gmc_v8_0.c 46 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. */
  23. #include <linux/firmware.h>
  24. #include <drm/drmP.h>
  25. #include "amdgpu.h"
  26. #include "gmc_v8_0.h"
  27. #include "amdgpu_ucode.h"
  28. #include "gmc/gmc_8_1_d.h"
  29. #include "gmc/gmc_8_1_sh_mask.h"
  30. #include "bif/bif_5_0_d.h"
  31. #include "bif/bif_5_0_sh_mask.h"
  32. #include "oss/oss_3_0_d.h"
  33. #include "oss/oss_3_0_sh_mask.h"
  34. #include "vid.h"
  35. #include "vi.h"
  36. #include "amdgpu_atombios.h"
  37. static void gmc_v8_0_set_gart_funcs(struct amdgpu_device *adev);
  38. static void gmc_v8_0_set_irq_funcs(struct amdgpu_device *adev);
  39. static int gmc_v8_0_wait_for_idle(void *handle);
  40. MODULE_FIRMWARE("amdgpu/tonga_mc.bin");
  41. MODULE_FIRMWARE("amdgpu/polaris11_mc.bin");
  42. MODULE_FIRMWARE("amdgpu/polaris10_mc.bin");
  43. MODULE_FIRMWARE("amdgpu/polaris12_mc.bin");
  44. static const u32 golden_settings_tonga_a11[] =
  45. {
  46. mmMC_ARB_WTM_GRPWT_RD, 0x00000003, 0x00000000,
  47. mmMC_HUB_RDREQ_DMIF_LIMIT, 0x0000007f, 0x00000028,
  48. mmMC_HUB_WDP_UMC, 0x00007fb6, 0x00000991,
  49. mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  50. mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  51. mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  52. mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  53. };
  54. static const u32 tonga_mgcg_cgcg_init[] =
  55. {
  56. mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
  57. };
  58. static const u32 golden_settings_fiji_a10[] =
  59. {
  60. mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  61. mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  62. mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  63. mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  64. };
  65. static const u32 fiji_mgcg_cgcg_init[] =
  66. {
  67. mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
  68. };
  69. static const u32 golden_settings_polaris11_a11[] =
  70. {
  71. mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  72. mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  73. mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  74. mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff
  75. };
  76. static const u32 golden_settings_polaris10_a11[] =
  77. {
  78. mmMC_ARB_WTM_GRPWT_RD, 0x00000003, 0x00000000,
  79. mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  80. mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  81. mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  82. mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff
  83. };
  84. static const u32 cz_mgcg_cgcg_init[] =
  85. {
  86. mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
  87. };
  88. static const u32 stoney_mgcg_cgcg_init[] =
  89. {
  90. mmATC_MISC_CG, 0xffffffff, 0x000c0200,
  91. mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
  92. };
  93. static const u32 golden_settings_stoney_common[] =
  94. {
  95. mmMC_HUB_RDREQ_UVD, MC_HUB_RDREQ_UVD__PRESCALE_MASK, 0x00000004,
  96. mmMC_RD_GRP_OTH, MC_RD_GRP_OTH__UVD_MASK, 0x00600000
  97. };
  98. static void gmc_v8_0_init_golden_registers(struct amdgpu_device *adev)
  99. {
  100. switch (adev->asic_type) {
  101. case CHIP_FIJI:
  102. amdgpu_program_register_sequence(adev,
  103. fiji_mgcg_cgcg_init,
  104. (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init));
  105. amdgpu_program_register_sequence(adev,
  106. golden_settings_fiji_a10,
  107. (const u32)ARRAY_SIZE(golden_settings_fiji_a10));
  108. break;
  109. case CHIP_TONGA:
  110. amdgpu_program_register_sequence(adev,
  111. tonga_mgcg_cgcg_init,
  112. (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
  113. amdgpu_program_register_sequence(adev,
  114. golden_settings_tonga_a11,
  115. (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
  116. break;
  117. case CHIP_POLARIS11:
  118. case CHIP_POLARIS12:
  119. amdgpu_program_register_sequence(adev,
  120. golden_settings_polaris11_a11,
  121. (const u32)ARRAY_SIZE(golden_settings_polaris11_a11));
  122. break;
  123. case CHIP_POLARIS10:
  124. amdgpu_program_register_sequence(adev,
  125. golden_settings_polaris10_a11,
  126. (const u32)ARRAY_SIZE(golden_settings_polaris10_a11));
  127. break;
  128. case CHIP_CARRIZO:
  129. amdgpu_program_register_sequence(adev,
  130. cz_mgcg_cgcg_init,
  131. (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
  132. break;
  133. case CHIP_STONEY:
  134. amdgpu_program_register_sequence(adev,
  135. stoney_mgcg_cgcg_init,
  136. (const u32)ARRAY_SIZE(stoney_mgcg_cgcg_init));
  137. amdgpu_program_register_sequence(adev,
  138. golden_settings_stoney_common,
  139. (const u32)ARRAY_SIZE(golden_settings_stoney_common));
  140. break;
  141. default:
  142. break;
  143. }
  144. }
  145. static void gmc_v8_0_mc_stop(struct amdgpu_device *adev)
  146. {
  147. u32 blackout;
  148. gmc_v8_0_wait_for_idle(adev);
  149. blackout = RREG32(mmMC_SHARED_BLACKOUT_CNTL);
  150. if (REG_GET_FIELD(blackout, MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE) != 1) {
  151. /* Block CPU access */
  152. WREG32(mmBIF_FB_EN, 0);
  153. /* blackout the MC */
  154. blackout = REG_SET_FIELD(blackout,
  155. MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE, 1);
  156. WREG32(mmMC_SHARED_BLACKOUT_CNTL, blackout);
  157. }
  158. /* wait for the MC to settle */
  159. udelay(100);
  160. }
  161. static void gmc_v8_0_mc_resume(struct amdgpu_device *adev)
  162. {
  163. u32 tmp;
  164. /* unblackout the MC */
  165. tmp = RREG32(mmMC_SHARED_BLACKOUT_CNTL);
  166. tmp = REG_SET_FIELD(tmp, MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE, 0);
  167. WREG32(mmMC_SHARED_BLACKOUT_CNTL, tmp);
  168. /* allow CPU access */
  169. tmp = REG_SET_FIELD(0, BIF_FB_EN, FB_READ_EN, 1);
  170. tmp = REG_SET_FIELD(tmp, BIF_FB_EN, FB_WRITE_EN, 1);
  171. WREG32(mmBIF_FB_EN, tmp);
  172. }
  173. /**
  174. * gmc_v8_0_init_microcode - load ucode images from disk
  175. *
  176. * @adev: amdgpu_device pointer
  177. *
  178. * Use the firmware interface to load the ucode images into
  179. * the driver (not loaded into hw).
  180. * Returns 0 on success, error on failure.
  181. */
  182. static int gmc_v8_0_init_microcode(struct amdgpu_device *adev)
  183. {
  184. const char *chip_name;
  185. char fw_name[30];
  186. int err;
  187. DRM_DEBUG("\n");
  188. switch (adev->asic_type) {
  189. case CHIP_TONGA:
  190. chip_name = "tonga";
  191. break;
  192. case CHIP_POLARIS11:
  193. chip_name = "polaris11";
  194. break;
  195. case CHIP_POLARIS10:
  196. chip_name = "polaris10";
  197. break;
  198. case CHIP_POLARIS12:
  199. chip_name = "polaris12";
  200. break;
  201. case CHIP_FIJI:
  202. case CHIP_CARRIZO:
  203. case CHIP_STONEY:
  204. return 0;
  205. default: BUG();
  206. }
  207. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_mc.bin", chip_name);
  208. err = request_firmware(&adev->mc.fw, fw_name, adev->dev);
  209. if (err)
  210. goto out;
  211. err = amdgpu_ucode_validate(adev->mc.fw);
  212. out:
  213. if (err) {
  214. pr_err("mc: Failed to load firmware \"%s\"\n", fw_name);
  215. release_firmware(adev->mc.fw);
  216. adev->mc.fw = NULL;
  217. }
  218. return err;
  219. }
  220. /**
  221. * gmc_v8_0_tonga_mc_load_microcode - load tonga MC ucode into the hw
  222. *
  223. * @adev: amdgpu_device pointer
  224. *
  225. * Load the GDDR MC ucode into the hw (CIK).
  226. * Returns 0 on success, error on failure.
  227. */
  228. static int gmc_v8_0_tonga_mc_load_microcode(struct amdgpu_device *adev)
  229. {
  230. const struct mc_firmware_header_v1_0 *hdr;
  231. const __le32 *fw_data = NULL;
  232. const __le32 *io_mc_regs = NULL;
  233. u32 running;
  234. int i, ucode_size, regs_size;
  235. /* Skip MC ucode loading on SR-IOV capable boards.
  236. * vbios does this for us in asic_init in that case.
  237. * Skip MC ucode loading on VF, because hypervisor will do that
  238. * for this adaptor.
  239. */
  240. if (amdgpu_sriov_bios(adev))
  241. return 0;
  242. if (!adev->mc.fw)
  243. return -EINVAL;
  244. hdr = (const struct mc_firmware_header_v1_0 *)adev->mc.fw->data;
  245. amdgpu_ucode_print_mc_hdr(&hdr->header);
  246. adev->mc.fw_version = le32_to_cpu(hdr->header.ucode_version);
  247. regs_size = le32_to_cpu(hdr->io_debug_size_bytes) / (4 * 2);
  248. io_mc_regs = (const __le32 *)
  249. (adev->mc.fw->data + le32_to_cpu(hdr->io_debug_array_offset_bytes));
  250. ucode_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  251. fw_data = (const __le32 *)
  252. (adev->mc.fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  253. running = REG_GET_FIELD(RREG32(mmMC_SEQ_SUP_CNTL), MC_SEQ_SUP_CNTL, RUN);
  254. if (running == 0) {
  255. /* reset the engine and set to writable */
  256. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
  257. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000010);
  258. /* load mc io regs */
  259. for (i = 0; i < regs_size; i++) {
  260. WREG32(mmMC_SEQ_IO_DEBUG_INDEX, le32_to_cpup(io_mc_regs++));
  261. WREG32(mmMC_SEQ_IO_DEBUG_DATA, le32_to_cpup(io_mc_regs++));
  262. }
  263. /* load the MC ucode */
  264. for (i = 0; i < ucode_size; i++)
  265. WREG32(mmMC_SEQ_SUP_PGM, le32_to_cpup(fw_data++));
  266. /* put the engine back into the active state */
  267. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
  268. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000004);
  269. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000001);
  270. /* wait for training to complete */
  271. for (i = 0; i < adev->usec_timeout; i++) {
  272. if (REG_GET_FIELD(RREG32(mmMC_SEQ_TRAIN_WAKEUP_CNTL),
  273. MC_SEQ_TRAIN_WAKEUP_CNTL, TRAIN_DONE_D0))
  274. break;
  275. udelay(1);
  276. }
  277. for (i = 0; i < adev->usec_timeout; i++) {
  278. if (REG_GET_FIELD(RREG32(mmMC_SEQ_TRAIN_WAKEUP_CNTL),
  279. MC_SEQ_TRAIN_WAKEUP_CNTL, TRAIN_DONE_D1))
  280. break;
  281. udelay(1);
  282. }
  283. }
  284. return 0;
  285. }
  286. static int gmc_v8_0_polaris_mc_load_microcode(struct amdgpu_device *adev)
  287. {
  288. const struct mc_firmware_header_v1_0 *hdr;
  289. const __le32 *fw_data = NULL;
  290. const __le32 *io_mc_regs = NULL;
  291. u32 data, vbios_version;
  292. int i, ucode_size, regs_size;
  293. /* Skip MC ucode loading on SR-IOV capable boards.
  294. * vbios does this for us in asic_init in that case.
  295. * Skip MC ucode loading on VF, because hypervisor will do that
  296. * for this adaptor.
  297. */
  298. if (amdgpu_sriov_bios(adev))
  299. return 0;
  300. WREG32(mmMC_SEQ_IO_DEBUG_INDEX, 0x9F);
  301. data = RREG32(mmMC_SEQ_IO_DEBUG_DATA);
  302. vbios_version = data & 0xf;
  303. if (vbios_version == 0)
  304. return 0;
  305. if (!adev->mc.fw)
  306. return -EINVAL;
  307. hdr = (const struct mc_firmware_header_v1_0 *)adev->mc.fw->data;
  308. amdgpu_ucode_print_mc_hdr(&hdr->header);
  309. adev->mc.fw_version = le32_to_cpu(hdr->header.ucode_version);
  310. regs_size = le32_to_cpu(hdr->io_debug_size_bytes) / (4 * 2);
  311. io_mc_regs = (const __le32 *)
  312. (adev->mc.fw->data + le32_to_cpu(hdr->io_debug_array_offset_bytes));
  313. ucode_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  314. fw_data = (const __le32 *)
  315. (adev->mc.fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  316. data = RREG32(mmMC_SEQ_MISC0);
  317. data &= ~(0x40);
  318. WREG32(mmMC_SEQ_MISC0, data);
  319. /* load mc io regs */
  320. for (i = 0; i < regs_size; i++) {
  321. WREG32(mmMC_SEQ_IO_DEBUG_INDEX, le32_to_cpup(io_mc_regs++));
  322. WREG32(mmMC_SEQ_IO_DEBUG_DATA, le32_to_cpup(io_mc_regs++));
  323. }
  324. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
  325. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000010);
  326. /* load the MC ucode */
  327. for (i = 0; i < ucode_size; i++)
  328. WREG32(mmMC_SEQ_SUP_PGM, le32_to_cpup(fw_data++));
  329. /* put the engine back into the active state */
  330. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
  331. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000004);
  332. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000001);
  333. /* wait for training to complete */
  334. for (i = 0; i < adev->usec_timeout; i++) {
  335. data = RREG32(mmMC_SEQ_MISC0);
  336. if (data & 0x80)
  337. break;
  338. udelay(1);
  339. }
  340. return 0;
  341. }
  342. static void gmc_v8_0_vram_gtt_location(struct amdgpu_device *adev,
  343. struct amdgpu_mc *mc)
  344. {
  345. u64 base = RREG32(mmMC_VM_FB_LOCATION) & 0xFFFF;
  346. base <<= 24;
  347. if (mc->mc_vram_size > 0xFFC0000000ULL) {
  348. /* leave room for at least 1024M GTT */
  349. dev_warn(adev->dev, "limiting VRAM\n");
  350. mc->real_vram_size = 0xFFC0000000ULL;
  351. mc->mc_vram_size = 0xFFC0000000ULL;
  352. }
  353. amdgpu_vram_location(adev, &adev->mc, base);
  354. amdgpu_gart_location(adev, mc);
  355. }
  356. /**
  357. * gmc_v8_0_mc_program - program the GPU memory controller
  358. *
  359. * @adev: amdgpu_device pointer
  360. *
  361. * Set the location of vram, gart, and AGP in the GPU's
  362. * physical address space (CIK).
  363. */
  364. static void gmc_v8_0_mc_program(struct amdgpu_device *adev)
  365. {
  366. u32 tmp;
  367. int i, j;
  368. /* Initialize HDP */
  369. for (i = 0, j = 0; i < 32; i++, j += 0x6) {
  370. WREG32((0xb05 + j), 0x00000000);
  371. WREG32((0xb06 + j), 0x00000000);
  372. WREG32((0xb07 + j), 0x00000000);
  373. WREG32((0xb08 + j), 0x00000000);
  374. WREG32((0xb09 + j), 0x00000000);
  375. }
  376. WREG32(mmHDP_REG_COHERENCY_FLUSH_CNTL, 0);
  377. if (gmc_v8_0_wait_for_idle((void *)adev)) {
  378. dev_warn(adev->dev, "Wait for MC idle timedout !\n");
  379. }
  380. /* Update configuration */
  381. WREG32(mmMC_VM_SYSTEM_APERTURE_LOW_ADDR,
  382. adev->mc.vram_start >> 12);
  383. WREG32(mmMC_VM_SYSTEM_APERTURE_HIGH_ADDR,
  384. adev->mc.vram_end >> 12);
  385. WREG32(mmMC_VM_SYSTEM_APERTURE_DEFAULT_ADDR,
  386. adev->vram_scratch.gpu_addr >> 12);
  387. WREG32(mmMC_VM_AGP_BASE, 0);
  388. WREG32(mmMC_VM_AGP_TOP, 0x0FFFFFFF);
  389. WREG32(mmMC_VM_AGP_BOT, 0x0FFFFFFF);
  390. if (gmc_v8_0_wait_for_idle((void *)adev)) {
  391. dev_warn(adev->dev, "Wait for MC idle timedout !\n");
  392. }
  393. WREG32(mmBIF_FB_EN, BIF_FB_EN__FB_READ_EN_MASK | BIF_FB_EN__FB_WRITE_EN_MASK);
  394. tmp = RREG32(mmHDP_MISC_CNTL);
  395. tmp = REG_SET_FIELD(tmp, HDP_MISC_CNTL, FLUSH_INVALIDATE_CACHE, 0);
  396. WREG32(mmHDP_MISC_CNTL, tmp);
  397. tmp = RREG32(mmHDP_HOST_PATH_CNTL);
  398. WREG32(mmHDP_HOST_PATH_CNTL, tmp);
  399. }
  400. /**
  401. * gmc_v8_0_mc_init - initialize the memory controller driver params
  402. *
  403. * @adev: amdgpu_device pointer
  404. *
  405. * Look up the amount of vram, vram width, and decide how to place
  406. * vram and gart within the GPU's physical address space (CIK).
  407. * Returns 0 for success.
  408. */
  409. static int gmc_v8_0_mc_init(struct amdgpu_device *adev)
  410. {
  411. adev->mc.vram_width = amdgpu_atombios_get_vram_width(adev);
  412. if (!adev->mc.vram_width) {
  413. u32 tmp;
  414. int chansize, numchan;
  415. /* Get VRAM informations */
  416. tmp = RREG32(mmMC_ARB_RAMCFG);
  417. if (REG_GET_FIELD(tmp, MC_ARB_RAMCFG, CHANSIZE)) {
  418. chansize = 64;
  419. } else {
  420. chansize = 32;
  421. }
  422. tmp = RREG32(mmMC_SHARED_CHMAP);
  423. switch (REG_GET_FIELD(tmp, MC_SHARED_CHMAP, NOOFCHAN)) {
  424. case 0:
  425. default:
  426. numchan = 1;
  427. break;
  428. case 1:
  429. numchan = 2;
  430. break;
  431. case 2:
  432. numchan = 4;
  433. break;
  434. case 3:
  435. numchan = 8;
  436. break;
  437. case 4:
  438. numchan = 3;
  439. break;
  440. case 5:
  441. numchan = 6;
  442. break;
  443. case 6:
  444. numchan = 10;
  445. break;
  446. case 7:
  447. numchan = 12;
  448. break;
  449. case 8:
  450. numchan = 16;
  451. break;
  452. }
  453. adev->mc.vram_width = numchan * chansize;
  454. }
  455. /* Could aper size report 0 ? */
  456. adev->mc.aper_base = pci_resource_start(adev->pdev, 0);
  457. adev->mc.aper_size = pci_resource_len(adev->pdev, 0);
  458. /* size in MB on si */
  459. adev->mc.mc_vram_size = RREG32(mmCONFIG_MEMSIZE) * 1024ULL * 1024ULL;
  460. adev->mc.real_vram_size = RREG32(mmCONFIG_MEMSIZE) * 1024ULL * 1024ULL;
  461. #ifdef CONFIG_X86_64
  462. if (adev->flags & AMD_IS_APU) {
  463. adev->mc.aper_base = ((u64)RREG32(mmMC_VM_FB_OFFSET)) << 22;
  464. adev->mc.aper_size = adev->mc.real_vram_size;
  465. }
  466. #endif
  467. /* In case the PCI BAR is larger than the actual amount of vram */
  468. adev->mc.visible_vram_size = adev->mc.aper_size;
  469. if (adev->mc.visible_vram_size > adev->mc.real_vram_size)
  470. adev->mc.visible_vram_size = adev->mc.real_vram_size;
  471. amdgpu_gart_set_defaults(adev);
  472. gmc_v8_0_vram_gtt_location(adev, &adev->mc);
  473. return 0;
  474. }
  475. /*
  476. * GART
  477. * VMID 0 is the physical GPU addresses as used by the kernel.
  478. * VMIDs 1-15 are used for userspace clients and are handled
  479. * by the amdgpu vm/hsa code.
  480. */
  481. /**
  482. * gmc_v8_0_gart_flush_gpu_tlb - gart tlb flush callback
  483. *
  484. * @adev: amdgpu_device pointer
  485. * @vmid: vm instance to flush
  486. *
  487. * Flush the TLB for the requested page table (CIK).
  488. */
  489. static void gmc_v8_0_gart_flush_gpu_tlb(struct amdgpu_device *adev,
  490. uint32_t vmid)
  491. {
  492. /* flush hdp cache */
  493. WREG32(mmHDP_MEM_COHERENCY_FLUSH_CNTL, 0);
  494. /* bits 0-15 are the VM contexts0-15 */
  495. WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
  496. }
  497. /**
  498. * gmc_v8_0_gart_set_pte_pde - update the page tables using MMIO
  499. *
  500. * @adev: amdgpu_device pointer
  501. * @cpu_pt_addr: cpu address of the page table
  502. * @gpu_page_idx: entry in the page table to update
  503. * @addr: dst addr to write into pte/pde
  504. * @flags: access flags
  505. *
  506. * Update the page tables using the CPU.
  507. */
  508. static int gmc_v8_0_gart_set_pte_pde(struct amdgpu_device *adev,
  509. void *cpu_pt_addr,
  510. uint32_t gpu_page_idx,
  511. uint64_t addr,
  512. uint64_t flags)
  513. {
  514. void __iomem *ptr = (void *)cpu_pt_addr;
  515. uint64_t value;
  516. /*
  517. * PTE format on VI:
  518. * 63:40 reserved
  519. * 39:12 4k physical page base address
  520. * 11:7 fragment
  521. * 6 write
  522. * 5 read
  523. * 4 exe
  524. * 3 reserved
  525. * 2 snooped
  526. * 1 system
  527. * 0 valid
  528. *
  529. * PDE format on VI:
  530. * 63:59 block fragment size
  531. * 58:40 reserved
  532. * 39:1 physical base address of PTE
  533. * bits 5:1 must be 0.
  534. * 0 valid
  535. */
  536. value = addr & 0x000000FFFFFFF000ULL;
  537. value |= flags;
  538. writeq(value, ptr + (gpu_page_idx * 8));
  539. return 0;
  540. }
  541. static uint64_t gmc_v8_0_get_vm_pte_flags(struct amdgpu_device *adev,
  542. uint32_t flags)
  543. {
  544. uint64_t pte_flag = 0;
  545. if (flags & AMDGPU_VM_PAGE_EXECUTABLE)
  546. pte_flag |= AMDGPU_PTE_EXECUTABLE;
  547. if (flags & AMDGPU_VM_PAGE_READABLE)
  548. pte_flag |= AMDGPU_PTE_READABLE;
  549. if (flags & AMDGPU_VM_PAGE_WRITEABLE)
  550. pte_flag |= AMDGPU_PTE_WRITEABLE;
  551. if (flags & AMDGPU_VM_PAGE_PRT)
  552. pte_flag |= AMDGPU_PTE_PRT;
  553. return pte_flag;
  554. }
  555. static uint64_t gmc_v8_0_get_vm_pde(struct amdgpu_device *adev, uint64_t addr)
  556. {
  557. BUG_ON(addr & 0xFFFFFF0000000FFFULL);
  558. return addr;
  559. }
  560. /**
  561. * gmc_v8_0_set_fault_enable_default - update VM fault handling
  562. *
  563. * @adev: amdgpu_device pointer
  564. * @value: true redirects VM faults to the default page
  565. */
  566. static void gmc_v8_0_set_fault_enable_default(struct amdgpu_device *adev,
  567. bool value)
  568. {
  569. u32 tmp;
  570. tmp = RREG32(mmVM_CONTEXT1_CNTL);
  571. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  572. RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  573. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  574. DUMMY_PAGE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  575. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  576. PDE0_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  577. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  578. VALID_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  579. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  580. READ_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  581. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  582. WRITE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  583. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  584. EXECUTE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  585. WREG32(mmVM_CONTEXT1_CNTL, tmp);
  586. }
  587. /**
  588. * gmc_v8_0_set_prt - set PRT VM fault
  589. *
  590. * @adev: amdgpu_device pointer
  591. * @enable: enable/disable VM fault handling for PRT
  592. */
  593. static void gmc_v8_0_set_prt(struct amdgpu_device *adev, bool enable)
  594. {
  595. u32 tmp;
  596. if (enable && !adev->mc.prt_warning) {
  597. dev_warn(adev->dev, "Disabling VM faults because of PRT request!\n");
  598. adev->mc.prt_warning = true;
  599. }
  600. tmp = RREG32(mmVM_PRT_CNTL);
  601. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  602. CB_DISABLE_READ_FAULT_ON_UNMAPPED_ACCESS, enable);
  603. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  604. CB_DISABLE_WRITE_FAULT_ON_UNMAPPED_ACCESS, enable);
  605. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  606. TC_DISABLE_READ_FAULT_ON_UNMAPPED_ACCESS, enable);
  607. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  608. TC_DISABLE_WRITE_FAULT_ON_UNMAPPED_ACCESS, enable);
  609. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  610. L2_CACHE_STORE_INVALID_ENTRIES, enable);
  611. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  612. L1_TLB_STORE_INVALID_ENTRIES, enable);
  613. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  614. MASK_PDE0_FAULT, enable);
  615. WREG32(mmVM_PRT_CNTL, tmp);
  616. if (enable) {
  617. uint32_t low = AMDGPU_VA_RESERVED_SIZE >> AMDGPU_GPU_PAGE_SHIFT;
  618. uint32_t high = adev->vm_manager.max_pfn;
  619. WREG32(mmVM_PRT_APERTURE0_LOW_ADDR, low);
  620. WREG32(mmVM_PRT_APERTURE1_LOW_ADDR, low);
  621. WREG32(mmVM_PRT_APERTURE2_LOW_ADDR, low);
  622. WREG32(mmVM_PRT_APERTURE3_LOW_ADDR, low);
  623. WREG32(mmVM_PRT_APERTURE0_HIGH_ADDR, high);
  624. WREG32(mmVM_PRT_APERTURE1_HIGH_ADDR, high);
  625. WREG32(mmVM_PRT_APERTURE2_HIGH_ADDR, high);
  626. WREG32(mmVM_PRT_APERTURE3_HIGH_ADDR, high);
  627. } else {
  628. WREG32(mmVM_PRT_APERTURE0_LOW_ADDR, 0xfffffff);
  629. WREG32(mmVM_PRT_APERTURE1_LOW_ADDR, 0xfffffff);
  630. WREG32(mmVM_PRT_APERTURE2_LOW_ADDR, 0xfffffff);
  631. WREG32(mmVM_PRT_APERTURE3_LOW_ADDR, 0xfffffff);
  632. WREG32(mmVM_PRT_APERTURE0_HIGH_ADDR, 0x0);
  633. WREG32(mmVM_PRT_APERTURE1_HIGH_ADDR, 0x0);
  634. WREG32(mmVM_PRT_APERTURE2_HIGH_ADDR, 0x0);
  635. WREG32(mmVM_PRT_APERTURE3_HIGH_ADDR, 0x0);
  636. }
  637. }
  638. /**
  639. * gmc_v8_0_gart_enable - gart enable
  640. *
  641. * @adev: amdgpu_device pointer
  642. *
  643. * This sets up the TLBs, programs the page tables for VMID0,
  644. * sets up the hw for VMIDs 1-15 which are allocated on
  645. * demand, and sets up the global locations for the LDS, GDS,
  646. * and GPUVM for FSA64 clients (CIK).
  647. * Returns 0 for success, errors for failure.
  648. */
  649. static int gmc_v8_0_gart_enable(struct amdgpu_device *adev)
  650. {
  651. int r, i;
  652. u32 tmp;
  653. if (adev->gart.robj == NULL) {
  654. dev_err(adev->dev, "No VRAM object for PCIE GART.\n");
  655. return -EINVAL;
  656. }
  657. r = amdgpu_gart_table_vram_pin(adev);
  658. if (r)
  659. return r;
  660. /* Setup TLB control */
  661. tmp = RREG32(mmMC_VM_MX_L1_TLB_CNTL);
  662. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_TLB, 1);
  663. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_FRAGMENT_PROCESSING, 1);
  664. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, SYSTEM_ACCESS_MODE, 3);
  665. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_ADVANCED_DRIVER_MODEL, 1);
  666. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, SYSTEM_APERTURE_UNMAPPED_ACCESS, 0);
  667. WREG32(mmMC_VM_MX_L1_TLB_CNTL, tmp);
  668. /* Setup L2 cache */
  669. tmp = RREG32(mmVM_L2_CNTL);
  670. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_CACHE, 1);
  671. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_FRAGMENT_PROCESSING, 1);
  672. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE, 1);
  673. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_PDE0_CACHE_LRU_UPDATE_BY_WRITE, 1);
  674. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, EFFECTIVE_L2_QUEUE_SIZE, 7);
  675. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, CONTEXT1_IDENTITY_ACCESS_MODE, 1);
  676. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_DEFAULT_PAGE_OUT_TO_SYSTEM_MEMORY, 1);
  677. WREG32(mmVM_L2_CNTL, tmp);
  678. tmp = RREG32(mmVM_L2_CNTL2);
  679. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL2, INVALIDATE_ALL_L1_TLBS, 1);
  680. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL2, INVALIDATE_L2_CACHE, 1);
  681. WREG32(mmVM_L2_CNTL2, tmp);
  682. tmp = RREG32(mmVM_L2_CNTL3);
  683. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, L2_CACHE_BIGK_ASSOCIATIVITY, 1);
  684. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, BANK_SELECT, 4);
  685. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, L2_CACHE_BIGK_FRAGMENT_SIZE, 4);
  686. WREG32(mmVM_L2_CNTL3, tmp);
  687. /* XXX: set to enable PTE/PDE in system memory */
  688. tmp = RREG32(mmVM_L2_CNTL4);
  689. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_PHYSICAL, 0);
  690. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_SHARED, 0);
  691. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_SNOOP, 0);
  692. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_PHYSICAL, 0);
  693. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_SHARED, 0);
  694. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_SNOOP, 0);
  695. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_PHYSICAL, 0);
  696. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_SHARED, 0);
  697. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_SNOOP, 0);
  698. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_PHYSICAL, 0);
  699. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_SHARED, 0);
  700. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_SNOOP, 0);
  701. WREG32(mmVM_L2_CNTL4, tmp);
  702. /* setup context0 */
  703. WREG32(mmVM_CONTEXT0_PAGE_TABLE_START_ADDR, adev->mc.gart_start >> 12);
  704. WREG32(mmVM_CONTEXT0_PAGE_TABLE_END_ADDR, adev->mc.gart_end >> 12);
  705. WREG32(mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR, adev->gart.table_addr >> 12);
  706. WREG32(mmVM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR,
  707. (u32)(adev->dummy_page.addr >> 12));
  708. WREG32(mmVM_CONTEXT0_CNTL2, 0);
  709. tmp = RREG32(mmVM_CONTEXT0_CNTL);
  710. tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, ENABLE_CONTEXT, 1);
  711. tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, PAGE_TABLE_DEPTH, 0);
  712. tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  713. WREG32(mmVM_CONTEXT0_CNTL, tmp);
  714. WREG32(mmVM_L2_CONTEXT1_IDENTITY_APERTURE_LOW_ADDR, 0);
  715. WREG32(mmVM_L2_CONTEXT1_IDENTITY_APERTURE_HIGH_ADDR, 0);
  716. WREG32(mmVM_L2_CONTEXT_IDENTITY_PHYSICAL_OFFSET, 0);
  717. /* empty context1-15 */
  718. /* FIXME start with 4G, once using 2 level pt switch to full
  719. * vm size space
  720. */
  721. /* set vm size, must be a multiple of 4 */
  722. WREG32(mmVM_CONTEXT1_PAGE_TABLE_START_ADDR, 0);
  723. WREG32(mmVM_CONTEXT1_PAGE_TABLE_END_ADDR, adev->vm_manager.max_pfn - 1);
  724. for (i = 1; i < 16; i++) {
  725. if (i < 8)
  726. WREG32(mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + i,
  727. adev->gart.table_addr >> 12);
  728. else
  729. WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + i - 8,
  730. adev->gart.table_addr >> 12);
  731. }
  732. /* enable context1-15 */
  733. WREG32(mmVM_CONTEXT1_PROTECTION_FAULT_DEFAULT_ADDR,
  734. (u32)(adev->dummy_page.addr >> 12));
  735. WREG32(mmVM_CONTEXT1_CNTL2, 4);
  736. tmp = RREG32(mmVM_CONTEXT1_CNTL);
  737. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, ENABLE_CONTEXT, 1);
  738. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PAGE_TABLE_DEPTH, 1);
  739. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  740. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, DUMMY_PAGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  741. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PDE0_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  742. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, VALID_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  743. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, READ_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  744. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, WRITE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  745. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, EXECUTE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  746. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PAGE_TABLE_BLOCK_SIZE,
  747. adev->vm_manager.block_size - 9);
  748. WREG32(mmVM_CONTEXT1_CNTL, tmp);
  749. if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_ALWAYS)
  750. gmc_v8_0_set_fault_enable_default(adev, false);
  751. else
  752. gmc_v8_0_set_fault_enable_default(adev, true);
  753. gmc_v8_0_gart_flush_gpu_tlb(adev, 0);
  754. DRM_INFO("PCIE GART of %uM enabled (table at 0x%016llX).\n",
  755. (unsigned)(adev->mc.gart_size >> 20),
  756. (unsigned long long)adev->gart.table_addr);
  757. adev->gart.ready = true;
  758. return 0;
  759. }
  760. static int gmc_v8_0_gart_init(struct amdgpu_device *adev)
  761. {
  762. int r;
  763. if (adev->gart.robj) {
  764. WARN(1, "R600 PCIE GART already initialized\n");
  765. return 0;
  766. }
  767. /* Initialize common gart structure */
  768. r = amdgpu_gart_init(adev);
  769. if (r)
  770. return r;
  771. adev->gart.table_size = adev->gart.num_gpu_pages * 8;
  772. adev->gart.gart_pte_flags = AMDGPU_PTE_EXECUTABLE;
  773. return amdgpu_gart_table_vram_alloc(adev);
  774. }
  775. /**
  776. * gmc_v8_0_gart_disable - gart disable
  777. *
  778. * @adev: amdgpu_device pointer
  779. *
  780. * This disables all VM page table (CIK).
  781. */
  782. static void gmc_v8_0_gart_disable(struct amdgpu_device *adev)
  783. {
  784. u32 tmp;
  785. /* Disable all tables */
  786. WREG32(mmVM_CONTEXT0_CNTL, 0);
  787. WREG32(mmVM_CONTEXT1_CNTL, 0);
  788. /* Setup TLB control */
  789. tmp = RREG32(mmMC_VM_MX_L1_TLB_CNTL);
  790. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_TLB, 0);
  791. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_FRAGMENT_PROCESSING, 0);
  792. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_ADVANCED_DRIVER_MODEL, 0);
  793. WREG32(mmMC_VM_MX_L1_TLB_CNTL, tmp);
  794. /* Setup L2 cache */
  795. tmp = RREG32(mmVM_L2_CNTL);
  796. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_CACHE, 0);
  797. WREG32(mmVM_L2_CNTL, tmp);
  798. WREG32(mmVM_L2_CNTL2, 0);
  799. amdgpu_gart_table_vram_unpin(adev);
  800. }
  801. /**
  802. * gmc_v8_0_gart_fini - vm fini callback
  803. *
  804. * @adev: amdgpu_device pointer
  805. *
  806. * Tears down the driver GART/VM setup (CIK).
  807. */
  808. static void gmc_v8_0_gart_fini(struct amdgpu_device *adev)
  809. {
  810. amdgpu_gart_table_vram_free(adev);
  811. amdgpu_gart_fini(adev);
  812. }
  813. /**
  814. * gmc_v8_0_vm_decode_fault - print human readable fault info
  815. *
  816. * @adev: amdgpu_device pointer
  817. * @status: VM_CONTEXT1_PROTECTION_FAULT_STATUS register value
  818. * @addr: VM_CONTEXT1_PROTECTION_FAULT_ADDR register value
  819. *
  820. * Print human readable fault information (CIK).
  821. */
  822. static void gmc_v8_0_vm_decode_fault(struct amdgpu_device *adev,
  823. u32 status, u32 addr, u32 mc_client)
  824. {
  825. u32 mc_id;
  826. u32 vmid = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, VMID);
  827. u32 protections = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS,
  828. PROTECTIONS);
  829. char block[5] = { mc_client >> 24, (mc_client >> 16) & 0xff,
  830. (mc_client >> 8) & 0xff, mc_client & 0xff, 0 };
  831. mc_id = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS,
  832. MEMORY_CLIENT_ID);
  833. dev_err(adev->dev, "VM fault (0x%02x, vmid %d) at page %u, %s from '%s' (0x%08x) (%d)\n",
  834. protections, vmid, addr,
  835. REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS,
  836. MEMORY_CLIENT_RW) ?
  837. "write" : "read", block, mc_client, mc_id);
  838. }
  839. static int gmc_v8_0_convert_vram_type(int mc_seq_vram_type)
  840. {
  841. switch (mc_seq_vram_type) {
  842. case MC_SEQ_MISC0__MT__GDDR1:
  843. return AMDGPU_VRAM_TYPE_GDDR1;
  844. case MC_SEQ_MISC0__MT__DDR2:
  845. return AMDGPU_VRAM_TYPE_DDR2;
  846. case MC_SEQ_MISC0__MT__GDDR3:
  847. return AMDGPU_VRAM_TYPE_GDDR3;
  848. case MC_SEQ_MISC0__MT__GDDR4:
  849. return AMDGPU_VRAM_TYPE_GDDR4;
  850. case MC_SEQ_MISC0__MT__GDDR5:
  851. return AMDGPU_VRAM_TYPE_GDDR5;
  852. case MC_SEQ_MISC0__MT__HBM:
  853. return AMDGPU_VRAM_TYPE_HBM;
  854. case MC_SEQ_MISC0__MT__DDR3:
  855. return AMDGPU_VRAM_TYPE_DDR3;
  856. default:
  857. return AMDGPU_VRAM_TYPE_UNKNOWN;
  858. }
  859. }
  860. static int gmc_v8_0_early_init(void *handle)
  861. {
  862. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  863. gmc_v8_0_set_gart_funcs(adev);
  864. gmc_v8_0_set_irq_funcs(adev);
  865. adev->mc.shared_aperture_start = 0x2000000000000000ULL;
  866. adev->mc.shared_aperture_end =
  867. adev->mc.shared_aperture_start + (4ULL << 30) - 1;
  868. adev->mc.private_aperture_start =
  869. adev->mc.shared_aperture_end + 1;
  870. adev->mc.private_aperture_end =
  871. adev->mc.private_aperture_start + (4ULL << 30) - 1;
  872. return 0;
  873. }
  874. static int gmc_v8_0_late_init(void *handle)
  875. {
  876. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  877. if (amdgpu_vm_fault_stop != AMDGPU_VM_FAULT_STOP_ALWAYS)
  878. return amdgpu_irq_get(adev, &adev->mc.vm_fault, 0);
  879. else
  880. return 0;
  881. }
  882. #define mmMC_SEQ_MISC0_FIJI 0xA71
  883. static int gmc_v8_0_sw_init(void *handle)
  884. {
  885. int r;
  886. int dma_bits;
  887. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  888. if (adev->flags & AMD_IS_APU) {
  889. adev->mc.vram_type = AMDGPU_VRAM_TYPE_UNKNOWN;
  890. } else {
  891. u32 tmp;
  892. if (adev->asic_type == CHIP_FIJI)
  893. tmp = RREG32(mmMC_SEQ_MISC0_FIJI);
  894. else
  895. tmp = RREG32(mmMC_SEQ_MISC0);
  896. tmp &= MC_SEQ_MISC0__MT__MASK;
  897. adev->mc.vram_type = gmc_v8_0_convert_vram_type(tmp);
  898. }
  899. r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 146, &adev->mc.vm_fault);
  900. if (r)
  901. return r;
  902. r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 147, &adev->mc.vm_fault);
  903. if (r)
  904. return r;
  905. /* Adjust VM size here.
  906. * Currently set to 4GB ((1 << 20) 4k pages).
  907. * Max GPUVM size for cayman and SI is 40 bits.
  908. */
  909. amdgpu_vm_adjust_size(adev, 64);
  910. adev->vm_manager.max_pfn = adev->vm_manager.vm_size << 18;
  911. /* Set the internal MC address mask
  912. * This is the max address of the GPU's
  913. * internal address space.
  914. */
  915. adev->mc.mc_mask = 0xffffffffffULL; /* 40 bit MC */
  916. adev->mc.stolen_size = 256 * 1024;
  917. /* set DMA mask + need_dma32 flags.
  918. * PCIE - can handle 40-bits.
  919. * IGP - can handle 40-bits
  920. * PCI - dma32 for legacy pci gart, 40 bits on newer asics
  921. */
  922. adev->need_dma32 = false;
  923. dma_bits = adev->need_dma32 ? 32 : 40;
  924. r = pci_set_dma_mask(adev->pdev, DMA_BIT_MASK(dma_bits));
  925. if (r) {
  926. adev->need_dma32 = true;
  927. dma_bits = 32;
  928. pr_warn("amdgpu: No suitable DMA available\n");
  929. }
  930. r = pci_set_consistent_dma_mask(adev->pdev, DMA_BIT_MASK(dma_bits));
  931. if (r) {
  932. pci_set_consistent_dma_mask(adev->pdev, DMA_BIT_MASK(32));
  933. pr_warn("amdgpu: No coherent DMA available\n");
  934. }
  935. r = gmc_v8_0_init_microcode(adev);
  936. if (r) {
  937. DRM_ERROR("Failed to load mc firmware!\n");
  938. return r;
  939. }
  940. r = gmc_v8_0_mc_init(adev);
  941. if (r)
  942. return r;
  943. /* Memory manager */
  944. r = amdgpu_bo_init(adev);
  945. if (r)
  946. return r;
  947. r = gmc_v8_0_gart_init(adev);
  948. if (r)
  949. return r;
  950. /*
  951. * number of VMs
  952. * VMID 0 is reserved for System
  953. * amdgpu graphics/compute will use VMIDs 1-7
  954. * amdkfd will use VMIDs 8-15
  955. */
  956. adev->vm_manager.id_mgr[0].num_ids = AMDGPU_NUM_OF_VMIDS;
  957. adev->vm_manager.num_level = 1;
  958. amdgpu_vm_manager_init(adev);
  959. /* base offset of vram pages */
  960. if (adev->flags & AMD_IS_APU) {
  961. u64 tmp = RREG32(mmMC_VM_FB_OFFSET);
  962. tmp <<= 22;
  963. adev->vm_manager.vram_base_offset = tmp;
  964. } else {
  965. adev->vm_manager.vram_base_offset = 0;
  966. }
  967. return 0;
  968. }
  969. static int gmc_v8_0_sw_fini(void *handle)
  970. {
  971. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  972. amdgpu_vm_manager_fini(adev);
  973. gmc_v8_0_gart_fini(adev);
  974. amdgpu_gem_force_release(adev);
  975. amdgpu_bo_fini(adev);
  976. return 0;
  977. }
  978. static int gmc_v8_0_hw_init(void *handle)
  979. {
  980. int r;
  981. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  982. gmc_v8_0_init_golden_registers(adev);
  983. gmc_v8_0_mc_program(adev);
  984. if (adev->asic_type == CHIP_TONGA) {
  985. r = gmc_v8_0_tonga_mc_load_microcode(adev);
  986. if (r) {
  987. DRM_ERROR("Failed to load MC firmware!\n");
  988. return r;
  989. }
  990. } else if (adev->asic_type == CHIP_POLARIS11 ||
  991. adev->asic_type == CHIP_POLARIS10 ||
  992. adev->asic_type == CHIP_POLARIS12) {
  993. r = gmc_v8_0_polaris_mc_load_microcode(adev);
  994. if (r) {
  995. DRM_ERROR("Failed to load MC firmware!\n");
  996. return r;
  997. }
  998. }
  999. r = gmc_v8_0_gart_enable(adev);
  1000. if (r)
  1001. return r;
  1002. return r;
  1003. }
  1004. static int gmc_v8_0_hw_fini(void *handle)
  1005. {
  1006. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1007. amdgpu_irq_put(adev, &adev->mc.vm_fault, 0);
  1008. gmc_v8_0_gart_disable(adev);
  1009. return 0;
  1010. }
  1011. static int gmc_v8_0_suspend(void *handle)
  1012. {
  1013. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1014. gmc_v8_0_hw_fini(adev);
  1015. return 0;
  1016. }
  1017. static int gmc_v8_0_resume(void *handle)
  1018. {
  1019. int r;
  1020. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1021. r = gmc_v8_0_hw_init(adev);
  1022. if (r)
  1023. return r;
  1024. amdgpu_vm_reset_all_ids(adev);
  1025. return 0;
  1026. }
  1027. static bool gmc_v8_0_is_idle(void *handle)
  1028. {
  1029. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1030. u32 tmp = RREG32(mmSRBM_STATUS);
  1031. if (tmp & (SRBM_STATUS__MCB_BUSY_MASK | SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK |
  1032. SRBM_STATUS__MCC_BUSY_MASK | SRBM_STATUS__MCD_BUSY_MASK | SRBM_STATUS__VMC_BUSY_MASK))
  1033. return false;
  1034. return true;
  1035. }
  1036. static int gmc_v8_0_wait_for_idle(void *handle)
  1037. {
  1038. unsigned i;
  1039. u32 tmp;
  1040. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1041. for (i = 0; i < adev->usec_timeout; i++) {
  1042. /* read MC_STATUS */
  1043. tmp = RREG32(mmSRBM_STATUS) & (SRBM_STATUS__MCB_BUSY_MASK |
  1044. SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK |
  1045. SRBM_STATUS__MCC_BUSY_MASK |
  1046. SRBM_STATUS__MCD_BUSY_MASK |
  1047. SRBM_STATUS__VMC_BUSY_MASK |
  1048. SRBM_STATUS__VMC1_BUSY_MASK);
  1049. if (!tmp)
  1050. return 0;
  1051. udelay(1);
  1052. }
  1053. return -ETIMEDOUT;
  1054. }
  1055. static bool gmc_v8_0_check_soft_reset(void *handle)
  1056. {
  1057. u32 srbm_soft_reset = 0;
  1058. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1059. u32 tmp = RREG32(mmSRBM_STATUS);
  1060. if (tmp & SRBM_STATUS__VMC_BUSY_MASK)
  1061. srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset,
  1062. SRBM_SOFT_RESET, SOFT_RESET_VMC, 1);
  1063. if (tmp & (SRBM_STATUS__MCB_BUSY_MASK | SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK |
  1064. SRBM_STATUS__MCC_BUSY_MASK | SRBM_STATUS__MCD_BUSY_MASK)) {
  1065. if (!(adev->flags & AMD_IS_APU))
  1066. srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset,
  1067. SRBM_SOFT_RESET, SOFT_RESET_MC, 1);
  1068. }
  1069. if (srbm_soft_reset) {
  1070. adev->mc.srbm_soft_reset = srbm_soft_reset;
  1071. return true;
  1072. } else {
  1073. adev->mc.srbm_soft_reset = 0;
  1074. return false;
  1075. }
  1076. }
  1077. static int gmc_v8_0_pre_soft_reset(void *handle)
  1078. {
  1079. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1080. if (!adev->mc.srbm_soft_reset)
  1081. return 0;
  1082. gmc_v8_0_mc_stop(adev);
  1083. if (gmc_v8_0_wait_for_idle(adev)) {
  1084. dev_warn(adev->dev, "Wait for GMC idle timed out !\n");
  1085. }
  1086. return 0;
  1087. }
  1088. static int gmc_v8_0_soft_reset(void *handle)
  1089. {
  1090. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1091. u32 srbm_soft_reset;
  1092. if (!adev->mc.srbm_soft_reset)
  1093. return 0;
  1094. srbm_soft_reset = adev->mc.srbm_soft_reset;
  1095. if (srbm_soft_reset) {
  1096. u32 tmp;
  1097. tmp = RREG32(mmSRBM_SOFT_RESET);
  1098. tmp |= srbm_soft_reset;
  1099. dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
  1100. WREG32(mmSRBM_SOFT_RESET, tmp);
  1101. tmp = RREG32(mmSRBM_SOFT_RESET);
  1102. udelay(50);
  1103. tmp &= ~srbm_soft_reset;
  1104. WREG32(mmSRBM_SOFT_RESET, tmp);
  1105. tmp = RREG32(mmSRBM_SOFT_RESET);
  1106. /* Wait a little for things to settle down */
  1107. udelay(50);
  1108. }
  1109. return 0;
  1110. }
  1111. static int gmc_v8_0_post_soft_reset(void *handle)
  1112. {
  1113. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1114. if (!adev->mc.srbm_soft_reset)
  1115. return 0;
  1116. gmc_v8_0_mc_resume(adev);
  1117. return 0;
  1118. }
  1119. static int gmc_v8_0_vm_fault_interrupt_state(struct amdgpu_device *adev,
  1120. struct amdgpu_irq_src *src,
  1121. unsigned type,
  1122. enum amdgpu_interrupt_state state)
  1123. {
  1124. u32 tmp;
  1125. u32 bits = (VM_CONTEXT1_CNTL__RANGE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1126. VM_CONTEXT1_CNTL__DUMMY_PAGE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1127. VM_CONTEXT1_CNTL__PDE0_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1128. VM_CONTEXT1_CNTL__VALID_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1129. VM_CONTEXT1_CNTL__READ_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1130. VM_CONTEXT1_CNTL__WRITE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1131. VM_CONTEXT1_CNTL__EXECUTE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK);
  1132. switch (state) {
  1133. case AMDGPU_IRQ_STATE_DISABLE:
  1134. /* system context */
  1135. tmp = RREG32(mmVM_CONTEXT0_CNTL);
  1136. tmp &= ~bits;
  1137. WREG32(mmVM_CONTEXT0_CNTL, tmp);
  1138. /* VMs */
  1139. tmp = RREG32(mmVM_CONTEXT1_CNTL);
  1140. tmp &= ~bits;
  1141. WREG32(mmVM_CONTEXT1_CNTL, tmp);
  1142. break;
  1143. case AMDGPU_IRQ_STATE_ENABLE:
  1144. /* system context */
  1145. tmp = RREG32(mmVM_CONTEXT0_CNTL);
  1146. tmp |= bits;
  1147. WREG32(mmVM_CONTEXT0_CNTL, tmp);
  1148. /* VMs */
  1149. tmp = RREG32(mmVM_CONTEXT1_CNTL);
  1150. tmp |= bits;
  1151. WREG32(mmVM_CONTEXT1_CNTL, tmp);
  1152. break;
  1153. default:
  1154. break;
  1155. }
  1156. return 0;
  1157. }
  1158. static int gmc_v8_0_process_interrupt(struct amdgpu_device *adev,
  1159. struct amdgpu_irq_src *source,
  1160. struct amdgpu_iv_entry *entry)
  1161. {
  1162. u32 addr, status, mc_client;
  1163. if (amdgpu_sriov_vf(adev)) {
  1164. dev_err(adev->dev, "GPU fault detected: %d 0x%08x\n",
  1165. entry->src_id, entry->src_data[0]);
  1166. dev_err(adev->dev, " Can't decode VM fault info here on SRIOV VF\n");
  1167. return 0;
  1168. }
  1169. addr = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_ADDR);
  1170. status = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_STATUS);
  1171. mc_client = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_MCCLIENT);
  1172. /* reset addr and status */
  1173. WREG32_P(mmVM_CONTEXT1_CNTL2, 1, ~1);
  1174. if (!addr && !status)
  1175. return 0;
  1176. if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_FIRST)
  1177. gmc_v8_0_set_fault_enable_default(adev, false);
  1178. if (printk_ratelimit()) {
  1179. dev_err(adev->dev, "GPU fault detected: %d 0x%08x\n",
  1180. entry->src_id, entry->src_data[0]);
  1181. dev_err(adev->dev, " VM_CONTEXT1_PROTECTION_FAULT_ADDR 0x%08X\n",
  1182. addr);
  1183. dev_err(adev->dev, " VM_CONTEXT1_PROTECTION_FAULT_STATUS 0x%08X\n",
  1184. status);
  1185. gmc_v8_0_vm_decode_fault(adev, status, addr, mc_client);
  1186. }
  1187. return 0;
  1188. }
  1189. static void fiji_update_mc_medium_grain_clock_gating(struct amdgpu_device *adev,
  1190. bool enable)
  1191. {
  1192. uint32_t data;
  1193. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_MC_MGCG)) {
  1194. data = RREG32(mmMC_HUB_MISC_HUB_CG);
  1195. data |= MC_HUB_MISC_HUB_CG__ENABLE_MASK;
  1196. WREG32(mmMC_HUB_MISC_HUB_CG, data);
  1197. data = RREG32(mmMC_HUB_MISC_SIP_CG);
  1198. data |= MC_HUB_MISC_SIP_CG__ENABLE_MASK;
  1199. WREG32(mmMC_HUB_MISC_SIP_CG, data);
  1200. data = RREG32(mmMC_HUB_MISC_VM_CG);
  1201. data |= MC_HUB_MISC_VM_CG__ENABLE_MASK;
  1202. WREG32(mmMC_HUB_MISC_VM_CG, data);
  1203. data = RREG32(mmMC_XPB_CLK_GAT);
  1204. data |= MC_XPB_CLK_GAT__ENABLE_MASK;
  1205. WREG32(mmMC_XPB_CLK_GAT, data);
  1206. data = RREG32(mmATC_MISC_CG);
  1207. data |= ATC_MISC_CG__ENABLE_MASK;
  1208. WREG32(mmATC_MISC_CG, data);
  1209. data = RREG32(mmMC_CITF_MISC_WR_CG);
  1210. data |= MC_CITF_MISC_WR_CG__ENABLE_MASK;
  1211. WREG32(mmMC_CITF_MISC_WR_CG, data);
  1212. data = RREG32(mmMC_CITF_MISC_RD_CG);
  1213. data |= MC_CITF_MISC_RD_CG__ENABLE_MASK;
  1214. WREG32(mmMC_CITF_MISC_RD_CG, data);
  1215. data = RREG32(mmMC_CITF_MISC_VM_CG);
  1216. data |= MC_CITF_MISC_VM_CG__ENABLE_MASK;
  1217. WREG32(mmMC_CITF_MISC_VM_CG, data);
  1218. data = RREG32(mmVM_L2_CG);
  1219. data |= VM_L2_CG__ENABLE_MASK;
  1220. WREG32(mmVM_L2_CG, data);
  1221. } else {
  1222. data = RREG32(mmMC_HUB_MISC_HUB_CG);
  1223. data &= ~MC_HUB_MISC_HUB_CG__ENABLE_MASK;
  1224. WREG32(mmMC_HUB_MISC_HUB_CG, data);
  1225. data = RREG32(mmMC_HUB_MISC_SIP_CG);
  1226. data &= ~MC_HUB_MISC_SIP_CG__ENABLE_MASK;
  1227. WREG32(mmMC_HUB_MISC_SIP_CG, data);
  1228. data = RREG32(mmMC_HUB_MISC_VM_CG);
  1229. data &= ~MC_HUB_MISC_VM_CG__ENABLE_MASK;
  1230. WREG32(mmMC_HUB_MISC_VM_CG, data);
  1231. data = RREG32(mmMC_XPB_CLK_GAT);
  1232. data &= ~MC_XPB_CLK_GAT__ENABLE_MASK;
  1233. WREG32(mmMC_XPB_CLK_GAT, data);
  1234. data = RREG32(mmATC_MISC_CG);
  1235. data &= ~ATC_MISC_CG__ENABLE_MASK;
  1236. WREG32(mmATC_MISC_CG, data);
  1237. data = RREG32(mmMC_CITF_MISC_WR_CG);
  1238. data &= ~MC_CITF_MISC_WR_CG__ENABLE_MASK;
  1239. WREG32(mmMC_CITF_MISC_WR_CG, data);
  1240. data = RREG32(mmMC_CITF_MISC_RD_CG);
  1241. data &= ~MC_CITF_MISC_RD_CG__ENABLE_MASK;
  1242. WREG32(mmMC_CITF_MISC_RD_CG, data);
  1243. data = RREG32(mmMC_CITF_MISC_VM_CG);
  1244. data &= ~MC_CITF_MISC_VM_CG__ENABLE_MASK;
  1245. WREG32(mmMC_CITF_MISC_VM_CG, data);
  1246. data = RREG32(mmVM_L2_CG);
  1247. data &= ~VM_L2_CG__ENABLE_MASK;
  1248. WREG32(mmVM_L2_CG, data);
  1249. }
  1250. }
  1251. static void fiji_update_mc_light_sleep(struct amdgpu_device *adev,
  1252. bool enable)
  1253. {
  1254. uint32_t data;
  1255. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_MC_LS)) {
  1256. data = RREG32(mmMC_HUB_MISC_HUB_CG);
  1257. data |= MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK;
  1258. WREG32(mmMC_HUB_MISC_HUB_CG, data);
  1259. data = RREG32(mmMC_HUB_MISC_SIP_CG);
  1260. data |= MC_HUB_MISC_SIP_CG__MEM_LS_ENABLE_MASK;
  1261. WREG32(mmMC_HUB_MISC_SIP_CG, data);
  1262. data = RREG32(mmMC_HUB_MISC_VM_CG);
  1263. data |= MC_HUB_MISC_VM_CG__MEM_LS_ENABLE_MASK;
  1264. WREG32(mmMC_HUB_MISC_VM_CG, data);
  1265. data = RREG32(mmMC_XPB_CLK_GAT);
  1266. data |= MC_XPB_CLK_GAT__MEM_LS_ENABLE_MASK;
  1267. WREG32(mmMC_XPB_CLK_GAT, data);
  1268. data = RREG32(mmATC_MISC_CG);
  1269. data |= ATC_MISC_CG__MEM_LS_ENABLE_MASK;
  1270. WREG32(mmATC_MISC_CG, data);
  1271. data = RREG32(mmMC_CITF_MISC_WR_CG);
  1272. data |= MC_CITF_MISC_WR_CG__MEM_LS_ENABLE_MASK;
  1273. WREG32(mmMC_CITF_MISC_WR_CG, data);
  1274. data = RREG32(mmMC_CITF_MISC_RD_CG);
  1275. data |= MC_CITF_MISC_RD_CG__MEM_LS_ENABLE_MASK;
  1276. WREG32(mmMC_CITF_MISC_RD_CG, data);
  1277. data = RREG32(mmMC_CITF_MISC_VM_CG);
  1278. data |= MC_CITF_MISC_VM_CG__MEM_LS_ENABLE_MASK;
  1279. WREG32(mmMC_CITF_MISC_VM_CG, data);
  1280. data = RREG32(mmVM_L2_CG);
  1281. data |= VM_L2_CG__MEM_LS_ENABLE_MASK;
  1282. WREG32(mmVM_L2_CG, data);
  1283. } else {
  1284. data = RREG32(mmMC_HUB_MISC_HUB_CG);
  1285. data &= ~MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK;
  1286. WREG32(mmMC_HUB_MISC_HUB_CG, data);
  1287. data = RREG32(mmMC_HUB_MISC_SIP_CG);
  1288. data &= ~MC_HUB_MISC_SIP_CG__MEM_LS_ENABLE_MASK;
  1289. WREG32(mmMC_HUB_MISC_SIP_CG, data);
  1290. data = RREG32(mmMC_HUB_MISC_VM_CG);
  1291. data &= ~MC_HUB_MISC_VM_CG__MEM_LS_ENABLE_MASK;
  1292. WREG32(mmMC_HUB_MISC_VM_CG, data);
  1293. data = RREG32(mmMC_XPB_CLK_GAT);
  1294. data &= ~MC_XPB_CLK_GAT__MEM_LS_ENABLE_MASK;
  1295. WREG32(mmMC_XPB_CLK_GAT, data);
  1296. data = RREG32(mmATC_MISC_CG);
  1297. data &= ~ATC_MISC_CG__MEM_LS_ENABLE_MASK;
  1298. WREG32(mmATC_MISC_CG, data);
  1299. data = RREG32(mmMC_CITF_MISC_WR_CG);
  1300. data &= ~MC_CITF_MISC_WR_CG__MEM_LS_ENABLE_MASK;
  1301. WREG32(mmMC_CITF_MISC_WR_CG, data);
  1302. data = RREG32(mmMC_CITF_MISC_RD_CG);
  1303. data &= ~MC_CITF_MISC_RD_CG__MEM_LS_ENABLE_MASK;
  1304. WREG32(mmMC_CITF_MISC_RD_CG, data);
  1305. data = RREG32(mmMC_CITF_MISC_VM_CG);
  1306. data &= ~MC_CITF_MISC_VM_CG__MEM_LS_ENABLE_MASK;
  1307. WREG32(mmMC_CITF_MISC_VM_CG, data);
  1308. data = RREG32(mmVM_L2_CG);
  1309. data &= ~VM_L2_CG__MEM_LS_ENABLE_MASK;
  1310. WREG32(mmVM_L2_CG, data);
  1311. }
  1312. }
  1313. static int gmc_v8_0_set_clockgating_state(void *handle,
  1314. enum amd_clockgating_state state)
  1315. {
  1316. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1317. if (amdgpu_sriov_vf(adev))
  1318. return 0;
  1319. switch (adev->asic_type) {
  1320. case CHIP_FIJI:
  1321. fiji_update_mc_medium_grain_clock_gating(adev,
  1322. state == AMD_CG_STATE_GATE);
  1323. fiji_update_mc_light_sleep(adev,
  1324. state == AMD_CG_STATE_GATE);
  1325. break;
  1326. default:
  1327. break;
  1328. }
  1329. return 0;
  1330. }
  1331. static int gmc_v8_0_set_powergating_state(void *handle,
  1332. enum amd_powergating_state state)
  1333. {
  1334. return 0;
  1335. }
  1336. static void gmc_v8_0_get_clockgating_state(void *handle, u32 *flags)
  1337. {
  1338. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1339. int data;
  1340. if (amdgpu_sriov_vf(adev))
  1341. *flags = 0;
  1342. /* AMD_CG_SUPPORT_MC_MGCG */
  1343. data = RREG32(mmMC_HUB_MISC_HUB_CG);
  1344. if (data & MC_HUB_MISC_HUB_CG__ENABLE_MASK)
  1345. *flags |= AMD_CG_SUPPORT_MC_MGCG;
  1346. /* AMD_CG_SUPPORT_MC_LS */
  1347. if (data & MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK)
  1348. *flags |= AMD_CG_SUPPORT_MC_LS;
  1349. }
  1350. static const struct amd_ip_funcs gmc_v8_0_ip_funcs = {
  1351. .name = "gmc_v8_0",
  1352. .early_init = gmc_v8_0_early_init,
  1353. .late_init = gmc_v8_0_late_init,
  1354. .sw_init = gmc_v8_0_sw_init,
  1355. .sw_fini = gmc_v8_0_sw_fini,
  1356. .hw_init = gmc_v8_0_hw_init,
  1357. .hw_fini = gmc_v8_0_hw_fini,
  1358. .suspend = gmc_v8_0_suspend,
  1359. .resume = gmc_v8_0_resume,
  1360. .is_idle = gmc_v8_0_is_idle,
  1361. .wait_for_idle = gmc_v8_0_wait_for_idle,
  1362. .check_soft_reset = gmc_v8_0_check_soft_reset,
  1363. .pre_soft_reset = gmc_v8_0_pre_soft_reset,
  1364. .soft_reset = gmc_v8_0_soft_reset,
  1365. .post_soft_reset = gmc_v8_0_post_soft_reset,
  1366. .set_clockgating_state = gmc_v8_0_set_clockgating_state,
  1367. .set_powergating_state = gmc_v8_0_set_powergating_state,
  1368. .get_clockgating_state = gmc_v8_0_get_clockgating_state,
  1369. };
  1370. static const struct amdgpu_gart_funcs gmc_v8_0_gart_funcs = {
  1371. .flush_gpu_tlb = gmc_v8_0_gart_flush_gpu_tlb,
  1372. .set_pte_pde = gmc_v8_0_gart_set_pte_pde,
  1373. .set_prt = gmc_v8_0_set_prt,
  1374. .get_vm_pte_flags = gmc_v8_0_get_vm_pte_flags,
  1375. .get_vm_pde = gmc_v8_0_get_vm_pde
  1376. };
  1377. static const struct amdgpu_irq_src_funcs gmc_v8_0_irq_funcs = {
  1378. .set = gmc_v8_0_vm_fault_interrupt_state,
  1379. .process = gmc_v8_0_process_interrupt,
  1380. };
  1381. static void gmc_v8_0_set_gart_funcs(struct amdgpu_device *adev)
  1382. {
  1383. if (adev->gart.gart_funcs == NULL)
  1384. adev->gart.gart_funcs = &gmc_v8_0_gart_funcs;
  1385. }
  1386. static void gmc_v8_0_set_irq_funcs(struct amdgpu_device *adev)
  1387. {
  1388. adev->mc.vm_fault.num_types = 1;
  1389. adev->mc.vm_fault.funcs = &gmc_v8_0_irq_funcs;
  1390. }
  1391. const struct amdgpu_ip_block_version gmc_v8_0_ip_block =
  1392. {
  1393. .type = AMD_IP_BLOCK_TYPE_GMC,
  1394. .major = 8,
  1395. .minor = 0,
  1396. .rev = 0,
  1397. .funcs = &gmc_v8_0_ip_funcs,
  1398. };
  1399. const struct amdgpu_ip_block_version gmc_v8_1_ip_block =
  1400. {
  1401. .type = AMD_IP_BLOCK_TYPE_GMC,
  1402. .major = 8,
  1403. .minor = 1,
  1404. .rev = 0,
  1405. .funcs = &gmc_v8_0_ip_funcs,
  1406. };
  1407. const struct amdgpu_ip_block_version gmc_v8_5_ip_block =
  1408. {
  1409. .type = AMD_IP_BLOCK_TYPE_GMC,
  1410. .major = 8,
  1411. .minor = 5,
  1412. .rev = 0,
  1413. .funcs = &gmc_v8_0_ip_funcs,
  1414. };