tcp_output.c 107 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes: Pedro Roque : Retransmit queue handled by TCP.
  22. * : Fragmentation on mtu decrease
  23. * : Segment collapse on retransmit
  24. * : AF independence
  25. *
  26. * Linus Torvalds : send_delayed_ack
  27. * David S. Miller : Charge memory using the right skb
  28. * during syn/ack processing.
  29. * David S. Miller : Output engine completely rewritten.
  30. * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
  31. * Cacophonix Gaul : draft-minshall-nagle-01
  32. * J Hadi Salim : ECN support
  33. *
  34. */
  35. #define pr_fmt(fmt) "TCP: " fmt
  36. #include <net/tcp.h>
  37. #include <linux/compiler.h>
  38. #include <linux/gfp.h>
  39. #include <linux/module.h>
  40. #include <linux/static_key.h>
  41. #include <trace/events/tcp.h>
  42. static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
  43. int push_one, gfp_t gfp);
  44. /* Account for new data that has been sent to the network. */
  45. static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
  46. {
  47. struct inet_connection_sock *icsk = inet_csk(sk);
  48. struct tcp_sock *tp = tcp_sk(sk);
  49. unsigned int prior_packets = tp->packets_out;
  50. tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
  51. __skb_unlink(skb, &sk->sk_write_queue);
  52. tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
  53. tp->packets_out += tcp_skb_pcount(skb);
  54. if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
  55. tcp_rearm_rto(sk);
  56. NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
  57. tcp_skb_pcount(skb));
  58. }
  59. /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
  60. * window scaling factor due to loss of precision.
  61. * If window has been shrunk, what should we make? It is not clear at all.
  62. * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
  63. * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
  64. * invalid. OK, let's make this for now:
  65. */
  66. static inline __u32 tcp_acceptable_seq(const struct sock *sk)
  67. {
  68. const struct tcp_sock *tp = tcp_sk(sk);
  69. if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
  70. (tp->rx_opt.wscale_ok &&
  71. ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
  72. return tp->snd_nxt;
  73. else
  74. return tcp_wnd_end(tp);
  75. }
  76. /* Calculate mss to advertise in SYN segment.
  77. * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
  78. *
  79. * 1. It is independent of path mtu.
  80. * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
  81. * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
  82. * attached devices, because some buggy hosts are confused by
  83. * large MSS.
  84. * 4. We do not make 3, we advertise MSS, calculated from first
  85. * hop device mtu, but allow to raise it to ip_rt_min_advmss.
  86. * This may be overridden via information stored in routing table.
  87. * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
  88. * probably even Jumbo".
  89. */
  90. static __u16 tcp_advertise_mss(struct sock *sk)
  91. {
  92. struct tcp_sock *tp = tcp_sk(sk);
  93. const struct dst_entry *dst = __sk_dst_get(sk);
  94. int mss = tp->advmss;
  95. if (dst) {
  96. unsigned int metric = dst_metric_advmss(dst);
  97. if (metric < mss) {
  98. mss = metric;
  99. tp->advmss = mss;
  100. }
  101. }
  102. return (__u16)mss;
  103. }
  104. /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
  105. * This is the first part of cwnd validation mechanism.
  106. */
  107. void tcp_cwnd_restart(struct sock *sk, s32 delta)
  108. {
  109. struct tcp_sock *tp = tcp_sk(sk);
  110. u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
  111. u32 cwnd = tp->snd_cwnd;
  112. tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
  113. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  114. restart_cwnd = min(restart_cwnd, cwnd);
  115. while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
  116. cwnd >>= 1;
  117. tp->snd_cwnd = max(cwnd, restart_cwnd);
  118. tp->snd_cwnd_stamp = tcp_jiffies32;
  119. tp->snd_cwnd_used = 0;
  120. }
  121. /* Congestion state accounting after a packet has been sent. */
  122. static void tcp_event_data_sent(struct tcp_sock *tp,
  123. struct sock *sk)
  124. {
  125. struct inet_connection_sock *icsk = inet_csk(sk);
  126. const u32 now = tcp_jiffies32;
  127. if (tcp_packets_in_flight(tp) == 0)
  128. tcp_ca_event(sk, CA_EVENT_TX_START);
  129. tp->lsndtime = now;
  130. /* If it is a reply for ato after last received
  131. * packet, enter pingpong mode.
  132. */
  133. if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
  134. icsk->icsk_ack.pingpong = 1;
  135. }
  136. /* Account for an ACK we sent. */
  137. static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
  138. {
  139. struct tcp_sock *tp = tcp_sk(sk);
  140. if (unlikely(tp->compressed_ack)) {
  141. NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
  142. tp->compressed_ack);
  143. tp->compressed_ack = 0;
  144. if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
  145. __sock_put(sk);
  146. }
  147. tcp_dec_quickack_mode(sk, pkts);
  148. inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
  149. }
  150. u32 tcp_default_init_rwnd(u32 mss)
  151. {
  152. /* Initial receive window should be twice of TCP_INIT_CWND to
  153. * enable proper sending of new unsent data during fast recovery
  154. * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
  155. * limit when mss is larger than 1460.
  156. */
  157. u32 init_rwnd = TCP_INIT_CWND * 2;
  158. if (mss > 1460)
  159. init_rwnd = max((1460 * init_rwnd) / mss, 2U);
  160. return init_rwnd;
  161. }
  162. /* Determine a window scaling and initial window to offer.
  163. * Based on the assumption that the given amount of space
  164. * will be offered. Store the results in the tp structure.
  165. * NOTE: for smooth operation initial space offering should
  166. * be a multiple of mss if possible. We assume here that mss >= 1.
  167. * This MUST be enforced by all callers.
  168. */
  169. void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
  170. __u32 *rcv_wnd, __u32 *window_clamp,
  171. int wscale_ok, __u8 *rcv_wscale,
  172. __u32 init_rcv_wnd)
  173. {
  174. unsigned int space = (__space < 0 ? 0 : __space);
  175. /* If no clamp set the clamp to the max possible scaled window */
  176. if (*window_clamp == 0)
  177. (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
  178. space = min(*window_clamp, space);
  179. /* Quantize space offering to a multiple of mss if possible. */
  180. if (space > mss)
  181. space = rounddown(space, mss);
  182. /* NOTE: offering an initial window larger than 32767
  183. * will break some buggy TCP stacks. If the admin tells us
  184. * it is likely we could be speaking with such a buggy stack
  185. * we will truncate our initial window offering to 32K-1
  186. * unless the remote has sent us a window scaling option,
  187. * which we interpret as a sign the remote TCP is not
  188. * misinterpreting the window field as a signed quantity.
  189. */
  190. if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
  191. (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
  192. else
  193. (*rcv_wnd) = space;
  194. (*rcv_wscale) = 0;
  195. if (wscale_ok) {
  196. /* Set window scaling on max possible window */
  197. space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
  198. space = max_t(u32, space, sysctl_rmem_max);
  199. space = min_t(u32, space, *window_clamp);
  200. while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) {
  201. space >>= 1;
  202. (*rcv_wscale)++;
  203. }
  204. }
  205. if (!init_rcv_wnd) /* Use default unless specified otherwise */
  206. init_rcv_wnd = tcp_default_init_rwnd(mss);
  207. *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
  208. /* Set the clamp no higher than max representable value */
  209. (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
  210. }
  211. EXPORT_SYMBOL(tcp_select_initial_window);
  212. /* Chose a new window to advertise, update state in tcp_sock for the
  213. * socket, and return result with RFC1323 scaling applied. The return
  214. * value can be stuffed directly into th->window for an outgoing
  215. * frame.
  216. */
  217. static u16 tcp_select_window(struct sock *sk)
  218. {
  219. struct tcp_sock *tp = tcp_sk(sk);
  220. u32 old_win = tp->rcv_wnd;
  221. u32 cur_win = tcp_receive_window(tp);
  222. u32 new_win = __tcp_select_window(sk);
  223. /* Never shrink the offered window */
  224. if (new_win < cur_win) {
  225. /* Danger Will Robinson!
  226. * Don't update rcv_wup/rcv_wnd here or else
  227. * we will not be able to advertise a zero
  228. * window in time. --DaveM
  229. *
  230. * Relax Will Robinson.
  231. */
  232. if (new_win == 0)
  233. NET_INC_STATS(sock_net(sk),
  234. LINUX_MIB_TCPWANTZEROWINDOWADV);
  235. new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
  236. }
  237. tp->rcv_wnd = new_win;
  238. tp->rcv_wup = tp->rcv_nxt;
  239. /* Make sure we do not exceed the maximum possible
  240. * scaled window.
  241. */
  242. if (!tp->rx_opt.rcv_wscale &&
  243. sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
  244. new_win = min(new_win, MAX_TCP_WINDOW);
  245. else
  246. new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
  247. /* RFC1323 scaling applied */
  248. new_win >>= tp->rx_opt.rcv_wscale;
  249. /* If we advertise zero window, disable fast path. */
  250. if (new_win == 0) {
  251. tp->pred_flags = 0;
  252. if (old_win)
  253. NET_INC_STATS(sock_net(sk),
  254. LINUX_MIB_TCPTOZEROWINDOWADV);
  255. } else if (old_win == 0) {
  256. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
  257. }
  258. return new_win;
  259. }
  260. /* Packet ECN state for a SYN-ACK */
  261. static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
  262. {
  263. const struct tcp_sock *tp = tcp_sk(sk);
  264. TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
  265. if (!(tp->ecn_flags & TCP_ECN_OK))
  266. TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
  267. else if (tcp_ca_needs_ecn(sk) ||
  268. tcp_bpf_ca_needs_ecn(sk))
  269. INET_ECN_xmit(sk);
  270. }
  271. /* Packet ECN state for a SYN. */
  272. static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
  273. {
  274. struct tcp_sock *tp = tcp_sk(sk);
  275. bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
  276. bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
  277. tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
  278. if (!use_ecn) {
  279. const struct dst_entry *dst = __sk_dst_get(sk);
  280. if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
  281. use_ecn = true;
  282. }
  283. tp->ecn_flags = 0;
  284. if (use_ecn) {
  285. TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
  286. tp->ecn_flags = TCP_ECN_OK;
  287. if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
  288. INET_ECN_xmit(sk);
  289. }
  290. }
  291. static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
  292. {
  293. if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
  294. /* tp->ecn_flags are cleared at a later point in time when
  295. * SYN ACK is ultimatively being received.
  296. */
  297. TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
  298. }
  299. static void
  300. tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
  301. {
  302. if (inet_rsk(req)->ecn_ok)
  303. th->ece = 1;
  304. }
  305. /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
  306. * be sent.
  307. */
  308. static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
  309. struct tcphdr *th, int tcp_header_len)
  310. {
  311. struct tcp_sock *tp = tcp_sk(sk);
  312. if (tp->ecn_flags & TCP_ECN_OK) {
  313. /* Not-retransmitted data segment: set ECT and inject CWR. */
  314. if (skb->len != tcp_header_len &&
  315. !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
  316. INET_ECN_xmit(sk);
  317. if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
  318. tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
  319. th->cwr = 1;
  320. skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
  321. }
  322. } else if (!tcp_ca_needs_ecn(sk)) {
  323. /* ACK or retransmitted segment: clear ECT|CE */
  324. INET_ECN_dontxmit(sk);
  325. }
  326. if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
  327. th->ece = 1;
  328. }
  329. }
  330. /* Constructs common control bits of non-data skb. If SYN/FIN is present,
  331. * auto increment end seqno.
  332. */
  333. static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
  334. {
  335. skb->ip_summed = CHECKSUM_PARTIAL;
  336. TCP_SKB_CB(skb)->tcp_flags = flags;
  337. TCP_SKB_CB(skb)->sacked = 0;
  338. tcp_skb_pcount_set(skb, 1);
  339. TCP_SKB_CB(skb)->seq = seq;
  340. if (flags & (TCPHDR_SYN | TCPHDR_FIN))
  341. seq++;
  342. TCP_SKB_CB(skb)->end_seq = seq;
  343. }
  344. static inline bool tcp_urg_mode(const struct tcp_sock *tp)
  345. {
  346. return tp->snd_una != tp->snd_up;
  347. }
  348. #define OPTION_SACK_ADVERTISE (1 << 0)
  349. #define OPTION_TS (1 << 1)
  350. #define OPTION_MD5 (1 << 2)
  351. #define OPTION_WSCALE (1 << 3)
  352. #define OPTION_FAST_OPEN_COOKIE (1 << 8)
  353. #define OPTION_SMC (1 << 9)
  354. static void smc_options_write(__be32 *ptr, u16 *options)
  355. {
  356. #if IS_ENABLED(CONFIG_SMC)
  357. if (static_branch_unlikely(&tcp_have_smc)) {
  358. if (unlikely(OPTION_SMC & *options)) {
  359. *ptr++ = htonl((TCPOPT_NOP << 24) |
  360. (TCPOPT_NOP << 16) |
  361. (TCPOPT_EXP << 8) |
  362. (TCPOLEN_EXP_SMC_BASE));
  363. *ptr++ = htonl(TCPOPT_SMC_MAGIC);
  364. }
  365. }
  366. #endif
  367. }
  368. struct tcp_out_options {
  369. u16 options; /* bit field of OPTION_* */
  370. u16 mss; /* 0 to disable */
  371. u8 ws; /* window scale, 0 to disable */
  372. u8 num_sack_blocks; /* number of SACK blocks to include */
  373. u8 hash_size; /* bytes in hash_location */
  374. __u8 *hash_location; /* temporary pointer, overloaded */
  375. __u32 tsval, tsecr; /* need to include OPTION_TS */
  376. struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
  377. };
  378. /* Write previously computed TCP options to the packet.
  379. *
  380. * Beware: Something in the Internet is very sensitive to the ordering of
  381. * TCP options, we learned this through the hard way, so be careful here.
  382. * Luckily we can at least blame others for their non-compliance but from
  383. * inter-operability perspective it seems that we're somewhat stuck with
  384. * the ordering which we have been using if we want to keep working with
  385. * those broken things (not that it currently hurts anybody as there isn't
  386. * particular reason why the ordering would need to be changed).
  387. *
  388. * At least SACK_PERM as the first option is known to lead to a disaster
  389. * (but it may well be that other scenarios fail similarly).
  390. */
  391. static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
  392. struct tcp_out_options *opts)
  393. {
  394. u16 options = opts->options; /* mungable copy */
  395. if (unlikely(OPTION_MD5 & options)) {
  396. *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
  397. (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
  398. /* overload cookie hash location */
  399. opts->hash_location = (__u8 *)ptr;
  400. ptr += 4;
  401. }
  402. if (unlikely(opts->mss)) {
  403. *ptr++ = htonl((TCPOPT_MSS << 24) |
  404. (TCPOLEN_MSS << 16) |
  405. opts->mss);
  406. }
  407. if (likely(OPTION_TS & options)) {
  408. if (unlikely(OPTION_SACK_ADVERTISE & options)) {
  409. *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
  410. (TCPOLEN_SACK_PERM << 16) |
  411. (TCPOPT_TIMESTAMP << 8) |
  412. TCPOLEN_TIMESTAMP);
  413. options &= ~OPTION_SACK_ADVERTISE;
  414. } else {
  415. *ptr++ = htonl((TCPOPT_NOP << 24) |
  416. (TCPOPT_NOP << 16) |
  417. (TCPOPT_TIMESTAMP << 8) |
  418. TCPOLEN_TIMESTAMP);
  419. }
  420. *ptr++ = htonl(opts->tsval);
  421. *ptr++ = htonl(opts->tsecr);
  422. }
  423. if (unlikely(OPTION_SACK_ADVERTISE & options)) {
  424. *ptr++ = htonl((TCPOPT_NOP << 24) |
  425. (TCPOPT_NOP << 16) |
  426. (TCPOPT_SACK_PERM << 8) |
  427. TCPOLEN_SACK_PERM);
  428. }
  429. if (unlikely(OPTION_WSCALE & options)) {
  430. *ptr++ = htonl((TCPOPT_NOP << 24) |
  431. (TCPOPT_WINDOW << 16) |
  432. (TCPOLEN_WINDOW << 8) |
  433. opts->ws);
  434. }
  435. if (unlikely(opts->num_sack_blocks)) {
  436. struct tcp_sack_block *sp = tp->rx_opt.dsack ?
  437. tp->duplicate_sack : tp->selective_acks;
  438. int this_sack;
  439. *ptr++ = htonl((TCPOPT_NOP << 24) |
  440. (TCPOPT_NOP << 16) |
  441. (TCPOPT_SACK << 8) |
  442. (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
  443. TCPOLEN_SACK_PERBLOCK)));
  444. for (this_sack = 0; this_sack < opts->num_sack_blocks;
  445. ++this_sack) {
  446. *ptr++ = htonl(sp[this_sack].start_seq);
  447. *ptr++ = htonl(sp[this_sack].end_seq);
  448. }
  449. tp->rx_opt.dsack = 0;
  450. }
  451. if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
  452. struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
  453. u8 *p = (u8 *)ptr;
  454. u32 len; /* Fast Open option length */
  455. if (foc->exp) {
  456. len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
  457. *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
  458. TCPOPT_FASTOPEN_MAGIC);
  459. p += TCPOLEN_EXP_FASTOPEN_BASE;
  460. } else {
  461. len = TCPOLEN_FASTOPEN_BASE + foc->len;
  462. *p++ = TCPOPT_FASTOPEN;
  463. *p++ = len;
  464. }
  465. memcpy(p, foc->val, foc->len);
  466. if ((len & 3) == 2) {
  467. p[foc->len] = TCPOPT_NOP;
  468. p[foc->len + 1] = TCPOPT_NOP;
  469. }
  470. ptr += (len + 3) >> 2;
  471. }
  472. smc_options_write(ptr, &options);
  473. }
  474. static void smc_set_option(const struct tcp_sock *tp,
  475. struct tcp_out_options *opts,
  476. unsigned int *remaining)
  477. {
  478. #if IS_ENABLED(CONFIG_SMC)
  479. if (static_branch_unlikely(&tcp_have_smc)) {
  480. if (tp->syn_smc) {
  481. if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
  482. opts->options |= OPTION_SMC;
  483. *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
  484. }
  485. }
  486. }
  487. #endif
  488. }
  489. static void smc_set_option_cond(const struct tcp_sock *tp,
  490. const struct inet_request_sock *ireq,
  491. struct tcp_out_options *opts,
  492. unsigned int *remaining)
  493. {
  494. #if IS_ENABLED(CONFIG_SMC)
  495. if (static_branch_unlikely(&tcp_have_smc)) {
  496. if (tp->syn_smc && ireq->smc_ok) {
  497. if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
  498. opts->options |= OPTION_SMC;
  499. *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
  500. }
  501. }
  502. }
  503. #endif
  504. }
  505. /* Compute TCP options for SYN packets. This is not the final
  506. * network wire format yet.
  507. */
  508. static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
  509. struct tcp_out_options *opts,
  510. struct tcp_md5sig_key **md5)
  511. {
  512. struct tcp_sock *tp = tcp_sk(sk);
  513. unsigned int remaining = MAX_TCP_OPTION_SPACE;
  514. struct tcp_fastopen_request *fastopen = tp->fastopen_req;
  515. *md5 = NULL;
  516. #ifdef CONFIG_TCP_MD5SIG
  517. if (unlikely(rcu_access_pointer(tp->md5sig_info))) {
  518. *md5 = tp->af_specific->md5_lookup(sk, sk);
  519. if (*md5) {
  520. opts->options |= OPTION_MD5;
  521. remaining -= TCPOLEN_MD5SIG_ALIGNED;
  522. }
  523. }
  524. #endif
  525. /* We always get an MSS option. The option bytes which will be seen in
  526. * normal data packets should timestamps be used, must be in the MSS
  527. * advertised. But we subtract them from tp->mss_cache so that
  528. * calculations in tcp_sendmsg are simpler etc. So account for this
  529. * fact here if necessary. If we don't do this correctly, as a
  530. * receiver we won't recognize data packets as being full sized when we
  531. * should, and thus we won't abide by the delayed ACK rules correctly.
  532. * SACKs don't matter, we never delay an ACK when we have any of those
  533. * going out. */
  534. opts->mss = tcp_advertise_mss(sk);
  535. remaining -= TCPOLEN_MSS_ALIGNED;
  536. if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
  537. opts->options |= OPTION_TS;
  538. opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
  539. opts->tsecr = tp->rx_opt.ts_recent;
  540. remaining -= TCPOLEN_TSTAMP_ALIGNED;
  541. }
  542. if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
  543. opts->ws = tp->rx_opt.rcv_wscale;
  544. opts->options |= OPTION_WSCALE;
  545. remaining -= TCPOLEN_WSCALE_ALIGNED;
  546. }
  547. if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
  548. opts->options |= OPTION_SACK_ADVERTISE;
  549. if (unlikely(!(OPTION_TS & opts->options)))
  550. remaining -= TCPOLEN_SACKPERM_ALIGNED;
  551. }
  552. if (fastopen && fastopen->cookie.len >= 0) {
  553. u32 need = fastopen->cookie.len;
  554. need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
  555. TCPOLEN_FASTOPEN_BASE;
  556. need = (need + 3) & ~3U; /* Align to 32 bits */
  557. if (remaining >= need) {
  558. opts->options |= OPTION_FAST_OPEN_COOKIE;
  559. opts->fastopen_cookie = &fastopen->cookie;
  560. remaining -= need;
  561. tp->syn_fastopen = 1;
  562. tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
  563. }
  564. }
  565. smc_set_option(tp, opts, &remaining);
  566. return MAX_TCP_OPTION_SPACE - remaining;
  567. }
  568. /* Set up TCP options for SYN-ACKs. */
  569. static unsigned int tcp_synack_options(const struct sock *sk,
  570. struct request_sock *req,
  571. unsigned int mss, struct sk_buff *skb,
  572. struct tcp_out_options *opts,
  573. const struct tcp_md5sig_key *md5,
  574. struct tcp_fastopen_cookie *foc)
  575. {
  576. struct inet_request_sock *ireq = inet_rsk(req);
  577. unsigned int remaining = MAX_TCP_OPTION_SPACE;
  578. #ifdef CONFIG_TCP_MD5SIG
  579. if (md5) {
  580. opts->options |= OPTION_MD5;
  581. remaining -= TCPOLEN_MD5SIG_ALIGNED;
  582. /* We can't fit any SACK blocks in a packet with MD5 + TS
  583. * options. There was discussion about disabling SACK
  584. * rather than TS in order to fit in better with old,
  585. * buggy kernels, but that was deemed to be unnecessary.
  586. */
  587. ireq->tstamp_ok &= !ireq->sack_ok;
  588. }
  589. #endif
  590. /* We always send an MSS option. */
  591. opts->mss = mss;
  592. remaining -= TCPOLEN_MSS_ALIGNED;
  593. if (likely(ireq->wscale_ok)) {
  594. opts->ws = ireq->rcv_wscale;
  595. opts->options |= OPTION_WSCALE;
  596. remaining -= TCPOLEN_WSCALE_ALIGNED;
  597. }
  598. if (likely(ireq->tstamp_ok)) {
  599. opts->options |= OPTION_TS;
  600. opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
  601. opts->tsecr = req->ts_recent;
  602. remaining -= TCPOLEN_TSTAMP_ALIGNED;
  603. }
  604. if (likely(ireq->sack_ok)) {
  605. opts->options |= OPTION_SACK_ADVERTISE;
  606. if (unlikely(!ireq->tstamp_ok))
  607. remaining -= TCPOLEN_SACKPERM_ALIGNED;
  608. }
  609. if (foc != NULL && foc->len >= 0) {
  610. u32 need = foc->len;
  611. need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
  612. TCPOLEN_FASTOPEN_BASE;
  613. need = (need + 3) & ~3U; /* Align to 32 bits */
  614. if (remaining >= need) {
  615. opts->options |= OPTION_FAST_OPEN_COOKIE;
  616. opts->fastopen_cookie = foc;
  617. remaining -= need;
  618. }
  619. }
  620. smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
  621. return MAX_TCP_OPTION_SPACE - remaining;
  622. }
  623. /* Compute TCP options for ESTABLISHED sockets. This is not the
  624. * final wire format yet.
  625. */
  626. static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
  627. struct tcp_out_options *opts,
  628. struct tcp_md5sig_key **md5)
  629. {
  630. struct tcp_sock *tp = tcp_sk(sk);
  631. unsigned int size = 0;
  632. unsigned int eff_sacks;
  633. opts->options = 0;
  634. *md5 = NULL;
  635. #ifdef CONFIG_TCP_MD5SIG
  636. if (unlikely(rcu_access_pointer(tp->md5sig_info))) {
  637. *md5 = tp->af_specific->md5_lookup(sk, sk);
  638. if (*md5) {
  639. opts->options |= OPTION_MD5;
  640. size += TCPOLEN_MD5SIG_ALIGNED;
  641. }
  642. }
  643. #endif
  644. if (likely(tp->rx_opt.tstamp_ok)) {
  645. opts->options |= OPTION_TS;
  646. opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
  647. opts->tsecr = tp->rx_opt.ts_recent;
  648. size += TCPOLEN_TSTAMP_ALIGNED;
  649. }
  650. eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
  651. if (unlikely(eff_sacks)) {
  652. const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
  653. opts->num_sack_blocks =
  654. min_t(unsigned int, eff_sacks,
  655. (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
  656. TCPOLEN_SACK_PERBLOCK);
  657. size += TCPOLEN_SACK_BASE_ALIGNED +
  658. opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
  659. }
  660. return size;
  661. }
  662. /* TCP SMALL QUEUES (TSQ)
  663. *
  664. * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
  665. * to reduce RTT and bufferbloat.
  666. * We do this using a special skb destructor (tcp_wfree).
  667. *
  668. * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
  669. * needs to be reallocated in a driver.
  670. * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
  671. *
  672. * Since transmit from skb destructor is forbidden, we use a tasklet
  673. * to process all sockets that eventually need to send more skbs.
  674. * We use one tasklet per cpu, with its own queue of sockets.
  675. */
  676. struct tsq_tasklet {
  677. struct tasklet_struct tasklet;
  678. struct list_head head; /* queue of tcp sockets */
  679. };
  680. static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
  681. static void tcp_tsq_write(struct sock *sk)
  682. {
  683. if ((1 << sk->sk_state) &
  684. (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
  685. TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
  686. struct tcp_sock *tp = tcp_sk(sk);
  687. if (tp->lost_out > tp->retrans_out &&
  688. tp->snd_cwnd > tcp_packets_in_flight(tp)) {
  689. tcp_mstamp_refresh(tp);
  690. tcp_xmit_retransmit_queue(sk);
  691. }
  692. tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
  693. 0, GFP_ATOMIC);
  694. }
  695. }
  696. static void tcp_tsq_handler(struct sock *sk)
  697. {
  698. bh_lock_sock(sk);
  699. if (!sock_owned_by_user(sk))
  700. tcp_tsq_write(sk);
  701. else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
  702. sock_hold(sk);
  703. bh_unlock_sock(sk);
  704. }
  705. /*
  706. * One tasklet per cpu tries to send more skbs.
  707. * We run in tasklet context but need to disable irqs when
  708. * transferring tsq->head because tcp_wfree() might
  709. * interrupt us (non NAPI drivers)
  710. */
  711. static void tcp_tasklet_func(unsigned long data)
  712. {
  713. struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
  714. LIST_HEAD(list);
  715. unsigned long flags;
  716. struct list_head *q, *n;
  717. struct tcp_sock *tp;
  718. struct sock *sk;
  719. local_irq_save(flags);
  720. list_splice_init(&tsq->head, &list);
  721. local_irq_restore(flags);
  722. list_for_each_safe(q, n, &list) {
  723. tp = list_entry(q, struct tcp_sock, tsq_node);
  724. list_del(&tp->tsq_node);
  725. sk = (struct sock *)tp;
  726. smp_mb__before_atomic();
  727. clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
  728. tcp_tsq_handler(sk);
  729. sk_free(sk);
  730. }
  731. }
  732. #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
  733. TCPF_WRITE_TIMER_DEFERRED | \
  734. TCPF_DELACK_TIMER_DEFERRED | \
  735. TCPF_MTU_REDUCED_DEFERRED)
  736. /**
  737. * tcp_release_cb - tcp release_sock() callback
  738. * @sk: socket
  739. *
  740. * called from release_sock() to perform protocol dependent
  741. * actions before socket release.
  742. */
  743. void tcp_release_cb(struct sock *sk)
  744. {
  745. unsigned long flags, nflags;
  746. /* perform an atomic operation only if at least one flag is set */
  747. do {
  748. flags = sk->sk_tsq_flags;
  749. if (!(flags & TCP_DEFERRED_ALL))
  750. return;
  751. nflags = flags & ~TCP_DEFERRED_ALL;
  752. } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
  753. if (flags & TCPF_TSQ_DEFERRED) {
  754. tcp_tsq_write(sk);
  755. __sock_put(sk);
  756. }
  757. /* Here begins the tricky part :
  758. * We are called from release_sock() with :
  759. * 1) BH disabled
  760. * 2) sk_lock.slock spinlock held
  761. * 3) socket owned by us (sk->sk_lock.owned == 1)
  762. *
  763. * But following code is meant to be called from BH handlers,
  764. * so we should keep BH disabled, but early release socket ownership
  765. */
  766. sock_release_ownership(sk);
  767. if (flags & TCPF_WRITE_TIMER_DEFERRED) {
  768. tcp_write_timer_handler(sk);
  769. __sock_put(sk);
  770. }
  771. if (flags & TCPF_DELACK_TIMER_DEFERRED) {
  772. tcp_delack_timer_handler(sk);
  773. __sock_put(sk);
  774. }
  775. if (flags & TCPF_MTU_REDUCED_DEFERRED) {
  776. inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
  777. __sock_put(sk);
  778. }
  779. }
  780. EXPORT_SYMBOL(tcp_release_cb);
  781. void __init tcp_tasklet_init(void)
  782. {
  783. int i;
  784. for_each_possible_cpu(i) {
  785. struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
  786. INIT_LIST_HEAD(&tsq->head);
  787. tasklet_init(&tsq->tasklet,
  788. tcp_tasklet_func,
  789. (unsigned long)tsq);
  790. }
  791. }
  792. /*
  793. * Write buffer destructor automatically called from kfree_skb.
  794. * We can't xmit new skbs from this context, as we might already
  795. * hold qdisc lock.
  796. */
  797. void tcp_wfree(struct sk_buff *skb)
  798. {
  799. struct sock *sk = skb->sk;
  800. struct tcp_sock *tp = tcp_sk(sk);
  801. unsigned long flags, nval, oval;
  802. /* Keep one reference on sk_wmem_alloc.
  803. * Will be released by sk_free() from here or tcp_tasklet_func()
  804. */
  805. WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
  806. /* If this softirq is serviced by ksoftirqd, we are likely under stress.
  807. * Wait until our queues (qdisc + devices) are drained.
  808. * This gives :
  809. * - less callbacks to tcp_write_xmit(), reducing stress (batches)
  810. * - chance for incoming ACK (processed by another cpu maybe)
  811. * to migrate this flow (skb->ooo_okay will be eventually set)
  812. */
  813. if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
  814. goto out;
  815. for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
  816. struct tsq_tasklet *tsq;
  817. bool empty;
  818. if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
  819. goto out;
  820. nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
  821. nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
  822. if (nval != oval)
  823. continue;
  824. /* queue this socket to tasklet queue */
  825. local_irq_save(flags);
  826. tsq = this_cpu_ptr(&tsq_tasklet);
  827. empty = list_empty(&tsq->head);
  828. list_add(&tp->tsq_node, &tsq->head);
  829. if (empty)
  830. tasklet_schedule(&tsq->tasklet);
  831. local_irq_restore(flags);
  832. return;
  833. }
  834. out:
  835. sk_free(sk);
  836. }
  837. /* Note: Called under soft irq.
  838. * We can call TCP stack right away, unless socket is owned by user.
  839. */
  840. enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
  841. {
  842. struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
  843. struct sock *sk = (struct sock *)tp;
  844. tcp_tsq_handler(sk);
  845. sock_put(sk);
  846. return HRTIMER_NORESTART;
  847. }
  848. static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb)
  849. {
  850. u64 len_ns;
  851. u32 rate;
  852. if (!tcp_needs_internal_pacing(sk))
  853. return;
  854. rate = sk->sk_pacing_rate;
  855. if (!rate || rate == ~0U)
  856. return;
  857. len_ns = (u64)skb->len * NSEC_PER_SEC;
  858. do_div(len_ns, rate);
  859. hrtimer_start(&tcp_sk(sk)->pacing_timer,
  860. ktime_add_ns(ktime_get(), len_ns),
  861. HRTIMER_MODE_ABS_PINNED_SOFT);
  862. sock_hold(sk);
  863. }
  864. static void tcp_update_skb_after_send(struct tcp_sock *tp, struct sk_buff *skb)
  865. {
  866. skb->skb_mstamp = tp->tcp_mstamp;
  867. list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
  868. }
  869. /* This routine actually transmits TCP packets queued in by
  870. * tcp_do_sendmsg(). This is used by both the initial
  871. * transmission and possible later retransmissions.
  872. * All SKB's seen here are completely headerless. It is our
  873. * job to build the TCP header, and pass the packet down to
  874. * IP so it can do the same plus pass the packet off to the
  875. * device.
  876. *
  877. * We are working here with either a clone of the original
  878. * SKB, or a fresh unique copy made by the retransmit engine.
  879. */
  880. static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
  881. gfp_t gfp_mask)
  882. {
  883. const struct inet_connection_sock *icsk = inet_csk(sk);
  884. struct inet_sock *inet;
  885. struct tcp_sock *tp;
  886. struct tcp_skb_cb *tcb;
  887. struct tcp_out_options opts;
  888. unsigned int tcp_options_size, tcp_header_size;
  889. struct sk_buff *oskb = NULL;
  890. struct tcp_md5sig_key *md5;
  891. struct tcphdr *th;
  892. int err;
  893. BUG_ON(!skb || !tcp_skb_pcount(skb));
  894. tp = tcp_sk(sk);
  895. if (clone_it) {
  896. TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
  897. - tp->snd_una;
  898. oskb = skb;
  899. tcp_skb_tsorted_save(oskb) {
  900. if (unlikely(skb_cloned(oskb)))
  901. skb = pskb_copy(oskb, gfp_mask);
  902. else
  903. skb = skb_clone(oskb, gfp_mask);
  904. } tcp_skb_tsorted_restore(oskb);
  905. if (unlikely(!skb))
  906. return -ENOBUFS;
  907. }
  908. skb->skb_mstamp = tp->tcp_mstamp;
  909. inet = inet_sk(sk);
  910. tcb = TCP_SKB_CB(skb);
  911. memset(&opts, 0, sizeof(opts));
  912. if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
  913. tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
  914. else
  915. tcp_options_size = tcp_established_options(sk, skb, &opts,
  916. &md5);
  917. tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
  918. /* if no packet is in qdisc/device queue, then allow XPS to select
  919. * another queue. We can be called from tcp_tsq_handler()
  920. * which holds one reference to sk.
  921. *
  922. * TODO: Ideally, in-flight pure ACK packets should not matter here.
  923. * One way to get this would be to set skb->truesize = 2 on them.
  924. */
  925. skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
  926. /* If we had to use memory reserve to allocate this skb,
  927. * this might cause drops if packet is looped back :
  928. * Other socket might not have SOCK_MEMALLOC.
  929. * Packets not looped back do not care about pfmemalloc.
  930. */
  931. skb->pfmemalloc = 0;
  932. skb_push(skb, tcp_header_size);
  933. skb_reset_transport_header(skb);
  934. skb_orphan(skb);
  935. skb->sk = sk;
  936. skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
  937. skb_set_hash_from_sk(skb, sk);
  938. refcount_add(skb->truesize, &sk->sk_wmem_alloc);
  939. skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
  940. /* Build TCP header and checksum it. */
  941. th = (struct tcphdr *)skb->data;
  942. th->source = inet->inet_sport;
  943. th->dest = inet->inet_dport;
  944. th->seq = htonl(tcb->seq);
  945. th->ack_seq = htonl(tp->rcv_nxt);
  946. *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
  947. tcb->tcp_flags);
  948. th->check = 0;
  949. th->urg_ptr = 0;
  950. /* The urg_mode check is necessary during a below snd_una win probe */
  951. if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
  952. if (before(tp->snd_up, tcb->seq + 0x10000)) {
  953. th->urg_ptr = htons(tp->snd_up - tcb->seq);
  954. th->urg = 1;
  955. } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
  956. th->urg_ptr = htons(0xFFFF);
  957. th->urg = 1;
  958. }
  959. }
  960. tcp_options_write((__be32 *)(th + 1), tp, &opts);
  961. skb_shinfo(skb)->gso_type = sk->sk_gso_type;
  962. if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
  963. th->window = htons(tcp_select_window(sk));
  964. tcp_ecn_send(sk, skb, th, tcp_header_size);
  965. } else {
  966. /* RFC1323: The window in SYN & SYN/ACK segments
  967. * is never scaled.
  968. */
  969. th->window = htons(min(tp->rcv_wnd, 65535U));
  970. }
  971. #ifdef CONFIG_TCP_MD5SIG
  972. /* Calculate the MD5 hash, as we have all we need now */
  973. if (md5) {
  974. sk_nocaps_add(sk, NETIF_F_GSO_MASK);
  975. tp->af_specific->calc_md5_hash(opts.hash_location,
  976. md5, sk, skb);
  977. }
  978. #endif
  979. icsk->icsk_af_ops->send_check(sk, skb);
  980. if (likely(tcb->tcp_flags & TCPHDR_ACK))
  981. tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
  982. if (skb->len != tcp_header_size) {
  983. tcp_event_data_sent(tp, sk);
  984. tp->data_segs_out += tcp_skb_pcount(skb);
  985. tcp_internal_pacing(sk, skb);
  986. }
  987. if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
  988. TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
  989. tcp_skb_pcount(skb));
  990. tp->segs_out += tcp_skb_pcount(skb);
  991. /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
  992. skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
  993. skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
  994. /* Our usage of tstamp should remain private */
  995. skb->tstamp = 0;
  996. /* Cleanup our debris for IP stacks */
  997. memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
  998. sizeof(struct inet6_skb_parm)));
  999. err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
  1000. if (unlikely(err > 0)) {
  1001. tcp_enter_cwr(sk);
  1002. err = net_xmit_eval(err);
  1003. }
  1004. if (!err && oskb) {
  1005. tcp_update_skb_after_send(tp, oskb);
  1006. tcp_rate_skb_sent(sk, oskb);
  1007. }
  1008. return err;
  1009. }
  1010. /* This routine just queues the buffer for sending.
  1011. *
  1012. * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
  1013. * otherwise socket can stall.
  1014. */
  1015. static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
  1016. {
  1017. struct tcp_sock *tp = tcp_sk(sk);
  1018. /* Advance write_seq and place onto the write_queue. */
  1019. tp->write_seq = TCP_SKB_CB(skb)->end_seq;
  1020. __skb_header_release(skb);
  1021. tcp_add_write_queue_tail(sk, skb);
  1022. sk->sk_wmem_queued += skb->truesize;
  1023. sk_mem_charge(sk, skb->truesize);
  1024. }
  1025. /* Initialize TSO segments for a packet. */
  1026. static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
  1027. {
  1028. if (skb->len <= mss_now) {
  1029. /* Avoid the costly divide in the normal
  1030. * non-TSO case.
  1031. */
  1032. tcp_skb_pcount_set(skb, 1);
  1033. TCP_SKB_CB(skb)->tcp_gso_size = 0;
  1034. } else {
  1035. tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
  1036. TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
  1037. }
  1038. }
  1039. /* Pcount in the middle of the write queue got changed, we need to do various
  1040. * tweaks to fix counters
  1041. */
  1042. static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
  1043. {
  1044. struct tcp_sock *tp = tcp_sk(sk);
  1045. tp->packets_out -= decr;
  1046. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
  1047. tp->sacked_out -= decr;
  1048. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
  1049. tp->retrans_out -= decr;
  1050. if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
  1051. tp->lost_out -= decr;
  1052. /* Reno case is special. Sigh... */
  1053. if (tcp_is_reno(tp) && decr > 0)
  1054. tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
  1055. if (tp->lost_skb_hint &&
  1056. before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
  1057. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1058. tp->lost_cnt_hint -= decr;
  1059. tcp_verify_left_out(tp);
  1060. }
  1061. static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
  1062. {
  1063. return TCP_SKB_CB(skb)->txstamp_ack ||
  1064. (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
  1065. }
  1066. static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
  1067. {
  1068. struct skb_shared_info *shinfo = skb_shinfo(skb);
  1069. if (unlikely(tcp_has_tx_tstamp(skb)) &&
  1070. !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
  1071. struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
  1072. u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
  1073. shinfo->tx_flags &= ~tsflags;
  1074. shinfo2->tx_flags |= tsflags;
  1075. swap(shinfo->tskey, shinfo2->tskey);
  1076. TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
  1077. TCP_SKB_CB(skb)->txstamp_ack = 0;
  1078. }
  1079. }
  1080. static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
  1081. {
  1082. TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
  1083. TCP_SKB_CB(skb)->eor = 0;
  1084. }
  1085. /* Insert buff after skb on the write or rtx queue of sk. */
  1086. static void tcp_insert_write_queue_after(struct sk_buff *skb,
  1087. struct sk_buff *buff,
  1088. struct sock *sk,
  1089. enum tcp_queue tcp_queue)
  1090. {
  1091. if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
  1092. __skb_queue_after(&sk->sk_write_queue, skb, buff);
  1093. else
  1094. tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
  1095. }
  1096. /* Function to create two new TCP segments. Shrinks the given segment
  1097. * to the specified size and appends a new segment with the rest of the
  1098. * packet to the list. This won't be called frequently, I hope.
  1099. * Remember, these are still headerless SKBs at this point.
  1100. */
  1101. int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
  1102. struct sk_buff *skb, u32 len,
  1103. unsigned int mss_now, gfp_t gfp)
  1104. {
  1105. struct tcp_sock *tp = tcp_sk(sk);
  1106. struct sk_buff *buff;
  1107. int nsize, old_factor;
  1108. int nlen;
  1109. u8 flags;
  1110. if (WARN_ON(len > skb->len))
  1111. return -EINVAL;
  1112. nsize = skb_headlen(skb) - len;
  1113. if (nsize < 0)
  1114. nsize = 0;
  1115. if (skb_unclone(skb, gfp))
  1116. return -ENOMEM;
  1117. /* Get a new skb... force flag on. */
  1118. buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
  1119. if (!buff)
  1120. return -ENOMEM; /* We'll just try again later. */
  1121. sk->sk_wmem_queued += buff->truesize;
  1122. sk_mem_charge(sk, buff->truesize);
  1123. nlen = skb->len - len - nsize;
  1124. buff->truesize += nlen;
  1125. skb->truesize -= nlen;
  1126. /* Correct the sequence numbers. */
  1127. TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
  1128. TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
  1129. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
  1130. /* PSH and FIN should only be set in the second packet. */
  1131. flags = TCP_SKB_CB(skb)->tcp_flags;
  1132. TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
  1133. TCP_SKB_CB(buff)->tcp_flags = flags;
  1134. TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
  1135. tcp_skb_fragment_eor(skb, buff);
  1136. skb_split(skb, buff, len);
  1137. buff->ip_summed = CHECKSUM_PARTIAL;
  1138. buff->tstamp = skb->tstamp;
  1139. tcp_fragment_tstamp(skb, buff);
  1140. old_factor = tcp_skb_pcount(skb);
  1141. /* Fix up tso_factor for both original and new SKB. */
  1142. tcp_set_skb_tso_segs(skb, mss_now);
  1143. tcp_set_skb_tso_segs(buff, mss_now);
  1144. /* Update delivered info for the new segment */
  1145. TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
  1146. /* If this packet has been sent out already, we must
  1147. * adjust the various packet counters.
  1148. */
  1149. if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
  1150. int diff = old_factor - tcp_skb_pcount(skb) -
  1151. tcp_skb_pcount(buff);
  1152. if (diff)
  1153. tcp_adjust_pcount(sk, skb, diff);
  1154. }
  1155. /* Link BUFF into the send queue. */
  1156. __skb_header_release(buff);
  1157. tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
  1158. if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
  1159. list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
  1160. return 0;
  1161. }
  1162. /* This is similar to __pskb_pull_tail(). The difference is that pulled
  1163. * data is not copied, but immediately discarded.
  1164. */
  1165. static int __pskb_trim_head(struct sk_buff *skb, int len)
  1166. {
  1167. struct skb_shared_info *shinfo;
  1168. int i, k, eat;
  1169. eat = min_t(int, len, skb_headlen(skb));
  1170. if (eat) {
  1171. __skb_pull(skb, eat);
  1172. len -= eat;
  1173. if (!len)
  1174. return 0;
  1175. }
  1176. eat = len;
  1177. k = 0;
  1178. shinfo = skb_shinfo(skb);
  1179. for (i = 0; i < shinfo->nr_frags; i++) {
  1180. int size = skb_frag_size(&shinfo->frags[i]);
  1181. if (size <= eat) {
  1182. skb_frag_unref(skb, i);
  1183. eat -= size;
  1184. } else {
  1185. shinfo->frags[k] = shinfo->frags[i];
  1186. if (eat) {
  1187. shinfo->frags[k].page_offset += eat;
  1188. skb_frag_size_sub(&shinfo->frags[k], eat);
  1189. eat = 0;
  1190. }
  1191. k++;
  1192. }
  1193. }
  1194. shinfo->nr_frags = k;
  1195. skb->data_len -= len;
  1196. skb->len = skb->data_len;
  1197. return len;
  1198. }
  1199. /* Remove acked data from a packet in the transmit queue. */
  1200. int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
  1201. {
  1202. u32 delta_truesize;
  1203. if (skb_unclone(skb, GFP_ATOMIC))
  1204. return -ENOMEM;
  1205. delta_truesize = __pskb_trim_head(skb, len);
  1206. TCP_SKB_CB(skb)->seq += len;
  1207. skb->ip_summed = CHECKSUM_PARTIAL;
  1208. if (delta_truesize) {
  1209. skb->truesize -= delta_truesize;
  1210. sk->sk_wmem_queued -= delta_truesize;
  1211. sk_mem_uncharge(sk, delta_truesize);
  1212. sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
  1213. }
  1214. /* Any change of skb->len requires recalculation of tso factor. */
  1215. if (tcp_skb_pcount(skb) > 1)
  1216. tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
  1217. return 0;
  1218. }
  1219. /* Calculate MSS not accounting any TCP options. */
  1220. static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
  1221. {
  1222. const struct tcp_sock *tp = tcp_sk(sk);
  1223. const struct inet_connection_sock *icsk = inet_csk(sk);
  1224. int mss_now;
  1225. /* Calculate base mss without TCP options:
  1226. It is MMS_S - sizeof(tcphdr) of rfc1122
  1227. */
  1228. mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
  1229. /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
  1230. if (icsk->icsk_af_ops->net_frag_header_len) {
  1231. const struct dst_entry *dst = __sk_dst_get(sk);
  1232. if (dst && dst_allfrag(dst))
  1233. mss_now -= icsk->icsk_af_ops->net_frag_header_len;
  1234. }
  1235. /* Clamp it (mss_clamp does not include tcp options) */
  1236. if (mss_now > tp->rx_opt.mss_clamp)
  1237. mss_now = tp->rx_opt.mss_clamp;
  1238. /* Now subtract optional transport overhead */
  1239. mss_now -= icsk->icsk_ext_hdr_len;
  1240. /* Then reserve room for full set of TCP options and 8 bytes of data */
  1241. if (mss_now < 48)
  1242. mss_now = 48;
  1243. return mss_now;
  1244. }
  1245. /* Calculate MSS. Not accounting for SACKs here. */
  1246. int tcp_mtu_to_mss(struct sock *sk, int pmtu)
  1247. {
  1248. /* Subtract TCP options size, not including SACKs */
  1249. return __tcp_mtu_to_mss(sk, pmtu) -
  1250. (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
  1251. }
  1252. /* Inverse of above */
  1253. int tcp_mss_to_mtu(struct sock *sk, int mss)
  1254. {
  1255. const struct tcp_sock *tp = tcp_sk(sk);
  1256. const struct inet_connection_sock *icsk = inet_csk(sk);
  1257. int mtu;
  1258. mtu = mss +
  1259. tp->tcp_header_len +
  1260. icsk->icsk_ext_hdr_len +
  1261. icsk->icsk_af_ops->net_header_len;
  1262. /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
  1263. if (icsk->icsk_af_ops->net_frag_header_len) {
  1264. const struct dst_entry *dst = __sk_dst_get(sk);
  1265. if (dst && dst_allfrag(dst))
  1266. mtu += icsk->icsk_af_ops->net_frag_header_len;
  1267. }
  1268. return mtu;
  1269. }
  1270. EXPORT_SYMBOL(tcp_mss_to_mtu);
  1271. /* MTU probing init per socket */
  1272. void tcp_mtup_init(struct sock *sk)
  1273. {
  1274. struct tcp_sock *tp = tcp_sk(sk);
  1275. struct inet_connection_sock *icsk = inet_csk(sk);
  1276. struct net *net = sock_net(sk);
  1277. icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
  1278. icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
  1279. icsk->icsk_af_ops->net_header_len;
  1280. icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
  1281. icsk->icsk_mtup.probe_size = 0;
  1282. if (icsk->icsk_mtup.enabled)
  1283. icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
  1284. }
  1285. EXPORT_SYMBOL(tcp_mtup_init);
  1286. /* This function synchronize snd mss to current pmtu/exthdr set.
  1287. tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
  1288. for TCP options, but includes only bare TCP header.
  1289. tp->rx_opt.mss_clamp is mss negotiated at connection setup.
  1290. It is minimum of user_mss and mss received with SYN.
  1291. It also does not include TCP options.
  1292. inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
  1293. tp->mss_cache is current effective sending mss, including
  1294. all tcp options except for SACKs. It is evaluated,
  1295. taking into account current pmtu, but never exceeds
  1296. tp->rx_opt.mss_clamp.
  1297. NOTE1. rfc1122 clearly states that advertised MSS
  1298. DOES NOT include either tcp or ip options.
  1299. NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
  1300. are READ ONLY outside this function. --ANK (980731)
  1301. */
  1302. unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
  1303. {
  1304. struct tcp_sock *tp = tcp_sk(sk);
  1305. struct inet_connection_sock *icsk = inet_csk(sk);
  1306. int mss_now;
  1307. if (icsk->icsk_mtup.search_high > pmtu)
  1308. icsk->icsk_mtup.search_high = pmtu;
  1309. mss_now = tcp_mtu_to_mss(sk, pmtu);
  1310. mss_now = tcp_bound_to_half_wnd(tp, mss_now);
  1311. /* And store cached results */
  1312. icsk->icsk_pmtu_cookie = pmtu;
  1313. if (icsk->icsk_mtup.enabled)
  1314. mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
  1315. tp->mss_cache = mss_now;
  1316. return mss_now;
  1317. }
  1318. EXPORT_SYMBOL(tcp_sync_mss);
  1319. /* Compute the current effective MSS, taking SACKs and IP options,
  1320. * and even PMTU discovery events into account.
  1321. */
  1322. unsigned int tcp_current_mss(struct sock *sk)
  1323. {
  1324. const struct tcp_sock *tp = tcp_sk(sk);
  1325. const struct dst_entry *dst = __sk_dst_get(sk);
  1326. u32 mss_now;
  1327. unsigned int header_len;
  1328. struct tcp_out_options opts;
  1329. struct tcp_md5sig_key *md5;
  1330. mss_now = tp->mss_cache;
  1331. if (dst) {
  1332. u32 mtu = dst_mtu(dst);
  1333. if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
  1334. mss_now = tcp_sync_mss(sk, mtu);
  1335. }
  1336. header_len = tcp_established_options(sk, NULL, &opts, &md5) +
  1337. sizeof(struct tcphdr);
  1338. /* The mss_cache is sized based on tp->tcp_header_len, which assumes
  1339. * some common options. If this is an odd packet (because we have SACK
  1340. * blocks etc) then our calculated header_len will be different, and
  1341. * we have to adjust mss_now correspondingly */
  1342. if (header_len != tp->tcp_header_len) {
  1343. int delta = (int) header_len - tp->tcp_header_len;
  1344. mss_now -= delta;
  1345. }
  1346. return mss_now;
  1347. }
  1348. /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
  1349. * As additional protections, we do not touch cwnd in retransmission phases,
  1350. * and if application hit its sndbuf limit recently.
  1351. */
  1352. static void tcp_cwnd_application_limited(struct sock *sk)
  1353. {
  1354. struct tcp_sock *tp = tcp_sk(sk);
  1355. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
  1356. sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  1357. /* Limited by application or receiver window. */
  1358. u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
  1359. u32 win_used = max(tp->snd_cwnd_used, init_win);
  1360. if (win_used < tp->snd_cwnd) {
  1361. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  1362. tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
  1363. }
  1364. tp->snd_cwnd_used = 0;
  1365. }
  1366. tp->snd_cwnd_stamp = tcp_jiffies32;
  1367. }
  1368. static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
  1369. {
  1370. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  1371. struct tcp_sock *tp = tcp_sk(sk);
  1372. /* Track the maximum number of outstanding packets in each
  1373. * window, and remember whether we were cwnd-limited then.
  1374. */
  1375. if (!before(tp->snd_una, tp->max_packets_seq) ||
  1376. tp->packets_out > tp->max_packets_out) {
  1377. tp->max_packets_out = tp->packets_out;
  1378. tp->max_packets_seq = tp->snd_nxt;
  1379. tp->is_cwnd_limited = is_cwnd_limited;
  1380. }
  1381. if (tcp_is_cwnd_limited(sk)) {
  1382. /* Network is feed fully. */
  1383. tp->snd_cwnd_used = 0;
  1384. tp->snd_cwnd_stamp = tcp_jiffies32;
  1385. } else {
  1386. /* Network starves. */
  1387. if (tp->packets_out > tp->snd_cwnd_used)
  1388. tp->snd_cwnd_used = tp->packets_out;
  1389. if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
  1390. (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
  1391. !ca_ops->cong_control)
  1392. tcp_cwnd_application_limited(sk);
  1393. /* The following conditions together indicate the starvation
  1394. * is caused by insufficient sender buffer:
  1395. * 1) just sent some data (see tcp_write_xmit)
  1396. * 2) not cwnd limited (this else condition)
  1397. * 3) no more data to send (tcp_write_queue_empty())
  1398. * 4) application is hitting buffer limit (SOCK_NOSPACE)
  1399. */
  1400. if (tcp_write_queue_empty(sk) && sk->sk_socket &&
  1401. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
  1402. (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
  1403. tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
  1404. }
  1405. }
  1406. /* Minshall's variant of the Nagle send check. */
  1407. static bool tcp_minshall_check(const struct tcp_sock *tp)
  1408. {
  1409. return after(tp->snd_sml, tp->snd_una) &&
  1410. !after(tp->snd_sml, tp->snd_nxt);
  1411. }
  1412. /* Update snd_sml if this skb is under mss
  1413. * Note that a TSO packet might end with a sub-mss segment
  1414. * The test is really :
  1415. * if ((skb->len % mss) != 0)
  1416. * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
  1417. * But we can avoid doing the divide again given we already have
  1418. * skb_pcount = skb->len / mss_now
  1419. */
  1420. static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
  1421. const struct sk_buff *skb)
  1422. {
  1423. if (skb->len < tcp_skb_pcount(skb) * mss_now)
  1424. tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
  1425. }
  1426. /* Return false, if packet can be sent now without violation Nagle's rules:
  1427. * 1. It is full sized. (provided by caller in %partial bool)
  1428. * 2. Or it contains FIN. (already checked by caller)
  1429. * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
  1430. * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
  1431. * With Minshall's modification: all sent small packets are ACKed.
  1432. */
  1433. static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
  1434. int nonagle)
  1435. {
  1436. return partial &&
  1437. ((nonagle & TCP_NAGLE_CORK) ||
  1438. (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
  1439. }
  1440. /* Return how many segs we'd like on a TSO packet,
  1441. * to send one TSO packet per ms
  1442. */
  1443. static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
  1444. int min_tso_segs)
  1445. {
  1446. u32 bytes, segs;
  1447. bytes = min(sk->sk_pacing_rate >> sk->sk_pacing_shift,
  1448. sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
  1449. /* Goal is to send at least one packet per ms,
  1450. * not one big TSO packet every 100 ms.
  1451. * This preserves ACK clocking and is consistent
  1452. * with tcp_tso_should_defer() heuristic.
  1453. */
  1454. segs = max_t(u32, bytes / mss_now, min_tso_segs);
  1455. return segs;
  1456. }
  1457. /* Return the number of segments we want in the skb we are transmitting.
  1458. * See if congestion control module wants to decide; otherwise, autosize.
  1459. */
  1460. static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
  1461. {
  1462. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  1463. u32 min_tso, tso_segs;
  1464. min_tso = ca_ops->min_tso_segs ?
  1465. ca_ops->min_tso_segs(sk) :
  1466. sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs;
  1467. tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
  1468. return min_t(u32, tso_segs, sk->sk_gso_max_segs);
  1469. }
  1470. /* Returns the portion of skb which can be sent right away */
  1471. static unsigned int tcp_mss_split_point(const struct sock *sk,
  1472. const struct sk_buff *skb,
  1473. unsigned int mss_now,
  1474. unsigned int max_segs,
  1475. int nonagle)
  1476. {
  1477. const struct tcp_sock *tp = tcp_sk(sk);
  1478. u32 partial, needed, window, max_len;
  1479. window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
  1480. max_len = mss_now * max_segs;
  1481. if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
  1482. return max_len;
  1483. needed = min(skb->len, window);
  1484. if (max_len <= needed)
  1485. return max_len;
  1486. partial = needed % mss_now;
  1487. /* If last segment is not a full MSS, check if Nagle rules allow us
  1488. * to include this last segment in this skb.
  1489. * Otherwise, we'll split the skb at last MSS boundary
  1490. */
  1491. if (tcp_nagle_check(partial != 0, tp, nonagle))
  1492. return needed - partial;
  1493. return needed;
  1494. }
  1495. /* Can at least one segment of SKB be sent right now, according to the
  1496. * congestion window rules? If so, return how many segments are allowed.
  1497. */
  1498. static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
  1499. const struct sk_buff *skb)
  1500. {
  1501. u32 in_flight, cwnd, halfcwnd;
  1502. /* Don't be strict about the congestion window for the final FIN. */
  1503. if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
  1504. tcp_skb_pcount(skb) == 1)
  1505. return 1;
  1506. in_flight = tcp_packets_in_flight(tp);
  1507. cwnd = tp->snd_cwnd;
  1508. if (in_flight >= cwnd)
  1509. return 0;
  1510. /* For better scheduling, ensure we have at least
  1511. * 2 GSO packets in flight.
  1512. */
  1513. halfcwnd = max(cwnd >> 1, 1U);
  1514. return min(halfcwnd, cwnd - in_flight);
  1515. }
  1516. /* Initialize TSO state of a skb.
  1517. * This must be invoked the first time we consider transmitting
  1518. * SKB onto the wire.
  1519. */
  1520. static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
  1521. {
  1522. int tso_segs = tcp_skb_pcount(skb);
  1523. if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
  1524. tcp_set_skb_tso_segs(skb, mss_now);
  1525. tso_segs = tcp_skb_pcount(skb);
  1526. }
  1527. return tso_segs;
  1528. }
  1529. /* Return true if the Nagle test allows this packet to be
  1530. * sent now.
  1531. */
  1532. static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
  1533. unsigned int cur_mss, int nonagle)
  1534. {
  1535. /* Nagle rule does not apply to frames, which sit in the middle of the
  1536. * write_queue (they have no chances to get new data).
  1537. *
  1538. * This is implemented in the callers, where they modify the 'nonagle'
  1539. * argument based upon the location of SKB in the send queue.
  1540. */
  1541. if (nonagle & TCP_NAGLE_PUSH)
  1542. return true;
  1543. /* Don't use the nagle rule for urgent data (or for the final FIN). */
  1544. if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
  1545. return true;
  1546. if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
  1547. return true;
  1548. return false;
  1549. }
  1550. /* Does at least the first segment of SKB fit into the send window? */
  1551. static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
  1552. const struct sk_buff *skb,
  1553. unsigned int cur_mss)
  1554. {
  1555. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  1556. if (skb->len > cur_mss)
  1557. end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
  1558. return !after(end_seq, tcp_wnd_end(tp));
  1559. }
  1560. /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
  1561. * which is put after SKB on the list. It is very much like
  1562. * tcp_fragment() except that it may make several kinds of assumptions
  1563. * in order to speed up the splitting operation. In particular, we
  1564. * know that all the data is in scatter-gather pages, and that the
  1565. * packet has never been sent out before (and thus is not cloned).
  1566. */
  1567. static int tso_fragment(struct sock *sk, enum tcp_queue tcp_queue,
  1568. struct sk_buff *skb, unsigned int len,
  1569. unsigned int mss_now, gfp_t gfp)
  1570. {
  1571. struct sk_buff *buff;
  1572. int nlen = skb->len - len;
  1573. u8 flags;
  1574. /* All of a TSO frame must be composed of paged data. */
  1575. if (skb->len != skb->data_len)
  1576. return tcp_fragment(sk, tcp_queue, skb, len, mss_now, gfp);
  1577. buff = sk_stream_alloc_skb(sk, 0, gfp, true);
  1578. if (unlikely(!buff))
  1579. return -ENOMEM;
  1580. sk->sk_wmem_queued += buff->truesize;
  1581. sk_mem_charge(sk, buff->truesize);
  1582. buff->truesize += nlen;
  1583. skb->truesize -= nlen;
  1584. /* Correct the sequence numbers. */
  1585. TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
  1586. TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
  1587. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
  1588. /* PSH and FIN should only be set in the second packet. */
  1589. flags = TCP_SKB_CB(skb)->tcp_flags;
  1590. TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
  1591. TCP_SKB_CB(buff)->tcp_flags = flags;
  1592. /* This packet was never sent out yet, so no SACK bits. */
  1593. TCP_SKB_CB(buff)->sacked = 0;
  1594. tcp_skb_fragment_eor(skb, buff);
  1595. buff->ip_summed = CHECKSUM_PARTIAL;
  1596. skb_split(skb, buff, len);
  1597. tcp_fragment_tstamp(skb, buff);
  1598. /* Fix up tso_factor for both original and new SKB. */
  1599. tcp_set_skb_tso_segs(skb, mss_now);
  1600. tcp_set_skb_tso_segs(buff, mss_now);
  1601. /* Link BUFF into the send queue. */
  1602. __skb_header_release(buff);
  1603. tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
  1604. return 0;
  1605. }
  1606. /* Try to defer sending, if possible, in order to minimize the amount
  1607. * of TSO splitting we do. View it as a kind of TSO Nagle test.
  1608. *
  1609. * This algorithm is from John Heffner.
  1610. */
  1611. static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
  1612. bool *is_cwnd_limited, u32 max_segs)
  1613. {
  1614. const struct inet_connection_sock *icsk = inet_csk(sk);
  1615. u32 age, send_win, cong_win, limit, in_flight;
  1616. struct tcp_sock *tp = tcp_sk(sk);
  1617. struct sk_buff *head;
  1618. int win_divisor;
  1619. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  1620. goto send_now;
  1621. if (icsk->icsk_ca_state >= TCP_CA_Recovery)
  1622. goto send_now;
  1623. /* Avoid bursty behavior by allowing defer
  1624. * only if the last write was recent.
  1625. */
  1626. if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0)
  1627. goto send_now;
  1628. in_flight = tcp_packets_in_flight(tp);
  1629. BUG_ON(tcp_skb_pcount(skb) <= 1);
  1630. BUG_ON(tp->snd_cwnd <= in_flight);
  1631. send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
  1632. /* From in_flight test above, we know that cwnd > in_flight. */
  1633. cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
  1634. limit = min(send_win, cong_win);
  1635. /* If a full-sized TSO skb can be sent, do it. */
  1636. if (limit >= max_segs * tp->mss_cache)
  1637. goto send_now;
  1638. /* Middle in queue won't get any more data, full sendable already? */
  1639. if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
  1640. goto send_now;
  1641. win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
  1642. if (win_divisor) {
  1643. u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
  1644. /* If at least some fraction of a window is available,
  1645. * just use it.
  1646. */
  1647. chunk /= win_divisor;
  1648. if (limit >= chunk)
  1649. goto send_now;
  1650. } else {
  1651. /* Different approach, try not to defer past a single
  1652. * ACK. Receiver should ACK every other full sized
  1653. * frame, so if we have space for more than 3 frames
  1654. * then send now.
  1655. */
  1656. if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
  1657. goto send_now;
  1658. }
  1659. /* TODO : use tsorted_sent_queue ? */
  1660. head = tcp_rtx_queue_head(sk);
  1661. if (!head)
  1662. goto send_now;
  1663. age = tcp_stamp_us_delta(tp->tcp_mstamp, head->skb_mstamp);
  1664. /* If next ACK is likely to come too late (half srtt), do not defer */
  1665. if (age < (tp->srtt_us >> 4))
  1666. goto send_now;
  1667. /* Ok, it looks like it is advisable to defer. */
  1668. if (cong_win < send_win && cong_win <= skb->len)
  1669. *is_cwnd_limited = true;
  1670. return true;
  1671. send_now:
  1672. return false;
  1673. }
  1674. static inline void tcp_mtu_check_reprobe(struct sock *sk)
  1675. {
  1676. struct inet_connection_sock *icsk = inet_csk(sk);
  1677. struct tcp_sock *tp = tcp_sk(sk);
  1678. struct net *net = sock_net(sk);
  1679. u32 interval;
  1680. s32 delta;
  1681. interval = net->ipv4.sysctl_tcp_probe_interval;
  1682. delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
  1683. if (unlikely(delta >= interval * HZ)) {
  1684. int mss = tcp_current_mss(sk);
  1685. /* Update current search range */
  1686. icsk->icsk_mtup.probe_size = 0;
  1687. icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
  1688. sizeof(struct tcphdr) +
  1689. icsk->icsk_af_ops->net_header_len;
  1690. icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
  1691. /* Update probe time stamp */
  1692. icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
  1693. }
  1694. }
  1695. static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
  1696. {
  1697. struct sk_buff *skb, *next;
  1698. skb = tcp_send_head(sk);
  1699. tcp_for_write_queue_from_safe(skb, next, sk) {
  1700. if (len <= skb->len)
  1701. break;
  1702. if (unlikely(TCP_SKB_CB(skb)->eor))
  1703. return false;
  1704. len -= skb->len;
  1705. }
  1706. return true;
  1707. }
  1708. /* Create a new MTU probe if we are ready.
  1709. * MTU probe is regularly attempting to increase the path MTU by
  1710. * deliberately sending larger packets. This discovers routing
  1711. * changes resulting in larger path MTUs.
  1712. *
  1713. * Returns 0 if we should wait to probe (no cwnd available),
  1714. * 1 if a probe was sent,
  1715. * -1 otherwise
  1716. */
  1717. static int tcp_mtu_probe(struct sock *sk)
  1718. {
  1719. struct inet_connection_sock *icsk = inet_csk(sk);
  1720. struct tcp_sock *tp = tcp_sk(sk);
  1721. struct sk_buff *skb, *nskb, *next;
  1722. struct net *net = sock_net(sk);
  1723. int probe_size;
  1724. int size_needed;
  1725. int copy, len;
  1726. int mss_now;
  1727. int interval;
  1728. /* Not currently probing/verifying,
  1729. * not in recovery,
  1730. * have enough cwnd, and
  1731. * not SACKing (the variable headers throw things off)
  1732. */
  1733. if (likely(!icsk->icsk_mtup.enabled ||
  1734. icsk->icsk_mtup.probe_size ||
  1735. inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
  1736. tp->snd_cwnd < 11 ||
  1737. tp->rx_opt.num_sacks || tp->rx_opt.dsack))
  1738. return -1;
  1739. /* Use binary search for probe_size between tcp_mss_base,
  1740. * and current mss_clamp. if (search_high - search_low)
  1741. * smaller than a threshold, backoff from probing.
  1742. */
  1743. mss_now = tcp_current_mss(sk);
  1744. probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
  1745. icsk->icsk_mtup.search_low) >> 1);
  1746. size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
  1747. interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
  1748. /* When misfortune happens, we are reprobing actively,
  1749. * and then reprobe timer has expired. We stick with current
  1750. * probing process by not resetting search range to its orignal.
  1751. */
  1752. if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
  1753. interval < net->ipv4.sysctl_tcp_probe_threshold) {
  1754. /* Check whether enough time has elaplased for
  1755. * another round of probing.
  1756. */
  1757. tcp_mtu_check_reprobe(sk);
  1758. return -1;
  1759. }
  1760. /* Have enough data in the send queue to probe? */
  1761. if (tp->write_seq - tp->snd_nxt < size_needed)
  1762. return -1;
  1763. if (tp->snd_wnd < size_needed)
  1764. return -1;
  1765. if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
  1766. return 0;
  1767. /* Do we need to wait to drain cwnd? With none in flight, don't stall */
  1768. if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
  1769. if (!tcp_packets_in_flight(tp))
  1770. return -1;
  1771. else
  1772. return 0;
  1773. }
  1774. if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
  1775. return -1;
  1776. /* We're allowed to probe. Build it now. */
  1777. nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
  1778. if (!nskb)
  1779. return -1;
  1780. sk->sk_wmem_queued += nskb->truesize;
  1781. sk_mem_charge(sk, nskb->truesize);
  1782. skb = tcp_send_head(sk);
  1783. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
  1784. TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
  1785. TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
  1786. TCP_SKB_CB(nskb)->sacked = 0;
  1787. nskb->csum = 0;
  1788. nskb->ip_summed = CHECKSUM_PARTIAL;
  1789. tcp_insert_write_queue_before(nskb, skb, sk);
  1790. tcp_highest_sack_replace(sk, skb, nskb);
  1791. len = 0;
  1792. tcp_for_write_queue_from_safe(skb, next, sk) {
  1793. copy = min_t(int, skb->len, probe_size - len);
  1794. skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
  1795. if (skb->len <= copy) {
  1796. /* We've eaten all the data from this skb.
  1797. * Throw it away. */
  1798. TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
  1799. /* If this is the last SKB we copy and eor is set
  1800. * we need to propagate it to the new skb.
  1801. */
  1802. TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
  1803. tcp_unlink_write_queue(skb, sk);
  1804. sk_wmem_free_skb(sk, skb);
  1805. } else {
  1806. TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
  1807. ~(TCPHDR_FIN|TCPHDR_PSH);
  1808. if (!skb_shinfo(skb)->nr_frags) {
  1809. skb_pull(skb, copy);
  1810. } else {
  1811. __pskb_trim_head(skb, copy);
  1812. tcp_set_skb_tso_segs(skb, mss_now);
  1813. }
  1814. TCP_SKB_CB(skb)->seq += copy;
  1815. }
  1816. len += copy;
  1817. if (len >= probe_size)
  1818. break;
  1819. }
  1820. tcp_init_tso_segs(nskb, nskb->len);
  1821. /* We're ready to send. If this fails, the probe will
  1822. * be resegmented into mss-sized pieces by tcp_write_xmit().
  1823. */
  1824. if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
  1825. /* Decrement cwnd here because we are sending
  1826. * effectively two packets. */
  1827. tp->snd_cwnd--;
  1828. tcp_event_new_data_sent(sk, nskb);
  1829. icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
  1830. tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
  1831. tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
  1832. return 1;
  1833. }
  1834. return -1;
  1835. }
  1836. static bool tcp_pacing_check(const struct sock *sk)
  1837. {
  1838. return tcp_needs_internal_pacing(sk) &&
  1839. hrtimer_is_queued(&tcp_sk(sk)->pacing_timer);
  1840. }
  1841. /* TCP Small Queues :
  1842. * Control number of packets in qdisc/devices to two packets / or ~1 ms.
  1843. * (These limits are doubled for retransmits)
  1844. * This allows for :
  1845. * - better RTT estimation and ACK scheduling
  1846. * - faster recovery
  1847. * - high rates
  1848. * Alas, some drivers / subsystems require a fair amount
  1849. * of queued bytes to ensure line rate.
  1850. * One example is wifi aggregation (802.11 AMPDU)
  1851. */
  1852. static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
  1853. unsigned int factor)
  1854. {
  1855. unsigned int limit;
  1856. limit = max(2 * skb->truesize, sk->sk_pacing_rate >> sk->sk_pacing_shift);
  1857. limit = min_t(u32, limit,
  1858. sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes);
  1859. limit <<= factor;
  1860. if (refcount_read(&sk->sk_wmem_alloc) > limit) {
  1861. /* Always send skb if rtx queue is empty.
  1862. * No need to wait for TX completion to call us back,
  1863. * after softirq/tasklet schedule.
  1864. * This helps when TX completions are delayed too much.
  1865. */
  1866. if (tcp_rtx_queue_empty(sk))
  1867. return false;
  1868. set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
  1869. /* It is possible TX completion already happened
  1870. * before we set TSQ_THROTTLED, so we must
  1871. * test again the condition.
  1872. */
  1873. smp_mb__after_atomic();
  1874. if (refcount_read(&sk->sk_wmem_alloc) > limit)
  1875. return true;
  1876. }
  1877. return false;
  1878. }
  1879. static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
  1880. {
  1881. const u32 now = tcp_jiffies32;
  1882. enum tcp_chrono old = tp->chrono_type;
  1883. if (old > TCP_CHRONO_UNSPEC)
  1884. tp->chrono_stat[old - 1] += now - tp->chrono_start;
  1885. tp->chrono_start = now;
  1886. tp->chrono_type = new;
  1887. }
  1888. void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
  1889. {
  1890. struct tcp_sock *tp = tcp_sk(sk);
  1891. /* If there are multiple conditions worthy of tracking in a
  1892. * chronograph then the highest priority enum takes precedence
  1893. * over the other conditions. So that if something "more interesting"
  1894. * starts happening, stop the previous chrono and start a new one.
  1895. */
  1896. if (type > tp->chrono_type)
  1897. tcp_chrono_set(tp, type);
  1898. }
  1899. void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
  1900. {
  1901. struct tcp_sock *tp = tcp_sk(sk);
  1902. /* There are multiple conditions worthy of tracking in a
  1903. * chronograph, so that the highest priority enum takes
  1904. * precedence over the other conditions (see tcp_chrono_start).
  1905. * If a condition stops, we only stop chrono tracking if
  1906. * it's the "most interesting" or current chrono we are
  1907. * tracking and starts busy chrono if we have pending data.
  1908. */
  1909. if (tcp_rtx_and_write_queues_empty(sk))
  1910. tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
  1911. else if (type == tp->chrono_type)
  1912. tcp_chrono_set(tp, TCP_CHRONO_BUSY);
  1913. }
  1914. /* This routine writes packets to the network. It advances the
  1915. * send_head. This happens as incoming acks open up the remote
  1916. * window for us.
  1917. *
  1918. * LARGESEND note: !tcp_urg_mode is overkill, only frames between
  1919. * snd_up-64k-mss .. snd_up cannot be large. However, taking into
  1920. * account rare use of URG, this is not a big flaw.
  1921. *
  1922. * Send at most one packet when push_one > 0. Temporarily ignore
  1923. * cwnd limit to force at most one packet out when push_one == 2.
  1924. * Returns true, if no segments are in flight and we have queued segments,
  1925. * but cannot send anything now because of SWS or another problem.
  1926. */
  1927. static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
  1928. int push_one, gfp_t gfp)
  1929. {
  1930. struct tcp_sock *tp = tcp_sk(sk);
  1931. struct sk_buff *skb;
  1932. unsigned int tso_segs, sent_pkts;
  1933. int cwnd_quota;
  1934. int result;
  1935. bool is_cwnd_limited = false, is_rwnd_limited = false;
  1936. u32 max_segs;
  1937. sent_pkts = 0;
  1938. tcp_mstamp_refresh(tp);
  1939. if (!push_one) {
  1940. /* Do MTU probing. */
  1941. result = tcp_mtu_probe(sk);
  1942. if (!result) {
  1943. return false;
  1944. } else if (result > 0) {
  1945. sent_pkts = 1;
  1946. }
  1947. }
  1948. max_segs = tcp_tso_segs(sk, mss_now);
  1949. while ((skb = tcp_send_head(sk))) {
  1950. unsigned int limit;
  1951. if (tcp_pacing_check(sk))
  1952. break;
  1953. tso_segs = tcp_init_tso_segs(skb, mss_now);
  1954. BUG_ON(!tso_segs);
  1955. if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
  1956. /* "skb_mstamp" is used as a start point for the retransmit timer */
  1957. tcp_update_skb_after_send(tp, skb);
  1958. goto repair; /* Skip network transmission */
  1959. }
  1960. cwnd_quota = tcp_cwnd_test(tp, skb);
  1961. if (!cwnd_quota) {
  1962. if (push_one == 2)
  1963. /* Force out a loss probe pkt. */
  1964. cwnd_quota = 1;
  1965. else
  1966. break;
  1967. }
  1968. if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
  1969. is_rwnd_limited = true;
  1970. break;
  1971. }
  1972. if (tso_segs == 1) {
  1973. if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
  1974. (tcp_skb_is_last(sk, skb) ?
  1975. nonagle : TCP_NAGLE_PUSH))))
  1976. break;
  1977. } else {
  1978. if (!push_one &&
  1979. tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
  1980. max_segs))
  1981. break;
  1982. }
  1983. limit = mss_now;
  1984. if (tso_segs > 1 && !tcp_urg_mode(tp))
  1985. limit = tcp_mss_split_point(sk, skb, mss_now,
  1986. min_t(unsigned int,
  1987. cwnd_quota,
  1988. max_segs),
  1989. nonagle);
  1990. if (skb->len > limit &&
  1991. unlikely(tso_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
  1992. skb, limit, mss_now, gfp)))
  1993. break;
  1994. if (tcp_small_queue_check(sk, skb, 0))
  1995. break;
  1996. if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
  1997. break;
  1998. repair:
  1999. /* Advance the send_head. This one is sent out.
  2000. * This call will increment packets_out.
  2001. */
  2002. tcp_event_new_data_sent(sk, skb);
  2003. tcp_minshall_update(tp, mss_now, skb);
  2004. sent_pkts += tcp_skb_pcount(skb);
  2005. if (push_one)
  2006. break;
  2007. }
  2008. if (is_rwnd_limited)
  2009. tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
  2010. else
  2011. tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
  2012. if (likely(sent_pkts)) {
  2013. if (tcp_in_cwnd_reduction(sk))
  2014. tp->prr_out += sent_pkts;
  2015. /* Send one loss probe per tail loss episode. */
  2016. if (push_one != 2)
  2017. tcp_schedule_loss_probe(sk, false);
  2018. is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
  2019. tcp_cwnd_validate(sk, is_cwnd_limited);
  2020. return false;
  2021. }
  2022. return !tp->packets_out && !tcp_write_queue_empty(sk);
  2023. }
  2024. bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
  2025. {
  2026. struct inet_connection_sock *icsk = inet_csk(sk);
  2027. struct tcp_sock *tp = tcp_sk(sk);
  2028. u32 timeout, rto_delta_us;
  2029. int early_retrans;
  2030. /* Don't do any loss probe on a Fast Open connection before 3WHS
  2031. * finishes.
  2032. */
  2033. if (tp->fastopen_rsk)
  2034. return false;
  2035. early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
  2036. /* Schedule a loss probe in 2*RTT for SACK capable connections
  2037. * not in loss recovery, that are either limited by cwnd or application.
  2038. */
  2039. if ((early_retrans != 3 && early_retrans != 4) ||
  2040. !tp->packets_out || !tcp_is_sack(tp) ||
  2041. (icsk->icsk_ca_state != TCP_CA_Open &&
  2042. icsk->icsk_ca_state != TCP_CA_CWR))
  2043. return false;
  2044. /* Probe timeout is 2*rtt. Add minimum RTO to account
  2045. * for delayed ack when there's one outstanding packet. If no RTT
  2046. * sample is available then probe after TCP_TIMEOUT_INIT.
  2047. */
  2048. if (tp->srtt_us) {
  2049. timeout = usecs_to_jiffies(tp->srtt_us >> 2);
  2050. if (tp->packets_out == 1)
  2051. timeout += TCP_RTO_MIN;
  2052. else
  2053. timeout += TCP_TIMEOUT_MIN;
  2054. } else {
  2055. timeout = TCP_TIMEOUT_INIT;
  2056. }
  2057. /* If the RTO formula yields an earlier time, then use that time. */
  2058. rto_delta_us = advancing_rto ?
  2059. jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
  2060. tcp_rto_delta_us(sk); /* How far in future is RTO? */
  2061. if (rto_delta_us > 0)
  2062. timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
  2063. inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
  2064. TCP_RTO_MAX);
  2065. return true;
  2066. }
  2067. /* Thanks to skb fast clones, we can detect if a prior transmit of
  2068. * a packet is still in a qdisc or driver queue.
  2069. * In this case, there is very little point doing a retransmit !
  2070. */
  2071. static bool skb_still_in_host_queue(const struct sock *sk,
  2072. const struct sk_buff *skb)
  2073. {
  2074. if (unlikely(skb_fclone_busy(sk, skb))) {
  2075. NET_INC_STATS(sock_net(sk),
  2076. LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
  2077. return true;
  2078. }
  2079. return false;
  2080. }
  2081. /* When probe timeout (PTO) fires, try send a new segment if possible, else
  2082. * retransmit the last segment.
  2083. */
  2084. void tcp_send_loss_probe(struct sock *sk)
  2085. {
  2086. struct tcp_sock *tp = tcp_sk(sk);
  2087. struct sk_buff *skb;
  2088. int pcount;
  2089. int mss = tcp_current_mss(sk);
  2090. skb = tcp_send_head(sk);
  2091. if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
  2092. pcount = tp->packets_out;
  2093. tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
  2094. if (tp->packets_out > pcount)
  2095. goto probe_sent;
  2096. goto rearm_timer;
  2097. }
  2098. skb = skb_rb_last(&sk->tcp_rtx_queue);
  2099. /* At most one outstanding TLP retransmission. */
  2100. if (tp->tlp_high_seq)
  2101. goto rearm_timer;
  2102. /* Retransmit last segment. */
  2103. if (WARN_ON(!skb))
  2104. goto rearm_timer;
  2105. if (skb_still_in_host_queue(sk, skb))
  2106. goto rearm_timer;
  2107. pcount = tcp_skb_pcount(skb);
  2108. if (WARN_ON(!pcount))
  2109. goto rearm_timer;
  2110. if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
  2111. if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
  2112. (pcount - 1) * mss, mss,
  2113. GFP_ATOMIC)))
  2114. goto rearm_timer;
  2115. skb = skb_rb_next(skb);
  2116. }
  2117. if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
  2118. goto rearm_timer;
  2119. if (__tcp_retransmit_skb(sk, skb, 1))
  2120. goto rearm_timer;
  2121. /* Record snd_nxt for loss detection. */
  2122. tp->tlp_high_seq = tp->snd_nxt;
  2123. probe_sent:
  2124. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
  2125. /* Reset s.t. tcp_rearm_rto will restart timer from now */
  2126. inet_csk(sk)->icsk_pending = 0;
  2127. rearm_timer:
  2128. tcp_rearm_rto(sk);
  2129. }
  2130. /* Push out any pending frames which were held back due to
  2131. * TCP_CORK or attempt at coalescing tiny packets.
  2132. * The socket must be locked by the caller.
  2133. */
  2134. void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
  2135. int nonagle)
  2136. {
  2137. /* If we are closed, the bytes will have to remain here.
  2138. * In time closedown will finish, we empty the write queue and
  2139. * all will be happy.
  2140. */
  2141. if (unlikely(sk->sk_state == TCP_CLOSE))
  2142. return;
  2143. if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
  2144. sk_gfp_mask(sk, GFP_ATOMIC)))
  2145. tcp_check_probe_timer(sk);
  2146. }
  2147. /* Send _single_ skb sitting at the send head. This function requires
  2148. * true push pending frames to setup probe timer etc.
  2149. */
  2150. void tcp_push_one(struct sock *sk, unsigned int mss_now)
  2151. {
  2152. struct sk_buff *skb = tcp_send_head(sk);
  2153. BUG_ON(!skb || skb->len < mss_now);
  2154. tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
  2155. }
  2156. /* This function returns the amount that we can raise the
  2157. * usable window based on the following constraints
  2158. *
  2159. * 1. The window can never be shrunk once it is offered (RFC 793)
  2160. * 2. We limit memory per socket
  2161. *
  2162. * RFC 1122:
  2163. * "the suggested [SWS] avoidance algorithm for the receiver is to keep
  2164. * RECV.NEXT + RCV.WIN fixed until:
  2165. * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
  2166. *
  2167. * i.e. don't raise the right edge of the window until you can raise
  2168. * it at least MSS bytes.
  2169. *
  2170. * Unfortunately, the recommended algorithm breaks header prediction,
  2171. * since header prediction assumes th->window stays fixed.
  2172. *
  2173. * Strictly speaking, keeping th->window fixed violates the receiver
  2174. * side SWS prevention criteria. The problem is that under this rule
  2175. * a stream of single byte packets will cause the right side of the
  2176. * window to always advance by a single byte.
  2177. *
  2178. * Of course, if the sender implements sender side SWS prevention
  2179. * then this will not be a problem.
  2180. *
  2181. * BSD seems to make the following compromise:
  2182. *
  2183. * If the free space is less than the 1/4 of the maximum
  2184. * space available and the free space is less than 1/2 mss,
  2185. * then set the window to 0.
  2186. * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
  2187. * Otherwise, just prevent the window from shrinking
  2188. * and from being larger than the largest representable value.
  2189. *
  2190. * This prevents incremental opening of the window in the regime
  2191. * where TCP is limited by the speed of the reader side taking
  2192. * data out of the TCP receive queue. It does nothing about
  2193. * those cases where the window is constrained on the sender side
  2194. * because the pipeline is full.
  2195. *
  2196. * BSD also seems to "accidentally" limit itself to windows that are a
  2197. * multiple of MSS, at least until the free space gets quite small.
  2198. * This would appear to be a side effect of the mbuf implementation.
  2199. * Combining these two algorithms results in the observed behavior
  2200. * of having a fixed window size at almost all times.
  2201. *
  2202. * Below we obtain similar behavior by forcing the offered window to
  2203. * a multiple of the mss when it is feasible to do so.
  2204. *
  2205. * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
  2206. * Regular options like TIMESTAMP are taken into account.
  2207. */
  2208. u32 __tcp_select_window(struct sock *sk)
  2209. {
  2210. struct inet_connection_sock *icsk = inet_csk(sk);
  2211. struct tcp_sock *tp = tcp_sk(sk);
  2212. /* MSS for the peer's data. Previous versions used mss_clamp
  2213. * here. I don't know if the value based on our guesses
  2214. * of peer's MSS is better for the performance. It's more correct
  2215. * but may be worse for the performance because of rcv_mss
  2216. * fluctuations. --SAW 1998/11/1
  2217. */
  2218. int mss = icsk->icsk_ack.rcv_mss;
  2219. int free_space = tcp_space(sk);
  2220. int allowed_space = tcp_full_space(sk);
  2221. int full_space = min_t(int, tp->window_clamp, allowed_space);
  2222. int window;
  2223. if (unlikely(mss > full_space)) {
  2224. mss = full_space;
  2225. if (mss <= 0)
  2226. return 0;
  2227. }
  2228. if (free_space < (full_space >> 1)) {
  2229. icsk->icsk_ack.quick = 0;
  2230. if (tcp_under_memory_pressure(sk))
  2231. tp->rcv_ssthresh = min(tp->rcv_ssthresh,
  2232. 4U * tp->advmss);
  2233. /* free_space might become our new window, make sure we don't
  2234. * increase it due to wscale.
  2235. */
  2236. free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
  2237. /* if free space is less than mss estimate, or is below 1/16th
  2238. * of the maximum allowed, try to move to zero-window, else
  2239. * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
  2240. * new incoming data is dropped due to memory limits.
  2241. * With large window, mss test triggers way too late in order
  2242. * to announce zero window in time before rmem limit kicks in.
  2243. */
  2244. if (free_space < (allowed_space >> 4) || free_space < mss)
  2245. return 0;
  2246. }
  2247. if (free_space > tp->rcv_ssthresh)
  2248. free_space = tp->rcv_ssthresh;
  2249. /* Don't do rounding if we are using window scaling, since the
  2250. * scaled window will not line up with the MSS boundary anyway.
  2251. */
  2252. if (tp->rx_opt.rcv_wscale) {
  2253. window = free_space;
  2254. /* Advertise enough space so that it won't get scaled away.
  2255. * Import case: prevent zero window announcement if
  2256. * 1<<rcv_wscale > mss.
  2257. */
  2258. window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
  2259. } else {
  2260. window = tp->rcv_wnd;
  2261. /* Get the largest window that is a nice multiple of mss.
  2262. * Window clamp already applied above.
  2263. * If our current window offering is within 1 mss of the
  2264. * free space we just keep it. This prevents the divide
  2265. * and multiply from happening most of the time.
  2266. * We also don't do any window rounding when the free space
  2267. * is too small.
  2268. */
  2269. if (window <= free_space - mss || window > free_space)
  2270. window = rounddown(free_space, mss);
  2271. else if (mss == full_space &&
  2272. free_space > window + (full_space >> 1))
  2273. window = free_space;
  2274. }
  2275. return window;
  2276. }
  2277. void tcp_skb_collapse_tstamp(struct sk_buff *skb,
  2278. const struct sk_buff *next_skb)
  2279. {
  2280. if (unlikely(tcp_has_tx_tstamp(next_skb))) {
  2281. const struct skb_shared_info *next_shinfo =
  2282. skb_shinfo(next_skb);
  2283. struct skb_shared_info *shinfo = skb_shinfo(skb);
  2284. shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
  2285. shinfo->tskey = next_shinfo->tskey;
  2286. TCP_SKB_CB(skb)->txstamp_ack |=
  2287. TCP_SKB_CB(next_skb)->txstamp_ack;
  2288. }
  2289. }
  2290. /* Collapses two adjacent SKB's during retransmission. */
  2291. static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
  2292. {
  2293. struct tcp_sock *tp = tcp_sk(sk);
  2294. struct sk_buff *next_skb = skb_rb_next(skb);
  2295. int skb_size, next_skb_size;
  2296. skb_size = skb->len;
  2297. next_skb_size = next_skb->len;
  2298. BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
  2299. if (next_skb_size) {
  2300. if (next_skb_size <= skb_availroom(skb))
  2301. skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
  2302. next_skb_size);
  2303. else if (!skb_shift(skb, next_skb, next_skb_size))
  2304. return false;
  2305. }
  2306. tcp_highest_sack_replace(sk, next_skb, skb);
  2307. /* Update sequence range on original skb. */
  2308. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
  2309. /* Merge over control information. This moves PSH/FIN etc. over */
  2310. TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
  2311. /* All done, get rid of second SKB and account for it so
  2312. * packet counting does not break.
  2313. */
  2314. TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
  2315. TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
  2316. /* changed transmit queue under us so clear hints */
  2317. tcp_clear_retrans_hints_partial(tp);
  2318. if (next_skb == tp->retransmit_skb_hint)
  2319. tp->retransmit_skb_hint = skb;
  2320. tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
  2321. tcp_skb_collapse_tstamp(skb, next_skb);
  2322. tcp_rtx_queue_unlink_and_free(next_skb, sk);
  2323. return true;
  2324. }
  2325. /* Check if coalescing SKBs is legal. */
  2326. static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
  2327. {
  2328. if (tcp_skb_pcount(skb) > 1)
  2329. return false;
  2330. if (skb_cloned(skb))
  2331. return false;
  2332. /* Some heuristics for collapsing over SACK'd could be invented */
  2333. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
  2334. return false;
  2335. return true;
  2336. }
  2337. /* Collapse packets in the retransmit queue to make to create
  2338. * less packets on the wire. This is only done on retransmission.
  2339. */
  2340. static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
  2341. int space)
  2342. {
  2343. struct tcp_sock *tp = tcp_sk(sk);
  2344. struct sk_buff *skb = to, *tmp;
  2345. bool first = true;
  2346. if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
  2347. return;
  2348. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
  2349. return;
  2350. skb_rbtree_walk_from_safe(skb, tmp) {
  2351. if (!tcp_can_collapse(sk, skb))
  2352. break;
  2353. if (!tcp_skb_can_collapse_to(to))
  2354. break;
  2355. space -= skb->len;
  2356. if (first) {
  2357. first = false;
  2358. continue;
  2359. }
  2360. if (space < 0)
  2361. break;
  2362. if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
  2363. break;
  2364. if (!tcp_collapse_retrans(sk, to))
  2365. break;
  2366. }
  2367. }
  2368. /* This retransmits one SKB. Policy decisions and retransmit queue
  2369. * state updates are done by the caller. Returns non-zero if an
  2370. * error occurred which prevented the send.
  2371. */
  2372. int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
  2373. {
  2374. struct inet_connection_sock *icsk = inet_csk(sk);
  2375. struct tcp_sock *tp = tcp_sk(sk);
  2376. unsigned int cur_mss;
  2377. int diff, len, err;
  2378. /* Inconclusive MTU probe */
  2379. if (icsk->icsk_mtup.probe_size)
  2380. icsk->icsk_mtup.probe_size = 0;
  2381. /* Do not sent more than we queued. 1/4 is reserved for possible
  2382. * copying overhead: fragmentation, tunneling, mangling etc.
  2383. */
  2384. if (refcount_read(&sk->sk_wmem_alloc) >
  2385. min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
  2386. sk->sk_sndbuf))
  2387. return -EAGAIN;
  2388. if (skb_still_in_host_queue(sk, skb))
  2389. return -EBUSY;
  2390. if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
  2391. if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
  2392. WARN_ON_ONCE(1);
  2393. return -EINVAL;
  2394. }
  2395. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2396. return -ENOMEM;
  2397. }
  2398. if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
  2399. return -EHOSTUNREACH; /* Routing failure or similar. */
  2400. cur_mss = tcp_current_mss(sk);
  2401. /* If receiver has shrunk his window, and skb is out of
  2402. * new window, do not retransmit it. The exception is the
  2403. * case, when window is shrunk to zero. In this case
  2404. * our retransmit serves as a zero window probe.
  2405. */
  2406. if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
  2407. TCP_SKB_CB(skb)->seq != tp->snd_una)
  2408. return -EAGAIN;
  2409. len = cur_mss * segs;
  2410. if (skb->len > len) {
  2411. if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
  2412. cur_mss, GFP_ATOMIC))
  2413. return -ENOMEM; /* We'll try again later. */
  2414. } else {
  2415. if (skb_unclone(skb, GFP_ATOMIC))
  2416. return -ENOMEM;
  2417. diff = tcp_skb_pcount(skb);
  2418. tcp_set_skb_tso_segs(skb, cur_mss);
  2419. diff -= tcp_skb_pcount(skb);
  2420. if (diff)
  2421. tcp_adjust_pcount(sk, skb, diff);
  2422. if (skb->len < cur_mss)
  2423. tcp_retrans_try_collapse(sk, skb, cur_mss);
  2424. }
  2425. /* RFC3168, section 6.1.1.1. ECN fallback */
  2426. if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
  2427. tcp_ecn_clear_syn(sk, skb);
  2428. /* Update global and local TCP statistics. */
  2429. segs = tcp_skb_pcount(skb);
  2430. TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
  2431. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
  2432. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
  2433. tp->total_retrans += segs;
  2434. /* make sure skb->data is aligned on arches that require it
  2435. * and check if ack-trimming & collapsing extended the headroom
  2436. * beyond what csum_start can cover.
  2437. */
  2438. if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
  2439. skb_headroom(skb) >= 0xFFFF)) {
  2440. struct sk_buff *nskb;
  2441. tcp_skb_tsorted_save(skb) {
  2442. nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
  2443. err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
  2444. -ENOBUFS;
  2445. } tcp_skb_tsorted_restore(skb);
  2446. if (!err) {
  2447. tcp_update_skb_after_send(tp, skb);
  2448. tcp_rate_skb_sent(sk, skb);
  2449. }
  2450. } else {
  2451. err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
  2452. }
  2453. if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
  2454. tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
  2455. TCP_SKB_CB(skb)->seq, segs, err);
  2456. if (likely(!err)) {
  2457. TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
  2458. trace_tcp_retransmit_skb(sk, skb);
  2459. } else if (err != -EBUSY) {
  2460. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
  2461. }
  2462. return err;
  2463. }
  2464. int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
  2465. {
  2466. struct tcp_sock *tp = tcp_sk(sk);
  2467. int err = __tcp_retransmit_skb(sk, skb, segs);
  2468. if (err == 0) {
  2469. #if FASTRETRANS_DEBUG > 0
  2470. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2471. net_dbg_ratelimited("retrans_out leaked\n");
  2472. }
  2473. #endif
  2474. TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
  2475. tp->retrans_out += tcp_skb_pcount(skb);
  2476. /* Save stamp of the first retransmit. */
  2477. if (!tp->retrans_stamp)
  2478. tp->retrans_stamp = tcp_skb_timestamp(skb);
  2479. }
  2480. if (tp->undo_retrans < 0)
  2481. tp->undo_retrans = 0;
  2482. tp->undo_retrans += tcp_skb_pcount(skb);
  2483. return err;
  2484. }
  2485. /* This gets called after a retransmit timeout, and the initially
  2486. * retransmitted data is acknowledged. It tries to continue
  2487. * resending the rest of the retransmit queue, until either
  2488. * we've sent it all or the congestion window limit is reached.
  2489. */
  2490. void tcp_xmit_retransmit_queue(struct sock *sk)
  2491. {
  2492. const struct inet_connection_sock *icsk = inet_csk(sk);
  2493. struct sk_buff *skb, *rtx_head, *hole = NULL;
  2494. struct tcp_sock *tp = tcp_sk(sk);
  2495. u32 max_segs;
  2496. int mib_idx;
  2497. if (!tp->packets_out)
  2498. return;
  2499. rtx_head = tcp_rtx_queue_head(sk);
  2500. skb = tp->retransmit_skb_hint ?: rtx_head;
  2501. max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
  2502. skb_rbtree_walk_from(skb) {
  2503. __u8 sacked;
  2504. int segs;
  2505. if (tcp_pacing_check(sk))
  2506. break;
  2507. /* we could do better than to assign each time */
  2508. if (!hole)
  2509. tp->retransmit_skb_hint = skb;
  2510. segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
  2511. if (segs <= 0)
  2512. return;
  2513. sacked = TCP_SKB_CB(skb)->sacked;
  2514. /* In case tcp_shift_skb_data() have aggregated large skbs,
  2515. * we need to make sure not sending too bigs TSO packets
  2516. */
  2517. segs = min_t(int, segs, max_segs);
  2518. if (tp->retrans_out >= tp->lost_out) {
  2519. break;
  2520. } else if (!(sacked & TCPCB_LOST)) {
  2521. if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
  2522. hole = skb;
  2523. continue;
  2524. } else {
  2525. if (icsk->icsk_ca_state != TCP_CA_Loss)
  2526. mib_idx = LINUX_MIB_TCPFASTRETRANS;
  2527. else
  2528. mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
  2529. }
  2530. if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
  2531. continue;
  2532. if (tcp_small_queue_check(sk, skb, 1))
  2533. return;
  2534. if (tcp_retransmit_skb(sk, skb, segs))
  2535. return;
  2536. NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
  2537. if (tcp_in_cwnd_reduction(sk))
  2538. tp->prr_out += tcp_skb_pcount(skb);
  2539. if (skb == rtx_head &&
  2540. icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
  2541. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  2542. inet_csk(sk)->icsk_rto,
  2543. TCP_RTO_MAX);
  2544. }
  2545. }
  2546. /* We allow to exceed memory limits for FIN packets to expedite
  2547. * connection tear down and (memory) recovery.
  2548. * Otherwise tcp_send_fin() could be tempted to either delay FIN
  2549. * or even be forced to close flow without any FIN.
  2550. * In general, we want to allow one skb per socket to avoid hangs
  2551. * with edge trigger epoll()
  2552. */
  2553. void sk_forced_mem_schedule(struct sock *sk, int size)
  2554. {
  2555. int amt;
  2556. if (size <= sk->sk_forward_alloc)
  2557. return;
  2558. amt = sk_mem_pages(size);
  2559. sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
  2560. sk_memory_allocated_add(sk, amt);
  2561. if (mem_cgroup_sockets_enabled && sk->sk_memcg)
  2562. mem_cgroup_charge_skmem(sk->sk_memcg, amt);
  2563. }
  2564. /* Send a FIN. The caller locks the socket for us.
  2565. * We should try to send a FIN packet really hard, but eventually give up.
  2566. */
  2567. void tcp_send_fin(struct sock *sk)
  2568. {
  2569. struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
  2570. struct tcp_sock *tp = tcp_sk(sk);
  2571. /* Optimization, tack on the FIN if we have one skb in write queue and
  2572. * this skb was not yet sent, or we are under memory pressure.
  2573. * Note: in the latter case, FIN packet will be sent after a timeout,
  2574. * as TCP stack thinks it has already been transmitted.
  2575. */
  2576. if (!tskb && tcp_under_memory_pressure(sk))
  2577. tskb = skb_rb_last(&sk->tcp_rtx_queue);
  2578. if (tskb) {
  2579. coalesce:
  2580. TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
  2581. TCP_SKB_CB(tskb)->end_seq++;
  2582. tp->write_seq++;
  2583. if (tcp_write_queue_empty(sk)) {
  2584. /* This means tskb was already sent.
  2585. * Pretend we included the FIN on previous transmit.
  2586. * We need to set tp->snd_nxt to the value it would have
  2587. * if FIN had been sent. This is because retransmit path
  2588. * does not change tp->snd_nxt.
  2589. */
  2590. tp->snd_nxt++;
  2591. return;
  2592. }
  2593. } else {
  2594. skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
  2595. if (unlikely(!skb)) {
  2596. if (tskb)
  2597. goto coalesce;
  2598. return;
  2599. }
  2600. INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
  2601. skb_reserve(skb, MAX_TCP_HEADER);
  2602. sk_forced_mem_schedule(sk, skb->truesize);
  2603. /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
  2604. tcp_init_nondata_skb(skb, tp->write_seq,
  2605. TCPHDR_ACK | TCPHDR_FIN);
  2606. tcp_queue_skb(sk, skb);
  2607. }
  2608. __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
  2609. }
  2610. /* We get here when a process closes a file descriptor (either due to
  2611. * an explicit close() or as a byproduct of exit()'ing) and there
  2612. * was unread data in the receive queue. This behavior is recommended
  2613. * by RFC 2525, section 2.17. -DaveM
  2614. */
  2615. void tcp_send_active_reset(struct sock *sk, gfp_t priority)
  2616. {
  2617. struct sk_buff *skb;
  2618. TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
  2619. /* NOTE: No TCP options attached and we never retransmit this. */
  2620. skb = alloc_skb(MAX_TCP_HEADER, priority);
  2621. if (!skb) {
  2622. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
  2623. return;
  2624. }
  2625. /* Reserve space for headers and prepare control bits. */
  2626. skb_reserve(skb, MAX_TCP_HEADER);
  2627. tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
  2628. TCPHDR_ACK | TCPHDR_RST);
  2629. tcp_mstamp_refresh(tcp_sk(sk));
  2630. /* Send it off. */
  2631. if (tcp_transmit_skb(sk, skb, 0, priority))
  2632. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
  2633. /* skb of trace_tcp_send_reset() keeps the skb that caused RST,
  2634. * skb here is different to the troublesome skb, so use NULL
  2635. */
  2636. trace_tcp_send_reset(sk, NULL);
  2637. }
  2638. /* Send a crossed SYN-ACK during socket establishment.
  2639. * WARNING: This routine must only be called when we have already sent
  2640. * a SYN packet that crossed the incoming SYN that caused this routine
  2641. * to get called. If this assumption fails then the initial rcv_wnd
  2642. * and rcv_wscale values will not be correct.
  2643. */
  2644. int tcp_send_synack(struct sock *sk)
  2645. {
  2646. struct sk_buff *skb;
  2647. skb = tcp_rtx_queue_head(sk);
  2648. if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
  2649. pr_err("%s: wrong queue state\n", __func__);
  2650. return -EFAULT;
  2651. }
  2652. if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
  2653. if (skb_cloned(skb)) {
  2654. struct sk_buff *nskb;
  2655. tcp_skb_tsorted_save(skb) {
  2656. nskb = skb_copy(skb, GFP_ATOMIC);
  2657. } tcp_skb_tsorted_restore(skb);
  2658. if (!nskb)
  2659. return -ENOMEM;
  2660. INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
  2661. tcp_rtx_queue_unlink_and_free(skb, sk);
  2662. __skb_header_release(nskb);
  2663. tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
  2664. sk->sk_wmem_queued += nskb->truesize;
  2665. sk_mem_charge(sk, nskb->truesize);
  2666. skb = nskb;
  2667. }
  2668. TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
  2669. tcp_ecn_send_synack(sk, skb);
  2670. }
  2671. return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
  2672. }
  2673. /**
  2674. * tcp_make_synack - Prepare a SYN-ACK.
  2675. * sk: listener socket
  2676. * dst: dst entry attached to the SYNACK
  2677. * req: request_sock pointer
  2678. *
  2679. * Allocate one skb and build a SYNACK packet.
  2680. * @dst is consumed : Caller should not use it again.
  2681. */
  2682. struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
  2683. struct request_sock *req,
  2684. struct tcp_fastopen_cookie *foc,
  2685. enum tcp_synack_type synack_type)
  2686. {
  2687. struct inet_request_sock *ireq = inet_rsk(req);
  2688. const struct tcp_sock *tp = tcp_sk(sk);
  2689. struct tcp_md5sig_key *md5 = NULL;
  2690. struct tcp_out_options opts;
  2691. struct sk_buff *skb;
  2692. int tcp_header_size;
  2693. struct tcphdr *th;
  2694. int mss;
  2695. skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
  2696. if (unlikely(!skb)) {
  2697. dst_release(dst);
  2698. return NULL;
  2699. }
  2700. /* Reserve space for headers. */
  2701. skb_reserve(skb, MAX_TCP_HEADER);
  2702. switch (synack_type) {
  2703. case TCP_SYNACK_NORMAL:
  2704. skb_set_owner_w(skb, req_to_sk(req));
  2705. break;
  2706. case TCP_SYNACK_COOKIE:
  2707. /* Under synflood, we do not attach skb to a socket,
  2708. * to avoid false sharing.
  2709. */
  2710. break;
  2711. case TCP_SYNACK_FASTOPEN:
  2712. /* sk is a const pointer, because we want to express multiple
  2713. * cpu might call us concurrently.
  2714. * sk->sk_wmem_alloc in an atomic, we can promote to rw.
  2715. */
  2716. skb_set_owner_w(skb, (struct sock *)sk);
  2717. break;
  2718. }
  2719. skb_dst_set(skb, dst);
  2720. mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
  2721. memset(&opts, 0, sizeof(opts));
  2722. #ifdef CONFIG_SYN_COOKIES
  2723. if (unlikely(req->cookie_ts))
  2724. skb->skb_mstamp = cookie_init_timestamp(req);
  2725. else
  2726. #endif
  2727. skb->skb_mstamp = tcp_clock_us();
  2728. #ifdef CONFIG_TCP_MD5SIG
  2729. rcu_read_lock();
  2730. md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
  2731. #endif
  2732. skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
  2733. tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
  2734. foc) + sizeof(*th);
  2735. skb_push(skb, tcp_header_size);
  2736. skb_reset_transport_header(skb);
  2737. th = (struct tcphdr *)skb->data;
  2738. memset(th, 0, sizeof(struct tcphdr));
  2739. th->syn = 1;
  2740. th->ack = 1;
  2741. tcp_ecn_make_synack(req, th);
  2742. th->source = htons(ireq->ir_num);
  2743. th->dest = ireq->ir_rmt_port;
  2744. skb->mark = ireq->ir_mark;
  2745. skb->ip_summed = CHECKSUM_PARTIAL;
  2746. th->seq = htonl(tcp_rsk(req)->snt_isn);
  2747. /* XXX data is queued and acked as is. No buffer/window check */
  2748. th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
  2749. /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
  2750. th->window = htons(min(req->rsk_rcv_wnd, 65535U));
  2751. tcp_options_write((__be32 *)(th + 1), NULL, &opts);
  2752. th->doff = (tcp_header_size >> 2);
  2753. __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
  2754. #ifdef CONFIG_TCP_MD5SIG
  2755. /* Okay, we have all we need - do the md5 hash if needed */
  2756. if (md5)
  2757. tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
  2758. md5, req_to_sk(req), skb);
  2759. rcu_read_unlock();
  2760. #endif
  2761. /* Do not fool tcpdump (if any), clean our debris */
  2762. skb->tstamp = 0;
  2763. return skb;
  2764. }
  2765. EXPORT_SYMBOL(tcp_make_synack);
  2766. static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
  2767. {
  2768. struct inet_connection_sock *icsk = inet_csk(sk);
  2769. const struct tcp_congestion_ops *ca;
  2770. u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
  2771. if (ca_key == TCP_CA_UNSPEC)
  2772. return;
  2773. rcu_read_lock();
  2774. ca = tcp_ca_find_key(ca_key);
  2775. if (likely(ca && try_module_get(ca->owner))) {
  2776. module_put(icsk->icsk_ca_ops->owner);
  2777. icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
  2778. icsk->icsk_ca_ops = ca;
  2779. }
  2780. rcu_read_unlock();
  2781. }
  2782. /* Do all connect socket setups that can be done AF independent. */
  2783. static void tcp_connect_init(struct sock *sk)
  2784. {
  2785. const struct dst_entry *dst = __sk_dst_get(sk);
  2786. struct tcp_sock *tp = tcp_sk(sk);
  2787. __u8 rcv_wscale;
  2788. u32 rcv_wnd;
  2789. /* We'll fix this up when we get a response from the other end.
  2790. * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
  2791. */
  2792. tp->tcp_header_len = sizeof(struct tcphdr);
  2793. if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
  2794. tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
  2795. #ifdef CONFIG_TCP_MD5SIG
  2796. if (tp->af_specific->md5_lookup(sk, sk))
  2797. tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
  2798. #endif
  2799. /* If user gave his TCP_MAXSEG, record it to clamp */
  2800. if (tp->rx_opt.user_mss)
  2801. tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
  2802. tp->max_window = 0;
  2803. tcp_mtup_init(sk);
  2804. tcp_sync_mss(sk, dst_mtu(dst));
  2805. tcp_ca_dst_init(sk, dst);
  2806. if (!tp->window_clamp)
  2807. tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
  2808. tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
  2809. tcp_initialize_rcv_mss(sk);
  2810. /* limit the window selection if the user enforce a smaller rx buffer */
  2811. if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
  2812. (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
  2813. tp->window_clamp = tcp_full_space(sk);
  2814. rcv_wnd = tcp_rwnd_init_bpf(sk);
  2815. if (rcv_wnd == 0)
  2816. rcv_wnd = dst_metric(dst, RTAX_INITRWND);
  2817. tcp_select_initial_window(sk, tcp_full_space(sk),
  2818. tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
  2819. &tp->rcv_wnd,
  2820. &tp->window_clamp,
  2821. sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
  2822. &rcv_wscale,
  2823. rcv_wnd);
  2824. tp->rx_opt.rcv_wscale = rcv_wscale;
  2825. tp->rcv_ssthresh = tp->rcv_wnd;
  2826. sk->sk_err = 0;
  2827. sock_reset_flag(sk, SOCK_DONE);
  2828. tp->snd_wnd = 0;
  2829. tcp_init_wl(tp, 0);
  2830. tcp_write_queue_purge(sk);
  2831. tp->snd_una = tp->write_seq;
  2832. tp->snd_sml = tp->write_seq;
  2833. tp->snd_up = tp->write_seq;
  2834. tp->snd_nxt = tp->write_seq;
  2835. if (likely(!tp->repair))
  2836. tp->rcv_nxt = 0;
  2837. else
  2838. tp->rcv_tstamp = tcp_jiffies32;
  2839. tp->rcv_wup = tp->rcv_nxt;
  2840. tp->copied_seq = tp->rcv_nxt;
  2841. inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
  2842. inet_csk(sk)->icsk_retransmits = 0;
  2843. tcp_clear_retrans(tp);
  2844. }
  2845. static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
  2846. {
  2847. struct tcp_sock *tp = tcp_sk(sk);
  2848. struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
  2849. tcb->end_seq += skb->len;
  2850. __skb_header_release(skb);
  2851. sk->sk_wmem_queued += skb->truesize;
  2852. sk_mem_charge(sk, skb->truesize);
  2853. tp->write_seq = tcb->end_seq;
  2854. tp->packets_out += tcp_skb_pcount(skb);
  2855. }
  2856. /* Build and send a SYN with data and (cached) Fast Open cookie. However,
  2857. * queue a data-only packet after the regular SYN, such that regular SYNs
  2858. * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
  2859. * only the SYN sequence, the data are retransmitted in the first ACK.
  2860. * If cookie is not cached or other error occurs, falls back to send a
  2861. * regular SYN with Fast Open cookie request option.
  2862. */
  2863. static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
  2864. {
  2865. struct tcp_sock *tp = tcp_sk(sk);
  2866. struct tcp_fastopen_request *fo = tp->fastopen_req;
  2867. int space, err = 0;
  2868. struct sk_buff *syn_data;
  2869. tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
  2870. if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
  2871. goto fallback;
  2872. /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
  2873. * user-MSS. Reserve maximum option space for middleboxes that add
  2874. * private TCP options. The cost is reduced data space in SYN :(
  2875. */
  2876. tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
  2877. space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
  2878. MAX_TCP_OPTION_SPACE;
  2879. space = min_t(size_t, space, fo->size);
  2880. /* limit to order-0 allocations */
  2881. space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
  2882. syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
  2883. if (!syn_data)
  2884. goto fallback;
  2885. syn_data->ip_summed = CHECKSUM_PARTIAL;
  2886. memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
  2887. if (space) {
  2888. int copied = copy_from_iter(skb_put(syn_data, space), space,
  2889. &fo->data->msg_iter);
  2890. if (unlikely(!copied)) {
  2891. tcp_skb_tsorted_anchor_cleanup(syn_data);
  2892. kfree_skb(syn_data);
  2893. goto fallback;
  2894. }
  2895. if (copied != space) {
  2896. skb_trim(syn_data, copied);
  2897. space = copied;
  2898. }
  2899. }
  2900. /* No more data pending in inet_wait_for_connect() */
  2901. if (space == fo->size)
  2902. fo->data = NULL;
  2903. fo->copied = space;
  2904. tcp_connect_queue_skb(sk, syn_data);
  2905. if (syn_data->len)
  2906. tcp_chrono_start(sk, TCP_CHRONO_BUSY);
  2907. err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
  2908. syn->skb_mstamp = syn_data->skb_mstamp;
  2909. /* Now full SYN+DATA was cloned and sent (or not),
  2910. * remove the SYN from the original skb (syn_data)
  2911. * we keep in write queue in case of a retransmit, as we
  2912. * also have the SYN packet (with no data) in the same queue.
  2913. */
  2914. TCP_SKB_CB(syn_data)->seq++;
  2915. TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
  2916. if (!err) {
  2917. tp->syn_data = (fo->copied > 0);
  2918. tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
  2919. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
  2920. goto done;
  2921. }
  2922. /* data was not sent, put it in write_queue */
  2923. __skb_queue_tail(&sk->sk_write_queue, syn_data);
  2924. tp->packets_out -= tcp_skb_pcount(syn_data);
  2925. fallback:
  2926. /* Send a regular SYN with Fast Open cookie request option */
  2927. if (fo->cookie.len > 0)
  2928. fo->cookie.len = 0;
  2929. err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
  2930. if (err)
  2931. tp->syn_fastopen = 0;
  2932. done:
  2933. fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
  2934. return err;
  2935. }
  2936. /* Build a SYN and send it off. */
  2937. int tcp_connect(struct sock *sk)
  2938. {
  2939. struct tcp_sock *tp = tcp_sk(sk);
  2940. struct sk_buff *buff;
  2941. int err;
  2942. tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
  2943. if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
  2944. return -EHOSTUNREACH; /* Routing failure or similar. */
  2945. tcp_connect_init(sk);
  2946. if (unlikely(tp->repair)) {
  2947. tcp_finish_connect(sk, NULL);
  2948. return 0;
  2949. }
  2950. buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
  2951. if (unlikely(!buff))
  2952. return -ENOBUFS;
  2953. tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
  2954. tcp_mstamp_refresh(tp);
  2955. tp->retrans_stamp = tcp_time_stamp(tp);
  2956. tcp_connect_queue_skb(sk, buff);
  2957. tcp_ecn_send_syn(sk, buff);
  2958. tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
  2959. /* Send off SYN; include data in Fast Open. */
  2960. err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
  2961. tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
  2962. if (err == -ECONNREFUSED)
  2963. return err;
  2964. /* We change tp->snd_nxt after the tcp_transmit_skb() call
  2965. * in order to make this packet get counted in tcpOutSegs.
  2966. */
  2967. tp->snd_nxt = tp->write_seq;
  2968. tp->pushed_seq = tp->write_seq;
  2969. buff = tcp_send_head(sk);
  2970. if (unlikely(buff)) {
  2971. tp->snd_nxt = TCP_SKB_CB(buff)->seq;
  2972. tp->pushed_seq = TCP_SKB_CB(buff)->seq;
  2973. }
  2974. TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
  2975. /* Timer for repeating the SYN until an answer. */
  2976. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  2977. inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
  2978. return 0;
  2979. }
  2980. EXPORT_SYMBOL(tcp_connect);
  2981. /* Send out a delayed ack, the caller does the policy checking
  2982. * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
  2983. * for details.
  2984. */
  2985. void tcp_send_delayed_ack(struct sock *sk)
  2986. {
  2987. struct inet_connection_sock *icsk = inet_csk(sk);
  2988. int ato = icsk->icsk_ack.ato;
  2989. unsigned long timeout;
  2990. tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
  2991. if (ato > TCP_DELACK_MIN) {
  2992. const struct tcp_sock *tp = tcp_sk(sk);
  2993. int max_ato = HZ / 2;
  2994. if (icsk->icsk_ack.pingpong ||
  2995. (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
  2996. max_ato = TCP_DELACK_MAX;
  2997. /* Slow path, intersegment interval is "high". */
  2998. /* If some rtt estimate is known, use it to bound delayed ack.
  2999. * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
  3000. * directly.
  3001. */
  3002. if (tp->srtt_us) {
  3003. int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
  3004. TCP_DELACK_MIN);
  3005. if (rtt < max_ato)
  3006. max_ato = rtt;
  3007. }
  3008. ato = min(ato, max_ato);
  3009. }
  3010. /* Stay within the limit we were given */
  3011. timeout = jiffies + ato;
  3012. /* Use new timeout only if there wasn't a older one earlier. */
  3013. if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
  3014. /* If delack timer was blocked or is about to expire,
  3015. * send ACK now.
  3016. */
  3017. if (icsk->icsk_ack.blocked ||
  3018. time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
  3019. tcp_send_ack(sk);
  3020. return;
  3021. }
  3022. if (!time_before(timeout, icsk->icsk_ack.timeout))
  3023. timeout = icsk->icsk_ack.timeout;
  3024. }
  3025. icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
  3026. icsk->icsk_ack.timeout = timeout;
  3027. sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
  3028. }
  3029. /* This routine sends an ack and also updates the window. */
  3030. void tcp_send_ack(struct sock *sk)
  3031. {
  3032. struct sk_buff *buff;
  3033. /* If we have been reset, we may not send again. */
  3034. if (sk->sk_state == TCP_CLOSE)
  3035. return;
  3036. tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
  3037. /* We are not putting this on the write queue, so
  3038. * tcp_transmit_skb() will set the ownership to this
  3039. * sock.
  3040. */
  3041. buff = alloc_skb(MAX_TCP_HEADER,
  3042. sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
  3043. if (unlikely(!buff)) {
  3044. inet_csk_schedule_ack(sk);
  3045. inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
  3046. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  3047. TCP_DELACK_MAX, TCP_RTO_MAX);
  3048. return;
  3049. }
  3050. /* Reserve space for headers and prepare control bits. */
  3051. skb_reserve(buff, MAX_TCP_HEADER);
  3052. tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
  3053. /* We do not want pure acks influencing TCP Small Queues or fq/pacing
  3054. * too much.
  3055. * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
  3056. */
  3057. skb_set_tcp_pure_ack(buff);
  3058. /* Send it off, this clears delayed acks for us. */
  3059. tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
  3060. }
  3061. EXPORT_SYMBOL_GPL(tcp_send_ack);
  3062. /* This routine sends a packet with an out of date sequence
  3063. * number. It assumes the other end will try to ack it.
  3064. *
  3065. * Question: what should we make while urgent mode?
  3066. * 4.4BSD forces sending single byte of data. We cannot send
  3067. * out of window data, because we have SND.NXT==SND.MAX...
  3068. *
  3069. * Current solution: to send TWO zero-length segments in urgent mode:
  3070. * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
  3071. * out-of-date with SND.UNA-1 to probe window.
  3072. */
  3073. static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
  3074. {
  3075. struct tcp_sock *tp = tcp_sk(sk);
  3076. struct sk_buff *skb;
  3077. /* We don't queue it, tcp_transmit_skb() sets ownership. */
  3078. skb = alloc_skb(MAX_TCP_HEADER,
  3079. sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
  3080. if (!skb)
  3081. return -1;
  3082. /* Reserve space for headers and set control bits. */
  3083. skb_reserve(skb, MAX_TCP_HEADER);
  3084. /* Use a previous sequence. This should cause the other
  3085. * end to send an ack. Don't queue or clone SKB, just
  3086. * send it.
  3087. */
  3088. tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
  3089. NET_INC_STATS(sock_net(sk), mib);
  3090. return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
  3091. }
  3092. /* Called from setsockopt( ... TCP_REPAIR ) */
  3093. void tcp_send_window_probe(struct sock *sk)
  3094. {
  3095. if (sk->sk_state == TCP_ESTABLISHED) {
  3096. tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
  3097. tcp_mstamp_refresh(tcp_sk(sk));
  3098. tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
  3099. }
  3100. }
  3101. /* Initiate keepalive or window probe from timer. */
  3102. int tcp_write_wakeup(struct sock *sk, int mib)
  3103. {
  3104. struct tcp_sock *tp = tcp_sk(sk);
  3105. struct sk_buff *skb;
  3106. if (sk->sk_state == TCP_CLOSE)
  3107. return -1;
  3108. skb = tcp_send_head(sk);
  3109. if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
  3110. int err;
  3111. unsigned int mss = tcp_current_mss(sk);
  3112. unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
  3113. if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
  3114. tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
  3115. /* We are probing the opening of a window
  3116. * but the window size is != 0
  3117. * must have been a result SWS avoidance ( sender )
  3118. */
  3119. if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
  3120. skb->len > mss) {
  3121. seg_size = min(seg_size, mss);
  3122. TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
  3123. if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
  3124. skb, seg_size, mss, GFP_ATOMIC))
  3125. return -1;
  3126. } else if (!tcp_skb_pcount(skb))
  3127. tcp_set_skb_tso_segs(skb, mss);
  3128. TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
  3129. err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
  3130. if (!err)
  3131. tcp_event_new_data_sent(sk, skb);
  3132. return err;
  3133. } else {
  3134. if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
  3135. tcp_xmit_probe_skb(sk, 1, mib);
  3136. return tcp_xmit_probe_skb(sk, 0, mib);
  3137. }
  3138. }
  3139. /* A window probe timeout has occurred. If window is not closed send
  3140. * a partial packet else a zero probe.
  3141. */
  3142. void tcp_send_probe0(struct sock *sk)
  3143. {
  3144. struct inet_connection_sock *icsk = inet_csk(sk);
  3145. struct tcp_sock *tp = tcp_sk(sk);
  3146. struct net *net = sock_net(sk);
  3147. unsigned long probe_max;
  3148. int err;
  3149. err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
  3150. if (tp->packets_out || tcp_write_queue_empty(sk)) {
  3151. /* Cancel probe timer, if it is not required. */
  3152. icsk->icsk_probes_out = 0;
  3153. icsk->icsk_backoff = 0;
  3154. return;
  3155. }
  3156. if (err <= 0) {
  3157. if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
  3158. icsk->icsk_backoff++;
  3159. icsk->icsk_probes_out++;
  3160. probe_max = TCP_RTO_MAX;
  3161. } else {
  3162. /* If packet was not sent due to local congestion,
  3163. * do not backoff and do not remember icsk_probes_out.
  3164. * Let local senders to fight for local resources.
  3165. *
  3166. * Use accumulated backoff yet.
  3167. */
  3168. if (!icsk->icsk_probes_out)
  3169. icsk->icsk_probes_out = 1;
  3170. probe_max = TCP_RESOURCE_PROBE_INTERVAL;
  3171. }
  3172. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  3173. tcp_probe0_when(sk, probe_max),
  3174. TCP_RTO_MAX);
  3175. }
  3176. int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
  3177. {
  3178. const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
  3179. struct flowi fl;
  3180. int res;
  3181. tcp_rsk(req)->txhash = net_tx_rndhash();
  3182. res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
  3183. if (!res) {
  3184. __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
  3185. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
  3186. if (unlikely(tcp_passive_fastopen(sk)))
  3187. tcp_sk(sk)->total_retrans++;
  3188. trace_tcp_retransmit_synack(sk, req);
  3189. }
  3190. return res;
  3191. }
  3192. EXPORT_SYMBOL(tcp_rtx_synack);