vc4_crtc.c 30 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063
  1. /*
  2. * Copyright (C) 2015 Broadcom
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. */
  8. /**
  9. * DOC: VC4 CRTC module
  10. *
  11. * In VC4, the Pixel Valve is what most closely corresponds to the
  12. * DRM's concept of a CRTC. The PV generates video timings from the
  13. * output's clock plus its configuration. It pulls scaled pixels from
  14. * the HVS at that timing, and feeds it to the encoder.
  15. *
  16. * However, the DRM CRTC also collects the configuration of all the
  17. * DRM planes attached to it. As a result, this file also manages
  18. * setup of the VC4 HVS's display elements on the CRTC.
  19. *
  20. * The 2835 has 3 different pixel valves. pv0 in the audio power
  21. * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
  22. * image domain can feed either HDMI or the SDTV controller. The
  23. * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
  24. * SDTV, etc.) according to which output type is chosen in the mux.
  25. *
  26. * For power management, the pixel valve's registers are all clocked
  27. * by the AXI clock, while the timings and FIFOs make use of the
  28. * output-specific clock. Since the encoders also directly consume
  29. * the CPRMAN clocks, and know what timings they need, they are the
  30. * ones that set the clock.
  31. */
  32. #include "drm_atomic.h"
  33. #include "drm_atomic_helper.h"
  34. #include "drm_crtc_helper.h"
  35. #include "linux/clk.h"
  36. #include "drm_fb_cma_helper.h"
  37. #include "linux/component.h"
  38. #include "linux/of_device.h"
  39. #include "vc4_drv.h"
  40. #include "vc4_regs.h"
  41. struct vc4_crtc {
  42. struct drm_crtc base;
  43. const struct vc4_crtc_data *data;
  44. void __iomem *regs;
  45. /* Timestamp at start of vblank irq - unaffected by lock delays. */
  46. ktime_t t_vblank;
  47. /* Which HVS channel we're using for our CRTC. */
  48. int channel;
  49. u8 lut_r[256];
  50. u8 lut_g[256];
  51. u8 lut_b[256];
  52. /* Size in pixels of the COB memory allocated to this CRTC. */
  53. u32 cob_size;
  54. struct drm_pending_vblank_event *event;
  55. };
  56. struct vc4_crtc_state {
  57. struct drm_crtc_state base;
  58. /* Dlist area for this CRTC configuration. */
  59. struct drm_mm_node mm;
  60. };
  61. static inline struct vc4_crtc *
  62. to_vc4_crtc(struct drm_crtc *crtc)
  63. {
  64. return (struct vc4_crtc *)crtc;
  65. }
  66. static inline struct vc4_crtc_state *
  67. to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
  68. {
  69. return (struct vc4_crtc_state *)crtc_state;
  70. }
  71. struct vc4_crtc_data {
  72. /* Which channel of the HVS this pixelvalve sources from. */
  73. int hvs_channel;
  74. enum vc4_encoder_type encoder0_type;
  75. enum vc4_encoder_type encoder1_type;
  76. };
  77. #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
  78. #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
  79. #define CRTC_REG(reg) { reg, #reg }
  80. static const struct {
  81. u32 reg;
  82. const char *name;
  83. } crtc_regs[] = {
  84. CRTC_REG(PV_CONTROL),
  85. CRTC_REG(PV_V_CONTROL),
  86. CRTC_REG(PV_VSYNCD_EVEN),
  87. CRTC_REG(PV_HORZA),
  88. CRTC_REG(PV_HORZB),
  89. CRTC_REG(PV_VERTA),
  90. CRTC_REG(PV_VERTB),
  91. CRTC_REG(PV_VERTA_EVEN),
  92. CRTC_REG(PV_VERTB_EVEN),
  93. CRTC_REG(PV_INTEN),
  94. CRTC_REG(PV_INTSTAT),
  95. CRTC_REG(PV_STAT),
  96. CRTC_REG(PV_HACT_ACT),
  97. };
  98. static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
  99. {
  100. int i;
  101. for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
  102. DRM_INFO("0x%04x (%s): 0x%08x\n",
  103. crtc_regs[i].reg, crtc_regs[i].name,
  104. CRTC_READ(crtc_regs[i].reg));
  105. }
  106. }
  107. #ifdef CONFIG_DEBUG_FS
  108. int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
  109. {
  110. struct drm_info_node *node = (struct drm_info_node *)m->private;
  111. struct drm_device *dev = node->minor->dev;
  112. int crtc_index = (uintptr_t)node->info_ent->data;
  113. struct drm_crtc *crtc;
  114. struct vc4_crtc *vc4_crtc;
  115. int i;
  116. i = 0;
  117. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  118. if (i == crtc_index)
  119. break;
  120. i++;
  121. }
  122. if (!crtc)
  123. return 0;
  124. vc4_crtc = to_vc4_crtc(crtc);
  125. for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
  126. seq_printf(m, "%s (0x%04x): 0x%08x\n",
  127. crtc_regs[i].name, crtc_regs[i].reg,
  128. CRTC_READ(crtc_regs[i].reg));
  129. }
  130. return 0;
  131. }
  132. #endif
  133. int vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
  134. unsigned int flags, int *vpos, int *hpos,
  135. ktime_t *stime, ktime_t *etime,
  136. const struct drm_display_mode *mode)
  137. {
  138. struct vc4_dev *vc4 = to_vc4_dev(dev);
  139. struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
  140. u32 val;
  141. int fifo_lines;
  142. int vblank_lines;
  143. int ret = 0;
  144. /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
  145. /* Get optional system timestamp before query. */
  146. if (stime)
  147. *stime = ktime_get();
  148. /*
  149. * Read vertical scanline which is currently composed for our
  150. * pixelvalve by the HVS, and also the scaler status.
  151. */
  152. val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
  153. /* Get optional system timestamp after query. */
  154. if (etime)
  155. *etime = ktime_get();
  156. /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
  157. /* Vertical position of hvs composed scanline. */
  158. *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
  159. *hpos = 0;
  160. if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
  161. *vpos /= 2;
  162. /* Use hpos to correct for field offset in interlaced mode. */
  163. if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
  164. *hpos += mode->crtc_htotal / 2;
  165. }
  166. /* This is the offset we need for translating hvs -> pv scanout pos. */
  167. fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
  168. if (fifo_lines > 0)
  169. ret |= DRM_SCANOUTPOS_VALID;
  170. /* HVS more than fifo_lines into frame for compositing? */
  171. if (*vpos > fifo_lines) {
  172. /*
  173. * We are in active scanout and can get some meaningful results
  174. * from HVS. The actual PV scanout can not trail behind more
  175. * than fifo_lines as that is the fifo's capacity. Assume that
  176. * in active scanout the HVS and PV work in lockstep wrt. HVS
  177. * refilling the fifo and PV consuming from the fifo, ie.
  178. * whenever the PV consumes and frees up a scanline in the
  179. * fifo, the HVS will immediately refill it, therefore
  180. * incrementing vpos. Therefore we choose HVS read position -
  181. * fifo size in scanlines as a estimate of the real scanout
  182. * position of the PV.
  183. */
  184. *vpos -= fifo_lines + 1;
  185. ret |= DRM_SCANOUTPOS_ACCURATE;
  186. return ret;
  187. }
  188. /*
  189. * Less: This happens when we are in vblank and the HVS, after getting
  190. * the VSTART restart signal from the PV, just started refilling its
  191. * fifo with new lines from the top-most lines of the new framebuffers.
  192. * The PV does not scan out in vblank, so does not remove lines from
  193. * the fifo, so the fifo will be full quickly and the HVS has to pause.
  194. * We can't get meaningful readings wrt. scanline position of the PV
  195. * and need to make things up in a approximative but consistent way.
  196. */
  197. ret |= DRM_SCANOUTPOS_IN_VBLANK;
  198. vblank_lines = mode->vtotal - mode->vdisplay;
  199. if (flags & DRM_CALLED_FROM_VBLIRQ) {
  200. /*
  201. * Assume the irq handler got called close to first
  202. * line of vblank, so PV has about a full vblank
  203. * scanlines to go, and as a base timestamp use the
  204. * one taken at entry into vblank irq handler, so it
  205. * is not affected by random delays due to lock
  206. * contention on event_lock or vblank_time lock in
  207. * the core.
  208. */
  209. *vpos = -vblank_lines;
  210. if (stime)
  211. *stime = vc4_crtc->t_vblank;
  212. if (etime)
  213. *etime = vc4_crtc->t_vblank;
  214. /*
  215. * If the HVS fifo is not yet full then we know for certain
  216. * we are at the very beginning of vblank, as the hvs just
  217. * started refilling, and the stime and etime timestamps
  218. * truly correspond to start of vblank.
  219. */
  220. if ((val & SCALER_DISPSTATX_FULL) != SCALER_DISPSTATX_FULL)
  221. ret |= DRM_SCANOUTPOS_ACCURATE;
  222. } else {
  223. /*
  224. * No clue where we are inside vblank. Return a vpos of zero,
  225. * which will cause calling code to just return the etime
  226. * timestamp uncorrected. At least this is no worse than the
  227. * standard fallback.
  228. */
  229. *vpos = 0;
  230. }
  231. return ret;
  232. }
  233. int vc4_crtc_get_vblank_timestamp(struct drm_device *dev, unsigned int crtc_id,
  234. int *max_error, struct timeval *vblank_time,
  235. unsigned flags)
  236. {
  237. struct vc4_dev *vc4 = to_vc4_dev(dev);
  238. struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
  239. struct drm_crtc *crtc = &vc4_crtc->base;
  240. struct drm_crtc_state *state = crtc->state;
  241. /* Helper routine in DRM core does all the work: */
  242. return drm_calc_vbltimestamp_from_scanoutpos(dev, crtc_id, max_error,
  243. vblank_time, flags,
  244. &state->adjusted_mode);
  245. }
  246. static void vc4_crtc_destroy(struct drm_crtc *crtc)
  247. {
  248. drm_crtc_cleanup(crtc);
  249. }
  250. static void
  251. vc4_crtc_lut_load(struct drm_crtc *crtc)
  252. {
  253. struct drm_device *dev = crtc->dev;
  254. struct vc4_dev *vc4 = to_vc4_dev(dev);
  255. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  256. u32 i;
  257. /* The LUT memory is laid out with each HVS channel in order,
  258. * each of which takes 256 writes for R, 256 for G, then 256
  259. * for B.
  260. */
  261. HVS_WRITE(SCALER_GAMADDR,
  262. SCALER_GAMADDR_AUTOINC |
  263. (vc4_crtc->channel * 3 * crtc->gamma_size));
  264. for (i = 0; i < crtc->gamma_size; i++)
  265. HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
  266. for (i = 0; i < crtc->gamma_size; i++)
  267. HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
  268. for (i = 0; i < crtc->gamma_size; i++)
  269. HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
  270. }
  271. static int
  272. vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
  273. uint32_t size)
  274. {
  275. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  276. u32 i;
  277. for (i = 0; i < size; i++) {
  278. vc4_crtc->lut_r[i] = r[i] >> 8;
  279. vc4_crtc->lut_g[i] = g[i] >> 8;
  280. vc4_crtc->lut_b[i] = b[i] >> 8;
  281. }
  282. vc4_crtc_lut_load(crtc);
  283. return 0;
  284. }
  285. static u32 vc4_get_fifo_full_level(u32 format)
  286. {
  287. static const u32 fifo_len_bytes = 64;
  288. static const u32 hvs_latency_pix = 6;
  289. switch (format) {
  290. case PV_CONTROL_FORMAT_DSIV_16:
  291. case PV_CONTROL_FORMAT_DSIC_16:
  292. return fifo_len_bytes - 2 * hvs_latency_pix;
  293. case PV_CONTROL_FORMAT_DSIV_18:
  294. return fifo_len_bytes - 14;
  295. case PV_CONTROL_FORMAT_24:
  296. case PV_CONTROL_FORMAT_DSIV_24:
  297. default:
  298. return fifo_len_bytes - 3 * hvs_latency_pix;
  299. }
  300. }
  301. /*
  302. * Returns the clock select bit for the connector attached to the
  303. * CRTC.
  304. */
  305. static int vc4_get_clock_select(struct drm_crtc *crtc)
  306. {
  307. struct drm_connector *connector;
  308. drm_for_each_connector(connector, crtc->dev) {
  309. if (connector->state->crtc == crtc) {
  310. struct drm_encoder *encoder = connector->encoder;
  311. struct vc4_encoder *vc4_encoder =
  312. to_vc4_encoder(encoder);
  313. return vc4_encoder->clock_select;
  314. }
  315. }
  316. return -1;
  317. }
  318. static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
  319. {
  320. struct drm_device *dev = crtc->dev;
  321. struct vc4_dev *vc4 = to_vc4_dev(dev);
  322. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  323. struct drm_crtc_state *state = crtc->state;
  324. struct drm_display_mode *mode = &state->adjusted_mode;
  325. bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
  326. u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
  327. u32 format = PV_CONTROL_FORMAT_24;
  328. bool debug_dump_regs = false;
  329. int clock_select = vc4_get_clock_select(crtc);
  330. if (debug_dump_regs) {
  331. DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
  332. vc4_crtc_dump_regs(vc4_crtc);
  333. }
  334. /* Reset the PV fifo. */
  335. CRTC_WRITE(PV_CONTROL, 0);
  336. CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
  337. CRTC_WRITE(PV_CONTROL, 0);
  338. CRTC_WRITE(PV_HORZA,
  339. VC4_SET_FIELD((mode->htotal -
  340. mode->hsync_end) * pixel_rep,
  341. PV_HORZA_HBP) |
  342. VC4_SET_FIELD((mode->hsync_end -
  343. mode->hsync_start) * pixel_rep,
  344. PV_HORZA_HSYNC));
  345. CRTC_WRITE(PV_HORZB,
  346. VC4_SET_FIELD((mode->hsync_start -
  347. mode->hdisplay) * pixel_rep,
  348. PV_HORZB_HFP) |
  349. VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
  350. CRTC_WRITE(PV_VERTA,
  351. VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
  352. PV_VERTA_VBP) |
  353. VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
  354. PV_VERTA_VSYNC));
  355. CRTC_WRITE(PV_VERTB,
  356. VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
  357. PV_VERTB_VFP) |
  358. VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
  359. if (interlace) {
  360. CRTC_WRITE(PV_VERTA_EVEN,
  361. VC4_SET_FIELD(mode->crtc_vtotal -
  362. mode->crtc_vsync_end - 1,
  363. PV_VERTA_VBP) |
  364. VC4_SET_FIELD(mode->crtc_vsync_end -
  365. mode->crtc_vsync_start,
  366. PV_VERTA_VSYNC));
  367. CRTC_WRITE(PV_VERTB_EVEN,
  368. VC4_SET_FIELD(mode->crtc_vsync_start -
  369. mode->crtc_vdisplay,
  370. PV_VERTB_VFP) |
  371. VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
  372. /* We set up first field even mode for HDMI. VEC's
  373. * NTSC mode would want first field odd instead, once
  374. * we support it (to do so, set ODD_FIRST and put the
  375. * delay in VSYNCD_EVEN instead).
  376. */
  377. CRTC_WRITE(PV_V_CONTROL,
  378. PV_VCONTROL_CONTINUOUS |
  379. PV_VCONTROL_INTERLACE |
  380. VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
  381. PV_VCONTROL_ODD_DELAY));
  382. CRTC_WRITE(PV_VSYNCD_EVEN, 0);
  383. } else {
  384. CRTC_WRITE(PV_V_CONTROL, PV_VCONTROL_CONTINUOUS);
  385. }
  386. CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
  387. CRTC_WRITE(PV_CONTROL,
  388. VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
  389. VC4_SET_FIELD(vc4_get_fifo_full_level(format),
  390. PV_CONTROL_FIFO_LEVEL) |
  391. VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
  392. PV_CONTROL_CLR_AT_START |
  393. PV_CONTROL_TRIGGER_UNDERFLOW |
  394. PV_CONTROL_WAIT_HSTART |
  395. VC4_SET_FIELD(clock_select, PV_CONTROL_CLK_SELECT) |
  396. PV_CONTROL_FIFO_CLR |
  397. PV_CONTROL_EN);
  398. HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
  399. SCALER_DISPBKGND_AUTOHS |
  400. SCALER_DISPBKGND_GAMMA |
  401. (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
  402. /* Reload the LUT, since the SRAMs would have been disabled if
  403. * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
  404. */
  405. vc4_crtc_lut_load(crtc);
  406. if (debug_dump_regs) {
  407. DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
  408. vc4_crtc_dump_regs(vc4_crtc);
  409. }
  410. }
  411. static void require_hvs_enabled(struct drm_device *dev)
  412. {
  413. struct vc4_dev *vc4 = to_vc4_dev(dev);
  414. WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
  415. SCALER_DISPCTRL_ENABLE);
  416. }
  417. static void vc4_crtc_disable(struct drm_crtc *crtc)
  418. {
  419. struct drm_device *dev = crtc->dev;
  420. struct vc4_dev *vc4 = to_vc4_dev(dev);
  421. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  422. u32 chan = vc4_crtc->channel;
  423. int ret;
  424. require_hvs_enabled(dev);
  425. /* Disable vblank irq handling before crtc is disabled. */
  426. drm_crtc_vblank_off(crtc);
  427. CRTC_WRITE(PV_V_CONTROL,
  428. CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
  429. ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
  430. WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
  431. if (HVS_READ(SCALER_DISPCTRLX(chan)) &
  432. SCALER_DISPCTRLX_ENABLE) {
  433. HVS_WRITE(SCALER_DISPCTRLX(chan),
  434. SCALER_DISPCTRLX_RESET);
  435. /* While the docs say that reset is self-clearing, it
  436. * seems it doesn't actually.
  437. */
  438. HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
  439. }
  440. /* Once we leave, the scaler should be disabled and its fifo empty. */
  441. WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
  442. WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
  443. SCALER_DISPSTATX_MODE) !=
  444. SCALER_DISPSTATX_MODE_DISABLED);
  445. WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
  446. (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
  447. SCALER_DISPSTATX_EMPTY);
  448. }
  449. static void vc4_crtc_enable(struct drm_crtc *crtc)
  450. {
  451. struct drm_device *dev = crtc->dev;
  452. struct vc4_dev *vc4 = to_vc4_dev(dev);
  453. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  454. struct drm_crtc_state *state = crtc->state;
  455. struct drm_display_mode *mode = &state->adjusted_mode;
  456. require_hvs_enabled(dev);
  457. /* Turn on the scaler, which will wait for vstart to start
  458. * compositing.
  459. */
  460. HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
  461. VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
  462. VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
  463. SCALER_DISPCTRLX_ENABLE);
  464. /* Turn on the pixel valve, which will emit the vstart signal. */
  465. CRTC_WRITE(PV_V_CONTROL,
  466. CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
  467. /* Enable vblank irq handling after crtc is started. */
  468. drm_crtc_vblank_on(crtc);
  469. }
  470. static bool vc4_crtc_mode_fixup(struct drm_crtc *crtc,
  471. const struct drm_display_mode *mode,
  472. struct drm_display_mode *adjusted_mode)
  473. {
  474. /* Do not allow doublescan modes from user space */
  475. if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) {
  476. DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
  477. crtc->base.id);
  478. return false;
  479. }
  480. return true;
  481. }
  482. static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
  483. struct drm_crtc_state *state)
  484. {
  485. struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
  486. struct drm_device *dev = crtc->dev;
  487. struct vc4_dev *vc4 = to_vc4_dev(dev);
  488. struct drm_plane *plane;
  489. unsigned long flags;
  490. const struct drm_plane_state *plane_state;
  491. u32 dlist_count = 0;
  492. int ret;
  493. /* The pixelvalve can only feed one encoder (and encoders are
  494. * 1:1 with connectors.)
  495. */
  496. if (hweight32(state->connector_mask) > 1)
  497. return -EINVAL;
  498. drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
  499. dlist_count += vc4_plane_dlist_size(plane_state);
  500. dlist_count++; /* Account for SCALER_CTL0_END. */
  501. spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
  502. ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
  503. dlist_count, 1, 0);
  504. spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
  505. if (ret)
  506. return ret;
  507. return 0;
  508. }
  509. static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
  510. struct drm_crtc_state *old_state)
  511. {
  512. struct drm_device *dev = crtc->dev;
  513. struct vc4_dev *vc4 = to_vc4_dev(dev);
  514. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  515. struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
  516. struct drm_plane *plane;
  517. bool debug_dump_regs = false;
  518. u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
  519. u32 __iomem *dlist_next = dlist_start;
  520. if (debug_dump_regs) {
  521. DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
  522. vc4_hvs_dump_state(dev);
  523. }
  524. /* Copy all the active planes' dlist contents to the hardware dlist. */
  525. drm_atomic_crtc_for_each_plane(plane, crtc) {
  526. dlist_next += vc4_plane_write_dlist(plane, dlist_next);
  527. }
  528. writel(SCALER_CTL0_END, dlist_next);
  529. dlist_next++;
  530. WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
  531. if (crtc->state->event) {
  532. unsigned long flags;
  533. crtc->state->event->pipe = drm_crtc_index(crtc);
  534. WARN_ON(drm_crtc_vblank_get(crtc) != 0);
  535. spin_lock_irqsave(&dev->event_lock, flags);
  536. vc4_crtc->event = crtc->state->event;
  537. crtc->state->event = NULL;
  538. HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
  539. vc4_state->mm.start);
  540. spin_unlock_irqrestore(&dev->event_lock, flags);
  541. } else {
  542. HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
  543. vc4_state->mm.start);
  544. }
  545. if (debug_dump_regs) {
  546. DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
  547. vc4_hvs_dump_state(dev);
  548. }
  549. }
  550. int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id)
  551. {
  552. struct vc4_dev *vc4 = to_vc4_dev(dev);
  553. struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
  554. CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
  555. return 0;
  556. }
  557. void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id)
  558. {
  559. struct vc4_dev *vc4 = to_vc4_dev(dev);
  560. struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
  561. CRTC_WRITE(PV_INTEN, 0);
  562. }
  563. static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
  564. {
  565. struct drm_crtc *crtc = &vc4_crtc->base;
  566. struct drm_device *dev = crtc->dev;
  567. struct vc4_dev *vc4 = to_vc4_dev(dev);
  568. struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
  569. u32 chan = vc4_crtc->channel;
  570. unsigned long flags;
  571. spin_lock_irqsave(&dev->event_lock, flags);
  572. if (vc4_crtc->event &&
  573. (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
  574. drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
  575. vc4_crtc->event = NULL;
  576. drm_crtc_vblank_put(crtc);
  577. }
  578. spin_unlock_irqrestore(&dev->event_lock, flags);
  579. }
  580. static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
  581. {
  582. struct vc4_crtc *vc4_crtc = data;
  583. u32 stat = CRTC_READ(PV_INTSTAT);
  584. irqreturn_t ret = IRQ_NONE;
  585. if (stat & PV_INT_VFP_START) {
  586. vc4_crtc->t_vblank = ktime_get();
  587. CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
  588. drm_crtc_handle_vblank(&vc4_crtc->base);
  589. vc4_crtc_handle_page_flip(vc4_crtc);
  590. ret = IRQ_HANDLED;
  591. }
  592. return ret;
  593. }
  594. struct vc4_async_flip_state {
  595. struct drm_crtc *crtc;
  596. struct drm_framebuffer *fb;
  597. struct drm_pending_vblank_event *event;
  598. struct vc4_seqno_cb cb;
  599. };
  600. /* Called when the V3D execution for the BO being flipped to is done, so that
  601. * we can actually update the plane's address to point to it.
  602. */
  603. static void
  604. vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
  605. {
  606. struct vc4_async_flip_state *flip_state =
  607. container_of(cb, struct vc4_async_flip_state, cb);
  608. struct drm_crtc *crtc = flip_state->crtc;
  609. struct drm_device *dev = crtc->dev;
  610. struct vc4_dev *vc4 = to_vc4_dev(dev);
  611. struct drm_plane *plane = crtc->primary;
  612. vc4_plane_async_set_fb(plane, flip_state->fb);
  613. if (flip_state->event) {
  614. unsigned long flags;
  615. spin_lock_irqsave(&dev->event_lock, flags);
  616. drm_crtc_send_vblank_event(crtc, flip_state->event);
  617. spin_unlock_irqrestore(&dev->event_lock, flags);
  618. }
  619. drm_crtc_vblank_put(crtc);
  620. drm_framebuffer_unreference(flip_state->fb);
  621. kfree(flip_state);
  622. up(&vc4->async_modeset);
  623. }
  624. /* Implements async (non-vblank-synced) page flips.
  625. *
  626. * The page flip ioctl needs to return immediately, so we grab the
  627. * modeset semaphore on the pipe, and queue the address update for
  628. * when V3D is done with the BO being flipped to.
  629. */
  630. static int vc4_async_page_flip(struct drm_crtc *crtc,
  631. struct drm_framebuffer *fb,
  632. struct drm_pending_vblank_event *event,
  633. uint32_t flags)
  634. {
  635. struct drm_device *dev = crtc->dev;
  636. struct vc4_dev *vc4 = to_vc4_dev(dev);
  637. struct drm_plane *plane = crtc->primary;
  638. int ret = 0;
  639. struct vc4_async_flip_state *flip_state;
  640. struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
  641. struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
  642. flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
  643. if (!flip_state)
  644. return -ENOMEM;
  645. drm_framebuffer_reference(fb);
  646. flip_state->fb = fb;
  647. flip_state->crtc = crtc;
  648. flip_state->event = event;
  649. /* Make sure all other async modesetes have landed. */
  650. ret = down_interruptible(&vc4->async_modeset);
  651. if (ret) {
  652. drm_framebuffer_unreference(fb);
  653. kfree(flip_state);
  654. return ret;
  655. }
  656. WARN_ON(drm_crtc_vblank_get(crtc) != 0);
  657. /* Immediately update the plane's legacy fb pointer, so that later
  658. * modeset prep sees the state that will be present when the semaphore
  659. * is released.
  660. */
  661. drm_atomic_set_fb_for_plane(plane->state, fb);
  662. plane->fb = fb;
  663. vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
  664. vc4_async_page_flip_complete);
  665. /* Driver takes ownership of state on successful async commit. */
  666. return 0;
  667. }
  668. static int vc4_page_flip(struct drm_crtc *crtc,
  669. struct drm_framebuffer *fb,
  670. struct drm_pending_vblank_event *event,
  671. uint32_t flags)
  672. {
  673. if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
  674. return vc4_async_page_flip(crtc, fb, event, flags);
  675. else
  676. return drm_atomic_helper_page_flip(crtc, fb, event, flags);
  677. }
  678. static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
  679. {
  680. struct vc4_crtc_state *vc4_state;
  681. vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
  682. if (!vc4_state)
  683. return NULL;
  684. __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
  685. return &vc4_state->base;
  686. }
  687. static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
  688. struct drm_crtc_state *state)
  689. {
  690. struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
  691. struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
  692. if (vc4_state->mm.allocated) {
  693. unsigned long flags;
  694. spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
  695. drm_mm_remove_node(&vc4_state->mm);
  696. spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
  697. }
  698. __drm_atomic_helper_crtc_destroy_state(state);
  699. }
  700. static const struct drm_crtc_funcs vc4_crtc_funcs = {
  701. .set_config = drm_atomic_helper_set_config,
  702. .destroy = vc4_crtc_destroy,
  703. .page_flip = vc4_page_flip,
  704. .set_property = NULL,
  705. .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
  706. .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
  707. .reset = drm_atomic_helper_crtc_reset,
  708. .atomic_duplicate_state = vc4_crtc_duplicate_state,
  709. .atomic_destroy_state = vc4_crtc_destroy_state,
  710. .gamma_set = vc4_crtc_gamma_set,
  711. };
  712. static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
  713. .mode_set_nofb = vc4_crtc_mode_set_nofb,
  714. .disable = vc4_crtc_disable,
  715. .enable = vc4_crtc_enable,
  716. .mode_fixup = vc4_crtc_mode_fixup,
  717. .atomic_check = vc4_crtc_atomic_check,
  718. .atomic_flush = vc4_crtc_atomic_flush,
  719. };
  720. static const struct vc4_crtc_data pv0_data = {
  721. .hvs_channel = 0,
  722. .encoder0_type = VC4_ENCODER_TYPE_DSI0,
  723. .encoder1_type = VC4_ENCODER_TYPE_DPI,
  724. };
  725. static const struct vc4_crtc_data pv1_data = {
  726. .hvs_channel = 2,
  727. .encoder0_type = VC4_ENCODER_TYPE_DSI1,
  728. .encoder1_type = VC4_ENCODER_TYPE_SMI,
  729. };
  730. static const struct vc4_crtc_data pv2_data = {
  731. .hvs_channel = 1,
  732. .encoder0_type = VC4_ENCODER_TYPE_VEC,
  733. .encoder1_type = VC4_ENCODER_TYPE_HDMI,
  734. };
  735. static const struct of_device_id vc4_crtc_dt_match[] = {
  736. { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
  737. { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
  738. { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
  739. {}
  740. };
  741. static void vc4_set_crtc_possible_masks(struct drm_device *drm,
  742. struct drm_crtc *crtc)
  743. {
  744. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  745. struct drm_encoder *encoder;
  746. drm_for_each_encoder(encoder, drm) {
  747. struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
  748. if (vc4_encoder->type == vc4_crtc->data->encoder0_type) {
  749. vc4_encoder->clock_select = 0;
  750. encoder->possible_crtcs |= drm_crtc_mask(crtc);
  751. } else if (vc4_encoder->type == vc4_crtc->data->encoder1_type) {
  752. vc4_encoder->clock_select = 1;
  753. encoder->possible_crtcs |= drm_crtc_mask(crtc);
  754. }
  755. }
  756. }
  757. static void
  758. vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
  759. {
  760. struct drm_device *drm = vc4_crtc->base.dev;
  761. struct vc4_dev *vc4 = to_vc4_dev(drm);
  762. u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
  763. /* Top/base are supposed to be 4-pixel aligned, but the
  764. * Raspberry Pi firmware fills the low bits (which are
  765. * presumably ignored).
  766. */
  767. u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
  768. u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
  769. vc4_crtc->cob_size = top - base + 4;
  770. }
  771. static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
  772. {
  773. struct platform_device *pdev = to_platform_device(dev);
  774. struct drm_device *drm = dev_get_drvdata(master);
  775. struct vc4_dev *vc4 = to_vc4_dev(drm);
  776. struct vc4_crtc *vc4_crtc;
  777. struct drm_crtc *crtc;
  778. struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
  779. const struct of_device_id *match;
  780. int ret, i;
  781. vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
  782. if (!vc4_crtc)
  783. return -ENOMEM;
  784. crtc = &vc4_crtc->base;
  785. match = of_match_device(vc4_crtc_dt_match, dev);
  786. if (!match)
  787. return -ENODEV;
  788. vc4_crtc->data = match->data;
  789. vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
  790. if (IS_ERR(vc4_crtc->regs))
  791. return PTR_ERR(vc4_crtc->regs);
  792. /* For now, we create just the primary and the legacy cursor
  793. * planes. We should be able to stack more planes on easily,
  794. * but to do that we would need to compute the bandwidth
  795. * requirement of the plane configuration, and reject ones
  796. * that will take too much.
  797. */
  798. primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
  799. if (IS_ERR(primary_plane)) {
  800. dev_err(dev, "failed to construct primary plane\n");
  801. ret = PTR_ERR(primary_plane);
  802. goto err;
  803. }
  804. drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
  805. &vc4_crtc_funcs, NULL);
  806. drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
  807. primary_plane->crtc = crtc;
  808. vc4->crtc[drm_crtc_index(crtc)] = vc4_crtc;
  809. vc4_crtc->channel = vc4_crtc->data->hvs_channel;
  810. drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
  811. /* Set up some arbitrary number of planes. We're not limited
  812. * by a set number of physical registers, just the space in
  813. * the HVS (16k) and how small an plane can be (28 bytes).
  814. * However, each plane we set up takes up some memory, and
  815. * increases the cost of looping over planes, which atomic
  816. * modesetting does quite a bit. As a result, we pick a
  817. * modest number of planes to expose, that should hopefully
  818. * still cover any sane usecase.
  819. */
  820. for (i = 0; i < 8; i++) {
  821. struct drm_plane *plane =
  822. vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
  823. if (IS_ERR(plane))
  824. continue;
  825. plane->possible_crtcs = 1 << drm_crtc_index(crtc);
  826. }
  827. /* Set up the legacy cursor after overlay initialization,
  828. * since we overlay planes on the CRTC in the order they were
  829. * initialized.
  830. */
  831. cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
  832. if (!IS_ERR(cursor_plane)) {
  833. cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
  834. cursor_plane->crtc = crtc;
  835. crtc->cursor = cursor_plane;
  836. }
  837. vc4_crtc_get_cob_allocation(vc4_crtc);
  838. CRTC_WRITE(PV_INTEN, 0);
  839. CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
  840. ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
  841. vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
  842. if (ret)
  843. goto err_destroy_planes;
  844. vc4_set_crtc_possible_masks(drm, crtc);
  845. for (i = 0; i < crtc->gamma_size; i++) {
  846. vc4_crtc->lut_r[i] = i;
  847. vc4_crtc->lut_g[i] = i;
  848. vc4_crtc->lut_b[i] = i;
  849. }
  850. platform_set_drvdata(pdev, vc4_crtc);
  851. return 0;
  852. err_destroy_planes:
  853. list_for_each_entry_safe(destroy_plane, temp,
  854. &drm->mode_config.plane_list, head) {
  855. if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
  856. destroy_plane->funcs->destroy(destroy_plane);
  857. }
  858. err:
  859. return ret;
  860. }
  861. static void vc4_crtc_unbind(struct device *dev, struct device *master,
  862. void *data)
  863. {
  864. struct platform_device *pdev = to_platform_device(dev);
  865. struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
  866. vc4_crtc_destroy(&vc4_crtc->base);
  867. CRTC_WRITE(PV_INTEN, 0);
  868. platform_set_drvdata(pdev, NULL);
  869. }
  870. static const struct component_ops vc4_crtc_ops = {
  871. .bind = vc4_crtc_bind,
  872. .unbind = vc4_crtc_unbind,
  873. };
  874. static int vc4_crtc_dev_probe(struct platform_device *pdev)
  875. {
  876. return component_add(&pdev->dev, &vc4_crtc_ops);
  877. }
  878. static int vc4_crtc_dev_remove(struct platform_device *pdev)
  879. {
  880. component_del(&pdev->dev, &vc4_crtc_ops);
  881. return 0;
  882. }
  883. struct platform_driver vc4_crtc_driver = {
  884. .probe = vc4_crtc_dev_probe,
  885. .remove = vc4_crtc_dev_remove,
  886. .driver = {
  887. .name = "vc4_crtc",
  888. .of_match_table = vc4_crtc_dt_match,
  889. },
  890. };