of individual segments of a gso packet
  3112. *
  3113. * @skb: GSO skb
  3114. *
  3115. * skb_gso_network_seglen is used to determine the real size of the
  3116. * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
  3117. *
  3118. * The MAC/L2 header is not accounted for.
  3119. */
  3120. static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
  3121. {
  3122. unsigned int hdr_len = skb_transport_header(skb) -
  3123. skb_network_header(skb);
  3124. return hdr_len + skb_gso_transport_seglen(skb);
  3125. }
  3126. #endif /* __KERNEL__ */
  3127. #endif /* _LINUX_SKBUFF_H */