kv_dpm.c 90 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286
  1. /*
  2. * Copyright 2013 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. */
  23. #include "drmP.h"
  24. #include "amdgpu.h"
  25. #include "amdgpu_pm.h"
  26. #include "cikd.h"
  27. #include "atom.h"
  28. #include "amdgpu_atombios.h"
  29. #include "amdgpu_dpm.h"
  30. #include "kv_dpm.h"
  31. #include "gfx_v7_0.h"
  32. #include <linux/seq_file.h>
  33. #include "smu/smu_7_0_0_d.h"
  34. #include "smu/smu_7_0_0_sh_mask.h"
  35. #include "gca/gfx_7_2_d.h"
  36. #include "gca/gfx_7_2_sh_mask.h"
  37. #define KV_MAX_DEEPSLEEP_DIVIDER_ID 5
  38. #define KV_MINIMUM_ENGINE_CLOCK 800
  39. #define SMC_RAM_END 0x40000
  40. static void kv_dpm_set_dpm_funcs(struct amdgpu_device *adev);
  41. static void kv_dpm_set_irq_funcs(struct amdgpu_device *adev);
  42. static int kv_enable_nb_dpm(struct amdgpu_device *adev,
  43. bool enable);
  44. static void kv_init_graphics_levels(struct amdgpu_device *adev);
  45. static int kv_calculate_ds_divider(struct amdgpu_device *adev);
  46. static int kv_calculate_nbps_level_settings(struct amdgpu_device *adev);
  47. static int kv_calculate_dpm_settings(struct amdgpu_device *adev);
  48. static void kv_enable_new_levels(struct amdgpu_device *adev);
  49. static void kv_program_nbps_index_settings(struct amdgpu_device *adev,
  50. struct amdgpu_ps *new_rps);
  51. static int kv_set_enabled_level(struct amdgpu_device *adev, u32 level);
  52. static int kv_set_enabled_levels(struct amdgpu_device *adev);
  53. static int kv_force_dpm_highest(struct amdgpu_device *adev);
  54. static int kv_force_dpm_lowest(struct amdgpu_device *adev);
  55. static void kv_apply_state_adjust_rules(struct amdgpu_device *adev,
  56. struct amdgpu_ps *new_rps,
  57. struct amdgpu_ps *old_rps);
  58. static int kv_set_thermal_temperature_range(struct amdgpu_device *adev,
  59. int min_temp, int max_temp);
  60. static int kv_init_fps_limits(struct amdgpu_device *adev);
  61. static void kv_dpm_powergate_uvd(struct amdgpu_device *adev, bool gate);
  62. static void kv_dpm_powergate_vce(struct amdgpu_device *adev, bool gate);
  63. static void kv_dpm_powergate_samu(struct amdgpu_device *adev, bool gate);
  64. static void kv_dpm_powergate_acp(struct amdgpu_device *adev, bool gate);
  65. static u32 kv_convert_vid2_to_vid7(struct amdgpu_device *adev,
  66. struct sumo_vid_mapping_table *vid_mapping_table,
  67. u32 vid_2bit)
  68. {
  69. struct amdgpu_clock_voltage_dependency_table *vddc_sclk_table =
  70. &adev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  71. u32 i;
  72. if (vddc_sclk_table && vddc_sclk_table->count) {
  73. if (vid_2bit < vddc_sclk_table->count)
  74. return vddc_sclk_table->entries[vid_2bit].v;
  75. else
  76. return vddc_sclk_table->entries[vddc_sclk_table->count - 1].v;
  77. } else {
  78. for (i = 0; i < vid_mapping_table->num_entries; i++) {
  79. if (vid_mapping_table->entries[i].vid_2bit == vid_2bit)
  80. return vid_mapping_table->entries[i].vid_7bit;
  81. }
  82. return vid_mapping_table->entries[vid_mapping_table->num_entries - 1].vid_7bit;
  83. }
  84. }
  85. static u32 kv_convert_vid7_to_vid2(struct amdgpu_device *adev,
  86. struct sumo_vid_mapping_table *vid_mapping_table,
  87. u32 vid_7bit)
  88. {
  89. struct amdgpu_clock_voltage_dependency_table *vddc_sclk_table =
  90. &adev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  91. u32 i;
  92. if (vddc_sclk_table && vddc_sclk_table->count) {
  93. for (i = 0; i < vddc_sclk_table->count; i++) {
  94. if (vddc_sclk_table->entries[i].v == vid_7bit)
  95. return i;
  96. }
  97. return vddc_sclk_table->count - 1;
  98. } else {
  99. for (i = 0; i < vid_mapping_table->num_entries; i++) {
  100. if (vid_mapping_table->entries[i].vid_7bit == vid_7bit)
  101. return vid_mapping_table->entries[i].vid_2bit;
  102. }
  103. return vid_mapping_table->entries[vid_mapping_table->num_entries - 1].vid_2bit;
  104. }
  105. }
  106. static void sumo_take_smu_control(struct amdgpu_device *adev, bool enable)
  107. {
  108. /* This bit selects who handles display phy powergating.
  109. * Clear the bit to let atom handle it.
  110. * Set it to let the driver handle it.
  111. * For now we just let atom handle it.
  112. */
  113. #if 0
  114. u32 v = RREG32(mmDOUT_SCRATCH3);
  115. if (enable)
  116. v |= 0x4;
  117. else
  118. v &= 0xFFFFFFFB;
  119. WREG32(mmDOUT_SCRATCH3, v);
  120. #endif
  121. }
  122. static void sumo_construct_sclk_voltage_mapping_table(struct amdgpu_device *adev,
  123. struct sumo_sclk_voltage_mapping_table *sclk_voltage_mapping_table,
  124. ATOM_AVAILABLE_SCLK_LIST *table)
  125. {
  126. u32 i;
  127. u32 n = 0;
  128. u32 prev_sclk = 0;
  129. for (i = 0; i < SUMO_MAX_HARDWARE_POWERLEVELS; i++) {
  130. if (table[i].ulSupportedSCLK > prev_sclk) {
  131. sclk_voltage_mapping_table->entries[n].sclk_frequency =
  132. table[i].ulSupportedSCLK;
  133. sclk_voltage_mapping_table->entries[n].vid_2bit =
  134. table[i].usVoltageIndex;
  135. prev_sclk = table[i].ulSupportedSCLK;
  136. n++;
  137. }
  138. }
  139. sclk_voltage_mapping_table->num_max_dpm_entries = n;
  140. }
  141. static void sumo_construct_vid_mapping_table(struct amdgpu_device *adev,
  142. struct sumo_vid_mapping_table *vid_mapping_table,
  143. ATOM_AVAILABLE_SCLK_LIST *table)
  144. {
  145. u32 i, j;
  146. for (i = 0; i < SUMO_MAX_HARDWARE_POWERLEVELS; i++) {
  147. if (table[i].ulSupportedSCLK != 0) {
  148. vid_mapping_table->entries[table[i].usVoltageIndex].vid_7bit =
  149. table[i].usVoltageID;
  150. vid_mapping_table->entries[table[i].usVoltageIndex].vid_2bit =
  151. table[i].usVoltageIndex;
  152. }
  153. }
  154. for (i = 0; i < SUMO_MAX_NUMBER_VOLTAGES; i++) {
  155. if (vid_mapping_table->entries[i].vid_7bit == 0) {
  156. for (j = i + 1; j < SUMO_MAX_NUMBER_VOLTAGES; j++) {
  157. if (vid_mapping_table->entries[j].vid_7bit != 0) {
  158. vid_mapping_table->entries[i] =
  159. vid_mapping_table->entries[j];
  160. vid_mapping_table->entries[j].vid_7bit = 0;
  161. break;
  162. }
  163. }
  164. if (j == SUMO_MAX_NUMBER_VOLTAGES)
  165. break;
  166. }
  167. }
  168. vid_mapping_table->num_entries = i;
  169. }
  170. static const struct kv_lcac_config_values sx_local_cac_cfg_kv[] =
  171. {
  172. { 0, 4, 1 },
  173. { 1, 4, 1 },
  174. { 2, 5, 1 },
  175. { 3, 4, 2 },
  176. { 4, 1, 1 },
  177. { 5, 5, 2 },
  178. { 6, 6, 1 },
  179. { 7, 9, 2 },
  180. { 0xffffffff }
  181. };
  182. static const struct kv_lcac_config_values mc0_local_cac_cfg_kv[] =
  183. {
  184. { 0, 4, 1 },
  185. { 0xffffffff }
  186. };
  187. static const struct kv_lcac_config_values mc1_local_cac_cfg_kv[] =
  188. {
  189. { 0, 4, 1 },
  190. { 0xffffffff }
  191. };
  192. static const struct kv_lcac_config_values mc2_local_cac_cfg_kv[] =
  193. {
  194. { 0, 4, 1 },
  195. { 0xffffffff }
  196. };
  197. static const struct kv_lcac_config_values mc3_local_cac_cfg_kv[] =
  198. {
  199. { 0, 4, 1 },
  200. { 0xffffffff }
  201. };
  202. static const struct kv_lcac_config_values cpl_local_cac_cfg_kv[] =
  203. {
  204. { 0, 4, 1 },
  205. { 1, 4, 1 },
  206. { 2, 5, 1 },
  207. { 3, 4, 1 },
  208. { 4, 1, 1 },
  209. { 5, 5, 1 },
  210. { 6, 6, 1 },
  211. { 7, 9, 1 },
  212. { 8, 4, 1 },
  213. { 9, 2, 1 },
  214. { 10, 3, 1 },
  215. { 11, 6, 1 },
  216. { 12, 8, 2 },
  217. { 13, 1, 1 },
  218. { 14, 2, 1 },
  219. { 15, 3, 1 },
  220. { 16, 1, 1 },
  221. { 17, 4, 1 },
  222. { 18, 3, 1 },
  223. { 19, 1, 1 },
  224. { 20, 8, 1 },
  225. { 21, 5, 1 },
  226. { 22, 1, 1 },
  227. { 23, 1, 1 },
  228. { 24, 4, 1 },
  229. { 27, 6, 1 },
  230. { 28, 1, 1 },
  231. { 0xffffffff }
  232. };
  233. static const struct kv_lcac_config_reg sx0_cac_config_reg[] =
  234. {
  235. { 0xc0400d00, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
  236. };
  237. static const struct kv_lcac_config_reg mc0_cac_config_reg[] =
  238. {
  239. { 0xc0400d30, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
  240. };
  241. static const struct kv_lcac_config_reg mc1_cac_config_reg[] =
  242. {
  243. { 0xc0400d3c, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
  244. };
  245. static const struct kv_lcac_config_reg mc2_cac_config_reg[] =
  246. {
  247. { 0xc0400d48, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
  248. };
  249. static const struct kv_lcac_config_reg mc3_cac_config_reg[] =
  250. {
  251. { 0xc0400d54, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
  252. };
  253. static const struct kv_lcac_config_reg cpl_cac_config_reg[] =
  254. {
  255. { 0xc0400d80, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
  256. };
  257. static const struct kv_pt_config_reg didt_config_kv[] =
  258. {
  259. { 0x10, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  260. { 0x10, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  261. { 0x10, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  262. { 0x10, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  263. { 0x11, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  264. { 0x11, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  265. { 0x11, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  266. { 0x11, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  267. { 0x12, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  268. { 0x12, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  269. { 0x12, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  270. { 0x12, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  271. { 0x2, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
  272. { 0x2, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
  273. { 0x2, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
  274. { 0x1, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  275. { 0x1, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  276. { 0x0, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  277. { 0x30, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  278. { 0x30, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  279. { 0x30, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  280. { 0x30, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  281. { 0x31, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  282. { 0x31, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  283. { 0x31, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  284. { 0x31, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  285. { 0x32, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  286. { 0x32, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  287. { 0x32, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  288. { 0x32, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  289. { 0x22, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
  290. { 0x22, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
  291. { 0x22, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
  292. { 0x21, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  293. { 0x21, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  294. { 0x20, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  295. { 0x50, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  296. { 0x50, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  297. { 0x50, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  298. { 0x50, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  299. { 0x51, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  300. { 0x51, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  301. { 0x51, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  302. { 0x51, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  303. { 0x52, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  304. { 0x52, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  305. { 0x52, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  306. { 0x52, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  307. { 0x42, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
  308. { 0x42, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
  309. { 0x42, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
  310. { 0x41, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  311. { 0x41, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  312. { 0x40, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  313. { 0x70, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  314. { 0x70, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  315. { 0x70, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  316. { 0x70, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  317. { 0x71, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  318. { 0x71, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  319. { 0x71, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  320. { 0x71, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  321. { 0x72, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  322. { 0x72, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  323. { 0x72, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  324. { 0x72, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  325. { 0x62, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
  326. { 0x62, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
  327. { 0x62, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
  328. { 0x61, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  329. { 0x61, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  330. { 0x60, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  331. { 0xFFFFFFFF }
  332. };
  333. static struct kv_ps *kv_get_ps(struct amdgpu_ps *rps)
  334. {
  335. struct kv_ps *ps = rps->ps_priv;
  336. return ps;
  337. }
  338. static struct kv_power_info *kv_get_pi(struct amdgpu_device *adev)
  339. {
  340. struct kv_power_info *pi = adev->pm.dpm.priv;
  341. return pi;
  342. }
  343. #if 0
  344. static void kv_program_local_cac_table(struct amdgpu_device *adev,
  345. const struct kv_lcac_config_values *local_cac_table,
  346. const struct kv_lcac_config_reg *local_cac_reg)
  347. {
  348. u32 i, count, data;
  349. const struct kv_lcac_config_values *values = local_cac_table;
  350. while (values->block_id != 0xffffffff) {
  351. count = values->signal_id;
  352. for (i = 0; i < count; i++) {
  353. data = ((values->block_id << local_cac_reg->block_shift) &
  354. local_cac_reg->block_mask);
  355. data |= ((i << local_cac_reg->signal_shift) &
  356. local_cac_reg->signal_mask);
  357. data |= ((values->t << local_cac_reg->t_shift) &
  358. local_cac_reg->t_mask);
  359. data |= ((1 << local_cac_reg->enable_shift) &
  360. local_cac_reg->enable_mask);
  361. WREG32_SMC(local_cac_reg->cntl, data);
  362. }
  363. values++;
  364. }
  365. }
  366. #endif
  367. static int kv_program_pt_config_registers(struct amdgpu_device *adev,
  368. const struct kv_pt_config_reg *cac_config_regs)
  369. {
  370. const struct kv_pt_config_reg *config_regs = cac_config_regs;
  371. u32 data;
  372. u32 cache = 0;
  373. if (config_regs == NULL)
  374. return -EINVAL;
  375. while (config_regs->offset != 0xFFFFFFFF) {
  376. if (config_regs->type == KV_CONFIGREG_CACHE) {
  377. cache |= ((config_regs->value << config_regs->shift) & config_regs->mask);
  378. } else {
  379. switch (config_regs->type) {
  380. case KV_CONFIGREG_SMC_IND:
  381. data = RREG32_SMC(config_regs->offset);
  382. break;
  383. case KV_CONFIGREG_DIDT_IND:
  384. data = RREG32_DIDT(config_regs->offset);
  385. break;
  386. default:
  387. data = RREG32(config_regs->offset);
  388. break;
  389. }
  390. data &= ~config_regs->mask;
  391. data |= ((config_regs->value << config_regs->shift) & config_regs->mask);
  392. data |= cache;
  393. cache = 0;
  394. switch (config_regs->type) {
  395. case KV_CONFIGREG_SMC_IND:
  396. WREG32_SMC(config_regs->offset, data);
  397. break;
  398. case KV_CONFIGREG_DIDT_IND:
  399. WREG32_DIDT(config_regs->offset, data);
  400. break;
  401. default:
  402. WREG32(config_regs->offset, data);
  403. break;
  404. }
  405. }
  406. config_regs++;
  407. }
  408. return 0;
  409. }
  410. static void kv_do_enable_didt(struct amdgpu_device *adev, bool enable)
  411. {
  412. struct kv_power_info *pi = kv_get_pi(adev);
  413. u32 data;
  414. if (pi->caps_sq_ramping) {
  415. data = RREG32_DIDT(ixDIDT_SQ_CTRL0);
  416. if (enable)
  417. data |= DIDT_SQ_CTRL0__DIDT_CTRL_EN_MASK;
  418. else
  419. data &= ~DIDT_SQ_CTRL0__DIDT_CTRL_EN_MASK;
  420. WREG32_DIDT(ixDIDT_SQ_CTRL0, data);
  421. }
  422. if (pi->caps_db_ramping) {
  423. data = RREG32_DIDT(ixDIDT_DB_CTRL0);
  424. if (enable)
  425. data |= DIDT_DB_CTRL0__DIDT_CTRL_EN_MASK;
  426. else
  427. data &= ~DIDT_DB_CTRL0__DIDT_CTRL_EN_MASK;
  428. WREG32_DIDT(ixDIDT_DB_CTRL0, data);
  429. }
  430. if (pi->caps_td_ramping) {
  431. data = RREG32_DIDT(ixDIDT_TD_CTRL0);
  432. if (enable)
  433. data |= DIDT_TD_CTRL0__DIDT_CTRL_EN_MASK;
  434. else
  435. data &= ~DIDT_TD_CTRL0__DIDT_CTRL_EN_MASK;
  436. WREG32_DIDT(ixDIDT_TD_CTRL0, data);
  437. }
  438. if (pi->caps_tcp_ramping) {
  439. data = RREG32_DIDT(ixDIDT_TCP_CTRL0);
  440. if (enable)
  441. data |= DIDT_TCP_CTRL0__DIDT_CTRL_EN_MASK;
  442. else
  443. data &= ~DIDT_TCP_CTRL0__DIDT_CTRL_EN_MASK;
  444. WREG32_DIDT(ixDIDT_TCP_CTRL0, data);
  445. }
  446. }
  447. static int kv_enable_didt(struct amdgpu_device *adev, bool enable)
  448. {
  449. struct kv_power_info *pi = kv_get_pi(adev);
  450. int ret;
  451. if (pi->caps_sq_ramping ||
  452. pi->caps_db_ramping ||
  453. pi->caps_td_ramping ||
  454. pi->caps_tcp_ramping) {
  455. gfx_v7_0_enter_rlc_safe_mode(adev);
  456. if (enable) {
  457. ret = kv_program_pt_config_registers(adev, didt_config_kv);
  458. if (ret) {
  459. gfx_v7_0_exit_rlc_safe_mode(adev);
  460. return ret;
  461. }
  462. }
  463. kv_do_enable_didt(adev, enable);
  464. gfx_v7_0_exit_rlc_safe_mode(adev);
  465. }
  466. return 0;
  467. }
  468. #if 0
  469. static void kv_initialize_hardware_cac_manager(struct amdgpu_device *adev)
  470. {
  471. struct kv_power_info *pi = kv_get_pi(adev);
  472. if (pi->caps_cac) {
  473. WREG32_SMC(ixLCAC_SX0_OVR_SEL, 0);
  474. WREG32_SMC(ixLCAC_SX0_OVR_VAL, 0);
  475. kv_program_local_cac_table(adev, sx_local_cac_cfg_kv, sx0_cac_config_reg);
  476. WREG32_SMC(ixLCAC_MC0_OVR_SEL, 0);
  477. WREG32_SMC(ixLCAC_MC0_OVR_VAL, 0);
  478. kv_program_local_cac_table(adev, mc0_local_cac_cfg_kv, mc0_cac_config_reg);
  479. WREG32_SMC(ixLCAC_MC1_OVR_SEL, 0);
  480. WREG32_SMC(ixLCAC_MC1_OVR_VAL, 0);
  481. kv_program_local_cac_table(adev, mc1_local_cac_cfg_kv, mc1_cac_config_reg);
  482. WREG32_SMC(ixLCAC_MC2_OVR_SEL, 0);
  483. WREG32_SMC(ixLCAC_MC2_OVR_VAL, 0);
  484. kv_program_local_cac_table(adev, mc2_local_cac_cfg_kv, mc2_cac_config_reg);
  485. WREG32_SMC(ixLCAC_MC3_OVR_SEL, 0);
  486. WREG32_SMC(ixLCAC_MC3_OVR_VAL, 0);
  487. kv_program_local_cac_table(adev, mc3_local_cac_cfg_kv, mc3_cac_config_reg);
  488. WREG32_SMC(ixLCAC_CPL_OVR_SEL, 0);
  489. WREG32_SMC(ixLCAC_CPL_OVR_VAL, 0);
  490. kv_program_local_cac_table(adev, cpl_local_cac_cfg_kv, cpl_cac_config_reg);
  491. }
  492. }
  493. #endif
  494. static int kv_enable_smc_cac(struct amdgpu_device *adev, bool enable)
  495. {
  496. struct kv_power_info *pi = kv_get_pi(adev);
  497. int ret = 0;
  498. if (pi->caps_cac) {
  499. if (enable) {
  500. ret = amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_EnableCac);
  501. if (ret)
  502. pi->cac_enabled = false;
  503. else
  504. pi->cac_enabled = true;
  505. } else if (pi->cac_enabled) {
  506. amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_DisableCac);
  507. pi->cac_enabled = false;
  508. }
  509. }
  510. return ret;
  511. }
  512. static int kv_process_firmware_header(struct amdgpu_device *adev)
  513. {
  514. struct kv_power_info *pi = kv_get_pi(adev);
  515. u32 tmp;
  516. int ret;
  517. ret = amdgpu_kv_read_smc_sram_dword(adev, SMU7_FIRMWARE_HEADER_LOCATION +
  518. offsetof(SMU7_Firmware_Header, DpmTable),
  519. &tmp, pi->sram_end);
  520. if (ret == 0)
  521. pi->dpm_table_start = tmp;
  522. ret = amdgpu_kv_read_smc_sram_dword(adev, SMU7_FIRMWARE_HEADER_LOCATION +
  523. offsetof(SMU7_Firmware_Header, SoftRegisters),
  524. &tmp, pi->sram_end);
  525. if (ret == 0)
  526. pi->soft_regs_start = tmp;
  527. return ret;
  528. }
  529. static int kv_enable_dpm_voltage_scaling(struct amdgpu_device *adev)
  530. {
  531. struct kv_power_info *pi = kv_get_pi(adev);
  532. int ret;
  533. pi->graphics_voltage_change_enable = 1;
  534. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  535. pi->dpm_table_start +
  536. offsetof(SMU7_Fusion_DpmTable, GraphicsVoltageChangeEnable),
  537. &pi->graphics_voltage_change_enable,
  538. sizeof(u8), pi->sram_end);
  539. return ret;
  540. }
  541. static int kv_set_dpm_interval(struct amdgpu_device *adev)
  542. {
  543. struct kv_power_info *pi = kv_get_pi(adev);
  544. int ret;
  545. pi->graphics_interval = 1;
  546. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  547. pi->dpm_table_start +
  548. offsetof(SMU7_Fusion_DpmTable, GraphicsInterval),
  549. &pi->graphics_interval,
  550. sizeof(u8), pi->sram_end);
  551. return ret;
  552. }
  553. static int kv_set_dpm_boot_state(struct amdgpu_device *adev)
  554. {
  555. struct kv_power_info *pi = kv_get_pi(adev);
  556. int ret;
  557. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  558. pi->dpm_table_start +
  559. offsetof(SMU7_Fusion_DpmTable, GraphicsBootLevel),
  560. &pi->graphics_boot_level,
  561. sizeof(u8), pi->sram_end);
  562. return ret;
  563. }
  564. static void kv_program_vc(struct amdgpu_device *adev)
  565. {
  566. WREG32_SMC(ixCG_FREQ_TRAN_VOTING_0, 0x3FFFC100);
  567. }
  568. static void kv_clear_vc(struct amdgpu_device *adev)
  569. {
  570. WREG32_SMC(ixCG_FREQ_TRAN_VOTING_0, 0);
  571. }
  572. static int kv_set_divider_value(struct amdgpu_device *adev,
  573. u32 index, u32 sclk)
  574. {
  575. struct kv_power_info *pi = kv_get_pi(adev);
  576. struct atom_clock_dividers dividers;
  577. int ret;
  578. ret = amdgpu_atombios_get_clock_dividers(adev, COMPUTE_ENGINE_PLL_PARAM,
  579. sclk, false, &dividers);
  580. if (ret)
  581. return ret;
  582. pi->graphics_level[index].SclkDid = (u8)dividers.post_div;
  583. pi->graphics_level[index].SclkFrequency = cpu_to_be32(sclk);
  584. return 0;
  585. }
  586. static u16 kv_convert_8bit_index_to_voltage(struct amdgpu_device *adev,
  587. u16 voltage)
  588. {
  589. return 6200 - (voltage * 25);
  590. }
  591. static u16 kv_convert_2bit_index_to_voltage(struct amdgpu_device *adev,
  592. u32 vid_2bit)
  593. {
  594. struct kv_power_info *pi = kv_get_pi(adev);
  595. u32 vid_8bit = kv_convert_vid2_to_vid7(adev,
  596. &pi->sys_info.vid_mapping_table,
  597. vid_2bit);
  598. return kv_convert_8bit_index_to_voltage(adev, (u16)vid_8bit);
  599. }
  600. static int kv_set_vid(struct amdgpu_device *adev, u32 index, u32 vid)
  601. {
  602. struct kv_power_info *pi = kv_get_pi(adev);
  603. pi->graphics_level[index].VoltageDownH = (u8)pi->voltage_drop_t;
  604. pi->graphics_level[index].MinVddNb =
  605. cpu_to_be32(kv_convert_2bit_index_to_voltage(adev, vid));
  606. return 0;
  607. }
  608. static int kv_set_at(struct amdgpu_device *adev, u32 index, u32 at)
  609. {
  610. struct kv_power_info *pi = kv_get_pi(adev);
  611. pi->graphics_level[index].AT = cpu_to_be16((u16)at);
  612. return 0;
  613. }
  614. static void kv_dpm_power_level_enable(struct amdgpu_device *adev,
  615. u32 index, bool enable)
  616. {
  617. struct kv_power_info *pi = kv_get_pi(adev);
  618. pi->graphics_level[index].EnabledForActivity = enable ? 1 : 0;
  619. }
  620. static void kv_start_dpm(struct amdgpu_device *adev)
  621. {
  622. u32 tmp = RREG32_SMC(ixGENERAL_PWRMGT);
  623. tmp |= GENERAL_PWRMGT__GLOBAL_PWRMGT_EN_MASK;
  624. WREG32_SMC(ixGENERAL_PWRMGT, tmp);
  625. amdgpu_kv_smc_dpm_enable(adev, true);
  626. }
  627. static void kv_stop_dpm(struct amdgpu_device *adev)
  628. {
  629. amdgpu_kv_smc_dpm_enable(adev, false);
  630. }
  631. static void kv_start_am(struct amdgpu_device *adev)
  632. {
  633. u32 sclk_pwrmgt_cntl = RREG32_SMC(ixSCLK_PWRMGT_CNTL);
  634. sclk_pwrmgt_cntl &= ~(SCLK_PWRMGT_CNTL__RESET_SCLK_CNT_MASK |
  635. SCLK_PWRMGT_CNTL__RESET_BUSY_CNT_MASK);
  636. sclk_pwrmgt_cntl |= SCLK_PWRMGT_CNTL__DYNAMIC_PM_EN_MASK;
  637. WREG32_SMC(ixSCLK_PWRMGT_CNTL, sclk_pwrmgt_cntl);
  638. }
  639. static void kv_reset_am(struct amdgpu_device *adev)
  640. {
  641. u32 sclk_pwrmgt_cntl = RREG32_SMC(ixSCLK_PWRMGT_CNTL);
  642. sclk_pwrmgt_cntl |= (SCLK_PWRMGT_CNTL__RESET_SCLK_CNT_MASK |
  643. SCLK_PWRMGT_CNTL__RESET_BUSY_CNT_MASK);
  644. WREG32_SMC(ixSCLK_PWRMGT_CNTL, sclk_pwrmgt_cntl);
  645. }
  646. static int kv_freeze_sclk_dpm(struct amdgpu_device *adev, bool freeze)
  647. {
  648. return amdgpu_kv_notify_message_to_smu(adev, freeze ?
  649. PPSMC_MSG_SCLKDPM_FreezeLevel : PPSMC_MSG_SCLKDPM_UnfreezeLevel);
  650. }
  651. static int kv_force_lowest_valid(struct amdgpu_device *adev)
  652. {
  653. return kv_force_dpm_lowest(adev);
  654. }
  655. static int kv_unforce_levels(struct amdgpu_device *adev)
  656. {
  657. if (adev->asic_type == CHIP_KABINI || adev->asic_type == CHIP_MULLINS)
  658. return amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_NoForcedLevel);
  659. else
  660. return kv_set_enabled_levels(adev);
  661. }
  662. static int kv_update_sclk_t(struct amdgpu_device *adev)
  663. {
  664. struct kv_power_info *pi = kv_get_pi(adev);
  665. u32 low_sclk_interrupt_t = 0;
  666. int ret = 0;
  667. if (pi->caps_sclk_throttle_low_notification) {
  668. low_sclk_interrupt_t = cpu_to_be32(pi->low_sclk_interrupt_t);
  669. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  670. pi->dpm_table_start +
  671. offsetof(SMU7_Fusion_DpmTable, LowSclkInterruptT),
  672. (u8 *)&low_sclk_interrupt_t,
  673. sizeof(u32), pi->sram_end);
  674. }
  675. return ret;
  676. }
  677. static int kv_program_bootup_state(struct amdgpu_device *adev)
  678. {
  679. struct kv_power_info *pi = kv_get_pi(adev);
  680. u32 i;
  681. struct amdgpu_clock_voltage_dependency_table *table =
  682. &adev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  683. if (table && table->count) {
  684. for (i = pi->graphics_dpm_level_count - 1; i > 0; i--) {
  685. if (table->entries[i].clk == pi->boot_pl.sclk)
  686. break;
  687. }
  688. pi->graphics_boot_level = (u8)i;
  689. kv_dpm_power_level_enable(adev, i, true);
  690. } else {
  691. struct sumo_sclk_voltage_mapping_table *table =
  692. &pi->sys_info.sclk_voltage_mapping_table;
  693. if (table->num_max_dpm_entries == 0)
  694. return -EINVAL;
  695. for (i = pi->graphics_dpm_level_count - 1; i > 0; i--) {
  696. if (table->entries[i].sclk_frequency == pi->boot_pl.sclk)
  697. break;
  698. }
  699. pi->graphics_boot_level = (u8)i;
  700. kv_dpm_power_level_enable(adev, i, true);
  701. }
  702. return 0;
  703. }
  704. static int kv_enable_auto_thermal_throttling(struct amdgpu_device *adev)
  705. {
  706. struct kv_power_info *pi = kv_get_pi(adev);
  707. int ret;
  708. pi->graphics_therm_throttle_enable = 1;
  709. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  710. pi->dpm_table_start +
  711. offsetof(SMU7_Fusion_DpmTable, GraphicsThermThrottleEnable),
  712. &pi->graphics_therm_throttle_enable,
  713. sizeof(u8), pi->sram_end);
  714. return ret;
  715. }
  716. static int kv_upload_dpm_settings(struct amdgpu_device *adev)
  717. {
  718. struct kv_power_info *pi = kv_get_pi(adev);
  719. int ret;
  720. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  721. pi->dpm_table_start +
  722. offsetof(SMU7_Fusion_DpmTable, GraphicsLevel),
  723. (u8 *)&pi->graphics_level,
  724. sizeof(SMU7_Fusion_GraphicsLevel) * SMU7_MAX_LEVELS_GRAPHICS,
  725. pi->sram_end);
  726. if (ret)
  727. return ret;
  728. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  729. pi->dpm_table_start +
  730. offsetof(SMU7_Fusion_DpmTable, GraphicsDpmLevelCount),
  731. &pi->graphics_dpm_level_count,
  732. sizeof(u8), pi->sram_end);
  733. return ret;
  734. }
  735. static u32 kv_get_clock_difference(u32 a, u32 b)
  736. {
  737. return (a >= b) ? a - b : b - a;
  738. }
  739. static u32 kv_get_clk_bypass(struct amdgpu_device *adev, u32 clk)
  740. {
  741. struct kv_power_info *pi = kv_get_pi(adev);
  742. u32 value;
  743. if (pi->caps_enable_dfs_bypass) {
  744. if (kv_get_clock_difference(clk, 40000) < 200)
  745. value = 3;
  746. else if (kv_get_clock_difference(clk, 30000) < 200)
  747. value = 2;
  748. else if (kv_get_clock_difference(clk, 20000) < 200)
  749. value = 7;
  750. else if (kv_get_clock_difference(clk, 15000) < 200)
  751. value = 6;
  752. else if (kv_get_clock_difference(clk, 10000) < 200)
  753. value = 8;
  754. else
  755. value = 0;
  756. } else {
  757. value = 0;
  758. }
  759. return value;
  760. }
  761. static int kv_populate_uvd_table(struct amdgpu_device *adev)
  762. {
  763. struct kv_power_info *pi = kv_get_pi(adev);
  764. struct amdgpu_uvd_clock_voltage_dependency_table *table =
  765. &adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
  766. struct atom_clock_dividers dividers;
  767. int ret;
  768. u32 i;
  769. if (table == NULL || table->count == 0)
  770. return 0;
  771. pi->uvd_level_count = 0;
  772. for (i = 0; i < table->count; i++) {
  773. if (pi->high_voltage_t &&
  774. (pi->high_voltage_t < table->entries[i].v))
  775. break;
  776. pi->uvd_level[i].VclkFrequency = cpu_to_be32(table->entries[i].vclk);
  777. pi->uvd_level[i].DclkFrequency = cpu_to_be32(table->entries[i].dclk);
  778. pi->uvd_level[i].MinVddNb = cpu_to_be16(table->entries[i].v);
  779. pi->uvd_level[i].VClkBypassCntl =
  780. (u8)kv_get_clk_bypass(adev, table->entries[i].vclk);
  781. pi->uvd_level[i].DClkBypassCntl =
  782. (u8)kv_get_clk_bypass(adev, table->entries[i].dclk);
  783. ret = amdgpu_atombios_get_clock_dividers(adev, COMPUTE_ENGINE_PLL_PARAM,
  784. table->entries[i].vclk, false, &dividers);
  785. if (ret)
  786. return ret;
  787. pi->uvd_level[i].VclkDivider = (u8)dividers.post_div;
  788. ret = amdgpu_atombios_get_clock_dividers(adev, COMPUTE_ENGINE_PLL_PARAM,
  789. table->entries[i].dclk, false, &dividers);
  790. if (ret)
  791. return ret;
  792. pi->uvd_level[i].DclkDivider = (u8)dividers.post_div;
  793. pi->uvd_level_count++;
  794. }
  795. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  796. pi->dpm_table_start +
  797. offsetof(SMU7_Fusion_DpmTable, UvdLevelCount),
  798. (u8 *)&pi->uvd_level_count,
  799. sizeof(u8), pi->sram_end);
  800. if (ret)
  801. return ret;
  802. pi->uvd_interval = 1;
  803. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  804. pi->dpm_table_start +
  805. offsetof(SMU7_Fusion_DpmTable, UVDInterval),
  806. &pi->uvd_interval,
  807. sizeof(u8), pi->sram_end);
  808. if (ret)
  809. return ret;
  810. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  811. pi->dpm_table_start +
  812. offsetof(SMU7_Fusion_DpmTable, UvdLevel),
  813. (u8 *)&pi->uvd_level,
  814. sizeof(SMU7_Fusion_UvdLevel) * SMU7_MAX_LEVELS_UVD,
  815. pi->sram_end);
  816. return ret;
  817. }
  818. static int kv_populate_vce_table(struct amdgpu_device *adev)
  819. {
  820. struct kv_power_info *pi = kv_get_pi(adev);
  821. int ret;
  822. u32 i;
  823. struct amdgpu_vce_clock_voltage_dependency_table *table =
  824. &adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
  825. struct atom_clock_dividers dividers;
  826. if (table == NULL || table->count == 0)
  827. return 0;
  828. pi->vce_level_count = 0;
  829. for (i = 0; i < table->count; i++) {
  830. if (pi->high_voltage_t &&
  831. pi->high_voltage_t < table->entries[i].v)
  832. break;
  833. pi->vce_level[i].Frequency = cpu_to_be32(table->entries[i].evclk);
  834. pi->vce_level[i].MinVoltage = cpu_to_be16(table->entries[i].v);
  835. pi->vce_level[i].ClkBypassCntl =
  836. (u8)kv_get_clk_bypass(adev, table->entries[i].evclk);
  837. ret = amdgpu_atombios_get_clock_dividers(adev, COMPUTE_ENGINE_PLL_PARAM,
  838. table->entries[i].evclk, false, &dividers);
  839. if (ret)
  840. return ret;
  841. pi->vce_level[i].Divider = (u8)dividers.post_div;
  842. pi->vce_level_count++;
  843. }
  844. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  845. pi->dpm_table_start +
  846. offsetof(SMU7_Fusion_DpmTable, VceLevelCount),
  847. (u8 *)&pi->vce_level_count,
  848. sizeof(u8),
  849. pi->sram_end);
  850. if (ret)
  851. return ret;
  852. pi->vce_interval = 1;
  853. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  854. pi->dpm_table_start +
  855. offsetof(SMU7_Fusion_DpmTable, VCEInterval),
  856. (u8 *)&pi->vce_interval,
  857. sizeof(u8),
  858. pi->sram_end);
  859. if (ret)
  860. return ret;
  861. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  862. pi->dpm_table_start +
  863. offsetof(SMU7_Fusion_DpmTable, VceLevel),
  864. (u8 *)&pi->vce_level,
  865. sizeof(SMU7_Fusion_ExtClkLevel) * SMU7_MAX_LEVELS_VCE,
  866. pi->sram_end);
  867. return ret;
  868. }
  869. static int kv_populate_samu_table(struct amdgpu_device *adev)
  870. {
  871. struct kv_power_info *pi = kv_get_pi(adev);
  872. struct amdgpu_clock_voltage_dependency_table *table =
  873. &adev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table;
  874. struct atom_clock_dividers dividers;
  875. int ret;
  876. u32 i;
  877. if (table == NULL || table->count == 0)
  878. return 0;
  879. pi->samu_level_count = 0;
  880. for (i = 0; i < table->count; i++) {
  881. if (pi->high_voltage_t &&
  882. pi->high_voltage_t < table->entries[i].v)
  883. break;
  884. pi->samu_level[i].Frequency = cpu_to_be32(table->entries[i].clk);
  885. pi->samu_level[i].MinVoltage = cpu_to_be16(table->entries[i].v);
  886. pi->samu_level[i].ClkBypassCntl =
  887. (u8)kv_get_clk_bypass(adev, table->entries[i].clk);
  888. ret = amdgpu_atombios_get_clock_dividers(adev, COMPUTE_ENGINE_PLL_PARAM,
  889. table->entries[i].clk, false, &dividers);
  890. if (ret)
  891. return ret;
  892. pi->samu_level[i].Divider = (u8)dividers.post_div;
  893. pi->samu_level_count++;
  894. }
  895. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  896. pi->dpm_table_start +
  897. offsetof(SMU7_Fusion_DpmTable, SamuLevelCount),
  898. (u8 *)&pi->samu_level_count,
  899. sizeof(u8),
  900. pi->sram_end);
  901. if (ret)
  902. return ret;
  903. pi->samu_interval = 1;
  904. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  905. pi->dpm_table_start +
  906. offsetof(SMU7_Fusion_DpmTable, SAMUInterval),
  907. (u8 *)&pi->samu_interval,
  908. sizeof(u8),
  909. pi->sram_end);
  910. if (ret)
  911. return ret;
  912. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  913. pi->dpm_table_start +
  914. offsetof(SMU7_Fusion_DpmTable, SamuLevel),
  915. (u8 *)&pi->samu_level,
  916. sizeof(SMU7_Fusion_ExtClkLevel) * SMU7_MAX_LEVELS_SAMU,
  917. pi->sram_end);
  918. if (ret)
  919. return ret;
  920. return ret;
  921. }
  922. static int kv_populate_acp_table(struct amdgpu_device *adev)
  923. {
  924. struct kv_power_info *pi = kv_get_pi(adev);
  925. struct amdgpu_clock_voltage_dependency_table *table =
  926. &adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
  927. struct atom_clock_dividers dividers;
  928. int ret;
  929. u32 i;
  930. if (table == NULL || table->count == 0)
  931. return 0;
  932. pi->acp_level_count = 0;
  933. for (i = 0; i < table->count; i++) {
  934. pi->acp_level[i].Frequency = cpu_to_be32(table->entries[i].clk);
  935. pi->acp_level[i].MinVoltage = cpu_to_be16(table->entries[i].v);
  936. ret = amdgpu_atombios_get_clock_dividers(adev, COMPUTE_ENGINE_PLL_PARAM,
  937. table->entries[i].clk, false, &dividers);
  938. if (ret)
  939. return ret;
  940. pi->acp_level[i].Divider = (u8)dividers.post_div;
  941. pi->acp_level_count++;
  942. }
  943. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  944. pi->dpm_table_start +
  945. offsetof(SMU7_Fusion_DpmTable, AcpLevelCount),
  946. (u8 *)&pi->acp_level_count,
  947. sizeof(u8),
  948. pi->sram_end);
  949. if (ret)
  950. return ret;
  951. pi->acp_interval = 1;
  952. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  953. pi->dpm_table_start +
  954. offsetof(SMU7_Fusion_DpmTable, ACPInterval),
  955. (u8 *)&pi->acp_interval,
  956. sizeof(u8),
  957. pi->sram_end);
  958. if (ret)
  959. return ret;
  960. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  961. pi->dpm_table_start +
  962. offsetof(SMU7_Fusion_DpmTable, AcpLevel),
  963. (u8 *)&pi->acp_level,
  964. sizeof(SMU7_Fusion_ExtClkLevel) * SMU7_MAX_LEVELS_ACP,
  965. pi->sram_end);
  966. if (ret)
  967. return ret;
  968. return ret;
  969. }
  970. static void kv_calculate_dfs_bypass_settings(struct amdgpu_device *adev)
  971. {
  972. struct kv_power_info *pi = kv_get_pi(adev);
  973. u32 i;
  974. struct amdgpu_clock_voltage_dependency_table *table =
  975. &adev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  976. if (table && table->count) {
  977. for (i = 0; i < pi->graphics_dpm_level_count; i++) {
  978. if (pi->caps_enable_dfs_bypass) {
  979. if (kv_get_clock_difference(table->entries[i].clk, 40000) < 200)
  980. pi->graphics_level[i].ClkBypassCntl = 3;
  981. else if (kv_get_clock_difference(table->entries[i].clk, 30000) < 200)
  982. pi->graphics_level[i].ClkBypassCntl = 2;
  983. else if (kv_get_clock_difference(table->entries[i].clk, 26600) < 200)
  984. pi->graphics_level[i].ClkBypassCntl = 7;
  985. else if (kv_get_clock_difference(table->entries[i].clk , 20000) < 200)
  986. pi->graphics_level[i].ClkBypassCntl = 6;
  987. else if (kv_get_clock_difference(table->entries[i].clk , 10000) < 200)
  988. pi->graphics_level[i].ClkBypassCntl = 8;
  989. else
  990. pi->graphics_level[i].ClkBypassCntl = 0;
  991. } else {
  992. pi->graphics_level[i].ClkBypassCntl = 0;
  993. }
  994. }
  995. } else {
  996. struct sumo_sclk_voltage_mapping_table *table =
  997. &pi->sys_info.sclk_voltage_mapping_table;
  998. for (i = 0; i < pi->graphics_dpm_level_count; i++) {
  999. if (pi->caps_enable_dfs_bypass) {
  1000. if (kv_get_clock_difference(table->entries[i].sclk_frequency, 40000) < 200)
  1001. pi->graphics_level[i].ClkBypassCntl = 3;
  1002. else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 30000) < 200)
  1003. pi->graphics_level[i].ClkBypassCntl = 2;
  1004. else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 26600) < 200)
  1005. pi->graphics_level[i].ClkBypassCntl = 7;
  1006. else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 20000) < 200)
  1007. pi->graphics_level[i].ClkBypassCntl = 6;
  1008. else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 10000) < 200)
  1009. pi->graphics_level[i].ClkBypassCntl = 8;
  1010. else
  1011. pi->graphics_level[i].ClkBypassCntl = 0;
  1012. } else {
  1013. pi->graphics_level[i].ClkBypassCntl = 0;
  1014. }
  1015. }
  1016. }
  1017. }
  1018. static int kv_enable_ulv(struct amdgpu_device *adev, bool enable)
  1019. {
  1020. return amdgpu_kv_notify_message_to_smu(adev, enable ?
  1021. PPSMC_MSG_EnableULV : PPSMC_MSG_DisableULV);
  1022. }
  1023. static void kv_reset_acp_boot_level(struct amdgpu_device *adev)
  1024. {
  1025. struct kv_power_info *pi = kv_get_pi(adev);
  1026. pi->acp_boot_level = 0xff;
  1027. }
  1028. static void kv_update_current_ps(struct amdgpu_device *adev,
  1029. struct amdgpu_ps *rps)
  1030. {
  1031. struct kv_ps *new_ps = kv_get_ps(rps);
  1032. struct kv_power_info *pi = kv_get_pi(adev);
  1033. pi->current_rps = *rps;
  1034. pi->current_ps = *new_ps;
  1035. pi->current_rps.ps_priv = &pi->current_ps;
  1036. }
  1037. static void kv_update_requested_ps(struct amdgpu_device *adev,
  1038. struct amdgpu_ps *rps)
  1039. {
  1040. struct kv_ps *new_ps = kv_get_ps(rps);
  1041. struct kv_power_info *pi = kv_get_pi(adev);
  1042. pi->requested_rps = *rps;
  1043. pi->requested_ps = *new_ps;
  1044. pi->requested_rps.ps_priv = &pi->requested_ps;
  1045. }
  1046. static void kv_dpm_enable_bapm(struct amdgpu_device *adev, bool enable)
  1047. {
  1048. struct kv_power_info *pi = kv_get_pi(adev);
  1049. int ret;
  1050. if (pi->bapm_enable) {
  1051. ret = amdgpu_kv_smc_bapm_enable(adev, enable);
  1052. if (ret)
  1053. DRM_ERROR("amdgpu_kv_smc_bapm_enable failed\n");
  1054. }
  1055. }
  1056. static int kv_dpm_enable(struct amdgpu_device *adev)
  1057. {
  1058. struct kv_power_info *pi = kv_get_pi(adev);
  1059. int ret;
  1060. ret = kv_process_firmware_header(adev);
  1061. if (ret) {
  1062. DRM_ERROR("kv_process_firmware_header failed\n");
  1063. return ret;
  1064. }
  1065. kv_init_fps_limits(adev);
  1066. kv_init_graphics_levels(adev);
  1067. ret = kv_program_bootup_state(adev);
  1068. if (ret) {
  1069. DRM_ERROR("kv_program_bootup_state failed\n");
  1070. return ret;
  1071. }
  1072. kv_calculate_dfs_bypass_settings(adev);
  1073. ret = kv_upload_dpm_settings(adev);
  1074. if (ret) {
  1075. DRM_ERROR("kv_upload_dpm_settings failed\n");
  1076. return ret;
  1077. }
  1078. ret = kv_populate_uvd_table(adev);
  1079. if (ret) {
  1080. DRM_ERROR("kv_populate_uvd_table failed\n");
  1081. return ret;
  1082. }
  1083. ret = kv_populate_vce_table(adev);
  1084. if (ret) {
  1085. DRM_ERROR("kv_populate_vce_table failed\n");
  1086. return ret;
  1087. }
  1088. ret = kv_populate_samu_table(adev);
  1089. if (ret) {
  1090. DRM_ERROR("kv_populate_samu_table failed\n");
  1091. return ret;
  1092. }
  1093. ret = kv_populate_acp_table(adev);
  1094. if (ret) {
  1095. DRM_ERROR("kv_populate_acp_table failed\n");
  1096. return ret;
  1097. }
  1098. kv_program_vc(adev);
  1099. #if 0
  1100. kv_initialize_hardware_cac_manager(adev);
  1101. #endif
  1102. kv_start_am(adev);
  1103. if (pi->enable_auto_thermal_throttling) {
  1104. ret = kv_enable_auto_thermal_throttling(adev);
  1105. if (ret) {
  1106. DRM_ERROR("kv_enable_auto_thermal_throttling failed\n");
  1107. return ret;
  1108. }
  1109. }
  1110. ret = kv_enable_dpm_voltage_scaling(adev);
  1111. if (ret) {
  1112. DRM_ERROR("kv_enable_dpm_voltage_scaling failed\n");
  1113. return ret;
  1114. }
  1115. ret = kv_set_dpm_interval(adev);
  1116. if (ret) {
  1117. DRM_ERROR("kv_set_dpm_interval failed\n");
  1118. return ret;
  1119. }
  1120. ret = kv_set_dpm_boot_state(adev);
  1121. if (ret) {
  1122. DRM_ERROR("kv_set_dpm_boot_state failed\n");
  1123. return ret;
  1124. }
  1125. ret = kv_enable_ulv(adev, true);
  1126. if (ret) {
  1127. DRM_ERROR("kv_enable_ulv failed\n");
  1128. return ret;
  1129. }
  1130. kv_start_dpm(adev);
  1131. ret = kv_enable_didt(adev, true);
  1132. if (ret) {
  1133. DRM_ERROR("kv_enable_didt failed\n");
  1134. return ret;
  1135. }
  1136. ret = kv_enable_smc_cac(adev, true);
  1137. if (ret) {
  1138. DRM_ERROR("kv_enable_smc_cac failed\n");
  1139. return ret;
  1140. }
  1141. kv_reset_acp_boot_level(adev);
  1142. ret = amdgpu_kv_smc_bapm_enable(adev, false);
  1143. if (ret) {
  1144. DRM_ERROR("amdgpu_kv_smc_bapm_enable failed\n");
  1145. return ret;
  1146. }
  1147. kv_update_current_ps(adev, adev->pm.dpm.boot_ps);
  1148. if (adev->irq.installed &&
  1149. amdgpu_is_internal_thermal_sensor(adev->pm.int_thermal_type)) {
  1150. ret = kv_set_thermal_temperature_range(adev, KV_TEMP_RANGE_MIN, KV_TEMP_RANGE_MAX);
  1151. if (ret) {
  1152. DRM_ERROR("kv_set_thermal_temperature_range failed\n");
  1153. return ret;
  1154. }
  1155. amdgpu_irq_get(adev, &adev->pm.dpm.thermal.irq,
  1156. AMDGPU_THERMAL_IRQ_LOW_TO_HIGH);
  1157. amdgpu_irq_get(adev, &adev->pm.dpm.thermal.irq,
  1158. AMDGPU_THERMAL_IRQ_HIGH_TO_LOW);
  1159. }
  1160. return ret;
  1161. }
  1162. static void kv_dpm_disable(struct amdgpu_device *adev)
  1163. {
  1164. amdgpu_irq_put(adev, &adev->pm.dpm.thermal.irq,
  1165. AMDGPU_THERMAL_IRQ_LOW_TO_HIGH);
  1166. amdgpu_irq_put(adev, &adev->pm.dpm.thermal.irq,
  1167. AMDGPU_THERMAL_IRQ_HIGH_TO_LOW);
  1168. amdgpu_kv_smc_bapm_enable(adev, false);
  1169. if (adev->asic_type == CHIP_MULLINS)
  1170. kv_enable_nb_dpm(adev, false);
  1171. /* powerup blocks */
  1172. kv_dpm_powergate_acp(adev, false);
  1173. kv_dpm_powergate_samu(adev, false);
  1174. kv_dpm_powergate_vce(adev, false);
  1175. kv_dpm_powergate_uvd(adev, false);
  1176. kv_enable_smc_cac(adev, false);
  1177. kv_enable_didt(adev, false);
  1178. kv_clear_vc(adev);
  1179. kv_stop_dpm(adev);
  1180. kv_enable_ulv(adev, false);
  1181. kv_reset_am(adev);
  1182. kv_update_current_ps(adev, adev->pm.dpm.boot_ps);
  1183. }
  1184. #if 0
  1185. static int kv_write_smc_soft_register(struct amdgpu_device *adev,
  1186. u16 reg_offset, u32 value)
  1187. {
  1188. struct kv_power_info *pi = kv_get_pi(adev);
  1189. return amdgpu_kv_copy_bytes_to_smc(adev, pi->soft_regs_start + reg_offset,
  1190. (u8 *)&value, sizeof(u16), pi->sram_end);
  1191. }
  1192. static int kv_read_smc_soft_register(struct amdgpu_device *adev,
  1193. u16 reg_offset, u32 *value)
  1194. {
  1195. struct kv_power_info *pi = kv_get_pi(adev);
  1196. return amdgpu_kv_read_smc_sram_dword(adev, pi->soft_regs_start + reg_offset,
  1197. value, pi->sram_end);
  1198. }
  1199. #endif
  1200. static void kv_init_sclk_t(struct amdgpu_device *adev)
  1201. {
  1202. struct kv_power_info *pi = kv_get_pi(adev);
  1203. pi->low_sclk_interrupt_t = 0;
  1204. }
  1205. static int kv_init_fps_limits(struct amdgpu_device *adev)
  1206. {
  1207. struct kv_power_info *pi = kv_get_pi(adev);
  1208. int ret = 0;
  1209. if (pi->caps_fps) {
  1210. u16 tmp;
  1211. tmp = 45;
  1212. pi->fps_high_t = cpu_to_be16(tmp);
  1213. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  1214. pi->dpm_table_start +
  1215. offsetof(SMU7_Fusion_DpmTable, FpsHighT),
  1216. (u8 *)&pi->fps_high_t,
  1217. sizeof(u16), pi->sram_end);
  1218. tmp = 30;
  1219. pi->fps_low_t = cpu_to_be16(tmp);
  1220. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  1221. pi->dpm_table_start +
  1222. offsetof(SMU7_Fusion_DpmTable, FpsLowT),
  1223. (u8 *)&pi->fps_low_t,
  1224. sizeof(u16), pi->sram_end);
  1225. }
  1226. return ret;
  1227. }
  1228. static void kv_init_powergate_state(struct amdgpu_device *adev)
  1229. {
  1230. struct kv_power_info *pi = kv_get_pi(adev);
  1231. pi->uvd_power_gated = false;
  1232. pi->vce_power_gated = false;
  1233. pi->samu_power_gated = false;
  1234. pi->acp_power_gated = false;
  1235. }
  1236. static int kv_enable_uvd_dpm(struct amdgpu_device *adev, bool enable)
  1237. {
  1238. return amdgpu_kv_notify_message_to_smu(adev, enable ?
  1239. PPSMC_MSG_UVDDPM_Enable : PPSMC_MSG_UVDDPM_Disable);
  1240. }
  1241. static int kv_enable_vce_dpm(struct amdgpu_device *adev, bool enable)
  1242. {
  1243. return amdgpu_kv_notify_message_to_smu(adev, enable ?
  1244. PPSMC_MSG_VCEDPM_Enable : PPSMC_MSG_VCEDPM_Disable);
  1245. }
  1246. static int kv_enable_samu_dpm(struct amdgpu_device *adev, bool enable)
  1247. {
  1248. return amdgpu_kv_notify_message_to_smu(adev, enable ?
  1249. PPSMC_MSG_SAMUDPM_Enable : PPSMC_MSG_SAMUDPM_Disable);
  1250. }
  1251. static int kv_enable_acp_dpm(struct amdgpu_device *adev, bool enable)
  1252. {
  1253. return amdgpu_kv_notify_message_to_smu(adev, enable ?
  1254. PPSMC_MSG_ACPDPM_Enable : PPSMC_MSG_ACPDPM_Disable);
  1255. }
  1256. static int kv_update_uvd_dpm(struct amdgpu_device *adev, bool gate)
  1257. {
  1258. struct kv_power_info *pi = kv_get_pi(adev);
  1259. struct amdgpu_uvd_clock_voltage_dependency_table *table =
  1260. &adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
  1261. int ret;
  1262. u32 mask;
  1263. if (!gate) {
  1264. if (table->count)
  1265. pi->uvd_boot_level = table->count - 1;
  1266. else
  1267. pi->uvd_boot_level = 0;
  1268. if (!pi->caps_uvd_dpm || pi->caps_stable_p_state) {
  1269. mask = 1 << pi->uvd_boot_level;
  1270. } else {
  1271. mask = 0x1f;
  1272. }
  1273. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  1274. pi->dpm_table_start +
  1275. offsetof(SMU7_Fusion_DpmTable, UvdBootLevel),
  1276. (uint8_t *)&pi->uvd_boot_level,
  1277. sizeof(u8), pi->sram_end);
  1278. if (ret)
  1279. return ret;
  1280. amdgpu_kv_send_msg_to_smc_with_parameter(adev,
  1281. PPSMC_MSG_UVDDPM_SetEnabledMask,
  1282. mask);
  1283. }
  1284. return kv_enable_uvd_dpm(adev, !gate);
  1285. }
  1286. static u8 kv_get_vce_boot_level(struct amdgpu_device *adev, u32 evclk)
  1287. {
  1288. u8 i;
  1289. struct amdgpu_vce_clock_voltage_dependency_table *table =
  1290. &adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
  1291. for (i = 0; i < table->count; i++) {
  1292. if (table->entries[i].evclk >= evclk)
  1293. break;
  1294. }
  1295. return i;
  1296. }
  1297. static int kv_update_vce_dpm(struct amdgpu_device *adev,
  1298. struct amdgpu_ps *amdgpu_new_state,
  1299. struct amdgpu_ps *amdgpu_current_state)
  1300. {
  1301. struct kv_power_info *pi = kv_get_pi(adev);
  1302. struct amdgpu_vce_clock_voltage_dependency_table *table =
  1303. &adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
  1304. int ret;
  1305. if (amdgpu_new_state->evclk > 0 && amdgpu_current_state->evclk == 0) {
  1306. kv_dpm_powergate_vce(adev, false);
  1307. /* turn the clocks on when encoding */
  1308. ret = amdgpu_set_clockgating_state(adev, AMD_IP_BLOCK_TYPE_VCE,
  1309. AMD_CG_STATE_UNGATE);
  1310. if (ret)
  1311. return ret;
  1312. if (pi->caps_stable_p_state)
  1313. pi->vce_boot_level = table->count - 1;
  1314. else
  1315. pi->vce_boot_level = kv_get_vce_boot_level(adev, amdgpu_new_state->evclk);
  1316. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  1317. pi->dpm_table_start +
  1318. offsetof(SMU7_Fusion_DpmTable, VceBootLevel),
  1319. (u8 *)&pi->vce_boot_level,
  1320. sizeof(u8),
  1321. pi->sram_end);
  1322. if (ret)
  1323. return ret;
  1324. if (pi->caps_stable_p_state)
  1325. amdgpu_kv_send_msg_to_smc_with_parameter(adev,
  1326. PPSMC_MSG_VCEDPM_SetEnabledMask,
  1327. (1 << pi->vce_boot_level));
  1328. kv_enable_vce_dpm(adev, true);
  1329. } else if (amdgpu_new_state->evclk == 0 && amdgpu_current_state->evclk > 0) {
  1330. kv_enable_vce_dpm(adev, false);
  1331. /* turn the clocks off when not encoding */
  1332. ret = amdgpu_set_clockgating_state(adev, AMD_IP_BLOCK_TYPE_VCE,
  1333. AMD_CG_STATE_GATE);
  1334. if (ret)
  1335. return ret;
  1336. kv_dpm_powergate_vce(adev, true);
  1337. }
  1338. return 0;
  1339. }
  1340. static int kv_update_samu_dpm(struct amdgpu_device *adev, bool gate)
  1341. {
  1342. struct kv_power_info *pi = kv_get_pi(adev);
  1343. struct amdgpu_clock_voltage_dependency_table *table =
  1344. &adev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table;
  1345. int ret;
  1346. if (!gate) {
  1347. if (pi->caps_stable_p_state)
  1348. pi->samu_boot_level = table->count - 1;
  1349. else
  1350. pi->samu_boot_level = 0;
  1351. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  1352. pi->dpm_table_start +
  1353. offsetof(SMU7_Fusion_DpmTable, SamuBootLevel),
  1354. (u8 *)&pi->samu_boot_level,
  1355. sizeof(u8),
  1356. pi->sram_end);
  1357. if (ret)
  1358. return ret;
  1359. if (pi->caps_stable_p_state)
  1360. amdgpu_kv_send_msg_to_smc_with_parameter(adev,
  1361. PPSMC_MSG_SAMUDPM_SetEnabledMask,
  1362. (1 << pi->samu_boot_level));
  1363. }
  1364. return kv_enable_samu_dpm(adev, !gate);
  1365. }
  1366. static u8 kv_get_acp_boot_level(struct amdgpu_device *adev)
  1367. {
  1368. u8 i;
  1369. struct amdgpu_clock_voltage_dependency_table *table =
  1370. &adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
  1371. for (i = 0; i < table->count; i++) {
  1372. if (table->entries[i].clk >= 0) /* XXX */
  1373. break;
  1374. }
  1375. if (i >= table->count)
  1376. i = table->count - 1;
  1377. return i;
  1378. }
  1379. static void kv_update_acp_boot_level(struct amdgpu_device *adev)
  1380. {
  1381. struct kv_power_info *pi = kv_get_pi(adev);
  1382. u8 acp_boot_level;
  1383. if (!pi->caps_stable_p_state) {
  1384. acp_boot_level = kv_get_acp_boot_level(adev);
  1385. if (acp_boot_level != pi->acp_boot_level) {
  1386. pi->acp_boot_level = acp_boot_level;
  1387. amdgpu_kv_send_msg_to_smc_with_parameter(adev,
  1388. PPSMC_MSG_ACPDPM_SetEnabledMask,
  1389. (1 << pi->acp_boot_level));
  1390. }
  1391. }
  1392. }
  1393. static int kv_update_acp_dpm(struct amdgpu_device *adev, bool gate)
  1394. {
  1395. struct kv_power_info *pi = kv_get_pi(adev);
  1396. struct amdgpu_clock_voltage_dependency_table *table =
  1397. &adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
  1398. int ret;
  1399. if (!gate) {
  1400. if (pi->caps_stable_p_state)
  1401. pi->acp_boot_level = table->count - 1;
  1402. else
  1403. pi->acp_boot_level = kv_get_acp_boot_level(adev);
  1404. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  1405. pi->dpm_table_start +
  1406. offsetof(SMU7_Fusion_DpmTable, AcpBootLevel),
  1407. (u8 *)&pi->acp_boot_level,
  1408. sizeof(u8),
  1409. pi->sram_end);
  1410. if (ret)
  1411. return ret;
  1412. if (pi->caps_stable_p_state)
  1413. amdgpu_kv_send_msg_to_smc_with_parameter(adev,
  1414. PPSMC_MSG_ACPDPM_SetEnabledMask,
  1415. (1 << pi->acp_boot_level));
  1416. }
  1417. return kv_enable_acp_dpm(adev, !gate);
  1418. }
  1419. static void kv_dpm_powergate_uvd(struct amdgpu_device *adev, bool gate)
  1420. {
  1421. struct kv_power_info *pi = kv_get_pi(adev);
  1422. int ret;
  1423. if (pi->uvd_power_gated == gate)
  1424. return;
  1425. pi->uvd_power_gated = gate;
  1426. if (gate) {
  1427. if (pi->caps_uvd_pg) {
  1428. /* disable clockgating so we can properly shut down the block */
  1429. ret = amdgpu_set_clockgating_state(adev, AMD_IP_BLOCK_TYPE_UVD,
  1430. AMD_CG_STATE_UNGATE);
  1431. /* shutdown the UVD block */
  1432. ret = amdgpu_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_UVD,
  1433. AMD_PG_STATE_GATE);
  1434. /* XXX: check for errors */
  1435. }
  1436. kv_update_uvd_dpm(adev, gate);
  1437. if (pi->caps_uvd_pg)
  1438. /* power off the UVD block */
  1439. amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_UVDPowerOFF);
  1440. } else {
  1441. if (pi->caps_uvd_pg) {
  1442. /* power on the UVD block */
  1443. amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_UVDPowerON);
  1444. /* re-init the UVD block */
  1445. ret = amdgpu_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_UVD,
  1446. AMD_PG_STATE_UNGATE);
  1447. /* enable clockgating. hw will dynamically gate/ungate clocks on the fly */
  1448. ret = amdgpu_set_clockgating_state(adev, AMD_IP_BLOCK_TYPE_UVD,
  1449. AMD_CG_STATE_GATE);
  1450. /* XXX: check for errors */
  1451. }
  1452. kv_update_uvd_dpm(adev, gate);
  1453. }
  1454. }
  1455. static void kv_dpm_powergate_vce(struct amdgpu_device *adev, bool gate)
  1456. {
  1457. struct kv_power_info *pi = kv_get_pi(adev);
  1458. int ret;
  1459. if (pi->vce_power_gated == gate)
  1460. return;
  1461. pi->vce_power_gated = gate;
  1462. if (gate) {
  1463. if (pi->caps_vce_pg) {
  1464. /* shutdown the VCE block */
  1465. ret = amdgpu_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VCE,
  1466. AMD_PG_STATE_GATE);
  1467. /* XXX: check for errors */
  1468. /* power off the VCE block */
  1469. amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_VCEPowerOFF);
  1470. }
  1471. } else {
  1472. if (pi->caps_vce_pg) {
  1473. /* power on the VCE block */
  1474. amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_VCEPowerON);
  1475. /* re-init the VCE block */
  1476. ret = amdgpu_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VCE,
  1477. AMD_PG_STATE_UNGATE);
  1478. /* XXX: check for errors */
  1479. }
  1480. }
  1481. }
  1482. static void kv_dpm_powergate_samu(struct amdgpu_device *adev, bool gate)
  1483. {
  1484. struct kv_power_info *pi = kv_get_pi(adev);
  1485. if (pi->samu_power_gated == gate)
  1486. return;
  1487. pi->samu_power_gated = gate;
  1488. if (gate) {
  1489. kv_update_samu_dpm(adev, true);
  1490. if (pi->caps_samu_pg)
  1491. amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_SAMPowerOFF);
  1492. } else {
  1493. if (pi->caps_samu_pg)
  1494. amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_SAMPowerON);
  1495. kv_update_samu_dpm(adev, false);
  1496. }
  1497. }
  1498. static void kv_dpm_powergate_acp(struct amdgpu_device *adev, bool gate)
  1499. {
  1500. struct kv_power_info *pi = kv_get_pi(adev);
  1501. if (pi->acp_power_gated == gate)
  1502. return;
  1503. if (adev->asic_type == CHIP_KABINI || adev->asic_type == CHIP_MULLINS)
  1504. return;
  1505. pi->acp_power_gated = gate;
  1506. if (gate) {
  1507. kv_update_acp_dpm(adev, true);
  1508. if (pi->caps_acp_pg)
  1509. amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_ACPPowerOFF);
  1510. } else {
  1511. if (pi->caps_acp_pg)
  1512. amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_ACPPowerON);
  1513. kv_update_acp_dpm(adev, false);
  1514. }
  1515. }
  1516. static void kv_set_valid_clock_range(struct amdgpu_device *adev,
  1517. struct amdgpu_ps *new_rps)
  1518. {
  1519. struct kv_ps *new_ps = kv_get_ps(new_rps);
  1520. struct kv_power_info *pi = kv_get_pi(adev);
  1521. u32 i;
  1522. struct amdgpu_clock_voltage_dependency_table *table =
  1523. &adev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  1524. if (table && table->count) {
  1525. for (i = 0; i < pi->graphics_dpm_level_count; i++) {
  1526. if ((table->entries[i].clk >= new_ps->levels[0].sclk) ||
  1527. (i == (pi->graphics_dpm_level_count - 1))) {
  1528. pi->lowest_valid = i;
  1529. break;
  1530. }
  1531. }
  1532. for (i = pi->graphics_dpm_level_count - 1; i > 0; i--) {
  1533. if (table->entries[i].clk <= new_ps->levels[new_ps->num_levels - 1].sclk)
  1534. break;
  1535. }
  1536. pi->highest_valid = i;
  1537. if (pi->lowest_valid > pi->highest_valid) {
  1538. if ((new_ps->levels[0].sclk - table->entries[pi->highest_valid].clk) >
  1539. (table->entries[pi->lowest_valid].clk - new_ps->levels[new_ps->num_levels - 1].sclk))
  1540. pi->highest_valid = pi->lowest_valid;
  1541. else
  1542. pi->lowest_valid = pi->highest_valid;
  1543. }
  1544. } else {
  1545. struct sumo_sclk_voltage_mapping_table *table =
  1546. &pi->sys_info.sclk_voltage_mapping_table;
  1547. for (i = 0; i < (int)pi->graphics_dpm_level_count; i++) {
  1548. if (table->entries[i].sclk_frequency >= new_ps->levels[0].sclk ||
  1549. i == (int)(pi->graphics_dpm_level_count - 1)) {
  1550. pi->lowest_valid = i;
  1551. break;
  1552. }
  1553. }
  1554. for (i = pi->graphics_dpm_level_count - 1; i > 0; i--) {
  1555. if (table->entries[i].sclk_frequency <=
  1556. new_ps->levels[new_ps->num_levels - 1].sclk)
  1557. break;
  1558. }
  1559. pi->highest_valid = i;
  1560. if (pi->lowest_valid > pi->highest_valid) {
  1561. if ((new_ps->levels[0].sclk -
  1562. table->entries[pi->highest_valid].sclk_frequency) >
  1563. (table->entries[pi->lowest_valid].sclk_frequency -
  1564. new_ps->levels[new_ps->num_levels -1].sclk))
  1565. pi->highest_valid = pi->lowest_valid;
  1566. else
  1567. pi->lowest_valid = pi->highest_valid;
  1568. }
  1569. }
  1570. }
  1571. static int kv_update_dfs_bypass_settings(struct amdgpu_device *adev,
  1572. struct amdgpu_ps *new_rps)
  1573. {
  1574. struct kv_ps *new_ps = kv_get_ps(new_rps);
  1575. struct kv_power_info *pi = kv_get_pi(adev);
  1576. int ret = 0;
  1577. u8 clk_bypass_cntl;
  1578. if (pi->caps_enable_dfs_bypass) {
  1579. clk_bypass_cntl = new_ps->need_dfs_bypass ?
  1580. pi->graphics_level[pi->graphics_boot_level].ClkBypassCntl : 0;
  1581. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  1582. (pi->dpm_table_start +
  1583. offsetof(SMU7_Fusion_DpmTable, GraphicsLevel) +
  1584. (pi->graphics_boot_level * sizeof(SMU7_Fusion_GraphicsLevel)) +
  1585. offsetof(SMU7_Fusion_GraphicsLevel, ClkBypassCntl)),
  1586. &clk_bypass_cntl,
  1587. sizeof(u8), pi->sram_end);
  1588. }
  1589. return ret;
  1590. }
  1591. static int kv_enable_nb_dpm(struct amdgpu_device *adev,
  1592. bool enable)
  1593. {
  1594. struct kv_power_info *pi = kv_get_pi(adev);
  1595. int ret = 0;
  1596. if (enable) {
  1597. if (pi->enable_nb_dpm && !pi->nb_dpm_enabled) {
  1598. ret = amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_NBDPM_Enable);
  1599. if (ret == 0)
  1600. pi->nb_dpm_enabled = true;
  1601. }
  1602. } else {
  1603. if (pi->enable_nb_dpm && pi->nb_dpm_enabled) {
  1604. ret = amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_NBDPM_Disable);
  1605. if (ret == 0)
  1606. pi->nb_dpm_enabled = false;
  1607. }
  1608. }
  1609. return ret;
  1610. }
  1611. static int kv_dpm_force_performance_level(struct amdgpu_device *adev,
  1612. enum amdgpu_dpm_forced_level level)
  1613. {
  1614. int ret;
  1615. if (level == AMDGPU_DPM_FORCED_LEVEL_HIGH) {
  1616. ret = kv_force_dpm_highest(adev);
  1617. if (ret)
  1618. return ret;
  1619. } else if (level == AMDGPU_DPM_FORCED_LEVEL_LOW) {
  1620. ret = kv_force_dpm_lowest(adev);
  1621. if (ret)
  1622. return ret;
  1623. } else if (level == AMDGPU_DPM_FORCED_LEVEL_AUTO) {
  1624. ret = kv_unforce_levels(adev);
  1625. if (ret)
  1626. return ret;
  1627. }
  1628. adev->pm.dpm.forced_level = level;
  1629. return 0;
  1630. }
  1631. static int kv_dpm_pre_set_power_state(struct amdgpu_device *adev)
  1632. {
  1633. struct kv_power_info *pi = kv_get_pi(adev);
  1634. struct amdgpu_ps requested_ps = *adev->pm.dpm.requested_ps;
  1635. struct amdgpu_ps *new_ps = &requested_ps;
  1636. kv_update_requested_ps(adev, new_ps);
  1637. kv_apply_state_adjust_rules(adev,
  1638. &pi->requested_rps,
  1639. &pi->current_rps);
  1640. return 0;
  1641. }
  1642. static int kv_dpm_set_power_state(struct amdgpu_device *adev)
  1643. {
  1644. struct kv_power_info *pi = kv_get_pi(adev);
  1645. struct amdgpu_ps *new_ps = &pi->requested_rps;
  1646. struct amdgpu_ps *old_ps = &pi->current_rps;
  1647. int ret;
  1648. if (pi->bapm_enable) {
  1649. ret = amdgpu_kv_smc_bapm_enable(adev, adev->pm.dpm.ac_power);
  1650. if (ret) {
  1651. DRM_ERROR("amdgpu_kv_smc_bapm_enable failed\n");
  1652. return ret;
  1653. }
  1654. }
  1655. if (adev->asic_type == CHIP_KABINI || adev->asic_type == CHIP_MULLINS) {
  1656. if (pi->enable_dpm) {
  1657. kv_set_valid_clock_range(adev, new_ps);
  1658. kv_update_dfs_bypass_settings(adev, new_ps);
  1659. ret = kv_calculate_ds_divider(adev);
  1660. if (ret) {
  1661. DRM_ERROR("kv_calculate_ds_divider failed\n");
  1662. return ret;
  1663. }
  1664. kv_calculate_nbps_level_settings(adev);
  1665. kv_calculate_dpm_settings(adev);
  1666. kv_force_lowest_valid(adev);
  1667. kv_enable_new_levels(adev);
  1668. kv_upload_dpm_settings(adev);
  1669. kv_program_nbps_index_settings(adev, new_ps);
  1670. kv_unforce_levels(adev);
  1671. kv_set_enabled_levels(adev);
  1672. kv_force_lowest_valid(adev);
  1673. kv_unforce_levels(adev);
  1674. ret = kv_update_vce_dpm(adev, new_ps, old_ps);
  1675. if (ret) {
  1676. DRM_ERROR("kv_update_vce_dpm failed\n");
  1677. return ret;
  1678. }
  1679. kv_update_sclk_t(adev);
  1680. if (adev->asic_type == CHIP_MULLINS)
  1681. kv_enable_nb_dpm(adev, true);
  1682. }
  1683. } else {
  1684. if (pi->enable_dpm) {
  1685. kv_set_valid_clock_range(adev, new_ps);
  1686. kv_update_dfs_bypass_settings(adev, new_ps);
  1687. ret = kv_calculate_ds_divider(adev);
  1688. if (ret) {
  1689. DRM_ERROR("kv_calculate_ds_divider failed\n");
  1690. return ret;
  1691. }
  1692. kv_calculate_nbps_level_settings(adev);
  1693. kv_calculate_dpm_settings(adev);
  1694. kv_freeze_sclk_dpm(adev, true);
  1695. kv_upload_dpm_settings(adev);
  1696. kv_program_nbps_index_settings(adev, new_ps);
  1697. kv_freeze_sclk_dpm(adev, false);
  1698. kv_set_enabled_levels(adev);
  1699. ret = kv_update_vce_dpm(adev, new_ps, old_ps);
  1700. if (ret) {
  1701. DRM_ERROR("kv_update_vce_dpm failed\n");
  1702. return ret;
  1703. }
  1704. kv_update_acp_boot_level(adev);
  1705. kv_update_sclk_t(adev);
  1706. kv_enable_nb_dpm(adev, true);
  1707. }
  1708. }
  1709. return 0;
  1710. }
  1711. static void kv_dpm_post_set_power_state(struct amdgpu_device *adev)
  1712. {
  1713. struct kv_power_info *pi = kv_get_pi(adev);
  1714. struct amdgpu_ps *new_ps = &pi->requested_rps;
  1715. kv_update_current_ps(adev, new_ps);
  1716. }
  1717. static void kv_dpm_setup_asic(struct amdgpu_device *adev)
  1718. {
  1719. sumo_take_smu_control(adev, true);
  1720. kv_init_powergate_state(adev);
  1721. kv_init_sclk_t(adev);
  1722. }
  1723. #if 0
  1724. static void kv_dpm_reset_asic(struct amdgpu_device *adev)
  1725. {
  1726. struct kv_power_info *pi = kv_get_pi(adev);
  1727. if (adev->asic_type == CHIP_KABINI || adev->asic_type == CHIP_MULLINS) {
  1728. kv_force_lowest_valid(adev);
  1729. kv_init_graphics_levels(adev);
  1730. kv_program_bootup_state(adev);
  1731. kv_upload_dpm_settings(adev);
  1732. kv_force_lowest_valid(adev);
  1733. kv_unforce_levels(adev);
  1734. } else {
  1735. kv_init_graphics_levels(adev);
  1736. kv_program_bootup_state(adev);
  1737. kv_freeze_sclk_dpm(adev, true);
  1738. kv_upload_dpm_settings(adev);
  1739. kv_freeze_sclk_dpm(adev, false);
  1740. kv_set_enabled_level(adev, pi->graphics_boot_level);
  1741. }
  1742. }
  1743. #endif
  1744. static void kv_construct_max_power_limits_table(struct amdgpu_device *adev,
  1745. struct amdgpu_clock_and_voltage_limits *table)
  1746. {
  1747. struct kv_power_info *pi = kv_get_pi(adev);
  1748. if (pi->sys_info.sclk_voltage_mapping_table.num_max_dpm_entries > 0) {
  1749. int idx = pi->sys_info.sclk_voltage_mapping_table.num_max_dpm_entries - 1;
  1750. table->sclk =
  1751. pi->sys_info.sclk_voltage_mapping_table.entries[idx].sclk_frequency;
  1752. table->vddc =
  1753. kv_convert_2bit_index_to_voltage(adev,
  1754. pi->sys_info.sclk_voltage_mapping_table.entries[idx].vid_2bit);
  1755. }
  1756. table->mclk = pi->sys_info.nbp_memory_clock[0];
  1757. }
  1758. static void kv_patch_voltage_values(struct amdgpu_device *adev)
  1759. {
  1760. int i;
  1761. struct amdgpu_uvd_clock_voltage_dependency_table *uvd_table =
  1762. &adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
  1763. struct amdgpu_vce_clock_voltage_dependency_table *vce_table =
  1764. &adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
  1765. struct amdgpu_clock_voltage_dependency_table *samu_table =
  1766. &adev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table;
  1767. struct amdgpu_clock_voltage_dependency_table *acp_table =
  1768. &adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
  1769. if (uvd_table->count) {
  1770. for (i = 0; i < uvd_table->count; i++)
  1771. uvd_table->entries[i].v =
  1772. kv_convert_8bit_index_to_voltage(adev,
  1773. uvd_table->entries[i].v);
  1774. }
  1775. if (vce_table->count) {
  1776. for (i = 0; i < vce_table->count; i++)
  1777. vce_table->entries[i].v =
  1778. kv_convert_8bit_index_to_voltage(adev,
  1779. vce_table->entries[i].v);
  1780. }
  1781. if (samu_table->count) {
  1782. for (i = 0; i < samu_table->count; i++)
  1783. samu_table->entries[i].v =
  1784. kv_convert_8bit_index_to_voltage(adev,
  1785. samu_table->entries[i].v);
  1786. }
  1787. if (acp_table->count) {
  1788. for (i = 0; i < acp_table->count; i++)
  1789. acp_table->entries[i].v =
  1790. kv_convert_8bit_index_to_voltage(adev,
  1791. acp_table->entries[i].v);
  1792. }
  1793. }
  1794. static void kv_construct_boot_state(struct amdgpu_device *adev)
  1795. {
  1796. struct kv_power_info *pi = kv_get_pi(adev);
  1797. pi->boot_pl.sclk = pi->sys_info.bootup_sclk;
  1798. pi->boot_pl.vddc_index = pi->sys_info.bootup_nb_voltage_index;
  1799. pi->boot_pl.ds_divider_index = 0;
  1800. pi->boot_pl.ss_divider_index = 0;
  1801. pi->boot_pl.allow_gnb_slow = 1;
  1802. pi->boot_pl.force_nbp_state = 0;
  1803. pi->boot_pl.display_wm = 0;
  1804. pi->boot_pl.vce_wm = 0;
  1805. }
  1806. static int kv_force_dpm_highest(struct amdgpu_device *adev)
  1807. {
  1808. int ret;
  1809. u32 enable_mask, i;
  1810. ret = amdgpu_kv_dpm_get_enable_mask(adev, &enable_mask);
  1811. if (ret)
  1812. return ret;
  1813. for (i = SMU7_MAX_LEVELS_GRAPHICS - 1; i > 0; i--) {
  1814. if (enable_mask & (1 << i))
  1815. break;
  1816. }
  1817. if (adev->asic_type == CHIP_KABINI || adev->asic_type == CHIP_MULLINS)
  1818. return amdgpu_kv_send_msg_to_smc_with_parameter(adev, PPSMC_MSG_DPM_ForceState, i);
  1819. else
  1820. return kv_set_enabled_level(adev, i);
  1821. }
  1822. static int kv_force_dpm_lowest(struct amdgpu_device *adev)
  1823. {
  1824. int ret;
  1825. u32 enable_mask, i;
  1826. ret = amdgpu_kv_dpm_get_enable_mask(adev, &enable_mask);
  1827. if (ret)
  1828. return ret;
  1829. for (i = 0; i < SMU7_MAX_LEVELS_GRAPHICS; i++) {
  1830. if (enable_mask & (1 << i))
  1831. break;
  1832. }
  1833. if (adev->asic_type == CHIP_KABINI || adev->asic_type == CHIP_MULLINS)
  1834. return amdgpu_kv_send_msg_to_smc_with_parameter(adev, PPSMC_MSG_DPM_ForceState, i);
  1835. else
  1836. return kv_set_enabled_level(adev, i);
  1837. }
  1838. static u8 kv_get_sleep_divider_id_from_clock(struct amdgpu_device *adev,
  1839. u32 sclk, u32 min_sclk_in_sr)
  1840. {
  1841. struct kv_power_info *pi = kv_get_pi(adev);
  1842. u32 i;
  1843. u32 temp;
  1844. u32 min = max(min_sclk_in_sr, (u32)KV_MINIMUM_ENGINE_CLOCK);
  1845. if (sclk < min)
  1846. return 0;
  1847. if (!pi->caps_sclk_ds)
  1848. return 0;
  1849. for (i = KV_MAX_DEEPSLEEP_DIVIDER_ID; i > 0; i--) {
  1850. temp = sclk >> i;
  1851. if (temp >= min)
  1852. break;
  1853. }
  1854. return (u8)i;
  1855. }
  1856. static int kv_get_high_voltage_limit(struct amdgpu_device *adev, int *limit)
  1857. {
  1858. struct kv_power_info *pi = kv_get_pi(adev);
  1859. struct amdgpu_clock_voltage_dependency_table *table =
  1860. &adev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  1861. int i;
  1862. if (table && table->count) {
  1863. for (i = table->count - 1; i >= 0; i--) {
  1864. if (pi->high_voltage_t &&
  1865. (kv_convert_8bit_index_to_voltage(adev, table->entries[i].v) <=
  1866. pi->high_voltage_t)) {
  1867. *limit = i;
  1868. return 0;
  1869. }
  1870. }
  1871. } else {
  1872. struct sumo_sclk_voltage_mapping_table *table =
  1873. &pi->sys_info.sclk_voltage_mapping_table;
  1874. for (i = table->num_max_dpm_entries - 1; i >= 0; i--) {
  1875. if (pi->high_voltage_t &&
  1876. (kv_convert_2bit_index_to_voltage(adev, table->entries[i].vid_2bit) <=
  1877. pi->high_voltage_t)) {
  1878. *limit = i;
  1879. return 0;
  1880. }
  1881. }
  1882. }
  1883. *limit = 0;
  1884. return 0;
  1885. }
  1886. static void kv_apply_state_adjust_rules(struct amdgpu_device *adev,
  1887. struct amdgpu_ps *new_rps,
  1888. struct amdgpu_ps *old_rps)
  1889. {
  1890. struct kv_ps *ps = kv_get_ps(new_rps);
  1891. struct kv_power_info *pi = kv_get_pi(adev);
  1892. u32 min_sclk = 10000; /* ??? */
  1893. u32 sclk, mclk = 0;
  1894. int i, limit;
  1895. bool force_high;
  1896. struct amdgpu_clock_voltage_dependency_table *table =
  1897. &adev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  1898. u32 stable_p_state_sclk = 0;
  1899. struct amdgpu_clock_and_voltage_limits *max_limits =
  1900. &adev->pm.dpm.dyn_state.max_clock_voltage_on_ac;
  1901. if (new_rps->vce_active) {
  1902. new_rps->evclk = adev->pm.dpm.vce_states[adev->pm.dpm.vce_level].evclk;
  1903. new_rps->ecclk = adev->pm.dpm.vce_states[adev->pm.dpm.vce_level].ecclk;
  1904. } else {
  1905. new_rps->evclk = 0;
  1906. new_rps->ecclk = 0;
  1907. }
  1908. mclk = max_limits->mclk;
  1909. sclk = min_sclk;
  1910. if (pi->caps_stable_p_state) {
  1911. stable_p_state_sclk = (max_limits->sclk * 75) / 100;
  1912. for (i = table->count - 1; i >= 0; i++) {
  1913. if (stable_p_state_sclk >= table->entries[i].clk) {
  1914. stable_p_state_sclk = table->entries[i].clk;
  1915. break;
  1916. }
  1917. }
  1918. if (i > 0)
  1919. stable_p_state_sclk = table->entries[0].clk;
  1920. sclk = stable_p_state_sclk;
  1921. }
  1922. if (new_rps->vce_active) {
  1923. if (sclk < adev->pm.dpm.vce_states[adev->pm.dpm.vce_level].sclk)
  1924. sclk = adev->pm.dpm.vce_states[adev->pm.dpm.vce_level].sclk;
  1925. }
  1926. ps->need_dfs_bypass = true;
  1927. for (i = 0; i < ps->num_levels; i++) {
  1928. if (ps->levels[i].sclk < sclk)
  1929. ps->levels[i].sclk = sclk;
  1930. }
  1931. if (table && table->count) {
  1932. for (i = 0; i < ps->num_levels; i++) {
  1933. if (pi->high_voltage_t &&
  1934. (pi->high_voltage_t <
  1935. kv_convert_8bit_index_to_voltage(adev, ps->levels[i].vddc_index))) {
  1936. kv_get_high_voltage_limit(adev, &limit);
  1937. ps->levels[i].sclk = table->entries[limit].clk;
  1938. }
  1939. }
  1940. } else {
  1941. struct sumo_sclk_voltage_mapping_table *table =
  1942. &pi->sys_info.sclk_voltage_mapping_table;
  1943. for (i = 0; i < ps->num_levels; i++) {
  1944. if (pi->high_voltage_t &&
  1945. (pi->high_voltage_t <
  1946. kv_convert_8bit_index_to_voltage(adev, ps->levels[i].vddc_index))) {
  1947. kv_get_high_voltage_limit(adev, &limit);
  1948. ps->levels[i].sclk = table->entries[limit].sclk_frequency;
  1949. }
  1950. }
  1951. }
  1952. if (pi->caps_stable_p_state) {
  1953. for (i = 0; i < ps->num_levels; i++) {
  1954. ps->levels[i].sclk = stable_p_state_sclk;
  1955. }
  1956. }
  1957. pi->video_start = new_rps->dclk || new_rps->vclk ||
  1958. new_rps->evclk || new_rps->ecclk;
  1959. if ((new_rps->class & ATOM_PPLIB_CLASSIFICATION_UI_MASK) ==
  1960. ATOM_PPLIB_CLASSIFICATION_UI_BATTERY)
  1961. pi->battery_state = true;
  1962. else
  1963. pi->battery_state = false;
  1964. if (adev->asic_type == CHIP_KABINI || adev->asic_type == CHIP_MULLINS) {
  1965. ps->dpm0_pg_nb_ps_lo = 0x1;
  1966. ps->dpm0_pg_nb_ps_hi = 0x0;
  1967. ps->dpmx_nb_ps_lo = 0x1;
  1968. ps->dpmx_nb_ps_hi = 0x0;
  1969. } else {
  1970. ps->dpm0_pg_nb_ps_lo = 0x3;
  1971. ps->dpm0_pg_nb_ps_hi = 0x0;
  1972. ps->dpmx_nb_ps_lo = 0x3;
  1973. ps->dpmx_nb_ps_hi = 0x0;
  1974. if (pi->sys_info.nb_dpm_enable) {
  1975. force_high = (mclk >= pi->sys_info.nbp_memory_clock[3]) ||
  1976. pi->video_start || (adev->pm.dpm.new_active_crtc_count >= 3) ||
  1977. pi->disable_nb_ps3_in_battery;
  1978. ps->dpm0_pg_nb_ps_lo = force_high ? 0x2 : 0x3;
  1979. ps->dpm0_pg_nb_ps_hi = 0x2;
  1980. ps->dpmx_nb_ps_lo = force_high ? 0x2 : 0x3;
  1981. ps->dpmx_nb_ps_hi = 0x2;
  1982. }
  1983. }
  1984. }
  1985. static void kv_dpm_power_level_enabled_for_throttle(struct amdgpu_device *adev,
  1986. u32 index, bool enable)
  1987. {
  1988. struct kv_power_info *pi = kv_get_pi(adev);
  1989. pi->graphics_level[index].EnabledForThrottle = enable ? 1 : 0;
  1990. }
  1991. static int kv_calculate_ds_divider(struct amdgpu_device *adev)
  1992. {
  1993. struct kv_power_info *pi = kv_get_pi(adev);
  1994. u32 sclk_in_sr = 10000; /* ??? */
  1995. u32 i;
  1996. if (pi->lowest_valid > pi->highest_valid)
  1997. return -EINVAL;
  1998. for (i = pi->lowest_valid; i <= pi->highest_valid; i++) {
  1999. pi->graphics_level[i].DeepSleepDivId =
  2000. kv_get_sleep_divider_id_from_clock(adev,
  2001. be32_to_cpu(pi->graphics_level[i].SclkFrequency),
  2002. sclk_in_sr);
  2003. }
  2004. return 0;
  2005. }
  2006. static int kv_calculate_nbps_level_settings(struct amdgpu_device *adev)
  2007. {
  2008. struct kv_power_info *pi = kv_get_pi(adev);
  2009. u32 i;
  2010. bool force_high;
  2011. struct amdgpu_clock_and_voltage_limits *max_limits =
  2012. &adev->pm.dpm.dyn_state.max_clock_voltage_on_ac;
  2013. u32 mclk = max_limits->mclk;
  2014. if (pi->lowest_valid > pi->highest_valid)
  2015. return -EINVAL;
  2016. if (adev->asic_type == CHIP_KABINI || adev->asic_type == CHIP_MULLINS) {
  2017. for (i = pi->lowest_valid; i <= pi->highest_valid; i++) {
  2018. pi->graphics_level[i].GnbSlow = 1;
  2019. pi->graphics_level[i].ForceNbPs1 = 0;
  2020. pi->graphics_level[i].UpH = 0;
  2021. }
  2022. if (!pi->sys_info.nb_dpm_enable)
  2023. return 0;
  2024. force_high = ((mclk >= pi->sys_info.nbp_memory_clock[3]) ||
  2025. (adev->pm.dpm.new_active_crtc_count >= 3) || pi->video_start);
  2026. if (force_high) {
  2027. for (i = pi->lowest_valid; i <= pi->highest_valid; i++)
  2028. pi->graphics_level[i].GnbSlow = 0;
  2029. } else {
  2030. if (pi->battery_state)
  2031. pi->graphics_level[0].ForceNbPs1 = 1;
  2032. pi->graphics_level[1].GnbSlow = 0;
  2033. pi->graphics_level[2].GnbSlow = 0;
  2034. pi->graphics_level[3].GnbSlow = 0;
  2035. pi->graphics_level[4].GnbSlow = 0;
  2036. }
  2037. } else {
  2038. for (i = pi->lowest_valid; i <= pi->highest_valid; i++) {
  2039. pi->graphics_level[i].GnbSlow = 1;
  2040. pi->graphics_level[i].ForceNbPs1 = 0;
  2041. pi->graphics_level[i].UpH = 0;
  2042. }
  2043. if (pi->sys_info.nb_dpm_enable && pi->battery_state) {
  2044. pi->graphics_level[pi->lowest_valid].UpH = 0x28;
  2045. pi->graphics_level[pi->lowest_valid].GnbSlow = 0;
  2046. if (pi->lowest_valid != pi->highest_valid)
  2047. pi->graphics_level[pi->lowest_valid].ForceNbPs1 = 1;
  2048. }
  2049. }
  2050. return 0;
  2051. }
  2052. static int kv_calculate_dpm_settings(struct amdgpu_device *adev)
  2053. {
  2054. struct kv_power_info *pi = kv_get_pi(adev);
  2055. u32 i;
  2056. if (pi->lowest_valid > pi->highest_valid)
  2057. return -EINVAL;
  2058. for (i = pi->lowest_valid; i <= pi->highest_valid; i++)
  2059. pi->graphics_level[i].DisplayWatermark = (i == pi->highest_valid) ? 1 : 0;
  2060. return 0;
  2061. }
  2062. static void kv_init_graphics_levels(struct amdgpu_device *adev)
  2063. {
  2064. struct kv_power_info *pi = kv_get_pi(adev);
  2065. u32 i;
  2066. struct amdgpu_clock_voltage_dependency_table *table =
  2067. &adev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  2068. if (table && table->count) {
  2069. u32 vid_2bit;
  2070. pi->graphics_dpm_level_count = 0;
  2071. for (i = 0; i < table->count; i++) {
  2072. if (pi->high_voltage_t &&
  2073. (pi->high_voltage_t <
  2074. kv_convert_8bit_index_to_voltage(adev, table->entries[i].v)))
  2075. break;
  2076. kv_set_divider_value(adev, i, table->entries[i].clk);
  2077. vid_2bit = kv_convert_vid7_to_vid2(adev,
  2078. &pi->sys_info.vid_mapping_table,
  2079. table->entries[i].v);
  2080. kv_set_vid(adev, i, vid_2bit);
  2081. kv_set_at(adev, i, pi->at[i]);
  2082. kv_dpm_power_level_enabled_for_throttle(adev, i, true);
  2083. pi->graphics_dpm_level_count++;
  2084. }
  2085. } else {
  2086. struct sumo_sclk_voltage_mapping_table *table =
  2087. &pi->sys_info.sclk_voltage_mapping_table;
  2088. pi->graphics_dpm_level_count = 0;
  2089. for (i = 0; i < table->num_max_dpm_entries; i++) {
  2090. if (pi->high_voltage_t &&
  2091. pi->high_voltage_t <
  2092. kv_convert_2bit_index_to_voltage(adev, table->entries[i].vid_2bit))
  2093. break;
  2094. kv_set_divider_value(adev, i, table->entries[i].sclk_frequency);
  2095. kv_set_vid(adev, i, table->entries[i].vid_2bit);
  2096. kv_set_at(adev, i, pi->at[i]);
  2097. kv_dpm_power_level_enabled_for_throttle(adev, i, true);
  2098. pi->graphics_dpm_level_count++;
  2099. }
  2100. }
  2101. for (i = 0; i < SMU7_MAX_LEVELS_GRAPHICS; i++)
  2102. kv_dpm_power_level_enable(adev, i, false);
  2103. }
  2104. static void kv_enable_new_levels(struct amdgpu_device *adev)
  2105. {
  2106. struct kv_power_info *pi = kv_get_pi(adev);
  2107. u32 i;
  2108. for (i = 0; i < SMU7_MAX_LEVELS_GRAPHICS; i++) {
  2109. if (i >= pi->lowest_valid && i <= pi->highest_valid)
  2110. kv_dpm_power_level_enable(adev, i, true);
  2111. }
  2112. }
  2113. static int kv_set_enabled_level(struct amdgpu_device *adev, u32 level)
  2114. {
  2115. u32 new_mask = (1 << level);
  2116. return amdgpu_kv_send_msg_to_smc_with_parameter(adev,
  2117. PPSMC_MSG_SCLKDPM_SetEnabledMask,
  2118. new_mask);
  2119. }
  2120. static int kv_set_enabled_levels(struct amdgpu_device *adev)
  2121. {
  2122. struct kv_power_info *pi = kv_get_pi(adev);
  2123. u32 i, new_mask = 0;
  2124. for (i = pi->lowest_valid; i <= pi->highest_valid; i++)
  2125. new_mask |= (1 << i);
  2126. return amdgpu_kv_send_msg_to_smc_with_parameter(adev,
  2127. PPSMC_MSG_SCLKDPM_SetEnabledMask,
  2128. new_mask);
  2129. }
  2130. static void kv_program_nbps_index_settings(struct amdgpu_device *adev,
  2131. struct amdgpu_ps *new_rps)
  2132. {
  2133. struct kv_ps *new_ps = kv_get_ps(new_rps);
  2134. struct kv_power_info *pi = kv_get_pi(adev);
  2135. u32 nbdpmconfig1;
  2136. if (adev->asic_type == CHIP_KABINI || adev->asic_type == CHIP_MULLINS)
  2137. return;
  2138. if (pi->sys_info.nb_dpm_enable) {
  2139. nbdpmconfig1 = RREG32_SMC(ixNB_DPM_CONFIG_1);
  2140. nbdpmconfig1 &= ~(NB_DPM_CONFIG_1__Dpm0PgNbPsLo_MASK |
  2141. NB_DPM_CONFIG_1__Dpm0PgNbPsHi_MASK |
  2142. NB_DPM_CONFIG_1__DpmXNbPsLo_MASK |
  2143. NB_DPM_CONFIG_1__DpmXNbPsHi_MASK);
  2144. nbdpmconfig1 |= (new_ps->dpm0_pg_nb_ps_lo << NB_DPM_CONFIG_1__Dpm0PgNbPsLo__SHIFT) |
  2145. (new_ps->dpm0_pg_nb_ps_hi << NB_DPM_CONFIG_1__Dpm0PgNbPsHi__SHIFT) |
  2146. (new_ps->dpmx_nb_ps_lo << NB_DPM_CONFIG_1__DpmXNbPsLo__SHIFT) |
  2147. (new_ps->dpmx_nb_ps_hi << NB_DPM_CONFIG_1__DpmXNbPsHi__SHIFT);
  2148. WREG32_SMC(ixNB_DPM_CONFIG_1, nbdpmconfig1);
  2149. }
  2150. }
  2151. static int kv_set_thermal_temperature_range(struct amdgpu_device *adev,
  2152. int min_temp, int max_temp)
  2153. {
  2154. int low_temp = 0 * 1000;
  2155. int high_temp = 255 * 1000;
  2156. u32 tmp;
  2157. if (low_temp < min_temp)
  2158. low_temp = min_temp;
  2159. if (high_temp > max_temp)
  2160. high_temp = max_temp;
  2161. if (high_temp < low_temp) {
  2162. DRM_ERROR("invalid thermal range: %d - %d\n", low_temp, high_temp);
  2163. return -EINVAL;
  2164. }
  2165. tmp = RREG32_SMC(ixCG_THERMAL_INT_CTRL);
  2166. tmp &= ~(CG_THERMAL_INT_CTRL__DIG_THERM_INTH_MASK |
  2167. CG_THERMAL_INT_CTRL__DIG_THERM_INTL_MASK);
  2168. tmp |= ((49 + (high_temp / 1000)) << CG_THERMAL_INT_CTRL__DIG_THERM_INTH__SHIFT) |
  2169. ((49 + (low_temp / 1000)) << CG_THERMAL_INT_CTRL__DIG_THERM_INTL__SHIFT);
  2170. WREG32_SMC(ixCG_THERMAL_INT_CTRL, tmp);
  2171. adev->pm.dpm.thermal.min_temp = low_temp;
  2172. adev->pm.dpm.thermal.max_temp = high_temp;
  2173. return 0;
  2174. }
  2175. union igp_info {
  2176. struct _ATOM_INTEGRATED_SYSTEM_INFO info;
  2177. struct _ATOM_INTEGRATED_SYSTEM_INFO_V2 info_2;
  2178. struct _ATOM_INTEGRATED_SYSTEM_INFO_V5 info_5;
  2179. struct _ATOM_INTEGRATED_SYSTEM_INFO_V6 info_6;
  2180. struct _ATOM_INTEGRATED_SYSTEM_INFO_V1_7 info_7;
  2181. struct _ATOM_INTEGRATED_SYSTEM_INFO_V1_8 info_8;
  2182. };
  2183. static int kv_parse_sys_info_table(struct amdgpu_device *adev)
  2184. {
  2185. struct kv_power_info *pi = kv_get_pi(adev);
  2186. struct amdgpu_mode_info *mode_info = &adev->mode_info;
  2187. int index = GetIndexIntoMasterTable(DATA, IntegratedSystemInfo);
  2188. union igp_info *igp_info;
  2189. u8 frev, crev;
  2190. u16 data_offset;
  2191. int i;
  2192. if (amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL,
  2193. &frev, &crev, &data_offset)) {
  2194. igp_info = (union igp_info *)(mode_info->atom_context->bios +
  2195. data_offset);
  2196. if (crev != 8) {
  2197. DRM_ERROR("Unsupported IGP table: %d %d\n", frev, crev);
  2198. return -EINVAL;
  2199. }
  2200. pi->sys_info.bootup_sclk = le32_to_cpu(igp_info->info_8.ulBootUpEngineClock);
  2201. pi->sys_info.bootup_uma_clk = le32_to_cpu(igp_info->info_8.ulBootUpUMAClock);
  2202. pi->sys_info.bootup_nb_voltage_index =
  2203. le16_to_cpu(igp_info->info_8.usBootUpNBVoltage);
  2204. if (igp_info->info_8.ucHtcTmpLmt == 0)
  2205. pi->sys_info.htc_tmp_lmt = 203;
  2206. else
  2207. pi->sys_info.htc_tmp_lmt = igp_info->info_8.ucHtcTmpLmt;
  2208. if (igp_info->info_8.ucHtcHystLmt == 0)
  2209. pi->sys_info.htc_hyst_lmt = 5;
  2210. else
  2211. pi->sys_info.htc_hyst_lmt = igp_info->info_8.ucHtcHystLmt;
  2212. if (pi->sys_info.htc_tmp_lmt <= pi->sys_info.htc_hyst_lmt) {
  2213. DRM_ERROR("The htcTmpLmt should be larger than htcHystLmt.\n");
  2214. }
  2215. if (le32_to_cpu(igp_info->info_8.ulSystemConfig) & (1 << 3))
  2216. pi->sys_info.nb_dpm_enable = true;
  2217. else
  2218. pi->sys_info.nb_dpm_enable = false;
  2219. for (i = 0; i < KV_NUM_NBPSTATES; i++) {
  2220. pi->sys_info.nbp_memory_clock[i] =
  2221. le32_to_cpu(igp_info->info_8.ulNbpStateMemclkFreq[i]);
  2222. pi->sys_info.nbp_n_clock[i] =
  2223. le32_to_cpu(igp_info->info_8.ulNbpStateNClkFreq[i]);
  2224. }
  2225. if (le32_to_cpu(igp_info->info_8.ulGPUCapInfo) &
  2226. SYS_INFO_GPUCAPS__ENABEL_DFS_BYPASS)
  2227. pi->caps_enable_dfs_bypass = true;
  2228. sumo_construct_sclk_voltage_mapping_table(adev,
  2229. &pi->sys_info.sclk_voltage_mapping_table,
  2230. igp_info->info_8.sAvail_SCLK);
  2231. sumo_construct_vid_mapping_table(adev,
  2232. &pi->sys_info.vid_mapping_table,
  2233. igp_info->info_8.sAvail_SCLK);
  2234. kv_construct_max_power_limits_table(adev,
  2235. &adev->pm.dpm.dyn_state.max_clock_voltage_on_ac);
  2236. }
  2237. return 0;
  2238. }
  2239. union power_info {
  2240. struct _ATOM_POWERPLAY_INFO info;
  2241. struct _ATOM_POWERPLAY_INFO_V2 info_2;
  2242. struct _ATOM_POWERPLAY_INFO_V3 info_3;
  2243. struct _ATOM_PPLIB_POWERPLAYTABLE pplib;
  2244. struct _ATOM_PPLIB_POWERPLAYTABLE2 pplib2;
  2245. struct _ATOM_PPLIB_POWERPLAYTABLE3 pplib3;
  2246. };
  2247. union pplib_clock_info {
  2248. struct _ATOM_PPLIB_R600_CLOCK_INFO r600;
  2249. struct _ATOM_PPLIB_RS780_CLOCK_INFO rs780;
  2250. struct _ATOM_PPLIB_EVERGREEN_CLOCK_INFO evergreen;
  2251. struct _ATOM_PPLIB_SUMO_CLOCK_INFO sumo;
  2252. };
  2253. union pplib_power_state {
  2254. struct _ATOM_PPLIB_STATE v1;
  2255. struct _ATOM_PPLIB_STATE_V2 v2;
  2256. };
  2257. static void kv_patch_boot_state(struct amdgpu_device *adev,
  2258. struct kv_ps *ps)
  2259. {
  2260. struct kv_power_info *pi = kv_get_pi(adev);
  2261. ps->num_levels = 1;
  2262. ps->levels[0] = pi->boot_pl;
  2263. }
  2264. static void kv_parse_pplib_non_clock_info(struct amdgpu_device *adev,
  2265. struct amdgpu_ps *rps,
  2266. struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info,
  2267. u8 table_rev)
  2268. {
  2269. struct kv_ps *ps = kv_get_ps(rps);
  2270. rps->caps = le32_to_cpu(non_clock_info->ulCapsAndSettings);
  2271. rps->class = le16_to_cpu(non_clock_info->usClassification);
  2272. rps->class2 = le16_to_cpu(non_clock_info->usClassification2);
  2273. if (ATOM_PPLIB_NONCLOCKINFO_VER1 < table_rev) {
  2274. rps->vclk = le32_to_cpu(non_clock_info->ulVCLK);
  2275. rps->dclk = le32_to_cpu(non_clock_info->ulDCLK);
  2276. } else {
  2277. rps->vclk = 0;
  2278. rps->dclk = 0;
  2279. }
  2280. if (rps->class & ATOM_PPLIB_CLASSIFICATION_BOOT) {
  2281. adev->pm.dpm.boot_ps = rps;
  2282. kv_patch_boot_state(adev, ps);
  2283. }
  2284. if (rps->class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE)
  2285. adev->pm.dpm.uvd_ps = rps;
  2286. }
  2287. static void kv_parse_pplib_clock_info(struct amdgpu_device *adev,
  2288. struct amdgpu_ps *rps, int index,
  2289. union pplib_clock_info *clock_info)
  2290. {
  2291. struct kv_power_info *pi = kv_get_pi(adev);
  2292. struct kv_ps *ps = kv_get_ps(rps);
  2293. struct kv_pl *pl = &ps->levels[index];
  2294. u32 sclk;
  2295. sclk = le16_to_cpu(clock_info->sumo.usEngineClockLow);
  2296. sclk |= clock_info->sumo.ucEngineClockHigh << 16;
  2297. pl->sclk = sclk;
  2298. pl->vddc_index = clock_info->sumo.vddcIndex;
  2299. ps->num_levels = index + 1;
  2300. if (pi->caps_sclk_ds) {
  2301. pl->ds_divider_index = 5;
  2302. pl->ss_divider_index = 5;
  2303. }
  2304. }
  2305. static int kv_parse_power_table(struct amdgpu_device *adev)
  2306. {
  2307. struct amdgpu_mode_info *mode_info = &adev->mode_info;
  2308. struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info;
  2309. union pplib_power_state *power_state;
  2310. int i, j, k, non_clock_array_index, clock_array_index;
  2311. union pplib_clock_info *clock_info;
  2312. struct _StateArray *state_array;
  2313. struct _ClockInfoArray *clock_info_array;
  2314. struct _NonClockInfoArray *non_clock_info_array;
  2315. union power_info *power_info;
  2316. int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
  2317. u16 data_offset;
  2318. u8 frev, crev;
  2319. u8 *power_state_offset;
  2320. struct kv_ps *ps;
  2321. if (!amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL,
  2322. &frev, &crev, &data_offset))
  2323. return -EINVAL;
  2324. power_info = (union power_info *)(mode_info->atom_context->bios + data_offset);
  2325. amdgpu_add_thermal_controller(adev);
  2326. state_array = (struct _StateArray *)
  2327. (mode_info->atom_context->bios + data_offset +
  2328. le16_to_cpu(power_info->pplib.usStateArrayOffset));
  2329. clock_info_array = (struct _ClockInfoArray *)
  2330. (mode_info->atom_context->bios + data_offset +
  2331. le16_to_cpu(power_info->pplib.usClockInfoArrayOffset));
  2332. non_clock_info_array = (struct _NonClockInfoArray *)
  2333. (mode_info->atom_context->bios + data_offset +
  2334. le16_to_cpu(power_info->pplib.usNonClockInfoArrayOffset));
  2335. adev->pm.dpm.ps = kzalloc(sizeof(struct amdgpu_ps) *
  2336. state_array->ucNumEntries, GFP_KERNEL);
  2337. if (!adev->pm.dpm.ps)
  2338. return -ENOMEM;
  2339. power_state_offset = (u8 *)state_array->states;
  2340. for (i = 0; i < state_array->ucNumEntries; i++) {
  2341. u8 *idx;
  2342. power_state = (union pplib_power_state *)power_state_offset;
  2343. non_clock_array_index = power_state->v2.nonClockInfoIndex;
  2344. non_clock_info = (struct _ATOM_PPLIB_NONCLOCK_INFO *)
  2345. &non_clock_info_array->nonClockInfo[non_clock_array_index];
  2346. ps = kzalloc(sizeof(struct kv_ps), GFP_KERNEL);
  2347. if (ps == NULL) {
  2348. kfree(adev->pm.dpm.ps);
  2349. return -ENOMEM;
  2350. }
  2351. adev->pm.dpm.ps[i].ps_priv = ps;
  2352. k = 0;
  2353. idx = (u8 *)&power_state->v2.clockInfoIndex[0];
  2354. for (j = 0; j < power_state->v2.ucNumDPMLevels; j++) {
  2355. clock_array_index = idx[j];
  2356. if (clock_array_index >= clock_info_array->ucNumEntries)
  2357. continue;
  2358. if (k >= SUMO_MAX_HARDWARE_POWERLEVELS)
  2359. break;
  2360. clock_info = (union pplib_clock_info *)
  2361. ((u8 *)&clock_info_array->clockInfo[0] +
  2362. (clock_array_index * clock_info_array->ucEntrySize));
  2363. kv_parse_pplib_clock_info(adev,
  2364. &adev->pm.dpm.ps[i], k,
  2365. clock_info);
  2366. k++;
  2367. }
  2368. kv_parse_pplib_non_clock_info(adev, &adev->pm.dpm.ps[i],
  2369. non_clock_info,
  2370. non_clock_info_array->ucEntrySize);
  2371. power_state_offset += 2 + power_state->v2.ucNumDPMLevels;
  2372. }
  2373. adev->pm.dpm.num_ps = state_array->ucNumEntries;
  2374. /* fill in the vce power states */
  2375. for (i = 0; i < AMDGPU_MAX_VCE_LEVELS; i++) {
  2376. u32 sclk;
  2377. clock_array_index = adev->pm.dpm.vce_states[i].clk_idx;
  2378. clock_info = (union pplib_clock_info *)
  2379. &clock_info_array->clockInfo[clock_array_index * clock_info_array->ucEntrySize];
  2380. sclk = le16_to_cpu(clock_info->sumo.usEngineClockLow);
  2381. sclk |= clock_info->sumo.ucEngineClockHigh << 16;
  2382. adev->pm.dpm.vce_states[i].sclk = sclk;
  2383. adev->pm.dpm.vce_states[i].mclk = 0;
  2384. }
  2385. return 0;
  2386. }
  2387. static int kv_dpm_init(struct amdgpu_device *adev)
  2388. {
  2389. struct kv_power_info *pi;
  2390. int ret, i;
  2391. pi = kzalloc(sizeof(struct kv_power_info), GFP_KERNEL);
  2392. if (pi == NULL)
  2393. return -ENOMEM;
  2394. adev->pm.dpm.priv = pi;
  2395. ret = amdgpu_get_platform_caps(adev);
  2396. if (ret)
  2397. return ret;
  2398. ret = amdgpu_parse_extended_power_table(adev);
  2399. if (ret)
  2400. return ret;
  2401. for (i = 0; i < SUMO_MAX_HARDWARE_POWERLEVELS; i++)
  2402. pi->at[i] = TRINITY_AT_DFLT;
  2403. pi->sram_end = SMC_RAM_END;
  2404. pi->enable_nb_dpm = true;
  2405. pi->caps_power_containment = true;
  2406. pi->caps_cac = true;
  2407. pi->enable_didt = false;
  2408. if (pi->enable_didt) {
  2409. pi->caps_sq_ramping = true;
  2410. pi->caps_db_ramping = true;
  2411. pi->caps_td_ramping = true;
  2412. pi->caps_tcp_ramping = true;
  2413. }
  2414. pi->caps_sclk_ds = true;
  2415. pi->enable_auto_thermal_throttling = true;
  2416. pi->disable_nb_ps3_in_battery = false;
  2417. if (amdgpu_bapm == 0)
  2418. pi->bapm_enable = false;
  2419. else
  2420. pi->bapm_enable = true;
  2421. pi->voltage_drop_t = 0;
  2422. pi->caps_sclk_throttle_low_notification = false;
  2423. pi->caps_fps = false; /* true? */
  2424. pi->caps_uvd_pg = (adev->pg_flags & AMD_PG_SUPPORT_UVD) ? true : false;
  2425. pi->caps_uvd_dpm = true;
  2426. pi->caps_vce_pg = (adev->pg_flags & AMD_PG_SUPPORT_VCE) ? true : false;
  2427. pi->caps_samu_pg = (adev->pg_flags & AMD_PG_SUPPORT_SAMU) ? true : false;
  2428. pi->caps_acp_pg = (adev->pg_flags & AMD_PG_SUPPORT_ACP) ? true : false;
  2429. pi->caps_stable_p_state = false;
  2430. ret = kv_parse_sys_info_table(adev);
  2431. if (ret)
  2432. return ret;
  2433. kv_patch_voltage_values(adev);
  2434. kv_construct_boot_state(adev);
  2435. ret = kv_parse_power_table(adev);
  2436. if (ret)
  2437. return ret;
  2438. pi->enable_dpm = true;
  2439. return 0;
  2440. }
  2441. static void
  2442. kv_dpm_debugfs_print_current_performance_level(struct amdgpu_device *adev,
  2443. struct seq_file *m)
  2444. {
  2445. struct kv_power_info *pi = kv_get_pi(adev);
  2446. u32 current_index =
  2447. (RREG32_SMC(ixTARGET_AND_CURRENT_PROFILE_INDEX) &
  2448. TARGET_AND_CURRENT_PROFILE_INDEX__CURR_SCLK_INDEX_MASK) >>
  2449. TARGET_AND_CURRENT_PROFILE_INDEX__CURR_SCLK_INDEX__SHIFT;
  2450. u32 sclk, tmp;
  2451. u16 vddc;
  2452. if (current_index >= SMU__NUM_SCLK_DPM_STATE) {
  2453. seq_printf(m, "invalid dpm profile %d\n", current_index);
  2454. } else {
  2455. sclk = be32_to_cpu(pi->graphics_level[current_index].SclkFrequency);
  2456. tmp = (RREG32_SMC(ixSMU_VOLTAGE_STATUS) &
  2457. SMU_VOLTAGE_STATUS__SMU_VOLTAGE_CURRENT_LEVEL_MASK) >>
  2458. SMU_VOLTAGE_STATUS__SMU_VOLTAGE_CURRENT_LEVEL__SHIFT;
  2459. vddc = kv_convert_8bit_index_to_voltage(adev, (u16)tmp);
  2460. seq_printf(m, "uvd %sabled\n", pi->uvd_power_gated ? "dis" : "en");
  2461. seq_printf(m, "vce %sabled\n", pi->vce_power_gated ? "dis" : "en");
  2462. seq_printf(m, "power level %d sclk: %u vddc: %u\n",
  2463. current_index, sclk, vddc);
  2464. }
  2465. }
  2466. static void
  2467. kv_dpm_print_power_state(struct amdgpu_device *adev,
  2468. struct amdgpu_ps *rps)
  2469. {
  2470. int i;
  2471. struct kv_ps *ps = kv_get_ps(rps);
  2472. amdgpu_dpm_print_class_info(rps->class, rps->class2);
  2473. amdgpu_dpm_print_cap_info(rps->caps);
  2474. printk("\tuvd vclk: %d dclk: %d\n", rps->vclk, rps->dclk);
  2475. for (i = 0; i < ps->num_levels; i++) {
  2476. struct kv_pl *pl = &ps->levels[i];
  2477. printk("\t\tpower level %d sclk: %u vddc: %u\n",
  2478. i, pl->sclk,
  2479. kv_convert_8bit_index_to_voltage(adev, pl->vddc_index));
  2480. }
  2481. amdgpu_dpm_print_ps_status(adev, rps);
  2482. }
  2483. static void kv_dpm_fini(struct amdgpu_device *adev)
  2484. {
  2485. int i;
  2486. for (i = 0; i < adev->pm.dpm.num_ps; i++) {
  2487. kfree(adev->pm.dpm.ps[i].ps_priv);
  2488. }
  2489. kfree(adev->pm.dpm.ps);
  2490. kfree(adev->pm.dpm.priv);
  2491. amdgpu_free_extended_power_table(adev);
  2492. }
  2493. static void kv_dpm_display_configuration_changed(struct amdgpu_device *adev)
  2494. {
  2495. }
  2496. static u32 kv_dpm_get_sclk(struct amdgpu_device *adev, bool low)
  2497. {
  2498. struct kv_power_info *pi = kv_get_pi(adev);
  2499. struct kv_ps *requested_state = kv_get_ps(&pi->requested_rps);
  2500. if (low)
  2501. return requested_state->levels[0].sclk;
  2502. else
  2503. return requested_state->levels[requested_state->num_levels - 1].sclk;
  2504. }
  2505. static u32 kv_dpm_get_mclk(struct amdgpu_device *adev, bool low)
  2506. {
  2507. struct kv_power_info *pi = kv_get_pi(adev);
  2508. return pi->sys_info.bootup_uma_clk;
  2509. }
  2510. /* get temperature in millidegrees */
  2511. static int kv_dpm_get_temp(struct amdgpu_device *adev)
  2512. {
  2513. u32 temp;
  2514. int actual_temp = 0;
  2515. temp = RREG32_SMC(0xC0300E0C);
  2516. if (temp)
  2517. actual_temp = (temp / 8) - 49;
  2518. else
  2519. actual_temp = 0;
  2520. actual_temp = actual_temp * 1000;
  2521. return actual_temp;
  2522. }
  2523. static int kv_dpm_early_init(void *handle)
  2524. {
  2525. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  2526. kv_dpm_set_dpm_funcs(adev);
  2527. kv_dpm_set_irq_funcs(adev);
  2528. return 0;
  2529. }
  2530. static int kv_dpm_late_init(void *handle)
  2531. {
  2532. /* powerdown unused blocks for now */
  2533. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  2534. int ret;
  2535. if (!amdgpu_dpm)
  2536. return 0;
  2537. /* init the sysfs and debugfs files late */
  2538. ret = amdgpu_pm_sysfs_init(adev);
  2539. if (ret)
  2540. return ret;
  2541. kv_dpm_powergate_acp(adev, true);
  2542. kv_dpm_powergate_samu(adev, true);
  2543. kv_dpm_powergate_vce(adev, true);
  2544. kv_dpm_powergate_uvd(adev, true);
  2545. return 0;
  2546. }
  2547. static int kv_dpm_sw_init(void *handle)
  2548. {
  2549. int ret;
  2550. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  2551. ret = amdgpu_irq_add_id(adev, 230, &adev->pm.dpm.thermal.irq);
  2552. if (ret)
  2553. return ret;
  2554. ret = amdgpu_irq_add_id(adev, 231, &adev->pm.dpm.thermal.irq);
  2555. if (ret)
  2556. return ret;
  2557. /* default to balanced state */
  2558. adev->pm.dpm.state = POWER_STATE_TYPE_BALANCED;
  2559. adev->pm.dpm.user_state = POWER_STATE_TYPE_BALANCED;
  2560. adev->pm.dpm.forced_level = AMDGPU_DPM_FORCED_LEVEL_AUTO;
  2561. adev->pm.default_sclk = adev->clock.default_sclk;
  2562. adev->pm.default_mclk = adev->clock.default_mclk;
  2563. adev->pm.current_sclk = adev->clock.default_sclk;
  2564. adev->pm.current_mclk = adev->clock.default_mclk;
  2565. adev->pm.int_thermal_type = THERMAL_TYPE_NONE;
  2566. if (amdgpu_dpm == 0)
  2567. return 0;
  2568. INIT_WORK(&adev->pm.dpm.thermal.work, amdgpu_dpm_thermal_work_handler);
  2569. mutex_lock(&adev->pm.mutex);
  2570. ret = kv_dpm_init(adev);
  2571. if (ret)
  2572. goto dpm_failed;
  2573. adev->pm.dpm.current_ps = adev->pm.dpm.requested_ps = adev->pm.dpm.boot_ps;
  2574. if (amdgpu_dpm == 1)
  2575. amdgpu_pm_print_power_states(adev);
  2576. mutex_unlock(&adev->pm.mutex);
  2577. DRM_INFO("amdgpu: dpm initialized\n");
  2578. return 0;
  2579. dpm_failed:
  2580. kv_dpm_fini(adev);
  2581. mutex_unlock(&adev->pm.mutex);
  2582. DRM_ERROR("amdgpu: dpm initialization failed\n");
  2583. return ret;
  2584. }
  2585. static int kv_dpm_sw_fini(void *handle)
  2586. {
  2587. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  2588. mutex_lock(&adev->pm.mutex);
  2589. amdgpu_pm_sysfs_fini(adev);
  2590. kv_dpm_fini(adev);
  2591. mutex_unlock(&adev->pm.mutex);
  2592. return 0;
  2593. }
  2594. static int kv_dpm_hw_init(void *handle)
  2595. {
  2596. int ret;
  2597. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  2598. mutex_lock(&adev->pm.mutex);
  2599. kv_dpm_setup_asic(adev);
  2600. ret = kv_dpm_enable(adev);
  2601. if (ret)
  2602. adev->pm.dpm_enabled = false;
  2603. else
  2604. adev->pm.dpm_enabled = true;
  2605. mutex_unlock(&adev->pm.mutex);
  2606. return ret;
  2607. }
  2608. static int kv_dpm_hw_fini(void *handle)
  2609. {
  2610. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  2611. if (adev->pm.dpm_enabled) {
  2612. mutex_lock(&adev->pm.mutex);
  2613. kv_dpm_disable(adev);
  2614. mutex_unlock(&adev->pm.mutex);
  2615. }
  2616. return 0;
  2617. }
  2618. static int kv_dpm_suspend(void *handle)
  2619. {
  2620. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  2621. if (adev->pm.dpm_enabled) {
  2622. mutex_lock(&adev->pm.mutex);
  2623. /* disable dpm */
  2624. kv_dpm_disable(adev);
  2625. /* reset the power state */
  2626. adev->pm.dpm.current_ps = adev->pm.dpm.requested_ps = adev->pm.dpm.boot_ps;
  2627. mutex_unlock(&adev->pm.mutex);
  2628. }
  2629. return 0;
  2630. }
  2631. static int kv_dpm_resume(void *handle)
  2632. {
  2633. int ret;
  2634. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  2635. if (adev->pm.dpm_enabled) {
  2636. /* asic init will reset to the boot state */
  2637. mutex_lock(&adev->pm.mutex);
  2638. kv_dpm_setup_asic(adev);
  2639. ret = kv_dpm_enable(adev);
  2640. if (ret)
  2641. adev->pm.dpm_enabled = false;
  2642. else
  2643. adev->pm.dpm_enabled = true;
  2644. mutex_unlock(&adev->pm.mutex);
  2645. if (adev->pm.dpm_enabled)
  2646. amdgpu_pm_compute_clocks(adev);
  2647. }
  2648. return 0;
  2649. }
  2650. static bool kv_dpm_is_idle(void *handle)
  2651. {
  2652. return true;
  2653. }
  2654. static int kv_dpm_wait_for_idle(void *handle)
  2655. {
  2656. return 0;
  2657. }
  2658. static int kv_dpm_soft_reset(void *handle)
  2659. {
  2660. return 0;
  2661. }
  2662. static int kv_dpm_set_interrupt_state(struct amdgpu_device *adev,
  2663. struct amdgpu_irq_src *src,
  2664. unsigned type,
  2665. enum amdgpu_interrupt_state state)
  2666. {
  2667. u32 cg_thermal_int;
  2668. switch (type) {
  2669. case AMDGPU_THERMAL_IRQ_LOW_TO_HIGH:
  2670. switch (state) {
  2671. case AMDGPU_IRQ_STATE_DISABLE:
  2672. cg_thermal_int = RREG32_SMC(ixCG_THERMAL_INT_CTRL);
  2673. cg_thermal_int &= ~CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK;
  2674. WREG32_SMC(ixCG_THERMAL_INT_CTRL, cg_thermal_int);
  2675. break;
  2676. case AMDGPU_IRQ_STATE_ENABLE:
  2677. cg_thermal_int = RREG32_SMC(ixCG_THERMAL_INT_CTRL);
  2678. cg_thermal_int |= CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK;
  2679. WREG32_SMC(ixCG_THERMAL_INT_CTRL, cg_thermal_int);
  2680. break;
  2681. default:
  2682. break;
  2683. }
  2684. break;
  2685. case AMDGPU_THERMAL_IRQ_HIGH_TO_LOW:
  2686. switch (state) {
  2687. case AMDGPU_IRQ_STATE_DISABLE:
  2688. cg_thermal_int = RREG32_SMC(ixCG_THERMAL_INT_CTRL);
  2689. cg_thermal_int &= ~CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK;
  2690. WREG32_SMC(ixCG_THERMAL_INT_CTRL, cg_thermal_int);
  2691. break;
  2692. case AMDGPU_IRQ_STATE_ENABLE:
  2693. cg_thermal_int = RREG32_SMC(ixCG_THERMAL_INT_CTRL);
  2694. cg_thermal_int |= CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK;
  2695. WREG32_SMC(ixCG_THERMAL_INT_CTRL, cg_thermal_int);
  2696. break;
  2697. default:
  2698. break;
  2699. }
  2700. break;
  2701. default:
  2702. break;
  2703. }
  2704. return 0;
  2705. }
  2706. static int kv_dpm_process_interrupt(struct amdgpu_device *adev,
  2707. struct amdgpu_irq_src *source,
  2708. struct amdgpu_iv_entry *entry)
  2709. {
  2710. bool queue_thermal = false;
  2711. if (entry == NULL)
  2712. return -EINVAL;
  2713. switch (entry->src_id) {
  2714. case 230: /* thermal low to high */
  2715. DRM_DEBUG("IH: thermal low to high\n");
  2716. adev->pm.dpm.thermal.high_to_low = false;
  2717. queue_thermal = true;
  2718. break;
  2719. case 231: /* thermal high to low */
  2720. DRM_DEBUG("IH: thermal high to low\n");
  2721. adev->pm.dpm.thermal.high_to_low = true;
  2722. queue_thermal = true;
  2723. break;
  2724. default:
  2725. break;
  2726. }
  2727. if (queue_thermal)
  2728. schedule_work(&adev->pm.dpm.thermal.work);
  2729. return 0;
  2730. }
  2731. static int kv_dpm_set_clockgating_state(void *handle,
  2732. enum amd_clockgating_state state)
  2733. {
  2734. return 0;
  2735. }
  2736. static int kv_dpm_set_powergating_state(void *handle,
  2737. enum amd_powergating_state state)
  2738. {
  2739. return 0;
  2740. }
  2741. const struct amd_ip_funcs kv_dpm_ip_funcs = {
  2742. .early_init = kv_dpm_early_init,
  2743. .late_init = kv_dpm_late_init,
  2744. .sw_init = kv_dpm_sw_init,
  2745. .sw_fini = kv_dpm_sw_fini,
  2746. .hw_init = kv_dpm_hw_init,
  2747. .hw_fini = kv_dpm_hw_fini,
  2748. .suspend = kv_dpm_suspend,
  2749. .resume = kv_dpm_resume,
  2750. .is_idle = kv_dpm_is_idle,
  2751. .wait_for_idle = kv_dpm_wait_for_idle,
  2752. .soft_reset = kv_dpm_soft_reset,
  2753. .set_clockgating_state = kv_dpm_set_clockgating_state,
  2754. .set_powergating_state = kv_dpm_set_powergating_state,
  2755. };
  2756. static const struct amdgpu_dpm_funcs kv_dpm_funcs = {
  2757. .get_temperature = &kv_dpm_get_temp,
  2758. .pre_set_power_state = &kv_dpm_pre_set_power_state,
  2759. .set_power_state = &kv_dpm_set_power_state,
  2760. .post_set_power_state = &kv_dpm_post_set_power_state,
  2761. .display_configuration_changed = &kv_dpm_display_configuration_changed,
  2762. .get_sclk = &kv_dpm_get_sclk,
  2763. .get_mclk = &kv_dpm_get_mclk,
  2764. .print_power_state = &kv_dpm_print_power_state,
  2765. .debugfs_print_current_performance_level = &kv_dpm_debugfs_print_current_performance_level,
  2766. .force_performance_level = &kv_dpm_force_performance_level,
  2767. .powergate_uvd = &kv_dpm_powergate_uvd,
  2768. .enable_bapm = &kv_dpm_enable_bapm,
  2769. };
  2770. static void kv_dpm_set_dpm_funcs(struct amdgpu_device *adev)
  2771. {
  2772. if (adev->pm.funcs == NULL)
  2773. adev->pm.funcs = &kv_dpm_funcs;
  2774. }
  2775. static const struct amdgpu_irq_src_funcs kv_dpm_irq_funcs = {
  2776. .set = kv_dpm_set_interrupt_state,
  2777. .process = kv_dpm_process_interrupt,
  2778. };
  2779. static void kv_dpm_set_irq_funcs(struct amdgpu_device *adev)
  2780. {
  2781. adev->pm.dpm.thermal.irq.num_types = AMDGPU_THERMAL_IRQ_LAST;
  2782. adev->pm.dpm.thermal.irq.funcs = &kv_dpm_irq_funcs;
  2783. }