intel_ringbuffer.c 70 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <drm/drmP.h>
  30. #include "i915_drv.h"
  31. #include <drm/i915_drm.h>
  32. #include "i915_trace.h"
  33. #include "intel_drv.h"
  34. bool
  35. intel_ring_initialized(struct intel_engine_cs *ring)
  36. {
  37. struct drm_device *dev = ring->dev;
  38. if (!dev)
  39. return false;
  40. if (i915.enable_execlists) {
  41. struct intel_context *dctx = ring->default_context;
  42. struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
  43. return ringbuf->obj;
  44. } else
  45. return ring->buffer && ring->buffer->obj;
  46. }
  47. int __intel_ring_space(int head, int tail, int size)
  48. {
  49. int space = head - (tail + I915_RING_FREE_SPACE);
  50. if (space < 0)
  51. space += size;
  52. return space;
  53. }
  54. int intel_ring_space(struct intel_ringbuffer *ringbuf)
  55. {
  56. return __intel_ring_space(ringbuf->head & HEAD_ADDR,
  57. ringbuf->tail, ringbuf->size);
  58. }
  59. bool intel_ring_stopped(struct intel_engine_cs *ring)
  60. {
  61. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  62. return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
  63. }
  64. void __intel_ring_advance(struct intel_engine_cs *ring)
  65. {
  66. struct intel_ringbuffer *ringbuf = ring->buffer;
  67. ringbuf->tail &= ringbuf->size - 1;
  68. if (intel_ring_stopped(ring))
  69. return;
  70. ring->write_tail(ring, ringbuf->tail);
  71. }
  72. static int
  73. gen2_render_ring_flush(struct intel_engine_cs *ring,
  74. u32 invalidate_domains,
  75. u32 flush_domains)
  76. {
  77. u32 cmd;
  78. int ret;
  79. cmd = MI_FLUSH;
  80. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  81. cmd |= MI_NO_WRITE_FLUSH;
  82. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  83. cmd |= MI_READ_FLUSH;
  84. ret = intel_ring_begin(ring, 2);
  85. if (ret)
  86. return ret;
  87. intel_ring_emit(ring, cmd);
  88. intel_ring_emit(ring, MI_NOOP);
  89. intel_ring_advance(ring);
  90. return 0;
  91. }
  92. static int
  93. gen4_render_ring_flush(struct intel_engine_cs *ring,
  94. u32 invalidate_domains,
  95. u32 flush_domains)
  96. {
  97. struct drm_device *dev = ring->dev;
  98. u32 cmd;
  99. int ret;
  100. /*
  101. * read/write caches:
  102. *
  103. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  104. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  105. * also flushed at 2d versus 3d pipeline switches.
  106. *
  107. * read-only caches:
  108. *
  109. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  110. * MI_READ_FLUSH is set, and is always flushed on 965.
  111. *
  112. * I915_GEM_DOMAIN_COMMAND may not exist?
  113. *
  114. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  115. * invalidated when MI_EXE_FLUSH is set.
  116. *
  117. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  118. * invalidated with every MI_FLUSH.
  119. *
  120. * TLBs:
  121. *
  122. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  123. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  124. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  125. * are flushed at any MI_FLUSH.
  126. */
  127. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  128. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  129. cmd &= ~MI_NO_WRITE_FLUSH;
  130. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  131. cmd |= MI_EXE_FLUSH;
  132. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  133. (IS_G4X(dev) || IS_GEN5(dev)))
  134. cmd |= MI_INVALIDATE_ISP;
  135. ret = intel_ring_begin(ring, 2);
  136. if (ret)
  137. return ret;
  138. intel_ring_emit(ring, cmd);
  139. intel_ring_emit(ring, MI_NOOP);
  140. intel_ring_advance(ring);
  141. return 0;
  142. }
  143. /**
  144. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  145. * implementing two workarounds on gen6. From section 1.4.7.1
  146. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  147. *
  148. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  149. * produced by non-pipelined state commands), software needs to first
  150. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  151. * 0.
  152. *
  153. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  154. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  155. *
  156. * And the workaround for these two requires this workaround first:
  157. *
  158. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  159. * BEFORE the pipe-control with a post-sync op and no write-cache
  160. * flushes.
  161. *
  162. * And this last workaround is tricky because of the requirements on
  163. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  164. * volume 2 part 1:
  165. *
  166. * "1 of the following must also be set:
  167. * - Render Target Cache Flush Enable ([12] of DW1)
  168. * - Depth Cache Flush Enable ([0] of DW1)
  169. * - Stall at Pixel Scoreboard ([1] of DW1)
  170. * - Depth Stall ([13] of DW1)
  171. * - Post-Sync Operation ([13] of DW1)
  172. * - Notify Enable ([8] of DW1)"
  173. *
  174. * The cache flushes require the workaround flush that triggered this
  175. * one, so we can't use it. Depth stall would trigger the same.
  176. * Post-sync nonzero is what triggered this second workaround, so we
  177. * can't use that one either. Notify enable is IRQs, which aren't
  178. * really our business. That leaves only stall at scoreboard.
  179. */
  180. static int
  181. intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
  182. {
  183. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  184. int ret;
  185. ret = intel_ring_begin(ring, 6);
  186. if (ret)
  187. return ret;
  188. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  189. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  190. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  191. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  192. intel_ring_emit(ring, 0); /* low dword */
  193. intel_ring_emit(ring, 0); /* high dword */
  194. intel_ring_emit(ring, MI_NOOP);
  195. intel_ring_advance(ring);
  196. ret = intel_ring_begin(ring, 6);
  197. if (ret)
  198. return ret;
  199. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  200. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  201. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  202. intel_ring_emit(ring, 0);
  203. intel_ring_emit(ring, 0);
  204. intel_ring_emit(ring, MI_NOOP);
  205. intel_ring_advance(ring);
  206. return 0;
  207. }
  208. static int
  209. gen6_render_ring_flush(struct intel_engine_cs *ring,
  210. u32 invalidate_domains, u32 flush_domains)
  211. {
  212. u32 flags = 0;
  213. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  214. int ret;
  215. /* Force SNB workarounds for PIPE_CONTROL flushes */
  216. ret = intel_emit_post_sync_nonzero_flush(ring);
  217. if (ret)
  218. return ret;
  219. /* Just flush everything. Experiments have shown that reducing the
  220. * number of bits based on the write domains has little performance
  221. * impact.
  222. */
  223. if (flush_domains) {
  224. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  225. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  226. /*
  227. * Ensure that any following seqno writes only happen
  228. * when the render cache is indeed flushed.
  229. */
  230. flags |= PIPE_CONTROL_CS_STALL;
  231. }
  232. if (invalidate_domains) {
  233. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  234. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  235. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  236. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  237. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  238. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  239. /*
  240. * TLB invalidate requires a post-sync write.
  241. */
  242. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  243. }
  244. ret = intel_ring_begin(ring, 4);
  245. if (ret)
  246. return ret;
  247. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  248. intel_ring_emit(ring, flags);
  249. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  250. intel_ring_emit(ring, 0);
  251. intel_ring_advance(ring);
  252. return 0;
  253. }
  254. static int
  255. gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
  256. {
  257. int ret;
  258. ret = intel_ring_begin(ring, 4);
  259. if (ret)
  260. return ret;
  261. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  262. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  263. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  264. intel_ring_emit(ring, 0);
  265. intel_ring_emit(ring, 0);
  266. intel_ring_advance(ring);
  267. return 0;
  268. }
  269. static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
  270. {
  271. int ret;
  272. if (!ring->fbc_dirty)
  273. return 0;
  274. ret = intel_ring_begin(ring, 6);
  275. if (ret)
  276. return ret;
  277. /* WaFbcNukeOn3DBlt:ivb/hsw */
  278. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  279. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  280. intel_ring_emit(ring, value);
  281. intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
  282. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  283. intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
  284. intel_ring_advance(ring);
  285. ring->fbc_dirty = false;
  286. return 0;
  287. }
  288. static int
  289. gen7_render_ring_flush(struct intel_engine_cs *ring,
  290. u32 invalidate_domains, u32 flush_domains)
  291. {
  292. u32 flags = 0;
  293. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  294. int ret;
  295. /*
  296. * Ensure that any following seqno writes only happen when the render
  297. * cache is indeed flushed.
  298. *
  299. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  300. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  301. * don't try to be clever and just set it unconditionally.
  302. */
  303. flags |= PIPE_CONTROL_CS_STALL;
  304. /* Just flush everything. Experiments have shown that reducing the
  305. * number of bits based on the write domains has little performance
  306. * impact.
  307. */
  308. if (flush_domains) {
  309. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  310. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  311. }
  312. if (invalidate_domains) {
  313. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  314. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  315. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  316. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  317. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  318. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  319. /*
  320. * TLB invalidate requires a post-sync write.
  321. */
  322. flags |= PIPE_CONTROL_QW_WRITE;
  323. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  324. /* Workaround: we must issue a pipe_control with CS-stall bit
  325. * set before a pipe_control command that has the state cache
  326. * invalidate bit set. */
  327. gen7_render_ring_cs_stall_wa(ring);
  328. }
  329. ret = intel_ring_begin(ring, 4);
  330. if (ret)
  331. return ret;
  332. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  333. intel_ring_emit(ring, flags);
  334. intel_ring_emit(ring, scratch_addr);
  335. intel_ring_emit(ring, 0);
  336. intel_ring_advance(ring);
  337. if (!invalidate_domains && flush_domains)
  338. return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
  339. return 0;
  340. }
  341. static int
  342. gen8_emit_pipe_control(struct intel_engine_cs *ring,
  343. u32 flags, u32 scratch_addr)
  344. {
  345. int ret;
  346. ret = intel_ring_begin(ring, 6);
  347. if (ret)
  348. return ret;
  349. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  350. intel_ring_emit(ring, flags);
  351. intel_ring_emit(ring, scratch_addr);
  352. intel_ring_emit(ring, 0);
  353. intel_ring_emit(ring, 0);
  354. intel_ring_emit(ring, 0);
  355. intel_ring_advance(ring);
  356. return 0;
  357. }
  358. static int
  359. gen8_render_ring_flush(struct intel_engine_cs *ring,
  360. u32 invalidate_domains, u32 flush_domains)
  361. {
  362. u32 flags = 0;
  363. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  364. int ret;
  365. flags |= PIPE_CONTROL_CS_STALL;
  366. if (flush_domains) {
  367. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  368. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  369. }
  370. if (invalidate_domains) {
  371. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  372. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  373. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  374. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  375. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  376. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  377. flags |= PIPE_CONTROL_QW_WRITE;
  378. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  379. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  380. ret = gen8_emit_pipe_control(ring,
  381. PIPE_CONTROL_CS_STALL |
  382. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  383. 0);
  384. if (ret)
  385. return ret;
  386. }
  387. return gen8_emit_pipe_control(ring, flags, scratch_addr);
  388. }
  389. static void ring_write_tail(struct intel_engine_cs *ring,
  390. u32 value)
  391. {
  392. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  393. I915_WRITE_TAIL(ring, value);
  394. }
  395. u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
  396. {
  397. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  398. u64 acthd;
  399. if (INTEL_INFO(ring->dev)->gen >= 8)
  400. acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
  401. RING_ACTHD_UDW(ring->mmio_base));
  402. else if (INTEL_INFO(ring->dev)->gen >= 4)
  403. acthd = I915_READ(RING_ACTHD(ring->mmio_base));
  404. else
  405. acthd = I915_READ(ACTHD);
  406. return acthd;
  407. }
  408. static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
  409. {
  410. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  411. u32 addr;
  412. addr = dev_priv->status_page_dmah->busaddr;
  413. if (INTEL_INFO(ring->dev)->gen >= 4)
  414. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  415. I915_WRITE(HWS_PGA, addr);
  416. }
  417. static bool stop_ring(struct intel_engine_cs *ring)
  418. {
  419. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  420. if (!IS_GEN2(ring->dev)) {
  421. I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
  422. if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
  423. DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
  424. /* Sometimes we observe that the idle flag is not
  425. * set even though the ring is empty. So double
  426. * check before giving up.
  427. */
  428. if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
  429. return false;
  430. }
  431. }
  432. I915_WRITE_CTL(ring, 0);
  433. I915_WRITE_HEAD(ring, 0);
  434. ring->write_tail(ring, 0);
  435. if (!IS_GEN2(ring->dev)) {
  436. (void)I915_READ_CTL(ring);
  437. I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
  438. }
  439. return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
  440. }
  441. static int init_ring_common(struct intel_engine_cs *ring)
  442. {
  443. struct drm_device *dev = ring->dev;
  444. struct drm_i915_private *dev_priv = dev->dev_private;
  445. struct intel_ringbuffer *ringbuf = ring->buffer;
  446. struct drm_i915_gem_object *obj = ringbuf->obj;
  447. int ret = 0;
  448. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  449. if (!stop_ring(ring)) {
  450. /* G45 ring initialization often fails to reset head to zero */
  451. DRM_DEBUG_KMS("%s head not reset to zero "
  452. "ctl %08x head %08x tail %08x start %08x\n",
  453. ring->name,
  454. I915_READ_CTL(ring),
  455. I915_READ_HEAD(ring),
  456. I915_READ_TAIL(ring),
  457. I915_READ_START(ring));
  458. if (!stop_ring(ring)) {
  459. DRM_ERROR("failed to set %s head to zero "
  460. "ctl %08x head %08x tail %08x start %08x\n",
  461. ring->name,
  462. I915_READ_CTL(ring),
  463. I915_READ_HEAD(ring),
  464. I915_READ_TAIL(ring),
  465. I915_READ_START(ring));
  466. ret = -EIO;
  467. goto out;
  468. }
  469. }
  470. if (I915_NEED_GFX_HWS(dev))
  471. intel_ring_setup_status_page(ring);
  472. else
  473. ring_setup_phys_status_page(ring);
  474. /* Enforce ordering by reading HEAD register back */
  475. I915_READ_HEAD(ring);
  476. /* Initialize the ring. This must happen _after_ we've cleared the ring
  477. * registers with the above sequence (the readback of the HEAD registers
  478. * also enforces ordering), otherwise the hw might lose the new ring
  479. * register values. */
  480. I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
  481. I915_WRITE_CTL(ring,
  482. ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
  483. | RING_VALID);
  484. /* If the head is still not zero, the ring is dead */
  485. if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
  486. I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
  487. (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
  488. DRM_ERROR("%s initialization failed "
  489. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  490. ring->name,
  491. I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
  492. I915_READ_HEAD(ring), I915_READ_TAIL(ring),
  493. I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
  494. ret = -EIO;
  495. goto out;
  496. }
  497. if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
  498. i915_kernel_lost_context(ring->dev);
  499. else {
  500. ringbuf->head = I915_READ_HEAD(ring);
  501. ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
  502. ringbuf->space = intel_ring_space(ringbuf);
  503. ringbuf->last_retired_head = -1;
  504. }
  505. memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
  506. out:
  507. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  508. return ret;
  509. }
  510. void
  511. intel_fini_pipe_control(struct intel_engine_cs *ring)
  512. {
  513. struct drm_device *dev = ring->dev;
  514. if (ring->scratch.obj == NULL)
  515. return;
  516. if (INTEL_INFO(dev)->gen >= 5) {
  517. kunmap(sg_page(ring->scratch.obj->pages->sgl));
  518. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  519. }
  520. drm_gem_object_unreference(&ring->scratch.obj->base);
  521. ring->scratch.obj = NULL;
  522. }
  523. int
  524. intel_init_pipe_control(struct intel_engine_cs *ring)
  525. {
  526. int ret;
  527. if (ring->scratch.obj)
  528. return 0;
  529. ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
  530. if (ring->scratch.obj == NULL) {
  531. DRM_ERROR("Failed to allocate seqno page\n");
  532. ret = -ENOMEM;
  533. goto err;
  534. }
  535. ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
  536. if (ret)
  537. goto err_unref;
  538. ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
  539. if (ret)
  540. goto err_unref;
  541. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
  542. ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
  543. if (ring->scratch.cpu_page == NULL) {
  544. ret = -ENOMEM;
  545. goto err_unpin;
  546. }
  547. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  548. ring->name, ring->scratch.gtt_offset);
  549. return 0;
  550. err_unpin:
  551. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  552. err_unref:
  553. drm_gem_object_unreference(&ring->scratch.obj->base);
  554. err:
  555. return ret;
  556. }
  557. static int init_render_ring(struct intel_engine_cs *ring)
  558. {
  559. struct drm_device *dev = ring->dev;
  560. struct drm_i915_private *dev_priv = dev->dev_private;
  561. int ret = init_ring_common(ring);
  562. if (ret)
  563. return ret;
  564. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  565. if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
  566. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  567. /* We need to disable the AsyncFlip performance optimisations in order
  568. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  569. * programmed to '1' on all products.
  570. *
  571. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
  572. */
  573. if (INTEL_INFO(dev)->gen >= 6)
  574. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  575. /* Required for the hardware to program scanline values for waiting */
  576. /* WaEnableFlushTlbInvalidationMode:snb */
  577. if (INTEL_INFO(dev)->gen == 6)
  578. I915_WRITE(GFX_MODE,
  579. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  580. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  581. if (IS_GEN7(dev))
  582. I915_WRITE(GFX_MODE_GEN7,
  583. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  584. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  585. if (INTEL_INFO(dev)->gen >= 5) {
  586. ret = intel_init_pipe_control(ring);
  587. if (ret)
  588. return ret;
  589. }
  590. if (IS_GEN6(dev)) {
  591. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  592. * "If this bit is set, STCunit will have LRA as replacement
  593. * policy. [...] This bit must be reset. LRA replacement
  594. * policy is not supported."
  595. */
  596. I915_WRITE(CACHE_MODE_0,
  597. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  598. }
  599. if (INTEL_INFO(dev)->gen >= 6)
  600. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  601. if (HAS_L3_DPF(dev))
  602. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  603. return ret;
  604. }
  605. static void render_ring_cleanup(struct intel_engine_cs *ring)
  606. {
  607. struct drm_device *dev = ring->dev;
  608. struct drm_i915_private *dev_priv = dev->dev_private;
  609. if (dev_priv->semaphore_obj) {
  610. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  611. drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
  612. dev_priv->semaphore_obj = NULL;
  613. }
  614. intel_fini_pipe_control(ring);
  615. }
  616. static int gen8_rcs_signal(struct intel_engine_cs *signaller,
  617. unsigned int num_dwords)
  618. {
  619. #define MBOX_UPDATE_DWORDS 8
  620. struct drm_device *dev = signaller->dev;
  621. struct drm_i915_private *dev_priv = dev->dev_private;
  622. struct intel_engine_cs *waiter;
  623. int i, ret, num_rings;
  624. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  625. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  626. #undef MBOX_UPDATE_DWORDS
  627. ret = intel_ring_begin(signaller, num_dwords);
  628. if (ret)
  629. return ret;
  630. for_each_ring(waiter, dev_priv, i) {
  631. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  632. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  633. continue;
  634. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  635. intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
  636. PIPE_CONTROL_QW_WRITE |
  637. PIPE_CONTROL_FLUSH_ENABLE);
  638. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  639. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  640. intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
  641. intel_ring_emit(signaller, 0);
  642. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  643. MI_SEMAPHORE_TARGET(waiter->id));
  644. intel_ring_emit(signaller, 0);
  645. }
  646. return 0;
  647. }
  648. static int gen8_xcs_signal(struct intel_engine_cs *signaller,
  649. unsigned int num_dwords)
  650. {
  651. #define MBOX_UPDATE_DWORDS 6
  652. struct drm_device *dev = signaller->dev;
  653. struct drm_i915_private *dev_priv = dev->dev_private;
  654. struct intel_engine_cs *waiter;
  655. int i, ret, num_rings;
  656. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  657. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  658. #undef MBOX_UPDATE_DWORDS
  659. ret = intel_ring_begin(signaller, num_dwords);
  660. if (ret)
  661. return ret;
  662. for_each_ring(waiter, dev_priv, i) {
  663. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  664. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  665. continue;
  666. intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
  667. MI_FLUSH_DW_OP_STOREDW);
  668. intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
  669. MI_FLUSH_DW_USE_GTT);
  670. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  671. intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
  672. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  673. MI_SEMAPHORE_TARGET(waiter->id));
  674. intel_ring_emit(signaller, 0);
  675. }
  676. return 0;
  677. }
  678. static int gen6_signal(struct intel_engine_cs *signaller,
  679. unsigned int num_dwords)
  680. {
  681. struct drm_device *dev = signaller->dev;
  682. struct drm_i915_private *dev_priv = dev->dev_private;
  683. struct intel_engine_cs *useless;
  684. int i, ret, num_rings;
  685. #define MBOX_UPDATE_DWORDS 3
  686. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  687. num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
  688. #undef MBOX_UPDATE_DWORDS
  689. ret = intel_ring_begin(signaller, num_dwords);
  690. if (ret)
  691. return ret;
  692. for_each_ring(useless, dev_priv, i) {
  693. u32 mbox_reg = signaller->semaphore.mbox.signal[i];
  694. if (mbox_reg != GEN6_NOSYNC) {
  695. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  696. intel_ring_emit(signaller, mbox_reg);
  697. intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
  698. }
  699. }
  700. /* If num_dwords was rounded, make sure the tail pointer is correct */
  701. if (num_rings % 2 == 0)
  702. intel_ring_emit(signaller, MI_NOOP);
  703. return 0;
  704. }
  705. /**
  706. * gen6_add_request - Update the semaphore mailbox registers
  707. *
  708. * @ring - ring that is adding a request
  709. * @seqno - return seqno stuck into the ring
  710. *
  711. * Update the mailbox registers in the *other* rings with the current seqno.
  712. * This acts like a signal in the canonical semaphore.
  713. */
  714. static int
  715. gen6_add_request(struct intel_engine_cs *ring)
  716. {
  717. int ret;
  718. if (ring->semaphore.signal)
  719. ret = ring->semaphore.signal(ring, 4);
  720. else
  721. ret = intel_ring_begin(ring, 4);
  722. if (ret)
  723. return ret;
  724. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  725. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  726. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  727. intel_ring_emit(ring, MI_USER_INTERRUPT);
  728. __intel_ring_advance(ring);
  729. return 0;
  730. }
  731. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  732. u32 seqno)
  733. {
  734. struct drm_i915_private *dev_priv = dev->dev_private;
  735. return dev_priv->last_seqno < seqno;
  736. }
  737. /**
  738. * intel_ring_sync - sync the waiter to the signaller on seqno
  739. *
  740. * @waiter - ring that is waiting
  741. * @signaller - ring which has, or will signal
  742. * @seqno - seqno which the waiter will block on
  743. */
  744. static int
  745. gen8_ring_sync(struct intel_engine_cs *waiter,
  746. struct intel_engine_cs *signaller,
  747. u32 seqno)
  748. {
  749. struct drm_i915_private *dev_priv = waiter->dev->dev_private;
  750. int ret;
  751. ret = intel_ring_begin(waiter, 4);
  752. if (ret)
  753. return ret;
  754. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  755. MI_SEMAPHORE_GLOBAL_GTT |
  756. MI_SEMAPHORE_POLL |
  757. MI_SEMAPHORE_SAD_GTE_SDD);
  758. intel_ring_emit(waiter, seqno);
  759. intel_ring_emit(waiter,
  760. lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  761. intel_ring_emit(waiter,
  762. upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  763. intel_ring_advance(waiter);
  764. return 0;
  765. }
  766. static int
  767. gen6_ring_sync(struct intel_engine_cs *waiter,
  768. struct intel_engine_cs *signaller,
  769. u32 seqno)
  770. {
  771. u32 dw1 = MI_SEMAPHORE_MBOX |
  772. MI_SEMAPHORE_COMPARE |
  773. MI_SEMAPHORE_REGISTER;
  774. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  775. int ret;
  776. /* Throughout all of the GEM code, seqno passed implies our current
  777. * seqno is >= the last seqno executed. However for hardware the
  778. * comparison is strictly greater than.
  779. */
  780. seqno -= 1;
  781. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  782. ret = intel_ring_begin(waiter, 4);
  783. if (ret)
  784. return ret;
  785. /* If seqno wrap happened, omit the wait with no-ops */
  786. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  787. intel_ring_emit(waiter, dw1 | wait_mbox);
  788. intel_ring_emit(waiter, seqno);
  789. intel_ring_emit(waiter, 0);
  790. intel_ring_emit(waiter, MI_NOOP);
  791. } else {
  792. intel_ring_emit(waiter, MI_NOOP);
  793. intel_ring_emit(waiter, MI_NOOP);
  794. intel_ring_emit(waiter, MI_NOOP);
  795. intel_ring_emit(waiter, MI_NOOP);
  796. }
  797. intel_ring_advance(waiter);
  798. return 0;
  799. }
  800. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  801. do { \
  802. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  803. PIPE_CONTROL_DEPTH_STALL); \
  804. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  805. intel_ring_emit(ring__, 0); \
  806. intel_ring_emit(ring__, 0); \
  807. } while (0)
  808. static int
  809. pc_render_add_request(struct intel_engine_cs *ring)
  810. {
  811. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  812. int ret;
  813. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  814. * incoherent with writes to memory, i.e. completely fubar,
  815. * so we need to use PIPE_NOTIFY instead.
  816. *
  817. * However, we also need to workaround the qword write
  818. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  819. * memory before requesting an interrupt.
  820. */
  821. ret = intel_ring_begin(ring, 32);
  822. if (ret)
  823. return ret;
  824. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  825. PIPE_CONTROL_WRITE_FLUSH |
  826. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  827. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  828. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  829. intel_ring_emit(ring, 0);
  830. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  831. scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
  832. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  833. scratch_addr += 2 * CACHELINE_BYTES;
  834. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  835. scratch_addr += 2 * CACHELINE_BYTES;
  836. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  837. scratch_addr += 2 * CACHELINE_BYTES;
  838. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  839. scratch_addr += 2 * CACHELINE_BYTES;
  840. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  841. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  842. PIPE_CONTROL_WRITE_FLUSH |
  843. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  844. PIPE_CONTROL_NOTIFY);
  845. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  846. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  847. intel_ring_emit(ring, 0);
  848. __intel_ring_advance(ring);
  849. return 0;
  850. }
  851. static u32
  852. gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  853. {
  854. /* Workaround to force correct ordering between irq and seqno writes on
  855. * ivb (and maybe also on snb) by reading from a CS register (like
  856. * ACTHD) before reading the status page. */
  857. if (!lazy_coherency) {
  858. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  859. POSTING_READ(RING_ACTHD(ring->mmio_base));
  860. }
  861. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  862. }
  863. static u32
  864. ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  865. {
  866. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  867. }
  868. static void
  869. ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  870. {
  871. intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
  872. }
  873. static u32
  874. pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  875. {
  876. return ring->scratch.cpu_page[0];
  877. }
  878. static void
  879. pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  880. {
  881. ring->scratch.cpu_page[0] = seqno;
  882. }
  883. static bool
  884. gen5_ring_get_irq(struct intel_engine_cs *ring)
  885. {
  886. struct drm_device *dev = ring->dev;
  887. struct drm_i915_private *dev_priv = dev->dev_private;
  888. unsigned long flags;
  889. if (!dev->irq_enabled)
  890. return false;
  891. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  892. if (ring->irq_refcount++ == 0)
  893. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  894. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  895. return true;
  896. }
  897. static void
  898. gen5_ring_put_irq(struct intel_engine_cs *ring)
  899. {
  900. struct drm_device *dev = ring->dev;
  901. struct drm_i915_private *dev_priv = dev->dev_private;
  902. unsigned long flags;
  903. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  904. if (--ring->irq_refcount == 0)
  905. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  906. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  907. }
  908. static bool
  909. i9xx_ring_get_irq(struct intel_engine_cs *ring)
  910. {
  911. struct drm_device *dev = ring->dev;
  912. struct drm_i915_private *dev_priv = dev->dev_private;
  913. unsigned long flags;
  914. if (!dev->irq_enabled)
  915. return false;
  916. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  917. if (ring->irq_refcount++ == 0) {
  918. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  919. I915_WRITE(IMR, dev_priv->irq_mask);
  920. POSTING_READ(IMR);
  921. }
  922. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  923. return true;
  924. }
  925. static void
  926. i9xx_ring_put_irq(struct intel_engine_cs *ring)
  927. {
  928. struct drm_device *dev = ring->dev;
  929. struct drm_i915_private *dev_priv = dev->dev_private;
  930. unsigned long flags;
  931. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  932. if (--ring->irq_refcount == 0) {
  933. dev_priv->irq_mask |= ring->irq_enable_mask;
  934. I915_WRITE(IMR, dev_priv->irq_mask);
  935. POSTING_READ(IMR);
  936. }
  937. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  938. }
  939. static bool
  940. i8xx_ring_get_irq(struct intel_engine_cs *ring)
  941. {
  942. struct drm_device *dev = ring->dev;
  943. struct drm_i915_private *dev_priv = dev->dev_private;
  944. unsigned long flags;
  945. if (!dev->irq_enabled)
  946. return false;
  947. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  948. if (ring->irq_refcount++ == 0) {
  949. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  950. I915_WRITE16(IMR, dev_priv->irq_mask);
  951. POSTING_READ16(IMR);
  952. }
  953. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  954. return true;
  955. }
  956. static void
  957. i8xx_ring_put_irq(struct intel_engine_cs *ring)
  958. {
  959. struct drm_device *dev = ring->dev;
  960. struct drm_i915_private *dev_priv = dev->dev_private;
  961. unsigned long flags;
  962. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  963. if (--ring->irq_refcount == 0) {
  964. dev_priv->irq_mask |= ring->irq_enable_mask;
  965. I915_WRITE16(IMR, dev_priv->irq_mask);
  966. POSTING_READ16(IMR);
  967. }
  968. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  969. }
  970. void intel_ring_setup_status_page(struct intel_engine_cs *ring)
  971. {
  972. struct drm_device *dev = ring->dev;
  973. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  974. u32 mmio = 0;
  975. /* The ring status page addresses are no longer next to the rest of
  976. * the ring registers as of gen7.
  977. */
  978. if (IS_GEN7(dev)) {
  979. switch (ring->id) {
  980. case RCS:
  981. mmio = RENDER_HWS_PGA_GEN7;
  982. break;
  983. case BCS:
  984. mmio = BLT_HWS_PGA_GEN7;
  985. break;
  986. /*
  987. * VCS2 actually doesn't exist on Gen7. Only shut up
  988. * gcc switch check warning
  989. */
  990. case VCS2:
  991. case VCS:
  992. mmio = BSD_HWS_PGA_GEN7;
  993. break;
  994. case VECS:
  995. mmio = VEBOX_HWS_PGA_GEN7;
  996. break;
  997. }
  998. } else if (IS_GEN6(ring->dev)) {
  999. mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
  1000. } else {
  1001. /* XXX: gen8 returns to sanity */
  1002. mmio = RING_HWS_PGA(ring->mmio_base);
  1003. }
  1004. I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
  1005. POSTING_READ(mmio);
  1006. /*
  1007. * Flush the TLB for this page
  1008. *
  1009. * FIXME: These two bits have disappeared on gen8, so a question
  1010. * arises: do we still need this and if so how should we go about
  1011. * invalidating the TLB?
  1012. */
  1013. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
  1014. u32 reg = RING_INSTPM(ring->mmio_base);
  1015. /* ring should be idle before issuing a sync flush*/
  1016. WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1017. I915_WRITE(reg,
  1018. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  1019. INSTPM_SYNC_FLUSH));
  1020. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  1021. 1000))
  1022. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  1023. ring->name);
  1024. }
  1025. }
  1026. static int
  1027. bsd_ring_flush(struct intel_engine_cs *ring,
  1028. u32 invalidate_domains,
  1029. u32 flush_domains)
  1030. {
  1031. int ret;
  1032. ret = intel_ring_begin(ring, 2);
  1033. if (ret)
  1034. return ret;
  1035. intel_ring_emit(ring, MI_FLUSH);
  1036. intel_ring_emit(ring, MI_NOOP);
  1037. intel_ring_advance(ring);
  1038. return 0;
  1039. }
  1040. static int
  1041. i9xx_add_request(struct intel_engine_cs *ring)
  1042. {
  1043. int ret;
  1044. ret = intel_ring_begin(ring, 4);
  1045. if (ret)
  1046. return ret;
  1047. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1048. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1049. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  1050. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1051. __intel_ring_advance(ring);
  1052. return 0;
  1053. }
  1054. static bool
  1055. gen6_ring_get_irq(struct intel_engine_cs *ring)
  1056. {
  1057. struct drm_device *dev = ring->dev;
  1058. struct drm_i915_private *dev_priv = dev->dev_private;
  1059. unsigned long flags;
  1060. if (!dev->irq_enabled)
  1061. return false;
  1062. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1063. if (ring->irq_refcount++ == 0) {
  1064. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1065. I915_WRITE_IMR(ring,
  1066. ~(ring->irq_enable_mask |
  1067. GT_PARITY_ERROR(dev)));
  1068. else
  1069. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1070. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1071. }
  1072. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1073. return true;
  1074. }
  1075. static void
  1076. gen6_ring_put_irq(struct intel_engine_cs *ring)
  1077. {
  1078. struct drm_device *dev = ring->dev;
  1079. struct drm_i915_private *dev_priv = dev->dev_private;
  1080. unsigned long flags;
  1081. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1082. if (--ring->irq_refcount == 0) {
  1083. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1084. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  1085. else
  1086. I915_WRITE_IMR(ring, ~0);
  1087. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1088. }
  1089. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1090. }
  1091. static bool
  1092. hsw_vebox_get_irq(struct intel_engine_cs *ring)
  1093. {
  1094. struct drm_device *dev = ring->dev;
  1095. struct drm_i915_private *dev_priv = dev->dev_private;
  1096. unsigned long flags;
  1097. if (!dev->irq_enabled)
  1098. return false;
  1099. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1100. if (ring->irq_refcount++ == 0) {
  1101. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1102. gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
  1103. }
  1104. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1105. return true;
  1106. }
  1107. static void
  1108. hsw_vebox_put_irq(struct intel_engine_cs *ring)
  1109. {
  1110. struct drm_device *dev = ring->dev;
  1111. struct drm_i915_private *dev_priv = dev->dev_private;
  1112. unsigned long flags;
  1113. if (!dev->irq_enabled)
  1114. return;
  1115. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1116. if (--ring->irq_refcount == 0) {
  1117. I915_WRITE_IMR(ring, ~0);
  1118. gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
  1119. }
  1120. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1121. }
  1122. static bool
  1123. gen8_ring_get_irq(struct intel_engine_cs *ring)
  1124. {
  1125. struct drm_device *dev = ring->dev;
  1126. struct drm_i915_private *dev_priv = dev->dev_private;
  1127. unsigned long flags;
  1128. if (!dev->irq_enabled)
  1129. return false;
  1130. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1131. if (ring->irq_refcount++ == 0) {
  1132. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1133. I915_WRITE_IMR(ring,
  1134. ~(ring->irq_enable_mask |
  1135. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  1136. } else {
  1137. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1138. }
  1139. POSTING_READ(RING_IMR(ring->mmio_base));
  1140. }
  1141. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1142. return true;
  1143. }
  1144. static void
  1145. gen8_ring_put_irq(struct intel_engine_cs *ring)
  1146. {
  1147. struct drm_device *dev = ring->dev;
  1148. struct drm_i915_private *dev_priv = dev->dev_private;
  1149. unsigned long flags;
  1150. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1151. if (--ring->irq_refcount == 0) {
  1152. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1153. I915_WRITE_IMR(ring,
  1154. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1155. } else {
  1156. I915_WRITE_IMR(ring, ~0);
  1157. }
  1158. POSTING_READ(RING_IMR(ring->mmio_base));
  1159. }
  1160. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1161. }
  1162. static int
  1163. i965_dispatch_execbuffer(struct intel_engine_cs *ring,
  1164. u64 offset, u32 length,
  1165. unsigned flags)
  1166. {
  1167. int ret;
  1168. ret = intel_ring_begin(ring, 2);
  1169. if (ret)
  1170. return ret;
  1171. intel_ring_emit(ring,
  1172. MI_BATCH_BUFFER_START |
  1173. MI_BATCH_GTT |
  1174. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1175. intel_ring_emit(ring, offset);
  1176. intel_ring_advance(ring);
  1177. return 0;
  1178. }
  1179. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1180. #define I830_BATCH_LIMIT (256*1024)
  1181. static int
  1182. i830_dispatch_execbuffer(struct intel_engine_cs *ring,
  1183. u64 offset, u32 len,
  1184. unsigned flags)
  1185. {
  1186. int ret;
  1187. if (flags & I915_DISPATCH_PINNED) {
  1188. ret = intel_ring_begin(ring, 4);
  1189. if (ret)
  1190. return ret;
  1191. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1192. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1193. intel_ring_emit(ring, offset + len - 8);
  1194. intel_ring_emit(ring, MI_NOOP);
  1195. intel_ring_advance(ring);
  1196. } else {
  1197. u32 cs_offset = ring->scratch.gtt_offset;
  1198. if (len > I830_BATCH_LIMIT)
  1199. return -ENOSPC;
  1200. ret = intel_ring_begin(ring, 9+3);
  1201. if (ret)
  1202. return ret;
  1203. /* Blit the batch (which has now all relocs applied) to the stable batch
  1204. * scratch bo area (so that the CS never stumbles over its tlb
  1205. * invalidation bug) ... */
  1206. intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
  1207. XY_SRC_COPY_BLT_WRITE_ALPHA |
  1208. XY_SRC_COPY_BLT_WRITE_RGB);
  1209. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
  1210. intel_ring_emit(ring, 0);
  1211. intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
  1212. intel_ring_emit(ring, cs_offset);
  1213. intel_ring_emit(ring, 0);
  1214. intel_ring_emit(ring, 4096);
  1215. intel_ring_emit(ring, offset);
  1216. intel_ring_emit(ring, MI_FLUSH);
  1217. /* ... and execute it. */
  1218. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1219. intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1220. intel_ring_emit(ring, cs_offset + len - 8);
  1221. intel_ring_advance(ring);
  1222. }
  1223. return 0;
  1224. }
  1225. static int
  1226. i915_dispatch_execbuffer(struct intel_engine_cs *ring,
  1227. u64 offset, u32 len,
  1228. unsigned flags)
  1229. {
  1230. int ret;
  1231. ret = intel_ring_begin(ring, 2);
  1232. if (ret)
  1233. return ret;
  1234. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1235. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1236. intel_ring_advance(ring);
  1237. return 0;
  1238. }
  1239. static void cleanup_status_page(struct intel_engine_cs *ring)
  1240. {
  1241. struct drm_i915_gem_object *obj;
  1242. obj = ring->status_page.obj;
  1243. if (obj == NULL)
  1244. return;
  1245. kunmap(sg_page(obj->pages->sgl));
  1246. i915_gem_object_ggtt_unpin(obj);
  1247. drm_gem_object_unreference(&obj->base);
  1248. ring->status_page.obj = NULL;
  1249. }
  1250. static int init_status_page(struct intel_engine_cs *ring)
  1251. {
  1252. struct drm_i915_gem_object *obj;
  1253. if ((obj = ring->status_page.obj) == NULL) {
  1254. unsigned flags;
  1255. int ret;
  1256. obj = i915_gem_alloc_object(ring->dev, 4096);
  1257. if (obj == NULL) {
  1258. DRM_ERROR("Failed to allocate status page\n");
  1259. return -ENOMEM;
  1260. }
  1261. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1262. if (ret)
  1263. goto err_unref;
  1264. flags = 0;
  1265. if (!HAS_LLC(ring->dev))
  1266. /* On g33, we cannot place HWS above 256MiB, so
  1267. * restrict its pinning to the low mappable arena.
  1268. * Though this restriction is not documented for
  1269. * gen4, gen5, or byt, they also behave similarly
  1270. * and hang if the HWS is placed at the top of the
  1271. * GTT. To generalise, it appears that all !llc
  1272. * platforms have issues with us placing the HWS
  1273. * above the mappable region (even though we never
  1274. * actualy map it).
  1275. */
  1276. flags |= PIN_MAPPABLE;
  1277. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1278. if (ret) {
  1279. err_unref:
  1280. drm_gem_object_unreference(&obj->base);
  1281. return ret;
  1282. }
  1283. ring->status_page.obj = obj;
  1284. }
  1285. ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1286. ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1287. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1288. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1289. ring->name, ring->status_page.gfx_addr);
  1290. return 0;
  1291. }
  1292. static int init_phys_status_page(struct intel_engine_cs *ring)
  1293. {
  1294. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1295. if (!dev_priv->status_page_dmah) {
  1296. dev_priv->status_page_dmah =
  1297. drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
  1298. if (!dev_priv->status_page_dmah)
  1299. return -ENOMEM;
  1300. }
  1301. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1302. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1303. return 0;
  1304. }
  1305. void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1306. {
  1307. if (!ringbuf->obj)
  1308. return;
  1309. iounmap(ringbuf->virtual_start);
  1310. i915_gem_object_ggtt_unpin(ringbuf->obj);
  1311. drm_gem_object_unreference(&ringbuf->obj->base);
  1312. ringbuf->obj = NULL;
  1313. }
  1314. int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1315. struct intel_ringbuffer *ringbuf)
  1316. {
  1317. struct drm_i915_private *dev_priv = to_i915(dev);
  1318. struct drm_i915_gem_object *obj;
  1319. int ret;
  1320. if (ringbuf->obj)
  1321. return 0;
  1322. obj = NULL;
  1323. if (!HAS_LLC(dev))
  1324. obj = i915_gem_object_create_stolen(dev, ringbuf->size);
  1325. if (obj == NULL)
  1326. obj = i915_gem_alloc_object(dev, ringbuf->size);
  1327. if (obj == NULL)
  1328. return -ENOMEM;
  1329. /* mark ring buffers as read-only from GPU side by default */
  1330. obj->gt_ro = 1;
  1331. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
  1332. if (ret)
  1333. goto err_unref;
  1334. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1335. if (ret)
  1336. goto err_unpin;
  1337. ringbuf->virtual_start =
  1338. ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
  1339. ringbuf->size);
  1340. if (ringbuf->virtual_start == NULL) {
  1341. ret = -EINVAL;
  1342. goto err_unpin;
  1343. }
  1344. ringbuf->obj = obj;
  1345. return 0;
  1346. err_unpin:
  1347. i915_gem_object_ggtt_unpin(obj);
  1348. err_unref:
  1349. drm_gem_object_unreference(&obj->base);
  1350. return ret;
  1351. }
  1352. static int intel_init_ring_buffer(struct drm_device *dev,
  1353. struct intel_engine_cs *ring)
  1354. {
  1355. struct intel_ringbuffer *ringbuf = ring->buffer;
  1356. int ret;
  1357. if (ringbuf == NULL) {
  1358. ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
  1359. if (!ringbuf)
  1360. return -ENOMEM;
  1361. ring->buffer = ringbuf;
  1362. }
  1363. ring->dev = dev;
  1364. INIT_LIST_HEAD(&ring->active_list);
  1365. INIT_LIST_HEAD(&ring->request_list);
  1366. INIT_LIST_HEAD(&ring->execlist_queue);
  1367. ringbuf->size = 32 * PAGE_SIZE;
  1368. ringbuf->ring = ring;
  1369. memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
  1370. init_waitqueue_head(&ring->irq_queue);
  1371. if (I915_NEED_GFX_HWS(dev)) {
  1372. ret = init_status_page(ring);
  1373. if (ret)
  1374. goto error;
  1375. } else {
  1376. BUG_ON(ring->id != RCS);
  1377. ret = init_phys_status_page(ring);
  1378. if (ret)
  1379. goto error;
  1380. }
  1381. ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
  1382. if (ret) {
  1383. DRM_ERROR("Failed to allocate ringbuffer %s: %d\n", ring->name, ret);
  1384. goto error;
  1385. }
  1386. /* Workaround an erratum on the i830 which causes a hang if
  1387. * the TAIL pointer points to within the last 2 cachelines
  1388. * of the buffer.
  1389. */
  1390. ringbuf->effective_size = ringbuf->size;
  1391. if (IS_I830(dev) || IS_845G(dev))
  1392. ringbuf->effective_size -= 2 * CACHELINE_BYTES;
  1393. ret = i915_cmd_parser_init_ring(ring);
  1394. if (ret)
  1395. goto error;
  1396. ret = ring->init(ring);
  1397. if (ret)
  1398. goto error;
  1399. return 0;
  1400. error:
  1401. kfree(ringbuf);
  1402. ring->buffer = NULL;
  1403. return ret;
  1404. }
  1405. void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
  1406. {
  1407. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  1408. struct intel_ringbuffer *ringbuf = ring->buffer;
  1409. if (!intel_ring_initialized(ring))
  1410. return;
  1411. intel_stop_ring_buffer(ring);
  1412. WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1413. intel_destroy_ringbuffer_obj(ringbuf);
  1414. ring->preallocated_lazy_request = NULL;
  1415. ring->outstanding_lazy_seqno = 0;
  1416. if (ring->cleanup)
  1417. ring->cleanup(ring);
  1418. cleanup_status_page(ring);
  1419. i915_cmd_parser_fini_ring(ring);
  1420. kfree(ringbuf);
  1421. ring->buffer = NULL;
  1422. }
  1423. static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
  1424. {
  1425. struct intel_ringbuffer *ringbuf = ring->buffer;
  1426. struct drm_i915_gem_request *request;
  1427. u32 seqno = 0;
  1428. int ret;
  1429. if (ringbuf->last_retired_head != -1) {
  1430. ringbuf->head = ringbuf->last_retired_head;
  1431. ringbuf->last_retired_head = -1;
  1432. ringbuf->space = intel_ring_space(ringbuf);
  1433. if (ringbuf->space >= n)
  1434. return 0;
  1435. }
  1436. list_for_each_entry(request, &ring->request_list, list) {
  1437. if (__intel_ring_space(request->tail, ringbuf->tail,
  1438. ringbuf->size) >= n) {
  1439. seqno = request->seqno;
  1440. break;
  1441. }
  1442. }
  1443. if (seqno == 0)
  1444. return -ENOSPC;
  1445. ret = i915_wait_seqno(ring, seqno);
  1446. if (ret)
  1447. return ret;
  1448. i915_gem_retire_requests_ring(ring);
  1449. ringbuf->head = ringbuf->last_retired_head;
  1450. ringbuf->last_retired_head = -1;
  1451. ringbuf->space = intel_ring_space(ringbuf);
  1452. return 0;
  1453. }
  1454. static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
  1455. {
  1456. struct drm_device *dev = ring->dev;
  1457. struct drm_i915_private *dev_priv = dev->dev_private;
  1458. struct intel_ringbuffer *ringbuf = ring->buffer;
  1459. unsigned long end;
  1460. int ret;
  1461. ret = intel_ring_wait_request(ring, n);
  1462. if (ret != -ENOSPC)
  1463. return ret;
  1464. /* force the tail write in case we have been skipping them */
  1465. __intel_ring_advance(ring);
  1466. /* With GEM the hangcheck timer should kick us out of the loop,
  1467. * leaving it early runs the risk of corrupting GEM state (due
  1468. * to running on almost untested codepaths). But on resume
  1469. * timers don't work yet, so prevent a complete hang in that
  1470. * case by choosing an insanely large timeout. */
  1471. end = jiffies + 60 * HZ;
  1472. trace_i915_ring_wait_begin(ring);
  1473. do {
  1474. ringbuf->head = I915_READ_HEAD(ring);
  1475. ringbuf->space = intel_ring_space(ringbuf);
  1476. if (ringbuf->space >= n) {
  1477. ret = 0;
  1478. break;
  1479. }
  1480. if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
  1481. dev->primary->master) {
  1482. struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
  1483. if (master_priv->sarea_priv)
  1484. master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
  1485. }
  1486. msleep(1);
  1487. if (dev_priv->mm.interruptible && signal_pending(current)) {
  1488. ret = -ERESTARTSYS;
  1489. break;
  1490. }
  1491. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1492. dev_priv->mm.interruptible);
  1493. if (ret)
  1494. break;
  1495. if (time_after(jiffies, end)) {
  1496. ret = -EBUSY;
  1497. break;
  1498. }
  1499. } while (1);
  1500. trace_i915_ring_wait_end(ring);
  1501. return ret;
  1502. }
  1503. static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
  1504. {
  1505. uint32_t __iomem *virt;
  1506. struct intel_ringbuffer *ringbuf = ring->buffer;
  1507. int rem = ringbuf->size - ringbuf->tail;
  1508. if (ringbuf->space < rem) {
  1509. int ret = ring_wait_for_space(ring, rem);
  1510. if (ret)
  1511. return ret;
  1512. }
  1513. virt = ringbuf->virtual_start + ringbuf->tail;
  1514. rem /= 4;
  1515. while (rem--)
  1516. iowrite32(MI_NOOP, virt++);
  1517. ringbuf->tail = 0;
  1518. ringbuf->space = intel_ring_space(ringbuf);
  1519. return 0;
  1520. }
  1521. int intel_ring_idle(struct intel_engine_cs *ring)
  1522. {
  1523. u32 seqno;
  1524. int ret;
  1525. /* We need to add any requests required to flush the objects and ring */
  1526. if (ring->outstanding_lazy_seqno) {
  1527. ret = i915_add_request(ring, NULL);
  1528. if (ret)
  1529. return ret;
  1530. }
  1531. /* Wait upon the last request to be completed */
  1532. if (list_empty(&ring->request_list))
  1533. return 0;
  1534. seqno = list_entry(ring->request_list.prev,
  1535. struct drm_i915_gem_request,
  1536. list)->seqno;
  1537. return i915_wait_seqno(ring, seqno);
  1538. }
  1539. static int
  1540. intel_ring_alloc_seqno(struct intel_engine_cs *ring)
  1541. {
  1542. if (ring->outstanding_lazy_seqno)
  1543. return 0;
  1544. if (ring->preallocated_lazy_request == NULL) {
  1545. struct drm_i915_gem_request *request;
  1546. request = kmalloc(sizeof(*request), GFP_KERNEL);
  1547. if (request == NULL)
  1548. return -ENOMEM;
  1549. ring->preallocated_lazy_request = request;
  1550. }
  1551. return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
  1552. }
  1553. static int __intel_ring_prepare(struct intel_engine_cs *ring,
  1554. int bytes)
  1555. {
  1556. struct intel_ringbuffer *ringbuf = ring->buffer;
  1557. int ret;
  1558. if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
  1559. ret = intel_wrap_ring_buffer(ring);
  1560. if (unlikely(ret))
  1561. return ret;
  1562. }
  1563. if (unlikely(ringbuf->space < bytes)) {
  1564. ret = ring_wait_for_space(ring, bytes);
  1565. if (unlikely(ret))
  1566. return ret;
  1567. }
  1568. return 0;
  1569. }
  1570. int intel_ring_begin(struct intel_engine_cs *ring,
  1571. int num_dwords)
  1572. {
  1573. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1574. int ret;
  1575. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1576. dev_priv->mm.interruptible);
  1577. if (ret)
  1578. return ret;
  1579. ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
  1580. if (ret)
  1581. return ret;
  1582. /* Preallocate the olr before touching the ring */
  1583. ret = intel_ring_alloc_seqno(ring);
  1584. if (ret)
  1585. return ret;
  1586. ring->buffer->space -= num_dwords * sizeof(uint32_t);
  1587. return 0;
  1588. }
  1589. /* Align the ring tail to a cacheline boundary */
  1590. int intel_ring_cacheline_align(struct intel_engine_cs *ring)
  1591. {
  1592. int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  1593. int ret;
  1594. if (num_dwords == 0)
  1595. return 0;
  1596. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  1597. ret = intel_ring_begin(ring, num_dwords);
  1598. if (ret)
  1599. return ret;
  1600. while (num_dwords--)
  1601. intel_ring_emit(ring, MI_NOOP);
  1602. intel_ring_advance(ring);
  1603. return 0;
  1604. }
  1605. void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
  1606. {
  1607. struct drm_device *dev = ring->dev;
  1608. struct drm_i915_private *dev_priv = dev->dev_private;
  1609. BUG_ON(ring->outstanding_lazy_seqno);
  1610. if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
  1611. I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
  1612. I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
  1613. if (HAS_VEBOX(dev))
  1614. I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
  1615. }
  1616. ring->set_seqno(ring, seqno);
  1617. ring->hangcheck.seqno = seqno;
  1618. }
  1619. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
  1620. u32 value)
  1621. {
  1622. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1623. /* Every tail move must follow the sequence below */
  1624. /* Disable notification that the ring is IDLE. The GT
  1625. * will then assume that it is busy and bring it out of rc6.
  1626. */
  1627. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1628. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1629. /* Clear the context id. Here be magic! */
  1630. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  1631. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  1632. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  1633. GEN6_BSD_SLEEP_INDICATOR) == 0,
  1634. 50))
  1635. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  1636. /* Now that the ring is fully powered up, update the tail */
  1637. I915_WRITE_TAIL(ring, value);
  1638. POSTING_READ(RING_TAIL(ring->mmio_base));
  1639. /* Let the ring send IDLE messages to the GT again,
  1640. * and so let it sleep to conserve power when idle.
  1641. */
  1642. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1643. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1644. }
  1645. static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
  1646. u32 invalidate, u32 flush)
  1647. {
  1648. uint32_t cmd;
  1649. int ret;
  1650. ret = intel_ring_begin(ring, 4);
  1651. if (ret)
  1652. return ret;
  1653. cmd = MI_FLUSH_DW;
  1654. if (INTEL_INFO(ring->dev)->gen >= 8)
  1655. cmd += 1;
  1656. /*
  1657. * Bspec vol 1c.5 - video engine command streamer:
  1658. * "If ENABLED, all TLBs will be invalidated once the flush
  1659. * operation is complete. This bit is only valid when the
  1660. * Post-Sync Operation field is a value of 1h or 3h."
  1661. */
  1662. if (invalidate & I915_GEM_GPU_DOMAINS)
  1663. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
  1664. MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  1665. intel_ring_emit(ring, cmd);
  1666. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1667. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1668. intel_ring_emit(ring, 0); /* upper addr */
  1669. intel_ring_emit(ring, 0); /* value */
  1670. } else {
  1671. intel_ring_emit(ring, 0);
  1672. intel_ring_emit(ring, MI_NOOP);
  1673. }
  1674. intel_ring_advance(ring);
  1675. return 0;
  1676. }
  1677. static int
  1678. gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1679. u64 offset, u32 len,
  1680. unsigned flags)
  1681. {
  1682. bool ppgtt = USES_PPGTT(ring->dev) && !(flags & I915_DISPATCH_SECURE);
  1683. int ret;
  1684. ret = intel_ring_begin(ring, 4);
  1685. if (ret)
  1686. return ret;
  1687. /* FIXME(BDW): Address space and security selectors. */
  1688. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
  1689. intel_ring_emit(ring, lower_32_bits(offset));
  1690. intel_ring_emit(ring, upper_32_bits(offset));
  1691. intel_ring_emit(ring, MI_NOOP);
  1692. intel_ring_advance(ring);
  1693. return 0;
  1694. }
  1695. static int
  1696. hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1697. u64 offset, u32 len,
  1698. unsigned flags)
  1699. {
  1700. int ret;
  1701. ret = intel_ring_begin(ring, 2);
  1702. if (ret)
  1703. return ret;
  1704. intel_ring_emit(ring,
  1705. MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
  1706. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
  1707. /* bit0-7 is the length on GEN6+ */
  1708. intel_ring_emit(ring, offset);
  1709. intel_ring_advance(ring);
  1710. return 0;
  1711. }
  1712. static int
  1713. gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1714. u64 offset, u32 len,
  1715. unsigned flags)
  1716. {
  1717. int ret;
  1718. ret = intel_ring_begin(ring, 2);
  1719. if (ret)
  1720. return ret;
  1721. intel_ring_emit(ring,
  1722. MI_BATCH_BUFFER_START |
  1723. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1724. /* bit0-7 is the length on GEN6+ */
  1725. intel_ring_emit(ring, offset);
  1726. intel_ring_advance(ring);
  1727. return 0;
  1728. }
  1729. /* Blitter support (SandyBridge+) */
  1730. static int gen6_ring_flush(struct intel_engine_cs *ring,
  1731. u32 invalidate, u32 flush)
  1732. {
  1733. struct drm_device *dev = ring->dev;
  1734. uint32_t cmd;
  1735. int ret;
  1736. ret = intel_ring_begin(ring, 4);
  1737. if (ret)
  1738. return ret;
  1739. cmd = MI_FLUSH_DW;
  1740. if (INTEL_INFO(ring->dev)->gen >= 8)
  1741. cmd += 1;
  1742. /*
  1743. * Bspec vol 1c.3 - blitter engine command streamer:
  1744. * "If ENABLED, all TLBs will be invalidated once the flush
  1745. * operation is complete. This bit is only valid when the
  1746. * Post-Sync Operation field is a value of 1h or 3h."
  1747. */
  1748. if (invalidate & I915_GEM_DOMAIN_RENDER)
  1749. cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
  1750. MI_FLUSH_DW_OP_STOREDW;
  1751. intel_ring_emit(ring, cmd);
  1752. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1753. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1754. intel_ring_emit(ring, 0); /* upper addr */
  1755. intel_ring_emit(ring, 0); /* value */
  1756. } else {
  1757. intel_ring_emit(ring, 0);
  1758. intel_ring_emit(ring, MI_NOOP);
  1759. }
  1760. intel_ring_advance(ring);
  1761. if (IS_GEN7(dev) && !invalidate && flush)
  1762. return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
  1763. return 0;
  1764. }
  1765. int intel_init_render_ring_buffer(struct drm_device *dev)
  1766. {
  1767. struct drm_i915_private *dev_priv = dev->dev_private;
  1768. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  1769. struct drm_i915_gem_object *obj;
  1770. int ret;
  1771. ring->name = "render ring";
  1772. ring->id = RCS;
  1773. ring->mmio_base = RENDER_RING_BASE;
  1774. if (INTEL_INFO(dev)->gen >= 8) {
  1775. if (i915_semaphore_is_enabled(dev)) {
  1776. obj = i915_gem_alloc_object(dev, 4096);
  1777. if (obj == NULL) {
  1778. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  1779. i915.semaphores = 0;
  1780. } else {
  1781. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1782. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  1783. if (ret != 0) {
  1784. drm_gem_object_unreference(&obj->base);
  1785. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  1786. i915.semaphores = 0;
  1787. } else
  1788. dev_priv->semaphore_obj = obj;
  1789. }
  1790. }
  1791. ring->add_request = gen6_add_request;
  1792. ring->flush = gen8_render_ring_flush;
  1793. ring->irq_get = gen8_ring_get_irq;
  1794. ring->irq_put = gen8_ring_put_irq;
  1795. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  1796. ring->get_seqno = gen6_ring_get_seqno;
  1797. ring->set_seqno = ring_set_seqno;
  1798. if (i915_semaphore_is_enabled(dev)) {
  1799. WARN_ON(!dev_priv->semaphore_obj);
  1800. ring->semaphore.sync_to = gen8_ring_sync;
  1801. ring->semaphore.signal = gen8_rcs_signal;
  1802. GEN8_RING_SEMAPHORE_INIT;
  1803. }
  1804. } else if (INTEL_INFO(dev)->gen >= 6) {
  1805. ring->add_request = gen6_add_request;
  1806. ring->flush = gen7_render_ring_flush;
  1807. if (INTEL_INFO(dev)->gen == 6)
  1808. ring->flush = gen6_render_ring_flush;
  1809. ring->irq_get = gen6_ring_get_irq;
  1810. ring->irq_put = gen6_ring_put_irq;
  1811. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  1812. ring->get_seqno = gen6_ring_get_seqno;
  1813. ring->set_seqno = ring_set_seqno;
  1814. if (i915_semaphore_is_enabled(dev)) {
  1815. ring->semaphore.sync_to = gen6_ring_sync;
  1816. ring->semaphore.signal = gen6_signal;
  1817. /*
  1818. * The current semaphore is only applied on pre-gen8
  1819. * platform. And there is no VCS2 ring on the pre-gen8
  1820. * platform. So the semaphore between RCS and VCS2 is
  1821. * initialized as INVALID. Gen8 will initialize the
  1822. * sema between VCS2 and RCS later.
  1823. */
  1824. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  1825. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
  1826. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
  1827. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
  1828. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  1829. ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  1830. ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
  1831. ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
  1832. ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
  1833. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  1834. }
  1835. } else if (IS_GEN5(dev)) {
  1836. ring->add_request = pc_render_add_request;
  1837. ring->flush = gen4_render_ring_flush;
  1838. ring->get_seqno = pc_render_get_seqno;
  1839. ring->set_seqno = pc_render_set_seqno;
  1840. ring->irq_get = gen5_ring_get_irq;
  1841. ring->irq_put = gen5_ring_put_irq;
  1842. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  1843. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  1844. } else {
  1845. ring->add_request = i9xx_add_request;
  1846. if (INTEL_INFO(dev)->gen < 4)
  1847. ring->flush = gen2_render_ring_flush;
  1848. else
  1849. ring->flush = gen4_render_ring_flush;
  1850. ring->get_seqno = ring_get_seqno;
  1851. ring->set_seqno = ring_set_seqno;
  1852. if (IS_GEN2(dev)) {
  1853. ring->irq_get = i8xx_ring_get_irq;
  1854. ring->irq_put = i8xx_ring_put_irq;
  1855. } else {
  1856. ring->irq_get = i9xx_ring_get_irq;
  1857. ring->irq_put = i9xx_ring_put_irq;
  1858. }
  1859. ring->irq_enable_mask = I915_USER_INTERRUPT;
  1860. }
  1861. ring->write_tail = ring_write_tail;
  1862. if (IS_HASWELL(dev))
  1863. ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  1864. else if (IS_GEN8(dev))
  1865. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  1866. else if (INTEL_INFO(dev)->gen >= 6)
  1867. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  1868. else if (INTEL_INFO(dev)->gen >= 4)
  1869. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  1870. else if (IS_I830(dev) || IS_845G(dev))
  1871. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  1872. else
  1873. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  1874. ring->init = init_render_ring;
  1875. ring->cleanup = render_ring_cleanup;
  1876. /* Workaround batchbuffer to combat CS tlb bug. */
  1877. if (HAS_BROKEN_CS_TLB(dev)) {
  1878. obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
  1879. if (obj == NULL) {
  1880. DRM_ERROR("Failed to allocate batch bo\n");
  1881. return -ENOMEM;
  1882. }
  1883. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  1884. if (ret != 0) {
  1885. drm_gem_object_unreference(&obj->base);
  1886. DRM_ERROR("Failed to ping batch bo\n");
  1887. return ret;
  1888. }
  1889. ring->scratch.obj = obj;
  1890. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  1891. }
  1892. return intel_init_ring_buffer(dev, ring);
  1893. }
  1894. int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
  1895. {
  1896. struct drm_i915_private *dev_priv = dev->dev_private;
  1897. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  1898. struct intel_ringbuffer *ringbuf = ring->buffer;
  1899. int ret;
  1900. if (ringbuf == NULL) {
  1901. ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
  1902. if (!ringbuf)
  1903. return -ENOMEM;
  1904. ring->buffer = ringbuf;
  1905. }
  1906. ring->name = "render ring";
  1907. ring->id = RCS;
  1908. ring->mmio_base = RENDER_RING_BASE;
  1909. if (INTEL_INFO(dev)->gen >= 6) {
  1910. /* non-kms not supported on gen6+ */
  1911. ret = -ENODEV;
  1912. goto err_ringbuf;
  1913. }
  1914. /* Note: gem is not supported on gen5/ilk without kms (the corresponding
  1915. * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
  1916. * the special gen5 functions. */
  1917. ring->add_request = i9xx_add_request;
  1918. if (INTEL_INFO(dev)->gen < 4)
  1919. ring->flush = gen2_render_ring_flush;
  1920. else
  1921. ring->flush = gen4_render_ring_flush;
  1922. ring->get_seqno = ring_get_seqno;
  1923. ring->set_seqno = ring_set_seqno;
  1924. if (IS_GEN2(dev)) {
  1925. ring->irq_get = i8xx_ring_get_irq;
  1926. ring->irq_put = i8xx_ring_put_irq;
  1927. } else {
  1928. ring->irq_get = i9xx_ring_get_irq;
  1929. ring->irq_put = i9xx_ring_put_irq;
  1930. }
  1931. ring->irq_enable_mask = I915_USER_INTERRUPT;
  1932. ring->write_tail = ring_write_tail;
  1933. if (INTEL_INFO(dev)->gen >= 4)
  1934. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  1935. else if (IS_I830(dev) || IS_845G(dev))
  1936. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  1937. else
  1938. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  1939. ring->init = init_render_ring;
  1940. ring->cleanup = render_ring_cleanup;
  1941. ring->dev = dev;
  1942. INIT_LIST_HEAD(&ring->active_list);
  1943. INIT_LIST_HEAD(&ring->request_list);
  1944. ringbuf->size = size;
  1945. ringbuf->effective_size = ringbuf->size;
  1946. if (IS_I830(ring->dev) || IS_845G(ring->dev))
  1947. ringbuf->effective_size -= 2 * CACHELINE_BYTES;
  1948. ringbuf->virtual_start = ioremap_wc(start, size);
  1949. if (ringbuf->virtual_start == NULL) {
  1950. DRM_ERROR("can not ioremap virtual address for"
  1951. " ring buffer\n");
  1952. ret = -ENOMEM;
  1953. goto err_ringbuf;
  1954. }
  1955. if (!I915_NEED_GFX_HWS(dev)) {
  1956. ret = init_phys_status_page(ring);
  1957. if (ret)
  1958. goto err_vstart;
  1959. }
  1960. return 0;
  1961. err_vstart:
  1962. iounmap(ringbuf->virtual_start);
  1963. err_ringbuf:
  1964. kfree(ringbuf);
  1965. ring->buffer = NULL;
  1966. return ret;
  1967. }
  1968. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  1969. {
  1970. struct drm_i915_private *dev_priv = dev->dev_private;
  1971. struct intel_engine_cs *ring = &dev_priv->ring[VCS];
  1972. ring->name = "bsd ring";
  1973. ring->id = VCS;
  1974. ring->write_tail = ring_write_tail;
  1975. if (INTEL_INFO(dev)->gen >= 6) {
  1976. ring->mmio_base = GEN6_BSD_RING_BASE;
  1977. /* gen6 bsd needs a special wa for tail updates */
  1978. if (IS_GEN6(dev))
  1979. ring->write_tail = gen6_bsd_ring_write_tail;
  1980. ring->flush = gen6_bsd_ring_flush;
  1981. ring->add_request = gen6_add_request;
  1982. ring->get_seqno = gen6_ring_get_seqno;
  1983. ring->set_seqno = ring_set_seqno;
  1984. if (INTEL_INFO(dev)->gen >= 8) {
  1985. ring->irq_enable_mask =
  1986. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  1987. ring->irq_get = gen8_ring_get_irq;
  1988. ring->irq_put = gen8_ring_put_irq;
  1989. ring->dispatch_execbuffer =
  1990. gen8_ring_dispatch_execbuffer;
  1991. if (i915_semaphore_is_enabled(dev)) {
  1992. ring->semaphore.sync_to = gen8_ring_sync;
  1993. ring->semaphore.signal = gen8_xcs_signal;
  1994. GEN8_RING_SEMAPHORE_INIT;
  1995. }
  1996. } else {
  1997. ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  1998. ring->irq_get = gen6_ring_get_irq;
  1999. ring->irq_put = gen6_ring_put_irq;
  2000. ring->dispatch_execbuffer =
  2001. gen6_ring_dispatch_execbuffer;
  2002. if (i915_semaphore_is_enabled(dev)) {
  2003. ring->semaphore.sync_to = gen6_ring_sync;
  2004. ring->semaphore.signal = gen6_signal;
  2005. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
  2006. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  2007. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
  2008. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
  2009. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2010. ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
  2011. ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  2012. ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
  2013. ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
  2014. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2015. }
  2016. }
  2017. } else {
  2018. ring->mmio_base = BSD_RING_BASE;
  2019. ring->flush = bsd_ring_flush;
  2020. ring->add_request = i9xx_add_request;
  2021. ring->get_seqno = ring_get_seqno;
  2022. ring->set_seqno = ring_set_seqno;
  2023. if (IS_GEN5(dev)) {
  2024. ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2025. ring->irq_get = gen5_ring_get_irq;
  2026. ring->irq_put = gen5_ring_put_irq;
  2027. } else {
  2028. ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2029. ring->irq_get = i9xx_ring_get_irq;
  2030. ring->irq_put = i9xx_ring_put_irq;
  2031. }
  2032. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2033. }
  2034. ring->init = init_ring_common;
  2035. return intel_init_ring_buffer(dev, ring);
  2036. }
  2037. /**
  2038. * Initialize the second BSD ring for Broadwell GT3.
  2039. * It is noted that this only exists on Broadwell GT3.
  2040. */
  2041. int intel_init_bsd2_ring_buffer(struct drm_device *dev)
  2042. {
  2043. struct drm_i915_private *dev_priv = dev->dev_private;
  2044. struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
  2045. if ((INTEL_INFO(dev)->gen != 8)) {
  2046. DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
  2047. return -EINVAL;
  2048. }
  2049. ring->name = "bsd2 ring";
  2050. ring->id = VCS2;
  2051. ring->write_tail = ring_write_tail;
  2052. ring->mmio_base = GEN8_BSD2_RING_BASE;
  2053. ring->flush = gen6_bsd_ring_flush;
  2054. ring->add_request = gen6_add_request;
  2055. ring->get_seqno = gen6_ring_get_seqno;
  2056. ring->set_seqno = ring_set_seqno;
  2057. ring->irq_enable_mask =
  2058. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  2059. ring->irq_get = gen8_ring_get_irq;
  2060. ring->irq_put = gen8_ring_put_irq;
  2061. ring->dispatch_execbuffer =
  2062. gen8_ring_dispatch_execbuffer;
  2063. if (i915_semaphore_is_enabled(dev)) {
  2064. ring->semaphore.sync_to = gen8_ring_sync;
  2065. ring->semaphore.signal = gen8_xcs_signal;
  2066. GEN8_RING_SEMAPHORE_INIT;
  2067. }
  2068. ring->init = init_ring_common;
  2069. return intel_init_ring_buffer(dev, ring);
  2070. }
  2071. int intel_init_blt_ring_buffer(struct drm_device *dev)
  2072. {
  2073. struct drm_i915_private *dev_priv = dev->dev_private;
  2074. struct intel_engine_cs *ring = &dev_priv->ring[BCS];
  2075. ring->name = "blitter ring";
  2076. ring->id = BCS;
  2077. ring->mmio_base = BLT_RING_BASE;
  2078. ring->write_tail = ring_write_tail;
  2079. ring->flush = gen6_ring_flush;
  2080. ring->add_request = gen6_add_request;
  2081. ring->get_seqno = gen6_ring_get_seqno;
  2082. ring->set_seqno = ring_set_seqno;
  2083. if (INTEL_INFO(dev)->gen >= 8) {
  2084. ring->irq_enable_mask =
  2085. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  2086. ring->irq_get = gen8_ring_get_irq;
  2087. ring->irq_put = gen8_ring_put_irq;
  2088. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2089. if (i915_semaphore_is_enabled(dev)) {
  2090. ring->semaphore.sync_to = gen8_ring_sync;
  2091. ring->semaphore.signal = gen8_xcs_signal;
  2092. GEN8_RING_SEMAPHORE_INIT;
  2093. }
  2094. } else {
  2095. ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2096. ring->irq_get = gen6_ring_get_irq;
  2097. ring->irq_put = gen6_ring_put_irq;
  2098. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2099. if (i915_semaphore_is_enabled(dev)) {
  2100. ring->semaphore.signal = gen6_signal;
  2101. ring->semaphore.sync_to = gen6_ring_sync;
  2102. /*
  2103. * The current semaphore is only applied on pre-gen8
  2104. * platform. And there is no VCS2 ring on the pre-gen8
  2105. * platform. So the semaphore between BCS and VCS2 is
  2106. * initialized as INVALID. Gen8 will initialize the
  2107. * sema between BCS and VCS2 later.
  2108. */
  2109. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
  2110. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
  2111. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  2112. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
  2113. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2114. ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
  2115. ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
  2116. ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  2117. ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
  2118. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2119. }
  2120. }
  2121. ring->init = init_ring_common;
  2122. return intel_init_ring_buffer(dev, ring);
  2123. }
  2124. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  2125. {
  2126. struct drm_i915_private *dev_priv = dev->dev_private;
  2127. struct intel_engine_cs *ring = &dev_priv->ring[VECS];
  2128. ring->name = "video enhancement ring";
  2129. ring->id = VECS;
  2130. ring->mmio_base = VEBOX_RING_BASE;
  2131. ring->write_tail = ring_write_tail;
  2132. ring->flush = gen6_ring_flush;
  2133. ring->add_request = gen6_add_request;
  2134. ring->get_seqno = gen6_ring_get_seqno;
  2135. ring->set_seqno = ring_set_seqno;
  2136. if (INTEL_INFO(dev)->gen >= 8) {
  2137. ring->irq_enable_mask =
  2138. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  2139. ring->irq_get = gen8_ring_get_irq;
  2140. ring->irq_put = gen8_ring_put_irq;
  2141. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2142. if (i915_semaphore_is_enabled(dev)) {
  2143. ring->semaphore.sync_to = gen8_ring_sync;
  2144. ring->semaphore.signal = gen8_xcs_signal;
  2145. GEN8_RING_SEMAPHORE_INIT;
  2146. }
  2147. } else {
  2148. ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2149. ring->irq_get = hsw_vebox_get_irq;
  2150. ring->irq_put = hsw_vebox_put_irq;
  2151. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2152. if (i915_semaphore_is_enabled(dev)) {
  2153. ring->semaphore.sync_to = gen6_ring_sync;
  2154. ring->semaphore.signal = gen6_signal;
  2155. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
  2156. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
  2157. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
  2158. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  2159. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2160. ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
  2161. ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
  2162. ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
  2163. ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  2164. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2165. }
  2166. }
  2167. ring->init = init_ring_common;
  2168. return intel_init_ring_buffer(dev, ring);
  2169. }
  2170. int
  2171. intel_ring_flush_all_caches(struct intel_engine_cs *ring)
  2172. {
  2173. int ret;
  2174. if (!ring->gpu_caches_dirty)
  2175. return 0;
  2176. ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
  2177. if (ret)
  2178. return ret;
  2179. trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
  2180. ring->gpu_caches_dirty = false;
  2181. return 0;
  2182. }
  2183. int
  2184. intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
  2185. {
  2186. uint32_t flush_domains;
  2187. int ret;
  2188. flush_domains = 0;
  2189. if (ring->gpu_caches_dirty)
  2190. flush_domains = I915_GEM_GPU_DOMAINS;
  2191. ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  2192. if (ret)
  2193. return ret;
  2194. trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  2195. ring->gpu_caches_dirty = false;
  2196. return 0;
  2197. }
  2198. void
  2199. intel_stop_ring_buffer(struct intel_engine_cs *ring)
  2200. {
  2201. int ret;
  2202. if (!intel_ring_initialized(ring))
  2203. return;
  2204. ret = intel_ring_idle(ring);
  2205. if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
  2206. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2207. ring->name, ret);
  2208. stop_ring(ring);
  2209. }