ip_output.c 40 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * The Internet Protocol (IP) output module.
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Donald Becker, <becker@super.org>
  11. * Alan Cox, <Alan.Cox@linux.org>
  12. * Richard Underwood
  13. * Stefan Becker, <stefanb@yello.ping.de>
  14. * Jorge Cwik, <jorge@laser.satlink.net>
  15. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  16. * Hirokazu Takahashi, <taka@valinux.co.jp>
  17. *
  18. * See ip_input.c for original log
  19. *
  20. * Fixes:
  21. * Alan Cox : Missing nonblock feature in ip_build_xmit.
  22. * Mike Kilburn : htons() missing in ip_build_xmit.
  23. * Bradford Johnson: Fix faulty handling of some frames when
  24. * no route is found.
  25. * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
  26. * (in case if packet not accepted by
  27. * output firewall rules)
  28. * Mike McLagan : Routing by source
  29. * Alexey Kuznetsov: use new route cache
  30. * Andi Kleen: Fix broken PMTU recovery and remove
  31. * some redundant tests.
  32. * Vitaly E. Lavrov : Transparent proxy revived after year coma.
  33. * Andi Kleen : Replace ip_reply with ip_send_reply.
  34. * Andi Kleen : Split fast and slow ip_build_xmit path
  35. * for decreased register pressure on x86
  36. * and more readibility.
  37. * Marc Boucher : When call_out_firewall returns FW_QUEUE,
  38. * silently drop skb instead of failing with -EPERM.
  39. * Detlev Wengorz : Copy protocol for fragments.
  40. * Hirokazu Takahashi: HW checksumming for outgoing UDP
  41. * datagrams.
  42. * Hirokazu Takahashi: sendfile() on UDP works now.
  43. */
  44. #include <asm/uaccess.h>
  45. #include <linux/module.h>
  46. #include <linux/types.h>
  47. #include <linux/kernel.h>
  48. #include <linux/mm.h>
  49. #include <linux/string.h>
  50. #include <linux/errno.h>
  51. #include <linux/highmem.h>
  52. #include <linux/slab.h>
  53. #include <linux/socket.h>
  54. #include <linux/sockios.h>
  55. #include <linux/in.h>
  56. #include <linux/inet.h>
  57. #include <linux/netdevice.h>
  58. #include <linux/etherdevice.h>
  59. #include <linux/proc_fs.h>
  60. #include <linux/stat.h>
  61. #include <linux/init.h>
  62. #include <net/snmp.h>
  63. #include <net/ip.h>
  64. #include <net/protocol.h>
  65. #include <net/route.h>
  66. #include <net/xfrm.h>
  67. #include <linux/skbuff.h>
  68. #include <net/sock.h>
  69. #include <net/arp.h>
  70. #include <net/icmp.h>
  71. #include <net/checksum.h>
  72. #include <net/inetpeer.h>
  73. #include <linux/igmp.h>
  74. #include <linux/netfilter_ipv4.h>
  75. #include <linux/netfilter_bridge.h>
  76. #include <linux/netlink.h>
  77. #include <linux/tcp.h>
  78. static int
  79. ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
  80. unsigned int mtu,
  81. int (*output)(struct net *, struct sock *, struct sk_buff *));
  82. /* Generate a checksum for an outgoing IP datagram. */
  83. void ip_send_check(struct iphdr *iph)
  84. {
  85. iph->check = 0;
  86. iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
  87. }
  88. EXPORT_SYMBOL(ip_send_check);
  89. int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
  90. {
  91. struct iphdr *iph = ip_hdr(skb);
  92. iph->tot_len = htons(skb->len);
  93. ip_send_check(iph);
  94. return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
  95. net, sk, skb, NULL, skb_dst(skb)->dev,
  96. dst_output);
  97. }
  98. int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
  99. {
  100. int err;
  101. err = __ip_local_out(net, sk, skb);
  102. if (likely(err == 1))
  103. err = dst_output(net, sk, skb);
  104. return err;
  105. }
  106. EXPORT_SYMBOL_GPL(ip_local_out);
  107. static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
  108. {
  109. int ttl = inet->uc_ttl;
  110. if (ttl < 0)
  111. ttl = ip4_dst_hoplimit(dst);
  112. return ttl;
  113. }
  114. /*
  115. * Add an ip header to a skbuff and send it out.
  116. *
  117. */
  118. int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
  119. __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
  120. {
  121. struct inet_sock *inet = inet_sk(sk);
  122. struct rtable *rt = skb_rtable(skb);
  123. struct net *net = sock_net(sk);
  124. struct iphdr *iph;
  125. /* Build the IP header. */
  126. skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
  127. skb_reset_network_header(skb);
  128. iph = ip_hdr(skb);
  129. iph->version = 4;
  130. iph->ihl = 5;
  131. iph->tos = inet->tos;
  132. iph->ttl = ip_select_ttl(inet, &rt->dst);
  133. iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
  134. iph->saddr = saddr;
  135. iph->protocol = sk->sk_protocol;
  136. if (ip_dont_fragment(sk, &rt->dst)) {
  137. iph->frag_off = htons(IP_DF);
  138. iph->id = 0;
  139. } else {
  140. iph->frag_off = 0;
  141. __ip_select_ident(net, iph, 1);
  142. }
  143. if (opt && opt->opt.optlen) {
  144. iph->ihl += opt->opt.optlen>>2;
  145. ip_options_build(skb, &opt->opt, daddr, rt, 0);
  146. }
  147. skb->priority = sk->sk_priority;
  148. skb->mark = sk->sk_mark;
  149. /* Send it out. */
  150. return ip_local_out(net, skb->sk, skb);
  151. }
  152. EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
  153. static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
  154. {
  155. struct dst_entry *dst = skb_dst(skb);
  156. struct rtable *rt = (struct rtable *)dst;
  157. struct net_device *dev = dst->dev;
  158. unsigned int hh_len = LL_RESERVED_SPACE(dev);
  159. struct neighbour *neigh;
  160. u32 nexthop;
  161. if (rt->rt_type == RTN_MULTICAST) {
  162. IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
  163. } else if (rt->rt_type == RTN_BROADCAST)
  164. IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
  165. /* Be paranoid, rather than too clever. */
  166. if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
  167. struct sk_buff *skb2;
  168. skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
  169. if (!skb2) {
  170. kfree_skb(skb);
  171. return -ENOMEM;
  172. }
  173. if (skb->sk)
  174. skb_set_owner_w(skb2, skb->sk);
  175. consume_skb(skb);
  176. skb = skb2;
  177. }
  178. rcu_read_lock_bh();
  179. nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr);
  180. neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
  181. if (unlikely(!neigh))
  182. neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
  183. if (!IS_ERR(neigh)) {
  184. int res = dst_neigh_output(dst, neigh, skb);
  185. rcu_read_unlock_bh();
  186. return res;
  187. }
  188. rcu_read_unlock_bh();
  189. net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
  190. __func__);
  191. kfree_skb(skb);
  192. return -EINVAL;
  193. }
  194. static int ip_finish_output_gso(struct net *net, struct sock *sk,
  195. struct sk_buff *skb, unsigned int mtu)
  196. {
  197. netdev_features_t features;
  198. struct sk_buff *segs;
  199. int ret = 0;
  200. /* common case: locally created skb or seglen is <= mtu */
  201. if (((IPCB(skb)->flags & IPSKB_FORWARDED) == 0) ||
  202. skb_gso_network_seglen(skb) <= mtu)
  203. return ip_finish_output2(net, sk, skb);
  204. /* Slowpath - GSO segment length is exceeding the dst MTU.
  205. *
  206. * This can happen in two cases:
  207. * 1) TCP GRO packet, DF bit not set
  208. * 2) skb arrived via virtio-net, we thus get TSO/GSO skbs directly
  209. * from host network stack.
  210. */
  211. features = netif_skb_features(skb);
  212. BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET);
  213. segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
  214. if (IS_ERR_OR_NULL(segs)) {
  215. kfree_skb(skb);
  216. return -ENOMEM;
  217. }
  218. consume_skb(skb);
  219. do {
  220. struct sk_buff *nskb = segs->next;
  221. int err;
  222. segs->next = NULL;
  223. err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
  224. if (err && ret == 0)
  225. ret = err;
  226. segs = nskb;
  227. } while (segs);
  228. return ret;
  229. }
  230. static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
  231. {
  232. unsigned int mtu;
  233. #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
  234. /* Policy lookup after SNAT yielded a new policy */
  235. if (skb_dst(skb)->xfrm) {
  236. IPCB(skb)->flags |= IPSKB_REROUTED;
  237. return dst_output(net, sk, skb);
  238. }
  239. #endif
  240. mtu = ip_skb_dst_mtu(skb);
  241. if (skb_is_gso(skb))
  242. return ip_finish_output_gso(net, sk, skb, mtu);
  243. if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU))
  244. return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
  245. return ip_finish_output2(net, sk, skb);
  246. }
  247. int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
  248. {
  249. struct rtable *rt = skb_rtable(skb);
  250. struct net_device *dev = rt->dst.dev;
  251. /*
  252. * If the indicated interface is up and running, send the packet.
  253. */
  254. IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
  255. skb->dev = dev;
  256. skb->protocol = htons(ETH_P_IP);
  257. /*
  258. * Multicasts are looped back for other local users
  259. */
  260. if (rt->rt_flags&RTCF_MULTICAST) {
  261. if (sk_mc_loop(sk)
  262. #ifdef CONFIG_IP_MROUTE
  263. /* Small optimization: do not loopback not local frames,
  264. which returned after forwarding; they will be dropped
  265. by ip_mr_input in any case.
  266. Note, that local frames are looped back to be delivered
  267. to local recipients.
  268. This check is duplicated in ip_mr_input at the moment.
  269. */
  270. &&
  271. ((rt->rt_flags & RTCF_LOCAL) ||
  272. !(IPCB(skb)->flags & IPSKB_FORWARDED))
  273. #endif
  274. ) {
  275. struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
  276. if (newskb)
  277. NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
  278. net, sk, newskb, NULL, newskb->dev,
  279. dev_loopback_xmit);
  280. }
  281. /* Multicasts with ttl 0 must not go beyond the host */
  282. if (ip_hdr(skb)->ttl == 0) {
  283. kfree_skb(skb);
  284. return 0;
  285. }
  286. }
  287. if (rt->rt_flags&RTCF_BROADCAST) {
  288. struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
  289. if (newskb)
  290. NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
  291. net, sk, newskb, NULL, newskb->dev,
  292. dev_loopback_xmit);
  293. }
  294. return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
  295. net, sk, skb, NULL, skb->dev,
  296. ip_finish_output,
  297. !(IPCB(skb)->flags & IPSKB_REROUTED));
  298. }
  299. int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
  300. {
  301. struct net_device *dev = skb_dst(skb)->dev;
  302. IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
  303. skb->dev = dev;
  304. skb->protocol = htons(ETH_P_IP);
  305. return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
  306. net, sk, skb, NULL, dev,
  307. ip_finish_output,
  308. !(IPCB(skb)->flags & IPSKB_REROUTED));
  309. }
  310. /*
  311. * copy saddr and daddr, possibly using 64bit load/stores
  312. * Equivalent to :
  313. * iph->saddr = fl4->saddr;
  314. * iph->daddr = fl4->daddr;
  315. */
  316. static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
  317. {
  318. BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
  319. offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
  320. memcpy(&iph->saddr, &fl4->saddr,
  321. sizeof(fl4->saddr) + sizeof(fl4->daddr));
  322. }
  323. /* Note: skb->sk can be different from sk, in case of tunnels */
  324. int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)
  325. {
  326. struct inet_sock *inet = inet_sk(sk);
  327. struct net *net = sock_net(sk);
  328. struct ip_options_rcu *inet_opt;
  329. struct flowi4 *fl4;
  330. struct rtable *rt;
  331. struct iphdr *iph;
  332. int res;
  333. /* Skip all of this if the packet is already routed,
  334. * f.e. by something like SCTP.
  335. */
  336. rcu_read_lock();
  337. inet_opt = rcu_dereference(inet->inet_opt);
  338. fl4 = &fl->u.ip4;
  339. rt = skb_rtable(skb);
  340. if (rt)
  341. goto packet_routed;
  342. /* Make sure we can route this packet. */
  343. rt = (struct rtable *)__sk_dst_check(sk, 0);
  344. if (!rt) {
  345. __be32 daddr;
  346. /* Use correct destination address if we have options. */
  347. daddr = inet->inet_daddr;
  348. if (inet_opt && inet_opt->opt.srr)
  349. daddr = inet_opt->opt.faddr;
  350. /* If this fails, retransmit mechanism of transport layer will
  351. * keep trying until route appears or the connection times
  352. * itself out.
  353. */
  354. rt = ip_route_output_ports(net, fl4, sk,
  355. daddr, inet->inet_saddr,
  356. inet->inet_dport,
  357. inet->inet_sport,
  358. sk->sk_protocol,
  359. RT_CONN_FLAGS(sk),
  360. sk->sk_bound_dev_if);
  361. if (IS_ERR(rt))
  362. goto no_route;
  363. sk_setup_caps(sk, &rt->dst);
  364. }
  365. skb_dst_set_noref(skb, &rt->dst);
  366. packet_routed:
  367. if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
  368. goto no_route;
  369. /* OK, we know where to send it, allocate and build IP header. */
  370. skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
  371. skb_reset_network_header(skb);
  372. iph = ip_hdr(skb);
  373. *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
  374. if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
  375. iph->frag_off = htons(IP_DF);
  376. else
  377. iph->frag_off = 0;
  378. iph->ttl = ip_select_ttl(inet, &rt->dst);
  379. iph->protocol = sk->sk_protocol;
  380. ip_copy_addrs(iph, fl4);
  381. /* Transport layer set skb->h.foo itself. */
  382. if (inet_opt && inet_opt->opt.optlen) {
  383. iph->ihl += inet_opt->opt.optlen >> 2;
  384. ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
  385. }
  386. ip_select_ident_segs(net, skb, sk,
  387. skb_shinfo(skb)->gso_segs ?: 1);
  388. /* TODO : should we use skb->sk here instead of sk ? */
  389. skb->priority = sk->sk_priority;
  390. skb->mark = sk->sk_mark;
  391. res = ip_local_out(net, sk, skb);
  392. rcu_read_unlock();
  393. return res;
  394. no_route:
  395. rcu_read_unlock();
  396. IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
  397. kfree_skb(skb);
  398. return -EHOSTUNREACH;
  399. }
  400. EXPORT_SYMBOL(ip_queue_xmit);
  401. static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
  402. {
  403. to->pkt_type = from->pkt_type;
  404. to->priority = from->priority;
  405. to->protocol = from->protocol;
  406. skb_dst_drop(to);
  407. skb_dst_copy(to, from);
  408. to->dev = from->dev;
  409. to->mark = from->mark;
  410. /* Copy the flags to each fragment. */
  411. IPCB(to)->flags = IPCB(from)->flags;
  412. #ifdef CONFIG_NET_SCHED
  413. to->tc_index = from->tc_index;
  414. #endif
  415. nf_copy(to, from);
  416. #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
  417. to->ipvs_property = from->ipvs_property;
  418. #endif
  419. skb_copy_secmark(to, from);
  420. }
  421. static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
  422. unsigned int mtu,
  423. int (*output)(struct net *, struct sock *, struct sk_buff *))
  424. {
  425. struct iphdr *iph = ip_hdr(skb);
  426. if ((iph->frag_off & htons(IP_DF)) == 0)
  427. return ip_do_fragment(net, sk, skb, output);
  428. if (unlikely(!skb->ignore_df ||
  429. (IPCB(skb)->frag_max_size &&
  430. IPCB(skb)->frag_max_size > mtu))) {
  431. IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
  432. icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
  433. htonl(mtu));
  434. kfree_skb(skb);
  435. return -EMSGSIZE;
  436. }
  437. return ip_do_fragment(net, sk, skb, output);
  438. }
  439. /*
  440. * This IP datagram is too large to be sent in one piece. Break it up into
  441. * smaller pieces (each of size equal to IP header plus
  442. * a block of the data of the original IP data part) that will yet fit in a
  443. * single device frame, and queue such a frame for sending.
  444. */
  445. int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
  446. int (*output)(struct net *, struct sock *, struct sk_buff *))
  447. {
  448. struct iphdr *iph;
  449. int ptr;
  450. struct net_device *dev;
  451. struct sk_buff *skb2;
  452. unsigned int mtu, hlen, left, len, ll_rs;
  453. int offset;
  454. __be16 not_last_frag;
  455. struct rtable *rt = skb_rtable(skb);
  456. int err = 0;
  457. dev = rt->dst.dev;
  458. /* for offloaded checksums cleanup checksum before fragmentation */
  459. if (skb->ip_summed == CHECKSUM_PARTIAL &&
  460. (err = skb_checksum_help(skb)))
  461. goto fail;
  462. /*
  463. * Point into the IP datagram header.
  464. */
  465. iph = ip_hdr(skb);
  466. mtu = ip_skb_dst_mtu(skb);
  467. if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
  468. mtu = IPCB(skb)->frag_max_size;
  469. /*
  470. * Setup starting values.
  471. */
  472. hlen = iph->ihl * 4;
  473. mtu = mtu - hlen; /* Size of data space */
  474. IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
  475. /* When frag_list is given, use it. First, check its validity:
  476. * some transformers could create wrong frag_list or break existing
  477. * one, it is not prohibited. In this case fall back to copying.
  478. *
  479. * LATER: this step can be merged to real generation of fragments,
  480. * we can switch to copy when see the first bad fragment.
  481. */
  482. if (skb_has_frag_list(skb)) {
  483. struct sk_buff *frag, *frag2;
  484. int first_len = skb_pagelen(skb);
  485. if (first_len - hlen > mtu ||
  486. ((first_len - hlen) & 7) ||
  487. ip_is_fragment(iph) ||
  488. skb_cloned(skb))
  489. goto slow_path;
  490. skb_walk_frags(skb, frag) {
  491. /* Correct geometry. */
  492. if (frag->len > mtu ||
  493. ((frag->len & 7) && frag->next) ||
  494. skb_headroom(frag) < hlen)
  495. goto slow_path_clean;
  496. /* Partially cloned skb? */
  497. if (skb_shared(frag))
  498. goto slow_path_clean;
  499. BUG_ON(frag->sk);
  500. if (skb->sk) {
  501. frag->sk = skb->sk;
  502. frag->destructor = sock_wfree;
  503. }
  504. skb->truesize -= frag->truesize;
  505. }
  506. /* Everything is OK. Generate! */
  507. err = 0;
  508. offset = 0;
  509. frag = skb_shinfo(skb)->frag_list;
  510. skb_frag_list_init(skb);
  511. skb->data_len = first_len - skb_headlen(skb);
  512. skb->len = first_len;
  513. iph->tot_len = htons(first_len);
  514. iph->frag_off = htons(IP_MF);
  515. ip_send_check(iph);
  516. for (;;) {
  517. /* Prepare header of the next frame,
  518. * before previous one went down. */
  519. if (frag) {
  520. frag->ip_summed = CHECKSUM_NONE;
  521. skb_reset_transport_header(frag);
  522. __skb_push(frag, hlen);
  523. skb_reset_network_header(frag);
  524. memcpy(skb_network_header(frag), iph, hlen);
  525. iph = ip_hdr(frag);
  526. iph->tot_len = htons(frag->len);
  527. ip_copy_metadata(frag, skb);
  528. if (offset == 0)
  529. ip_options_fragment(frag);
  530. offset += skb->len - hlen;
  531. iph->frag_off = htons(offset>>3);
  532. if (frag->next)
  533. iph->frag_off |= htons(IP_MF);
  534. /* Ready, complete checksum */
  535. ip_send_check(iph);
  536. }
  537. err = output(net, sk, skb);
  538. if (!err)
  539. IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
  540. if (err || !frag)
  541. break;
  542. skb = frag;
  543. frag = skb->next;
  544. skb->next = NULL;
  545. }
  546. if (err == 0) {
  547. IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
  548. return 0;
  549. }
  550. while (frag) {
  551. skb = frag->next;
  552. kfree_skb(frag);
  553. frag = skb;
  554. }
  555. IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
  556. return err;
  557. slow_path_clean:
  558. skb_walk_frags(skb, frag2) {
  559. if (frag2 == frag)
  560. break;
  561. frag2->sk = NULL;
  562. frag2->destructor = NULL;
  563. skb->truesize += frag2->truesize;
  564. }
  565. }
  566. slow_path:
  567. iph = ip_hdr(skb);
  568. left = skb->len - hlen; /* Space per frame */
  569. ptr = hlen; /* Where to start from */
  570. ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
  571. /*
  572. * Fragment the datagram.
  573. */
  574. offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
  575. not_last_frag = iph->frag_off & htons(IP_MF);
  576. /*
  577. * Keep copying data until we run out.
  578. */
  579. while (left > 0) {
  580. len = left;
  581. /* IF: it doesn't fit, use 'mtu' - the data space left */
  582. if (len > mtu)
  583. len = mtu;
  584. /* IF: we are not sending up to and including the packet end
  585. then align the next start on an eight byte boundary */
  586. if (len < left) {
  587. len &= ~7;
  588. }
  589. /* Allocate buffer */
  590. skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC);
  591. if (!skb2) {
  592. err = -ENOMEM;
  593. goto fail;
  594. }
  595. /*
  596. * Set up data on packet
  597. */
  598. ip_copy_metadata(skb2, skb);
  599. skb_reserve(skb2, ll_rs);
  600. skb_put(skb2, len + hlen);
  601. skb_reset_network_header(skb2);
  602. skb2->transport_header = skb2->network_header + hlen;
  603. /*
  604. * Charge the memory for the fragment to any owner
  605. * it might possess
  606. */
  607. if (skb->sk)
  608. skb_set_owner_w(skb2, skb->sk);
  609. /*
  610. * Copy the packet header into the new buffer.
  611. */
  612. skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
  613. /*
  614. * Copy a block of the IP datagram.
  615. */
  616. if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
  617. BUG();
  618. left -= len;
  619. /*
  620. * Fill in the new header fields.
  621. */
  622. iph = ip_hdr(skb2);
  623. iph->frag_off = htons((offset >> 3));
  624. if (IPCB(skb)->flags & IPSKB_FRAG_PMTU)
  625. iph->frag_off |= htons(IP_DF);
  626. /* ANK: dirty, but effective trick. Upgrade options only if
  627. * the segment to be fragmented was THE FIRST (otherwise,
  628. * options are already fixed) and make it ONCE
  629. * on the initial skb, so that all the following fragments
  630. * will inherit fixed options.
  631. */
  632. if (offset == 0)
  633. ip_options_fragment(skb);
  634. /*
  635. * Added AC : If we are fragmenting a fragment that's not the
  636. * last fragment then keep MF on each bit
  637. */
  638. if (left > 0 || not_last_frag)
  639. iph->frag_off |= htons(IP_MF);
  640. ptr += len;
  641. offset += len;
  642. /*
  643. * Put this fragment into the sending queue.
  644. */
  645. iph->tot_len = htons(len + hlen);
  646. ip_send_check(iph);
  647. err = output(net, sk, skb2);
  648. if (err)
  649. goto fail;
  650. IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
  651. }
  652. consume_skb(skb);
  653. IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
  654. return err;
  655. fail:
  656. kfree_skb(skb);
  657. IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
  658. return err;
  659. }
  660. EXPORT_SYMBOL(ip_do_fragment);
  661. int
  662. ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
  663. {
  664. struct msghdr *msg = from;
  665. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  666. if (copy_from_iter(to, len, &msg->msg_iter) != len)
  667. return -EFAULT;
  668. } else {
  669. __wsum csum = 0;
  670. if (csum_and_copy_from_iter(to, len, &csum, &msg->msg_iter) != len)
  671. return -EFAULT;
  672. skb->csum = csum_block_add(skb->csum, csum, odd);
  673. }
  674. return 0;
  675. }
  676. EXPORT_SYMBOL(ip_generic_getfrag);
  677. static inline __wsum
  678. csum_page(struct page *page, int offset, int copy)
  679. {
  680. char *kaddr;
  681. __wsum csum;
  682. kaddr = kmap(page);
  683. csum = csum_partial(kaddr + offset, copy, 0);
  684. kunmap(page);
  685. return csum;
  686. }
  687. static inline int ip_ufo_append_data(struct sock *sk,
  688. struct sk_buff_head *queue,
  689. int getfrag(void *from, char *to, int offset, int len,
  690. int odd, struct sk_buff *skb),
  691. void *from, int length, int hh_len, int fragheaderlen,
  692. int transhdrlen, int maxfraglen, unsigned int flags)
  693. {
  694. struct sk_buff *skb;
  695. int err;
  696. /* There is support for UDP fragmentation offload by network
  697. * device, so create one single skb packet containing complete
  698. * udp datagram
  699. */
  700. skb = skb_peek_tail(queue);
  701. if (!skb) {
  702. skb = sock_alloc_send_skb(sk,
  703. hh_len + fragheaderlen + transhdrlen + 20,
  704. (flags & MSG_DONTWAIT), &err);
  705. if (!skb)
  706. return err;
  707. /* reserve space for Hardware header */
  708. skb_reserve(skb, hh_len);
  709. /* create space for UDP/IP header */
  710. skb_put(skb, fragheaderlen + transhdrlen);
  711. /* initialize network header pointer */
  712. skb_reset_network_header(skb);
  713. /* initialize protocol header pointer */
  714. skb->transport_header = skb->network_header + fragheaderlen;
  715. skb->csum = 0;
  716. __skb_queue_tail(queue, skb);
  717. } else if (skb_is_gso(skb)) {
  718. goto append;
  719. }
  720. skb->ip_summed = CHECKSUM_PARTIAL;
  721. /* specify the length of each IP datagram fragment */
  722. skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen;
  723. skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
  724. append:
  725. return skb_append_datato_frags(sk, skb, getfrag, from,
  726. (length - transhdrlen));
  727. }
  728. static int __ip_append_data(struct sock *sk,
  729. struct flowi4 *fl4,
  730. struct sk_buff_head *queue,
  731. struct inet_cork *cork,
  732. struct page_frag *pfrag,
  733. int getfrag(void *from, char *to, int offset,
  734. int len, int odd, struct sk_buff *skb),
  735. void *from, int length, int transhdrlen,
  736. unsigned int flags)
  737. {
  738. struct inet_sock *inet = inet_sk(sk);
  739. struct sk_buff *skb;
  740. struct ip_options *opt = cork->opt;
  741. int hh_len;
  742. int exthdrlen;
  743. int mtu;
  744. int copy;
  745. int err;
  746. int offset = 0;
  747. unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
  748. int csummode = CHECKSUM_NONE;
  749. struct rtable *rt = (struct rtable *)cork->dst;
  750. u32 tskey = 0;
  751. skb = skb_peek_tail(queue);
  752. exthdrlen = !skb ? rt->dst.header_len : 0;
  753. mtu = cork->fragsize;
  754. if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
  755. sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
  756. tskey = sk->sk_tskey++;
  757. hh_len = LL_RESERVED_SPACE(rt->dst.dev);
  758. fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
  759. maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
  760. maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
  761. if (cork->length + length > maxnonfragsize - fragheaderlen) {
  762. ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
  763. mtu - (opt ? opt->optlen : 0));
  764. return -EMSGSIZE;
  765. }
  766. /*
  767. * transhdrlen > 0 means that this is the first fragment and we wish
  768. * it won't be fragmented in the future.
  769. */
  770. if (transhdrlen &&
  771. length + fragheaderlen <= mtu &&
  772. rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
  773. !(flags & MSG_MORE) &&
  774. !exthdrlen)
  775. csummode = CHECKSUM_PARTIAL;
  776. cork->length += length;
  777. if (((length > mtu) || (skb && skb_is_gso(skb))) &&
  778. (sk->sk_protocol == IPPROTO_UDP) &&
  779. (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len &&
  780. (sk->sk_type == SOCK_DGRAM) && !sk->sk_no_check_tx) {
  781. err = ip_ufo_append_data(sk, queue, getfrag, from, length,
  782. hh_len, fragheaderlen, transhdrlen,
  783. maxfraglen, flags);
  784. if (err)
  785. goto error;
  786. return 0;
  787. }
  788. /* So, what's going on in the loop below?
  789. *
  790. * We use calculated fragment length to generate chained skb,
  791. * each of segments is IP fragment ready for sending to network after
  792. * adding appropriate IP header.
  793. */
  794. if (!skb)
  795. goto alloc_new_skb;
  796. while (length > 0) {
  797. /* Check if the remaining data fits into current packet. */
  798. copy = mtu - skb->len;
  799. if (copy < length)
  800. copy = maxfraglen - skb->len;
  801. if (copy <= 0) {
  802. char *data;
  803. unsigned int datalen;
  804. unsigned int fraglen;
  805. unsigned int fraggap;
  806. unsigned int alloclen;
  807. struct sk_buff *skb_prev;
  808. alloc_new_skb:
  809. skb_prev = skb;
  810. if (skb_prev)
  811. fraggap = skb_prev->len - maxfraglen;
  812. else
  813. fraggap = 0;
  814. /*
  815. * If remaining data exceeds the mtu,
  816. * we know we need more fragment(s).
  817. */
  818. datalen = length + fraggap;
  819. if (datalen > mtu - fragheaderlen)
  820. datalen = maxfraglen - fragheaderlen;
  821. fraglen = datalen + fragheaderlen;
  822. if ((flags & MSG_MORE) &&
  823. !(rt->dst.dev->features&NETIF_F_SG))
  824. alloclen = mtu;
  825. else
  826. alloclen = fraglen;
  827. alloclen += exthdrlen;
  828. /* The last fragment gets additional space at tail.
  829. * Note, with MSG_MORE we overallocate on fragments,
  830. * because we have no idea what fragment will be
  831. * the last.
  832. */
  833. if (datalen == length + fraggap)
  834. alloclen += rt->dst.trailer_len;
  835. if (transhdrlen) {
  836. skb = sock_alloc_send_skb(sk,
  837. alloclen + hh_len + 15,
  838. (flags & MSG_DONTWAIT), &err);
  839. } else {
  840. skb = NULL;
  841. if (atomic_read(&sk->sk_wmem_alloc) <=
  842. 2 * sk->sk_sndbuf)
  843. skb = sock_wmalloc(sk,
  844. alloclen + hh_len + 15, 1,
  845. sk->sk_allocation);
  846. if (unlikely(!skb))
  847. err = -ENOBUFS;
  848. }
  849. if (!skb)
  850. goto error;
  851. /*
  852. * Fill in the control structures
  853. */
  854. skb->ip_summed = csummode;
  855. skb->csum = 0;
  856. skb_reserve(skb, hh_len);
  857. /* only the initial fragment is time stamped */
  858. skb_shinfo(skb)->tx_flags = cork->tx_flags;
  859. cork->tx_flags = 0;
  860. skb_shinfo(skb)->tskey = tskey;
  861. tskey = 0;
  862. /*
  863. * Find where to start putting bytes.
  864. */
  865. data = skb_put(skb, fraglen + exthdrlen);
  866. skb_set_network_header(skb, exthdrlen);
  867. skb->transport_header = (skb->network_header +
  868. fragheaderlen);
  869. data += fragheaderlen + exthdrlen;
  870. if (fraggap) {
  871. skb->csum = skb_copy_and_csum_bits(
  872. skb_prev, maxfraglen,
  873. data + transhdrlen, fraggap, 0);
  874. skb_prev->csum = csum_sub(skb_prev->csum,
  875. skb->csum);
  876. data += fraggap;
  877. pskb_trim_unique(skb_prev, maxfraglen);
  878. }
  879. copy = datalen - transhdrlen - fraggap;
  880. if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
  881. err = -EFAULT;
  882. kfree_skb(skb);
  883. goto error;
  884. }
  885. offset += copy;
  886. length -= datalen - fraggap;
  887. transhdrlen = 0;
  888. exthdrlen = 0;
  889. csummode = CHECKSUM_NONE;
  890. /*
  891. * Put the packet on the pending queue.
  892. */
  893. __skb_queue_tail(queue, skb);
  894. continue;
  895. }
  896. if (copy > length)
  897. copy = length;
  898. if (!(rt->dst.dev->features&NETIF_F_SG)) {
  899. unsigned int off;
  900. off = skb->len;
  901. if (getfrag(from, skb_put(skb, copy),
  902. offset, copy, off, skb) < 0) {
  903. __skb_trim(skb, off);
  904. err = -EFAULT;
  905. goto error;
  906. }
  907. } else {
  908. int i = skb_shinfo(skb)->nr_frags;
  909. err = -ENOMEM;
  910. if (!sk_page_frag_refill(sk, pfrag))
  911. goto error;
  912. if (!skb_can_coalesce(skb, i, pfrag->page,
  913. pfrag->offset)) {
  914. err = -EMSGSIZE;
  915. if (i == MAX_SKB_FRAGS)
  916. goto error;
  917. __skb_fill_page_desc(skb, i, pfrag->page,
  918. pfrag->offset, 0);
  919. skb_shinfo(skb)->nr_frags = ++i;
  920. get_page(pfrag->page);
  921. }
  922. copy = min_t(int, copy, pfrag->size - pfrag->offset);
  923. if (getfrag(from,
  924. page_address(pfrag->page) + pfrag->offset,
  925. offset, copy, skb->len, skb) < 0)
  926. goto error_efault;
  927. pfrag->offset += copy;
  928. skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
  929. skb->len += copy;
  930. skb->data_len += copy;
  931. skb->truesize += copy;
  932. atomic_add(copy, &sk->sk_wmem_alloc);
  933. }
  934. offset += copy;
  935. length -= copy;
  936. }
  937. return 0;
  938. error_efault:
  939. err = -EFAULT;
  940. error:
  941. cork->length -= length;
  942. IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
  943. return err;
  944. }
  945. static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
  946. struct ipcm_cookie *ipc, struct rtable **rtp)
  947. {
  948. struct ip_options_rcu *opt;
  949. struct rtable *rt;
  950. /*
  951. * setup for corking.
  952. */
  953. opt = ipc->opt;
  954. if (opt) {
  955. if (!cork->opt) {
  956. cork->opt = kmalloc(sizeof(struct ip_options) + 40,
  957. sk->sk_allocation);
  958. if (unlikely(!cork->opt))
  959. return -ENOBUFS;
  960. }
  961. memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
  962. cork->flags |= IPCORK_OPT;
  963. cork->addr = ipc->addr;
  964. }
  965. rt = *rtp;
  966. if (unlikely(!rt))
  967. return -EFAULT;
  968. /*
  969. * We steal reference to this route, caller should not release it
  970. */
  971. *rtp = NULL;
  972. cork->fragsize = ip_sk_use_pmtu(sk) ?
  973. dst_mtu(&rt->dst) : rt->dst.dev->mtu;
  974. cork->dst = &rt->dst;
  975. cork->length = 0;
  976. cork->ttl = ipc->ttl;
  977. cork->tos = ipc->tos;
  978. cork->priority = ipc->priority;
  979. cork->tx_flags = ipc->tx_flags;
  980. return 0;
  981. }
  982. /*
  983. * ip_append_data() and ip_append_page() can make one large IP datagram
  984. * from many pieces of data. Each pieces will be holded on the socket
  985. * until ip_push_pending_frames() is called. Each piece can be a page
  986. * or non-page data.
  987. *
  988. * Not only UDP, other transport protocols - e.g. raw sockets - can use
  989. * this interface potentially.
  990. *
  991. * LATER: length must be adjusted by pad at tail, when it is required.
  992. */
  993. int ip_append_data(struct sock *sk, struct flowi4 *fl4,
  994. int getfrag(void *from, char *to, int offset, int len,
  995. int odd, struct sk_buff *skb),
  996. void *from, int length, int transhdrlen,
  997. struct ipcm_cookie *ipc, struct rtable **rtp,
  998. unsigned int flags)
  999. {
  1000. struct inet_sock *inet = inet_sk(sk);
  1001. int err;
  1002. if (flags&MSG_PROBE)
  1003. return 0;
  1004. if (skb_queue_empty(&sk->sk_write_queue)) {
  1005. err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
  1006. if (err)
  1007. return err;
  1008. } else {
  1009. transhdrlen = 0;
  1010. }
  1011. return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
  1012. sk_page_frag(sk), getfrag,
  1013. from, length, transhdrlen, flags);
  1014. }
  1015. ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
  1016. int offset, size_t size, int flags)
  1017. {
  1018. struct inet_sock *inet = inet_sk(sk);
  1019. struct sk_buff *skb;
  1020. struct rtable *rt;
  1021. struct ip_options *opt = NULL;
  1022. struct inet_cork *cork;
  1023. int hh_len;
  1024. int mtu;
  1025. int len;
  1026. int err;
  1027. unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
  1028. if (inet->hdrincl)
  1029. return -EPERM;
  1030. if (flags&MSG_PROBE)
  1031. return 0;
  1032. if (skb_queue_empty(&sk->sk_write_queue))
  1033. return -EINVAL;
  1034. cork = &inet->cork.base;
  1035. rt = (struct rtable *)cork->dst;
  1036. if (cork->flags & IPCORK_OPT)
  1037. opt = cork->opt;
  1038. if (!(rt->dst.dev->features&NETIF_F_SG))
  1039. return -EOPNOTSUPP;
  1040. hh_len = LL_RESERVED_SPACE(rt->dst.dev);
  1041. mtu = cork->fragsize;
  1042. fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
  1043. maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
  1044. maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
  1045. if (cork->length + size > maxnonfragsize - fragheaderlen) {
  1046. ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
  1047. mtu - (opt ? opt->optlen : 0));
  1048. return -EMSGSIZE;
  1049. }
  1050. skb = skb_peek_tail(&sk->sk_write_queue);
  1051. if (!skb)
  1052. return -EINVAL;
  1053. if ((size + skb->len > mtu) &&
  1054. (sk->sk_protocol == IPPROTO_UDP) &&
  1055. (rt->dst.dev->features & NETIF_F_UFO)) {
  1056. if (skb->ip_summed != CHECKSUM_PARTIAL)
  1057. return -EOPNOTSUPP;
  1058. skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
  1059. skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
  1060. }
  1061. cork->length += size;
  1062. while (size > 0) {
  1063. if (skb_is_gso(skb)) {
  1064. len = size;
  1065. } else {
  1066. /* Check if the remaining data fits into current packet. */
  1067. len = mtu - skb->len;
  1068. if (len < size)
  1069. len = maxfraglen - skb->len;
  1070. }
  1071. if (len <= 0) {
  1072. struct sk_buff *skb_prev;
  1073. int alloclen;
  1074. skb_prev = skb;
  1075. fraggap = skb_prev->len - maxfraglen;
  1076. alloclen = fragheaderlen + hh_len + fraggap + 15;
  1077. skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
  1078. if (unlikely(!skb)) {
  1079. err = -ENOBUFS;
  1080. goto error;
  1081. }
  1082. /*
  1083. * Fill in the control structures
  1084. */
  1085. skb->ip_summed = CHECKSUM_NONE;
  1086. skb->csum = 0;
  1087. skb_reserve(skb, hh_len);
  1088. /*
  1089. * Find where to start putting bytes.
  1090. */
  1091. skb_put(skb, fragheaderlen + fraggap);
  1092. skb_reset_network_header(skb);
  1093. skb->transport_header = (skb->network_header +
  1094. fragheaderlen);
  1095. if (fraggap) {
  1096. skb->csum = skb_copy_and_csum_bits(skb_prev,
  1097. maxfraglen,
  1098. skb_transport_header(skb),
  1099. fraggap, 0);
  1100. skb_prev->csum = csum_sub(skb_prev->csum,
  1101. skb->csum);
  1102. pskb_trim_unique(skb_prev, maxfraglen);
  1103. }
  1104. /*
  1105. * Put the packet on the pending queue.
  1106. */
  1107. __skb_queue_tail(&sk->sk_write_queue, skb);
  1108. continue;
  1109. }
  1110. if (len > size)
  1111. len = size;
  1112. if (skb_append_pagefrags(skb, page, offset, len)) {
  1113. err = -EMSGSIZE;
  1114. goto error;
  1115. }
  1116. if (skb->ip_summed == CHECKSUM_NONE) {
  1117. __wsum csum;
  1118. csum = csum_page(page, offset, len);
  1119. skb->csum = csum_block_add(skb->csum, csum, skb->len);
  1120. }
  1121. skb->len += len;
  1122. skb->data_len += len;
  1123. skb->truesize += len;
  1124. atomic_add(len, &sk->sk_wmem_alloc);
  1125. offset += len;
  1126. size -= len;
  1127. }
  1128. return 0;
  1129. error:
  1130. cork->length -= size;
  1131. IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
  1132. return err;
  1133. }
  1134. static void ip_cork_release(struct inet_cork *cork)
  1135. {
  1136. cork->flags &= ~IPCORK_OPT;
  1137. kfree(cork->opt);
  1138. cork->opt = NULL;
  1139. dst_release(cork->dst);
  1140. cork->dst = NULL;
  1141. }
  1142. /*
  1143. * Combined all pending IP fragments on the socket as one IP datagram
  1144. * and push them out.
  1145. */
  1146. struct sk_buff *__ip_make_skb(struct sock *sk,
  1147. struct flowi4 *fl4,
  1148. struct sk_buff_head *queue,
  1149. struct inet_cork *cork)
  1150. {
  1151. struct sk_buff *skb, *tmp_skb;
  1152. struct sk_buff **tail_skb;
  1153. struct inet_sock *inet = inet_sk(sk);
  1154. struct net *net = sock_net(sk);
  1155. struct ip_options *opt = NULL;
  1156. struct rtable *rt = (struct rtable *)cork->dst;
  1157. struct iphdr *iph;
  1158. __be16 df = 0;
  1159. __u8 ttl;
  1160. skb = __skb_dequeue(queue);
  1161. if (!skb)
  1162. goto out;
  1163. tail_skb = &(skb_shinfo(skb)->frag_list);
  1164. /* move skb->data to ip header from ext header */
  1165. if (skb->data < skb_network_header(skb))
  1166. __skb_pull(skb, skb_network_offset(skb));
  1167. while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
  1168. __skb_pull(tmp_skb, skb_network_header_len(skb));
  1169. *tail_skb = tmp_skb;
  1170. tail_skb = &(tmp_skb->next);
  1171. skb->len += tmp_skb->len;
  1172. skb->data_len += tmp_skb->len;
  1173. skb->truesize += tmp_skb->truesize;
  1174. tmp_skb->destructor = NULL;
  1175. tmp_skb->sk = NULL;
  1176. }
  1177. /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
  1178. * to fragment the frame generated here. No matter, what transforms
  1179. * how transforms change size of the packet, it will come out.
  1180. */
  1181. skb->ignore_df = ip_sk_ignore_df(sk);
  1182. /* DF bit is set when we want to see DF on outgoing frames.
  1183. * If ignore_df is set too, we still allow to fragment this frame
  1184. * locally. */
  1185. if (inet->pmtudisc == IP_PMTUDISC_DO ||
  1186. inet->pmtudisc == IP_PMTUDISC_PROBE ||
  1187. (skb->len <= dst_mtu(&rt->dst) &&
  1188. ip_dont_fragment(sk, &rt->dst)))
  1189. df = htons(IP_DF);
  1190. if (cork->flags & IPCORK_OPT)
  1191. opt = cork->opt;
  1192. if (cork->ttl != 0)
  1193. ttl = cork->ttl;
  1194. else if (rt->rt_type == RTN_MULTICAST)
  1195. ttl = inet->mc_ttl;
  1196. else
  1197. ttl = ip_select_ttl(inet, &rt->dst);
  1198. iph = ip_hdr(skb);
  1199. iph->version = 4;
  1200. iph->ihl = 5;
  1201. iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
  1202. iph->frag_off = df;
  1203. iph->ttl = ttl;
  1204. iph->protocol = sk->sk_protocol;
  1205. ip_copy_addrs(iph, fl4);
  1206. ip_select_ident(net, skb, sk);
  1207. if (opt) {
  1208. iph->ihl += opt->optlen>>2;
  1209. ip_options_build(skb, opt, cork->addr, rt, 0);
  1210. }
  1211. skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
  1212. skb->mark = sk->sk_mark;
  1213. /*
  1214. * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
  1215. * on dst refcount
  1216. */
  1217. cork->dst = NULL;
  1218. skb_dst_set(skb, &rt->dst);
  1219. if (iph->protocol == IPPROTO_ICMP)
  1220. icmp_out_count(net, ((struct icmphdr *)
  1221. skb_transport_header(skb))->type);
  1222. ip_cork_release(cork);
  1223. out:
  1224. return skb;
  1225. }
  1226. int ip_send_skb(struct net *net, struct sk_buff *skb)
  1227. {
  1228. int err;
  1229. err = ip_local_out(net, skb->sk, skb);
  1230. if (err) {
  1231. if (err > 0)
  1232. err = net_xmit_errno(err);
  1233. if (err)
  1234. IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
  1235. }
  1236. return err;
  1237. }
  1238. int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
  1239. {
  1240. struct sk_buff *skb;
  1241. skb = ip_finish_skb(sk, fl4);
  1242. if (!skb)
  1243. return 0;
  1244. /* Netfilter gets whole the not fragmented skb. */
  1245. return ip_send_skb(sock_net(sk), skb);
  1246. }
  1247. /*
  1248. * Throw away all pending data on the socket.
  1249. */
  1250. static void __ip_flush_pending_frames(struct sock *sk,
  1251. struct sk_buff_head *queue,
  1252. struct inet_cork *cork)
  1253. {
  1254. struct sk_buff *skb;
  1255. while ((skb = __skb_dequeue_tail(queue)) != NULL)
  1256. kfree_skb(skb);
  1257. ip_cork_release(cork);
  1258. }
  1259. void ip_flush_pending_frames(struct sock *sk)
  1260. {
  1261. __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
  1262. }
  1263. struct sk_buff *ip_make_skb(struct sock *sk,
  1264. struct flowi4 *fl4,
  1265. int getfrag(void *from, char *to, int offset,
  1266. int len, int odd, struct sk_buff *skb),
  1267. void *from, int length, int transhdrlen,
  1268. struct ipcm_cookie *ipc, struct rtable **rtp,
  1269. unsigned int flags)
  1270. {
  1271. struct inet_cork cork;
  1272. struct sk_buff_head queue;
  1273. int err;
  1274. if (flags & MSG_PROBE)
  1275. return NULL;
  1276. __skb_queue_head_init(&queue);
  1277. cork.flags = 0;
  1278. cork.addr = 0;
  1279. cork.opt = NULL;
  1280. err = ip_setup_cork(sk, &cork, ipc, rtp);
  1281. if (err)
  1282. return ERR_PTR(err);
  1283. err = __ip_append_data(sk, fl4, &queue, &cork,
  1284. &current->task_frag, getfrag,
  1285. from, length, transhdrlen, flags);
  1286. if (err) {
  1287. __ip_flush_pending_frames(sk, &queue, &cork);
  1288. return ERR_PTR(err);
  1289. }
  1290. return __ip_make_skb(sk, fl4, &queue, &cork);
  1291. }
  1292. /*
  1293. * Fetch data from kernel space and fill in checksum if needed.
  1294. */
  1295. static int ip_reply_glue_bits(void *dptr, char *to, int offset,
  1296. int len, int odd, struct sk_buff *skb)
  1297. {
  1298. __wsum csum;
  1299. csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
  1300. skb->csum = csum_block_add(skb->csum, csum, odd);
  1301. return 0;
  1302. }
  1303. /*
  1304. * Generic function to send a packet as reply to another packet.
  1305. * Used to send some TCP resets/acks so far.
  1306. */
  1307. void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
  1308. const struct ip_options *sopt,
  1309. __be32 daddr, __be32 saddr,
  1310. const struct ip_reply_arg *arg,
  1311. unsigned int len)
  1312. {
  1313. struct ip_options_data replyopts;
  1314. struct ipcm_cookie ipc;
  1315. struct flowi4 fl4;
  1316. struct rtable *rt = skb_rtable(skb);
  1317. struct net *net = sock_net(sk);
  1318. struct sk_buff *nskb;
  1319. int err;
  1320. int oif;
  1321. if (__ip_options_echo(&replyopts.opt.opt, skb, sopt))
  1322. return;
  1323. ipc.addr = daddr;
  1324. ipc.opt = NULL;
  1325. ipc.tx_flags = 0;
  1326. ipc.ttl = 0;
  1327. ipc.tos = -1;
  1328. if (replyopts.opt.opt.optlen) {
  1329. ipc.opt = &replyopts.opt;
  1330. if (replyopts.opt.opt.srr)
  1331. daddr = replyopts.opt.opt.faddr;
  1332. }
  1333. oif = arg->bound_dev_if;
  1334. if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
  1335. oif = skb->skb_iif;
  1336. flowi4_init_output(&fl4, oif,
  1337. IP4_REPLY_MARK(net, skb->mark),
  1338. RT_TOS(arg->tos),
  1339. RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
  1340. ip_reply_arg_flowi_flags(arg),
  1341. daddr, saddr,
  1342. tcp_hdr(skb)->source, tcp_hdr(skb)->dest);
  1343. security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
  1344. rt = ip_route_output_key(net, &fl4);
  1345. if (IS_ERR(rt))
  1346. return;
  1347. inet_sk(sk)->tos = arg->tos;
  1348. sk->sk_priority = skb->priority;
  1349. sk->sk_protocol = ip_hdr(skb)->protocol;
  1350. sk->sk_bound_dev_if = arg->bound_dev_if;
  1351. sk->sk_sndbuf = sysctl_wmem_default;
  1352. err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
  1353. len, 0, &ipc, &rt, MSG_DONTWAIT);
  1354. if (unlikely(err)) {
  1355. ip_flush_pending_frames(sk);
  1356. goto out;
  1357. }
  1358. nskb = skb_peek(&sk->sk_write_queue);
  1359. if (nskb) {
  1360. if (arg->csumoffset >= 0)
  1361. *((__sum16 *)skb_transport_header(nskb) +
  1362. arg->csumoffset) = csum_fold(csum_add(nskb->csum,
  1363. arg->csum));
  1364. nskb->ip_summed = CHECKSUM_NONE;
  1365. ip_push_pending_frames(sk, &fl4);
  1366. }
  1367. out:
  1368. ip_rt_put(rt);
  1369. }
  1370. void __init ip_init(void)
  1371. {
  1372. ip_rt_init();
  1373. inet_initpeers();
  1374. #if defined(CONFIG_IP_MULTICAST)
  1375. igmp_mc_init();
  1376. #endif
  1377. }