intel_pm.c 191 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include <linux/cpufreq.h>
  28. #include "i915_drv.h"
  29. #include "intel_drv.h"
  30. #include "../../../platform/x86/intel_ips.h"
  31. #include <linux/module.h>
  32. /**
  33. * RC6 is a special power stage which allows the GPU to enter an very
  34. * low-voltage mode when idle, using down to 0V while at this stage. This
  35. * stage is entered automatically when the GPU is idle when RC6 support is
  36. * enabled, and as soon as new workload arises GPU wakes up automatically as well.
  37. *
  38. * There are different RC6 modes available in Intel GPU, which differentiate
  39. * among each other with the latency required to enter and leave RC6 and
  40. * voltage consumed by the GPU in different states.
  41. *
  42. * The combination of the following flags define which states GPU is allowed
  43. * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
  44. * RC6pp is deepest RC6. Their support by hardware varies according to the
  45. * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
  46. * which brings the most power savings; deeper states save more power, but
  47. * require higher latency to switch to and wake up.
  48. */
  49. #define INTEL_RC6_ENABLE (1<<0)
  50. #define INTEL_RC6p_ENABLE (1<<1)
  51. #define INTEL_RC6pp_ENABLE (1<<2)
  52. static void gen9_init_clock_gating(struct drm_device *dev)
  53. {
  54. struct drm_i915_private *dev_priv = dev->dev_private;
  55. /* WaEnableLbsSlaRetryTimerDecrement:skl */
  56. I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
  57. GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
  58. }
  59. static void skl_init_clock_gating(struct drm_device *dev)
  60. {
  61. struct drm_i915_private *dev_priv = dev->dev_private;
  62. gen9_init_clock_gating(dev);
  63. if (INTEL_REVID(dev) <= SKL_REVID_B0) {
  64. /*
  65. * WaDisableSDEUnitClockGating:skl
  66. * WaSetGAPSunitClckGateDisable:skl
  67. */
  68. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  69. GEN8_GAPSUNIT_CLOCK_GATE_DISABLE |
  70. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  71. /* WaDisableVFUnitClockGating:skl */
  72. I915_WRITE(GEN6_UCGCTL2, I915_READ(GEN6_UCGCTL2) |
  73. GEN6_VFUNIT_CLOCK_GATE_DISABLE);
  74. }
  75. if (INTEL_REVID(dev) <= SKL_REVID_D0) {
  76. /* WaDisableHDCInvalidation:skl */
  77. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  78. BDW_DISABLE_HDC_INVALIDATION);
  79. /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
  80. I915_WRITE(FF_SLICE_CS_CHICKEN2,
  81. I915_READ(FF_SLICE_CS_CHICKEN2) |
  82. GEN9_TSG_BARRIER_ACK_DISABLE);
  83. }
  84. if (INTEL_REVID(dev) <= SKL_REVID_E0)
  85. /* WaDisableLSQCROPERFforOCL:skl */
  86. I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
  87. GEN8_LQSC_RO_PERF_DIS);
  88. }
  89. static void i915_pineview_get_mem_freq(struct drm_device *dev)
  90. {
  91. struct drm_i915_private *dev_priv = dev->dev_private;
  92. u32 tmp;
  93. tmp = I915_READ(CLKCFG);
  94. switch (tmp & CLKCFG_FSB_MASK) {
  95. case CLKCFG_FSB_533:
  96. dev_priv->fsb_freq = 533; /* 133*4 */
  97. break;
  98. case CLKCFG_FSB_800:
  99. dev_priv->fsb_freq = 800; /* 200*4 */
  100. break;
  101. case CLKCFG_FSB_667:
  102. dev_priv->fsb_freq = 667; /* 167*4 */
  103. break;
  104. case CLKCFG_FSB_400:
  105. dev_priv->fsb_freq = 400; /* 100*4 */
  106. break;
  107. }
  108. switch (tmp & CLKCFG_MEM_MASK) {
  109. case CLKCFG_MEM_533:
  110. dev_priv->mem_freq = 533;
  111. break;
  112. case CLKCFG_MEM_667:
  113. dev_priv->mem_freq = 667;
  114. break;
  115. case CLKCFG_MEM_800:
  116. dev_priv->mem_freq = 800;
  117. break;
  118. }
  119. /* detect pineview DDR3 setting */
  120. tmp = I915_READ(CSHRDDR3CTL);
  121. dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
  122. }
  123. static void i915_ironlake_get_mem_freq(struct drm_device *dev)
  124. {
  125. struct drm_i915_private *dev_priv = dev->dev_private;
  126. u16 ddrpll, csipll;
  127. ddrpll = I915_READ16(DDRMPLL1);
  128. csipll = I915_READ16(CSIPLL0);
  129. switch (ddrpll & 0xff) {
  130. case 0xc:
  131. dev_priv->mem_freq = 800;
  132. break;
  133. case 0x10:
  134. dev_priv->mem_freq = 1066;
  135. break;
  136. case 0x14:
  137. dev_priv->mem_freq = 1333;
  138. break;
  139. case 0x18:
  140. dev_priv->mem_freq = 1600;
  141. break;
  142. default:
  143. DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
  144. ddrpll & 0xff);
  145. dev_priv->mem_freq = 0;
  146. break;
  147. }
  148. dev_priv->ips.r_t = dev_priv->mem_freq;
  149. switch (csipll & 0x3ff) {
  150. case 0x00c:
  151. dev_priv->fsb_freq = 3200;
  152. break;
  153. case 0x00e:
  154. dev_priv->fsb_freq = 3733;
  155. break;
  156. case 0x010:
  157. dev_priv->fsb_freq = 4266;
  158. break;
  159. case 0x012:
  160. dev_priv->fsb_freq = 4800;
  161. break;
  162. case 0x014:
  163. dev_priv->fsb_freq = 5333;
  164. break;
  165. case 0x016:
  166. dev_priv->fsb_freq = 5866;
  167. break;
  168. case 0x018:
  169. dev_priv->fsb_freq = 6400;
  170. break;
  171. default:
  172. DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
  173. csipll & 0x3ff);
  174. dev_priv->fsb_freq = 0;
  175. break;
  176. }
  177. if (dev_priv->fsb_freq == 3200) {
  178. dev_priv->ips.c_m = 0;
  179. } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
  180. dev_priv->ips.c_m = 1;
  181. } else {
  182. dev_priv->ips.c_m = 2;
  183. }
  184. }
  185. static const struct cxsr_latency cxsr_latency_table[] = {
  186. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  187. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  188. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  189. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  190. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  191. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  192. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  193. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  194. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  195. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  196. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  197. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  198. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  199. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  200. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  201. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  202. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  203. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  204. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  205. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  206. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  207. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  208. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  209. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  210. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  211. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  212. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  213. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  214. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  215. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  216. };
  217. static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
  218. int is_ddr3,
  219. int fsb,
  220. int mem)
  221. {
  222. const struct cxsr_latency *latency;
  223. int i;
  224. if (fsb == 0 || mem == 0)
  225. return NULL;
  226. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  227. latency = &cxsr_latency_table[i];
  228. if (is_desktop == latency->is_desktop &&
  229. is_ddr3 == latency->is_ddr3 &&
  230. fsb == latency->fsb_freq && mem == latency->mem_freq)
  231. return latency;
  232. }
  233. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  234. return NULL;
  235. }
  236. static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
  237. {
  238. u32 val;
  239. mutex_lock(&dev_priv->rps.hw_lock);
  240. val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
  241. if (enable)
  242. val &= ~FORCE_DDR_HIGH_FREQ;
  243. else
  244. val |= FORCE_DDR_HIGH_FREQ;
  245. val &= ~FORCE_DDR_LOW_FREQ;
  246. val |= FORCE_DDR_FREQ_REQ_ACK;
  247. vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
  248. if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
  249. FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
  250. DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
  251. mutex_unlock(&dev_priv->rps.hw_lock);
  252. }
  253. static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
  254. {
  255. u32 val;
  256. mutex_lock(&dev_priv->rps.hw_lock);
  257. val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
  258. if (enable)
  259. val |= DSP_MAXFIFO_PM5_ENABLE;
  260. else
  261. val &= ~DSP_MAXFIFO_PM5_ENABLE;
  262. vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
  263. mutex_unlock(&dev_priv->rps.hw_lock);
  264. }
  265. #define FW_WM(value, plane) \
  266. (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
  267. void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
  268. {
  269. struct drm_device *dev = dev_priv->dev;
  270. u32 val;
  271. if (IS_VALLEYVIEW(dev)) {
  272. I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
  273. if (IS_CHERRYVIEW(dev))
  274. chv_set_memory_pm5(dev_priv, enable);
  275. } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
  276. I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
  277. } else if (IS_PINEVIEW(dev)) {
  278. val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
  279. val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
  280. I915_WRITE(DSPFW3, val);
  281. } else if (IS_I945G(dev) || IS_I945GM(dev)) {
  282. val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
  283. _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
  284. I915_WRITE(FW_BLC_SELF, val);
  285. } else if (IS_I915GM(dev)) {
  286. val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
  287. _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
  288. I915_WRITE(INSTPM, val);
  289. } else {
  290. return;
  291. }
  292. DRM_DEBUG_KMS("memory self-refresh is %s\n",
  293. enable ? "enabled" : "disabled");
  294. }
  295. /*
  296. * Latency for FIFO fetches is dependent on several factors:
  297. * - memory configuration (speed, channels)
  298. * - chipset
  299. * - current MCH state
  300. * It can be fairly high in some situations, so here we assume a fairly
  301. * pessimal value. It's a tradeoff between extra memory fetches (if we
  302. * set this value too high, the FIFO will fetch frequently to stay full)
  303. * and power consumption (set it too low to save power and we might see
  304. * FIFO underruns and display "flicker").
  305. *
  306. * A value of 5us seems to be a good balance; safe for very low end
  307. * platforms but not overly aggressive on lower latency configs.
  308. */
  309. static const int pessimal_latency_ns = 5000;
  310. #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
  311. ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
  312. static int vlv_get_fifo_size(struct drm_device *dev,
  313. enum pipe pipe, int plane)
  314. {
  315. struct drm_i915_private *dev_priv = dev->dev_private;
  316. int sprite0_start, sprite1_start, size;
  317. switch (pipe) {
  318. uint32_t dsparb, dsparb2, dsparb3;
  319. case PIPE_A:
  320. dsparb = I915_READ(DSPARB);
  321. dsparb2 = I915_READ(DSPARB2);
  322. sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
  323. sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
  324. break;
  325. case PIPE_B:
  326. dsparb = I915_READ(DSPARB);
  327. dsparb2 = I915_READ(DSPARB2);
  328. sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
  329. sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
  330. break;
  331. case PIPE_C:
  332. dsparb2 = I915_READ(DSPARB2);
  333. dsparb3 = I915_READ(DSPARB3);
  334. sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
  335. sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
  336. break;
  337. default:
  338. return 0;
  339. }
  340. switch (plane) {
  341. case 0:
  342. size = sprite0_start;
  343. break;
  344. case 1:
  345. size = sprite1_start - sprite0_start;
  346. break;
  347. case 2:
  348. size = 512 - 1 - sprite1_start;
  349. break;
  350. default:
  351. return 0;
  352. }
  353. DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
  354. pipe_name(pipe), plane == 0 ? "primary" : "sprite",
  355. plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
  356. size);
  357. return size;
  358. }
  359. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  360. {
  361. struct drm_i915_private *dev_priv = dev->dev_private;
  362. uint32_t dsparb = I915_READ(DSPARB);
  363. int size;
  364. size = dsparb & 0x7f;
  365. if (plane)
  366. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  367. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  368. plane ? "B" : "A", size);
  369. return size;
  370. }
  371. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  372. {
  373. struct drm_i915_private *dev_priv = dev->dev_private;
  374. uint32_t dsparb = I915_READ(DSPARB);
  375. int size;
  376. size = dsparb & 0x1ff;
  377. if (plane)
  378. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  379. size >>= 1; /* Convert to cachelines */
  380. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  381. plane ? "B" : "A", size);
  382. return size;
  383. }
  384. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  385. {
  386. struct drm_i915_private *dev_priv = dev->dev_private;
  387. uint32_t dsparb = I915_READ(DSPARB);
  388. int size;
  389. size = dsparb & 0x7f;
  390. size >>= 2; /* Convert to cachelines */
  391. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  392. plane ? "B" : "A",
  393. size);
  394. return size;
  395. }
  396. /* Pineview has different values for various configs */
  397. static const struct intel_watermark_params pineview_display_wm = {
  398. .fifo_size = PINEVIEW_DISPLAY_FIFO,
  399. .max_wm = PINEVIEW_MAX_WM,
  400. .default_wm = PINEVIEW_DFT_WM,
  401. .guard_size = PINEVIEW_GUARD_WM,
  402. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  403. };
  404. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  405. .fifo_size = PINEVIEW_DISPLAY_FIFO,
  406. .max_wm = PINEVIEW_MAX_WM,
  407. .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
  408. .guard_size = PINEVIEW_GUARD_WM,
  409. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  410. };
  411. static const struct intel_watermark_params pineview_cursor_wm = {
  412. .fifo_size = PINEVIEW_CURSOR_FIFO,
  413. .max_wm = PINEVIEW_CURSOR_MAX_WM,
  414. .default_wm = PINEVIEW_CURSOR_DFT_WM,
  415. .guard_size = PINEVIEW_CURSOR_GUARD_WM,
  416. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  417. };
  418. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  419. .fifo_size = PINEVIEW_CURSOR_FIFO,
  420. .max_wm = PINEVIEW_CURSOR_MAX_WM,
  421. .default_wm = PINEVIEW_CURSOR_DFT_WM,
  422. .guard_size = PINEVIEW_CURSOR_GUARD_WM,
  423. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  424. };
  425. static const struct intel_watermark_params g4x_wm_info = {
  426. .fifo_size = G4X_FIFO_SIZE,
  427. .max_wm = G4X_MAX_WM,
  428. .default_wm = G4X_MAX_WM,
  429. .guard_size = 2,
  430. .cacheline_size = G4X_FIFO_LINE_SIZE,
  431. };
  432. static const struct intel_watermark_params g4x_cursor_wm_info = {
  433. .fifo_size = I965_CURSOR_FIFO,
  434. .max_wm = I965_CURSOR_MAX_WM,
  435. .default_wm = I965_CURSOR_DFT_WM,
  436. .guard_size = 2,
  437. .cacheline_size = G4X_FIFO_LINE_SIZE,
  438. };
  439. static const struct intel_watermark_params valleyview_wm_info = {
  440. .fifo_size = VALLEYVIEW_FIFO_SIZE,
  441. .max_wm = VALLEYVIEW_MAX_WM,
  442. .default_wm = VALLEYVIEW_MAX_WM,
  443. .guard_size = 2,
  444. .cacheline_size = G4X_FIFO_LINE_SIZE,
  445. };
  446. static const struct intel_watermark_params valleyview_cursor_wm_info = {
  447. .fifo_size = I965_CURSOR_FIFO,
  448. .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
  449. .default_wm = I965_CURSOR_DFT_WM,
  450. .guard_size = 2,
  451. .cacheline_size = G4X_FIFO_LINE_SIZE,
  452. };
  453. static const struct intel_watermark_params i965_cursor_wm_info = {
  454. .fifo_size = I965_CURSOR_FIFO,
  455. .max_wm = I965_CURSOR_MAX_WM,
  456. .default_wm = I965_CURSOR_DFT_WM,
  457. .guard_size = 2,
  458. .cacheline_size = I915_FIFO_LINE_SIZE,
  459. };
  460. static const struct intel_watermark_params i945_wm_info = {
  461. .fifo_size = I945_FIFO_SIZE,
  462. .max_wm = I915_MAX_WM,
  463. .default_wm = 1,
  464. .guard_size = 2,
  465. .cacheline_size = I915_FIFO_LINE_SIZE,
  466. };
  467. static const struct intel_watermark_params i915_wm_info = {
  468. .fifo_size = I915_FIFO_SIZE,
  469. .max_wm = I915_MAX_WM,
  470. .default_wm = 1,
  471. .guard_size = 2,
  472. .cacheline_size = I915_FIFO_LINE_SIZE,
  473. };
  474. static const struct intel_watermark_params i830_a_wm_info = {
  475. .fifo_size = I855GM_FIFO_SIZE,
  476. .max_wm = I915_MAX_WM,
  477. .default_wm = 1,
  478. .guard_size = 2,
  479. .cacheline_size = I830_FIFO_LINE_SIZE,
  480. };
  481. static const struct intel_watermark_params i830_bc_wm_info = {
  482. .fifo_size = I855GM_FIFO_SIZE,
  483. .max_wm = I915_MAX_WM/2,
  484. .default_wm = 1,
  485. .guard_size = 2,
  486. .cacheline_size = I830_FIFO_LINE_SIZE,
  487. };
  488. static const struct intel_watermark_params i845_wm_info = {
  489. .fifo_size = I830_FIFO_SIZE,
  490. .max_wm = I915_MAX_WM,
  491. .default_wm = 1,
  492. .guard_size = 2,
  493. .cacheline_size = I830_FIFO_LINE_SIZE,
  494. };
  495. /**
  496. * intel_calculate_wm - calculate watermark level
  497. * @clock_in_khz: pixel clock
  498. * @wm: chip FIFO params
  499. * @pixel_size: display pixel size
  500. * @latency_ns: memory latency for the platform
  501. *
  502. * Calculate the watermark level (the level at which the display plane will
  503. * start fetching from memory again). Each chip has a different display
  504. * FIFO size and allocation, so the caller needs to figure that out and pass
  505. * in the correct intel_watermark_params structure.
  506. *
  507. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  508. * on the pixel size. When it reaches the watermark level, it'll start
  509. * fetching FIFO line sized based chunks from memory until the FIFO fills
  510. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  511. * will occur, and a display engine hang could result.
  512. */
  513. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  514. const struct intel_watermark_params *wm,
  515. int fifo_size,
  516. int pixel_size,
  517. unsigned long latency_ns)
  518. {
  519. long entries_required, wm_size;
  520. /*
  521. * Note: we need to make sure we don't overflow for various clock &
  522. * latency values.
  523. * clocks go from a few thousand to several hundred thousand.
  524. * latency is usually a few thousand
  525. */
  526. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  527. 1000;
  528. entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
  529. DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
  530. wm_size = fifo_size - (entries_required + wm->guard_size);
  531. DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
  532. /* Don't promote wm_size to unsigned... */
  533. if (wm_size > (long)wm->max_wm)
  534. wm_size = wm->max_wm;
  535. if (wm_size <= 0)
  536. wm_size = wm->default_wm;
  537. /*
  538. * Bspec seems to indicate that the value shouldn't be lower than
  539. * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
  540. * Lets go for 8 which is the burst size since certain platforms
  541. * already use a hardcoded 8 (which is what the spec says should be
  542. * done).
  543. */
  544. if (wm_size <= 8)
  545. wm_size = 8;
  546. return wm_size;
  547. }
  548. static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
  549. {
  550. struct drm_crtc *crtc, *enabled = NULL;
  551. for_each_crtc(dev, crtc) {
  552. if (intel_crtc_active(crtc)) {
  553. if (enabled)
  554. return NULL;
  555. enabled = crtc;
  556. }
  557. }
  558. return enabled;
  559. }
  560. static void pineview_update_wm(struct drm_crtc *unused_crtc)
  561. {
  562. struct drm_device *dev = unused_crtc->dev;
  563. struct drm_i915_private *dev_priv = dev->dev_private;
  564. struct drm_crtc *crtc;
  565. const struct cxsr_latency *latency;
  566. u32 reg;
  567. unsigned long wm;
  568. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  569. dev_priv->fsb_freq, dev_priv->mem_freq);
  570. if (!latency) {
  571. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  572. intel_set_memory_cxsr(dev_priv, false);
  573. return;
  574. }
  575. crtc = single_enabled_crtc(dev);
  576. if (crtc) {
  577. const struct drm_display_mode *adjusted_mode;
  578. int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
  579. int clock;
  580. adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  581. clock = adjusted_mode->crtc_clock;
  582. /* Display SR */
  583. wm = intel_calculate_wm(clock, &pineview_display_wm,
  584. pineview_display_wm.fifo_size,
  585. pixel_size, latency->display_sr);
  586. reg = I915_READ(DSPFW1);
  587. reg &= ~DSPFW_SR_MASK;
  588. reg |= FW_WM(wm, SR);
  589. I915_WRITE(DSPFW1, reg);
  590. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  591. /* cursor SR */
  592. wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  593. pineview_display_wm.fifo_size,
  594. pixel_size, latency->cursor_sr);
  595. reg = I915_READ(DSPFW3);
  596. reg &= ~DSPFW_CURSOR_SR_MASK;
  597. reg |= FW_WM(wm, CURSOR_SR);
  598. I915_WRITE(DSPFW3, reg);
  599. /* Display HPLL off SR */
  600. wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  601. pineview_display_hplloff_wm.fifo_size,
  602. pixel_size, latency->display_hpll_disable);
  603. reg = I915_READ(DSPFW3);
  604. reg &= ~DSPFW_HPLL_SR_MASK;
  605. reg |= FW_WM(wm, HPLL_SR);
  606. I915_WRITE(DSPFW3, reg);
  607. /* cursor HPLL off SR */
  608. wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  609. pineview_display_hplloff_wm.fifo_size,
  610. pixel_size, latency->cursor_hpll_disable);
  611. reg = I915_READ(DSPFW3);
  612. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  613. reg |= FW_WM(wm, HPLL_CURSOR);
  614. I915_WRITE(DSPFW3, reg);
  615. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  616. intel_set_memory_cxsr(dev_priv, true);
  617. } else {
  618. intel_set_memory_cxsr(dev_priv, false);
  619. }
  620. }
  621. static bool g4x_compute_wm0(struct drm_device *dev,
  622. int plane,
  623. const struct intel_watermark_params *display,
  624. int display_latency_ns,
  625. const struct intel_watermark_params *cursor,
  626. int cursor_latency_ns,
  627. int *plane_wm,
  628. int *cursor_wm)
  629. {
  630. struct drm_crtc *crtc;
  631. const struct drm_display_mode *adjusted_mode;
  632. int htotal, hdisplay, clock, pixel_size;
  633. int line_time_us, line_count;
  634. int entries, tlb_miss;
  635. crtc = intel_get_crtc_for_plane(dev, plane);
  636. if (!intel_crtc_active(crtc)) {
  637. *cursor_wm = cursor->guard_size;
  638. *plane_wm = display->guard_size;
  639. return false;
  640. }
  641. adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  642. clock = adjusted_mode->crtc_clock;
  643. htotal = adjusted_mode->crtc_htotal;
  644. hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
  645. pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
  646. /* Use the small buffer method to calculate plane watermark */
  647. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  648. tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
  649. if (tlb_miss > 0)
  650. entries += tlb_miss;
  651. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  652. *plane_wm = entries + display->guard_size;
  653. if (*plane_wm > (int)display->max_wm)
  654. *plane_wm = display->max_wm;
  655. /* Use the large buffer method to calculate cursor watermark */
  656. line_time_us = max(htotal * 1000 / clock, 1);
  657. line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
  658. entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
  659. tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
  660. if (tlb_miss > 0)
  661. entries += tlb_miss;
  662. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  663. *cursor_wm = entries + cursor->guard_size;
  664. if (*cursor_wm > (int)cursor->max_wm)
  665. *cursor_wm = (int)cursor->max_wm;
  666. return true;
  667. }
  668. /*
  669. * Check the wm result.
  670. *
  671. * If any calculated watermark values is larger than the maximum value that
  672. * can be programmed into the associated watermark register, that watermark
  673. * must be disabled.
  674. */
  675. static bool g4x_check_srwm(struct drm_device *dev,
  676. int display_wm, int cursor_wm,
  677. const struct intel_watermark_params *display,
  678. const struct intel_watermark_params *cursor)
  679. {
  680. DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
  681. display_wm, cursor_wm);
  682. if (display_wm > display->max_wm) {
  683. DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
  684. display_wm, display->max_wm);
  685. return false;
  686. }
  687. if (cursor_wm > cursor->max_wm) {
  688. DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
  689. cursor_wm, cursor->max_wm);
  690. return false;
  691. }
  692. if (!(display_wm || cursor_wm)) {
  693. DRM_DEBUG_KMS("SR latency is 0, disabling\n");
  694. return false;
  695. }
  696. return true;
  697. }
  698. static bool g4x_compute_srwm(struct drm_device *dev,
  699. int plane,
  700. int latency_ns,
  701. const struct intel_watermark_params *display,
  702. const struct intel_watermark_params *cursor,
  703. int *display_wm, int *cursor_wm)
  704. {
  705. struct drm_crtc *crtc;
  706. const struct drm_display_mode *adjusted_mode;
  707. int hdisplay, htotal, pixel_size, clock;
  708. unsigned long line_time_us;
  709. int line_count, line_size;
  710. int small, large;
  711. int entries;
  712. if (!latency_ns) {
  713. *display_wm = *cursor_wm = 0;
  714. return false;
  715. }
  716. crtc = intel_get_crtc_for_plane(dev, plane);
  717. adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  718. clock = adjusted_mode->crtc_clock;
  719. htotal = adjusted_mode->crtc_htotal;
  720. hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
  721. pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
  722. line_time_us = max(htotal * 1000 / clock, 1);
  723. line_count = (latency_ns / line_time_us + 1000) / 1000;
  724. line_size = hdisplay * pixel_size;
  725. /* Use the minimum of the small and large buffer method for primary */
  726. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  727. large = line_count * line_size;
  728. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  729. *display_wm = entries + display->guard_size;
  730. /* calculate the self-refresh watermark for display cursor */
  731. entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
  732. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  733. *cursor_wm = entries + cursor->guard_size;
  734. return g4x_check_srwm(dev,
  735. *display_wm, *cursor_wm,
  736. display, cursor);
  737. }
  738. #define FW_WM_VLV(value, plane) \
  739. (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
  740. static void vlv_write_wm_values(struct intel_crtc *crtc,
  741. const struct vlv_wm_values *wm)
  742. {
  743. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  744. enum pipe pipe = crtc->pipe;
  745. I915_WRITE(VLV_DDL(pipe),
  746. (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
  747. (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
  748. (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
  749. (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
  750. I915_WRITE(DSPFW1,
  751. FW_WM(wm->sr.plane, SR) |
  752. FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
  753. FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
  754. FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
  755. I915_WRITE(DSPFW2,
  756. FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
  757. FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
  758. FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
  759. I915_WRITE(DSPFW3,
  760. FW_WM(wm->sr.cursor, CURSOR_SR));
  761. if (IS_CHERRYVIEW(dev_priv)) {
  762. I915_WRITE(DSPFW7_CHV,
  763. FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
  764. FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
  765. I915_WRITE(DSPFW8_CHV,
  766. FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
  767. FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
  768. I915_WRITE(DSPFW9_CHV,
  769. FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
  770. FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
  771. I915_WRITE(DSPHOWM,
  772. FW_WM(wm->sr.plane >> 9, SR_HI) |
  773. FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
  774. FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
  775. FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
  776. FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
  777. FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
  778. FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
  779. FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
  780. FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
  781. FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
  782. } else {
  783. I915_WRITE(DSPFW7,
  784. FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
  785. FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
  786. I915_WRITE(DSPHOWM,
  787. FW_WM(wm->sr.plane >> 9, SR_HI) |
  788. FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
  789. FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
  790. FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
  791. FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
  792. FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
  793. FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
  794. }
  795. POSTING_READ(DSPFW1);
  796. dev_priv->wm.vlv = *wm;
  797. }
  798. #undef FW_WM_VLV
  799. static uint8_t vlv_compute_drain_latency(struct drm_crtc *crtc,
  800. struct drm_plane *plane)
  801. {
  802. struct drm_device *dev = crtc->dev;
  803. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  804. int entries, prec_mult, drain_latency, pixel_size;
  805. int clock = intel_crtc->config->base.adjusted_mode.crtc_clock;
  806. const int high_precision = IS_CHERRYVIEW(dev) ? 16 : 64;
  807. /*
  808. * FIXME the plane might have an fb
  809. * but be invisible (eg. due to clipping)
  810. */
  811. if (!intel_crtc->active || !plane->state->fb)
  812. return 0;
  813. if (WARN(clock == 0, "Pixel clock is zero!\n"))
  814. return 0;
  815. pixel_size = drm_format_plane_cpp(plane->state->fb->pixel_format, 0);
  816. if (WARN(pixel_size == 0, "Pixel size is zero!\n"))
  817. return 0;
  818. entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
  819. prec_mult = high_precision;
  820. drain_latency = 64 * prec_mult * 4 / entries;
  821. if (drain_latency > DRAIN_LATENCY_MASK) {
  822. prec_mult /= 2;
  823. drain_latency = 64 * prec_mult * 4 / entries;
  824. }
  825. if (drain_latency > DRAIN_LATENCY_MASK)
  826. drain_latency = DRAIN_LATENCY_MASK;
  827. return drain_latency | (prec_mult == high_precision ?
  828. DDL_PRECISION_HIGH : DDL_PRECISION_LOW);
  829. }
  830. static int vlv_compute_wm(struct intel_crtc *crtc,
  831. struct intel_plane *plane,
  832. int fifo_size)
  833. {
  834. int clock, entries, pixel_size;
  835. /*
  836. * FIXME the plane might have an fb
  837. * but be invisible (eg. due to clipping)
  838. */
  839. if (!crtc->active || !plane->base.state->fb)
  840. return 0;
  841. pixel_size = drm_format_plane_cpp(plane->base.state->fb->pixel_format, 0);
  842. clock = crtc->config->base.adjusted_mode.crtc_clock;
  843. entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
  844. /*
  845. * Set up the watermark such that we don't start issuing memory
  846. * requests until we are within PND's max deadline value (256us).
  847. * Idea being to be idle as long as possible while still taking
  848. * advatange of PND's deadline scheduling. The limit of 8
  849. * cachelines (used when the FIFO will anyway drain in less time
  850. * than 256us) should match what we would be done if trickle
  851. * feed were enabled.
  852. */
  853. return fifo_size - clamp(DIV_ROUND_UP(256 * entries, 64), 0, fifo_size - 8);
  854. }
  855. static bool vlv_compute_sr_wm(struct drm_device *dev,
  856. struct vlv_wm_values *wm)
  857. {
  858. struct drm_i915_private *dev_priv = to_i915(dev);
  859. struct drm_crtc *crtc;
  860. enum pipe pipe = INVALID_PIPE;
  861. int num_planes = 0;
  862. int fifo_size = 0;
  863. struct intel_plane *plane;
  864. wm->sr.cursor = wm->sr.plane = 0;
  865. crtc = single_enabled_crtc(dev);
  866. /* maxfifo not supported on pipe C */
  867. if (crtc && to_intel_crtc(crtc)->pipe != PIPE_C) {
  868. pipe = to_intel_crtc(crtc)->pipe;
  869. num_planes = !!wm->pipe[pipe].primary +
  870. !!wm->pipe[pipe].sprite[0] +
  871. !!wm->pipe[pipe].sprite[1];
  872. fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
  873. }
  874. if (fifo_size == 0 || num_planes > 1)
  875. return false;
  876. wm->sr.cursor = vlv_compute_wm(to_intel_crtc(crtc),
  877. to_intel_plane(crtc->cursor), 0x3f);
  878. list_for_each_entry(plane, &dev->mode_config.plane_list, base.head) {
  879. if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
  880. continue;
  881. if (plane->pipe != pipe)
  882. continue;
  883. wm->sr.plane = vlv_compute_wm(to_intel_crtc(crtc),
  884. plane, fifo_size);
  885. if (wm->sr.plane != 0)
  886. break;
  887. }
  888. return true;
  889. }
  890. static void valleyview_update_wm(struct drm_crtc *crtc)
  891. {
  892. struct drm_device *dev = crtc->dev;
  893. struct drm_i915_private *dev_priv = dev->dev_private;
  894. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  895. enum pipe pipe = intel_crtc->pipe;
  896. bool cxsr_enabled;
  897. struct vlv_wm_values wm = dev_priv->wm.vlv;
  898. wm.ddl[pipe].primary = vlv_compute_drain_latency(crtc, crtc->primary);
  899. wm.pipe[pipe].primary = vlv_compute_wm(intel_crtc,
  900. to_intel_plane(crtc->primary),
  901. vlv_get_fifo_size(dev, pipe, 0));
  902. wm.ddl[pipe].cursor = vlv_compute_drain_latency(crtc, crtc->cursor);
  903. wm.pipe[pipe].cursor = vlv_compute_wm(intel_crtc,
  904. to_intel_plane(crtc->cursor),
  905. 0x3f);
  906. cxsr_enabled = vlv_compute_sr_wm(dev, &wm);
  907. if (memcmp(&wm, &dev_priv->wm.vlv, sizeof(wm)) == 0)
  908. return;
  909. DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
  910. "SR: plane=%d, cursor=%d\n", pipe_name(pipe),
  911. wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
  912. wm.sr.plane, wm.sr.cursor);
  913. /*
  914. * FIXME DDR DVFS introduces massive memory latencies which
  915. * are not known to system agent so any deadline specified
  916. * by the display may not be respected. To support DDR DVFS
  917. * the watermark code needs to be rewritten to essentially
  918. * bypass deadline mechanism and rely solely on the
  919. * watermarks. For now disable DDR DVFS.
  920. */
  921. if (IS_CHERRYVIEW(dev_priv))
  922. chv_set_memory_dvfs(dev_priv, false);
  923. if (!cxsr_enabled)
  924. intel_set_memory_cxsr(dev_priv, false);
  925. vlv_write_wm_values(intel_crtc, &wm);
  926. if (cxsr_enabled)
  927. intel_set_memory_cxsr(dev_priv, true);
  928. }
  929. static void valleyview_update_sprite_wm(struct drm_plane *plane,
  930. struct drm_crtc *crtc,
  931. uint32_t sprite_width,
  932. uint32_t sprite_height,
  933. int pixel_size,
  934. bool enabled, bool scaled)
  935. {
  936. struct drm_device *dev = crtc->dev;
  937. struct drm_i915_private *dev_priv = dev->dev_private;
  938. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  939. enum pipe pipe = intel_crtc->pipe;
  940. int sprite = to_intel_plane(plane)->plane;
  941. bool cxsr_enabled;
  942. struct vlv_wm_values wm = dev_priv->wm.vlv;
  943. if (enabled) {
  944. wm.ddl[pipe].sprite[sprite] =
  945. vlv_compute_drain_latency(crtc, plane);
  946. wm.pipe[pipe].sprite[sprite] =
  947. vlv_compute_wm(intel_crtc,
  948. to_intel_plane(plane),
  949. vlv_get_fifo_size(dev, pipe, sprite+1));
  950. } else {
  951. wm.ddl[pipe].sprite[sprite] = 0;
  952. wm.pipe[pipe].sprite[sprite] = 0;
  953. }
  954. cxsr_enabled = vlv_compute_sr_wm(dev, &wm);
  955. if (memcmp(&wm, &dev_priv->wm.vlv, sizeof(wm)) == 0)
  956. return;
  957. DRM_DEBUG_KMS("Setting FIFO watermarks - %c: sprite %c=%d, "
  958. "SR: plane=%d, cursor=%d\n", pipe_name(pipe),
  959. sprite_name(pipe, sprite),
  960. wm.pipe[pipe].sprite[sprite],
  961. wm.sr.plane, wm.sr.cursor);
  962. if (!cxsr_enabled)
  963. intel_set_memory_cxsr(dev_priv, false);
  964. vlv_write_wm_values(intel_crtc, &wm);
  965. if (cxsr_enabled)
  966. intel_set_memory_cxsr(dev_priv, true);
  967. }
  968. #define single_plane_enabled(mask) is_power_of_2(mask)
  969. static void g4x_update_wm(struct drm_crtc *crtc)
  970. {
  971. struct drm_device *dev = crtc->dev;
  972. static const int sr_latency_ns = 12000;
  973. struct drm_i915_private *dev_priv = dev->dev_private;
  974. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  975. int plane_sr, cursor_sr;
  976. unsigned int enabled = 0;
  977. bool cxsr_enabled;
  978. if (g4x_compute_wm0(dev, PIPE_A,
  979. &g4x_wm_info, pessimal_latency_ns,
  980. &g4x_cursor_wm_info, pessimal_latency_ns,
  981. &planea_wm, &cursora_wm))
  982. enabled |= 1 << PIPE_A;
  983. if (g4x_compute_wm0(dev, PIPE_B,
  984. &g4x_wm_info, pessimal_latency_ns,
  985. &g4x_cursor_wm_info, pessimal_latency_ns,
  986. &planeb_wm, &cursorb_wm))
  987. enabled |= 1 << PIPE_B;
  988. if (single_plane_enabled(enabled) &&
  989. g4x_compute_srwm(dev, ffs(enabled) - 1,
  990. sr_latency_ns,
  991. &g4x_wm_info,
  992. &g4x_cursor_wm_info,
  993. &plane_sr, &cursor_sr)) {
  994. cxsr_enabled = true;
  995. } else {
  996. cxsr_enabled = false;
  997. intel_set_memory_cxsr(dev_priv, false);
  998. plane_sr = cursor_sr = 0;
  999. }
  1000. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
  1001. "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1002. planea_wm, cursora_wm,
  1003. planeb_wm, cursorb_wm,
  1004. plane_sr, cursor_sr);
  1005. I915_WRITE(DSPFW1,
  1006. FW_WM(plane_sr, SR) |
  1007. FW_WM(cursorb_wm, CURSORB) |
  1008. FW_WM(planeb_wm, PLANEB) |
  1009. FW_WM(planea_wm, PLANEA));
  1010. I915_WRITE(DSPFW2,
  1011. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1012. FW_WM(cursora_wm, CURSORA));
  1013. /* HPLL off in SR has some issues on G4x... disable it */
  1014. I915_WRITE(DSPFW3,
  1015. (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
  1016. FW_WM(cursor_sr, CURSOR_SR));
  1017. if (cxsr_enabled)
  1018. intel_set_memory_cxsr(dev_priv, true);
  1019. }
  1020. static void i965_update_wm(struct drm_crtc *unused_crtc)
  1021. {
  1022. struct drm_device *dev = unused_crtc->dev;
  1023. struct drm_i915_private *dev_priv = dev->dev_private;
  1024. struct drm_crtc *crtc;
  1025. int srwm = 1;
  1026. int cursor_sr = 16;
  1027. bool cxsr_enabled;
  1028. /* Calc sr entries for one plane configs */
  1029. crtc = single_enabled_crtc(dev);
  1030. if (crtc) {
  1031. /* self-refresh has much higher latency */
  1032. static const int sr_latency_ns = 12000;
  1033. const struct drm_display_mode *adjusted_mode =
  1034. &to_intel_crtc(crtc)->config->base.adjusted_mode;
  1035. int clock = adjusted_mode->crtc_clock;
  1036. int htotal = adjusted_mode->crtc_htotal;
  1037. int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
  1038. int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
  1039. unsigned long line_time_us;
  1040. int entries;
  1041. line_time_us = max(htotal * 1000 / clock, 1);
  1042. /* Use ns/us then divide to preserve precision */
  1043. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1044. pixel_size * hdisplay;
  1045. entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  1046. srwm = I965_FIFO_SIZE - entries;
  1047. if (srwm < 0)
  1048. srwm = 1;
  1049. srwm &= 0x1ff;
  1050. DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  1051. entries, srwm);
  1052. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1053. pixel_size * crtc->cursor->state->crtc_w;
  1054. entries = DIV_ROUND_UP(entries,
  1055. i965_cursor_wm_info.cacheline_size);
  1056. cursor_sr = i965_cursor_wm_info.fifo_size -
  1057. (entries + i965_cursor_wm_info.guard_size);
  1058. if (cursor_sr > i965_cursor_wm_info.max_wm)
  1059. cursor_sr = i965_cursor_wm_info.max_wm;
  1060. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  1061. "cursor %d\n", srwm, cursor_sr);
  1062. cxsr_enabled = true;
  1063. } else {
  1064. cxsr_enabled = false;
  1065. /* Turn off self refresh if both pipes are enabled */
  1066. intel_set_memory_cxsr(dev_priv, false);
  1067. }
  1068. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  1069. srwm);
  1070. /* 965 has limitations... */
  1071. I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
  1072. FW_WM(8, CURSORB) |
  1073. FW_WM(8, PLANEB) |
  1074. FW_WM(8, PLANEA));
  1075. I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
  1076. FW_WM(8, PLANEC_OLD));
  1077. /* update cursor SR watermark */
  1078. I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
  1079. if (cxsr_enabled)
  1080. intel_set_memory_cxsr(dev_priv, true);
  1081. }
  1082. #undef FW_WM
  1083. static void i9xx_update_wm(struct drm_crtc *unused_crtc)
  1084. {
  1085. struct drm_device *dev = unused_crtc->dev;
  1086. struct drm_i915_private *dev_priv = dev->dev_private;
  1087. const struct intel_watermark_params *wm_info;
  1088. uint32_t fwater_lo;
  1089. uint32_t fwater_hi;
  1090. int cwm, srwm = 1;
  1091. int fifo_size;
  1092. int planea_wm, planeb_wm;
  1093. struct drm_crtc *crtc, *enabled = NULL;
  1094. if (IS_I945GM(dev))
  1095. wm_info = &i945_wm_info;
  1096. else if (!IS_GEN2(dev))
  1097. wm_info = &i915_wm_info;
  1098. else
  1099. wm_info = &i830_a_wm_info;
  1100. fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  1101. crtc = intel_get_crtc_for_plane(dev, 0);
  1102. if (intel_crtc_active(crtc)) {
  1103. const struct drm_display_mode *adjusted_mode;
  1104. int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
  1105. if (IS_GEN2(dev))
  1106. cpp = 4;
  1107. adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  1108. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1109. wm_info, fifo_size, cpp,
  1110. pessimal_latency_ns);
  1111. enabled = crtc;
  1112. } else {
  1113. planea_wm = fifo_size - wm_info->guard_size;
  1114. if (planea_wm > (long)wm_info->max_wm)
  1115. planea_wm = wm_info->max_wm;
  1116. }
  1117. if (IS_GEN2(dev))
  1118. wm_info = &i830_bc_wm_info;
  1119. fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  1120. crtc = intel_get_crtc_for_plane(dev, 1);
  1121. if (intel_crtc_active(crtc)) {
  1122. const struct drm_display_mode *adjusted_mode;
  1123. int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
  1124. if (IS_GEN2(dev))
  1125. cpp = 4;
  1126. adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  1127. planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1128. wm_info, fifo_size, cpp,
  1129. pessimal_latency_ns);
  1130. if (enabled == NULL)
  1131. enabled = crtc;
  1132. else
  1133. enabled = NULL;
  1134. } else {
  1135. planeb_wm = fifo_size - wm_info->guard_size;
  1136. if (planeb_wm > (long)wm_info->max_wm)
  1137. planeb_wm = wm_info->max_wm;
  1138. }
  1139. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  1140. if (IS_I915GM(dev) && enabled) {
  1141. struct drm_i915_gem_object *obj;
  1142. obj = intel_fb_obj(enabled->primary->state->fb);
  1143. /* self-refresh seems busted with untiled */
  1144. if (obj->tiling_mode == I915_TILING_NONE)
  1145. enabled = NULL;
  1146. }
  1147. /*
  1148. * Overlay gets an aggressive default since video jitter is bad.
  1149. */
  1150. cwm = 2;
  1151. /* Play safe and disable self-refresh before adjusting watermarks. */
  1152. intel_set_memory_cxsr(dev_priv, false);
  1153. /* Calc sr entries for one plane configs */
  1154. if (HAS_FW_BLC(dev) && enabled) {
  1155. /* self-refresh has much higher latency */
  1156. static const int sr_latency_ns = 6000;
  1157. const struct drm_display_mode *adjusted_mode =
  1158. &to_intel_crtc(enabled)->config->base.adjusted_mode;
  1159. int clock = adjusted_mode->crtc_clock;
  1160. int htotal = adjusted_mode->crtc_htotal;
  1161. int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
  1162. int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
  1163. unsigned long line_time_us;
  1164. int entries;
  1165. line_time_us = max(htotal * 1000 / clock, 1);
  1166. /* Use ns/us then divide to preserve precision */
  1167. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1168. pixel_size * hdisplay;
  1169. entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  1170. DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  1171. srwm = wm_info->fifo_size - entries;
  1172. if (srwm < 0)
  1173. srwm = 1;
  1174. if (IS_I945G(dev) || IS_I945GM(dev))
  1175. I915_WRITE(FW_BLC_SELF,
  1176. FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  1177. else if (IS_I915GM(dev))
  1178. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  1179. }
  1180. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  1181. planea_wm, planeb_wm, cwm, srwm);
  1182. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  1183. fwater_hi = (cwm & 0x1f);
  1184. /* Set request length to 8 cachelines per fetch */
  1185. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  1186. fwater_hi = fwater_hi | (1 << 8);
  1187. I915_WRITE(FW_BLC, fwater_lo);
  1188. I915_WRITE(FW_BLC2, fwater_hi);
  1189. if (enabled)
  1190. intel_set_memory_cxsr(dev_priv, true);
  1191. }
  1192. static void i845_update_wm(struct drm_crtc *unused_crtc)
  1193. {
  1194. struct drm_device *dev = unused_crtc->dev;
  1195. struct drm_i915_private *dev_priv = dev->dev_private;
  1196. struct drm_crtc *crtc;
  1197. const struct drm_display_mode *adjusted_mode;
  1198. uint32_t fwater_lo;
  1199. int planea_wm;
  1200. crtc = single_enabled_crtc(dev);
  1201. if (crtc == NULL)
  1202. return;
  1203. adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  1204. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1205. &i845_wm_info,
  1206. dev_priv->display.get_fifo_size(dev, 0),
  1207. 4, pessimal_latency_ns);
  1208. fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  1209. fwater_lo |= (3<<8) | planea_wm;
  1210. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  1211. I915_WRITE(FW_BLC, fwater_lo);
  1212. }
  1213. static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
  1214. struct drm_crtc *crtc)
  1215. {
  1216. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1217. uint32_t pixel_rate;
  1218. pixel_rate = intel_crtc->config->base.adjusted_mode.crtc_clock;
  1219. /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
  1220. * adjust the pixel_rate here. */
  1221. if (intel_crtc->config->pch_pfit.enabled) {
  1222. uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
  1223. uint32_t pfit_size = intel_crtc->config->pch_pfit.size;
  1224. pipe_w = intel_crtc->config->pipe_src_w;
  1225. pipe_h = intel_crtc->config->pipe_src_h;
  1226. pfit_w = (pfit_size >> 16) & 0xFFFF;
  1227. pfit_h = pfit_size & 0xFFFF;
  1228. if (pipe_w < pfit_w)
  1229. pipe_w = pfit_w;
  1230. if (pipe_h < pfit_h)
  1231. pipe_h = pfit_h;
  1232. pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
  1233. pfit_w * pfit_h);
  1234. }
  1235. return pixel_rate;
  1236. }
  1237. /* latency must be in 0.1us units. */
  1238. static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
  1239. uint32_t latency)
  1240. {
  1241. uint64_t ret;
  1242. if (WARN(latency == 0, "Latency value missing\n"))
  1243. return UINT_MAX;
  1244. ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
  1245. ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
  1246. return ret;
  1247. }
  1248. /* latency must be in 0.1us units. */
  1249. static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
  1250. uint32_t horiz_pixels, uint8_t bytes_per_pixel,
  1251. uint32_t latency)
  1252. {
  1253. uint32_t ret;
  1254. if (WARN(latency == 0, "Latency value missing\n"))
  1255. return UINT_MAX;
  1256. ret = (latency * pixel_rate) / (pipe_htotal * 10000);
  1257. ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
  1258. ret = DIV_ROUND_UP(ret, 64) + 2;
  1259. return ret;
  1260. }
  1261. static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
  1262. uint8_t bytes_per_pixel)
  1263. {
  1264. return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
  1265. }
  1266. struct skl_pipe_wm_parameters {
  1267. bool active;
  1268. uint32_t pipe_htotal;
  1269. uint32_t pixel_rate; /* in KHz */
  1270. struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
  1271. struct intel_plane_wm_parameters cursor;
  1272. };
  1273. struct ilk_pipe_wm_parameters {
  1274. bool active;
  1275. uint32_t pipe_htotal;
  1276. uint32_t pixel_rate;
  1277. struct intel_plane_wm_parameters pri;
  1278. struct intel_plane_wm_parameters spr;
  1279. struct intel_plane_wm_parameters cur;
  1280. };
  1281. struct ilk_wm_maximums {
  1282. uint16_t pri;
  1283. uint16_t spr;
  1284. uint16_t cur;
  1285. uint16_t fbc;
  1286. };
  1287. /* used in computing the new watermarks state */
  1288. struct intel_wm_config {
  1289. unsigned int num_pipes_active;
  1290. bool sprites_enabled;
  1291. bool sprites_scaled;
  1292. };
  1293. /*
  1294. * For both WM_PIPE and WM_LP.
  1295. * mem_value must be in 0.1us units.
  1296. */
  1297. static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
  1298. uint32_t mem_value,
  1299. bool is_lp)
  1300. {
  1301. uint32_t method1, method2;
  1302. if (!params->active || !params->pri.enabled)
  1303. return 0;
  1304. method1 = ilk_wm_method1(params->pixel_rate,
  1305. params->pri.bytes_per_pixel,
  1306. mem_value);
  1307. if (!is_lp)
  1308. return method1;
  1309. method2 = ilk_wm_method2(params->pixel_rate,
  1310. params->pipe_htotal,
  1311. params->pri.horiz_pixels,
  1312. params->pri.bytes_per_pixel,
  1313. mem_value);
  1314. return min(method1, method2);
  1315. }
  1316. /*
  1317. * For both WM_PIPE and WM_LP.
  1318. * mem_value must be in 0.1us units.
  1319. */
  1320. static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
  1321. uint32_t mem_value)
  1322. {
  1323. uint32_t method1, method2;
  1324. if (!params->active || !params->spr.enabled)
  1325. return 0;
  1326. method1 = ilk_wm_method1(params->pixel_rate,
  1327. params->spr.bytes_per_pixel,
  1328. mem_value);
  1329. method2 = ilk_wm_method2(params->pixel_rate,
  1330. params->pipe_htotal,
  1331. params->spr.horiz_pixels,
  1332. params->spr.bytes_per_pixel,
  1333. mem_value);
  1334. return min(method1, method2);
  1335. }
  1336. /*
  1337. * For both WM_PIPE and WM_LP.
  1338. * mem_value must be in 0.1us units.
  1339. */
  1340. static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
  1341. uint32_t mem_value)
  1342. {
  1343. if (!params->active || !params->cur.enabled)
  1344. return 0;
  1345. return ilk_wm_method2(params->pixel_rate,
  1346. params->pipe_htotal,
  1347. params->cur.horiz_pixels,
  1348. params->cur.bytes_per_pixel,
  1349. mem_value);
  1350. }
  1351. /* Only for WM_LP. */
  1352. static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
  1353. uint32_t pri_val)
  1354. {
  1355. if (!params->active || !params->pri.enabled)
  1356. return 0;
  1357. return ilk_wm_fbc(pri_val,
  1358. params->pri.horiz_pixels,
  1359. params->pri.bytes_per_pixel);
  1360. }
  1361. static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
  1362. {
  1363. if (INTEL_INFO(dev)->gen >= 8)
  1364. return 3072;
  1365. else if (INTEL_INFO(dev)->gen >= 7)
  1366. return 768;
  1367. else
  1368. return 512;
  1369. }
  1370. static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
  1371. int level, bool is_sprite)
  1372. {
  1373. if (INTEL_INFO(dev)->gen >= 8)
  1374. /* BDW primary/sprite plane watermarks */
  1375. return level == 0 ? 255 : 2047;
  1376. else if (INTEL_INFO(dev)->gen >= 7)
  1377. /* IVB/HSW primary/sprite plane watermarks */
  1378. return level == 0 ? 127 : 1023;
  1379. else if (!is_sprite)
  1380. /* ILK/SNB primary plane watermarks */
  1381. return level == 0 ? 127 : 511;
  1382. else
  1383. /* ILK/SNB sprite plane watermarks */
  1384. return level == 0 ? 63 : 255;
  1385. }
  1386. static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
  1387. int level)
  1388. {
  1389. if (INTEL_INFO(dev)->gen >= 7)
  1390. return level == 0 ? 63 : 255;
  1391. else
  1392. return level == 0 ? 31 : 63;
  1393. }
  1394. static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
  1395. {
  1396. if (INTEL_INFO(dev)->gen >= 8)
  1397. return 31;
  1398. else
  1399. return 15;
  1400. }
  1401. /* Calculate the maximum primary/sprite plane watermark */
  1402. static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
  1403. int level,
  1404. const struct intel_wm_config *config,
  1405. enum intel_ddb_partitioning ddb_partitioning,
  1406. bool is_sprite)
  1407. {
  1408. unsigned int fifo_size = ilk_display_fifo_size(dev);
  1409. /* if sprites aren't enabled, sprites get nothing */
  1410. if (is_sprite && !config->sprites_enabled)
  1411. return 0;
  1412. /* HSW allows LP1+ watermarks even with multiple pipes */
  1413. if (level == 0 || config->num_pipes_active > 1) {
  1414. fifo_size /= INTEL_INFO(dev)->num_pipes;
  1415. /*
  1416. * For some reason the non self refresh
  1417. * FIFO size is only half of the self
  1418. * refresh FIFO size on ILK/SNB.
  1419. */
  1420. if (INTEL_INFO(dev)->gen <= 6)
  1421. fifo_size /= 2;
  1422. }
  1423. if (config->sprites_enabled) {
  1424. /* level 0 is always calculated with 1:1 split */
  1425. if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
  1426. if (is_sprite)
  1427. fifo_size *= 5;
  1428. fifo_size /= 6;
  1429. } else {
  1430. fifo_size /= 2;
  1431. }
  1432. }
  1433. /* clamp to max that the registers can hold */
  1434. return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
  1435. }
  1436. /* Calculate the maximum cursor plane watermark */
  1437. static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
  1438. int level,
  1439. const struct intel_wm_config *config)
  1440. {
  1441. /* HSW LP1+ watermarks w/ multiple pipes */
  1442. if (level > 0 && config->num_pipes_active > 1)
  1443. return 64;
  1444. /* otherwise just report max that registers can hold */
  1445. return ilk_cursor_wm_reg_max(dev, level);
  1446. }
  1447. static void ilk_compute_wm_maximums(const struct drm_device *dev,
  1448. int level,
  1449. const struct intel_wm_config *config,
  1450. enum intel_ddb_partitioning ddb_partitioning,
  1451. struct ilk_wm_maximums *max)
  1452. {
  1453. max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
  1454. max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
  1455. max->cur = ilk_cursor_wm_max(dev, level, config);
  1456. max->fbc = ilk_fbc_wm_reg_max(dev);
  1457. }
  1458. static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
  1459. int level,
  1460. struct ilk_wm_maximums *max)
  1461. {
  1462. max->pri = ilk_plane_wm_reg_max(dev, level, false);
  1463. max->spr = ilk_plane_wm_reg_max(dev, level, true);
  1464. max->cur = ilk_cursor_wm_reg_max(dev, level);
  1465. max->fbc = ilk_fbc_wm_reg_max(dev);
  1466. }
  1467. static bool ilk_validate_wm_level(int level,
  1468. const struct ilk_wm_maximums *max,
  1469. struct intel_wm_level *result)
  1470. {
  1471. bool ret;
  1472. /* already determined to be invalid? */
  1473. if (!result->enable)
  1474. return false;
  1475. result->enable = result->pri_val <= max->pri &&
  1476. result->spr_val <= max->spr &&
  1477. result->cur_val <= max->cur;
  1478. ret = result->enable;
  1479. /*
  1480. * HACK until we can pre-compute everything,
  1481. * and thus fail gracefully if LP0 watermarks
  1482. * are exceeded...
  1483. */
  1484. if (level == 0 && !result->enable) {
  1485. if (result->pri_val > max->pri)
  1486. DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
  1487. level, result->pri_val, max->pri);
  1488. if (result->spr_val > max->spr)
  1489. DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
  1490. level, result->spr_val, max->spr);
  1491. if (result->cur_val > max->cur)
  1492. DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
  1493. level, result->cur_val, max->cur);
  1494. result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
  1495. result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
  1496. result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
  1497. result->enable = true;
  1498. }
  1499. return ret;
  1500. }
  1501. static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
  1502. int level,
  1503. const struct ilk_pipe_wm_parameters *p,
  1504. struct intel_wm_level *result)
  1505. {
  1506. uint16_t pri_latency = dev_priv->wm.pri_latency[level];
  1507. uint16_t spr_latency = dev_priv->wm.spr_latency[level];
  1508. uint16_t cur_latency = dev_priv->wm.cur_latency[level];
  1509. /* WM1+ latency values stored in 0.5us units */
  1510. if (level > 0) {
  1511. pri_latency *= 5;
  1512. spr_latency *= 5;
  1513. cur_latency *= 5;
  1514. }
  1515. result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
  1516. result->spr_val = ilk_compute_spr_wm(p, spr_latency);
  1517. result->cur_val = ilk_compute_cur_wm(p, cur_latency);
  1518. result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
  1519. result->enable = true;
  1520. }
  1521. static uint32_t
  1522. hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
  1523. {
  1524. struct drm_i915_private *dev_priv = dev->dev_private;
  1525. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1526. struct drm_display_mode *mode = &intel_crtc->config->base.adjusted_mode;
  1527. u32 linetime, ips_linetime;
  1528. if (!intel_crtc->active)
  1529. return 0;
  1530. /* The WM are computed with base on how long it takes to fill a single
  1531. * row at the given clock rate, multiplied by 8.
  1532. * */
  1533. linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
  1534. mode->crtc_clock);
  1535. ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
  1536. dev_priv->display.get_display_clock_speed(dev_priv->dev));
  1537. return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
  1538. PIPE_WM_LINETIME_TIME(linetime);
  1539. }
  1540. static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
  1541. {
  1542. struct drm_i915_private *dev_priv = dev->dev_private;
  1543. if (IS_GEN9(dev)) {
  1544. uint32_t val;
  1545. int ret, i;
  1546. int level, max_level = ilk_wm_max_level(dev);
  1547. /* read the first set of memory latencies[0:3] */
  1548. val = 0; /* data0 to be programmed to 0 for first set */
  1549. mutex_lock(&dev_priv->rps.hw_lock);
  1550. ret = sandybridge_pcode_read(dev_priv,
  1551. GEN9_PCODE_READ_MEM_LATENCY,
  1552. &val);
  1553. mutex_unlock(&dev_priv->rps.hw_lock);
  1554. if (ret) {
  1555. DRM_ERROR("SKL Mailbox read error = %d\n", ret);
  1556. return;
  1557. }
  1558. wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
  1559. wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
  1560. GEN9_MEM_LATENCY_LEVEL_MASK;
  1561. wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
  1562. GEN9_MEM_LATENCY_LEVEL_MASK;
  1563. wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
  1564. GEN9_MEM_LATENCY_LEVEL_MASK;
  1565. /* read the second set of memory latencies[4:7] */
  1566. val = 1; /* data0 to be programmed to 1 for second set */
  1567. mutex_lock(&dev_priv->rps.hw_lock);
  1568. ret = sandybridge_pcode_read(dev_priv,
  1569. GEN9_PCODE_READ_MEM_LATENCY,
  1570. &val);
  1571. mutex_unlock(&dev_priv->rps.hw_lock);
  1572. if (ret) {
  1573. DRM_ERROR("SKL Mailbox read error = %d\n", ret);
  1574. return;
  1575. }
  1576. wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
  1577. wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
  1578. GEN9_MEM_LATENCY_LEVEL_MASK;
  1579. wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
  1580. GEN9_MEM_LATENCY_LEVEL_MASK;
  1581. wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
  1582. GEN9_MEM_LATENCY_LEVEL_MASK;
  1583. /*
  1584. * WaWmMemoryReadLatency:skl
  1585. *
  1586. * punit doesn't take into account the read latency so we need
  1587. * to add 2us to the various latency levels we retrieve from
  1588. * the punit.
  1589. * - W0 is a bit special in that it's the only level that
  1590. * can't be disabled if we want to have display working, so
  1591. * we always add 2us there.
  1592. * - For levels >=1, punit returns 0us latency when they are
  1593. * disabled, so we respect that and don't add 2us then
  1594. *
  1595. * Additionally, if a level n (n > 1) has a 0us latency, all
  1596. * levels m (m >= n) need to be disabled. We make sure to
  1597. * sanitize the values out of the punit to satisfy this
  1598. * requirement.
  1599. */
  1600. wm[0] += 2;
  1601. for (level = 1; level <= max_level; level++)
  1602. if (wm[level] != 0)
  1603. wm[level] += 2;
  1604. else {
  1605. for (i = level + 1; i <= max_level; i++)
  1606. wm[i] = 0;
  1607. break;
  1608. }
  1609. } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  1610. uint64_t sskpd = I915_READ64(MCH_SSKPD);
  1611. wm[0] = (sskpd >> 56) & 0xFF;
  1612. if (wm[0] == 0)
  1613. wm[0] = sskpd & 0xF;
  1614. wm[1] = (sskpd >> 4) & 0xFF;
  1615. wm[2] = (sskpd >> 12) & 0xFF;
  1616. wm[3] = (sskpd >> 20) & 0x1FF;
  1617. wm[4] = (sskpd >> 32) & 0x1FF;
  1618. } else if (INTEL_INFO(dev)->gen >= 6) {
  1619. uint32_t sskpd = I915_READ(MCH_SSKPD);
  1620. wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
  1621. wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
  1622. wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
  1623. wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
  1624. } else if (INTEL_INFO(dev)->gen >= 5) {
  1625. uint32_t mltr = I915_READ(MLTR_ILK);
  1626. /* ILK primary LP0 latency is 700 ns */
  1627. wm[0] = 7;
  1628. wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
  1629. wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
  1630. }
  1631. }
  1632. static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
  1633. {
  1634. /* ILK sprite LP0 latency is 1300 ns */
  1635. if (INTEL_INFO(dev)->gen == 5)
  1636. wm[0] = 13;
  1637. }
  1638. static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
  1639. {
  1640. /* ILK cursor LP0 latency is 1300 ns */
  1641. if (INTEL_INFO(dev)->gen == 5)
  1642. wm[0] = 13;
  1643. /* WaDoubleCursorLP3Latency:ivb */
  1644. if (IS_IVYBRIDGE(dev))
  1645. wm[3] *= 2;
  1646. }
  1647. int ilk_wm_max_level(const struct drm_device *dev)
  1648. {
  1649. /* how many WM levels are we expecting */
  1650. if (IS_GEN9(dev))
  1651. return 7;
  1652. else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1653. return 4;
  1654. else if (INTEL_INFO(dev)->gen >= 6)
  1655. return 3;
  1656. else
  1657. return 2;
  1658. }
  1659. static void intel_print_wm_latency(struct drm_device *dev,
  1660. const char *name,
  1661. const uint16_t wm[8])
  1662. {
  1663. int level, max_level = ilk_wm_max_level(dev);
  1664. for (level = 0; level <= max_level; level++) {
  1665. unsigned int latency = wm[level];
  1666. if (latency == 0) {
  1667. DRM_ERROR("%s WM%d latency not provided\n",
  1668. name, level);
  1669. continue;
  1670. }
  1671. /*
  1672. * - latencies are in us on gen9.
  1673. * - before then, WM1+ latency values are in 0.5us units
  1674. */
  1675. if (IS_GEN9(dev))
  1676. latency *= 10;
  1677. else if (level > 0)
  1678. latency *= 5;
  1679. DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
  1680. name, level, wm[level],
  1681. latency / 10, latency % 10);
  1682. }
  1683. }
  1684. static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
  1685. uint16_t wm[5], uint16_t min)
  1686. {
  1687. int level, max_level = ilk_wm_max_level(dev_priv->dev);
  1688. if (wm[0] >= min)
  1689. return false;
  1690. wm[0] = max(wm[0], min);
  1691. for (level = 1; level <= max_level; level++)
  1692. wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
  1693. return true;
  1694. }
  1695. static void snb_wm_latency_quirk(struct drm_device *dev)
  1696. {
  1697. struct drm_i915_private *dev_priv = dev->dev_private;
  1698. bool changed;
  1699. /*
  1700. * The BIOS provided WM memory latency values are often
  1701. * inadequate for high resolution displays. Adjust them.
  1702. */
  1703. changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
  1704. ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
  1705. ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
  1706. if (!changed)
  1707. return;
  1708. DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
  1709. intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
  1710. intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
  1711. intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
  1712. }
  1713. static void ilk_setup_wm_latency(struct drm_device *dev)
  1714. {
  1715. struct drm_i915_private *dev_priv = dev->dev_private;
  1716. intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
  1717. memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
  1718. sizeof(dev_priv->wm.pri_latency));
  1719. memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
  1720. sizeof(dev_priv->wm.pri_latency));
  1721. intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
  1722. intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
  1723. intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
  1724. intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
  1725. intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
  1726. if (IS_GEN6(dev))
  1727. snb_wm_latency_quirk(dev);
  1728. }
  1729. static void skl_setup_wm_latency(struct drm_device *dev)
  1730. {
  1731. struct drm_i915_private *dev_priv = dev->dev_private;
  1732. intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
  1733. intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
  1734. }
  1735. static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
  1736. struct ilk_pipe_wm_parameters *p)
  1737. {
  1738. struct drm_device *dev = crtc->dev;
  1739. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1740. enum pipe pipe = intel_crtc->pipe;
  1741. struct drm_plane *plane;
  1742. if (!intel_crtc->active)
  1743. return;
  1744. p->active = true;
  1745. p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
  1746. p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
  1747. if (crtc->primary->state->fb) {
  1748. p->pri.enabled = true;
  1749. p->pri.bytes_per_pixel =
  1750. crtc->primary->state->fb->bits_per_pixel / 8;
  1751. } else {
  1752. p->pri.enabled = false;
  1753. p->pri.bytes_per_pixel = 0;
  1754. }
  1755. if (crtc->cursor->state->fb) {
  1756. p->cur.enabled = true;
  1757. p->cur.bytes_per_pixel = 4;
  1758. } else {
  1759. p->cur.enabled = false;
  1760. p->cur.bytes_per_pixel = 0;
  1761. }
  1762. p->pri.horiz_pixels = intel_crtc->config->pipe_src_w;
  1763. p->cur.horiz_pixels = intel_crtc->base.cursor->state->crtc_w;
  1764. drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
  1765. struct intel_plane *intel_plane = to_intel_plane(plane);
  1766. if (intel_plane->pipe == pipe) {
  1767. p->spr = intel_plane->wm;
  1768. break;
  1769. }
  1770. }
  1771. }
  1772. static void ilk_compute_wm_config(struct drm_device *dev,
  1773. struct intel_wm_config *config)
  1774. {
  1775. struct intel_crtc *intel_crtc;
  1776. /* Compute the currently _active_ config */
  1777. for_each_intel_crtc(dev, intel_crtc) {
  1778. const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
  1779. if (!wm->pipe_enabled)
  1780. continue;
  1781. config->sprites_enabled |= wm->sprites_enabled;
  1782. config->sprites_scaled |= wm->sprites_scaled;
  1783. config->num_pipes_active++;
  1784. }
  1785. }
  1786. /* Compute new watermarks for the pipe */
  1787. static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
  1788. const struct ilk_pipe_wm_parameters *params,
  1789. struct intel_pipe_wm *pipe_wm)
  1790. {
  1791. struct drm_device *dev = crtc->dev;
  1792. const struct drm_i915_private *dev_priv = dev->dev_private;
  1793. int level, max_level = ilk_wm_max_level(dev);
  1794. /* LP0 watermark maximums depend on this pipe alone */
  1795. struct intel_wm_config config = {
  1796. .num_pipes_active = 1,
  1797. .sprites_enabled = params->spr.enabled,
  1798. .sprites_scaled = params->spr.scaled,
  1799. };
  1800. struct ilk_wm_maximums max;
  1801. pipe_wm->pipe_enabled = params->active;
  1802. pipe_wm->sprites_enabled = params->spr.enabled;
  1803. pipe_wm->sprites_scaled = params->spr.scaled;
  1804. /* ILK/SNB: LP2+ watermarks only w/o sprites */
  1805. if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
  1806. max_level = 1;
  1807. /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
  1808. if (params->spr.scaled)
  1809. max_level = 0;
  1810. ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
  1811. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1812. pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
  1813. /* LP0 watermarks always use 1/2 DDB partitioning */
  1814. ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
  1815. /* At least LP0 must be valid */
  1816. if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
  1817. return false;
  1818. ilk_compute_wm_reg_maximums(dev, 1, &max);
  1819. for (level = 1; level <= max_level; level++) {
  1820. struct intel_wm_level wm = {};
  1821. ilk_compute_wm_level(dev_priv, level, params, &wm);
  1822. /*
  1823. * Disable any watermark level that exceeds the
  1824. * register maximums since such watermarks are
  1825. * always invalid.
  1826. */
  1827. if (!ilk_validate_wm_level(level, &max, &wm))
  1828. break;
  1829. pipe_wm->wm[level] = wm;
  1830. }
  1831. return true;
  1832. }
  1833. /*
  1834. * Merge the watermarks from all active pipes for a specific level.
  1835. */
  1836. static void ilk_merge_wm_level(struct drm_device *dev,
  1837. int level,
  1838. struct intel_wm_level *ret_wm)
  1839. {
  1840. const struct intel_crtc *intel_crtc;
  1841. ret_wm->enable = true;
  1842. for_each_intel_crtc(dev, intel_crtc) {
  1843. const struct intel_pipe_wm *active = &intel_crtc->wm.active;
  1844. const struct intel_wm_level *wm = &active->wm[level];
  1845. if (!active->pipe_enabled)
  1846. continue;
  1847. /*
  1848. * The watermark values may have been used in the past,
  1849. * so we must maintain them in the registers for some
  1850. * time even if the level is now disabled.
  1851. */
  1852. if (!wm->enable)
  1853. ret_wm->enable = false;
  1854. ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
  1855. ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
  1856. ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
  1857. ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
  1858. }
  1859. }
  1860. /*
  1861. * Merge all low power watermarks for all active pipes.
  1862. */
  1863. static void ilk_wm_merge(struct drm_device *dev,
  1864. const struct intel_wm_config *config,
  1865. const struct ilk_wm_maximums *max,
  1866. struct intel_pipe_wm *merged)
  1867. {
  1868. int level, max_level = ilk_wm_max_level(dev);
  1869. int last_enabled_level = max_level;
  1870. /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
  1871. if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
  1872. config->num_pipes_active > 1)
  1873. return;
  1874. /* ILK: FBC WM must be disabled always */
  1875. merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
  1876. /* merge each WM1+ level */
  1877. for (level = 1; level <= max_level; level++) {
  1878. struct intel_wm_level *wm = &merged->wm[level];
  1879. ilk_merge_wm_level(dev, level, wm);
  1880. if (level > last_enabled_level)
  1881. wm->enable = false;
  1882. else if (!ilk_validate_wm_level(level, max, wm))
  1883. /* make sure all following levels get disabled */
  1884. last_enabled_level = level - 1;
  1885. /*
  1886. * The spec says it is preferred to disable
  1887. * FBC WMs instead of disabling a WM level.
  1888. */
  1889. if (wm->fbc_val > max->fbc) {
  1890. if (wm->enable)
  1891. merged->fbc_wm_enabled = false;
  1892. wm->fbc_val = 0;
  1893. }
  1894. }
  1895. /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
  1896. /*
  1897. * FIXME this is racy. FBC might get enabled later.
  1898. * What we should check here is whether FBC can be
  1899. * enabled sometime later.
  1900. */
  1901. if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
  1902. for (level = 2; level <= max_level; level++) {
  1903. struct intel_wm_level *wm = &merged->wm[level];
  1904. wm->enable = false;
  1905. }
  1906. }
  1907. }
  1908. static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
  1909. {
  1910. /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
  1911. return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
  1912. }
  1913. /* The value we need to program into the WM_LPx latency field */
  1914. static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
  1915. {
  1916. struct drm_i915_private *dev_priv = dev->dev_private;
  1917. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1918. return 2 * level;
  1919. else
  1920. return dev_priv->wm.pri_latency[level];
  1921. }
  1922. static void ilk_compute_wm_results(struct drm_device *dev,
  1923. const struct intel_pipe_wm *merged,
  1924. enum intel_ddb_partitioning partitioning,
  1925. struct ilk_wm_values *results)
  1926. {
  1927. struct intel_crtc *intel_crtc;
  1928. int level, wm_lp;
  1929. results->enable_fbc_wm = merged->fbc_wm_enabled;
  1930. results->partitioning = partitioning;
  1931. /* LP1+ register values */
  1932. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  1933. const struct intel_wm_level *r;
  1934. level = ilk_wm_lp_to_level(wm_lp, merged);
  1935. r = &merged->wm[level];
  1936. /*
  1937. * Maintain the watermark values even if the level is
  1938. * disabled. Doing otherwise could cause underruns.
  1939. */
  1940. results->wm_lp[wm_lp - 1] =
  1941. (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
  1942. (r->pri_val << WM1_LP_SR_SHIFT) |
  1943. r->cur_val;
  1944. if (r->enable)
  1945. results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
  1946. if (INTEL_INFO(dev)->gen >= 8)
  1947. results->wm_lp[wm_lp - 1] |=
  1948. r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
  1949. else
  1950. results->wm_lp[wm_lp - 1] |=
  1951. r->fbc_val << WM1_LP_FBC_SHIFT;
  1952. /*
  1953. * Always set WM1S_LP_EN when spr_val != 0, even if the
  1954. * level is disabled. Doing otherwise could cause underruns.
  1955. */
  1956. if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
  1957. WARN_ON(wm_lp != 1);
  1958. results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
  1959. } else
  1960. results->wm_lp_spr[wm_lp - 1] = r->spr_val;
  1961. }
  1962. /* LP0 register values */
  1963. for_each_intel_crtc(dev, intel_crtc) {
  1964. enum pipe pipe = intel_crtc->pipe;
  1965. const struct intel_wm_level *r =
  1966. &intel_crtc->wm.active.wm[0];
  1967. if (WARN_ON(!r->enable))
  1968. continue;
  1969. results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
  1970. results->wm_pipe[pipe] =
  1971. (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
  1972. (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
  1973. r->cur_val;
  1974. }
  1975. }
  1976. /* Find the result with the highest level enabled. Check for enable_fbc_wm in
  1977. * case both are at the same level. Prefer r1 in case they're the same. */
  1978. static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
  1979. struct intel_pipe_wm *r1,
  1980. struct intel_pipe_wm *r2)
  1981. {
  1982. int level, max_level = ilk_wm_max_level(dev);
  1983. int level1 = 0, level2 = 0;
  1984. for (level = 1; level <= max_level; level++) {
  1985. if (r1->wm[level].enable)
  1986. level1 = level;
  1987. if (r2->wm[level].enable)
  1988. level2 = level;
  1989. }
  1990. if (level1 == level2) {
  1991. if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
  1992. return r2;
  1993. else
  1994. return r1;
  1995. } else if (level1 > level2) {
  1996. return r1;
  1997. } else {
  1998. return r2;
  1999. }
  2000. }
  2001. /* dirty bits used to track which watermarks need changes */
  2002. #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
  2003. #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
  2004. #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
  2005. #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
  2006. #define WM_DIRTY_FBC (1 << 24)
  2007. #define WM_DIRTY_DDB (1 << 25)
  2008. static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
  2009. const struct ilk_wm_values *old,
  2010. const struct ilk_wm_values *new)
  2011. {
  2012. unsigned int dirty = 0;
  2013. enum pipe pipe;
  2014. int wm_lp;
  2015. for_each_pipe(dev_priv, pipe) {
  2016. if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
  2017. dirty |= WM_DIRTY_LINETIME(pipe);
  2018. /* Must disable LP1+ watermarks too */
  2019. dirty |= WM_DIRTY_LP_ALL;
  2020. }
  2021. if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
  2022. dirty |= WM_DIRTY_PIPE(pipe);
  2023. /* Must disable LP1+ watermarks too */
  2024. dirty |= WM_DIRTY_LP_ALL;
  2025. }
  2026. }
  2027. if (old->enable_fbc_wm != new->enable_fbc_wm) {
  2028. dirty |= WM_DIRTY_FBC;
  2029. /* Must disable LP1+ watermarks too */
  2030. dirty |= WM_DIRTY_LP_ALL;
  2031. }
  2032. if (old->partitioning != new->partitioning) {
  2033. dirty |= WM_DIRTY_DDB;
  2034. /* Must disable LP1+ watermarks too */
  2035. dirty |= WM_DIRTY_LP_ALL;
  2036. }
  2037. /* LP1+ watermarks already deemed dirty, no need to continue */
  2038. if (dirty & WM_DIRTY_LP_ALL)
  2039. return dirty;
  2040. /* Find the lowest numbered LP1+ watermark in need of an update... */
  2041. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2042. if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
  2043. old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
  2044. break;
  2045. }
  2046. /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
  2047. for (; wm_lp <= 3; wm_lp++)
  2048. dirty |= WM_DIRTY_LP(wm_lp);
  2049. return dirty;
  2050. }
  2051. static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
  2052. unsigned int dirty)
  2053. {
  2054. struct ilk_wm_values *previous = &dev_priv->wm.hw;
  2055. bool changed = false;
  2056. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
  2057. previous->wm_lp[2] &= ~WM1_LP_SR_EN;
  2058. I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
  2059. changed = true;
  2060. }
  2061. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
  2062. previous->wm_lp[1] &= ~WM1_LP_SR_EN;
  2063. I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
  2064. changed = true;
  2065. }
  2066. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
  2067. previous->wm_lp[0] &= ~WM1_LP_SR_EN;
  2068. I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
  2069. changed = true;
  2070. }
  2071. /*
  2072. * Don't touch WM1S_LP_EN here.
  2073. * Doing so could cause underruns.
  2074. */
  2075. return changed;
  2076. }
  2077. /*
  2078. * The spec says we shouldn't write when we don't need, because every write
  2079. * causes WMs to be re-evaluated, expending some power.
  2080. */
  2081. static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
  2082. struct ilk_wm_values *results)
  2083. {
  2084. struct drm_device *dev = dev_priv->dev;
  2085. struct ilk_wm_values *previous = &dev_priv->wm.hw;
  2086. unsigned int dirty;
  2087. uint32_t val;
  2088. dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
  2089. if (!dirty)
  2090. return;
  2091. _ilk_disable_lp_wm(dev_priv, dirty);
  2092. if (dirty & WM_DIRTY_PIPE(PIPE_A))
  2093. I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
  2094. if (dirty & WM_DIRTY_PIPE(PIPE_B))
  2095. I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
  2096. if (dirty & WM_DIRTY_PIPE(PIPE_C))
  2097. I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
  2098. if (dirty & WM_DIRTY_LINETIME(PIPE_A))
  2099. I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
  2100. if (dirty & WM_DIRTY_LINETIME(PIPE_B))
  2101. I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
  2102. if (dirty & WM_DIRTY_LINETIME(PIPE_C))
  2103. I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
  2104. if (dirty & WM_DIRTY_DDB) {
  2105. if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  2106. val = I915_READ(WM_MISC);
  2107. if (results->partitioning == INTEL_DDB_PART_1_2)
  2108. val &= ~WM_MISC_DATA_PARTITION_5_6;
  2109. else
  2110. val |= WM_MISC_DATA_PARTITION_5_6;
  2111. I915_WRITE(WM_MISC, val);
  2112. } else {
  2113. val = I915_READ(DISP_ARB_CTL2);
  2114. if (results->partitioning == INTEL_DDB_PART_1_2)
  2115. val &= ~DISP_DATA_PARTITION_5_6;
  2116. else
  2117. val |= DISP_DATA_PARTITION_5_6;
  2118. I915_WRITE(DISP_ARB_CTL2, val);
  2119. }
  2120. }
  2121. if (dirty & WM_DIRTY_FBC) {
  2122. val = I915_READ(DISP_ARB_CTL);
  2123. if (results->enable_fbc_wm)
  2124. val &= ~DISP_FBC_WM_DIS;
  2125. else
  2126. val |= DISP_FBC_WM_DIS;
  2127. I915_WRITE(DISP_ARB_CTL, val);
  2128. }
  2129. if (dirty & WM_DIRTY_LP(1) &&
  2130. previous->wm_lp_spr[0] != results->wm_lp_spr[0])
  2131. I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
  2132. if (INTEL_INFO(dev)->gen >= 7) {
  2133. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
  2134. I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
  2135. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
  2136. I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
  2137. }
  2138. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
  2139. I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
  2140. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
  2141. I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
  2142. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
  2143. I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
  2144. dev_priv->wm.hw = *results;
  2145. }
  2146. static bool ilk_disable_lp_wm(struct drm_device *dev)
  2147. {
  2148. struct drm_i915_private *dev_priv = dev->dev_private;
  2149. return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
  2150. }
  2151. /*
  2152. * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
  2153. * different active planes.
  2154. */
  2155. #define SKL_DDB_SIZE 896 /* in blocks */
  2156. static void
  2157. skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
  2158. struct drm_crtc *for_crtc,
  2159. const struct intel_wm_config *config,
  2160. const struct skl_pipe_wm_parameters *params,
  2161. struct skl_ddb_entry *alloc /* out */)
  2162. {
  2163. struct drm_crtc *crtc;
  2164. unsigned int pipe_size, ddb_size;
  2165. int nth_active_pipe;
  2166. if (!params->active) {
  2167. alloc->start = 0;
  2168. alloc->end = 0;
  2169. return;
  2170. }
  2171. ddb_size = SKL_DDB_SIZE;
  2172. ddb_size -= 4; /* 4 blocks for bypass path allocation */
  2173. nth_active_pipe = 0;
  2174. for_each_crtc(dev, crtc) {
  2175. if (!to_intel_crtc(crtc)->active)
  2176. continue;
  2177. if (crtc == for_crtc)
  2178. break;
  2179. nth_active_pipe++;
  2180. }
  2181. pipe_size = ddb_size / config->num_pipes_active;
  2182. alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
  2183. alloc->end = alloc->start + pipe_size;
  2184. }
  2185. static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
  2186. {
  2187. if (config->num_pipes_active == 1)
  2188. return 32;
  2189. return 8;
  2190. }
  2191. static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
  2192. {
  2193. entry->start = reg & 0x3ff;
  2194. entry->end = (reg >> 16) & 0x3ff;
  2195. if (entry->end)
  2196. entry->end += 1;
  2197. }
  2198. void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
  2199. struct skl_ddb_allocation *ddb /* out */)
  2200. {
  2201. enum pipe pipe;
  2202. int plane;
  2203. u32 val;
  2204. for_each_pipe(dev_priv, pipe) {
  2205. for_each_plane(dev_priv, pipe, plane) {
  2206. val = I915_READ(PLANE_BUF_CFG(pipe, plane));
  2207. skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
  2208. val);
  2209. }
  2210. val = I915_READ(CUR_BUF_CFG(pipe));
  2211. skl_ddb_entry_init_from_hw(&ddb->cursor[pipe], val);
  2212. }
  2213. }
  2214. static unsigned int
  2215. skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p)
  2216. {
  2217. return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
  2218. }
  2219. /*
  2220. * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
  2221. * a 8192x4096@32bpp framebuffer:
  2222. * 3 * 4096 * 8192 * 4 < 2^32
  2223. */
  2224. static unsigned int
  2225. skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
  2226. const struct skl_pipe_wm_parameters *params)
  2227. {
  2228. unsigned int total_data_rate = 0;
  2229. int plane;
  2230. for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
  2231. const struct intel_plane_wm_parameters *p;
  2232. p = &params->plane[plane];
  2233. if (!p->enabled)
  2234. continue;
  2235. total_data_rate += skl_plane_relative_data_rate(p);
  2236. }
  2237. return total_data_rate;
  2238. }
  2239. static void
  2240. skl_allocate_pipe_ddb(struct drm_crtc *crtc,
  2241. const struct intel_wm_config *config,
  2242. const struct skl_pipe_wm_parameters *params,
  2243. struct skl_ddb_allocation *ddb /* out */)
  2244. {
  2245. struct drm_device *dev = crtc->dev;
  2246. struct drm_i915_private *dev_priv = dev->dev_private;
  2247. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2248. enum pipe pipe = intel_crtc->pipe;
  2249. struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
  2250. uint16_t alloc_size, start, cursor_blocks;
  2251. uint16_t minimum[I915_MAX_PLANES];
  2252. unsigned int total_data_rate;
  2253. int plane;
  2254. skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
  2255. alloc_size = skl_ddb_entry_size(alloc);
  2256. if (alloc_size == 0) {
  2257. memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
  2258. memset(&ddb->cursor[pipe], 0, sizeof(ddb->cursor[pipe]));
  2259. return;
  2260. }
  2261. cursor_blocks = skl_cursor_allocation(config);
  2262. ddb->cursor[pipe].start = alloc->end - cursor_blocks;
  2263. ddb->cursor[pipe].end = alloc->end;
  2264. alloc_size -= cursor_blocks;
  2265. alloc->end -= cursor_blocks;
  2266. /* 1. Allocate the mininum required blocks for each active plane */
  2267. for_each_plane(dev_priv, pipe, plane) {
  2268. const struct intel_plane_wm_parameters *p;
  2269. p = &params->plane[plane];
  2270. if (!p->enabled)
  2271. continue;
  2272. minimum[plane] = 8;
  2273. alloc_size -= minimum[plane];
  2274. }
  2275. /*
  2276. * 2. Distribute the remaining space in proportion to the amount of
  2277. * data each plane needs to fetch from memory.
  2278. *
  2279. * FIXME: we may not allocate every single block here.
  2280. */
  2281. total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);
  2282. start = alloc->start;
  2283. for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
  2284. const struct intel_plane_wm_parameters *p;
  2285. unsigned int data_rate;
  2286. uint16_t plane_blocks;
  2287. p = &params->plane[plane];
  2288. if (!p->enabled)
  2289. continue;
  2290. data_rate = skl_plane_relative_data_rate(p);
  2291. /*
  2292. * promote the expression to 64 bits to avoid overflowing, the
  2293. * result is < available as data_rate / total_data_rate < 1
  2294. */
  2295. plane_blocks = minimum[plane];
  2296. plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
  2297. total_data_rate);
  2298. ddb->plane[pipe][plane].start = start;
  2299. ddb->plane[pipe][plane].end = start + plane_blocks;
  2300. start += plane_blocks;
  2301. }
  2302. }
  2303. static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
  2304. {
  2305. /* TODO: Take into account the scalers once we support them */
  2306. return config->base.adjusted_mode.crtc_clock;
  2307. }
  2308. /*
  2309. * The max latency should be 257 (max the punit can code is 255 and we add 2us
  2310. * for the read latency) and bytes_per_pixel should always be <= 8, so that
  2311. * should allow pixel_rate up to ~2 GHz which seems sufficient since max
  2312. * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
  2313. */
  2314. static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
  2315. uint32_t latency)
  2316. {
  2317. uint32_t wm_intermediate_val, ret;
  2318. if (latency == 0)
  2319. return UINT_MAX;
  2320. wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
  2321. ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
  2322. return ret;
  2323. }
  2324. static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
  2325. uint32_t horiz_pixels, uint8_t bytes_per_pixel,
  2326. uint64_t tiling, uint32_t latency)
  2327. {
  2328. uint32_t ret;
  2329. uint32_t plane_bytes_per_line, plane_blocks_per_line;
  2330. uint32_t wm_intermediate_val;
  2331. if (latency == 0)
  2332. return UINT_MAX;
  2333. plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
  2334. if (tiling == I915_FORMAT_MOD_Y_TILED ||
  2335. tiling == I915_FORMAT_MOD_Yf_TILED) {
  2336. plane_bytes_per_line *= 4;
  2337. plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
  2338. plane_blocks_per_line /= 4;
  2339. } else {
  2340. plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
  2341. }
  2342. wm_intermediate_val = latency * pixel_rate;
  2343. ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
  2344. plane_blocks_per_line;
  2345. return ret;
  2346. }
  2347. static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
  2348. const struct intel_crtc *intel_crtc)
  2349. {
  2350. struct drm_device *dev = intel_crtc->base.dev;
  2351. struct drm_i915_private *dev_priv = dev->dev_private;
  2352. const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
  2353. enum pipe pipe = intel_crtc->pipe;
  2354. if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
  2355. sizeof(new_ddb->plane[pipe])))
  2356. return true;
  2357. if (memcmp(&new_ddb->cursor[pipe], &cur_ddb->cursor[pipe],
  2358. sizeof(new_ddb->cursor[pipe])))
  2359. return true;
  2360. return false;
  2361. }
  2362. static void skl_compute_wm_global_parameters(struct drm_device *dev,
  2363. struct intel_wm_config *config)
  2364. {
  2365. struct drm_crtc *crtc;
  2366. struct drm_plane *plane;
  2367. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
  2368. config->num_pipes_active += to_intel_crtc(crtc)->active;
  2369. /* FIXME: I don't think we need those two global parameters on SKL */
  2370. list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
  2371. struct intel_plane *intel_plane = to_intel_plane(plane);
  2372. config->sprites_enabled |= intel_plane->wm.enabled;
  2373. config->sprites_scaled |= intel_plane->wm.scaled;
  2374. }
  2375. }
  2376. static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
  2377. struct skl_pipe_wm_parameters *p)
  2378. {
  2379. struct drm_device *dev = crtc->dev;
  2380. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2381. enum pipe pipe = intel_crtc->pipe;
  2382. struct drm_plane *plane;
  2383. struct drm_framebuffer *fb;
  2384. int i = 1; /* Index for sprite planes start */
  2385. p->active = intel_crtc->active;
  2386. if (p->active) {
  2387. p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
  2388. p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);
  2389. fb = crtc->primary->state->fb;
  2390. if (fb) {
  2391. p->plane[0].enabled = true;
  2392. p->plane[0].bytes_per_pixel = fb->bits_per_pixel / 8;
  2393. p->plane[0].tiling = fb->modifier[0];
  2394. } else {
  2395. p->plane[0].enabled = false;
  2396. p->plane[0].bytes_per_pixel = 0;
  2397. p->plane[0].tiling = DRM_FORMAT_MOD_NONE;
  2398. }
  2399. p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
  2400. p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
  2401. p->plane[0].rotation = crtc->primary->state->rotation;
  2402. fb = crtc->cursor->state->fb;
  2403. if (fb) {
  2404. p->cursor.enabled = true;
  2405. p->cursor.bytes_per_pixel = fb->bits_per_pixel / 8;
  2406. p->cursor.horiz_pixels = crtc->cursor->state->crtc_w;
  2407. p->cursor.vert_pixels = crtc->cursor->state->crtc_h;
  2408. } else {
  2409. p->cursor.enabled = false;
  2410. p->cursor.bytes_per_pixel = 0;
  2411. p->cursor.horiz_pixels = 64;
  2412. p->cursor.vert_pixels = 64;
  2413. }
  2414. }
  2415. list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
  2416. struct intel_plane *intel_plane = to_intel_plane(plane);
  2417. if (intel_plane->pipe == pipe &&
  2418. plane->type == DRM_PLANE_TYPE_OVERLAY)
  2419. p->plane[i++] = intel_plane->wm;
  2420. }
  2421. }
  2422. static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
  2423. struct skl_pipe_wm_parameters *p,
  2424. struct intel_plane_wm_parameters *p_params,
  2425. uint16_t ddb_allocation,
  2426. int level,
  2427. uint16_t *out_blocks, /* out */
  2428. uint8_t *out_lines /* out */)
  2429. {
  2430. uint32_t latency = dev_priv->wm.skl_latency[level];
  2431. uint32_t method1, method2;
  2432. uint32_t plane_bytes_per_line, plane_blocks_per_line;
  2433. uint32_t res_blocks, res_lines;
  2434. uint32_t selected_result;
  2435. if (latency == 0 || !p->active || !p_params->enabled)
  2436. return false;
  2437. method1 = skl_wm_method1(p->pixel_rate,
  2438. p_params->bytes_per_pixel,
  2439. latency);
  2440. method2 = skl_wm_method2(p->pixel_rate,
  2441. p->pipe_htotal,
  2442. p_params->horiz_pixels,
  2443. p_params->bytes_per_pixel,
  2444. p_params->tiling,
  2445. latency);
  2446. plane_bytes_per_line = p_params->horiz_pixels *
  2447. p_params->bytes_per_pixel;
  2448. plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
  2449. if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
  2450. p_params->tiling == I915_FORMAT_MOD_Yf_TILED) {
  2451. uint32_t min_scanlines = 4;
  2452. uint32_t y_tile_minimum;
  2453. if (intel_rotation_90_or_270(p_params->rotation)) {
  2454. switch (p_params->bytes_per_pixel) {
  2455. case 1:
  2456. min_scanlines = 16;
  2457. break;
  2458. case 2:
  2459. min_scanlines = 8;
  2460. break;
  2461. case 8:
  2462. WARN(1, "Unsupported pixel depth for rotation");
  2463. }
  2464. }
  2465. y_tile_minimum = plane_blocks_per_line * min_scanlines;
  2466. selected_result = max(method2, y_tile_minimum);
  2467. } else {
  2468. if ((ddb_allocation / plane_blocks_per_line) >= 1)
  2469. selected_result = min(method1, method2);
  2470. else
  2471. selected_result = method1;
  2472. }
  2473. res_blocks = selected_result + 1;
  2474. res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
  2475. if (level >= 1 && level <= 7) {
  2476. if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
  2477. p_params->tiling == I915_FORMAT_MOD_Yf_TILED)
  2478. res_lines += 4;
  2479. else
  2480. res_blocks++;
  2481. }
  2482. if (res_blocks >= ddb_allocation || res_lines > 31)
  2483. return false;
  2484. *out_blocks = res_blocks;
  2485. *out_lines = res_lines;
  2486. return true;
  2487. }
  2488. static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
  2489. struct skl_ddb_allocation *ddb,
  2490. struct skl_pipe_wm_parameters *p,
  2491. enum pipe pipe,
  2492. int level,
  2493. int num_planes,
  2494. struct skl_wm_level *result)
  2495. {
  2496. uint16_t ddb_blocks;
  2497. int i;
  2498. for (i = 0; i < num_planes; i++) {
  2499. ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
  2500. result->plane_en[i] = skl_compute_plane_wm(dev_priv,
  2501. p, &p->plane[i],
  2502. ddb_blocks,
  2503. level,
  2504. &result->plane_res_b[i],
  2505. &result->plane_res_l[i]);
  2506. }
  2507. ddb_blocks = skl_ddb_entry_size(&ddb->cursor[pipe]);
  2508. result->cursor_en = skl_compute_plane_wm(dev_priv, p, &p->cursor,
  2509. ddb_blocks, level,
  2510. &result->cursor_res_b,
  2511. &result->cursor_res_l);
  2512. }
  2513. static uint32_t
  2514. skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
  2515. {
  2516. if (!to_intel_crtc(crtc)->active)
  2517. return 0;
  2518. return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);
  2519. }
  2520. static void skl_compute_transition_wm(struct drm_crtc *crtc,
  2521. struct skl_pipe_wm_parameters *params,
  2522. struct skl_wm_level *trans_wm /* out */)
  2523. {
  2524. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2525. int i;
  2526. if (!params->active)
  2527. return;
  2528. /* Until we know more, just disable transition WMs */
  2529. for (i = 0; i < intel_num_planes(intel_crtc); i++)
  2530. trans_wm->plane_en[i] = false;
  2531. trans_wm->cursor_en = false;
  2532. }
  2533. static void skl_compute_pipe_wm(struct drm_crtc *crtc,
  2534. struct skl_ddb_allocation *ddb,
  2535. struct skl_pipe_wm_parameters *params,
  2536. struct skl_pipe_wm *pipe_wm)
  2537. {
  2538. struct drm_device *dev = crtc->dev;
  2539. const struct drm_i915_private *dev_priv = dev->dev_private;
  2540. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2541. int level, max_level = ilk_wm_max_level(dev);
  2542. for (level = 0; level <= max_level; level++) {
  2543. skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
  2544. level, intel_num_planes(intel_crtc),
  2545. &pipe_wm->wm[level]);
  2546. }
  2547. pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);
  2548. skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
  2549. }
  2550. static void skl_compute_wm_results(struct drm_device *dev,
  2551. struct skl_pipe_wm_parameters *p,
  2552. struct skl_pipe_wm *p_wm,
  2553. struct skl_wm_values *r,
  2554. struct intel_crtc *intel_crtc)
  2555. {
  2556. int level, max_level = ilk_wm_max_level(dev);
  2557. enum pipe pipe = intel_crtc->pipe;
  2558. uint32_t temp;
  2559. int i;
  2560. for (level = 0; level <= max_level; level++) {
  2561. for (i = 0; i < intel_num_planes(intel_crtc); i++) {
  2562. temp = 0;
  2563. temp |= p_wm->wm[level].plane_res_l[i] <<
  2564. PLANE_WM_LINES_SHIFT;
  2565. temp |= p_wm->wm[level].plane_res_b[i];
  2566. if (p_wm->wm[level].plane_en[i])
  2567. temp |= PLANE_WM_EN;
  2568. r->plane[pipe][i][level] = temp;
  2569. }
  2570. temp = 0;
  2571. temp |= p_wm->wm[level].cursor_res_l << PLANE_WM_LINES_SHIFT;
  2572. temp |= p_wm->wm[level].cursor_res_b;
  2573. if (p_wm->wm[level].cursor_en)
  2574. temp |= PLANE_WM_EN;
  2575. r->cursor[pipe][level] = temp;
  2576. }
  2577. /* transition WMs */
  2578. for (i = 0; i < intel_num_planes(intel_crtc); i++) {
  2579. temp = 0;
  2580. temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
  2581. temp |= p_wm->trans_wm.plane_res_b[i];
  2582. if (p_wm->trans_wm.plane_en[i])
  2583. temp |= PLANE_WM_EN;
  2584. r->plane_trans[pipe][i] = temp;
  2585. }
  2586. temp = 0;
  2587. temp |= p_wm->trans_wm.cursor_res_l << PLANE_WM_LINES_SHIFT;
  2588. temp |= p_wm->trans_wm.cursor_res_b;
  2589. if (p_wm->trans_wm.cursor_en)
  2590. temp |= PLANE_WM_EN;
  2591. r->cursor_trans[pipe] = temp;
  2592. r->wm_linetime[pipe] = p_wm->linetime;
  2593. }
  2594. static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
  2595. const struct skl_ddb_entry *entry)
  2596. {
  2597. if (entry->end)
  2598. I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
  2599. else
  2600. I915_WRITE(reg, 0);
  2601. }
  2602. static void skl_write_wm_values(struct drm_i915_private *dev_priv,
  2603. const struct skl_wm_values *new)
  2604. {
  2605. struct drm_device *dev = dev_priv->dev;
  2606. struct intel_crtc *crtc;
  2607. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  2608. int i, level, max_level = ilk_wm_max_level(dev);
  2609. enum pipe pipe = crtc->pipe;
  2610. if (!new->dirty[pipe])
  2611. continue;
  2612. I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
  2613. for (level = 0; level <= max_level; level++) {
  2614. for (i = 0; i < intel_num_planes(crtc); i++)
  2615. I915_WRITE(PLANE_WM(pipe, i, level),
  2616. new->plane[pipe][i][level]);
  2617. I915_WRITE(CUR_WM(pipe, level),
  2618. new->cursor[pipe][level]);
  2619. }
  2620. for (i = 0; i < intel_num_planes(crtc); i++)
  2621. I915_WRITE(PLANE_WM_TRANS(pipe, i),
  2622. new->plane_trans[pipe][i]);
  2623. I915_WRITE(CUR_WM_TRANS(pipe), new->cursor_trans[pipe]);
  2624. for (i = 0; i < intel_num_planes(crtc); i++)
  2625. skl_ddb_entry_write(dev_priv,
  2626. PLANE_BUF_CFG(pipe, i),
  2627. &new->ddb.plane[pipe][i]);
  2628. skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
  2629. &new->ddb.cursor[pipe]);
  2630. }
  2631. }
  2632. /*
  2633. * When setting up a new DDB allocation arrangement, we need to correctly
  2634. * sequence the times at which the new allocations for the pipes are taken into
  2635. * account or we'll have pipes fetching from space previously allocated to
  2636. * another pipe.
  2637. *
  2638. * Roughly the sequence looks like:
  2639. * 1. re-allocate the pipe(s) with the allocation being reduced and not
  2640. * overlapping with a previous light-up pipe (another way to put it is:
  2641. * pipes with their new allocation strickly included into their old ones).
  2642. * 2. re-allocate the other pipes that get their allocation reduced
  2643. * 3. allocate the pipes having their allocation increased
  2644. *
  2645. * Steps 1. and 2. are here to take care of the following case:
  2646. * - Initially DDB looks like this:
  2647. * | B | C |
  2648. * - enable pipe A.
  2649. * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
  2650. * allocation
  2651. * | A | B | C |
  2652. *
  2653. * We need to sequence the re-allocation: C, B, A (and not B, C, A).
  2654. */
  2655. static void
  2656. skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
  2657. {
  2658. int plane;
  2659. DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
  2660. for_each_plane(dev_priv, pipe, plane) {
  2661. I915_WRITE(PLANE_SURF(pipe, plane),
  2662. I915_READ(PLANE_SURF(pipe, plane)));
  2663. }
  2664. I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
  2665. }
  2666. static bool
  2667. skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
  2668. const struct skl_ddb_allocation *new,
  2669. enum pipe pipe)
  2670. {
  2671. uint16_t old_size, new_size;
  2672. old_size = skl_ddb_entry_size(&old->pipe[pipe]);
  2673. new_size = skl_ddb_entry_size(&new->pipe[pipe]);
  2674. return old_size != new_size &&
  2675. new->pipe[pipe].start >= old->pipe[pipe].start &&
  2676. new->pipe[pipe].end <= old->pipe[pipe].end;
  2677. }
  2678. static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
  2679. struct skl_wm_values *new_values)
  2680. {
  2681. struct drm_device *dev = dev_priv->dev;
  2682. struct skl_ddb_allocation *cur_ddb, *new_ddb;
  2683. bool reallocated[I915_MAX_PIPES] = {};
  2684. struct intel_crtc *crtc;
  2685. enum pipe pipe;
  2686. new_ddb = &new_values->ddb;
  2687. cur_ddb = &dev_priv->wm.skl_hw.ddb;
  2688. /*
  2689. * First pass: flush the pipes with the new allocation contained into
  2690. * the old space.
  2691. *
  2692. * We'll wait for the vblank on those pipes to ensure we can safely
  2693. * re-allocate the freed space without this pipe fetching from it.
  2694. */
  2695. for_each_intel_crtc(dev, crtc) {
  2696. if (!crtc->active)
  2697. continue;
  2698. pipe = crtc->pipe;
  2699. if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
  2700. continue;
  2701. skl_wm_flush_pipe(dev_priv, pipe, 1);
  2702. intel_wait_for_vblank(dev, pipe);
  2703. reallocated[pipe] = true;
  2704. }
  2705. /*
  2706. * Second pass: flush the pipes that are having their allocation
  2707. * reduced, but overlapping with a previous allocation.
  2708. *
  2709. * Here as well we need to wait for the vblank to make sure the freed
  2710. * space is not used anymore.
  2711. */
  2712. for_each_intel_crtc(dev, crtc) {
  2713. if (!crtc->active)
  2714. continue;
  2715. pipe = crtc->pipe;
  2716. if (reallocated[pipe])
  2717. continue;
  2718. if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
  2719. skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
  2720. skl_wm_flush_pipe(dev_priv, pipe, 2);
  2721. intel_wait_for_vblank(dev, pipe);
  2722. reallocated[pipe] = true;
  2723. }
  2724. }
  2725. /*
  2726. * Third pass: flush the pipes that got more space allocated.
  2727. *
  2728. * We don't need to actively wait for the update here, next vblank
  2729. * will just get more DDB space with the correct WM values.
  2730. */
  2731. for_each_intel_crtc(dev, crtc) {
  2732. if (!crtc->active)
  2733. continue;
  2734. pipe = crtc->pipe;
  2735. /*
  2736. * At this point, only the pipes more space than before are
  2737. * left to re-allocate.
  2738. */
  2739. if (reallocated[pipe])
  2740. continue;
  2741. skl_wm_flush_pipe(dev_priv, pipe, 3);
  2742. }
  2743. }
  2744. static bool skl_update_pipe_wm(struct drm_crtc *crtc,
  2745. struct skl_pipe_wm_parameters *params,
  2746. struct intel_wm_config *config,
  2747. struct skl_ddb_allocation *ddb, /* out */
  2748. struct skl_pipe_wm *pipe_wm /* out */)
  2749. {
  2750. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2751. skl_compute_wm_pipe_parameters(crtc, params);
  2752. skl_allocate_pipe_ddb(crtc, config, params, ddb);
  2753. skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);
  2754. if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
  2755. return false;
  2756. intel_crtc->wm.skl_active = *pipe_wm;
  2757. return true;
  2758. }
  2759. static void skl_update_other_pipe_wm(struct drm_device *dev,
  2760. struct drm_crtc *crtc,
  2761. struct intel_wm_config *config,
  2762. struct skl_wm_values *r)
  2763. {
  2764. struct intel_crtc *intel_crtc;
  2765. struct intel_crtc *this_crtc = to_intel_crtc(crtc);
  2766. /*
  2767. * If the WM update hasn't changed the allocation for this_crtc (the
  2768. * crtc we are currently computing the new WM values for), other
  2769. * enabled crtcs will keep the same allocation and we don't need to
  2770. * recompute anything for them.
  2771. */
  2772. if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
  2773. return;
  2774. /*
  2775. * Otherwise, because of this_crtc being freshly enabled/disabled, the
  2776. * other active pipes need new DDB allocation and WM values.
  2777. */
  2778. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  2779. base.head) {
  2780. struct skl_pipe_wm_parameters params = {};
  2781. struct skl_pipe_wm pipe_wm = {};
  2782. bool wm_changed;
  2783. if (this_crtc->pipe == intel_crtc->pipe)
  2784. continue;
  2785. if (!intel_crtc->active)
  2786. continue;
  2787. wm_changed = skl_update_pipe_wm(&intel_crtc->base,
  2788. &params, config,
  2789. &r->ddb, &pipe_wm);
  2790. /*
  2791. * If we end up re-computing the other pipe WM values, it's
  2792. * because it was really needed, so we expect the WM values to
  2793. * be different.
  2794. */
  2795. WARN_ON(!wm_changed);
  2796. skl_compute_wm_results(dev, &params, &pipe_wm, r, intel_crtc);
  2797. r->dirty[intel_crtc->pipe] = true;
  2798. }
  2799. }
  2800. static void skl_update_wm(struct drm_crtc *crtc)
  2801. {
  2802. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2803. struct drm_device *dev = crtc->dev;
  2804. struct drm_i915_private *dev_priv = dev->dev_private;
  2805. struct skl_pipe_wm_parameters params = {};
  2806. struct skl_wm_values *results = &dev_priv->wm.skl_results;
  2807. struct skl_pipe_wm pipe_wm = {};
  2808. struct intel_wm_config config = {};
  2809. memset(results, 0, sizeof(*results));
  2810. skl_compute_wm_global_parameters(dev, &config);
  2811. if (!skl_update_pipe_wm(crtc, &params, &config,
  2812. &results->ddb, &pipe_wm))
  2813. return;
  2814. skl_compute_wm_results(dev, &params, &pipe_wm, results, intel_crtc);
  2815. results->dirty[intel_crtc->pipe] = true;
  2816. skl_update_other_pipe_wm(dev, crtc, &config, results);
  2817. skl_write_wm_values(dev_priv, results);
  2818. skl_flush_wm_values(dev_priv, results);
  2819. /* store the new configuration */
  2820. dev_priv->wm.skl_hw = *results;
  2821. }
  2822. static void
  2823. skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
  2824. uint32_t sprite_width, uint32_t sprite_height,
  2825. int pixel_size, bool enabled, bool scaled)
  2826. {
  2827. struct intel_plane *intel_plane = to_intel_plane(plane);
  2828. struct drm_framebuffer *fb = plane->state->fb;
  2829. intel_plane->wm.enabled = enabled;
  2830. intel_plane->wm.scaled = scaled;
  2831. intel_plane->wm.horiz_pixels = sprite_width;
  2832. intel_plane->wm.vert_pixels = sprite_height;
  2833. intel_plane->wm.bytes_per_pixel = pixel_size;
  2834. intel_plane->wm.tiling = DRM_FORMAT_MOD_NONE;
  2835. /*
  2836. * Framebuffer can be NULL on plane disable, but it does not
  2837. * matter for watermarks if we assume no tiling in that case.
  2838. */
  2839. if (fb)
  2840. intel_plane->wm.tiling = fb->modifier[0];
  2841. intel_plane->wm.rotation = plane->state->rotation;
  2842. skl_update_wm(crtc);
  2843. }
  2844. static void ilk_update_wm(struct drm_crtc *crtc)
  2845. {
  2846. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2847. struct drm_device *dev = crtc->dev;
  2848. struct drm_i915_private *dev_priv = dev->dev_private;
  2849. struct ilk_wm_maximums max;
  2850. struct ilk_pipe_wm_parameters params = {};
  2851. struct ilk_wm_values results = {};
  2852. enum intel_ddb_partitioning partitioning;
  2853. struct intel_pipe_wm pipe_wm = {};
  2854. struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
  2855. struct intel_wm_config config = {};
  2856. ilk_compute_wm_parameters(crtc, &params);
  2857. intel_compute_pipe_wm(crtc, &params, &pipe_wm);
  2858. if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
  2859. return;
  2860. intel_crtc->wm.active = pipe_wm;
  2861. ilk_compute_wm_config(dev, &config);
  2862. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
  2863. ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
  2864. /* 5/6 split only in single pipe config on IVB+ */
  2865. if (INTEL_INFO(dev)->gen >= 7 &&
  2866. config.num_pipes_active == 1 && config.sprites_enabled) {
  2867. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
  2868. ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
  2869. best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
  2870. } else {
  2871. best_lp_wm = &lp_wm_1_2;
  2872. }
  2873. partitioning = (best_lp_wm == &lp_wm_1_2) ?
  2874. INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
  2875. ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
  2876. ilk_write_wm_values(dev_priv, &results);
  2877. }
  2878. static void
  2879. ilk_update_sprite_wm(struct drm_plane *plane,
  2880. struct drm_crtc *crtc,
  2881. uint32_t sprite_width, uint32_t sprite_height,
  2882. int pixel_size, bool enabled, bool scaled)
  2883. {
  2884. struct drm_device *dev = plane->dev;
  2885. struct intel_plane *intel_plane = to_intel_plane(plane);
  2886. intel_plane->wm.enabled = enabled;
  2887. intel_plane->wm.scaled = scaled;
  2888. intel_plane->wm.horiz_pixels = sprite_width;
  2889. intel_plane->wm.vert_pixels = sprite_width;
  2890. intel_plane->wm.bytes_per_pixel = pixel_size;
  2891. /*
  2892. * IVB workaround: must disable low power watermarks for at least
  2893. * one frame before enabling scaling. LP watermarks can be re-enabled
  2894. * when scaling is disabled.
  2895. *
  2896. * WaCxSRDisabledForSpriteScaling:ivb
  2897. */
  2898. if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
  2899. intel_wait_for_vblank(dev, intel_plane->pipe);
  2900. ilk_update_wm(crtc);
  2901. }
  2902. static void skl_pipe_wm_active_state(uint32_t val,
  2903. struct skl_pipe_wm *active,
  2904. bool is_transwm,
  2905. bool is_cursor,
  2906. int i,
  2907. int level)
  2908. {
  2909. bool is_enabled = (val & PLANE_WM_EN) != 0;
  2910. if (!is_transwm) {
  2911. if (!is_cursor) {
  2912. active->wm[level].plane_en[i] = is_enabled;
  2913. active->wm[level].plane_res_b[i] =
  2914. val & PLANE_WM_BLOCKS_MASK;
  2915. active->wm[level].plane_res_l[i] =
  2916. (val >> PLANE_WM_LINES_SHIFT) &
  2917. PLANE_WM_LINES_MASK;
  2918. } else {
  2919. active->wm[level].cursor_en = is_enabled;
  2920. active->wm[level].cursor_res_b =
  2921. val & PLANE_WM_BLOCKS_MASK;
  2922. active->wm[level].cursor_res_l =
  2923. (val >> PLANE_WM_LINES_SHIFT) &
  2924. PLANE_WM_LINES_MASK;
  2925. }
  2926. } else {
  2927. if (!is_cursor) {
  2928. active->trans_wm.plane_en[i] = is_enabled;
  2929. active->trans_wm.plane_res_b[i] =
  2930. val & PLANE_WM_BLOCKS_MASK;
  2931. active->trans_wm.plane_res_l[i] =
  2932. (val >> PLANE_WM_LINES_SHIFT) &
  2933. PLANE_WM_LINES_MASK;
  2934. } else {
  2935. active->trans_wm.cursor_en = is_enabled;
  2936. active->trans_wm.cursor_res_b =
  2937. val & PLANE_WM_BLOCKS_MASK;
  2938. active->trans_wm.cursor_res_l =
  2939. (val >> PLANE_WM_LINES_SHIFT) &
  2940. PLANE_WM_LINES_MASK;
  2941. }
  2942. }
  2943. }
  2944. static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
  2945. {
  2946. struct drm_device *dev = crtc->dev;
  2947. struct drm_i915_private *dev_priv = dev->dev_private;
  2948. struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
  2949. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2950. struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
  2951. enum pipe pipe = intel_crtc->pipe;
  2952. int level, i, max_level;
  2953. uint32_t temp;
  2954. max_level = ilk_wm_max_level(dev);
  2955. hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
  2956. for (level = 0; level <= max_level; level++) {
  2957. for (i = 0; i < intel_num_planes(intel_crtc); i++)
  2958. hw->plane[pipe][i][level] =
  2959. I915_READ(PLANE_WM(pipe, i, level));
  2960. hw->cursor[pipe][level] = I915_READ(CUR_WM(pipe, level));
  2961. }
  2962. for (i = 0; i < intel_num_planes(intel_crtc); i++)
  2963. hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
  2964. hw->cursor_trans[pipe] = I915_READ(CUR_WM_TRANS(pipe));
  2965. if (!intel_crtc->active)
  2966. return;
  2967. hw->dirty[pipe] = true;
  2968. active->linetime = hw->wm_linetime[pipe];
  2969. for (level = 0; level <= max_level; level++) {
  2970. for (i = 0; i < intel_num_planes(intel_crtc); i++) {
  2971. temp = hw->plane[pipe][i][level];
  2972. skl_pipe_wm_active_state(temp, active, false,
  2973. false, i, level);
  2974. }
  2975. temp = hw->cursor[pipe][level];
  2976. skl_pipe_wm_active_state(temp, active, false, true, i, level);
  2977. }
  2978. for (i = 0; i < intel_num_planes(intel_crtc); i++) {
  2979. temp = hw->plane_trans[pipe][i];
  2980. skl_pipe_wm_active_state(temp, active, true, false, i, 0);
  2981. }
  2982. temp = hw->cursor_trans[pipe];
  2983. skl_pipe_wm_active_state(temp, active, true, true, i, 0);
  2984. }
  2985. void skl_wm_get_hw_state(struct drm_device *dev)
  2986. {
  2987. struct drm_i915_private *dev_priv = dev->dev_private;
  2988. struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
  2989. struct drm_crtc *crtc;
  2990. skl_ddb_get_hw_state(dev_priv, ddb);
  2991. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
  2992. skl_pipe_wm_get_hw_state(crtc);
  2993. }
  2994. static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
  2995. {
  2996. struct drm_device *dev = crtc->dev;
  2997. struct drm_i915_private *dev_priv = dev->dev_private;
  2998. struct ilk_wm_values *hw = &dev_priv->wm.hw;
  2999. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3000. struct intel_pipe_wm *active = &intel_crtc->wm.active;
  3001. enum pipe pipe = intel_crtc->pipe;
  3002. static const unsigned int wm0_pipe_reg[] = {
  3003. [PIPE_A] = WM0_PIPEA_ILK,
  3004. [PIPE_B] = WM0_PIPEB_ILK,
  3005. [PIPE_C] = WM0_PIPEC_IVB,
  3006. };
  3007. hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
  3008. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  3009. hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
  3010. active->pipe_enabled = intel_crtc->active;
  3011. if (active->pipe_enabled) {
  3012. u32 tmp = hw->wm_pipe[pipe];
  3013. /*
  3014. * For active pipes LP0 watermark is marked as
  3015. * enabled, and LP1+ watermaks as disabled since
  3016. * we can't really reverse compute them in case
  3017. * multiple pipes are active.
  3018. */
  3019. active->wm[0].enable = true;
  3020. active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
  3021. active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
  3022. active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
  3023. active->linetime = hw->wm_linetime[pipe];
  3024. } else {
  3025. int level, max_level = ilk_wm_max_level(dev);
  3026. /*
  3027. * For inactive pipes, all watermark levels
  3028. * should be marked as enabled but zeroed,
  3029. * which is what we'd compute them to.
  3030. */
  3031. for (level = 0; level <= max_level; level++)
  3032. active->wm[level].enable = true;
  3033. }
  3034. }
  3035. void ilk_wm_get_hw_state(struct drm_device *dev)
  3036. {
  3037. struct drm_i915_private *dev_priv = dev->dev_private;
  3038. struct ilk_wm_values *hw = &dev_priv->wm.hw;
  3039. struct drm_crtc *crtc;
  3040. for_each_crtc(dev, crtc)
  3041. ilk_pipe_wm_get_hw_state(crtc);
  3042. hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
  3043. hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
  3044. hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
  3045. hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
  3046. if (INTEL_INFO(dev)->gen >= 7) {
  3047. hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
  3048. hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
  3049. }
  3050. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  3051. hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
  3052. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  3053. else if (IS_IVYBRIDGE(dev))
  3054. hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
  3055. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  3056. hw->enable_fbc_wm =
  3057. !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
  3058. }
  3059. /**
  3060. * intel_update_watermarks - update FIFO watermark values based on current modes
  3061. *
  3062. * Calculate watermark values for the various WM regs based on current mode
  3063. * and plane configuration.
  3064. *
  3065. * There are several cases to deal with here:
  3066. * - normal (i.e. non-self-refresh)
  3067. * - self-refresh (SR) mode
  3068. * - lines are large relative to FIFO size (buffer can hold up to 2)
  3069. * - lines are small relative to FIFO size (buffer can hold more than 2
  3070. * lines), so need to account for TLB latency
  3071. *
  3072. * The normal calculation is:
  3073. * watermark = dotclock * bytes per pixel * latency
  3074. * where latency is platform & configuration dependent (we assume pessimal
  3075. * values here).
  3076. *
  3077. * The SR calculation is:
  3078. * watermark = (trunc(latency/line time)+1) * surface width *
  3079. * bytes per pixel
  3080. * where
  3081. * line time = htotal / dotclock
  3082. * surface width = hdisplay for normal plane and 64 for cursor
  3083. * and latency is assumed to be high, as above.
  3084. *
  3085. * The final value programmed to the register should always be rounded up,
  3086. * and include an extra 2 entries to account for clock crossings.
  3087. *
  3088. * We don't use the sprite, so we can ignore that. And on Crestline we have
  3089. * to set the non-SR watermarks to 8.
  3090. */
  3091. void intel_update_watermarks(struct drm_crtc *crtc)
  3092. {
  3093. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  3094. if (dev_priv->display.update_wm)
  3095. dev_priv->display.update_wm(crtc);
  3096. }
  3097. void intel_update_sprite_watermarks(struct drm_plane *plane,
  3098. struct drm_crtc *crtc,
  3099. uint32_t sprite_width,
  3100. uint32_t sprite_height,
  3101. int pixel_size,
  3102. bool enabled, bool scaled)
  3103. {
  3104. struct drm_i915_private *dev_priv = plane->dev->dev_private;
  3105. if (dev_priv->display.update_sprite_wm)
  3106. dev_priv->display.update_sprite_wm(plane, crtc,
  3107. sprite_width, sprite_height,
  3108. pixel_size, enabled, scaled);
  3109. }
  3110. /**
  3111. * Lock protecting IPS related data structures
  3112. */
  3113. DEFINE_SPINLOCK(mchdev_lock);
  3114. /* Global for IPS driver to get at the current i915 device. Protected by
  3115. * mchdev_lock. */
  3116. static struct drm_i915_private *i915_mch_dev;
  3117. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  3118. {
  3119. struct drm_i915_private *dev_priv = dev->dev_private;
  3120. u16 rgvswctl;
  3121. assert_spin_locked(&mchdev_lock);
  3122. rgvswctl = I915_READ16(MEMSWCTL);
  3123. if (rgvswctl & MEMCTL_CMD_STS) {
  3124. DRM_DEBUG("gpu busy, RCS change rejected\n");
  3125. return false; /* still busy with another command */
  3126. }
  3127. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  3128. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  3129. I915_WRITE16(MEMSWCTL, rgvswctl);
  3130. POSTING_READ16(MEMSWCTL);
  3131. rgvswctl |= MEMCTL_CMD_STS;
  3132. I915_WRITE16(MEMSWCTL, rgvswctl);
  3133. return true;
  3134. }
  3135. static void ironlake_enable_drps(struct drm_device *dev)
  3136. {
  3137. struct drm_i915_private *dev_priv = dev->dev_private;
  3138. u32 rgvmodectl = I915_READ(MEMMODECTL);
  3139. u8 fmax, fmin, fstart, vstart;
  3140. spin_lock_irq(&mchdev_lock);
  3141. /* Enable temp reporting */
  3142. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  3143. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  3144. /* 100ms RC evaluation intervals */
  3145. I915_WRITE(RCUPEI, 100000);
  3146. I915_WRITE(RCDNEI, 100000);
  3147. /* Set max/min thresholds to 90ms and 80ms respectively */
  3148. I915_WRITE(RCBMAXAVG, 90000);
  3149. I915_WRITE(RCBMINAVG, 80000);
  3150. I915_WRITE(MEMIHYST, 1);
  3151. /* Set up min, max, and cur for interrupt handling */
  3152. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  3153. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  3154. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  3155. MEMMODE_FSTART_SHIFT;
  3156. vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
  3157. PXVFREQ_PX_SHIFT;
  3158. dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
  3159. dev_priv->ips.fstart = fstart;
  3160. dev_priv->ips.max_delay = fstart;
  3161. dev_priv->ips.min_delay = fmin;
  3162. dev_priv->ips.cur_delay = fstart;
  3163. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  3164. fmax, fmin, fstart);
  3165. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  3166. /*
  3167. * Interrupts will be enabled in ironlake_irq_postinstall
  3168. */
  3169. I915_WRITE(VIDSTART, vstart);
  3170. POSTING_READ(VIDSTART);
  3171. rgvmodectl |= MEMMODE_SWMODE_EN;
  3172. I915_WRITE(MEMMODECTL, rgvmodectl);
  3173. if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  3174. DRM_ERROR("stuck trying to change perf mode\n");
  3175. mdelay(1);
  3176. ironlake_set_drps(dev, fstart);
  3177. dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
  3178. I915_READ(0x112e0);
  3179. dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
  3180. dev_priv->ips.last_count2 = I915_READ(0x112f4);
  3181. dev_priv->ips.last_time2 = ktime_get_raw_ns();
  3182. spin_unlock_irq(&mchdev_lock);
  3183. }
  3184. static void ironlake_disable_drps(struct drm_device *dev)
  3185. {
  3186. struct drm_i915_private *dev_priv = dev->dev_private;
  3187. u16 rgvswctl;
  3188. spin_lock_irq(&mchdev_lock);
  3189. rgvswctl = I915_READ16(MEMSWCTL);
  3190. /* Ack interrupts, disable EFC interrupt */
  3191. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  3192. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  3193. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  3194. I915_WRITE(DEIIR, DE_PCU_EVENT);
  3195. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  3196. /* Go back to the starting frequency */
  3197. ironlake_set_drps(dev, dev_priv->ips.fstart);
  3198. mdelay(1);
  3199. rgvswctl |= MEMCTL_CMD_STS;
  3200. I915_WRITE(MEMSWCTL, rgvswctl);
  3201. mdelay(1);
  3202. spin_unlock_irq(&mchdev_lock);
  3203. }
  3204. /* There's a funny hw issue where the hw returns all 0 when reading from
  3205. * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
  3206. * ourselves, instead of doing a rmw cycle (which might result in us clearing
  3207. * all limits and the gpu stuck at whatever frequency it is at atm).
  3208. */
  3209. static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
  3210. {
  3211. u32 limits;
  3212. /* Only set the down limit when we've reached the lowest level to avoid
  3213. * getting more interrupts, otherwise leave this clear. This prevents a
  3214. * race in the hw when coming out of rc6: There's a tiny window where
  3215. * the hw runs at the minimal clock before selecting the desired
  3216. * frequency, if the down threshold expires in that window we will not
  3217. * receive a down interrupt. */
  3218. if (IS_GEN9(dev_priv->dev)) {
  3219. limits = (dev_priv->rps.max_freq_softlimit) << 23;
  3220. if (val <= dev_priv->rps.min_freq_softlimit)
  3221. limits |= (dev_priv->rps.min_freq_softlimit) << 14;
  3222. } else {
  3223. limits = dev_priv->rps.max_freq_softlimit << 24;
  3224. if (val <= dev_priv->rps.min_freq_softlimit)
  3225. limits |= dev_priv->rps.min_freq_softlimit << 16;
  3226. }
  3227. return limits;
  3228. }
  3229. static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
  3230. {
  3231. int new_power;
  3232. u32 threshold_up = 0, threshold_down = 0; /* in % */
  3233. u32 ei_up = 0, ei_down = 0;
  3234. new_power = dev_priv->rps.power;
  3235. switch (dev_priv->rps.power) {
  3236. case LOW_POWER:
  3237. if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
  3238. new_power = BETWEEN;
  3239. break;
  3240. case BETWEEN:
  3241. if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
  3242. new_power = LOW_POWER;
  3243. else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
  3244. new_power = HIGH_POWER;
  3245. break;
  3246. case HIGH_POWER:
  3247. if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
  3248. new_power = BETWEEN;
  3249. break;
  3250. }
  3251. /* Max/min bins are special */
  3252. if (val <= dev_priv->rps.min_freq_softlimit)
  3253. new_power = LOW_POWER;
  3254. if (val >= dev_priv->rps.max_freq_softlimit)
  3255. new_power = HIGH_POWER;
  3256. if (new_power == dev_priv->rps.power)
  3257. return;
  3258. /* Note the units here are not exactly 1us, but 1280ns. */
  3259. switch (new_power) {
  3260. case LOW_POWER:
  3261. /* Upclock if more than 95% busy over 16ms */
  3262. ei_up = 16000;
  3263. threshold_up = 95;
  3264. /* Downclock if less than 85% busy over 32ms */
  3265. ei_down = 32000;
  3266. threshold_down = 85;
  3267. break;
  3268. case BETWEEN:
  3269. /* Upclock if more than 90% busy over 13ms */
  3270. ei_up = 13000;
  3271. threshold_up = 90;
  3272. /* Downclock if less than 75% busy over 32ms */
  3273. ei_down = 32000;
  3274. threshold_down = 75;
  3275. break;
  3276. case HIGH_POWER:
  3277. /* Upclock if more than 85% busy over 10ms */
  3278. ei_up = 10000;
  3279. threshold_up = 85;
  3280. /* Downclock if less than 60% busy over 32ms */
  3281. ei_down = 32000;
  3282. threshold_down = 60;
  3283. break;
  3284. }
  3285. I915_WRITE(GEN6_RP_UP_EI,
  3286. GT_INTERVAL_FROM_US(dev_priv, ei_up));
  3287. I915_WRITE(GEN6_RP_UP_THRESHOLD,
  3288. GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
  3289. I915_WRITE(GEN6_RP_DOWN_EI,
  3290. GT_INTERVAL_FROM_US(dev_priv, ei_down));
  3291. I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
  3292. GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
  3293. I915_WRITE(GEN6_RP_CONTROL,
  3294. GEN6_RP_MEDIA_TURBO |
  3295. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3296. GEN6_RP_MEDIA_IS_GFX |
  3297. GEN6_RP_ENABLE |
  3298. GEN6_RP_UP_BUSY_AVG |
  3299. GEN6_RP_DOWN_IDLE_AVG);
  3300. dev_priv->rps.power = new_power;
  3301. dev_priv->rps.up_threshold = threshold_up;
  3302. dev_priv->rps.down_threshold = threshold_down;
  3303. dev_priv->rps.last_adj = 0;
  3304. }
  3305. static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
  3306. {
  3307. u32 mask = 0;
  3308. if (val > dev_priv->rps.min_freq_softlimit)
  3309. mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
  3310. if (val < dev_priv->rps.max_freq_softlimit)
  3311. mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
  3312. mask &= dev_priv->pm_rps_events;
  3313. return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
  3314. }
  3315. /* gen6_set_rps is called to update the frequency request, but should also be
  3316. * called when the range (min_delay and max_delay) is modified so that we can
  3317. * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
  3318. static void gen6_set_rps(struct drm_device *dev, u8 val)
  3319. {
  3320. struct drm_i915_private *dev_priv = dev->dev_private;
  3321. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3322. WARN_ON(val > dev_priv->rps.max_freq);
  3323. WARN_ON(val < dev_priv->rps.min_freq);
  3324. /* min/max delay may still have been modified so be sure to
  3325. * write the limits value.
  3326. */
  3327. if (val != dev_priv->rps.cur_freq) {
  3328. gen6_set_rps_thresholds(dev_priv, val);
  3329. if (IS_GEN9(dev))
  3330. I915_WRITE(GEN6_RPNSWREQ,
  3331. GEN9_FREQUENCY(val));
  3332. else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  3333. I915_WRITE(GEN6_RPNSWREQ,
  3334. HSW_FREQUENCY(val));
  3335. else
  3336. I915_WRITE(GEN6_RPNSWREQ,
  3337. GEN6_FREQUENCY(val) |
  3338. GEN6_OFFSET(0) |
  3339. GEN6_AGGRESSIVE_TURBO);
  3340. }
  3341. /* Make sure we continue to get interrupts
  3342. * until we hit the minimum or maximum frequencies.
  3343. */
  3344. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
  3345. I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
  3346. POSTING_READ(GEN6_RPNSWREQ);
  3347. dev_priv->rps.cur_freq = val;
  3348. trace_intel_gpu_freq_change(val * 50);
  3349. }
  3350. static void valleyview_set_rps(struct drm_device *dev, u8 val)
  3351. {
  3352. struct drm_i915_private *dev_priv = dev->dev_private;
  3353. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3354. WARN_ON(val > dev_priv->rps.max_freq);
  3355. WARN_ON(val < dev_priv->rps.min_freq);
  3356. if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
  3357. "Odd GPU freq value\n"))
  3358. val &= ~1;
  3359. if (val != dev_priv->rps.cur_freq) {
  3360. vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
  3361. if (!IS_CHERRYVIEW(dev_priv))
  3362. gen6_set_rps_thresholds(dev_priv, val);
  3363. }
  3364. I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
  3365. dev_priv->rps.cur_freq = val;
  3366. trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
  3367. }
  3368. /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
  3369. *
  3370. * * If Gfx is Idle, then
  3371. * 1. Mask Turbo interrupts
  3372. * 2. Bring up Gfx clock
  3373. * 3. Change the freq to Rpn and wait till P-Unit updates freq
  3374. * 4. Clear the Force GFX CLK ON bit so that Gfx can down
  3375. * 5. Unmask Turbo interrupts
  3376. */
  3377. static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
  3378. {
  3379. struct drm_device *dev = dev_priv->dev;
  3380. u32 val = dev_priv->rps.idle_freq;
  3381. /* CHV and latest VLV don't need to force the gfx clock */
  3382. if (IS_CHERRYVIEW(dev) || dev->pdev->revision >= 0xd) {
  3383. valleyview_set_rps(dev_priv->dev, val);
  3384. return;
  3385. }
  3386. /*
  3387. * When we are idle. Drop to min voltage state.
  3388. */
  3389. if (dev_priv->rps.cur_freq <= val)
  3390. return;
  3391. /* Mask turbo interrupt so that they will not come in between */
  3392. I915_WRITE(GEN6_PMINTRMSK,
  3393. gen6_sanitize_rps_pm_mask(dev_priv, ~0));
  3394. vlv_force_gfx_clock(dev_priv, true);
  3395. dev_priv->rps.cur_freq = val;
  3396. vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
  3397. if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
  3398. & GENFREQSTATUS) == 0, 100))
  3399. DRM_ERROR("timed out waiting for Punit\n");
  3400. gen6_set_rps_thresholds(dev_priv, val);
  3401. vlv_force_gfx_clock(dev_priv, false);
  3402. I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
  3403. }
  3404. void gen6_rps_busy(struct drm_i915_private *dev_priv)
  3405. {
  3406. mutex_lock(&dev_priv->rps.hw_lock);
  3407. if (dev_priv->rps.enabled) {
  3408. if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
  3409. gen6_rps_reset_ei(dev_priv);
  3410. I915_WRITE(GEN6_PMINTRMSK,
  3411. gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
  3412. }
  3413. mutex_unlock(&dev_priv->rps.hw_lock);
  3414. }
  3415. void gen6_rps_idle(struct drm_i915_private *dev_priv)
  3416. {
  3417. struct drm_device *dev = dev_priv->dev;
  3418. mutex_lock(&dev_priv->rps.hw_lock);
  3419. if (dev_priv->rps.enabled) {
  3420. if (IS_VALLEYVIEW(dev))
  3421. vlv_set_rps_idle(dev_priv);
  3422. else
  3423. gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
  3424. dev_priv->rps.last_adj = 0;
  3425. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  3426. }
  3427. while (!list_empty(&dev_priv->rps.clients))
  3428. list_del_init(dev_priv->rps.clients.next);
  3429. mutex_unlock(&dev_priv->rps.hw_lock);
  3430. }
  3431. void gen6_rps_boost(struct drm_i915_private *dev_priv,
  3432. struct drm_i915_file_private *file_priv)
  3433. {
  3434. u32 val;
  3435. mutex_lock(&dev_priv->rps.hw_lock);
  3436. val = dev_priv->rps.max_freq_softlimit;
  3437. if (dev_priv->rps.enabled &&
  3438. dev_priv->mm.busy &&
  3439. dev_priv->rps.cur_freq < val &&
  3440. (file_priv == NULL || list_empty(&file_priv->rps_boost))) {
  3441. intel_set_rps(dev_priv->dev, val);
  3442. dev_priv->rps.last_adj = 0;
  3443. if (file_priv != NULL) {
  3444. list_add(&file_priv->rps_boost, &dev_priv->rps.clients);
  3445. file_priv->rps_boosts++;
  3446. } else
  3447. dev_priv->rps.boosts++;
  3448. }
  3449. mutex_unlock(&dev_priv->rps.hw_lock);
  3450. }
  3451. void intel_set_rps(struct drm_device *dev, u8 val)
  3452. {
  3453. if (IS_VALLEYVIEW(dev))
  3454. valleyview_set_rps(dev, val);
  3455. else
  3456. gen6_set_rps(dev, val);
  3457. }
  3458. static void gen9_disable_rps(struct drm_device *dev)
  3459. {
  3460. struct drm_i915_private *dev_priv = dev->dev_private;
  3461. I915_WRITE(GEN6_RC_CONTROL, 0);
  3462. I915_WRITE(GEN9_PG_ENABLE, 0);
  3463. }
  3464. static void gen6_disable_rps(struct drm_device *dev)
  3465. {
  3466. struct drm_i915_private *dev_priv = dev->dev_private;
  3467. I915_WRITE(GEN6_RC_CONTROL, 0);
  3468. I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  3469. }
  3470. static void cherryview_disable_rps(struct drm_device *dev)
  3471. {
  3472. struct drm_i915_private *dev_priv = dev->dev_private;
  3473. I915_WRITE(GEN6_RC_CONTROL, 0);
  3474. }
  3475. static void valleyview_disable_rps(struct drm_device *dev)
  3476. {
  3477. struct drm_i915_private *dev_priv = dev->dev_private;
  3478. /* we're doing forcewake before Disabling RC6,
  3479. * This what the BIOS expects when going into suspend */
  3480. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  3481. I915_WRITE(GEN6_RC_CONTROL, 0);
  3482. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  3483. }
  3484. static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
  3485. {
  3486. if (IS_VALLEYVIEW(dev)) {
  3487. if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
  3488. mode = GEN6_RC_CTL_RC6_ENABLE;
  3489. else
  3490. mode = 0;
  3491. }
  3492. if (HAS_RC6p(dev))
  3493. DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
  3494. (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
  3495. (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
  3496. (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
  3497. else
  3498. DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
  3499. (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
  3500. }
  3501. static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
  3502. {
  3503. /* No RC6 before Ironlake */
  3504. if (INTEL_INFO(dev)->gen < 5)
  3505. return 0;
  3506. /* RC6 is only on Ironlake mobile not on desktop */
  3507. if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
  3508. return 0;
  3509. /* Respect the kernel parameter if it is set */
  3510. if (enable_rc6 >= 0) {
  3511. int mask;
  3512. if (HAS_RC6p(dev))
  3513. mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
  3514. INTEL_RC6pp_ENABLE;
  3515. else
  3516. mask = INTEL_RC6_ENABLE;
  3517. if ((enable_rc6 & mask) != enable_rc6)
  3518. DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
  3519. enable_rc6 & mask, enable_rc6, mask);
  3520. return enable_rc6 & mask;
  3521. }
  3522. /* Disable RC6 on Ironlake */
  3523. if (INTEL_INFO(dev)->gen == 5)
  3524. return 0;
  3525. if (IS_IVYBRIDGE(dev))
  3526. return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
  3527. return INTEL_RC6_ENABLE;
  3528. }
  3529. int intel_enable_rc6(const struct drm_device *dev)
  3530. {
  3531. return i915.enable_rc6;
  3532. }
  3533. static void gen6_init_rps_frequencies(struct drm_device *dev)
  3534. {
  3535. struct drm_i915_private *dev_priv = dev->dev_private;
  3536. uint32_t rp_state_cap;
  3537. u32 ddcc_status = 0;
  3538. int ret;
  3539. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  3540. /* All of these values are in units of 50MHz */
  3541. dev_priv->rps.cur_freq = 0;
  3542. /* static values from HW: RP0 > RP1 > RPn (min_freq) */
  3543. dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
  3544. dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
  3545. dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
  3546. if (IS_SKYLAKE(dev)) {
  3547. /* Store the frequency values in 16.66 MHZ units, which is
  3548. the natural hardware unit for SKL */
  3549. dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
  3550. dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
  3551. dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
  3552. }
  3553. /* hw_max = RP0 until we check for overclocking */
  3554. dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
  3555. dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
  3556. if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  3557. ret = sandybridge_pcode_read(dev_priv,
  3558. HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
  3559. &ddcc_status);
  3560. if (0 == ret)
  3561. dev_priv->rps.efficient_freq =
  3562. clamp_t(u8,
  3563. ((ddcc_status >> 8) & 0xff),
  3564. dev_priv->rps.min_freq,
  3565. dev_priv->rps.max_freq);
  3566. }
  3567. dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
  3568. /* Preserve min/max settings in case of re-init */
  3569. if (dev_priv->rps.max_freq_softlimit == 0)
  3570. dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  3571. if (dev_priv->rps.min_freq_softlimit == 0) {
  3572. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  3573. dev_priv->rps.min_freq_softlimit =
  3574. /* max(RPe, 450 MHz) */
  3575. max(dev_priv->rps.efficient_freq, (u8) 9);
  3576. else
  3577. dev_priv->rps.min_freq_softlimit =
  3578. dev_priv->rps.min_freq;
  3579. }
  3580. }
  3581. /* See the Gen9_GT_PM_Programming_Guide doc for the below */
  3582. static void gen9_enable_rps(struct drm_device *dev)
  3583. {
  3584. struct drm_i915_private *dev_priv = dev->dev_private;
  3585. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  3586. gen6_init_rps_frequencies(dev);
  3587. /* Program defaults and thresholds for RPS*/
  3588. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  3589. GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
  3590. /* 1 second timeout*/
  3591. I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
  3592. GT_INTERVAL_FROM_US(dev_priv, 1000000));
  3593. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
  3594. /* Leaning on the below call to gen6_set_rps to program/setup the
  3595. * Up/Down EI & threshold registers, as well as the RP_CONTROL,
  3596. * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
  3597. dev_priv->rps.power = HIGH_POWER; /* force a reset */
  3598. gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
  3599. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  3600. }
  3601. static void gen9_enable_rc6(struct drm_device *dev)
  3602. {
  3603. struct drm_i915_private *dev_priv = dev->dev_private;
  3604. struct intel_engine_cs *ring;
  3605. uint32_t rc6_mask = 0;
  3606. int unused;
  3607. /* 1a: Software RC state - RC0 */
  3608. I915_WRITE(GEN6_RC_STATE, 0);
  3609. /* 1b: Get forcewake during program sequence. Although the driver
  3610. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  3611. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  3612. /* 2a: Disable RC states. */
  3613. I915_WRITE(GEN6_RC_CONTROL, 0);
  3614. /* 2b: Program RC6 thresholds.*/
  3615. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
  3616. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  3617. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  3618. for_each_ring(ring, dev_priv, unused)
  3619. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3620. I915_WRITE(GEN6_RC_SLEEP, 0);
  3621. I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
  3622. /* 2c: Program Coarse Power Gating Policies. */
  3623. I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
  3624. I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
  3625. /* 3a: Enable RC6 */
  3626. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  3627. rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
  3628. DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
  3629. "on" : "off");
  3630. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  3631. GEN6_RC_CTL_EI_MODE(1) |
  3632. rc6_mask);
  3633. /*
  3634. * 3b: Enable Coarse Power Gating only when RC6 is enabled.
  3635. * WaDisableRenderPowerGating:skl,bxt - Render PG need to be disabled with RC6.
  3636. */
  3637. I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
  3638. GEN9_MEDIA_PG_ENABLE : 0);
  3639. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  3640. }
  3641. static void gen8_enable_rps(struct drm_device *dev)
  3642. {
  3643. struct drm_i915_private *dev_priv = dev->dev_private;
  3644. struct intel_engine_cs *ring;
  3645. uint32_t rc6_mask = 0;
  3646. int unused;
  3647. /* 1a: Software RC state - RC0 */
  3648. I915_WRITE(GEN6_RC_STATE, 0);
  3649. /* 1c & 1d: Get forcewake during program sequence. Although the driver
  3650. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  3651. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  3652. /* 2a: Disable RC states. */
  3653. I915_WRITE(GEN6_RC_CONTROL, 0);
  3654. /* Initialize rps frequencies */
  3655. gen6_init_rps_frequencies(dev);
  3656. /* 2b: Program RC6 thresholds.*/
  3657. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
  3658. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  3659. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  3660. for_each_ring(ring, dev_priv, unused)
  3661. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3662. I915_WRITE(GEN6_RC_SLEEP, 0);
  3663. if (IS_BROADWELL(dev))
  3664. I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
  3665. else
  3666. I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
  3667. /* 3: Enable RC6 */
  3668. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  3669. rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
  3670. intel_print_rc6_info(dev, rc6_mask);
  3671. if (IS_BROADWELL(dev))
  3672. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  3673. GEN7_RC_CTL_TO_MODE |
  3674. rc6_mask);
  3675. else
  3676. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  3677. GEN6_RC_CTL_EI_MODE(1) |
  3678. rc6_mask);
  3679. /* 4 Program defaults and thresholds for RPS*/
  3680. I915_WRITE(GEN6_RPNSWREQ,
  3681. HSW_FREQUENCY(dev_priv->rps.rp1_freq));
  3682. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  3683. HSW_FREQUENCY(dev_priv->rps.rp1_freq));
  3684. /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
  3685. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
  3686. /* Docs recommend 900MHz, and 300 MHz respectively */
  3687. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
  3688. dev_priv->rps.max_freq_softlimit << 24 |
  3689. dev_priv->rps.min_freq_softlimit << 16);
  3690. I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
  3691. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
  3692. I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
  3693. I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
  3694. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3695. /* 5: Enable RPS */
  3696. I915_WRITE(GEN6_RP_CONTROL,
  3697. GEN6_RP_MEDIA_TURBO |
  3698. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3699. GEN6_RP_MEDIA_IS_GFX |
  3700. GEN6_RP_ENABLE |
  3701. GEN6_RP_UP_BUSY_AVG |
  3702. GEN6_RP_DOWN_IDLE_AVG);
  3703. /* 6: Ring frequency + overclocking (our driver does this later */
  3704. dev_priv->rps.power = HIGH_POWER; /* force a reset */
  3705. gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
  3706. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  3707. }
  3708. static void gen6_enable_rps(struct drm_device *dev)
  3709. {
  3710. struct drm_i915_private *dev_priv = dev->dev_private;
  3711. struct intel_engine_cs *ring;
  3712. u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
  3713. u32 gtfifodbg;
  3714. int rc6_mode;
  3715. int i, ret;
  3716. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3717. /* Here begins a magic sequence of register writes to enable
  3718. * auto-downclocking.
  3719. *
  3720. * Perhaps there might be some value in exposing these to
  3721. * userspace...
  3722. */
  3723. I915_WRITE(GEN6_RC_STATE, 0);
  3724. /* Clear the DBG now so we don't confuse earlier errors */
  3725. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  3726. DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
  3727. I915_WRITE(GTFIFODBG, gtfifodbg);
  3728. }
  3729. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  3730. /* Initialize rps frequencies */
  3731. gen6_init_rps_frequencies(dev);
  3732. /* disable the counters and set deterministic thresholds */
  3733. I915_WRITE(GEN6_RC_CONTROL, 0);
  3734. I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  3735. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  3736. I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  3737. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  3738. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  3739. for_each_ring(ring, dev_priv, i)
  3740. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3741. I915_WRITE(GEN6_RC_SLEEP, 0);
  3742. I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  3743. if (IS_IVYBRIDGE(dev))
  3744. I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
  3745. else
  3746. I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  3747. I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
  3748. I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  3749. /* Check if we are enabling RC6 */
  3750. rc6_mode = intel_enable_rc6(dev_priv->dev);
  3751. if (rc6_mode & INTEL_RC6_ENABLE)
  3752. rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
  3753. /* We don't use those on Haswell */
  3754. if (!IS_HASWELL(dev)) {
  3755. if (rc6_mode & INTEL_RC6p_ENABLE)
  3756. rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
  3757. if (rc6_mode & INTEL_RC6pp_ENABLE)
  3758. rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
  3759. }
  3760. intel_print_rc6_info(dev, rc6_mask);
  3761. I915_WRITE(GEN6_RC_CONTROL,
  3762. rc6_mask |
  3763. GEN6_RC_CTL_EI_MODE(1) |
  3764. GEN6_RC_CTL_HW_ENABLE);
  3765. /* Power down if completely idle for over 50ms */
  3766. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
  3767. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3768. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
  3769. if (ret)
  3770. DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
  3771. ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
  3772. if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
  3773. DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
  3774. (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
  3775. (pcu_mbox & 0xff) * 50);
  3776. dev_priv->rps.max_freq = pcu_mbox & 0xff;
  3777. }
  3778. dev_priv->rps.power = HIGH_POWER; /* force a reset */
  3779. gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
  3780. rc6vids = 0;
  3781. ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  3782. if (IS_GEN6(dev) && ret) {
  3783. DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
  3784. } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
  3785. DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
  3786. GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
  3787. rc6vids &= 0xffff00;
  3788. rc6vids |= GEN6_ENCODE_RC6_VID(450);
  3789. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
  3790. if (ret)
  3791. DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
  3792. }
  3793. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  3794. }
  3795. static void __gen6_update_ring_freq(struct drm_device *dev)
  3796. {
  3797. struct drm_i915_private *dev_priv = dev->dev_private;
  3798. int min_freq = 15;
  3799. unsigned int gpu_freq;
  3800. unsigned int max_ia_freq, min_ring_freq;
  3801. int scaling_factor = 180;
  3802. struct cpufreq_policy *policy;
  3803. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3804. policy = cpufreq_cpu_get(0);
  3805. if (policy) {
  3806. max_ia_freq = policy->cpuinfo.max_freq;
  3807. cpufreq_cpu_put(policy);
  3808. } else {
  3809. /*
  3810. * Default to measured freq if none found, PCU will ensure we
  3811. * don't go over
  3812. */
  3813. max_ia_freq = tsc_khz;
  3814. }
  3815. /* Convert from kHz to MHz */
  3816. max_ia_freq /= 1000;
  3817. min_ring_freq = I915_READ(DCLK) & 0xf;
  3818. /* convert DDR frequency from units of 266.6MHz to bandwidth */
  3819. min_ring_freq = mult_frac(min_ring_freq, 8, 3);
  3820. /*
  3821. * For each potential GPU frequency, load a ring frequency we'd like
  3822. * to use for memory access. We do this by specifying the IA frequency
  3823. * the PCU should use as a reference to determine the ring frequency.
  3824. */
  3825. for (gpu_freq = dev_priv->rps.max_freq; gpu_freq >= dev_priv->rps.min_freq;
  3826. gpu_freq--) {
  3827. int diff = dev_priv->rps.max_freq - gpu_freq;
  3828. unsigned int ia_freq = 0, ring_freq = 0;
  3829. if (INTEL_INFO(dev)->gen >= 8) {
  3830. /* max(2 * GT, DDR). NB: GT is 50MHz units */
  3831. ring_freq = max(min_ring_freq, gpu_freq);
  3832. } else if (IS_HASWELL(dev)) {
  3833. ring_freq = mult_frac(gpu_freq, 5, 4);
  3834. ring_freq = max(min_ring_freq, ring_freq);
  3835. /* leave ia_freq as the default, chosen by cpufreq */
  3836. } else {
  3837. /* On older processors, there is no separate ring
  3838. * clock domain, so in order to boost the bandwidth
  3839. * of the ring, we need to upclock the CPU (ia_freq).
  3840. *
  3841. * For GPU frequencies less than 750MHz,
  3842. * just use the lowest ring freq.
  3843. */
  3844. if (gpu_freq < min_freq)
  3845. ia_freq = 800;
  3846. else
  3847. ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
  3848. ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
  3849. }
  3850. sandybridge_pcode_write(dev_priv,
  3851. GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
  3852. ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
  3853. ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
  3854. gpu_freq);
  3855. }
  3856. }
  3857. void gen6_update_ring_freq(struct drm_device *dev)
  3858. {
  3859. struct drm_i915_private *dev_priv = dev->dev_private;
  3860. if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
  3861. return;
  3862. mutex_lock(&dev_priv->rps.hw_lock);
  3863. __gen6_update_ring_freq(dev);
  3864. mutex_unlock(&dev_priv->rps.hw_lock);
  3865. }
  3866. static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
  3867. {
  3868. struct drm_device *dev = dev_priv->dev;
  3869. u32 val, rp0;
  3870. if (dev->pdev->revision >= 0x20) {
  3871. val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
  3872. switch (INTEL_INFO(dev)->eu_total) {
  3873. case 8:
  3874. /* (2 * 4) config */
  3875. rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
  3876. break;
  3877. case 12:
  3878. /* (2 * 6) config */
  3879. rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
  3880. break;
  3881. case 16:
  3882. /* (2 * 8) config */
  3883. default:
  3884. /* Setting (2 * 8) Min RP0 for any other combination */
  3885. rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
  3886. break;
  3887. }
  3888. rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
  3889. } else {
  3890. /* For pre-production hardware */
  3891. val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
  3892. rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
  3893. PUNIT_GPU_STATUS_MAX_FREQ_MASK;
  3894. }
  3895. return rp0;
  3896. }
  3897. static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  3898. {
  3899. u32 val, rpe;
  3900. val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
  3901. rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
  3902. return rpe;
  3903. }
  3904. static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
  3905. {
  3906. struct drm_device *dev = dev_priv->dev;
  3907. u32 val, rp1;
  3908. if (dev->pdev->revision >= 0x20) {
  3909. val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
  3910. rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
  3911. } else {
  3912. /* For pre-production hardware */
  3913. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  3914. rp1 = ((val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
  3915. PUNIT_GPU_STATUS_MAX_FREQ_MASK);
  3916. }
  3917. return rp1;
  3918. }
  3919. static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
  3920. {
  3921. struct drm_device *dev = dev_priv->dev;
  3922. u32 val, rpn;
  3923. if (dev->pdev->revision >= 0x20) {
  3924. val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
  3925. rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
  3926. FB_GFX_FREQ_FUSE_MASK);
  3927. } else { /* For pre-production hardware */
  3928. val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
  3929. rpn = ((val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) &
  3930. PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK);
  3931. }
  3932. return rpn;
  3933. }
  3934. static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
  3935. {
  3936. u32 val, rp1;
  3937. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  3938. rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
  3939. return rp1;
  3940. }
  3941. static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
  3942. {
  3943. u32 val, rp0;
  3944. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  3945. rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
  3946. /* Clamp to max */
  3947. rp0 = min_t(u32, rp0, 0xea);
  3948. return rp0;
  3949. }
  3950. static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  3951. {
  3952. u32 val, rpe;
  3953. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
  3954. rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
  3955. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
  3956. rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
  3957. return rpe;
  3958. }
  3959. static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
  3960. {
  3961. return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
  3962. }
  3963. /* Check that the pctx buffer wasn't move under us. */
  3964. static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
  3965. {
  3966. unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
  3967. WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
  3968. dev_priv->vlv_pctx->stolen->start);
  3969. }
  3970. /* Check that the pcbr address is not empty. */
  3971. static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
  3972. {
  3973. unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
  3974. WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
  3975. }
  3976. static void cherryview_setup_pctx(struct drm_device *dev)
  3977. {
  3978. struct drm_i915_private *dev_priv = dev->dev_private;
  3979. unsigned long pctx_paddr, paddr;
  3980. struct i915_gtt *gtt = &dev_priv->gtt;
  3981. u32 pcbr;
  3982. int pctx_size = 32*1024;
  3983. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  3984. pcbr = I915_READ(VLV_PCBR);
  3985. if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
  3986. DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
  3987. paddr = (dev_priv->mm.stolen_base +
  3988. (gtt->stolen_size - pctx_size));
  3989. pctx_paddr = (paddr & (~4095));
  3990. I915_WRITE(VLV_PCBR, pctx_paddr);
  3991. }
  3992. DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
  3993. }
  3994. static void valleyview_setup_pctx(struct drm_device *dev)
  3995. {
  3996. struct drm_i915_private *dev_priv = dev->dev_private;
  3997. struct drm_i915_gem_object *pctx;
  3998. unsigned long pctx_paddr;
  3999. u32 pcbr;
  4000. int pctx_size = 24*1024;
  4001. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  4002. pcbr = I915_READ(VLV_PCBR);
  4003. if (pcbr) {
  4004. /* BIOS set it up already, grab the pre-alloc'd space */
  4005. int pcbr_offset;
  4006. pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
  4007. pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
  4008. pcbr_offset,
  4009. I915_GTT_OFFSET_NONE,
  4010. pctx_size);
  4011. goto out;
  4012. }
  4013. DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
  4014. /*
  4015. * From the Gunit register HAS:
  4016. * The Gfx driver is expected to program this register and ensure
  4017. * proper allocation within Gfx stolen memory. For example, this
  4018. * register should be programmed such than the PCBR range does not
  4019. * overlap with other ranges, such as the frame buffer, protected
  4020. * memory, or any other relevant ranges.
  4021. */
  4022. pctx = i915_gem_object_create_stolen(dev, pctx_size);
  4023. if (!pctx) {
  4024. DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
  4025. return;
  4026. }
  4027. pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
  4028. I915_WRITE(VLV_PCBR, pctx_paddr);
  4029. out:
  4030. DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
  4031. dev_priv->vlv_pctx = pctx;
  4032. }
  4033. static void valleyview_cleanup_pctx(struct drm_device *dev)
  4034. {
  4035. struct drm_i915_private *dev_priv = dev->dev_private;
  4036. if (WARN_ON(!dev_priv->vlv_pctx))
  4037. return;
  4038. drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
  4039. dev_priv->vlv_pctx = NULL;
  4040. }
  4041. static void valleyview_init_gt_powersave(struct drm_device *dev)
  4042. {
  4043. struct drm_i915_private *dev_priv = dev->dev_private;
  4044. u32 val;
  4045. valleyview_setup_pctx(dev);
  4046. mutex_lock(&dev_priv->rps.hw_lock);
  4047. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  4048. switch ((val >> 6) & 3) {
  4049. case 0:
  4050. case 1:
  4051. dev_priv->mem_freq = 800;
  4052. break;
  4053. case 2:
  4054. dev_priv->mem_freq = 1066;
  4055. break;
  4056. case 3:
  4057. dev_priv->mem_freq = 1333;
  4058. break;
  4059. }
  4060. DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
  4061. dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
  4062. dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
  4063. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  4064. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
  4065. dev_priv->rps.max_freq);
  4066. dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
  4067. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  4068. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  4069. dev_priv->rps.efficient_freq);
  4070. dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
  4071. DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
  4072. intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
  4073. dev_priv->rps.rp1_freq);
  4074. dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
  4075. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  4076. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  4077. dev_priv->rps.min_freq);
  4078. dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
  4079. /* Preserve min/max settings in case of re-init */
  4080. if (dev_priv->rps.max_freq_softlimit == 0)
  4081. dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  4082. if (dev_priv->rps.min_freq_softlimit == 0)
  4083. dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
  4084. mutex_unlock(&dev_priv->rps.hw_lock);
  4085. }
  4086. static void cherryview_init_gt_powersave(struct drm_device *dev)
  4087. {
  4088. struct drm_i915_private *dev_priv = dev->dev_private;
  4089. u32 val;
  4090. cherryview_setup_pctx(dev);
  4091. mutex_lock(&dev_priv->rps.hw_lock);
  4092. mutex_lock(&dev_priv->dpio_lock);
  4093. val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
  4094. mutex_unlock(&dev_priv->dpio_lock);
  4095. switch ((val >> 2) & 0x7) {
  4096. case 0:
  4097. case 1:
  4098. dev_priv->rps.cz_freq = 200;
  4099. dev_priv->mem_freq = 1600;
  4100. break;
  4101. case 2:
  4102. dev_priv->rps.cz_freq = 267;
  4103. dev_priv->mem_freq = 1600;
  4104. break;
  4105. case 3:
  4106. dev_priv->rps.cz_freq = 333;
  4107. dev_priv->mem_freq = 2000;
  4108. break;
  4109. case 4:
  4110. dev_priv->rps.cz_freq = 320;
  4111. dev_priv->mem_freq = 1600;
  4112. break;
  4113. case 5:
  4114. dev_priv->rps.cz_freq = 400;
  4115. dev_priv->mem_freq = 1600;
  4116. break;
  4117. }
  4118. DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
  4119. dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
  4120. dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
  4121. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  4122. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
  4123. dev_priv->rps.max_freq);
  4124. dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
  4125. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  4126. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  4127. dev_priv->rps.efficient_freq);
  4128. dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
  4129. DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
  4130. intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
  4131. dev_priv->rps.rp1_freq);
  4132. dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
  4133. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  4134. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  4135. dev_priv->rps.min_freq);
  4136. WARN_ONCE((dev_priv->rps.max_freq |
  4137. dev_priv->rps.efficient_freq |
  4138. dev_priv->rps.rp1_freq |
  4139. dev_priv->rps.min_freq) & 1,
  4140. "Odd GPU freq values\n");
  4141. dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
  4142. /* Preserve min/max settings in case of re-init */
  4143. if (dev_priv->rps.max_freq_softlimit == 0)
  4144. dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  4145. if (dev_priv->rps.min_freq_softlimit == 0)
  4146. dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
  4147. mutex_unlock(&dev_priv->rps.hw_lock);
  4148. }
  4149. static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
  4150. {
  4151. valleyview_cleanup_pctx(dev);
  4152. }
  4153. static void cherryview_enable_rps(struct drm_device *dev)
  4154. {
  4155. struct drm_i915_private *dev_priv = dev->dev_private;
  4156. struct intel_engine_cs *ring;
  4157. u32 gtfifodbg, val, rc6_mode = 0, pcbr;
  4158. int i;
  4159. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4160. gtfifodbg = I915_READ(GTFIFODBG);
  4161. if (gtfifodbg) {
  4162. DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  4163. gtfifodbg);
  4164. I915_WRITE(GTFIFODBG, gtfifodbg);
  4165. }
  4166. cherryview_check_pctx(dev_priv);
  4167. /* 1a & 1b: Get forcewake during program sequence. Although the driver
  4168. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  4169. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4170. /* Disable RC states. */
  4171. I915_WRITE(GEN6_RC_CONTROL, 0);
  4172. /* 2a: Program RC6 thresholds.*/
  4173. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
  4174. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  4175. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  4176. for_each_ring(ring, dev_priv, i)
  4177. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  4178. I915_WRITE(GEN6_RC_SLEEP, 0);
  4179. /* TO threshold set to 1750 us ( 0x557 * 1.28 us) */
  4180. I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
  4181. /* allows RC6 residency counter to work */
  4182. I915_WRITE(VLV_COUNTER_CONTROL,
  4183. _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
  4184. VLV_MEDIA_RC6_COUNT_EN |
  4185. VLV_RENDER_RC6_COUNT_EN));
  4186. /* For now we assume BIOS is allocating and populating the PCBR */
  4187. pcbr = I915_READ(VLV_PCBR);
  4188. /* 3: Enable RC6 */
  4189. if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
  4190. (pcbr >> VLV_PCBR_ADDR_SHIFT))
  4191. rc6_mode = GEN7_RC_CTL_TO_MODE;
  4192. I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  4193. /* 4 Program defaults and thresholds for RPS*/
  4194. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
  4195. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  4196. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  4197. I915_WRITE(GEN6_RP_UP_EI, 66000);
  4198. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  4199. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  4200. /* 5: Enable RPS */
  4201. I915_WRITE(GEN6_RP_CONTROL,
  4202. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  4203. GEN6_RP_MEDIA_IS_GFX |
  4204. GEN6_RP_ENABLE |
  4205. GEN6_RP_UP_BUSY_AVG |
  4206. GEN6_RP_DOWN_IDLE_AVG);
  4207. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  4208. /* RPS code assumes GPLL is used */
  4209. WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
  4210. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
  4211. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  4212. dev_priv->rps.cur_freq = (val >> 8) & 0xff;
  4213. DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
  4214. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
  4215. dev_priv->rps.cur_freq);
  4216. DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
  4217. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  4218. dev_priv->rps.efficient_freq);
  4219. valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
  4220. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4221. }
  4222. static void valleyview_enable_rps(struct drm_device *dev)
  4223. {
  4224. struct drm_i915_private *dev_priv = dev->dev_private;
  4225. struct intel_engine_cs *ring;
  4226. u32 gtfifodbg, val, rc6_mode = 0;
  4227. int i;
  4228. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4229. valleyview_check_pctx(dev_priv);
  4230. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  4231. DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  4232. gtfifodbg);
  4233. I915_WRITE(GTFIFODBG, gtfifodbg);
  4234. }
  4235. /* If VLV, Forcewake all wells, else re-direct to regular path */
  4236. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4237. /* Disable RC states. */
  4238. I915_WRITE(GEN6_RC_CONTROL, 0);
  4239. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
  4240. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  4241. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  4242. I915_WRITE(GEN6_RP_UP_EI, 66000);
  4243. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  4244. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  4245. I915_WRITE(GEN6_RP_CONTROL,
  4246. GEN6_RP_MEDIA_TURBO |
  4247. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  4248. GEN6_RP_MEDIA_IS_GFX |
  4249. GEN6_RP_ENABLE |
  4250. GEN6_RP_UP_BUSY_AVG |
  4251. GEN6_RP_DOWN_IDLE_CONT);
  4252. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
  4253. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  4254. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  4255. for_each_ring(ring, dev_priv, i)
  4256. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  4257. I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
  4258. /* allows RC6 residency counter to work */
  4259. I915_WRITE(VLV_COUNTER_CONTROL,
  4260. _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
  4261. VLV_RENDER_RC0_COUNT_EN |
  4262. VLV_MEDIA_RC6_COUNT_EN |
  4263. VLV_RENDER_RC6_COUNT_EN));
  4264. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  4265. rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
  4266. intel_print_rc6_info(dev, rc6_mode);
  4267. I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  4268. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  4269. /* RPS code assumes GPLL is used */
  4270. WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
  4271. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
  4272. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  4273. dev_priv->rps.cur_freq = (val >> 8) & 0xff;
  4274. DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
  4275. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
  4276. dev_priv->rps.cur_freq);
  4277. DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
  4278. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  4279. dev_priv->rps.efficient_freq);
  4280. valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
  4281. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4282. }
  4283. static unsigned long intel_pxfreq(u32 vidfreq)
  4284. {
  4285. unsigned long freq;
  4286. int div = (vidfreq & 0x3f0000) >> 16;
  4287. int post = (vidfreq & 0x3000) >> 12;
  4288. int pre = (vidfreq & 0x7);
  4289. if (!pre)
  4290. return 0;
  4291. freq = ((div * 133333) / ((1<<post) * pre));
  4292. return freq;
  4293. }
  4294. static const struct cparams {
  4295. u16 i;
  4296. u16 t;
  4297. u16 m;
  4298. u16 c;
  4299. } cparams[] = {
  4300. { 1, 1333, 301, 28664 },
  4301. { 1, 1066, 294, 24460 },
  4302. { 1, 800, 294, 25192 },
  4303. { 0, 1333, 276, 27605 },
  4304. { 0, 1066, 276, 27605 },
  4305. { 0, 800, 231, 23784 },
  4306. };
  4307. static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
  4308. {
  4309. u64 total_count, diff, ret;
  4310. u32 count1, count2, count3, m = 0, c = 0;
  4311. unsigned long now = jiffies_to_msecs(jiffies), diff1;
  4312. int i;
  4313. assert_spin_locked(&mchdev_lock);
  4314. diff1 = now - dev_priv->ips.last_time1;
  4315. /* Prevent division-by-zero if we are asking too fast.
  4316. * Also, we don't get interesting results if we are polling
  4317. * faster than once in 10ms, so just return the saved value
  4318. * in such cases.
  4319. */
  4320. if (diff1 <= 10)
  4321. return dev_priv->ips.chipset_power;
  4322. count1 = I915_READ(DMIEC);
  4323. count2 = I915_READ(DDREC);
  4324. count3 = I915_READ(CSIEC);
  4325. total_count = count1 + count2 + count3;
  4326. /* FIXME: handle per-counter overflow */
  4327. if (total_count < dev_priv->ips.last_count1) {
  4328. diff = ~0UL - dev_priv->ips.last_count1;
  4329. diff += total_count;
  4330. } else {
  4331. diff = total_count - dev_priv->ips.last_count1;
  4332. }
  4333. for (i = 0; i < ARRAY_SIZE(cparams); i++) {
  4334. if (cparams[i].i == dev_priv->ips.c_m &&
  4335. cparams[i].t == dev_priv->ips.r_t) {
  4336. m = cparams[i].m;
  4337. c = cparams[i].c;
  4338. break;
  4339. }
  4340. }
  4341. diff = div_u64(diff, diff1);
  4342. ret = ((m * diff) + c);
  4343. ret = div_u64(ret, 10);
  4344. dev_priv->ips.last_count1 = total_count;
  4345. dev_priv->ips.last_time1 = now;
  4346. dev_priv->ips.chipset_power = ret;
  4347. return ret;
  4348. }
  4349. unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
  4350. {
  4351. struct drm_device *dev = dev_priv->dev;
  4352. unsigned long val;
  4353. if (INTEL_INFO(dev)->gen != 5)
  4354. return 0;
  4355. spin_lock_irq(&mchdev_lock);
  4356. val = __i915_chipset_val(dev_priv);
  4357. spin_unlock_irq(&mchdev_lock);
  4358. return val;
  4359. }
  4360. unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
  4361. {
  4362. unsigned long m, x, b;
  4363. u32 tsfs;
  4364. tsfs = I915_READ(TSFS);
  4365. m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
  4366. x = I915_READ8(TR1);
  4367. b = tsfs & TSFS_INTR_MASK;
  4368. return ((m * x) / 127) - b;
  4369. }
  4370. static int _pxvid_to_vd(u8 pxvid)
  4371. {
  4372. if (pxvid == 0)
  4373. return 0;
  4374. if (pxvid >= 8 && pxvid < 31)
  4375. pxvid = 31;
  4376. return (pxvid + 2) * 125;
  4377. }
  4378. static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
  4379. {
  4380. struct drm_device *dev = dev_priv->dev;
  4381. const int vd = _pxvid_to_vd(pxvid);
  4382. const int vm = vd - 1125;
  4383. if (INTEL_INFO(dev)->is_mobile)
  4384. return vm > 0 ? vm : 0;
  4385. return vd;
  4386. }
  4387. static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
  4388. {
  4389. u64 now, diff, diffms;
  4390. u32 count;
  4391. assert_spin_locked(&mchdev_lock);
  4392. now = ktime_get_raw_ns();
  4393. diffms = now - dev_priv->ips.last_time2;
  4394. do_div(diffms, NSEC_PER_MSEC);
  4395. /* Don't divide by 0 */
  4396. if (!diffms)
  4397. return;
  4398. count = I915_READ(GFXEC);
  4399. if (count < dev_priv->ips.last_count2) {
  4400. diff = ~0UL - dev_priv->ips.last_count2;
  4401. diff += count;
  4402. } else {
  4403. diff = count - dev_priv->ips.last_count2;
  4404. }
  4405. dev_priv->ips.last_count2 = count;
  4406. dev_priv->ips.last_time2 = now;
  4407. /* More magic constants... */
  4408. diff = diff * 1181;
  4409. diff = div_u64(diff, diffms * 10);
  4410. dev_priv->ips.gfx_power = diff;
  4411. }
  4412. void i915_update_gfx_val(struct drm_i915_private *dev_priv)
  4413. {
  4414. struct drm_device *dev = dev_priv->dev;
  4415. if (INTEL_INFO(dev)->gen != 5)
  4416. return;
  4417. spin_lock_irq(&mchdev_lock);
  4418. __i915_update_gfx_val(dev_priv);
  4419. spin_unlock_irq(&mchdev_lock);
  4420. }
  4421. static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
  4422. {
  4423. unsigned long t, corr, state1, corr2, state2;
  4424. u32 pxvid, ext_v;
  4425. assert_spin_locked(&mchdev_lock);
  4426. pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
  4427. pxvid = (pxvid >> 24) & 0x7f;
  4428. ext_v = pvid_to_extvid(dev_priv, pxvid);
  4429. state1 = ext_v;
  4430. t = i915_mch_val(dev_priv);
  4431. /* Revel in the empirically derived constants */
  4432. /* Correction factor in 1/100000 units */
  4433. if (t > 80)
  4434. corr = ((t * 2349) + 135940);
  4435. else if (t >= 50)
  4436. corr = ((t * 964) + 29317);
  4437. else /* < 50 */
  4438. corr = ((t * 301) + 1004);
  4439. corr = corr * ((150142 * state1) / 10000 - 78642);
  4440. corr /= 100000;
  4441. corr2 = (corr * dev_priv->ips.corr);
  4442. state2 = (corr2 * state1) / 10000;
  4443. state2 /= 100; /* convert to mW */
  4444. __i915_update_gfx_val(dev_priv);
  4445. return dev_priv->ips.gfx_power + state2;
  4446. }
  4447. unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
  4448. {
  4449. struct drm_device *dev = dev_priv->dev;
  4450. unsigned long val;
  4451. if (INTEL_INFO(dev)->gen != 5)
  4452. return 0;
  4453. spin_lock_irq(&mchdev_lock);
  4454. val = __i915_gfx_val(dev_priv);
  4455. spin_unlock_irq(&mchdev_lock);
  4456. return val;
  4457. }
  4458. /**
  4459. * i915_read_mch_val - return value for IPS use
  4460. *
  4461. * Calculate and return a value for the IPS driver to use when deciding whether
  4462. * we have thermal and power headroom to increase CPU or GPU power budget.
  4463. */
  4464. unsigned long i915_read_mch_val(void)
  4465. {
  4466. struct drm_i915_private *dev_priv;
  4467. unsigned long chipset_val, graphics_val, ret = 0;
  4468. spin_lock_irq(&mchdev_lock);
  4469. if (!i915_mch_dev)
  4470. goto out_unlock;
  4471. dev_priv = i915_mch_dev;
  4472. chipset_val = __i915_chipset_val(dev_priv);
  4473. graphics_val = __i915_gfx_val(dev_priv);
  4474. ret = chipset_val + graphics_val;
  4475. out_unlock:
  4476. spin_unlock_irq(&mchdev_lock);
  4477. return ret;
  4478. }
  4479. EXPORT_SYMBOL_GPL(i915_read_mch_val);
  4480. /**
  4481. * i915_gpu_raise - raise GPU frequency limit
  4482. *
  4483. * Raise the limit; IPS indicates we have thermal headroom.
  4484. */
  4485. bool i915_gpu_raise(void)
  4486. {
  4487. struct drm_i915_private *dev_priv;
  4488. bool ret = true;
  4489. spin_lock_irq(&mchdev_lock);
  4490. if (!i915_mch_dev) {
  4491. ret = false;
  4492. goto out_unlock;
  4493. }
  4494. dev_priv = i915_mch_dev;
  4495. if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
  4496. dev_priv->ips.max_delay--;
  4497. out_unlock:
  4498. spin_unlock_irq(&mchdev_lock);
  4499. return ret;
  4500. }
  4501. EXPORT_SYMBOL_GPL(i915_gpu_raise);
  4502. /**
  4503. * i915_gpu_lower - lower GPU frequency limit
  4504. *
  4505. * IPS indicates we're close to a thermal limit, so throttle back the GPU
  4506. * frequency maximum.
  4507. */
  4508. bool i915_gpu_lower(void)
  4509. {
  4510. struct drm_i915_private *dev_priv;
  4511. bool ret = true;
  4512. spin_lock_irq(&mchdev_lock);
  4513. if (!i915_mch_dev) {
  4514. ret = false;
  4515. goto out_unlock;
  4516. }
  4517. dev_priv = i915_mch_dev;
  4518. if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
  4519. dev_priv->ips.max_delay++;
  4520. out_unlock:
  4521. spin_unlock_irq(&mchdev_lock);
  4522. return ret;
  4523. }
  4524. EXPORT_SYMBOL_GPL(i915_gpu_lower);
  4525. /**
  4526. * i915_gpu_busy - indicate GPU business to IPS
  4527. *
  4528. * Tell the IPS driver whether or not the GPU is busy.
  4529. */
  4530. bool i915_gpu_busy(void)
  4531. {
  4532. struct drm_i915_private *dev_priv;
  4533. struct intel_engine_cs *ring;
  4534. bool ret = false;
  4535. int i;
  4536. spin_lock_irq(&mchdev_lock);
  4537. if (!i915_mch_dev)
  4538. goto out_unlock;
  4539. dev_priv = i915_mch_dev;
  4540. for_each_ring(ring, dev_priv, i)
  4541. ret |= !list_empty(&ring->request_list);
  4542. out_unlock:
  4543. spin_unlock_irq(&mchdev_lock);
  4544. return ret;
  4545. }
  4546. EXPORT_SYMBOL_GPL(i915_gpu_busy);
  4547. /**
  4548. * i915_gpu_turbo_disable - disable graphics turbo
  4549. *
  4550. * Disable graphics turbo by resetting the max frequency and setting the
  4551. * current frequency to the default.
  4552. */
  4553. bool i915_gpu_turbo_disable(void)
  4554. {
  4555. struct drm_i915_private *dev_priv;
  4556. bool ret = true;
  4557. spin_lock_irq(&mchdev_lock);
  4558. if (!i915_mch_dev) {
  4559. ret = false;
  4560. goto out_unlock;
  4561. }
  4562. dev_priv = i915_mch_dev;
  4563. dev_priv->ips.max_delay = dev_priv->ips.fstart;
  4564. if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
  4565. ret = false;
  4566. out_unlock:
  4567. spin_unlock_irq(&mchdev_lock);
  4568. return ret;
  4569. }
  4570. EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
  4571. /**
  4572. * Tells the intel_ips driver that the i915 driver is now loaded, if
  4573. * IPS got loaded first.
  4574. *
  4575. * This awkward dance is so that neither module has to depend on the
  4576. * other in order for IPS to do the appropriate communication of
  4577. * GPU turbo limits to i915.
  4578. */
  4579. static void
  4580. ips_ping_for_i915_load(void)
  4581. {
  4582. void (*link)(void);
  4583. link = symbol_get(ips_link_to_i915_driver);
  4584. if (link) {
  4585. link();
  4586. symbol_put(ips_link_to_i915_driver);
  4587. }
  4588. }
  4589. void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
  4590. {
  4591. /* We only register the i915 ips part with intel-ips once everything is
  4592. * set up, to avoid intel-ips sneaking in and reading bogus values. */
  4593. spin_lock_irq(&mchdev_lock);
  4594. i915_mch_dev = dev_priv;
  4595. spin_unlock_irq(&mchdev_lock);
  4596. ips_ping_for_i915_load();
  4597. }
  4598. void intel_gpu_ips_teardown(void)
  4599. {
  4600. spin_lock_irq(&mchdev_lock);
  4601. i915_mch_dev = NULL;
  4602. spin_unlock_irq(&mchdev_lock);
  4603. }
  4604. static void intel_init_emon(struct drm_device *dev)
  4605. {
  4606. struct drm_i915_private *dev_priv = dev->dev_private;
  4607. u32 lcfuse;
  4608. u8 pxw[16];
  4609. int i;
  4610. /* Disable to program */
  4611. I915_WRITE(ECR, 0);
  4612. POSTING_READ(ECR);
  4613. /* Program energy weights for various events */
  4614. I915_WRITE(SDEW, 0x15040d00);
  4615. I915_WRITE(CSIEW0, 0x007f0000);
  4616. I915_WRITE(CSIEW1, 0x1e220004);
  4617. I915_WRITE(CSIEW2, 0x04000004);
  4618. for (i = 0; i < 5; i++)
  4619. I915_WRITE(PEW + (i * 4), 0);
  4620. for (i = 0; i < 3; i++)
  4621. I915_WRITE(DEW + (i * 4), 0);
  4622. /* Program P-state weights to account for frequency power adjustment */
  4623. for (i = 0; i < 16; i++) {
  4624. u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
  4625. unsigned long freq = intel_pxfreq(pxvidfreq);
  4626. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  4627. PXVFREQ_PX_SHIFT;
  4628. unsigned long val;
  4629. val = vid * vid;
  4630. val *= (freq / 1000);
  4631. val *= 255;
  4632. val /= (127*127*900);
  4633. if (val > 0xff)
  4634. DRM_ERROR("bad pxval: %ld\n", val);
  4635. pxw[i] = val;
  4636. }
  4637. /* Render standby states get 0 weight */
  4638. pxw[14] = 0;
  4639. pxw[15] = 0;
  4640. for (i = 0; i < 4; i++) {
  4641. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  4642. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  4643. I915_WRITE(PXW + (i * 4), val);
  4644. }
  4645. /* Adjust magic regs to magic values (more experimental results) */
  4646. I915_WRITE(OGW0, 0);
  4647. I915_WRITE(OGW1, 0);
  4648. I915_WRITE(EG0, 0x00007f00);
  4649. I915_WRITE(EG1, 0x0000000e);
  4650. I915_WRITE(EG2, 0x000e0000);
  4651. I915_WRITE(EG3, 0x68000300);
  4652. I915_WRITE(EG4, 0x42000000);
  4653. I915_WRITE(EG5, 0x00140031);
  4654. I915_WRITE(EG6, 0);
  4655. I915_WRITE(EG7, 0);
  4656. for (i = 0; i < 8; i++)
  4657. I915_WRITE(PXWL + (i * 4), 0);
  4658. /* Enable PMON + select events */
  4659. I915_WRITE(ECR, 0x80000019);
  4660. lcfuse = I915_READ(LCFUSE02);
  4661. dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
  4662. }
  4663. void intel_init_gt_powersave(struct drm_device *dev)
  4664. {
  4665. i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
  4666. if (IS_CHERRYVIEW(dev))
  4667. cherryview_init_gt_powersave(dev);
  4668. else if (IS_VALLEYVIEW(dev))
  4669. valleyview_init_gt_powersave(dev);
  4670. }
  4671. void intel_cleanup_gt_powersave(struct drm_device *dev)
  4672. {
  4673. if (IS_CHERRYVIEW(dev))
  4674. return;
  4675. else if (IS_VALLEYVIEW(dev))
  4676. valleyview_cleanup_gt_powersave(dev);
  4677. }
  4678. static void gen6_suspend_rps(struct drm_device *dev)
  4679. {
  4680. struct drm_i915_private *dev_priv = dev->dev_private;
  4681. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  4682. gen6_disable_rps_interrupts(dev);
  4683. }
  4684. /**
  4685. * intel_suspend_gt_powersave - suspend PM work and helper threads
  4686. * @dev: drm device
  4687. *
  4688. * We don't want to disable RC6 or other features here, we just want
  4689. * to make sure any work we've queued has finished and won't bother
  4690. * us while we're suspended.
  4691. */
  4692. void intel_suspend_gt_powersave(struct drm_device *dev)
  4693. {
  4694. struct drm_i915_private *dev_priv = dev->dev_private;
  4695. if (INTEL_INFO(dev)->gen < 6)
  4696. return;
  4697. gen6_suspend_rps(dev);
  4698. /* Force GPU to min freq during suspend */
  4699. gen6_rps_idle(dev_priv);
  4700. }
  4701. void intel_disable_gt_powersave(struct drm_device *dev)
  4702. {
  4703. struct drm_i915_private *dev_priv = dev->dev_private;
  4704. if (IS_IRONLAKE_M(dev)) {
  4705. ironlake_disable_drps(dev);
  4706. } else if (INTEL_INFO(dev)->gen >= 6) {
  4707. intel_suspend_gt_powersave(dev);
  4708. mutex_lock(&dev_priv->rps.hw_lock);
  4709. if (INTEL_INFO(dev)->gen >= 9)
  4710. gen9_disable_rps(dev);
  4711. else if (IS_CHERRYVIEW(dev))
  4712. cherryview_disable_rps(dev);
  4713. else if (IS_VALLEYVIEW(dev))
  4714. valleyview_disable_rps(dev);
  4715. else
  4716. gen6_disable_rps(dev);
  4717. dev_priv->rps.enabled = false;
  4718. mutex_unlock(&dev_priv->rps.hw_lock);
  4719. }
  4720. }
  4721. static void intel_gen6_powersave_work(struct work_struct *work)
  4722. {
  4723. struct drm_i915_private *dev_priv =
  4724. container_of(work, struct drm_i915_private,
  4725. rps.delayed_resume_work.work);
  4726. struct drm_device *dev = dev_priv->dev;
  4727. mutex_lock(&dev_priv->rps.hw_lock);
  4728. gen6_reset_rps_interrupts(dev);
  4729. if (IS_CHERRYVIEW(dev)) {
  4730. cherryview_enable_rps(dev);
  4731. } else if (IS_VALLEYVIEW(dev)) {
  4732. valleyview_enable_rps(dev);
  4733. } else if (INTEL_INFO(dev)->gen >= 9) {
  4734. gen9_enable_rc6(dev);
  4735. gen9_enable_rps(dev);
  4736. __gen6_update_ring_freq(dev);
  4737. } else if (IS_BROADWELL(dev)) {
  4738. gen8_enable_rps(dev);
  4739. __gen6_update_ring_freq(dev);
  4740. } else {
  4741. gen6_enable_rps(dev);
  4742. __gen6_update_ring_freq(dev);
  4743. }
  4744. WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
  4745. WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
  4746. WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
  4747. WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
  4748. dev_priv->rps.enabled = true;
  4749. gen6_enable_rps_interrupts(dev);
  4750. mutex_unlock(&dev_priv->rps.hw_lock);
  4751. intel_runtime_pm_put(dev_priv);
  4752. }
  4753. void intel_enable_gt_powersave(struct drm_device *dev)
  4754. {
  4755. struct drm_i915_private *dev_priv = dev->dev_private;
  4756. /* Powersaving is controlled by the host when inside a VM */
  4757. if (intel_vgpu_active(dev))
  4758. return;
  4759. if (IS_IRONLAKE_M(dev)) {
  4760. mutex_lock(&dev->struct_mutex);
  4761. ironlake_enable_drps(dev);
  4762. intel_init_emon(dev);
  4763. mutex_unlock(&dev->struct_mutex);
  4764. } else if (INTEL_INFO(dev)->gen >= 6) {
  4765. /*
  4766. * PCU communication is slow and this doesn't need to be
  4767. * done at any specific time, so do this out of our fast path
  4768. * to make resume and init faster.
  4769. *
  4770. * We depend on the HW RC6 power context save/restore
  4771. * mechanism when entering D3 through runtime PM suspend. So
  4772. * disable RPM until RPS/RC6 is properly setup. We can only
  4773. * get here via the driver load/system resume/runtime resume
  4774. * paths, so the _noresume version is enough (and in case of
  4775. * runtime resume it's necessary).
  4776. */
  4777. if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
  4778. round_jiffies_up_relative(HZ)))
  4779. intel_runtime_pm_get_noresume(dev_priv);
  4780. }
  4781. }
  4782. void intel_reset_gt_powersave(struct drm_device *dev)
  4783. {
  4784. struct drm_i915_private *dev_priv = dev->dev_private;
  4785. if (INTEL_INFO(dev)->gen < 6)
  4786. return;
  4787. gen6_suspend_rps(dev);
  4788. dev_priv->rps.enabled = false;
  4789. }
  4790. static void ibx_init_clock_gating(struct drm_device *dev)
  4791. {
  4792. struct drm_i915_private *dev_priv = dev->dev_private;
  4793. /*
  4794. * On Ibex Peak and Cougar Point, we need to disable clock
  4795. * gating for the panel power sequencer or it will fail to
  4796. * start up when no ports are active.
  4797. */
  4798. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  4799. }
  4800. static void g4x_disable_trickle_feed(struct drm_device *dev)
  4801. {
  4802. struct drm_i915_private *dev_priv = dev->dev_private;
  4803. int pipe;
  4804. for_each_pipe(dev_priv, pipe) {
  4805. I915_WRITE(DSPCNTR(pipe),
  4806. I915_READ(DSPCNTR(pipe)) |
  4807. DISPPLANE_TRICKLE_FEED_DISABLE);
  4808. intel_flush_primary_plane(dev_priv, pipe);
  4809. }
  4810. }
  4811. static void ilk_init_lp_watermarks(struct drm_device *dev)
  4812. {
  4813. struct drm_i915_private *dev_priv = dev->dev_private;
  4814. I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
  4815. I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
  4816. I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
  4817. /*
  4818. * Don't touch WM1S_LP_EN here.
  4819. * Doing so could cause underruns.
  4820. */
  4821. }
  4822. static void ironlake_init_clock_gating(struct drm_device *dev)
  4823. {
  4824. struct drm_i915_private *dev_priv = dev->dev_private;
  4825. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  4826. /*
  4827. * Required for FBC
  4828. * WaFbcDisableDpfcClockGating:ilk
  4829. */
  4830. dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
  4831. ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
  4832. ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
  4833. I915_WRITE(PCH_3DCGDIS0,
  4834. MARIUNIT_CLOCK_GATE_DISABLE |
  4835. SVSMUNIT_CLOCK_GATE_DISABLE);
  4836. I915_WRITE(PCH_3DCGDIS1,
  4837. VFMUNIT_CLOCK_GATE_DISABLE);
  4838. /*
  4839. * According to the spec the following bits should be set in
  4840. * order to enable memory self-refresh
  4841. * The bit 22/21 of 0x42004
  4842. * The bit 5 of 0x42020
  4843. * The bit 15 of 0x45000
  4844. */
  4845. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4846. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  4847. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  4848. dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
  4849. I915_WRITE(DISP_ARB_CTL,
  4850. (I915_READ(DISP_ARB_CTL) |
  4851. DISP_FBC_WM_DIS));
  4852. ilk_init_lp_watermarks(dev);
  4853. /*
  4854. * Based on the document from hardware guys the following bits
  4855. * should be set unconditionally in order to enable FBC.
  4856. * The bit 22 of 0x42000
  4857. * The bit 22 of 0x42004
  4858. * The bit 7,8,9 of 0x42020.
  4859. */
  4860. if (IS_IRONLAKE_M(dev)) {
  4861. /* WaFbcAsynchFlipDisableFbcQueue:ilk */
  4862. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  4863. I915_READ(ILK_DISPLAY_CHICKEN1) |
  4864. ILK_FBCQ_DIS);
  4865. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4866. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4867. ILK_DPARB_GATE);
  4868. }
  4869. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  4870. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4871. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4872. ILK_ELPIN_409_SELECT);
  4873. I915_WRITE(_3D_CHICKEN2,
  4874. _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  4875. _3D_CHICKEN2_WM_READ_PIPELINED);
  4876. /* WaDisableRenderCachePipelinedFlush:ilk */
  4877. I915_WRITE(CACHE_MODE_0,
  4878. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  4879. /* WaDisable_RenderCache_OperationalFlush:ilk */
  4880. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4881. g4x_disable_trickle_feed(dev);
  4882. ibx_init_clock_gating(dev);
  4883. }
  4884. static void cpt_init_clock_gating(struct drm_device *dev)
  4885. {
  4886. struct drm_i915_private *dev_priv = dev->dev_private;
  4887. int pipe;
  4888. uint32_t val;
  4889. /*
  4890. * On Ibex Peak and Cougar Point, we need to disable clock
  4891. * gating for the panel power sequencer or it will fail to
  4892. * start up when no ports are active.
  4893. */
  4894. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
  4895. PCH_DPLUNIT_CLOCK_GATE_DISABLE |
  4896. PCH_CPUNIT_CLOCK_GATE_DISABLE);
  4897. I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
  4898. DPLS_EDP_PPS_FIX_DIS);
  4899. /* The below fixes the weird display corruption, a few pixels shifted
  4900. * downward, on (only) LVDS of some HP laptops with IVY.
  4901. */
  4902. for_each_pipe(dev_priv, pipe) {
  4903. val = I915_READ(TRANS_CHICKEN2(pipe));
  4904. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  4905. val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  4906. if (dev_priv->vbt.fdi_rx_polarity_inverted)
  4907. val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  4908. val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
  4909. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
  4910. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
  4911. I915_WRITE(TRANS_CHICKEN2(pipe), val);
  4912. }
  4913. /* WADP0ClockGatingDisable */
  4914. for_each_pipe(dev_priv, pipe) {
  4915. I915_WRITE(TRANS_CHICKEN1(pipe),
  4916. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  4917. }
  4918. }
  4919. static void gen6_check_mch_setup(struct drm_device *dev)
  4920. {
  4921. struct drm_i915_private *dev_priv = dev->dev_private;
  4922. uint32_t tmp;
  4923. tmp = I915_READ(MCH_SSKPD);
  4924. if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
  4925. DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
  4926. tmp);
  4927. }
  4928. static void gen6_init_clock_gating(struct drm_device *dev)
  4929. {
  4930. struct drm_i915_private *dev_priv = dev->dev_private;
  4931. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  4932. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  4933. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4934. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4935. ILK_ELPIN_409_SELECT);
  4936. /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
  4937. I915_WRITE(_3D_CHICKEN,
  4938. _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
  4939. /* WaDisable_RenderCache_OperationalFlush:snb */
  4940. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4941. /*
  4942. * BSpec recoomends 8x4 when MSAA is used,
  4943. * however in practice 16x4 seems fastest.
  4944. *
  4945. * Note that PS/WM thread counts depend on the WIZ hashing
  4946. * disable bit, which we don't touch here, but it's good
  4947. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  4948. */
  4949. I915_WRITE(GEN6_GT_MODE,
  4950. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  4951. ilk_init_lp_watermarks(dev);
  4952. I915_WRITE(CACHE_MODE_0,
  4953. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  4954. I915_WRITE(GEN6_UCGCTL1,
  4955. I915_READ(GEN6_UCGCTL1) |
  4956. GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
  4957. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  4958. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  4959. * gating disable must be set. Failure to set it results in
  4960. * flickering pixels due to Z write ordering failures after
  4961. * some amount of runtime in the Mesa "fire" demo, and Unigine
  4962. * Sanctuary and Tropics, and apparently anything else with
  4963. * alpha test or pixel discard.
  4964. *
  4965. * According to the spec, bit 11 (RCCUNIT) must also be set,
  4966. * but we didn't debug actual testcases to find it out.
  4967. *
  4968. * WaDisableRCCUnitClockGating:snb
  4969. * WaDisableRCPBUnitClockGating:snb
  4970. */
  4971. I915_WRITE(GEN6_UCGCTL2,
  4972. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  4973. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  4974. /* WaStripsFansDisableFastClipPerformanceFix:snb */
  4975. I915_WRITE(_3D_CHICKEN3,
  4976. _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
  4977. /*
  4978. * Bspec says:
  4979. * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
  4980. * 3DSTATE_SF number of SF output attributes is more than 16."
  4981. */
  4982. I915_WRITE(_3D_CHICKEN3,
  4983. _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
  4984. /*
  4985. * According to the spec the following bits should be
  4986. * set in order to enable memory self-refresh and fbc:
  4987. * The bit21 and bit22 of 0x42000
  4988. * The bit21 and bit22 of 0x42004
  4989. * The bit5 and bit7 of 0x42020
  4990. * The bit14 of 0x70180
  4991. * The bit14 of 0x71180
  4992. *
  4993. * WaFbcAsynchFlipDisableFbcQueue:snb
  4994. */
  4995. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  4996. I915_READ(ILK_DISPLAY_CHICKEN1) |
  4997. ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  4998. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4999. I915_READ(ILK_DISPLAY_CHICKEN2) |
  5000. ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  5001. I915_WRITE(ILK_DSPCLK_GATE_D,
  5002. I915_READ(ILK_DSPCLK_GATE_D) |
  5003. ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
  5004. ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
  5005. g4x_disable_trickle_feed(dev);
  5006. cpt_init_clock_gating(dev);
  5007. gen6_check_mch_setup(dev);
  5008. }
  5009. static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
  5010. {
  5011. uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
  5012. /*
  5013. * WaVSThreadDispatchOverride:ivb,vlv
  5014. *
  5015. * This actually overrides the dispatch
  5016. * mode for all thread types.
  5017. */
  5018. reg &= ~GEN7_FF_SCHED_MASK;
  5019. reg |= GEN7_FF_TS_SCHED_HW;
  5020. reg |= GEN7_FF_VS_SCHED_HW;
  5021. reg |= GEN7_FF_DS_SCHED_HW;
  5022. I915_WRITE(GEN7_FF_THREAD_MODE, reg);
  5023. }
  5024. static void lpt_init_clock_gating(struct drm_device *dev)
  5025. {
  5026. struct drm_i915_private *dev_priv = dev->dev_private;
  5027. /*
  5028. * TODO: this bit should only be enabled when really needed, then
  5029. * disabled when not needed anymore in order to save power.
  5030. */
  5031. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
  5032. I915_WRITE(SOUTH_DSPCLK_GATE_D,
  5033. I915_READ(SOUTH_DSPCLK_GATE_D) |
  5034. PCH_LP_PARTITION_LEVEL_DISABLE);
  5035. /* WADPOClockGatingDisable:hsw */
  5036. I915_WRITE(_TRANSA_CHICKEN1,
  5037. I915_READ(_TRANSA_CHICKEN1) |
  5038. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  5039. }
  5040. static void lpt_suspend_hw(struct drm_device *dev)
  5041. {
  5042. struct drm_i915_private *dev_priv = dev->dev_private;
  5043. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  5044. uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
  5045. val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  5046. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  5047. }
  5048. }
  5049. static void broadwell_init_clock_gating(struct drm_device *dev)
  5050. {
  5051. struct drm_i915_private *dev_priv = dev->dev_private;
  5052. enum pipe pipe;
  5053. I915_WRITE(WM3_LP_ILK, 0);
  5054. I915_WRITE(WM2_LP_ILK, 0);
  5055. I915_WRITE(WM1_LP_ILK, 0);
  5056. /* WaSwitchSolVfFArbitrationPriority:bdw */
  5057. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  5058. /* WaPsrDPAMaskVBlankInSRD:bdw */
  5059. I915_WRITE(CHICKEN_PAR1_1,
  5060. I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
  5061. /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
  5062. for_each_pipe(dev_priv, pipe) {
  5063. I915_WRITE(CHICKEN_PIPESL_1(pipe),
  5064. I915_READ(CHICKEN_PIPESL_1(pipe)) |
  5065. BDW_DPRS_MASK_VBLANK_SRD);
  5066. }
  5067. /* WaVSRefCountFullforceMissDisable:bdw */
  5068. /* WaDSRefCountFullforceMissDisable:bdw */
  5069. I915_WRITE(GEN7_FF_THREAD_MODE,
  5070. I915_READ(GEN7_FF_THREAD_MODE) &
  5071. ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
  5072. I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
  5073. _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
  5074. /* WaDisableSDEUnitClockGating:bdw */
  5075. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  5076. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  5077. lpt_init_clock_gating(dev);
  5078. }
  5079. static void haswell_init_clock_gating(struct drm_device *dev)
  5080. {
  5081. struct drm_i915_private *dev_priv = dev->dev_private;
  5082. ilk_init_lp_watermarks(dev);
  5083. /* L3 caching of data atomics doesn't work -- disable it. */
  5084. I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
  5085. I915_WRITE(HSW_ROW_CHICKEN3,
  5086. _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
  5087. /* This is required by WaCatErrorRejectionIssue:hsw */
  5088. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  5089. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  5090. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  5091. /* WaVSRefCountFullforceMissDisable:hsw */
  5092. I915_WRITE(GEN7_FF_THREAD_MODE,
  5093. I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
  5094. /* WaDisable_RenderCache_OperationalFlush:hsw */
  5095. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5096. /* enable HiZ Raw Stall Optimization */
  5097. I915_WRITE(CACHE_MODE_0_GEN7,
  5098. _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
  5099. /* WaDisable4x2SubspanOptimization:hsw */
  5100. I915_WRITE(CACHE_MODE_1,
  5101. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  5102. /*
  5103. * BSpec recommends 8x4 when MSAA is used,
  5104. * however in practice 16x4 seems fastest.
  5105. *
  5106. * Note that PS/WM thread counts depend on the WIZ hashing
  5107. * disable bit, which we don't touch here, but it's good
  5108. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  5109. */
  5110. I915_WRITE(GEN7_GT_MODE,
  5111. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  5112. /* WaSampleCChickenBitEnable:hsw */
  5113. I915_WRITE(HALF_SLICE_CHICKEN3,
  5114. _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
  5115. /* WaSwitchSolVfFArbitrationPriority:hsw */
  5116. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  5117. /* WaRsPkgCStateDisplayPMReq:hsw */
  5118. I915_WRITE(CHICKEN_PAR1_1,
  5119. I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
  5120. lpt_init_clock_gating(dev);
  5121. }
  5122. static void ivybridge_init_clock_gating(struct drm_device *dev)
  5123. {
  5124. struct drm_i915_private *dev_priv = dev->dev_private;
  5125. uint32_t snpcr;
  5126. ilk_init_lp_watermarks(dev);
  5127. I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
  5128. /* WaDisableEarlyCull:ivb */
  5129. I915_WRITE(_3D_CHICKEN3,
  5130. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  5131. /* WaDisableBackToBackFlipFix:ivb */
  5132. I915_WRITE(IVB_CHICKEN3,
  5133. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  5134. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  5135. /* WaDisablePSDDualDispatchEnable:ivb */
  5136. if (IS_IVB_GT1(dev))
  5137. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  5138. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  5139. /* WaDisable_RenderCache_OperationalFlush:ivb */
  5140. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5141. /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
  5142. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  5143. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  5144. /* WaApplyL3ControlAndL3ChickenMode:ivb */
  5145. I915_WRITE(GEN7_L3CNTLREG1,
  5146. GEN7_WA_FOR_GEN7_L3_CONTROL);
  5147. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  5148. GEN7_WA_L3_CHICKEN_MODE);
  5149. if (IS_IVB_GT1(dev))
  5150. I915_WRITE(GEN7_ROW_CHICKEN2,
  5151. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  5152. else {
  5153. /* must write both registers */
  5154. I915_WRITE(GEN7_ROW_CHICKEN2,
  5155. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  5156. I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
  5157. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  5158. }
  5159. /* WaForceL3Serialization:ivb */
  5160. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  5161. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  5162. /*
  5163. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  5164. * This implements the WaDisableRCZUnitClockGating:ivb workaround.
  5165. */
  5166. I915_WRITE(GEN6_UCGCTL2,
  5167. GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  5168. /* This is required by WaCatErrorRejectionIssue:ivb */
  5169. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  5170. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  5171. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  5172. g4x_disable_trickle_feed(dev);
  5173. gen7_setup_fixed_func_scheduler(dev_priv);
  5174. if (0) { /* causes HiZ corruption on ivb:gt1 */
  5175. /* enable HiZ Raw Stall Optimization */
  5176. I915_WRITE(CACHE_MODE_0_GEN7,
  5177. _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
  5178. }
  5179. /* WaDisable4x2SubspanOptimization:ivb */
  5180. I915_WRITE(CACHE_MODE_1,
  5181. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  5182. /*
  5183. * BSpec recommends 8x4 when MSAA is used,
  5184. * however in practice 16x4 seems fastest.
  5185. *
  5186. * Note that PS/WM thread counts depend on the WIZ hashing
  5187. * disable bit, which we don't touch here, but it's good
  5188. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  5189. */
  5190. I915_WRITE(GEN7_GT_MODE,
  5191. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  5192. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  5193. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  5194. snpcr |= GEN6_MBC_SNPCR_MED;
  5195. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  5196. if (!HAS_PCH_NOP(dev))
  5197. cpt_init_clock_gating(dev);
  5198. gen6_check_mch_setup(dev);
  5199. }
  5200. static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
  5201. {
  5202. I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
  5203. /*
  5204. * Disable trickle feed and enable pnd deadline calculation
  5205. */
  5206. I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
  5207. I915_WRITE(CBR1_VLV, 0);
  5208. }
  5209. static void valleyview_init_clock_gating(struct drm_device *dev)
  5210. {
  5211. struct drm_i915_private *dev_priv = dev->dev_private;
  5212. vlv_init_display_clock_gating(dev_priv);
  5213. /* WaDisableEarlyCull:vlv */
  5214. I915_WRITE(_3D_CHICKEN3,
  5215. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  5216. /* WaDisableBackToBackFlipFix:vlv */
  5217. I915_WRITE(IVB_CHICKEN3,
  5218. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  5219. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  5220. /* WaPsdDispatchEnable:vlv */
  5221. /* WaDisablePSDDualDispatchEnable:vlv */
  5222. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  5223. _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
  5224. GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  5225. /* WaDisable_RenderCache_OperationalFlush:vlv */
  5226. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5227. /* WaForceL3Serialization:vlv */
  5228. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  5229. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  5230. /* WaDisableDopClockGating:vlv */
  5231. I915_WRITE(GEN7_ROW_CHICKEN2,
  5232. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  5233. /* This is required by WaCatErrorRejectionIssue:vlv */
  5234. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  5235. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  5236. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  5237. gen7_setup_fixed_func_scheduler(dev_priv);
  5238. /*
  5239. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  5240. * This implements the WaDisableRCZUnitClockGating:vlv workaround.
  5241. */
  5242. I915_WRITE(GEN6_UCGCTL2,
  5243. GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  5244. /* WaDisableL3Bank2xClockGate:vlv
  5245. * Disabling L3 clock gating- MMIO 940c[25] = 1
  5246. * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
  5247. I915_WRITE(GEN7_UCGCTL4,
  5248. I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
  5249. /*
  5250. * BSpec says this must be set, even though
  5251. * WaDisable4x2SubspanOptimization isn't listed for VLV.
  5252. */
  5253. I915_WRITE(CACHE_MODE_1,
  5254. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  5255. /*
  5256. * BSpec recommends 8x4 when MSAA is used,
  5257. * however in practice 16x4 seems fastest.
  5258. *
  5259. * Note that PS/WM thread counts depend on the WIZ hashing
  5260. * disable bit, which we don't touch here, but it's good
  5261. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  5262. */
  5263. I915_WRITE(GEN7_GT_MODE,
  5264. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  5265. /*
  5266. * WaIncreaseL3CreditsForVLVB0:vlv
  5267. * This is the hardware default actually.
  5268. */
  5269. I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
  5270. /*
  5271. * WaDisableVLVClockGating_VBIIssue:vlv
  5272. * Disable clock gating on th GCFG unit to prevent a delay
  5273. * in the reporting of vblank events.
  5274. */
  5275. I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
  5276. }
  5277. static void cherryview_init_clock_gating(struct drm_device *dev)
  5278. {
  5279. struct drm_i915_private *dev_priv = dev->dev_private;
  5280. vlv_init_display_clock_gating(dev_priv);
  5281. /* WaVSRefCountFullforceMissDisable:chv */
  5282. /* WaDSRefCountFullforceMissDisable:chv */
  5283. I915_WRITE(GEN7_FF_THREAD_MODE,
  5284. I915_READ(GEN7_FF_THREAD_MODE) &
  5285. ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
  5286. /* WaDisableSemaphoreAndSyncFlipWait:chv */
  5287. I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
  5288. _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
  5289. /* WaDisableCSUnitClockGating:chv */
  5290. I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
  5291. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  5292. /* WaDisableSDEUnitClockGating:chv */
  5293. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  5294. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  5295. }
  5296. static void g4x_init_clock_gating(struct drm_device *dev)
  5297. {
  5298. struct drm_i915_private *dev_priv = dev->dev_private;
  5299. uint32_t dspclk_gate;
  5300. I915_WRITE(RENCLK_GATE_D1, 0);
  5301. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  5302. GS_UNIT_CLOCK_GATE_DISABLE |
  5303. CL_UNIT_CLOCK_GATE_DISABLE);
  5304. I915_WRITE(RAMCLK_GATE_D, 0);
  5305. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  5306. OVRUNIT_CLOCK_GATE_DISABLE |
  5307. OVCUNIT_CLOCK_GATE_DISABLE;
  5308. if (IS_GM45(dev))
  5309. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  5310. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  5311. /* WaDisableRenderCachePipelinedFlush */
  5312. I915_WRITE(CACHE_MODE_0,
  5313. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  5314. /* WaDisable_RenderCache_OperationalFlush:g4x */
  5315. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5316. g4x_disable_trickle_feed(dev);
  5317. }
  5318. static void crestline_init_clock_gating(struct drm_device *dev)
  5319. {
  5320. struct drm_i915_private *dev_priv = dev->dev_private;
  5321. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  5322. I915_WRITE(RENCLK_GATE_D2, 0);
  5323. I915_WRITE(DSPCLK_GATE_D, 0);
  5324. I915_WRITE(RAMCLK_GATE_D, 0);
  5325. I915_WRITE16(DEUC, 0);
  5326. I915_WRITE(MI_ARB_STATE,
  5327. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  5328. /* WaDisable_RenderCache_OperationalFlush:gen4 */
  5329. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5330. }
  5331. static void broadwater_init_clock_gating(struct drm_device *dev)
  5332. {
  5333. struct drm_i915_private *dev_priv = dev->dev_private;
  5334. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  5335. I965_RCC_CLOCK_GATE_DISABLE |
  5336. I965_RCPB_CLOCK_GATE_DISABLE |
  5337. I965_ISC_CLOCK_GATE_DISABLE |
  5338. I965_FBC_CLOCK_GATE_DISABLE);
  5339. I915_WRITE(RENCLK_GATE_D2, 0);
  5340. I915_WRITE(MI_ARB_STATE,
  5341. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  5342. /* WaDisable_RenderCache_OperationalFlush:gen4 */
  5343. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5344. }
  5345. static void gen3_init_clock_gating(struct drm_device *dev)
  5346. {
  5347. struct drm_i915_private *dev_priv = dev->dev_private;
  5348. u32 dstate = I915_READ(D_STATE);
  5349. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  5350. DSTATE_DOT_CLOCK_GATING;
  5351. I915_WRITE(D_STATE, dstate);
  5352. if (IS_PINEVIEW(dev))
  5353. I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
  5354. /* IIR "flip pending" means done if this bit is set */
  5355. I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
  5356. /* interrupts should cause a wake up from C3 */
  5357. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
  5358. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  5359. I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
  5360. I915_WRITE(MI_ARB_STATE,
  5361. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  5362. }
  5363. static void i85x_init_clock_gating(struct drm_device *dev)
  5364. {
  5365. struct drm_i915_private *dev_priv = dev->dev_private;
  5366. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  5367. /* interrupts should cause a wake up from C3 */
  5368. I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
  5369. _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
  5370. I915_WRITE(MEM_MODE,
  5371. _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
  5372. }
  5373. static void i830_init_clock_gating(struct drm_device *dev)
  5374. {
  5375. struct drm_i915_private *dev_priv = dev->dev_private;
  5376. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  5377. I915_WRITE(MEM_MODE,
  5378. _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
  5379. _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
  5380. }
  5381. void intel_init_clock_gating(struct drm_device *dev)
  5382. {
  5383. struct drm_i915_private *dev_priv = dev->dev_private;
  5384. if (dev_priv->display.init_clock_gating)
  5385. dev_priv->display.init_clock_gating(dev);
  5386. }
  5387. void intel_suspend_hw(struct drm_device *dev)
  5388. {
  5389. if (HAS_PCH_LPT(dev))
  5390. lpt_suspend_hw(dev);
  5391. }
  5392. /* Set up chip specific power management-related functions */
  5393. void intel_init_pm(struct drm_device *dev)
  5394. {
  5395. struct drm_i915_private *dev_priv = dev->dev_private;
  5396. intel_fbc_init(dev_priv);
  5397. /* For cxsr */
  5398. if (IS_PINEVIEW(dev))
  5399. i915_pineview_get_mem_freq(dev);
  5400. else if (IS_GEN5(dev))
  5401. i915_ironlake_get_mem_freq(dev);
  5402. /* For FIFO watermark updates */
  5403. if (INTEL_INFO(dev)->gen >= 9) {
  5404. skl_setup_wm_latency(dev);
  5405. dev_priv->display.init_clock_gating = skl_init_clock_gating;
  5406. dev_priv->display.update_wm = skl_update_wm;
  5407. dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
  5408. } else if (HAS_PCH_SPLIT(dev)) {
  5409. ilk_setup_wm_latency(dev);
  5410. if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
  5411. dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
  5412. (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
  5413. dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
  5414. dev_priv->display.update_wm = ilk_update_wm;
  5415. dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
  5416. } else {
  5417. DRM_DEBUG_KMS("Failed to read display plane latency. "
  5418. "Disable CxSR\n");
  5419. }
  5420. if (IS_GEN5(dev))
  5421. dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
  5422. else if (IS_GEN6(dev))
  5423. dev_priv->display.init_clock_gating = gen6_init_clock_gating;
  5424. else if (IS_IVYBRIDGE(dev))
  5425. dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
  5426. else if (IS_HASWELL(dev))
  5427. dev_priv->display.init_clock_gating = haswell_init_clock_gating;
  5428. else if (INTEL_INFO(dev)->gen == 8)
  5429. dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
  5430. } else if (IS_CHERRYVIEW(dev)) {
  5431. dev_priv->display.update_wm = valleyview_update_wm;
  5432. dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
  5433. dev_priv->display.init_clock_gating =
  5434. cherryview_init_clock_gating;
  5435. } else if (IS_VALLEYVIEW(dev)) {
  5436. dev_priv->display.update_wm = valleyview_update_wm;
  5437. dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
  5438. dev_priv->display.init_clock_gating =
  5439. valleyview_init_clock_gating;
  5440. } else if (IS_PINEVIEW(dev)) {
  5441. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  5442. dev_priv->is_ddr3,
  5443. dev_priv->fsb_freq,
  5444. dev_priv->mem_freq)) {
  5445. DRM_INFO("failed to find known CxSR latency "
  5446. "(found ddr%s fsb freq %d, mem freq %d), "
  5447. "disabling CxSR\n",
  5448. (dev_priv->is_ddr3 == 1) ? "3" : "2",
  5449. dev_priv->fsb_freq, dev_priv->mem_freq);
  5450. /* Disable CxSR and never update its watermark again */
  5451. intel_set_memory_cxsr(dev_priv, false);
  5452. dev_priv->display.update_wm = NULL;
  5453. } else
  5454. dev_priv->display.update_wm = pineview_update_wm;
  5455. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  5456. } else if (IS_G4X(dev)) {
  5457. dev_priv->display.update_wm = g4x_update_wm;
  5458. dev_priv->display.init_clock_gating = g4x_init_clock_gating;
  5459. } else if (IS_GEN4(dev)) {
  5460. dev_priv->display.update_wm = i965_update_wm;
  5461. if (IS_CRESTLINE(dev))
  5462. dev_priv->display.init_clock_gating = crestline_init_clock_gating;
  5463. else if (IS_BROADWATER(dev))
  5464. dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
  5465. } else if (IS_GEN3(dev)) {
  5466. dev_priv->display.update_wm = i9xx_update_wm;
  5467. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  5468. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  5469. } else if (IS_GEN2(dev)) {
  5470. if (INTEL_INFO(dev)->num_pipes == 1) {
  5471. dev_priv->display.update_wm = i845_update_wm;
  5472. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  5473. } else {
  5474. dev_priv->display.update_wm = i9xx_update_wm;
  5475. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  5476. }
  5477. if (IS_I85X(dev) || IS_I865G(dev))
  5478. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  5479. else
  5480. dev_priv->display.init_clock_gating = i830_init_clock_gating;
  5481. } else {
  5482. DRM_ERROR("unexpected fall-through in intel_init_pm\n");
  5483. }
  5484. }
  5485. int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
  5486. {
  5487. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  5488. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  5489. DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
  5490. return -EAGAIN;
  5491. }
  5492. I915_WRITE(GEN6_PCODE_DATA, *val);
  5493. I915_WRITE(GEN6_PCODE_DATA1, 0);
  5494. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  5495. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  5496. 500)) {
  5497. DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
  5498. return -ETIMEDOUT;
  5499. }
  5500. *val = I915_READ(GEN6_PCODE_DATA);
  5501. I915_WRITE(GEN6_PCODE_DATA, 0);
  5502. return 0;
  5503. }
  5504. int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
  5505. {
  5506. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  5507. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  5508. DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
  5509. return -EAGAIN;
  5510. }
  5511. I915_WRITE(GEN6_PCODE_DATA, val);
  5512. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  5513. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  5514. 500)) {
  5515. DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
  5516. return -ETIMEDOUT;
  5517. }
  5518. I915_WRITE(GEN6_PCODE_DATA, 0);
  5519. return 0;
  5520. }
  5521. static int vlv_gpu_freq_div(unsigned int czclk_freq)
  5522. {
  5523. switch (czclk_freq) {
  5524. case 200:
  5525. return 10;
  5526. case 267:
  5527. return 12;
  5528. case 320:
  5529. case 333:
  5530. return 16;
  5531. case 400:
  5532. return 20;
  5533. default:
  5534. return -1;
  5535. }
  5536. }
  5537. static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
  5538. {
  5539. int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
  5540. div = vlv_gpu_freq_div(czclk_freq);
  5541. if (div < 0)
  5542. return div;
  5543. return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
  5544. }
  5545. static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
  5546. {
  5547. int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
  5548. mul = vlv_gpu_freq_div(czclk_freq);
  5549. if (mul < 0)
  5550. return mul;
  5551. return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
  5552. }
  5553. static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
  5554. {
  5555. int div, czclk_freq = dev_priv->rps.cz_freq;
  5556. div = vlv_gpu_freq_div(czclk_freq) / 2;
  5557. if (div < 0)
  5558. return div;
  5559. return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
  5560. }
  5561. static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
  5562. {
  5563. int mul, czclk_freq = dev_priv->rps.cz_freq;
  5564. mul = vlv_gpu_freq_div(czclk_freq) / 2;
  5565. if (mul < 0)
  5566. return mul;
  5567. /* CHV needs even values */
  5568. return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
  5569. }
  5570. int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
  5571. {
  5572. if (IS_GEN9(dev_priv->dev))
  5573. return (val * GT_FREQUENCY_MULTIPLIER) / GEN9_FREQ_SCALER;
  5574. else if (IS_CHERRYVIEW(dev_priv->dev))
  5575. return chv_gpu_freq(dev_priv, val);
  5576. else if (IS_VALLEYVIEW(dev_priv->dev))
  5577. return byt_gpu_freq(dev_priv, val);
  5578. else
  5579. return val * GT_FREQUENCY_MULTIPLIER;
  5580. }
  5581. int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
  5582. {
  5583. if (IS_GEN9(dev_priv->dev))
  5584. return (val * GEN9_FREQ_SCALER) / GT_FREQUENCY_MULTIPLIER;
  5585. else if (IS_CHERRYVIEW(dev_priv->dev))
  5586. return chv_freq_opcode(dev_priv, val);
  5587. else if (IS_VALLEYVIEW(dev_priv->dev))
  5588. return byt_freq_opcode(dev_priv, val);
  5589. else
  5590. return val / GT_FREQUENCY_MULTIPLIER;
  5591. }
  5592. struct request_boost {
  5593. struct work_struct work;
  5594. struct drm_i915_gem_request *rq;
  5595. };
  5596. static void __intel_rps_boost_work(struct work_struct *work)
  5597. {
  5598. struct request_boost *boost = container_of(work, struct request_boost, work);
  5599. if (!i915_gem_request_completed(boost->rq, true))
  5600. gen6_rps_boost(to_i915(boost->rq->ring->dev), NULL);
  5601. i915_gem_request_unreference__unlocked(boost->rq);
  5602. kfree(boost);
  5603. }
  5604. void intel_queue_rps_boost_for_request(struct drm_device *dev,
  5605. struct drm_i915_gem_request *rq)
  5606. {
  5607. struct request_boost *boost;
  5608. if (rq == NULL || INTEL_INFO(dev)->gen < 6)
  5609. return;
  5610. boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
  5611. if (boost == NULL)
  5612. return;
  5613. i915_gem_request_reference(rq);
  5614. boost->rq = rq;
  5615. INIT_WORK(&boost->work, __intel_rps_boost_work);
  5616. queue_work(to_i915(dev)->wq, &boost->work);
  5617. }
  5618. void intel_pm_setup(struct drm_device *dev)
  5619. {
  5620. struct drm_i915_private *dev_priv = dev->dev_private;
  5621. mutex_init(&dev_priv->rps.hw_lock);
  5622. INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
  5623. intel_gen6_powersave_work);
  5624. INIT_LIST_HEAD(&dev_priv->rps.clients);
  5625. dev_priv->pm.suspended = false;
  5626. }