tcp_input.c 170 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes:
  22. * Pedro Roque : Fast Retransmit/Recovery.
  23. * Two receive queues.
  24. * Retransmit queue handled by TCP.
  25. * Better retransmit timer handling.
  26. * New congestion avoidance.
  27. * Header prediction.
  28. * Variable renaming.
  29. *
  30. * Eric : Fast Retransmit.
  31. * Randy Scott : MSS option defines.
  32. * Eric Schenk : Fixes to slow start algorithm.
  33. * Eric Schenk : Yet another double ACK bug.
  34. * Eric Schenk : Delayed ACK bug fixes.
  35. * Eric Schenk : Floyd style fast retrans war avoidance.
  36. * David S. Miller : Don't allow zero congestion window.
  37. * Eric Schenk : Fix retransmitter so that it sends
  38. * next packet on ack of previous packet.
  39. * Andi Kleen : Moved open_request checking here
  40. * and process RSTs for open_requests.
  41. * Andi Kleen : Better prune_queue, and other fixes.
  42. * Andrey Savochkin: Fix RTT measurements in the presence of
  43. * timestamps.
  44. * Andrey Savochkin: Check sequence numbers correctly when
  45. * removing SACKs due to in sequence incoming
  46. * data segments.
  47. * Andi Kleen: Make sure we never ack data there is not
  48. * enough room for. Also make this condition
  49. * a fatal error if it might still happen.
  50. * Andi Kleen: Add tcp_measure_rcv_mss to make
  51. * connections with MSS<min(MTU,ann. MSS)
  52. * work without delayed acks.
  53. * Andi Kleen: Process packets with PSH set in the
  54. * fast path.
  55. * J Hadi Salim: ECN support
  56. * Andrei Gurtov,
  57. * Pasi Sarolahti,
  58. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  59. * engine. Lots of bugs are found.
  60. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  61. */
  62. #define pr_fmt(fmt) "TCP: " fmt
  63. #include <linux/mm.h>
  64. #include <linux/slab.h>
  65. #include <linux/module.h>
  66. #include <linux/sysctl.h>
  67. #include <linux/kernel.h>
  68. #include <linux/prefetch.h>
  69. #include <net/dst.h>
  70. #include <net/tcp.h>
  71. #include <net/inet_common.h>
  72. #include <linux/ipsec.h>
  73. #include <asm/unaligned.h>
  74. #include <linux/errqueue.h>
  75. int sysctl_tcp_timestamps __read_mostly = 1;
  76. int sysctl_tcp_window_scaling __read_mostly = 1;
  77. int sysctl_tcp_sack __read_mostly = 1;
  78. int sysctl_tcp_fack __read_mostly = 1;
  79. int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
  80. EXPORT_SYMBOL(sysctl_tcp_reordering);
  81. int sysctl_tcp_dsack __read_mostly = 1;
  82. int sysctl_tcp_app_win __read_mostly = 31;
  83. int sysctl_tcp_adv_win_scale __read_mostly = 1;
  84. EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  85. /* rfc5961 challenge ack rate limiting */
  86. int sysctl_tcp_challenge_ack_limit = 100;
  87. int sysctl_tcp_stdurg __read_mostly;
  88. int sysctl_tcp_rfc1337 __read_mostly;
  89. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  90. int sysctl_tcp_frto __read_mostly = 2;
  91. int sysctl_tcp_thin_dupack __read_mostly;
  92. int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  93. int sysctl_tcp_early_retrans __read_mostly = 3;
  94. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  95. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  96. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  97. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  98. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  99. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  100. #define FLAG_ECE 0x40 /* ECE in this ACK */
  101. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  102. #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
  103. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  104. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  105. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  106. #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
  107. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  108. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  109. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
  110. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  111. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  112. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  113. /* Adapt the MSS value used to make delayed ack decision to the
  114. * real world.
  115. */
  116. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  117. {
  118. struct inet_connection_sock *icsk = inet_csk(sk);
  119. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  120. unsigned int len;
  121. icsk->icsk_ack.last_seg_size = 0;
  122. /* skb->len may jitter because of SACKs, even if peer
  123. * sends good full-sized frames.
  124. */
  125. len = skb_shinfo(skb)->gso_size ? : skb->len;
  126. if (len >= icsk->icsk_ack.rcv_mss) {
  127. icsk->icsk_ack.rcv_mss = len;
  128. } else {
  129. /* Otherwise, we make more careful check taking into account,
  130. * that SACKs block is variable.
  131. *
  132. * "len" is invariant segment length, including TCP header.
  133. */
  134. len += skb->data - skb_transport_header(skb);
  135. if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
  136. /* If PSH is not set, packet should be
  137. * full sized, provided peer TCP is not badly broken.
  138. * This observation (if it is correct 8)) allows
  139. * to handle super-low mtu links fairly.
  140. */
  141. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  142. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  143. /* Subtract also invariant (if peer is RFC compliant),
  144. * tcp header plus fixed timestamp option length.
  145. * Resulting "len" is MSS free of SACK jitter.
  146. */
  147. len -= tcp_sk(sk)->tcp_header_len;
  148. icsk->icsk_ack.last_seg_size = len;
  149. if (len == lss) {
  150. icsk->icsk_ack.rcv_mss = len;
  151. return;
  152. }
  153. }
  154. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  155. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  156. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  157. }
  158. }
  159. static void tcp_incr_quickack(struct sock *sk)
  160. {
  161. struct inet_connection_sock *icsk = inet_csk(sk);
  162. unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  163. if (quickacks == 0)
  164. quickacks = 2;
  165. if (quickacks > icsk->icsk_ack.quick)
  166. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  167. }
  168. static void tcp_enter_quickack_mode(struct sock *sk)
  169. {
  170. struct inet_connection_sock *icsk = inet_csk(sk);
  171. tcp_incr_quickack(sk);
  172. icsk->icsk_ack.pingpong = 0;
  173. icsk->icsk_ack.ato = TCP_ATO_MIN;
  174. }
  175. /* Send ACKs quickly, if "quick" count is not exhausted
  176. * and the session is not interactive.
  177. */
  178. static inline bool tcp_in_quickack_mode(const struct sock *sk)
  179. {
  180. const struct inet_connection_sock *icsk = inet_csk(sk);
  181. return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
  182. }
  183. static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
  184. {
  185. if (tp->ecn_flags & TCP_ECN_OK)
  186. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  187. }
  188. static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
  189. {
  190. if (tcp_hdr(skb)->cwr)
  191. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  192. }
  193. static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
  194. {
  195. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  196. }
  197. static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  198. {
  199. switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
  200. case INET_ECN_NOT_ECT:
  201. /* Funny extension: if ECT is not set on a segment,
  202. * and we already seen ECT on a previous segment,
  203. * it is probably a retransmit.
  204. */
  205. if (tp->ecn_flags & TCP_ECN_SEEN)
  206. tcp_enter_quickack_mode((struct sock *)tp);
  207. break;
  208. case INET_ECN_CE:
  209. if (tcp_ca_needs_ecn((struct sock *)tp))
  210. tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
  211. if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
  212. /* Better not delay acks, sender can have a very low cwnd */
  213. tcp_enter_quickack_mode((struct sock *)tp);
  214. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  215. }
  216. tp->ecn_flags |= TCP_ECN_SEEN;
  217. break;
  218. default:
  219. if (tcp_ca_needs_ecn((struct sock *)tp))
  220. tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
  221. tp->ecn_flags |= TCP_ECN_SEEN;
  222. break;
  223. }
  224. }
  225. static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  226. {
  227. if (tp->ecn_flags & TCP_ECN_OK)
  228. __tcp_ecn_check_ce(tp, skb);
  229. }
  230. static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
  231. {
  232. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  233. tp->ecn_flags &= ~TCP_ECN_OK;
  234. }
  235. static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
  236. {
  237. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  238. tp->ecn_flags &= ~TCP_ECN_OK;
  239. }
  240. static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
  241. {
  242. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  243. return true;
  244. return false;
  245. }
  246. /* Buffer size and advertised window tuning.
  247. *
  248. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  249. */
  250. static void tcp_sndbuf_expand(struct sock *sk)
  251. {
  252. const struct tcp_sock *tp = tcp_sk(sk);
  253. int sndmem, per_mss;
  254. u32 nr_segs;
  255. /* Worst case is non GSO/TSO : each frame consumes one skb
  256. * and skb->head is kmalloced using power of two area of memory
  257. */
  258. per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
  259. MAX_TCP_HEADER +
  260. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  261. per_mss = roundup_pow_of_two(per_mss) +
  262. SKB_DATA_ALIGN(sizeof(struct sk_buff));
  263. nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
  264. nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
  265. /* Fast Recovery (RFC 5681 3.2) :
  266. * Cubic needs 1.7 factor, rounded to 2 to include
  267. * extra cushion (application might react slowly to POLLOUT)
  268. */
  269. sndmem = 2 * nr_segs * per_mss;
  270. if (sk->sk_sndbuf < sndmem)
  271. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  272. }
  273. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  274. *
  275. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  276. * forward and advertised in receiver window (tp->rcv_wnd) and
  277. * "application buffer", required to isolate scheduling/application
  278. * latencies from network.
  279. * window_clamp is maximal advertised window. It can be less than
  280. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  281. * is reserved for "application" buffer. The less window_clamp is
  282. * the smoother our behaviour from viewpoint of network, but the lower
  283. * throughput and the higher sensitivity of the connection to losses. 8)
  284. *
  285. * rcv_ssthresh is more strict window_clamp used at "slow start"
  286. * phase to predict further behaviour of this connection.
  287. * It is used for two goals:
  288. * - to enforce header prediction at sender, even when application
  289. * requires some significant "application buffer". It is check #1.
  290. * - to prevent pruning of receive queue because of misprediction
  291. * of receiver window. Check #2.
  292. *
  293. * The scheme does not work when sender sends good segments opening
  294. * window and then starts to feed us spaghetti. But it should work
  295. * in common situations. Otherwise, we have to rely on queue collapsing.
  296. */
  297. /* Slow part of check#2. */
  298. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  299. {
  300. struct tcp_sock *tp = tcp_sk(sk);
  301. /* Optimize this! */
  302. int truesize = tcp_win_from_space(skb->truesize) >> 1;
  303. int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
  304. while (tp->rcv_ssthresh <= window) {
  305. if (truesize <= skb->len)
  306. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  307. truesize >>= 1;
  308. window >>= 1;
  309. }
  310. return 0;
  311. }
  312. static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
  313. {
  314. struct tcp_sock *tp = tcp_sk(sk);
  315. /* Check #1 */
  316. if (tp->rcv_ssthresh < tp->window_clamp &&
  317. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  318. !sk_under_memory_pressure(sk)) {
  319. int incr;
  320. /* Check #2. Increase window, if skb with such overhead
  321. * will fit to rcvbuf in future.
  322. */
  323. if (tcp_win_from_space(skb->truesize) <= skb->len)
  324. incr = 2 * tp->advmss;
  325. else
  326. incr = __tcp_grow_window(sk, skb);
  327. if (incr) {
  328. incr = max_t(int, incr, 2 * skb->len);
  329. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
  330. tp->window_clamp);
  331. inet_csk(sk)->icsk_ack.quick |= 1;
  332. }
  333. }
  334. }
  335. /* 3. Tuning rcvbuf, when connection enters established state. */
  336. static void tcp_fixup_rcvbuf(struct sock *sk)
  337. {
  338. u32 mss = tcp_sk(sk)->advmss;
  339. int rcvmem;
  340. rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
  341. tcp_default_init_rwnd(mss);
  342. /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
  343. * Allow enough cushion so that sender is not limited by our window
  344. */
  345. if (sysctl_tcp_moderate_rcvbuf)
  346. rcvmem <<= 2;
  347. if (sk->sk_rcvbuf < rcvmem)
  348. sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
  349. }
  350. /* 4. Try to fixup all. It is made immediately after connection enters
  351. * established state.
  352. */
  353. void tcp_init_buffer_space(struct sock *sk)
  354. {
  355. struct tcp_sock *tp = tcp_sk(sk);
  356. int maxwin;
  357. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  358. tcp_fixup_rcvbuf(sk);
  359. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  360. tcp_sndbuf_expand(sk);
  361. tp->rcvq_space.space = tp->rcv_wnd;
  362. tp->rcvq_space.time = tcp_time_stamp;
  363. tp->rcvq_space.seq = tp->copied_seq;
  364. maxwin = tcp_full_space(sk);
  365. if (tp->window_clamp >= maxwin) {
  366. tp->window_clamp = maxwin;
  367. if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
  368. tp->window_clamp = max(maxwin -
  369. (maxwin >> sysctl_tcp_app_win),
  370. 4 * tp->advmss);
  371. }
  372. /* Force reservation of one segment. */
  373. if (sysctl_tcp_app_win &&
  374. tp->window_clamp > 2 * tp->advmss &&
  375. tp->window_clamp + tp->advmss > maxwin)
  376. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  377. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  378. tp->snd_cwnd_stamp = tcp_time_stamp;
  379. }
  380. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  381. static void tcp_clamp_window(struct sock *sk)
  382. {
  383. struct tcp_sock *tp = tcp_sk(sk);
  384. struct inet_connection_sock *icsk = inet_csk(sk);
  385. icsk->icsk_ack.quick = 0;
  386. if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
  387. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  388. !sk_under_memory_pressure(sk) &&
  389. sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
  390. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  391. sysctl_tcp_rmem[2]);
  392. }
  393. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  394. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  395. }
  396. /* Initialize RCV_MSS value.
  397. * RCV_MSS is an our guess about MSS used by the peer.
  398. * We haven't any direct information about the MSS.
  399. * It's better to underestimate the RCV_MSS rather than overestimate.
  400. * Overestimations make us ACKing less frequently than needed.
  401. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  402. */
  403. void tcp_initialize_rcv_mss(struct sock *sk)
  404. {
  405. const struct tcp_sock *tp = tcp_sk(sk);
  406. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  407. hint = min(hint, tp->rcv_wnd / 2);
  408. hint = min(hint, TCP_MSS_DEFAULT);
  409. hint = max(hint, TCP_MIN_MSS);
  410. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  411. }
  412. EXPORT_SYMBOL(tcp_initialize_rcv_mss);
  413. /* Receiver "autotuning" code.
  414. *
  415. * The algorithm for RTT estimation w/o timestamps is based on
  416. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  417. * <http://public.lanl.gov/radiant/pubs.html#DRS>
  418. *
  419. * More detail on this code can be found at
  420. * <http://staff.psc.edu/jheffner/>,
  421. * though this reference is out of date. A new paper
  422. * is pending.
  423. */
  424. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  425. {
  426. u32 new_sample = tp->rcv_rtt_est.rtt;
  427. long m = sample;
  428. if (m == 0)
  429. m = 1;
  430. if (new_sample != 0) {
  431. /* If we sample in larger samples in the non-timestamp
  432. * case, we could grossly overestimate the RTT especially
  433. * with chatty applications or bulk transfer apps which
  434. * are stalled on filesystem I/O.
  435. *
  436. * Also, since we are only going for a minimum in the
  437. * non-timestamp case, we do not smooth things out
  438. * else with timestamps disabled convergence takes too
  439. * long.
  440. */
  441. if (!win_dep) {
  442. m -= (new_sample >> 3);
  443. new_sample += m;
  444. } else {
  445. m <<= 3;
  446. if (m < new_sample)
  447. new_sample = m;
  448. }
  449. } else {
  450. /* No previous measure. */
  451. new_sample = m << 3;
  452. }
  453. if (tp->rcv_rtt_est.rtt != new_sample)
  454. tp->rcv_rtt_est.rtt = new_sample;
  455. }
  456. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  457. {
  458. if (tp->rcv_rtt_est.time == 0)
  459. goto new_measure;
  460. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  461. return;
  462. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
  463. new_measure:
  464. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  465. tp->rcv_rtt_est.time = tcp_time_stamp;
  466. }
  467. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  468. const struct sk_buff *skb)
  469. {
  470. struct tcp_sock *tp = tcp_sk(sk);
  471. if (tp->rx_opt.rcv_tsecr &&
  472. (TCP_SKB_CB(skb)->end_seq -
  473. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
  474. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
  475. }
  476. /*
  477. * This function should be called every time data is copied to user space.
  478. * It calculates the appropriate TCP receive buffer space.
  479. */
  480. void tcp_rcv_space_adjust(struct sock *sk)
  481. {
  482. struct tcp_sock *tp = tcp_sk(sk);
  483. int time;
  484. int copied;
  485. time = tcp_time_stamp - tp->rcvq_space.time;
  486. if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
  487. return;
  488. /* Number of bytes copied to user in last RTT */
  489. copied = tp->copied_seq - tp->rcvq_space.seq;
  490. if (copied <= tp->rcvq_space.space)
  491. goto new_measure;
  492. /* A bit of theory :
  493. * copied = bytes received in previous RTT, our base window
  494. * To cope with packet losses, we need a 2x factor
  495. * To cope with slow start, and sender growing its cwin by 100 %
  496. * every RTT, we need a 4x factor, because the ACK we are sending
  497. * now is for the next RTT, not the current one :
  498. * <prev RTT . ><current RTT .. ><next RTT .... >
  499. */
  500. if (sysctl_tcp_moderate_rcvbuf &&
  501. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  502. int rcvwin, rcvmem, rcvbuf;
  503. /* minimal window to cope with packet losses, assuming
  504. * steady state. Add some cushion because of small variations.
  505. */
  506. rcvwin = (copied << 1) + 16 * tp->advmss;
  507. /* If rate increased by 25%,
  508. * assume slow start, rcvwin = 3 * copied
  509. * If rate increased by 50%,
  510. * assume sender can use 2x growth, rcvwin = 4 * copied
  511. */
  512. if (copied >=
  513. tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
  514. if (copied >=
  515. tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
  516. rcvwin <<= 1;
  517. else
  518. rcvwin += (rcvwin >> 1);
  519. }
  520. rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
  521. while (tcp_win_from_space(rcvmem) < tp->advmss)
  522. rcvmem += 128;
  523. rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
  524. if (rcvbuf > sk->sk_rcvbuf) {
  525. sk->sk_rcvbuf = rcvbuf;
  526. /* Make the window clamp follow along. */
  527. tp->window_clamp = rcvwin;
  528. }
  529. }
  530. tp->rcvq_space.space = copied;
  531. new_measure:
  532. tp->rcvq_space.seq = tp->copied_seq;
  533. tp->rcvq_space.time = tcp_time_stamp;
  534. }
  535. /* There is something which you must keep in mind when you analyze the
  536. * behavior of the tp->ato delayed ack timeout interval. When a
  537. * connection starts up, we want to ack as quickly as possible. The
  538. * problem is that "good" TCP's do slow start at the beginning of data
  539. * transmission. The means that until we send the first few ACK's the
  540. * sender will sit on his end and only queue most of his data, because
  541. * he can only send snd_cwnd unacked packets at any given time. For
  542. * each ACK we send, he increments snd_cwnd and transmits more of his
  543. * queue. -DaveM
  544. */
  545. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  546. {
  547. struct tcp_sock *tp = tcp_sk(sk);
  548. struct inet_connection_sock *icsk = inet_csk(sk);
  549. u32 now;
  550. inet_csk_schedule_ack(sk);
  551. tcp_measure_rcv_mss(sk, skb);
  552. tcp_rcv_rtt_measure(tp);
  553. now = tcp_time_stamp;
  554. if (!icsk->icsk_ack.ato) {
  555. /* The _first_ data packet received, initialize
  556. * delayed ACK engine.
  557. */
  558. tcp_incr_quickack(sk);
  559. icsk->icsk_ack.ato = TCP_ATO_MIN;
  560. } else {
  561. int m = now - icsk->icsk_ack.lrcvtime;
  562. if (m <= TCP_ATO_MIN / 2) {
  563. /* The fastest case is the first. */
  564. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  565. } else if (m < icsk->icsk_ack.ato) {
  566. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  567. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  568. icsk->icsk_ack.ato = icsk->icsk_rto;
  569. } else if (m > icsk->icsk_rto) {
  570. /* Too long gap. Apparently sender failed to
  571. * restart window, so that we send ACKs quickly.
  572. */
  573. tcp_incr_quickack(sk);
  574. sk_mem_reclaim(sk);
  575. }
  576. }
  577. icsk->icsk_ack.lrcvtime = now;
  578. tcp_ecn_check_ce(tp, skb);
  579. if (skb->len >= 128)
  580. tcp_grow_window(sk, skb);
  581. }
  582. /* Called to compute a smoothed rtt estimate. The data fed to this
  583. * routine either comes from timestamps, or from segments that were
  584. * known _not_ to have been retransmitted [see Karn/Partridge
  585. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  586. * piece by Van Jacobson.
  587. * NOTE: the next three routines used to be one big routine.
  588. * To save cycles in the RFC 1323 implementation it was better to break
  589. * it up into three procedures. -- erics
  590. */
  591. static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
  592. {
  593. struct tcp_sock *tp = tcp_sk(sk);
  594. long m = mrtt_us; /* RTT */
  595. u32 srtt = tp->srtt_us;
  596. /* The following amusing code comes from Jacobson's
  597. * article in SIGCOMM '88. Note that rtt and mdev
  598. * are scaled versions of rtt and mean deviation.
  599. * This is designed to be as fast as possible
  600. * m stands for "measurement".
  601. *
  602. * On a 1990 paper the rto value is changed to:
  603. * RTO = rtt + 4 * mdev
  604. *
  605. * Funny. This algorithm seems to be very broken.
  606. * These formulae increase RTO, when it should be decreased, increase
  607. * too slowly, when it should be increased quickly, decrease too quickly
  608. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  609. * does not matter how to _calculate_ it. Seems, it was trap
  610. * that VJ failed to avoid. 8)
  611. */
  612. if (srtt != 0) {
  613. m -= (srtt >> 3); /* m is now error in rtt est */
  614. srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  615. if (m < 0) {
  616. m = -m; /* m is now abs(error) */
  617. m -= (tp->mdev_us >> 2); /* similar update on mdev */
  618. /* This is similar to one of Eifel findings.
  619. * Eifel blocks mdev updates when rtt decreases.
  620. * This solution is a bit different: we use finer gain
  621. * for mdev in this case (alpha*beta).
  622. * Like Eifel it also prevents growth of rto,
  623. * but also it limits too fast rto decreases,
  624. * happening in pure Eifel.
  625. */
  626. if (m > 0)
  627. m >>= 3;
  628. } else {
  629. m -= (tp->mdev_us >> 2); /* similar update on mdev */
  630. }
  631. tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
  632. if (tp->mdev_us > tp->mdev_max_us) {
  633. tp->mdev_max_us = tp->mdev_us;
  634. if (tp->mdev_max_us > tp->rttvar_us)
  635. tp->rttvar_us = tp->mdev_max_us;
  636. }
  637. if (after(tp->snd_una, tp->rtt_seq)) {
  638. if (tp->mdev_max_us < tp->rttvar_us)
  639. tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
  640. tp->rtt_seq = tp->snd_nxt;
  641. tp->mdev_max_us = tcp_rto_min_us(sk);
  642. }
  643. } else {
  644. /* no previous measure. */
  645. srtt = m << 3; /* take the measured time to be rtt */
  646. tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
  647. tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
  648. tp->mdev_max_us = tp->rttvar_us;
  649. tp->rtt_seq = tp->snd_nxt;
  650. }
  651. tp->srtt_us = max(1U, srtt);
  652. }
  653. /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
  654. * Note: TCP stack does not yet implement pacing.
  655. * FQ packet scheduler can be used to implement cheap but effective
  656. * TCP pacing, to smooth the burst on large writes when packets
  657. * in flight is significantly lower than cwnd (or rwin)
  658. */
  659. static void tcp_update_pacing_rate(struct sock *sk)
  660. {
  661. const struct tcp_sock *tp = tcp_sk(sk);
  662. u64 rate;
  663. /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
  664. rate = (u64)tp->mss_cache * 2 * (USEC_PER_SEC << 3);
  665. rate *= max(tp->snd_cwnd, tp->packets_out);
  666. if (likely(tp->srtt_us))
  667. do_div(rate, tp->srtt_us);
  668. /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
  669. * without any lock. We want to make sure compiler wont store
  670. * intermediate values in this location.
  671. */
  672. ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
  673. sk->sk_max_pacing_rate);
  674. }
  675. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  676. * routine referred to above.
  677. */
  678. static void tcp_set_rto(struct sock *sk)
  679. {
  680. const struct tcp_sock *tp = tcp_sk(sk);
  681. /* Old crap is replaced with new one. 8)
  682. *
  683. * More seriously:
  684. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  685. * It cannot be less due to utterly erratic ACK generation made
  686. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  687. * to do with delayed acks, because at cwnd>2 true delack timeout
  688. * is invisible. Actually, Linux-2.4 also generates erratic
  689. * ACKs in some circumstances.
  690. */
  691. inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
  692. /* 2. Fixups made earlier cannot be right.
  693. * If we do not estimate RTO correctly without them,
  694. * all the algo is pure shit and should be replaced
  695. * with correct one. It is exactly, which we pretend to do.
  696. */
  697. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  698. * guarantees that rto is higher.
  699. */
  700. tcp_bound_rto(sk);
  701. }
  702. __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
  703. {
  704. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  705. if (!cwnd)
  706. cwnd = TCP_INIT_CWND;
  707. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  708. }
  709. /*
  710. * Packet counting of FACK is based on in-order assumptions, therefore TCP
  711. * disables it when reordering is detected
  712. */
  713. void tcp_disable_fack(struct tcp_sock *tp)
  714. {
  715. /* RFC3517 uses different metric in lost marker => reset on change */
  716. if (tcp_is_fack(tp))
  717. tp->lost_skb_hint = NULL;
  718. tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
  719. }
  720. /* Take a notice that peer is sending D-SACKs */
  721. static void tcp_dsack_seen(struct tcp_sock *tp)
  722. {
  723. tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
  724. }
  725. static void tcp_update_reordering(struct sock *sk, const int metric,
  726. const int ts)
  727. {
  728. struct tcp_sock *tp = tcp_sk(sk);
  729. if (metric > tp->reordering) {
  730. int mib_idx;
  731. tp->reordering = min(TCP_MAX_REORDERING, metric);
  732. /* This exciting event is worth to be remembered. 8) */
  733. if (ts)
  734. mib_idx = LINUX_MIB_TCPTSREORDER;
  735. else if (tcp_is_reno(tp))
  736. mib_idx = LINUX_MIB_TCPRENOREORDER;
  737. else if (tcp_is_fack(tp))
  738. mib_idx = LINUX_MIB_TCPFACKREORDER;
  739. else
  740. mib_idx = LINUX_MIB_TCPSACKREORDER;
  741. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  742. #if FASTRETRANS_DEBUG > 1
  743. pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
  744. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  745. tp->reordering,
  746. tp->fackets_out,
  747. tp->sacked_out,
  748. tp->undo_marker ? tp->undo_retrans : 0);
  749. #endif
  750. tcp_disable_fack(tp);
  751. }
  752. if (metric > 0)
  753. tcp_disable_early_retrans(tp);
  754. }
  755. /* This must be called before lost_out is incremented */
  756. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  757. {
  758. if ((tp->retransmit_skb_hint == NULL) ||
  759. before(TCP_SKB_CB(skb)->seq,
  760. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  761. tp->retransmit_skb_hint = skb;
  762. if (!tp->lost_out ||
  763. after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
  764. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  765. }
  766. static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
  767. {
  768. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  769. tcp_verify_retransmit_hint(tp, skb);
  770. tp->lost_out += tcp_skb_pcount(skb);
  771. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  772. }
  773. }
  774. static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
  775. struct sk_buff *skb)
  776. {
  777. tcp_verify_retransmit_hint(tp, skb);
  778. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  779. tp->lost_out += tcp_skb_pcount(skb);
  780. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  781. }
  782. }
  783. /* This procedure tags the retransmission queue when SACKs arrive.
  784. *
  785. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  786. * Packets in queue with these bits set are counted in variables
  787. * sacked_out, retrans_out and lost_out, correspondingly.
  788. *
  789. * Valid combinations are:
  790. * Tag InFlight Description
  791. * 0 1 - orig segment is in flight.
  792. * S 0 - nothing flies, orig reached receiver.
  793. * L 0 - nothing flies, orig lost by net.
  794. * R 2 - both orig and retransmit are in flight.
  795. * L|R 1 - orig is lost, retransmit is in flight.
  796. * S|R 1 - orig reached receiver, retrans is still in flight.
  797. * (L|S|R is logically valid, it could occur when L|R is sacked,
  798. * but it is equivalent to plain S and code short-curcuits it to S.
  799. * L|S is logically invalid, it would mean -1 packet in flight 8))
  800. *
  801. * These 6 states form finite state machine, controlled by the following events:
  802. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  803. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  804. * 3. Loss detection event of two flavors:
  805. * A. Scoreboard estimator decided the packet is lost.
  806. * A'. Reno "three dupacks" marks head of queue lost.
  807. * A''. Its FACK modification, head until snd.fack is lost.
  808. * B. SACK arrives sacking SND.NXT at the moment, when the
  809. * segment was retransmitted.
  810. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  811. *
  812. * It is pleasant to note, that state diagram turns out to be commutative,
  813. * so that we are allowed not to be bothered by order of our actions,
  814. * when multiple events arrive simultaneously. (see the function below).
  815. *
  816. * Reordering detection.
  817. * --------------------
  818. * Reordering metric is maximal distance, which a packet can be displaced
  819. * in packet stream. With SACKs we can estimate it:
  820. *
  821. * 1. SACK fills old hole and the corresponding segment was not
  822. * ever retransmitted -> reordering. Alas, we cannot use it
  823. * when segment was retransmitted.
  824. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  825. * for retransmitted and already SACKed segment -> reordering..
  826. * Both of these heuristics are not used in Loss state, when we cannot
  827. * account for retransmits accurately.
  828. *
  829. * SACK block validation.
  830. * ----------------------
  831. *
  832. * SACK block range validation checks that the received SACK block fits to
  833. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  834. * Note that SND.UNA is not included to the range though being valid because
  835. * it means that the receiver is rather inconsistent with itself reporting
  836. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  837. * perfectly valid, however, in light of RFC2018 which explicitly states
  838. * that "SACK block MUST reflect the newest segment. Even if the newest
  839. * segment is going to be discarded ...", not that it looks very clever
  840. * in case of head skb. Due to potentional receiver driven attacks, we
  841. * choose to avoid immediate execution of a walk in write queue due to
  842. * reneging and defer head skb's loss recovery to standard loss recovery
  843. * procedure that will eventually trigger (nothing forbids us doing this).
  844. *
  845. * Implements also blockage to start_seq wrap-around. Problem lies in the
  846. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  847. * there's no guarantee that it will be before snd_nxt (n). The problem
  848. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  849. * wrap (s_w):
  850. *
  851. * <- outs wnd -> <- wrapzone ->
  852. * u e n u_w e_w s n_w
  853. * | | | | | | |
  854. * |<------------+------+----- TCP seqno space --------------+---------->|
  855. * ...-- <2^31 ->| |<--------...
  856. * ...---- >2^31 ------>| |<--------...
  857. *
  858. * Current code wouldn't be vulnerable but it's better still to discard such
  859. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  860. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  861. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  862. * equal to the ideal case (infinite seqno space without wrap caused issues).
  863. *
  864. * With D-SACK the lower bound is extended to cover sequence space below
  865. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  866. * again, D-SACK block must not to go across snd_una (for the same reason as
  867. * for the normal SACK blocks, explained above). But there all simplicity
  868. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  869. * fully below undo_marker they do not affect behavior in anyway and can
  870. * therefore be safely ignored. In rare cases (which are more or less
  871. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  872. * fragmentation and packet reordering past skb's retransmission. To consider
  873. * them correctly, the acceptable range must be extended even more though
  874. * the exact amount is rather hard to quantify. However, tp->max_window can
  875. * be used as an exaggerated estimate.
  876. */
  877. static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
  878. u32 start_seq, u32 end_seq)
  879. {
  880. /* Too far in future, or reversed (interpretation is ambiguous) */
  881. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  882. return false;
  883. /* Nasty start_seq wrap-around check (see comments above) */
  884. if (!before(start_seq, tp->snd_nxt))
  885. return false;
  886. /* In outstanding window? ...This is valid exit for D-SACKs too.
  887. * start_seq == snd_una is non-sensical (see comments above)
  888. */
  889. if (after(start_seq, tp->snd_una))
  890. return true;
  891. if (!is_dsack || !tp->undo_marker)
  892. return false;
  893. /* ...Then it's D-SACK, and must reside below snd_una completely */
  894. if (after(end_seq, tp->snd_una))
  895. return false;
  896. if (!before(start_seq, tp->undo_marker))
  897. return true;
  898. /* Too old */
  899. if (!after(end_seq, tp->undo_marker))
  900. return false;
  901. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  902. * start_seq < undo_marker and end_seq >= undo_marker.
  903. */
  904. return !before(start_seq, end_seq - tp->max_window);
  905. }
  906. /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
  907. * Event "B". Later note: FACK people cheated me again 8), we have to account
  908. * for reordering! Ugly, but should help.
  909. *
  910. * Search retransmitted skbs from write_queue that were sent when snd_nxt was
  911. * less than what is now known to be received by the other end (derived from
  912. * highest SACK block). Also calculate the lowest snd_nxt among the remaining
  913. * retransmitted skbs to avoid some costly processing per ACKs.
  914. */
  915. static void tcp_mark_lost_retrans(struct sock *sk)
  916. {
  917. const struct inet_connection_sock *icsk = inet_csk(sk);
  918. struct tcp_sock *tp = tcp_sk(sk);
  919. struct sk_buff *skb;
  920. int cnt = 0;
  921. u32 new_low_seq = tp->snd_nxt;
  922. u32 received_upto = tcp_highest_sack_seq(tp);
  923. if (!tcp_is_fack(tp) || !tp->retrans_out ||
  924. !after(received_upto, tp->lost_retrans_low) ||
  925. icsk->icsk_ca_state != TCP_CA_Recovery)
  926. return;
  927. tcp_for_write_queue(skb, sk) {
  928. u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
  929. if (skb == tcp_send_head(sk))
  930. break;
  931. if (cnt == tp->retrans_out)
  932. break;
  933. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  934. continue;
  935. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
  936. continue;
  937. /* TODO: We would like to get rid of tcp_is_fack(tp) only
  938. * constraint here (see above) but figuring out that at
  939. * least tp->reordering SACK blocks reside between ack_seq
  940. * and received_upto is not easy task to do cheaply with
  941. * the available datastructures.
  942. *
  943. * Whether FACK should check here for tp->reordering segs
  944. * in-between one could argue for either way (it would be
  945. * rather simple to implement as we could count fack_count
  946. * during the walk and do tp->fackets_out - fack_count).
  947. */
  948. if (after(received_upto, ack_seq)) {
  949. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  950. tp->retrans_out -= tcp_skb_pcount(skb);
  951. tcp_skb_mark_lost_uncond_verify(tp, skb);
  952. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
  953. } else {
  954. if (before(ack_seq, new_low_seq))
  955. new_low_seq = ack_seq;
  956. cnt += tcp_skb_pcount(skb);
  957. }
  958. }
  959. if (tp->retrans_out)
  960. tp->lost_retrans_low = new_low_seq;
  961. }
  962. static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
  963. struct tcp_sack_block_wire *sp, int num_sacks,
  964. u32 prior_snd_una)
  965. {
  966. struct tcp_sock *tp = tcp_sk(sk);
  967. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  968. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  969. bool dup_sack = false;
  970. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  971. dup_sack = true;
  972. tcp_dsack_seen(tp);
  973. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
  974. } else if (num_sacks > 1) {
  975. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  976. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  977. if (!after(end_seq_0, end_seq_1) &&
  978. !before(start_seq_0, start_seq_1)) {
  979. dup_sack = true;
  980. tcp_dsack_seen(tp);
  981. NET_INC_STATS_BH(sock_net(sk),
  982. LINUX_MIB_TCPDSACKOFORECV);
  983. }
  984. }
  985. /* D-SACK for already forgotten data... Do dumb counting. */
  986. if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
  987. !after(end_seq_0, prior_snd_una) &&
  988. after(end_seq_0, tp->undo_marker))
  989. tp->undo_retrans--;
  990. return dup_sack;
  991. }
  992. struct tcp_sacktag_state {
  993. int reord;
  994. int fack_count;
  995. long rtt_us; /* RTT measured by SACKing never-retransmitted data */
  996. int flag;
  997. };
  998. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  999. * the incoming SACK may not exactly match but we can find smaller MSS
  1000. * aligned portion of it that matches. Therefore we might need to fragment
  1001. * which may fail and creates some hassle (caller must handle error case
  1002. * returns).
  1003. *
  1004. * FIXME: this could be merged to shift decision code
  1005. */
  1006. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  1007. u32 start_seq, u32 end_seq)
  1008. {
  1009. int err;
  1010. bool in_sack;
  1011. unsigned int pkt_len;
  1012. unsigned int mss;
  1013. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1014. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1015. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  1016. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  1017. mss = tcp_skb_mss(skb);
  1018. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1019. if (!in_sack) {
  1020. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  1021. if (pkt_len < mss)
  1022. pkt_len = mss;
  1023. } else {
  1024. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  1025. if (pkt_len < mss)
  1026. return -EINVAL;
  1027. }
  1028. /* Round if necessary so that SACKs cover only full MSSes
  1029. * and/or the remaining small portion (if present)
  1030. */
  1031. if (pkt_len > mss) {
  1032. unsigned int new_len = (pkt_len / mss) * mss;
  1033. if (!in_sack && new_len < pkt_len) {
  1034. new_len += mss;
  1035. if (new_len >= skb->len)
  1036. return 0;
  1037. }
  1038. pkt_len = new_len;
  1039. }
  1040. err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
  1041. if (err < 0)
  1042. return err;
  1043. }
  1044. return in_sack;
  1045. }
  1046. /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
  1047. static u8 tcp_sacktag_one(struct sock *sk,
  1048. struct tcp_sacktag_state *state, u8 sacked,
  1049. u32 start_seq, u32 end_seq,
  1050. int dup_sack, int pcount,
  1051. const struct skb_mstamp *xmit_time)
  1052. {
  1053. struct tcp_sock *tp = tcp_sk(sk);
  1054. int fack_count = state->fack_count;
  1055. /* Account D-SACK for retransmitted packet. */
  1056. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  1057. if (tp->undo_marker && tp->undo_retrans > 0 &&
  1058. after(end_seq, tp->undo_marker))
  1059. tp->undo_retrans--;
  1060. if (sacked & TCPCB_SACKED_ACKED)
  1061. state->reord = min(fack_count, state->reord);
  1062. }
  1063. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  1064. if (!after(end_seq, tp->snd_una))
  1065. return sacked;
  1066. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1067. if (sacked & TCPCB_SACKED_RETRANS) {
  1068. /* If the segment is not tagged as lost,
  1069. * we do not clear RETRANS, believing
  1070. * that retransmission is still in flight.
  1071. */
  1072. if (sacked & TCPCB_LOST) {
  1073. sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1074. tp->lost_out -= pcount;
  1075. tp->retrans_out -= pcount;
  1076. }
  1077. } else {
  1078. if (!(sacked & TCPCB_RETRANS)) {
  1079. /* New sack for not retransmitted frame,
  1080. * which was in hole. It is reordering.
  1081. */
  1082. if (before(start_seq,
  1083. tcp_highest_sack_seq(tp)))
  1084. state->reord = min(fack_count,
  1085. state->reord);
  1086. if (!after(end_seq, tp->high_seq))
  1087. state->flag |= FLAG_ORIG_SACK_ACKED;
  1088. /* Pick the earliest sequence sacked for RTT */
  1089. if (state->rtt_us < 0) {
  1090. struct skb_mstamp now;
  1091. skb_mstamp_get(&now);
  1092. state->rtt_us = skb_mstamp_us_delta(&now,
  1093. xmit_time);
  1094. }
  1095. }
  1096. if (sacked & TCPCB_LOST) {
  1097. sacked &= ~TCPCB_LOST;
  1098. tp->lost_out -= pcount;
  1099. }
  1100. }
  1101. sacked |= TCPCB_SACKED_ACKED;
  1102. state->flag |= FLAG_DATA_SACKED;
  1103. tp->sacked_out += pcount;
  1104. fack_count += pcount;
  1105. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1106. if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
  1107. before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1108. tp->lost_cnt_hint += pcount;
  1109. if (fack_count > tp->fackets_out)
  1110. tp->fackets_out = fack_count;
  1111. }
  1112. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1113. * frames and clear it. undo_retrans is decreased above, L|R frames
  1114. * are accounted above as well.
  1115. */
  1116. if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
  1117. sacked &= ~TCPCB_SACKED_RETRANS;
  1118. tp->retrans_out -= pcount;
  1119. }
  1120. return sacked;
  1121. }
  1122. /* Shift newly-SACKed bytes from this skb to the immediately previous
  1123. * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
  1124. */
  1125. static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
  1126. struct tcp_sacktag_state *state,
  1127. unsigned int pcount, int shifted, int mss,
  1128. bool dup_sack)
  1129. {
  1130. struct tcp_sock *tp = tcp_sk(sk);
  1131. struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
  1132. u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
  1133. u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
  1134. BUG_ON(!pcount);
  1135. /* Adjust counters and hints for the newly sacked sequence
  1136. * range but discard the return value since prev is already
  1137. * marked. We must tag the range first because the seq
  1138. * advancement below implicitly advances
  1139. * tcp_highest_sack_seq() when skb is highest_sack.
  1140. */
  1141. tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
  1142. start_seq, end_seq, dup_sack, pcount,
  1143. &skb->skb_mstamp);
  1144. if (skb == tp->lost_skb_hint)
  1145. tp->lost_cnt_hint += pcount;
  1146. TCP_SKB_CB(prev)->end_seq += shifted;
  1147. TCP_SKB_CB(skb)->seq += shifted;
  1148. tcp_skb_pcount_add(prev, pcount);
  1149. BUG_ON(tcp_skb_pcount(skb) < pcount);
  1150. tcp_skb_pcount_add(skb, -pcount);
  1151. /* When we're adding to gso_segs == 1, gso_size will be zero,
  1152. * in theory this shouldn't be necessary but as long as DSACK
  1153. * code can come after this skb later on it's better to keep
  1154. * setting gso_size to something.
  1155. */
  1156. if (!skb_shinfo(prev)->gso_size) {
  1157. skb_shinfo(prev)->gso_size = mss;
  1158. skb_shinfo(prev)->gso_type = sk->sk_gso_type;
  1159. }
  1160. /* CHECKME: To clear or not to clear? Mimics normal skb currently */
  1161. if (tcp_skb_pcount(skb) <= 1) {
  1162. skb_shinfo(skb)->gso_size = 0;
  1163. skb_shinfo(skb)->gso_type = 0;
  1164. }
  1165. /* Difference in this won't matter, both ACKed by the same cumul. ACK */
  1166. TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
  1167. if (skb->len > 0) {
  1168. BUG_ON(!tcp_skb_pcount(skb));
  1169. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
  1170. return false;
  1171. }
  1172. /* Whole SKB was eaten :-) */
  1173. if (skb == tp->retransmit_skb_hint)
  1174. tp->retransmit_skb_hint = prev;
  1175. if (skb == tp->lost_skb_hint) {
  1176. tp->lost_skb_hint = prev;
  1177. tp->lost_cnt_hint -= tcp_skb_pcount(prev);
  1178. }
  1179. TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
  1180. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  1181. TCP_SKB_CB(prev)->end_seq++;
  1182. if (skb == tcp_highest_sack(sk))
  1183. tcp_advance_highest_sack(sk, skb);
  1184. tcp_unlink_write_queue(skb, sk);
  1185. sk_wmem_free_skb(sk, skb);
  1186. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
  1187. return true;
  1188. }
  1189. /* I wish gso_size would have a bit more sane initialization than
  1190. * something-or-zero which complicates things
  1191. */
  1192. static int tcp_skb_seglen(const struct sk_buff *skb)
  1193. {
  1194. return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
  1195. }
  1196. /* Shifting pages past head area doesn't work */
  1197. static int skb_can_shift(const struct sk_buff *skb)
  1198. {
  1199. return !skb_headlen(skb) && skb_is_nonlinear(skb);
  1200. }
  1201. /* Try collapsing SACK blocks spanning across multiple skbs to a single
  1202. * skb.
  1203. */
  1204. static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
  1205. struct tcp_sacktag_state *state,
  1206. u32 start_seq, u32 end_seq,
  1207. bool dup_sack)
  1208. {
  1209. struct tcp_sock *tp = tcp_sk(sk);
  1210. struct sk_buff *prev;
  1211. int mss;
  1212. int pcount = 0;
  1213. int len;
  1214. int in_sack;
  1215. if (!sk_can_gso(sk))
  1216. goto fallback;
  1217. /* Normally R but no L won't result in plain S */
  1218. if (!dup_sack &&
  1219. (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
  1220. goto fallback;
  1221. if (!skb_can_shift(skb))
  1222. goto fallback;
  1223. /* This frame is about to be dropped (was ACKed). */
  1224. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1225. goto fallback;
  1226. /* Can only happen with delayed DSACK + discard craziness */
  1227. if (unlikely(skb == tcp_write_queue_head(sk)))
  1228. goto fallback;
  1229. prev = tcp_write_queue_prev(sk, skb);
  1230. if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
  1231. goto fallback;
  1232. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1233. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1234. if (in_sack) {
  1235. len = skb->len;
  1236. pcount = tcp_skb_pcount(skb);
  1237. mss = tcp_skb_seglen(skb);
  1238. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1239. * drop this restriction as unnecessary
  1240. */
  1241. if (mss != tcp_skb_seglen(prev))
  1242. goto fallback;
  1243. } else {
  1244. if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
  1245. goto noop;
  1246. /* CHECKME: This is non-MSS split case only?, this will
  1247. * cause skipped skbs due to advancing loop btw, original
  1248. * has that feature too
  1249. */
  1250. if (tcp_skb_pcount(skb) <= 1)
  1251. goto noop;
  1252. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1253. if (!in_sack) {
  1254. /* TODO: head merge to next could be attempted here
  1255. * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
  1256. * though it might not be worth of the additional hassle
  1257. *
  1258. * ...we can probably just fallback to what was done
  1259. * previously. We could try merging non-SACKed ones
  1260. * as well but it probably isn't going to buy off
  1261. * because later SACKs might again split them, and
  1262. * it would make skb timestamp tracking considerably
  1263. * harder problem.
  1264. */
  1265. goto fallback;
  1266. }
  1267. len = end_seq - TCP_SKB_CB(skb)->seq;
  1268. BUG_ON(len < 0);
  1269. BUG_ON(len > skb->len);
  1270. /* MSS boundaries should be honoured or else pcount will
  1271. * severely break even though it makes things bit trickier.
  1272. * Optimize common case to avoid most of the divides
  1273. */
  1274. mss = tcp_skb_mss(skb);
  1275. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1276. * drop this restriction as unnecessary
  1277. */
  1278. if (mss != tcp_skb_seglen(prev))
  1279. goto fallback;
  1280. if (len == mss) {
  1281. pcount = 1;
  1282. } else if (len < mss) {
  1283. goto noop;
  1284. } else {
  1285. pcount = len / mss;
  1286. len = pcount * mss;
  1287. }
  1288. }
  1289. /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
  1290. if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
  1291. goto fallback;
  1292. if (!skb_shift(prev, skb, len))
  1293. goto fallback;
  1294. if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
  1295. goto out;
  1296. /* Hole filled allows collapsing with the next as well, this is very
  1297. * useful when hole on every nth skb pattern happens
  1298. */
  1299. if (prev == tcp_write_queue_tail(sk))
  1300. goto out;
  1301. skb = tcp_write_queue_next(sk, prev);
  1302. if (!skb_can_shift(skb) ||
  1303. (skb == tcp_send_head(sk)) ||
  1304. ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
  1305. (mss != tcp_skb_seglen(skb)))
  1306. goto out;
  1307. len = skb->len;
  1308. if (skb_shift(prev, skb, len)) {
  1309. pcount += tcp_skb_pcount(skb);
  1310. tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
  1311. }
  1312. out:
  1313. state->fack_count += pcount;
  1314. return prev;
  1315. noop:
  1316. return skb;
  1317. fallback:
  1318. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
  1319. return NULL;
  1320. }
  1321. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1322. struct tcp_sack_block *next_dup,
  1323. struct tcp_sacktag_state *state,
  1324. u32 start_seq, u32 end_seq,
  1325. bool dup_sack_in)
  1326. {
  1327. struct tcp_sock *tp = tcp_sk(sk);
  1328. struct sk_buff *tmp;
  1329. tcp_for_write_queue_from(skb, sk) {
  1330. int in_sack = 0;
  1331. bool dup_sack = dup_sack_in;
  1332. if (skb == tcp_send_head(sk))
  1333. break;
  1334. /* queue is in-order => we can short-circuit the walk early */
  1335. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1336. break;
  1337. if ((next_dup != NULL) &&
  1338. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1339. in_sack = tcp_match_skb_to_sack(sk, skb,
  1340. next_dup->start_seq,
  1341. next_dup->end_seq);
  1342. if (in_sack > 0)
  1343. dup_sack = true;
  1344. }
  1345. /* skb reference here is a bit tricky to get right, since
  1346. * shifting can eat and free both this skb and the next,
  1347. * so not even _safe variant of the loop is enough.
  1348. */
  1349. if (in_sack <= 0) {
  1350. tmp = tcp_shift_skb_data(sk, skb, state,
  1351. start_seq, end_seq, dup_sack);
  1352. if (tmp != NULL) {
  1353. if (tmp != skb) {
  1354. skb = tmp;
  1355. continue;
  1356. }
  1357. in_sack = 0;
  1358. } else {
  1359. in_sack = tcp_match_skb_to_sack(sk, skb,
  1360. start_seq,
  1361. end_seq);
  1362. }
  1363. }
  1364. if (unlikely(in_sack < 0))
  1365. break;
  1366. if (in_sack) {
  1367. TCP_SKB_CB(skb)->sacked =
  1368. tcp_sacktag_one(sk,
  1369. state,
  1370. TCP_SKB_CB(skb)->sacked,
  1371. TCP_SKB_CB(skb)->seq,
  1372. TCP_SKB_CB(skb)->end_seq,
  1373. dup_sack,
  1374. tcp_skb_pcount(skb),
  1375. &skb->skb_mstamp);
  1376. if (!before(TCP_SKB_CB(skb)->seq,
  1377. tcp_highest_sack_seq(tp)))
  1378. tcp_advance_highest_sack(sk, skb);
  1379. }
  1380. state->fack_count += tcp_skb_pcount(skb);
  1381. }
  1382. return skb;
  1383. }
  1384. /* Avoid all extra work that is being done by sacktag while walking in
  1385. * a normal way
  1386. */
  1387. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1388. struct tcp_sacktag_state *state,
  1389. u32 skip_to_seq)
  1390. {
  1391. tcp_for_write_queue_from(skb, sk) {
  1392. if (skb == tcp_send_head(sk))
  1393. break;
  1394. if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
  1395. break;
  1396. state->fack_count += tcp_skb_pcount(skb);
  1397. }
  1398. return skb;
  1399. }
  1400. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1401. struct sock *sk,
  1402. struct tcp_sack_block *next_dup,
  1403. struct tcp_sacktag_state *state,
  1404. u32 skip_to_seq)
  1405. {
  1406. if (next_dup == NULL)
  1407. return skb;
  1408. if (before(next_dup->start_seq, skip_to_seq)) {
  1409. skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
  1410. skb = tcp_sacktag_walk(skb, sk, NULL, state,
  1411. next_dup->start_seq, next_dup->end_seq,
  1412. 1);
  1413. }
  1414. return skb;
  1415. }
  1416. static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
  1417. {
  1418. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1419. }
  1420. static int
  1421. tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
  1422. u32 prior_snd_una, long *sack_rtt_us)
  1423. {
  1424. struct tcp_sock *tp = tcp_sk(sk);
  1425. const unsigned char *ptr = (skb_transport_header(ack_skb) +
  1426. TCP_SKB_CB(ack_skb)->sacked);
  1427. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1428. struct tcp_sack_block sp[TCP_NUM_SACKS];
  1429. struct tcp_sack_block *cache;
  1430. struct tcp_sacktag_state state;
  1431. struct sk_buff *skb;
  1432. int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
  1433. int used_sacks;
  1434. bool found_dup_sack = false;
  1435. int i, j;
  1436. int first_sack_index;
  1437. state.flag = 0;
  1438. state.reord = tp->packets_out;
  1439. state.rtt_us = -1L;
  1440. if (!tp->sacked_out) {
  1441. if (WARN_ON(tp->fackets_out))
  1442. tp->fackets_out = 0;
  1443. tcp_highest_sack_reset(sk);
  1444. }
  1445. found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
  1446. num_sacks, prior_snd_una);
  1447. if (found_dup_sack)
  1448. state.flag |= FLAG_DSACKING_ACK;
  1449. /* Eliminate too old ACKs, but take into
  1450. * account more or less fresh ones, they can
  1451. * contain valid SACK info.
  1452. */
  1453. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1454. return 0;
  1455. if (!tp->packets_out)
  1456. goto out;
  1457. used_sacks = 0;
  1458. first_sack_index = 0;
  1459. for (i = 0; i < num_sacks; i++) {
  1460. bool dup_sack = !i && found_dup_sack;
  1461. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1462. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1463. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1464. sp[used_sacks].start_seq,
  1465. sp[used_sacks].end_seq)) {
  1466. int mib_idx;
  1467. if (dup_sack) {
  1468. if (!tp->undo_marker)
  1469. mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
  1470. else
  1471. mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
  1472. } else {
  1473. /* Don't count olds caused by ACK reordering */
  1474. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1475. !after(sp[used_sacks].end_seq, tp->snd_una))
  1476. continue;
  1477. mib_idx = LINUX_MIB_TCPSACKDISCARD;
  1478. }
  1479. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  1480. if (i == 0)
  1481. first_sack_index = -1;
  1482. continue;
  1483. }
  1484. /* Ignore very old stuff early */
  1485. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1486. continue;
  1487. used_sacks++;
  1488. }
  1489. /* order SACK blocks to allow in order walk of the retrans queue */
  1490. for (i = used_sacks - 1; i > 0; i--) {
  1491. for (j = 0; j < i; j++) {
  1492. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1493. swap(sp[j], sp[j + 1]);
  1494. /* Track where the first SACK block goes to */
  1495. if (j == first_sack_index)
  1496. first_sack_index = j + 1;
  1497. }
  1498. }
  1499. }
  1500. skb = tcp_write_queue_head(sk);
  1501. state.fack_count = 0;
  1502. i = 0;
  1503. if (!tp->sacked_out) {
  1504. /* It's already past, so skip checking against it */
  1505. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1506. } else {
  1507. cache = tp->recv_sack_cache;
  1508. /* Skip empty blocks in at head of the cache */
  1509. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1510. !cache->end_seq)
  1511. cache++;
  1512. }
  1513. while (i < used_sacks) {
  1514. u32 start_seq = sp[i].start_seq;
  1515. u32 end_seq = sp[i].end_seq;
  1516. bool dup_sack = (found_dup_sack && (i == first_sack_index));
  1517. struct tcp_sack_block *next_dup = NULL;
  1518. if (found_dup_sack && ((i + 1) == first_sack_index))
  1519. next_dup = &sp[i + 1];
  1520. /* Skip too early cached blocks */
  1521. while (tcp_sack_cache_ok(tp, cache) &&
  1522. !before(start_seq, cache->end_seq))
  1523. cache++;
  1524. /* Can skip some work by looking recv_sack_cache? */
  1525. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1526. after(end_seq, cache->start_seq)) {
  1527. /* Head todo? */
  1528. if (before(start_seq, cache->start_seq)) {
  1529. skb = tcp_sacktag_skip(skb, sk, &state,
  1530. start_seq);
  1531. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1532. &state,
  1533. start_seq,
  1534. cache->start_seq,
  1535. dup_sack);
  1536. }
  1537. /* Rest of the block already fully processed? */
  1538. if (!after(end_seq, cache->end_seq))
  1539. goto advance_sp;
  1540. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1541. &state,
  1542. cache->end_seq);
  1543. /* ...tail remains todo... */
  1544. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1545. /* ...but better entrypoint exists! */
  1546. skb = tcp_highest_sack(sk);
  1547. if (skb == NULL)
  1548. break;
  1549. state.fack_count = tp->fackets_out;
  1550. cache++;
  1551. goto walk;
  1552. }
  1553. skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
  1554. /* Check overlap against next cached too (past this one already) */
  1555. cache++;
  1556. continue;
  1557. }
  1558. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1559. skb = tcp_highest_sack(sk);
  1560. if (skb == NULL)
  1561. break;
  1562. state.fack_count = tp->fackets_out;
  1563. }
  1564. skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
  1565. walk:
  1566. skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
  1567. start_seq, end_seq, dup_sack);
  1568. advance_sp:
  1569. i++;
  1570. }
  1571. /* Clear the head of the cache sack blocks so we can skip it next time */
  1572. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1573. tp->recv_sack_cache[i].start_seq = 0;
  1574. tp->recv_sack_cache[i].end_seq = 0;
  1575. }
  1576. for (j = 0; j < used_sacks; j++)
  1577. tp->recv_sack_cache[i++] = sp[j];
  1578. tcp_mark_lost_retrans(sk);
  1579. tcp_verify_left_out(tp);
  1580. if ((state.reord < tp->fackets_out) &&
  1581. ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
  1582. tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
  1583. out:
  1584. #if FASTRETRANS_DEBUG > 0
  1585. WARN_ON((int)tp->sacked_out < 0);
  1586. WARN_ON((int)tp->lost_out < 0);
  1587. WARN_ON((int)tp->retrans_out < 0);
  1588. WARN_ON((int)tcp_packets_in_flight(tp) < 0);
  1589. #endif
  1590. *sack_rtt_us = state.rtt_us;
  1591. return state.flag;
  1592. }
  1593. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1594. * packets_out. Returns false if sacked_out adjustement wasn't necessary.
  1595. */
  1596. static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
  1597. {
  1598. u32 holes;
  1599. holes = max(tp->lost_out, 1U);
  1600. holes = min(holes, tp->packets_out);
  1601. if ((tp->sacked_out + holes) > tp->packets_out) {
  1602. tp->sacked_out = tp->packets_out - holes;
  1603. return true;
  1604. }
  1605. return false;
  1606. }
  1607. /* If we receive more dupacks than we expected counting segments
  1608. * in assumption of absent reordering, interpret this as reordering.
  1609. * The only another reason could be bug in receiver TCP.
  1610. */
  1611. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1612. {
  1613. struct tcp_sock *tp = tcp_sk(sk);
  1614. if (tcp_limit_reno_sacked(tp))
  1615. tcp_update_reordering(sk, tp->packets_out + addend, 0);
  1616. }
  1617. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1618. static void tcp_add_reno_sack(struct sock *sk)
  1619. {
  1620. struct tcp_sock *tp = tcp_sk(sk);
  1621. tp->sacked_out++;
  1622. tcp_check_reno_reordering(sk, 0);
  1623. tcp_verify_left_out(tp);
  1624. }
  1625. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1626. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1627. {
  1628. struct tcp_sock *tp = tcp_sk(sk);
  1629. if (acked > 0) {
  1630. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1631. if (acked - 1 >= tp->sacked_out)
  1632. tp->sacked_out = 0;
  1633. else
  1634. tp->sacked_out -= acked - 1;
  1635. }
  1636. tcp_check_reno_reordering(sk, acked);
  1637. tcp_verify_left_out(tp);
  1638. }
  1639. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1640. {
  1641. tp->sacked_out = 0;
  1642. }
  1643. void tcp_clear_retrans(struct tcp_sock *tp)
  1644. {
  1645. tp->retrans_out = 0;
  1646. tp->lost_out = 0;
  1647. tp->undo_marker = 0;
  1648. tp->undo_retrans = -1;
  1649. tp->fackets_out = 0;
  1650. tp->sacked_out = 0;
  1651. }
  1652. static inline void tcp_init_undo(struct tcp_sock *tp)
  1653. {
  1654. tp->undo_marker = tp->snd_una;
  1655. /* Retransmission still in flight may cause DSACKs later. */
  1656. tp->undo_retrans = tp->retrans_out ? : -1;
  1657. }
  1658. /* Enter Loss state. If we detect SACK reneging, forget all SACK information
  1659. * and reset tags completely, otherwise preserve SACKs. If receiver
  1660. * dropped its ofo queue, we will know this due to reneging detection.
  1661. */
  1662. void tcp_enter_loss(struct sock *sk)
  1663. {
  1664. const struct inet_connection_sock *icsk = inet_csk(sk);
  1665. struct tcp_sock *tp = tcp_sk(sk);
  1666. struct sk_buff *skb;
  1667. bool new_recovery = false;
  1668. bool is_reneg; /* is receiver reneging on SACKs? */
  1669. /* Reduce ssthresh if it has not yet been made inside this window. */
  1670. if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
  1671. !after(tp->high_seq, tp->snd_una) ||
  1672. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1673. new_recovery = true;
  1674. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1675. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1676. tcp_ca_event(sk, CA_EVENT_LOSS);
  1677. tcp_init_undo(tp);
  1678. }
  1679. tp->snd_cwnd = 1;
  1680. tp->snd_cwnd_cnt = 0;
  1681. tp->snd_cwnd_stamp = tcp_time_stamp;
  1682. tp->retrans_out = 0;
  1683. tp->lost_out = 0;
  1684. if (tcp_is_reno(tp))
  1685. tcp_reset_reno_sack(tp);
  1686. skb = tcp_write_queue_head(sk);
  1687. is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
  1688. if (is_reneg) {
  1689. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
  1690. tp->sacked_out = 0;
  1691. tp->fackets_out = 0;
  1692. }
  1693. tcp_clear_all_retrans_hints(tp);
  1694. tcp_for_write_queue(skb, sk) {
  1695. if (skb == tcp_send_head(sk))
  1696. break;
  1697. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1698. if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) {
  1699. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1700. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1701. tp->lost_out += tcp_skb_pcount(skb);
  1702. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1703. }
  1704. }
  1705. tcp_verify_left_out(tp);
  1706. /* Timeout in disordered state after receiving substantial DUPACKs
  1707. * suggests that the degree of reordering is over-estimated.
  1708. */
  1709. if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
  1710. tp->sacked_out >= sysctl_tcp_reordering)
  1711. tp->reordering = min_t(unsigned int, tp->reordering,
  1712. sysctl_tcp_reordering);
  1713. tcp_set_ca_state(sk, TCP_CA_Loss);
  1714. tp->high_seq = tp->snd_nxt;
  1715. tcp_ecn_queue_cwr(tp);
  1716. /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
  1717. * loss recovery is underway except recurring timeout(s) on
  1718. * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
  1719. */
  1720. tp->frto = sysctl_tcp_frto &&
  1721. (new_recovery || icsk->icsk_retransmits) &&
  1722. !inet_csk(sk)->icsk_mtup.probe_size;
  1723. }
  1724. /* If ACK arrived pointing to a remembered SACK, it means that our
  1725. * remembered SACKs do not reflect real state of receiver i.e.
  1726. * receiver _host_ is heavily congested (or buggy).
  1727. *
  1728. * To avoid big spurious retransmission bursts due to transient SACK
  1729. * scoreboard oddities that look like reneging, we give the receiver a
  1730. * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
  1731. * restore sanity to the SACK scoreboard. If the apparent reneging
  1732. * persists until this RTO then we'll clear the SACK scoreboard.
  1733. */
  1734. static bool tcp_check_sack_reneging(struct sock *sk, int flag)
  1735. {
  1736. if (flag & FLAG_SACK_RENEGING) {
  1737. struct tcp_sock *tp = tcp_sk(sk);
  1738. unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
  1739. msecs_to_jiffies(10));
  1740. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  1741. delay, TCP_RTO_MAX);
  1742. return true;
  1743. }
  1744. return false;
  1745. }
  1746. static inline int tcp_fackets_out(const struct tcp_sock *tp)
  1747. {
  1748. return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
  1749. }
  1750. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  1751. * counter when SACK is enabled (without SACK, sacked_out is used for
  1752. * that purpose).
  1753. *
  1754. * Instead, with FACK TCP uses fackets_out that includes both SACKed
  1755. * segments up to the highest received SACK block so far and holes in
  1756. * between them.
  1757. *
  1758. * With reordering, holes may still be in flight, so RFC3517 recovery
  1759. * uses pure sacked_out (total number of SACKed segments) even though
  1760. * it violates the RFC that uses duplicate ACKs, often these are equal
  1761. * but when e.g. out-of-window ACKs or packet duplication occurs,
  1762. * they differ. Since neither occurs due to loss, TCP should really
  1763. * ignore them.
  1764. */
  1765. static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
  1766. {
  1767. return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
  1768. }
  1769. static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
  1770. {
  1771. struct tcp_sock *tp = tcp_sk(sk);
  1772. unsigned long delay;
  1773. /* Delay early retransmit and entering fast recovery for
  1774. * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
  1775. * available, or RTO is scheduled to fire first.
  1776. */
  1777. if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
  1778. (flag & FLAG_ECE) || !tp->srtt_us)
  1779. return false;
  1780. delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
  1781. msecs_to_jiffies(2));
  1782. if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
  1783. return false;
  1784. inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
  1785. TCP_RTO_MAX);
  1786. return true;
  1787. }
  1788. /* Linux NewReno/SACK/FACK/ECN state machine.
  1789. * --------------------------------------
  1790. *
  1791. * "Open" Normal state, no dubious events, fast path.
  1792. * "Disorder" In all the respects it is "Open",
  1793. * but requires a bit more attention. It is entered when
  1794. * we see some SACKs or dupacks. It is split of "Open"
  1795. * mainly to move some processing from fast path to slow one.
  1796. * "CWR" CWND was reduced due to some Congestion Notification event.
  1797. * It can be ECN, ICMP source quench, local device congestion.
  1798. * "Recovery" CWND was reduced, we are fast-retransmitting.
  1799. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  1800. *
  1801. * tcp_fastretrans_alert() is entered:
  1802. * - each incoming ACK, if state is not "Open"
  1803. * - when arrived ACK is unusual, namely:
  1804. * * SACK
  1805. * * Duplicate ACK.
  1806. * * ECN ECE.
  1807. *
  1808. * Counting packets in flight is pretty simple.
  1809. *
  1810. * in_flight = packets_out - left_out + retrans_out
  1811. *
  1812. * packets_out is SND.NXT-SND.UNA counted in packets.
  1813. *
  1814. * retrans_out is number of retransmitted segments.
  1815. *
  1816. * left_out is number of segments left network, but not ACKed yet.
  1817. *
  1818. * left_out = sacked_out + lost_out
  1819. *
  1820. * sacked_out: Packets, which arrived to receiver out of order
  1821. * and hence not ACKed. With SACKs this number is simply
  1822. * amount of SACKed data. Even without SACKs
  1823. * it is easy to give pretty reliable estimate of this number,
  1824. * counting duplicate ACKs.
  1825. *
  1826. * lost_out: Packets lost by network. TCP has no explicit
  1827. * "loss notification" feedback from network (for now).
  1828. * It means that this number can be only _guessed_.
  1829. * Actually, it is the heuristics to predict lossage that
  1830. * distinguishes different algorithms.
  1831. *
  1832. * F.e. after RTO, when all the queue is considered as lost,
  1833. * lost_out = packets_out and in_flight = retrans_out.
  1834. *
  1835. * Essentially, we have now two algorithms counting
  1836. * lost packets.
  1837. *
  1838. * FACK: It is the simplest heuristics. As soon as we decided
  1839. * that something is lost, we decide that _all_ not SACKed
  1840. * packets until the most forward SACK are lost. I.e.
  1841. * lost_out = fackets_out - sacked_out and left_out = fackets_out.
  1842. * It is absolutely correct estimate, if network does not reorder
  1843. * packets. And it loses any connection to reality when reordering
  1844. * takes place. We use FACK by default until reordering
  1845. * is suspected on the path to this destination.
  1846. *
  1847. * NewReno: when Recovery is entered, we assume that one segment
  1848. * is lost (classic Reno). While we are in Recovery and
  1849. * a partial ACK arrives, we assume that one more packet
  1850. * is lost (NewReno). This heuristics are the same in NewReno
  1851. * and SACK.
  1852. *
  1853. * Imagine, that's all! Forget about all this shamanism about CWND inflation
  1854. * deflation etc. CWND is real congestion window, never inflated, changes
  1855. * only according to classic VJ rules.
  1856. *
  1857. * Really tricky (and requiring careful tuning) part of algorithm
  1858. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  1859. * The first determines the moment _when_ we should reduce CWND and,
  1860. * hence, slow down forward transmission. In fact, it determines the moment
  1861. * when we decide that hole is caused by loss, rather than by a reorder.
  1862. *
  1863. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  1864. * holes, caused by lost packets.
  1865. *
  1866. * And the most logically complicated part of algorithm is undo
  1867. * heuristics. We detect false retransmits due to both too early
  1868. * fast retransmit (reordering) and underestimated RTO, analyzing
  1869. * timestamps and D-SACKs. When we detect that some segments were
  1870. * retransmitted by mistake and CWND reduction was wrong, we undo
  1871. * window reduction and abort recovery phase. This logic is hidden
  1872. * inside several functions named tcp_try_undo_<something>.
  1873. */
  1874. /* This function decides, when we should leave Disordered state
  1875. * and enter Recovery phase, reducing congestion window.
  1876. *
  1877. * Main question: may we further continue forward transmission
  1878. * with the same cwnd?
  1879. */
  1880. static bool tcp_time_to_recover(struct sock *sk, int flag)
  1881. {
  1882. struct tcp_sock *tp = tcp_sk(sk);
  1883. __u32 packets_out;
  1884. /* Trick#1: The loss is proven. */
  1885. if (tp->lost_out)
  1886. return true;
  1887. /* Not-A-Trick#2 : Classic rule... */
  1888. if (tcp_dupack_heuristics(tp) > tp->reordering)
  1889. return true;
  1890. /* Trick#4: It is still not OK... But will it be useful to delay
  1891. * recovery more?
  1892. */
  1893. packets_out = tp->packets_out;
  1894. if (packets_out <= tp->reordering &&
  1895. tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
  1896. !tcp_may_send_now(sk)) {
  1897. /* We have nothing to send. This connection is limited
  1898. * either by receiver window or by application.
  1899. */
  1900. return true;
  1901. }
  1902. /* If a thin stream is detected, retransmit after first
  1903. * received dupack. Employ only if SACK is supported in order
  1904. * to avoid possible corner-case series of spurious retransmissions
  1905. * Use only if there are no unsent data.
  1906. */
  1907. if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
  1908. tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
  1909. tcp_is_sack(tp) && !tcp_send_head(sk))
  1910. return true;
  1911. /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
  1912. * retransmissions due to small network reorderings, we implement
  1913. * Mitigation A.3 in the RFC and delay the retransmission for a short
  1914. * interval if appropriate.
  1915. */
  1916. if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
  1917. (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
  1918. !tcp_may_send_now(sk))
  1919. return !tcp_pause_early_retransmit(sk, flag);
  1920. return false;
  1921. }
  1922. /* Detect loss in event "A" above by marking head of queue up as lost.
  1923. * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
  1924. * are considered lost. For RFC3517 SACK, a segment is considered lost if it
  1925. * has at least tp->reordering SACKed seqments above it; "packets" refers to
  1926. * the maximum SACKed segments to pass before reaching this limit.
  1927. */
  1928. static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
  1929. {
  1930. struct tcp_sock *tp = tcp_sk(sk);
  1931. struct sk_buff *skb;
  1932. int cnt, oldcnt;
  1933. int err;
  1934. unsigned int mss;
  1935. /* Use SACK to deduce losses of new sequences sent during recovery */
  1936. const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
  1937. WARN_ON(packets > tp->packets_out);
  1938. if (tp->lost_skb_hint) {
  1939. skb = tp->lost_skb_hint;
  1940. cnt = tp->lost_cnt_hint;
  1941. /* Head already handled? */
  1942. if (mark_head && skb != tcp_write_queue_head(sk))
  1943. return;
  1944. } else {
  1945. skb = tcp_write_queue_head(sk);
  1946. cnt = 0;
  1947. }
  1948. tcp_for_write_queue_from(skb, sk) {
  1949. if (skb == tcp_send_head(sk))
  1950. break;
  1951. /* TODO: do this better */
  1952. /* this is not the most efficient way to do this... */
  1953. tp->lost_skb_hint = skb;
  1954. tp->lost_cnt_hint = cnt;
  1955. if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
  1956. break;
  1957. oldcnt = cnt;
  1958. if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
  1959. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1960. cnt += tcp_skb_pcount(skb);
  1961. if (cnt > packets) {
  1962. if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
  1963. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  1964. (oldcnt >= packets))
  1965. break;
  1966. mss = skb_shinfo(skb)->gso_size;
  1967. err = tcp_fragment(sk, skb, (packets - oldcnt) * mss,
  1968. mss, GFP_ATOMIC);
  1969. if (err < 0)
  1970. break;
  1971. cnt = packets;
  1972. }
  1973. tcp_skb_mark_lost(tp, skb);
  1974. if (mark_head)
  1975. break;
  1976. }
  1977. tcp_verify_left_out(tp);
  1978. }
  1979. /* Account newly detected lost packet(s) */
  1980. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  1981. {
  1982. struct tcp_sock *tp = tcp_sk(sk);
  1983. if (tcp_is_reno(tp)) {
  1984. tcp_mark_head_lost(sk, 1, 1);
  1985. } else if (tcp_is_fack(tp)) {
  1986. int lost = tp->fackets_out - tp->reordering;
  1987. if (lost <= 0)
  1988. lost = 1;
  1989. tcp_mark_head_lost(sk, lost, 0);
  1990. } else {
  1991. int sacked_upto = tp->sacked_out - tp->reordering;
  1992. if (sacked_upto >= 0)
  1993. tcp_mark_head_lost(sk, sacked_upto, 0);
  1994. else if (fast_rexmit)
  1995. tcp_mark_head_lost(sk, 1, 1);
  1996. }
  1997. }
  1998. /* CWND moderation, preventing bursts due to too big ACKs
  1999. * in dubious situations.
  2000. */
  2001. static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
  2002. {
  2003. tp->snd_cwnd = min(tp->snd_cwnd,
  2004. tcp_packets_in_flight(tp) + tcp_max_burst(tp));
  2005. tp->snd_cwnd_stamp = tcp_time_stamp;
  2006. }
  2007. /* Nothing was retransmitted or returned timestamp is less
  2008. * than timestamp of the first retransmission.
  2009. */
  2010. static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
  2011. {
  2012. return !tp->retrans_stamp ||
  2013. (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2014. before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
  2015. }
  2016. /* Undo procedures. */
  2017. #if FASTRETRANS_DEBUG > 1
  2018. static void DBGUNDO(struct sock *sk, const char *msg)
  2019. {
  2020. struct tcp_sock *tp = tcp_sk(sk);
  2021. struct inet_sock *inet = inet_sk(sk);
  2022. if (sk->sk_family == AF_INET) {
  2023. pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
  2024. msg,
  2025. &inet->inet_daddr, ntohs(inet->inet_dport),
  2026. tp->snd_cwnd, tcp_left_out(tp),
  2027. tp->snd_ssthresh, tp->prior_ssthresh,
  2028. tp->packets_out);
  2029. }
  2030. #if IS_ENABLED(CONFIG_IPV6)
  2031. else if (sk->sk_family == AF_INET6) {
  2032. struct ipv6_pinfo *np = inet6_sk(sk);
  2033. pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
  2034. msg,
  2035. &np->daddr, ntohs(inet->inet_dport),
  2036. tp->snd_cwnd, tcp_left_out(tp),
  2037. tp->snd_ssthresh, tp->prior_ssthresh,
  2038. tp->packets_out);
  2039. }
  2040. #endif
  2041. }
  2042. #else
  2043. #define DBGUNDO(x...) do { } while (0)
  2044. #endif
  2045. static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
  2046. {
  2047. struct tcp_sock *tp = tcp_sk(sk);
  2048. if (unmark_loss) {
  2049. struct sk_buff *skb;
  2050. tcp_for_write_queue(skb, sk) {
  2051. if (skb == tcp_send_head(sk))
  2052. break;
  2053. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2054. }
  2055. tp->lost_out = 0;
  2056. tcp_clear_all_retrans_hints(tp);
  2057. }
  2058. if (tp->prior_ssthresh) {
  2059. const struct inet_connection_sock *icsk = inet_csk(sk);
  2060. if (icsk->icsk_ca_ops->undo_cwnd)
  2061. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2062. else
  2063. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
  2064. if (tp->prior_ssthresh > tp->snd_ssthresh) {
  2065. tp->snd_ssthresh = tp->prior_ssthresh;
  2066. tcp_ecn_withdraw_cwr(tp);
  2067. }
  2068. } else {
  2069. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
  2070. }
  2071. tp->snd_cwnd_stamp = tcp_time_stamp;
  2072. tp->undo_marker = 0;
  2073. }
  2074. static inline bool tcp_may_undo(const struct tcp_sock *tp)
  2075. {
  2076. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  2077. }
  2078. /* People celebrate: "We love our President!" */
  2079. static bool tcp_try_undo_recovery(struct sock *sk)
  2080. {
  2081. struct tcp_sock *tp = tcp_sk(sk);
  2082. if (tcp_may_undo(tp)) {
  2083. int mib_idx;
  2084. /* Happy end! We did not retransmit anything
  2085. * or our original transmission succeeded.
  2086. */
  2087. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2088. tcp_undo_cwnd_reduction(sk, false);
  2089. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2090. mib_idx = LINUX_MIB_TCPLOSSUNDO;
  2091. else
  2092. mib_idx = LINUX_MIB_TCPFULLUNDO;
  2093. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2094. }
  2095. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2096. /* Hold old state until something *above* high_seq
  2097. * is ACKed. For Reno it is MUST to prevent false
  2098. * fast retransmits (RFC2582). SACK TCP is safe. */
  2099. tcp_moderate_cwnd(tp);
  2100. return true;
  2101. }
  2102. tcp_set_ca_state(sk, TCP_CA_Open);
  2103. return false;
  2104. }
  2105. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2106. static bool tcp_try_undo_dsack(struct sock *sk)
  2107. {
  2108. struct tcp_sock *tp = tcp_sk(sk);
  2109. if (tp->undo_marker && !tp->undo_retrans) {
  2110. DBGUNDO(sk, "D-SACK");
  2111. tcp_undo_cwnd_reduction(sk, false);
  2112. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
  2113. return true;
  2114. }
  2115. return false;
  2116. }
  2117. /* We can clear retrans_stamp when there are no retransmissions in the
  2118. * window. It would seem that it is trivially available for us in
  2119. * tp->retrans_out, however, that kind of assumptions doesn't consider
  2120. * what will happen if errors occur when sending retransmission for the
  2121. * second time. ...It could the that such segment has only
  2122. * TCPCB_EVER_RETRANS set at the present time. It seems that checking
  2123. * the head skb is enough except for some reneging corner cases that
  2124. * are not worth the effort.
  2125. *
  2126. * Main reason for all this complexity is the fact that connection dying
  2127. * time now depends on the validity of the retrans_stamp, in particular,
  2128. * that successive retransmissions of a segment must not advance
  2129. * retrans_stamp under any conditions.
  2130. */
  2131. static bool tcp_any_retrans_done(const struct sock *sk)
  2132. {
  2133. const struct tcp_sock *tp = tcp_sk(sk);
  2134. struct sk_buff *skb;
  2135. if (tp->retrans_out)
  2136. return true;
  2137. skb = tcp_write_queue_head(sk);
  2138. if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
  2139. return true;
  2140. return false;
  2141. }
  2142. /* Undo during loss recovery after partial ACK or using F-RTO. */
  2143. static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
  2144. {
  2145. struct tcp_sock *tp = tcp_sk(sk);
  2146. if (frto_undo || tcp_may_undo(tp)) {
  2147. tcp_undo_cwnd_reduction(sk, true);
  2148. DBGUNDO(sk, "partial loss");
  2149. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
  2150. if (frto_undo)
  2151. NET_INC_STATS_BH(sock_net(sk),
  2152. LINUX_MIB_TCPSPURIOUSRTOS);
  2153. inet_csk(sk)->icsk_retransmits = 0;
  2154. if (frto_undo || tcp_is_sack(tp))
  2155. tcp_set_ca_state(sk, TCP_CA_Open);
  2156. return true;
  2157. }
  2158. return false;
  2159. }
  2160. /* The cwnd reduction in CWR and Recovery use the PRR algorithm
  2161. * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
  2162. * It computes the number of packets to send (sndcnt) based on packets newly
  2163. * delivered:
  2164. * 1) If the packets in flight is larger than ssthresh, PRR spreads the
  2165. * cwnd reductions across a full RTT.
  2166. * 2) If packets in flight is lower than ssthresh (such as due to excess
  2167. * losses and/or application stalls), do not perform any further cwnd
  2168. * reductions, but instead slow start up to ssthresh.
  2169. */
  2170. static void tcp_init_cwnd_reduction(struct sock *sk)
  2171. {
  2172. struct tcp_sock *tp = tcp_sk(sk);
  2173. tp->high_seq = tp->snd_nxt;
  2174. tp->tlp_high_seq = 0;
  2175. tp->snd_cwnd_cnt = 0;
  2176. tp->prior_cwnd = tp->snd_cwnd;
  2177. tp->prr_delivered = 0;
  2178. tp->prr_out = 0;
  2179. tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
  2180. tcp_ecn_queue_cwr(tp);
  2181. }
  2182. static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
  2183. int fast_rexmit)
  2184. {
  2185. struct tcp_sock *tp = tcp_sk(sk);
  2186. int sndcnt = 0;
  2187. int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
  2188. int newly_acked_sacked = prior_unsacked -
  2189. (tp->packets_out - tp->sacked_out);
  2190. tp->prr_delivered += newly_acked_sacked;
  2191. if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
  2192. u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
  2193. tp->prior_cwnd - 1;
  2194. sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
  2195. } else {
  2196. sndcnt = min_t(int, delta,
  2197. max_t(int, tp->prr_delivered - tp->prr_out,
  2198. newly_acked_sacked) + 1);
  2199. }
  2200. sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
  2201. tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
  2202. }
  2203. static inline void tcp_end_cwnd_reduction(struct sock *sk)
  2204. {
  2205. struct tcp_sock *tp = tcp_sk(sk);
  2206. /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
  2207. if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
  2208. (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
  2209. tp->snd_cwnd = tp->snd_ssthresh;
  2210. tp->snd_cwnd_stamp = tcp_time_stamp;
  2211. }
  2212. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2213. }
  2214. /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
  2215. void tcp_enter_cwr(struct sock *sk)
  2216. {
  2217. struct tcp_sock *tp = tcp_sk(sk);
  2218. tp->prior_ssthresh = 0;
  2219. if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
  2220. tp->undo_marker = 0;
  2221. tcp_init_cwnd_reduction(sk);
  2222. tcp_set_ca_state(sk, TCP_CA_CWR);
  2223. }
  2224. }
  2225. static void tcp_try_keep_open(struct sock *sk)
  2226. {
  2227. struct tcp_sock *tp = tcp_sk(sk);
  2228. int state = TCP_CA_Open;
  2229. if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
  2230. state = TCP_CA_Disorder;
  2231. if (inet_csk(sk)->icsk_ca_state != state) {
  2232. tcp_set_ca_state(sk, state);
  2233. tp->high_seq = tp->snd_nxt;
  2234. }
  2235. }
  2236. static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
  2237. {
  2238. struct tcp_sock *tp = tcp_sk(sk);
  2239. tcp_verify_left_out(tp);
  2240. if (!tcp_any_retrans_done(sk))
  2241. tp->retrans_stamp = 0;
  2242. if (flag & FLAG_ECE)
  2243. tcp_enter_cwr(sk);
  2244. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2245. tcp_try_keep_open(sk);
  2246. } else {
  2247. tcp_cwnd_reduction(sk, prior_unsacked, 0);
  2248. }
  2249. }
  2250. static void tcp_mtup_probe_failed(struct sock *sk)
  2251. {
  2252. struct inet_connection_sock *icsk = inet_csk(sk);
  2253. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2254. icsk->icsk_mtup.probe_size = 0;
  2255. }
  2256. static void tcp_mtup_probe_success(struct sock *sk)
  2257. {
  2258. struct tcp_sock *tp = tcp_sk(sk);
  2259. struct inet_connection_sock *icsk = inet_csk(sk);
  2260. /* FIXME: breaks with very large cwnd */
  2261. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2262. tp->snd_cwnd = tp->snd_cwnd *
  2263. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2264. icsk->icsk_mtup.probe_size;
  2265. tp->snd_cwnd_cnt = 0;
  2266. tp->snd_cwnd_stamp = tcp_time_stamp;
  2267. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2268. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2269. icsk->icsk_mtup.probe_size = 0;
  2270. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2271. }
  2272. /* Do a simple retransmit without using the backoff mechanisms in
  2273. * tcp_timer. This is used for path mtu discovery.
  2274. * The socket is already locked here.
  2275. */
  2276. void tcp_simple_retransmit(struct sock *sk)
  2277. {
  2278. const struct inet_connection_sock *icsk = inet_csk(sk);
  2279. struct tcp_sock *tp = tcp_sk(sk);
  2280. struct sk_buff *skb;
  2281. unsigned int mss = tcp_current_mss(sk);
  2282. u32 prior_lost = tp->lost_out;
  2283. tcp_for_write_queue(skb, sk) {
  2284. if (skb == tcp_send_head(sk))
  2285. break;
  2286. if (tcp_skb_seglen(skb) > mss &&
  2287. !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  2288. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2289. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  2290. tp->retrans_out -= tcp_skb_pcount(skb);
  2291. }
  2292. tcp_skb_mark_lost_uncond_verify(tp, skb);
  2293. }
  2294. }
  2295. tcp_clear_retrans_hints_partial(tp);
  2296. if (prior_lost == tp->lost_out)
  2297. return;
  2298. if (tcp_is_reno(tp))
  2299. tcp_limit_reno_sacked(tp);
  2300. tcp_verify_left_out(tp);
  2301. /* Don't muck with the congestion window here.
  2302. * Reason is that we do not increase amount of _data_
  2303. * in network, but units changed and effective
  2304. * cwnd/ssthresh really reduced now.
  2305. */
  2306. if (icsk->icsk_ca_state != TCP_CA_Loss) {
  2307. tp->high_seq = tp->snd_nxt;
  2308. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2309. tp->prior_ssthresh = 0;
  2310. tp->undo_marker = 0;
  2311. tcp_set_ca_state(sk, TCP_CA_Loss);
  2312. }
  2313. tcp_xmit_retransmit_queue(sk);
  2314. }
  2315. EXPORT_SYMBOL(tcp_simple_retransmit);
  2316. static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
  2317. {
  2318. struct tcp_sock *tp = tcp_sk(sk);
  2319. int mib_idx;
  2320. if (tcp_is_reno(tp))
  2321. mib_idx = LINUX_MIB_TCPRENORECOVERY;
  2322. else
  2323. mib_idx = LINUX_MIB_TCPSACKRECOVERY;
  2324. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2325. tp->prior_ssthresh = 0;
  2326. tcp_init_undo(tp);
  2327. if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
  2328. if (!ece_ack)
  2329. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2330. tcp_init_cwnd_reduction(sk);
  2331. }
  2332. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2333. }
  2334. /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
  2335. * recovered or spurious. Otherwise retransmits more on partial ACKs.
  2336. */
  2337. static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
  2338. {
  2339. struct tcp_sock *tp = tcp_sk(sk);
  2340. bool recovered = !before(tp->snd_una, tp->high_seq);
  2341. if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
  2342. /* Step 3.b. A timeout is spurious if not all data are
  2343. * lost, i.e., never-retransmitted data are (s)acked.
  2344. */
  2345. if (tcp_try_undo_loss(sk, flag & FLAG_ORIG_SACK_ACKED))
  2346. return;
  2347. if (after(tp->snd_nxt, tp->high_seq) &&
  2348. (flag & FLAG_DATA_SACKED || is_dupack)) {
  2349. tp->frto = 0; /* Loss was real: 2nd part of step 3.a */
  2350. } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
  2351. tp->high_seq = tp->snd_nxt;
  2352. __tcp_push_pending_frames(sk, tcp_current_mss(sk),
  2353. TCP_NAGLE_OFF);
  2354. if (after(tp->snd_nxt, tp->high_seq))
  2355. return; /* Step 2.b */
  2356. tp->frto = 0;
  2357. }
  2358. }
  2359. if (recovered) {
  2360. /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
  2361. tcp_try_undo_recovery(sk);
  2362. return;
  2363. }
  2364. if (tcp_is_reno(tp)) {
  2365. /* A Reno DUPACK means new data in F-RTO step 2.b above are
  2366. * delivered. Lower inflight to clock out (re)tranmissions.
  2367. */
  2368. if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
  2369. tcp_add_reno_sack(sk);
  2370. else if (flag & FLAG_SND_UNA_ADVANCED)
  2371. tcp_reset_reno_sack(tp);
  2372. }
  2373. if (tcp_try_undo_loss(sk, false))
  2374. return;
  2375. tcp_xmit_retransmit_queue(sk);
  2376. }
  2377. /* Undo during fast recovery after partial ACK. */
  2378. static bool tcp_try_undo_partial(struct sock *sk, const int acked,
  2379. const int prior_unsacked)
  2380. {
  2381. struct tcp_sock *tp = tcp_sk(sk);
  2382. if (tp->undo_marker && tcp_packet_delayed(tp)) {
  2383. /* Plain luck! Hole if filled with delayed
  2384. * packet, rather than with a retransmit.
  2385. */
  2386. tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
  2387. /* We are getting evidence that the reordering degree is higher
  2388. * than we realized. If there are no retransmits out then we
  2389. * can undo. Otherwise we clock out new packets but do not
  2390. * mark more packets lost or retransmit more.
  2391. */
  2392. if (tp->retrans_out) {
  2393. tcp_cwnd_reduction(sk, prior_unsacked, 0);
  2394. return true;
  2395. }
  2396. if (!tcp_any_retrans_done(sk))
  2397. tp->retrans_stamp = 0;
  2398. DBGUNDO(sk, "partial recovery");
  2399. tcp_undo_cwnd_reduction(sk, true);
  2400. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
  2401. tcp_try_keep_open(sk);
  2402. return true;
  2403. }
  2404. return false;
  2405. }
  2406. /* Process an event, which can update packets-in-flight not trivially.
  2407. * Main goal of this function is to calculate new estimate for left_out,
  2408. * taking into account both packets sitting in receiver's buffer and
  2409. * packets lost by network.
  2410. *
  2411. * Besides that it does CWND reduction, when packet loss is detected
  2412. * and changes state of machine.
  2413. *
  2414. * It does _not_ decide what to send, it is made in function
  2415. * tcp_xmit_retransmit_queue().
  2416. */
  2417. static void tcp_fastretrans_alert(struct sock *sk, const int acked,
  2418. const int prior_unsacked,
  2419. bool is_dupack, int flag)
  2420. {
  2421. struct inet_connection_sock *icsk = inet_csk(sk);
  2422. struct tcp_sock *tp = tcp_sk(sk);
  2423. bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2424. (tcp_fackets_out(tp) > tp->reordering));
  2425. int fast_rexmit = 0;
  2426. if (WARN_ON(!tp->packets_out && tp->sacked_out))
  2427. tp->sacked_out = 0;
  2428. if (WARN_ON(!tp->sacked_out && tp->fackets_out))
  2429. tp->fackets_out = 0;
  2430. /* Now state machine starts.
  2431. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2432. if (flag & FLAG_ECE)
  2433. tp->prior_ssthresh = 0;
  2434. /* B. In all the states check for reneging SACKs. */
  2435. if (tcp_check_sack_reneging(sk, flag))
  2436. return;
  2437. /* C. Check consistency of the current state. */
  2438. tcp_verify_left_out(tp);
  2439. /* D. Check state exit conditions. State can be terminated
  2440. * when high_seq is ACKed. */
  2441. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2442. WARN_ON(tp->retrans_out != 0);
  2443. tp->retrans_stamp = 0;
  2444. } else if (!before(tp->snd_una, tp->high_seq)) {
  2445. switch (icsk->icsk_ca_state) {
  2446. case TCP_CA_CWR:
  2447. /* CWR is to be held something *above* high_seq
  2448. * is ACKed for CWR bit to reach receiver. */
  2449. if (tp->snd_una != tp->high_seq) {
  2450. tcp_end_cwnd_reduction(sk);
  2451. tcp_set_ca_state(sk, TCP_CA_Open);
  2452. }
  2453. break;
  2454. case TCP_CA_Recovery:
  2455. if (tcp_is_reno(tp))
  2456. tcp_reset_reno_sack(tp);
  2457. if (tcp_try_undo_recovery(sk))
  2458. return;
  2459. tcp_end_cwnd_reduction(sk);
  2460. break;
  2461. }
  2462. }
  2463. /* E. Process state. */
  2464. switch (icsk->icsk_ca_state) {
  2465. case TCP_CA_Recovery:
  2466. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2467. if (tcp_is_reno(tp) && is_dupack)
  2468. tcp_add_reno_sack(sk);
  2469. } else {
  2470. if (tcp_try_undo_partial(sk, acked, prior_unsacked))
  2471. return;
  2472. /* Partial ACK arrived. Force fast retransmit. */
  2473. do_lost = tcp_is_reno(tp) ||
  2474. tcp_fackets_out(tp) > tp->reordering;
  2475. }
  2476. if (tcp_try_undo_dsack(sk)) {
  2477. tcp_try_keep_open(sk);
  2478. return;
  2479. }
  2480. break;
  2481. case TCP_CA_Loss:
  2482. tcp_process_loss(sk, flag, is_dupack);
  2483. if (icsk->icsk_ca_state != TCP_CA_Open)
  2484. return;
  2485. /* Fall through to processing in Open state. */
  2486. default:
  2487. if (tcp_is_reno(tp)) {
  2488. if (flag & FLAG_SND_UNA_ADVANCED)
  2489. tcp_reset_reno_sack(tp);
  2490. if (is_dupack)
  2491. tcp_add_reno_sack(sk);
  2492. }
  2493. if (icsk->icsk_ca_state <= TCP_CA_Disorder)
  2494. tcp_try_undo_dsack(sk);
  2495. if (!tcp_time_to_recover(sk, flag)) {
  2496. tcp_try_to_open(sk, flag, prior_unsacked);
  2497. return;
  2498. }
  2499. /* MTU probe failure: don't reduce cwnd */
  2500. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2501. icsk->icsk_mtup.probe_size &&
  2502. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2503. tcp_mtup_probe_failed(sk);
  2504. /* Restores the reduction we did in tcp_mtup_probe() */
  2505. tp->snd_cwnd++;
  2506. tcp_simple_retransmit(sk);
  2507. return;
  2508. }
  2509. /* Otherwise enter Recovery state */
  2510. tcp_enter_recovery(sk, (flag & FLAG_ECE));
  2511. fast_rexmit = 1;
  2512. }
  2513. if (do_lost)
  2514. tcp_update_scoreboard(sk, fast_rexmit);
  2515. tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit);
  2516. tcp_xmit_retransmit_queue(sk);
  2517. }
  2518. static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
  2519. long seq_rtt_us, long sack_rtt_us)
  2520. {
  2521. const struct tcp_sock *tp = tcp_sk(sk);
  2522. /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
  2523. * broken middle-boxes or peers may corrupt TS-ECR fields. But
  2524. * Karn's algorithm forbids taking RTT if some retransmitted data
  2525. * is acked (RFC6298).
  2526. */
  2527. if (flag & FLAG_RETRANS_DATA_ACKED)
  2528. seq_rtt_us = -1L;
  2529. if (seq_rtt_us < 0)
  2530. seq_rtt_us = sack_rtt_us;
  2531. /* RTTM Rule: A TSecr value received in a segment is used to
  2532. * update the averaged RTT measurement only if the segment
  2533. * acknowledges some new data, i.e., only if it advances the
  2534. * left edge of the send window.
  2535. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2536. */
  2537. if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2538. flag & FLAG_ACKED)
  2539. seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - tp->rx_opt.rcv_tsecr);
  2540. if (seq_rtt_us < 0)
  2541. return false;
  2542. tcp_rtt_estimator(sk, seq_rtt_us);
  2543. tcp_set_rto(sk);
  2544. /* RFC6298: only reset backoff on valid RTT measurement. */
  2545. inet_csk(sk)->icsk_backoff = 0;
  2546. return true;
  2547. }
  2548. /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
  2549. static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp)
  2550. {
  2551. struct tcp_sock *tp = tcp_sk(sk);
  2552. long seq_rtt_us = -1L;
  2553. if (synack_stamp && !tp->total_retrans)
  2554. seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - synack_stamp);
  2555. /* If the ACK acks both the SYNACK and the (Fast Open'd) data packets
  2556. * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack()
  2557. */
  2558. if (!tp->srtt_us)
  2559. tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt_us, -1L);
  2560. }
  2561. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
  2562. {
  2563. const struct inet_connection_sock *icsk = inet_csk(sk);
  2564. icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
  2565. tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
  2566. }
  2567. /* Restart timer after forward progress on connection.
  2568. * RFC2988 recommends to restart timer to now+rto.
  2569. */
  2570. void tcp_rearm_rto(struct sock *sk)
  2571. {
  2572. const struct inet_connection_sock *icsk = inet_csk(sk);
  2573. struct tcp_sock *tp = tcp_sk(sk);
  2574. /* If the retrans timer is currently being used by Fast Open
  2575. * for SYN-ACK retrans purpose, stay put.
  2576. */
  2577. if (tp->fastopen_rsk)
  2578. return;
  2579. if (!tp->packets_out) {
  2580. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2581. } else {
  2582. u32 rto = inet_csk(sk)->icsk_rto;
  2583. /* Offset the time elapsed after installing regular RTO */
  2584. if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
  2585. icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
  2586. struct sk_buff *skb = tcp_write_queue_head(sk);
  2587. const u32 rto_time_stamp =
  2588. tcp_skb_timestamp(skb) + rto;
  2589. s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
  2590. /* delta may not be positive if the socket is locked
  2591. * when the retrans timer fires and is rescheduled.
  2592. */
  2593. if (delta > 0)
  2594. rto = delta;
  2595. }
  2596. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
  2597. TCP_RTO_MAX);
  2598. }
  2599. }
  2600. /* This function is called when the delayed ER timer fires. TCP enters
  2601. * fast recovery and performs fast-retransmit.
  2602. */
  2603. void tcp_resume_early_retransmit(struct sock *sk)
  2604. {
  2605. struct tcp_sock *tp = tcp_sk(sk);
  2606. tcp_rearm_rto(sk);
  2607. /* Stop if ER is disabled after the delayed ER timer is scheduled */
  2608. if (!tp->do_early_retrans)
  2609. return;
  2610. tcp_enter_recovery(sk, false);
  2611. tcp_update_scoreboard(sk, 1);
  2612. tcp_xmit_retransmit_queue(sk);
  2613. }
  2614. /* If we get here, the whole TSO packet has not been acked. */
  2615. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2616. {
  2617. struct tcp_sock *tp = tcp_sk(sk);
  2618. u32 packets_acked;
  2619. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2620. packets_acked = tcp_skb_pcount(skb);
  2621. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2622. return 0;
  2623. packets_acked -= tcp_skb_pcount(skb);
  2624. if (packets_acked) {
  2625. BUG_ON(tcp_skb_pcount(skb) == 0);
  2626. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2627. }
  2628. return packets_acked;
  2629. }
  2630. static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
  2631. u32 prior_snd_una)
  2632. {
  2633. const struct skb_shared_info *shinfo;
  2634. /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
  2635. if (likely(!(sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)))
  2636. return;
  2637. shinfo = skb_shinfo(skb);
  2638. if ((shinfo->tx_flags & SKBTX_ACK_TSTAMP) &&
  2639. between(shinfo->tskey, prior_snd_una, tcp_sk(sk)->snd_una - 1))
  2640. __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
  2641. }
  2642. /* Remove acknowledged frames from the retransmission queue. If our packet
  2643. * is before the ack sequence we can discard it as it's confirmed to have
  2644. * arrived at the other end.
  2645. */
  2646. static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
  2647. u32 prior_snd_una, long sack_rtt_us)
  2648. {
  2649. const struct inet_connection_sock *icsk = inet_csk(sk);
  2650. struct skb_mstamp first_ackt, last_ackt, now;
  2651. struct tcp_sock *tp = tcp_sk(sk);
  2652. u32 prior_sacked = tp->sacked_out;
  2653. u32 reord = tp->packets_out;
  2654. bool fully_acked = true;
  2655. long ca_seq_rtt_us = -1L;
  2656. long seq_rtt_us = -1L;
  2657. struct sk_buff *skb;
  2658. u32 pkts_acked = 0;
  2659. bool rtt_update;
  2660. int flag = 0;
  2661. first_ackt.v64 = 0;
  2662. while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
  2663. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2664. u8 sacked = scb->sacked;
  2665. u32 acked_pcount;
  2666. tcp_ack_tstamp(sk, skb, prior_snd_una);
  2667. /* Determine how many packets and what bytes were acked, tso and else */
  2668. if (after(scb->end_seq, tp->snd_una)) {
  2669. if (tcp_skb_pcount(skb) == 1 ||
  2670. !after(tp->snd_una, scb->seq))
  2671. break;
  2672. acked_pcount = tcp_tso_acked(sk, skb);
  2673. if (!acked_pcount)
  2674. break;
  2675. fully_acked = false;
  2676. } else {
  2677. /* Speedup tcp_unlink_write_queue() and next loop */
  2678. prefetchw(skb->next);
  2679. acked_pcount = tcp_skb_pcount(skb);
  2680. }
  2681. if (unlikely(sacked & TCPCB_RETRANS)) {
  2682. if (sacked & TCPCB_SACKED_RETRANS)
  2683. tp->retrans_out -= acked_pcount;
  2684. flag |= FLAG_RETRANS_DATA_ACKED;
  2685. } else {
  2686. last_ackt = skb->skb_mstamp;
  2687. WARN_ON_ONCE(last_ackt.v64 == 0);
  2688. if (!first_ackt.v64)
  2689. first_ackt = last_ackt;
  2690. if (!(sacked & TCPCB_SACKED_ACKED))
  2691. reord = min(pkts_acked, reord);
  2692. if (!after(scb->end_seq, tp->high_seq))
  2693. flag |= FLAG_ORIG_SACK_ACKED;
  2694. }
  2695. if (sacked & TCPCB_SACKED_ACKED)
  2696. tp->sacked_out -= acked_pcount;
  2697. if (sacked & TCPCB_LOST)
  2698. tp->lost_out -= acked_pcount;
  2699. tp->packets_out -= acked_pcount;
  2700. pkts_acked += acked_pcount;
  2701. /* Initial outgoing SYN's get put onto the write_queue
  2702. * just like anything else we transmit. It is not
  2703. * true data, and if we misinform our callers that
  2704. * this ACK acks real data, we will erroneously exit
  2705. * connection startup slow start one packet too
  2706. * quickly. This is severely frowned upon behavior.
  2707. */
  2708. if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
  2709. flag |= FLAG_DATA_ACKED;
  2710. } else {
  2711. flag |= FLAG_SYN_ACKED;
  2712. tp->retrans_stamp = 0;
  2713. }
  2714. if (!fully_acked)
  2715. break;
  2716. tcp_unlink_write_queue(skb, sk);
  2717. sk_wmem_free_skb(sk, skb);
  2718. if (unlikely(skb == tp->retransmit_skb_hint))
  2719. tp->retransmit_skb_hint = NULL;
  2720. if (unlikely(skb == tp->lost_skb_hint))
  2721. tp->lost_skb_hint = NULL;
  2722. }
  2723. if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
  2724. tp->snd_up = tp->snd_una;
  2725. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2726. flag |= FLAG_SACK_RENEGING;
  2727. skb_mstamp_get(&now);
  2728. if (likely(first_ackt.v64)) {
  2729. seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
  2730. ca_seq_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
  2731. }
  2732. rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us);
  2733. if (flag & FLAG_ACKED) {
  2734. const struct tcp_congestion_ops *ca_ops
  2735. = inet_csk(sk)->icsk_ca_ops;
  2736. tcp_rearm_rto(sk);
  2737. if (unlikely(icsk->icsk_mtup.probe_size &&
  2738. !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
  2739. tcp_mtup_probe_success(sk);
  2740. }
  2741. if (tcp_is_reno(tp)) {
  2742. tcp_remove_reno_sacks(sk, pkts_acked);
  2743. } else {
  2744. int delta;
  2745. /* Non-retransmitted hole got filled? That's reordering */
  2746. if (reord < prior_fackets)
  2747. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  2748. delta = tcp_is_fack(tp) ? pkts_acked :
  2749. prior_sacked - tp->sacked_out;
  2750. tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
  2751. }
  2752. tp->fackets_out -= min(pkts_acked, tp->fackets_out);
  2753. if (ca_ops->pkts_acked)
  2754. ca_ops->pkts_acked(sk, pkts_acked, ca_seq_rtt_us);
  2755. } else if (skb && rtt_update && sack_rtt_us >= 0 &&
  2756. sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
  2757. /* Do not re-arm RTO if the sack RTT is measured from data sent
  2758. * after when the head was last (re)transmitted. Otherwise the
  2759. * timeout may continue to extend in loss recovery.
  2760. */
  2761. tcp_rearm_rto(sk);
  2762. }
  2763. #if FASTRETRANS_DEBUG > 0
  2764. WARN_ON((int)tp->sacked_out < 0);
  2765. WARN_ON((int)tp->lost_out < 0);
  2766. WARN_ON((int)tp->retrans_out < 0);
  2767. if (!tp->packets_out && tcp_is_sack(tp)) {
  2768. icsk = inet_csk(sk);
  2769. if (tp->lost_out) {
  2770. pr_debug("Leak l=%u %d\n",
  2771. tp->lost_out, icsk->icsk_ca_state);
  2772. tp->lost_out = 0;
  2773. }
  2774. if (tp->sacked_out) {
  2775. pr_debug("Leak s=%u %d\n",
  2776. tp->sacked_out, icsk->icsk_ca_state);
  2777. tp->sacked_out = 0;
  2778. }
  2779. if (tp->retrans_out) {
  2780. pr_debug("Leak r=%u %d\n",
  2781. tp->retrans_out, icsk->icsk_ca_state);
  2782. tp->retrans_out = 0;
  2783. }
  2784. }
  2785. #endif
  2786. return flag;
  2787. }
  2788. static void tcp_ack_probe(struct sock *sk)
  2789. {
  2790. const struct tcp_sock *tp = tcp_sk(sk);
  2791. struct inet_connection_sock *icsk = inet_csk(sk);
  2792. /* Was it a usable window open? */
  2793. if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
  2794. icsk->icsk_backoff = 0;
  2795. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  2796. /* Socket must be waked up by subsequent tcp_data_snd_check().
  2797. * This function is not for random using!
  2798. */
  2799. } else {
  2800. unsigned long when = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
  2801. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  2802. when, TCP_RTO_MAX);
  2803. }
  2804. }
  2805. static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
  2806. {
  2807. return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  2808. inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
  2809. }
  2810. /* Decide wheather to run the increase function of congestion control. */
  2811. static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  2812. {
  2813. if (tcp_in_cwnd_reduction(sk))
  2814. return false;
  2815. /* If reordering is high then always grow cwnd whenever data is
  2816. * delivered regardless of its ordering. Otherwise stay conservative
  2817. * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
  2818. * new SACK or ECE mark may first advance cwnd here and later reduce
  2819. * cwnd in tcp_fastretrans_alert() based on more states.
  2820. */
  2821. if (tcp_sk(sk)->reordering > sysctl_tcp_reordering)
  2822. return flag & FLAG_FORWARD_PROGRESS;
  2823. return flag & FLAG_DATA_ACKED;
  2824. }
  2825. /* Check that window update is acceptable.
  2826. * The function assumes that snd_una<=ack<=snd_next.
  2827. */
  2828. static inline bool tcp_may_update_window(const struct tcp_sock *tp,
  2829. const u32 ack, const u32 ack_seq,
  2830. const u32 nwin)
  2831. {
  2832. return after(ack, tp->snd_una) ||
  2833. after(ack_seq, tp->snd_wl1) ||
  2834. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
  2835. }
  2836. /* Update our send window.
  2837. *
  2838. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  2839. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  2840. */
  2841. static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
  2842. u32 ack_seq)
  2843. {
  2844. struct tcp_sock *tp = tcp_sk(sk);
  2845. int flag = 0;
  2846. u32 nwin = ntohs(tcp_hdr(skb)->window);
  2847. if (likely(!tcp_hdr(skb)->syn))
  2848. nwin <<= tp->rx_opt.snd_wscale;
  2849. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  2850. flag |= FLAG_WIN_UPDATE;
  2851. tcp_update_wl(tp, ack_seq);
  2852. if (tp->snd_wnd != nwin) {
  2853. tp->snd_wnd = nwin;
  2854. /* Note, it is the only place, where
  2855. * fast path is recovered for sending TCP.
  2856. */
  2857. tp->pred_flags = 0;
  2858. tcp_fast_path_check(sk);
  2859. if (nwin > tp->max_window) {
  2860. tp->max_window = nwin;
  2861. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  2862. }
  2863. }
  2864. }
  2865. tp->snd_una = ack;
  2866. return flag;
  2867. }
  2868. /* RFC 5961 7 [ACK Throttling] */
  2869. static void tcp_send_challenge_ack(struct sock *sk)
  2870. {
  2871. /* unprotected vars, we dont care of overwrites */
  2872. static u32 challenge_timestamp;
  2873. static unsigned int challenge_count;
  2874. u32 now = jiffies / HZ;
  2875. if (now != challenge_timestamp) {
  2876. challenge_timestamp = now;
  2877. challenge_count = 0;
  2878. }
  2879. if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
  2880. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
  2881. tcp_send_ack(sk);
  2882. }
  2883. }
  2884. static void tcp_store_ts_recent(struct tcp_sock *tp)
  2885. {
  2886. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  2887. tp->rx_opt.ts_recent_stamp = get_seconds();
  2888. }
  2889. static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  2890. {
  2891. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  2892. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  2893. * extra check below makes sure this can only happen
  2894. * for pure ACK frames. -DaveM
  2895. *
  2896. * Not only, also it occurs for expired timestamps.
  2897. */
  2898. if (tcp_paws_check(&tp->rx_opt, 0))
  2899. tcp_store_ts_recent(tp);
  2900. }
  2901. }
  2902. /* This routine deals with acks during a TLP episode.
  2903. * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
  2904. */
  2905. static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
  2906. {
  2907. struct tcp_sock *tp = tcp_sk(sk);
  2908. bool is_tlp_dupack = (ack == tp->tlp_high_seq) &&
  2909. !(flag & (FLAG_SND_UNA_ADVANCED |
  2910. FLAG_NOT_DUP | FLAG_DATA_SACKED));
  2911. /* Mark the end of TLP episode on receiving TLP dupack or when
  2912. * ack is after tlp_high_seq.
  2913. */
  2914. if (is_tlp_dupack) {
  2915. tp->tlp_high_seq = 0;
  2916. return;
  2917. }
  2918. if (after(ack, tp->tlp_high_seq)) {
  2919. tp->tlp_high_seq = 0;
  2920. /* Don't reduce cwnd if DSACK arrives for TLP retrans. */
  2921. if (!(flag & FLAG_DSACKING_ACK)) {
  2922. tcp_init_cwnd_reduction(sk);
  2923. tcp_set_ca_state(sk, TCP_CA_CWR);
  2924. tcp_end_cwnd_reduction(sk);
  2925. tcp_try_keep_open(sk);
  2926. NET_INC_STATS_BH(sock_net(sk),
  2927. LINUX_MIB_TCPLOSSPROBERECOVERY);
  2928. }
  2929. }
  2930. }
  2931. static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
  2932. {
  2933. const struct inet_connection_sock *icsk = inet_csk(sk);
  2934. if (icsk->icsk_ca_ops->in_ack_event)
  2935. icsk->icsk_ca_ops->in_ack_event(sk, flags);
  2936. }
  2937. /* This routine deals with incoming acks, but not outgoing ones. */
  2938. static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
  2939. {
  2940. struct inet_connection_sock *icsk = inet_csk(sk);
  2941. struct tcp_sock *tp = tcp_sk(sk);
  2942. u32 prior_snd_una = tp->snd_una;
  2943. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  2944. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  2945. bool is_dupack = false;
  2946. u32 prior_fackets;
  2947. int prior_packets = tp->packets_out;
  2948. const int prior_unsacked = tp->packets_out - tp->sacked_out;
  2949. int acked = 0; /* Number of packets newly acked */
  2950. long sack_rtt_us = -1L;
  2951. /* We very likely will need to access write queue head. */
  2952. prefetchw(sk->sk_write_queue.next);
  2953. /* If the ack is older than previous acks
  2954. * then we can probably ignore it.
  2955. */
  2956. if (before(ack, prior_snd_una)) {
  2957. /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
  2958. if (before(ack, prior_snd_una - tp->max_window)) {
  2959. tcp_send_challenge_ack(sk);
  2960. return -1;
  2961. }
  2962. goto old_ack;
  2963. }
  2964. /* If the ack includes data we haven't sent yet, discard
  2965. * this segment (RFC793 Section 3.9).
  2966. */
  2967. if (after(ack, tp->snd_nxt))
  2968. goto invalid_ack;
  2969. if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
  2970. icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
  2971. tcp_rearm_rto(sk);
  2972. if (after(ack, prior_snd_una)) {
  2973. flag |= FLAG_SND_UNA_ADVANCED;
  2974. icsk->icsk_retransmits = 0;
  2975. }
  2976. prior_fackets = tp->fackets_out;
  2977. /* ts_recent update must be made after we are sure that the packet
  2978. * is in window.
  2979. */
  2980. if (flag & FLAG_UPDATE_TS_RECENT)
  2981. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  2982. if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  2983. /* Window is constant, pure forward advance.
  2984. * No more checks are required.
  2985. * Note, we use the fact that SND.UNA>=SND.WL2.
  2986. */
  2987. tcp_update_wl(tp, ack_seq);
  2988. tp->snd_una = ack;
  2989. flag |= FLAG_WIN_UPDATE;
  2990. tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
  2991. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
  2992. } else {
  2993. u32 ack_ev_flags = CA_ACK_SLOWPATH;
  2994. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  2995. flag |= FLAG_DATA;
  2996. else
  2997. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
  2998. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  2999. if (TCP_SKB_CB(skb)->sacked)
  3000. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
  3001. &sack_rtt_us);
  3002. if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
  3003. flag |= FLAG_ECE;
  3004. ack_ev_flags |= CA_ACK_ECE;
  3005. }
  3006. if (flag & FLAG_WIN_UPDATE)
  3007. ack_ev_flags |= CA_ACK_WIN_UPDATE;
  3008. tcp_in_ack_event(sk, ack_ev_flags);
  3009. }
  3010. /* We passed data and got it acked, remove any soft error
  3011. * log. Something worked...
  3012. */
  3013. sk->sk_err_soft = 0;
  3014. icsk->icsk_probes_out = 0;
  3015. tp->rcv_tstamp = tcp_time_stamp;
  3016. if (!prior_packets)
  3017. goto no_queue;
  3018. /* See if we can take anything off of the retransmit queue. */
  3019. acked = tp->packets_out;
  3020. flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una,
  3021. sack_rtt_us);
  3022. acked -= tp->packets_out;
  3023. /* Advance cwnd if state allows */
  3024. if (tcp_may_raise_cwnd(sk, flag))
  3025. tcp_cong_avoid(sk, ack, acked);
  3026. if (tcp_ack_is_dubious(sk, flag)) {
  3027. is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  3028. tcp_fastretrans_alert(sk, acked, prior_unsacked,
  3029. is_dupack, flag);
  3030. }
  3031. if (tp->tlp_high_seq)
  3032. tcp_process_tlp_ack(sk, ack, flag);
  3033. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
  3034. struct dst_entry *dst = __sk_dst_get(sk);
  3035. if (dst)
  3036. dst_confirm(dst);
  3037. }
  3038. if (icsk->icsk_pending == ICSK_TIME_RETRANS)
  3039. tcp_schedule_loss_probe(sk);
  3040. tcp_update_pacing_rate(sk);
  3041. return 1;
  3042. no_queue:
  3043. /* If data was DSACKed, see if we can undo a cwnd reduction. */
  3044. if (flag & FLAG_DSACKING_ACK)
  3045. tcp_fastretrans_alert(sk, acked, prior_unsacked,
  3046. is_dupack, flag);
  3047. /* If this ack opens up a zero window, clear backoff. It was
  3048. * being used to time the probes, and is probably far higher than
  3049. * it needs to be for normal retransmission.
  3050. */
  3051. if (tcp_send_head(sk))
  3052. tcp_ack_probe(sk);
  3053. if (tp->tlp_high_seq)
  3054. tcp_process_tlp_ack(sk, ack, flag);
  3055. return 1;
  3056. invalid_ack:
  3057. SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3058. return -1;
  3059. old_ack:
  3060. /* If data was SACKed, tag it and see if we should send more data.
  3061. * If data was DSACKed, see if we can undo a cwnd reduction.
  3062. */
  3063. if (TCP_SKB_CB(skb)->sacked) {
  3064. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
  3065. &sack_rtt_us);
  3066. tcp_fastretrans_alert(sk, acked, prior_unsacked,
  3067. is_dupack, flag);
  3068. }
  3069. SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3070. return 0;
  3071. }
  3072. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  3073. * But, this can also be called on packets in the established flow when
  3074. * the fast version below fails.
  3075. */
  3076. void tcp_parse_options(const struct sk_buff *skb,
  3077. struct tcp_options_received *opt_rx, int estab,
  3078. struct tcp_fastopen_cookie *foc)
  3079. {
  3080. const unsigned char *ptr;
  3081. const struct tcphdr *th = tcp_hdr(skb);
  3082. int length = (th->doff * 4) - sizeof(struct tcphdr);
  3083. ptr = (const unsigned char *)(th + 1);
  3084. opt_rx->saw_tstamp = 0;
  3085. while (length > 0) {
  3086. int opcode = *ptr++;
  3087. int opsize;
  3088. switch (opcode) {
  3089. case TCPOPT_EOL:
  3090. return;
  3091. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  3092. length--;
  3093. continue;
  3094. default:
  3095. opsize = *ptr++;
  3096. if (opsize < 2) /* "silly options" */
  3097. return;
  3098. if (opsize > length)
  3099. return; /* don't parse partial options */
  3100. switch (opcode) {
  3101. case TCPOPT_MSS:
  3102. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  3103. u16 in_mss = get_unaligned_be16(ptr);
  3104. if (in_mss) {
  3105. if (opt_rx->user_mss &&
  3106. opt_rx->user_mss < in_mss)
  3107. in_mss = opt_rx->user_mss;
  3108. opt_rx->mss_clamp = in_mss;
  3109. }
  3110. }
  3111. break;
  3112. case TCPOPT_WINDOW:
  3113. if (opsize == TCPOLEN_WINDOW && th->syn &&
  3114. !estab && sysctl_tcp_window_scaling) {
  3115. __u8 snd_wscale = *(__u8 *)ptr;
  3116. opt_rx->wscale_ok = 1;
  3117. if (snd_wscale > 14) {
  3118. net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
  3119. __func__,
  3120. snd_wscale);
  3121. snd_wscale = 14;
  3122. }
  3123. opt_rx->snd_wscale = snd_wscale;
  3124. }
  3125. break;
  3126. case TCPOPT_TIMESTAMP:
  3127. if ((opsize == TCPOLEN_TIMESTAMP) &&
  3128. ((estab && opt_rx->tstamp_ok) ||
  3129. (!estab && sysctl_tcp_timestamps))) {
  3130. opt_rx->saw_tstamp = 1;
  3131. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  3132. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  3133. }
  3134. break;
  3135. case TCPOPT_SACK_PERM:
  3136. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  3137. !estab && sysctl_tcp_sack) {
  3138. opt_rx->sack_ok = TCP_SACK_SEEN;
  3139. tcp_sack_reset(opt_rx);
  3140. }
  3141. break;
  3142. case TCPOPT_SACK:
  3143. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  3144. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  3145. opt_rx->sack_ok) {
  3146. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  3147. }
  3148. break;
  3149. #ifdef CONFIG_TCP_MD5SIG
  3150. case TCPOPT_MD5SIG:
  3151. /*
  3152. * The MD5 Hash has already been
  3153. * checked (see tcp_v{4,6}_do_rcv()).
  3154. */
  3155. break;
  3156. #endif
  3157. case TCPOPT_EXP:
  3158. /* Fast Open option shares code 254 using a
  3159. * 16 bits magic number. It's valid only in
  3160. * SYN or SYN-ACK with an even size.
  3161. */
  3162. if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
  3163. get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
  3164. foc == NULL || !th->syn || (opsize & 1))
  3165. break;
  3166. foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
  3167. if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
  3168. foc->len <= TCP_FASTOPEN_COOKIE_MAX)
  3169. memcpy(foc->val, ptr + 2, foc->len);
  3170. else if (foc->len != 0)
  3171. foc->len = -1;
  3172. break;
  3173. }
  3174. ptr += opsize-2;
  3175. length -= opsize;
  3176. }
  3177. }
  3178. }
  3179. EXPORT_SYMBOL(tcp_parse_options);
  3180. static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
  3181. {
  3182. const __be32 *ptr = (const __be32 *)(th + 1);
  3183. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3184. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  3185. tp->rx_opt.saw_tstamp = 1;
  3186. ++ptr;
  3187. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3188. ++ptr;
  3189. if (*ptr)
  3190. tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
  3191. else
  3192. tp->rx_opt.rcv_tsecr = 0;
  3193. return true;
  3194. }
  3195. return false;
  3196. }
  3197. /* Fast parse options. This hopes to only see timestamps.
  3198. * If it is wrong it falls back on tcp_parse_options().
  3199. */
  3200. static bool tcp_fast_parse_options(const struct sk_buff *skb,
  3201. const struct tcphdr *th, struct tcp_sock *tp)
  3202. {
  3203. /* In the spirit of fast parsing, compare doff directly to constant
  3204. * values. Because equality is used, short doff can be ignored here.
  3205. */
  3206. if (th->doff == (sizeof(*th) / 4)) {
  3207. tp->rx_opt.saw_tstamp = 0;
  3208. return false;
  3209. } else if (tp->rx_opt.tstamp_ok &&
  3210. th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
  3211. if (tcp_parse_aligned_timestamp(tp, th))
  3212. return true;
  3213. }
  3214. tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
  3215. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  3216. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  3217. return true;
  3218. }
  3219. #ifdef CONFIG_TCP_MD5SIG
  3220. /*
  3221. * Parse MD5 Signature option
  3222. */
  3223. const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
  3224. {
  3225. int length = (th->doff << 2) - sizeof(*th);
  3226. const u8 *ptr = (const u8 *)(th + 1);
  3227. /* If the TCP option is too short, we can short cut */
  3228. if (length < TCPOLEN_MD5SIG)
  3229. return NULL;
  3230. while (length > 0) {
  3231. int opcode = *ptr++;
  3232. int opsize;
  3233. switch (opcode) {
  3234. case TCPOPT_EOL:
  3235. return NULL;
  3236. case TCPOPT_NOP:
  3237. length--;
  3238. continue;
  3239. default:
  3240. opsize = *ptr++;
  3241. if (opsize < 2 || opsize > length)
  3242. return NULL;
  3243. if (opcode == TCPOPT_MD5SIG)
  3244. return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
  3245. }
  3246. ptr += opsize - 2;
  3247. length -= opsize;
  3248. }
  3249. return NULL;
  3250. }
  3251. EXPORT_SYMBOL(tcp_parse_md5sig_option);
  3252. #endif
  3253. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3254. *
  3255. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3256. * it can pass through stack. So, the following predicate verifies that
  3257. * this segment is not used for anything but congestion avoidance or
  3258. * fast retransmit. Moreover, we even are able to eliminate most of such
  3259. * second order effects, if we apply some small "replay" window (~RTO)
  3260. * to timestamp space.
  3261. *
  3262. * All these measures still do not guarantee that we reject wrapped ACKs
  3263. * on networks with high bandwidth, when sequence space is recycled fastly,
  3264. * but it guarantees that such events will be very rare and do not affect
  3265. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3266. * buggy extension.
  3267. *
  3268. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3269. * states that events when retransmit arrives after original data are rare.
  3270. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3271. * the biggest problem on large power networks even with minor reordering.
  3272. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3273. * up to bandwidth of 18Gigabit/sec. 8) ]
  3274. */
  3275. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3276. {
  3277. const struct tcp_sock *tp = tcp_sk(sk);
  3278. const struct tcphdr *th = tcp_hdr(skb);
  3279. u32 seq = TCP_SKB_CB(skb)->seq;
  3280. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3281. return (/* 1. Pure ACK with correct sequence number. */
  3282. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3283. /* 2. ... and duplicate ACK. */
  3284. ack == tp->snd_una &&
  3285. /* 3. ... and does not update window. */
  3286. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3287. /* 4. ... and sits in replay window. */
  3288. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3289. }
  3290. static inline bool tcp_paws_discard(const struct sock *sk,
  3291. const struct sk_buff *skb)
  3292. {
  3293. const struct tcp_sock *tp = tcp_sk(sk);
  3294. return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
  3295. !tcp_disordered_ack(sk, skb);
  3296. }
  3297. /* Check segment sequence number for validity.
  3298. *
  3299. * Segment controls are considered valid, if the segment
  3300. * fits to the window after truncation to the window. Acceptability
  3301. * of data (and SYN, FIN, of course) is checked separately.
  3302. * See tcp_data_queue(), for example.
  3303. *
  3304. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3305. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3306. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3307. * (borrowed from freebsd)
  3308. */
  3309. static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
  3310. {
  3311. return !before(end_seq, tp->rcv_wup) &&
  3312. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3313. }
  3314. /* When we get a reset we do this. */
  3315. void tcp_reset(struct sock *sk)
  3316. {
  3317. /* We want the right error as BSD sees it (and indeed as we do). */
  3318. switch (sk->sk_state) {
  3319. case TCP_SYN_SENT:
  3320. sk->sk_err = ECONNREFUSED;
  3321. break;
  3322. case TCP_CLOSE_WAIT:
  3323. sk->sk_err = EPIPE;
  3324. break;
  3325. case TCP_CLOSE:
  3326. return;
  3327. default:
  3328. sk->sk_err = ECONNRESET;
  3329. }
  3330. /* This barrier is coupled with smp_rmb() in tcp_poll() */
  3331. smp_wmb();
  3332. if (!sock_flag(sk, SOCK_DEAD))
  3333. sk->sk_error_report(sk);
  3334. tcp_done(sk);
  3335. }
  3336. /*
  3337. * Process the FIN bit. This now behaves as it is supposed to work
  3338. * and the FIN takes effect when it is validly part of sequence
  3339. * space. Not before when we get holes.
  3340. *
  3341. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3342. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3343. * TIME-WAIT)
  3344. *
  3345. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3346. * close and we go into CLOSING (and later onto TIME-WAIT)
  3347. *
  3348. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3349. */
  3350. static void tcp_fin(struct sock *sk)
  3351. {
  3352. struct tcp_sock *tp = tcp_sk(sk);
  3353. const struct dst_entry *dst;
  3354. inet_csk_schedule_ack(sk);
  3355. sk->sk_shutdown |= RCV_SHUTDOWN;
  3356. sock_set_flag(sk, SOCK_DONE);
  3357. switch (sk->sk_state) {
  3358. case TCP_SYN_RECV:
  3359. case TCP_ESTABLISHED:
  3360. /* Move to CLOSE_WAIT */
  3361. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3362. dst = __sk_dst_get(sk);
  3363. if (!dst || !dst_metric(dst, RTAX_QUICKACK))
  3364. inet_csk(sk)->icsk_ack.pingpong = 1;
  3365. break;
  3366. case TCP_CLOSE_WAIT:
  3367. case TCP_CLOSING:
  3368. /* Received a retransmission of the FIN, do
  3369. * nothing.
  3370. */
  3371. break;
  3372. case TCP_LAST_ACK:
  3373. /* RFC793: Remain in the LAST-ACK state. */
  3374. break;
  3375. case TCP_FIN_WAIT1:
  3376. /* This case occurs when a simultaneous close
  3377. * happens, we must ack the received FIN and
  3378. * enter the CLOSING state.
  3379. */
  3380. tcp_send_ack(sk);
  3381. tcp_set_state(sk, TCP_CLOSING);
  3382. break;
  3383. case TCP_FIN_WAIT2:
  3384. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3385. tcp_send_ack(sk);
  3386. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3387. break;
  3388. default:
  3389. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3390. * cases we should never reach this piece of code.
  3391. */
  3392. pr_err("%s: Impossible, sk->sk_state=%d\n",
  3393. __func__, sk->sk_state);
  3394. break;
  3395. }
  3396. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3397. * Probably, we should reset in this case. For now drop them.
  3398. */
  3399. __skb_queue_purge(&tp->out_of_order_queue);
  3400. if (tcp_is_sack(tp))
  3401. tcp_sack_reset(&tp->rx_opt);
  3402. sk_mem_reclaim(sk);
  3403. if (!sock_flag(sk, SOCK_DEAD)) {
  3404. sk->sk_state_change(sk);
  3405. /* Do not send POLL_HUP for half duplex close. */
  3406. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3407. sk->sk_state == TCP_CLOSE)
  3408. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3409. else
  3410. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3411. }
  3412. }
  3413. static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3414. u32 end_seq)
  3415. {
  3416. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3417. if (before(seq, sp->start_seq))
  3418. sp->start_seq = seq;
  3419. if (after(end_seq, sp->end_seq))
  3420. sp->end_seq = end_seq;
  3421. return true;
  3422. }
  3423. return false;
  3424. }
  3425. static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
  3426. {
  3427. struct tcp_sock *tp = tcp_sk(sk);
  3428. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3429. int mib_idx;
  3430. if (before(seq, tp->rcv_nxt))
  3431. mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
  3432. else
  3433. mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
  3434. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  3435. tp->rx_opt.dsack = 1;
  3436. tp->duplicate_sack[0].start_seq = seq;
  3437. tp->duplicate_sack[0].end_seq = end_seq;
  3438. }
  3439. }
  3440. static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
  3441. {
  3442. struct tcp_sock *tp = tcp_sk(sk);
  3443. if (!tp->rx_opt.dsack)
  3444. tcp_dsack_set(sk, seq, end_seq);
  3445. else
  3446. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3447. }
  3448. static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
  3449. {
  3450. struct tcp_sock *tp = tcp_sk(sk);
  3451. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3452. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3453. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3454. tcp_enter_quickack_mode(sk);
  3455. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3456. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3457. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3458. end_seq = tp->rcv_nxt;
  3459. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
  3460. }
  3461. }
  3462. tcp_send_ack(sk);
  3463. }
  3464. /* These routines update the SACK block as out-of-order packets arrive or
  3465. * in-order packets close up the sequence space.
  3466. */
  3467. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3468. {
  3469. int this_sack;
  3470. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3471. struct tcp_sack_block *swalk = sp + 1;
  3472. /* See if the recent change to the first SACK eats into
  3473. * or hits the sequence space of other SACK blocks, if so coalesce.
  3474. */
  3475. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3476. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3477. int i;
  3478. /* Zap SWALK, by moving every further SACK up by one slot.
  3479. * Decrease num_sacks.
  3480. */
  3481. tp->rx_opt.num_sacks--;
  3482. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3483. sp[i] = sp[i + 1];
  3484. continue;
  3485. }
  3486. this_sack++, swalk++;
  3487. }
  3488. }
  3489. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3490. {
  3491. struct tcp_sock *tp = tcp_sk(sk);
  3492. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3493. int cur_sacks = tp->rx_opt.num_sacks;
  3494. int this_sack;
  3495. if (!cur_sacks)
  3496. goto new_sack;
  3497. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3498. if (tcp_sack_extend(sp, seq, end_seq)) {
  3499. /* Rotate this_sack to the first one. */
  3500. for (; this_sack > 0; this_sack--, sp--)
  3501. swap(*sp, *(sp - 1));
  3502. if (cur_sacks > 1)
  3503. tcp_sack_maybe_coalesce(tp);
  3504. return;
  3505. }
  3506. }
  3507. /* Could not find an adjacent existing SACK, build a new one,
  3508. * put it at the front, and shift everyone else down. We
  3509. * always know there is at least one SACK present already here.
  3510. *
  3511. * If the sack array is full, forget about the last one.
  3512. */
  3513. if (this_sack >= TCP_NUM_SACKS) {
  3514. this_sack--;
  3515. tp->rx_opt.num_sacks--;
  3516. sp--;
  3517. }
  3518. for (; this_sack > 0; this_sack--, sp--)
  3519. *sp = *(sp - 1);
  3520. new_sack:
  3521. /* Build the new head SACK, and we're done. */
  3522. sp->start_seq = seq;
  3523. sp->end_seq = end_seq;
  3524. tp->rx_opt.num_sacks++;
  3525. }
  3526. /* RCV.NXT advances, some SACKs should be eaten. */
  3527. static void tcp_sack_remove(struct tcp_sock *tp)
  3528. {
  3529. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3530. int num_sacks = tp->rx_opt.num_sacks;
  3531. int this_sack;
  3532. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3533. if (skb_queue_empty(&tp->out_of_order_queue)) {
  3534. tp->rx_opt.num_sacks = 0;
  3535. return;
  3536. }
  3537. for (this_sack = 0; this_sack < num_sacks;) {
  3538. /* Check if the start of the sack is covered by RCV.NXT. */
  3539. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3540. int i;
  3541. /* RCV.NXT must cover all the block! */
  3542. WARN_ON(before(tp->rcv_nxt, sp->end_seq));
  3543. /* Zap this SACK, by moving forward any other SACKS. */
  3544. for (i = this_sack+1; i < num_sacks; i++)
  3545. tp->selective_acks[i-1] = tp->selective_acks[i];
  3546. num_sacks--;
  3547. continue;
  3548. }
  3549. this_sack++;
  3550. sp++;
  3551. }
  3552. tp->rx_opt.num_sacks = num_sacks;
  3553. }
  3554. /**
  3555. * tcp_try_coalesce - try to merge skb to prior one
  3556. * @sk: socket
  3557. * @to: prior buffer
  3558. * @from: buffer to add in queue
  3559. * @fragstolen: pointer to boolean
  3560. *
  3561. * Before queueing skb @from after @to, try to merge them
  3562. * to reduce overall memory use and queue lengths, if cost is small.
  3563. * Packets in ofo or receive queues can stay a long time.
  3564. * Better try to coalesce them right now to avoid future collapses.
  3565. * Returns true if caller should free @from instead of queueing it
  3566. */
  3567. static bool tcp_try_coalesce(struct sock *sk,
  3568. struct sk_buff *to,
  3569. struct sk_buff *from,
  3570. bool *fragstolen)
  3571. {
  3572. int delta;
  3573. *fragstolen = false;
  3574. /* Its possible this segment overlaps with prior segment in queue */
  3575. if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
  3576. return false;
  3577. if (!skb_try_coalesce(to, from, fragstolen, &delta))
  3578. return false;
  3579. atomic_add(delta, &sk->sk_rmem_alloc);
  3580. sk_mem_charge(sk, delta);
  3581. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
  3582. TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
  3583. TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
  3584. TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
  3585. return true;
  3586. }
  3587. /* This one checks to see if we can put data from the
  3588. * out_of_order queue into the receive_queue.
  3589. */
  3590. static void tcp_ofo_queue(struct sock *sk)
  3591. {
  3592. struct tcp_sock *tp = tcp_sk(sk);
  3593. __u32 dsack_high = tp->rcv_nxt;
  3594. struct sk_buff *skb, *tail;
  3595. bool fragstolen, eaten;
  3596. while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
  3597. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3598. break;
  3599. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3600. __u32 dsack = dsack_high;
  3601. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3602. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3603. tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
  3604. }
  3605. __skb_unlink(skb, &tp->out_of_order_queue);
  3606. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3607. SOCK_DEBUG(sk, "ofo packet was already received\n");
  3608. __kfree_skb(skb);
  3609. continue;
  3610. }
  3611. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3612. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3613. TCP_SKB_CB(skb)->end_seq);
  3614. tail = skb_peek_tail(&sk->sk_receive_queue);
  3615. eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
  3616. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3617. if (!eaten)
  3618. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3619. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  3620. tcp_fin(sk);
  3621. if (eaten)
  3622. kfree_skb_partial(skb, fragstolen);
  3623. }
  3624. }
  3625. static bool tcp_prune_ofo_queue(struct sock *sk);
  3626. static int tcp_prune_queue(struct sock *sk);
  3627. static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
  3628. unsigned int size)
  3629. {
  3630. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3631. !sk_rmem_schedule(sk, skb, size)) {
  3632. if (tcp_prune_queue(sk) < 0)
  3633. return -1;
  3634. if (!sk_rmem_schedule(sk, skb, size)) {
  3635. if (!tcp_prune_ofo_queue(sk))
  3636. return -1;
  3637. if (!sk_rmem_schedule(sk, skb, size))
  3638. return -1;
  3639. }
  3640. }
  3641. return 0;
  3642. }
  3643. static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
  3644. {
  3645. struct tcp_sock *tp = tcp_sk(sk);
  3646. struct sk_buff *skb1;
  3647. u32 seq, end_seq;
  3648. tcp_ecn_check_ce(tp, skb);
  3649. if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
  3650. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
  3651. __kfree_skb(skb);
  3652. return;
  3653. }
  3654. /* Disable header prediction. */
  3655. tp->pred_flags = 0;
  3656. inet_csk_schedule_ack(sk);
  3657. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
  3658. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3659. tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3660. skb1 = skb_peek_tail(&tp->out_of_order_queue);
  3661. if (!skb1) {
  3662. /* Initial out of order segment, build 1 SACK. */
  3663. if (tcp_is_sack(tp)) {
  3664. tp->rx_opt.num_sacks = 1;
  3665. tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
  3666. tp->selective_acks[0].end_seq =
  3667. TCP_SKB_CB(skb)->end_seq;
  3668. }
  3669. __skb_queue_head(&tp->out_of_order_queue, skb);
  3670. goto end;
  3671. }
  3672. seq = TCP_SKB_CB(skb)->seq;
  3673. end_seq = TCP_SKB_CB(skb)->end_seq;
  3674. if (seq == TCP_SKB_CB(skb1)->end_seq) {
  3675. bool fragstolen;
  3676. if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
  3677. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3678. } else {
  3679. tcp_grow_window(sk, skb);
  3680. kfree_skb_partial(skb, fragstolen);
  3681. skb = NULL;
  3682. }
  3683. if (!tp->rx_opt.num_sacks ||
  3684. tp->selective_acks[0].end_seq != seq)
  3685. goto add_sack;
  3686. /* Common case: data arrive in order after hole. */
  3687. tp->selective_acks[0].end_seq = end_seq;
  3688. goto end;
  3689. }
  3690. /* Find place to insert this segment. */
  3691. while (1) {
  3692. if (!after(TCP_SKB_CB(skb1)->seq, seq))
  3693. break;
  3694. if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
  3695. skb1 = NULL;
  3696. break;
  3697. }
  3698. skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
  3699. }
  3700. /* Do skb overlap to previous one? */
  3701. if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  3702. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3703. /* All the bits are present. Drop. */
  3704. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3705. __kfree_skb(skb);
  3706. skb = NULL;
  3707. tcp_dsack_set(sk, seq, end_seq);
  3708. goto add_sack;
  3709. }
  3710. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  3711. /* Partial overlap. */
  3712. tcp_dsack_set(sk, seq,
  3713. TCP_SKB_CB(skb1)->end_seq);
  3714. } else {
  3715. if (skb_queue_is_first(&tp->out_of_order_queue,
  3716. skb1))
  3717. skb1 = NULL;
  3718. else
  3719. skb1 = skb_queue_prev(
  3720. &tp->out_of_order_queue,
  3721. skb1);
  3722. }
  3723. }
  3724. if (!skb1)
  3725. __skb_queue_head(&tp->out_of_order_queue, skb);
  3726. else
  3727. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3728. /* And clean segments covered by new one as whole. */
  3729. while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
  3730. skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
  3731. if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
  3732. break;
  3733. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3734. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3735. end_seq);
  3736. break;
  3737. }
  3738. __skb_unlink(skb1, &tp->out_of_order_queue);
  3739. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3740. TCP_SKB_CB(skb1)->end_seq);
  3741. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3742. __kfree_skb(skb1);
  3743. }
  3744. add_sack:
  3745. if (tcp_is_sack(tp))
  3746. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  3747. end:
  3748. if (skb) {
  3749. tcp_grow_window(sk, skb);
  3750. skb_set_owner_r(skb, sk);
  3751. }
  3752. }
  3753. static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
  3754. bool *fragstolen)
  3755. {
  3756. int eaten;
  3757. struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
  3758. __skb_pull(skb, hdrlen);
  3759. eaten = (tail &&
  3760. tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
  3761. tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3762. if (!eaten) {
  3763. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3764. skb_set_owner_r(skb, sk);
  3765. }
  3766. return eaten;
  3767. }
  3768. int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
  3769. {
  3770. struct sk_buff *skb;
  3771. bool fragstolen;
  3772. if (size == 0)
  3773. return 0;
  3774. skb = alloc_skb(size, sk->sk_allocation);
  3775. if (!skb)
  3776. goto err;
  3777. if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
  3778. goto err_free;
  3779. if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
  3780. goto err_free;
  3781. TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
  3782. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
  3783. TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
  3784. if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
  3785. WARN_ON_ONCE(fragstolen); /* should not happen */
  3786. __kfree_skb(skb);
  3787. }
  3788. return size;
  3789. err_free:
  3790. kfree_skb(skb);
  3791. err:
  3792. return -ENOMEM;
  3793. }
  3794. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  3795. {
  3796. struct tcp_sock *tp = tcp_sk(sk);
  3797. int eaten = -1;
  3798. bool fragstolen = false;
  3799. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
  3800. goto drop;
  3801. skb_dst_drop(skb);
  3802. __skb_pull(skb, tcp_hdr(skb)->doff * 4);
  3803. tcp_ecn_accept_cwr(tp, skb);
  3804. tp->rx_opt.dsack = 0;
  3805. /* Queue data for delivery to the user.
  3806. * Packets in sequence go to the receive queue.
  3807. * Out of sequence packets to the out_of_order_queue.
  3808. */
  3809. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  3810. if (tcp_receive_window(tp) == 0)
  3811. goto out_of_window;
  3812. /* Ok. In sequence. In window. */
  3813. if (tp->ucopy.task == current &&
  3814. tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
  3815. sock_owned_by_user(sk) && !tp->urg_data) {
  3816. int chunk = min_t(unsigned int, skb->len,
  3817. tp->ucopy.len);
  3818. __set_current_state(TASK_RUNNING);
  3819. local_bh_enable();
  3820. if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
  3821. tp->ucopy.len -= chunk;
  3822. tp->copied_seq += chunk;
  3823. eaten = (chunk == skb->len);
  3824. tcp_rcv_space_adjust(sk);
  3825. }
  3826. local_bh_disable();
  3827. }
  3828. if (eaten <= 0) {
  3829. queue_and_out:
  3830. if (eaten < 0 &&
  3831. tcp_try_rmem_schedule(sk, skb, skb->truesize))
  3832. goto drop;
  3833. eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
  3834. }
  3835. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3836. if (skb->len)
  3837. tcp_event_data_recv(sk, skb);
  3838. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  3839. tcp_fin(sk);
  3840. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  3841. tcp_ofo_queue(sk);
  3842. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  3843. * gap in queue is filled.
  3844. */
  3845. if (skb_queue_empty(&tp->out_of_order_queue))
  3846. inet_csk(sk)->icsk_ack.pingpong = 0;
  3847. }
  3848. if (tp->rx_opt.num_sacks)
  3849. tcp_sack_remove(tp);
  3850. tcp_fast_path_check(sk);
  3851. if (eaten > 0)
  3852. kfree_skb_partial(skb, fragstolen);
  3853. if (!sock_flag(sk, SOCK_DEAD))
  3854. sk->sk_data_ready(sk);
  3855. return;
  3856. }
  3857. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3858. /* A retransmit, 2nd most common case. Force an immediate ack. */
  3859. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3860. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3861. out_of_window:
  3862. tcp_enter_quickack_mode(sk);
  3863. inet_csk_schedule_ack(sk);
  3864. drop:
  3865. __kfree_skb(skb);
  3866. return;
  3867. }
  3868. /* Out of window. F.e. zero window probe. */
  3869. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  3870. goto out_of_window;
  3871. tcp_enter_quickack_mode(sk);
  3872. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3873. /* Partial packet, seq < rcv_next < end_seq */
  3874. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  3875. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3876. TCP_SKB_CB(skb)->end_seq);
  3877. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  3878. /* If window is closed, drop tail of packet. But after
  3879. * remembering D-SACK for its head made in previous line.
  3880. */
  3881. if (!tcp_receive_window(tp))
  3882. goto out_of_window;
  3883. goto queue_and_out;
  3884. }
  3885. tcp_data_queue_ofo(sk, skb);
  3886. }
  3887. static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
  3888. struct sk_buff_head *list)
  3889. {
  3890. struct sk_buff *next = NULL;
  3891. if (!skb_queue_is_last(list, skb))
  3892. next = skb_queue_next(list, skb);
  3893. __skb_unlink(skb, list);
  3894. __kfree_skb(skb);
  3895. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
  3896. return next;
  3897. }
  3898. /* Collapse contiguous sequence of skbs head..tail with
  3899. * sequence numbers start..end.
  3900. *
  3901. * If tail is NULL, this means until the end of the list.
  3902. *
  3903. * Segments with FIN/SYN are not collapsed (only because this
  3904. * simplifies code)
  3905. */
  3906. static void
  3907. tcp_collapse(struct sock *sk, struct sk_buff_head *list,
  3908. struct sk_buff *head, struct sk_buff *tail,
  3909. u32 start, u32 end)
  3910. {
  3911. struct sk_buff *skb, *n;
  3912. bool end_of_skbs;
  3913. /* First, check that queue is collapsible and find
  3914. * the point where collapsing can be useful. */
  3915. skb = head;
  3916. restart:
  3917. end_of_skbs = true;
  3918. skb_queue_walk_from_safe(list, skb, n) {
  3919. if (skb == tail)
  3920. break;
  3921. /* No new bits? It is possible on ofo queue. */
  3922. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  3923. skb = tcp_collapse_one(sk, skb, list);
  3924. if (!skb)
  3925. break;
  3926. goto restart;
  3927. }
  3928. /* The first skb to collapse is:
  3929. * - not SYN/FIN and
  3930. * - bloated or contains data before "start" or
  3931. * overlaps to the next one.
  3932. */
  3933. if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
  3934. (tcp_win_from_space(skb->truesize) > skb->len ||
  3935. before(TCP_SKB_CB(skb)->seq, start))) {
  3936. end_of_skbs = false;
  3937. break;
  3938. }
  3939. if (!skb_queue_is_last(list, skb)) {
  3940. struct sk_buff *next = skb_queue_next(list, skb);
  3941. if (next != tail &&
  3942. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
  3943. end_of_skbs = false;
  3944. break;
  3945. }
  3946. }
  3947. /* Decided to skip this, advance start seq. */
  3948. start = TCP_SKB_CB(skb)->end_seq;
  3949. }
  3950. if (end_of_skbs ||
  3951. (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
  3952. return;
  3953. while (before(start, end)) {
  3954. int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
  3955. struct sk_buff *nskb;
  3956. nskb = alloc_skb(copy, GFP_ATOMIC);
  3957. if (!nskb)
  3958. return;
  3959. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  3960. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  3961. __skb_queue_before(list, skb, nskb);
  3962. skb_set_owner_r(nskb, sk);
  3963. /* Copy data, releasing collapsed skbs. */
  3964. while (copy > 0) {
  3965. int offset = start - TCP_SKB_CB(skb)->seq;
  3966. int size = TCP_SKB_CB(skb)->end_seq - start;
  3967. BUG_ON(offset < 0);
  3968. if (size > 0) {
  3969. size = min(copy, size);
  3970. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  3971. BUG();
  3972. TCP_SKB_CB(nskb)->end_seq += size;
  3973. copy -= size;
  3974. start += size;
  3975. }
  3976. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  3977. skb = tcp_collapse_one(sk, skb, list);
  3978. if (!skb ||
  3979. skb == tail ||
  3980. (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
  3981. return;
  3982. }
  3983. }
  3984. }
  3985. }
  3986. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  3987. * and tcp_collapse() them until all the queue is collapsed.
  3988. */
  3989. static void tcp_collapse_ofo_queue(struct sock *sk)
  3990. {
  3991. struct tcp_sock *tp = tcp_sk(sk);
  3992. struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
  3993. struct sk_buff *head;
  3994. u32 start, end;
  3995. if (skb == NULL)
  3996. return;
  3997. start = TCP_SKB_CB(skb)->seq;
  3998. end = TCP_SKB_CB(skb)->end_seq;
  3999. head = skb;
  4000. for (;;) {
  4001. struct sk_buff *next = NULL;
  4002. if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
  4003. next = skb_queue_next(&tp->out_of_order_queue, skb);
  4004. skb = next;
  4005. /* Segment is terminated when we see gap or when
  4006. * we are at the end of all the queue. */
  4007. if (!skb ||
  4008. after(TCP_SKB_CB(skb)->seq, end) ||
  4009. before(TCP_SKB_CB(skb)->end_seq, start)) {
  4010. tcp_collapse(sk, &tp->out_of_order_queue,
  4011. head, skb, start, end);
  4012. head = skb;
  4013. if (!skb)
  4014. break;
  4015. /* Start new segment */
  4016. start = TCP_SKB_CB(skb)->seq;
  4017. end = TCP_SKB_CB(skb)->end_seq;
  4018. } else {
  4019. if (before(TCP_SKB_CB(skb)->seq, start))
  4020. start = TCP_SKB_CB(skb)->seq;
  4021. if (after(TCP_SKB_CB(skb)->end_seq, end))
  4022. end = TCP_SKB_CB(skb)->end_seq;
  4023. }
  4024. }
  4025. }
  4026. /*
  4027. * Purge the out-of-order queue.
  4028. * Return true if queue was pruned.
  4029. */
  4030. static bool tcp_prune_ofo_queue(struct sock *sk)
  4031. {
  4032. struct tcp_sock *tp = tcp_sk(sk);
  4033. bool res = false;
  4034. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  4035. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
  4036. __skb_queue_purge(&tp->out_of_order_queue);
  4037. /* Reset SACK state. A conforming SACK implementation will
  4038. * do the same at a timeout based retransmit. When a connection
  4039. * is in a sad state like this, we care only about integrity
  4040. * of the connection not performance.
  4041. */
  4042. if (tp->rx_opt.sack_ok)
  4043. tcp_sack_reset(&tp->rx_opt);
  4044. sk_mem_reclaim(sk);
  4045. res = true;
  4046. }
  4047. return res;
  4048. }
  4049. /* Reduce allocated memory if we can, trying to get
  4050. * the socket within its memory limits again.
  4051. *
  4052. * Return less than zero if we should start dropping frames
  4053. * until the socket owning process reads some of the data
  4054. * to stabilize the situation.
  4055. */
  4056. static int tcp_prune_queue(struct sock *sk)
  4057. {
  4058. struct tcp_sock *tp = tcp_sk(sk);
  4059. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  4060. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
  4061. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  4062. tcp_clamp_window(sk);
  4063. else if (sk_under_memory_pressure(sk))
  4064. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  4065. tcp_collapse_ofo_queue(sk);
  4066. if (!skb_queue_empty(&sk->sk_receive_queue))
  4067. tcp_collapse(sk, &sk->sk_receive_queue,
  4068. skb_peek(&sk->sk_receive_queue),
  4069. NULL,
  4070. tp->copied_seq, tp->rcv_nxt);
  4071. sk_mem_reclaim(sk);
  4072. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4073. return 0;
  4074. /* Collapsing did not help, destructive actions follow.
  4075. * This must not ever occur. */
  4076. tcp_prune_ofo_queue(sk);
  4077. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4078. return 0;
  4079. /* If we are really being abused, tell the caller to silently
  4080. * drop receive data on the floor. It will get retransmitted
  4081. * and hopefully then we'll have sufficient space.
  4082. */
  4083. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
  4084. /* Massive buffer overcommit. */
  4085. tp->pred_flags = 0;
  4086. return -1;
  4087. }
  4088. static bool tcp_should_expand_sndbuf(const struct sock *sk)
  4089. {
  4090. const struct tcp_sock *tp = tcp_sk(sk);
  4091. /* If the user specified a specific send buffer setting, do
  4092. * not modify it.
  4093. */
  4094. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  4095. return false;
  4096. /* If we are under global TCP memory pressure, do not expand. */
  4097. if (sk_under_memory_pressure(sk))
  4098. return false;
  4099. /* If we are under soft global TCP memory pressure, do not expand. */
  4100. if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
  4101. return false;
  4102. /* If we filled the congestion window, do not expand. */
  4103. if (tp->packets_out >= tp->snd_cwnd)
  4104. return false;
  4105. return true;
  4106. }
  4107. /* When incoming ACK allowed to free some skb from write_queue,
  4108. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  4109. * on the exit from tcp input handler.
  4110. *
  4111. * PROBLEM: sndbuf expansion does not work well with largesend.
  4112. */
  4113. static void tcp_new_space(struct sock *sk)
  4114. {
  4115. struct tcp_sock *tp = tcp_sk(sk);
  4116. if (tcp_should_expand_sndbuf(sk)) {
  4117. tcp_sndbuf_expand(sk);
  4118. tp->snd_cwnd_stamp = tcp_time_stamp;
  4119. }
  4120. sk->sk_write_space(sk);
  4121. }
  4122. static void tcp_check_space(struct sock *sk)
  4123. {
  4124. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  4125. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  4126. if (sk->sk_socket &&
  4127. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  4128. tcp_new_space(sk);
  4129. }
  4130. }
  4131. static inline void tcp_data_snd_check(struct sock *sk)
  4132. {
  4133. tcp_push_pending_frames(sk);
  4134. tcp_check_space(sk);
  4135. }
  4136. /*
  4137. * Check if sending an ack is needed.
  4138. */
  4139. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  4140. {
  4141. struct tcp_sock *tp = tcp_sk(sk);
  4142. /* More than one full frame received... */
  4143. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
  4144. /* ... and right edge of window advances far enough.
  4145. * (tcp_recvmsg() will send ACK otherwise). Or...
  4146. */
  4147. __tcp_select_window(sk) >= tp->rcv_wnd) ||
  4148. /* We ACK each frame or... */
  4149. tcp_in_quickack_mode(sk) ||
  4150. /* We have out of order data. */
  4151. (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
  4152. /* Then ack it now */
  4153. tcp_send_ack(sk);
  4154. } else {
  4155. /* Else, send delayed ack. */
  4156. tcp_send_delayed_ack(sk);
  4157. }
  4158. }
  4159. static inline void tcp_ack_snd_check(struct sock *sk)
  4160. {
  4161. if (!inet_csk_ack_scheduled(sk)) {
  4162. /* We sent a data segment already. */
  4163. return;
  4164. }
  4165. __tcp_ack_snd_check(sk, 1);
  4166. }
  4167. /*
  4168. * This routine is only called when we have urgent data
  4169. * signaled. Its the 'slow' part of tcp_urg. It could be
  4170. * moved inline now as tcp_urg is only called from one
  4171. * place. We handle URGent data wrong. We have to - as
  4172. * BSD still doesn't use the correction from RFC961.
  4173. * For 1003.1g we should support a new option TCP_STDURG to permit
  4174. * either form (or just set the sysctl tcp_stdurg).
  4175. */
  4176. static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
  4177. {
  4178. struct tcp_sock *tp = tcp_sk(sk);
  4179. u32 ptr = ntohs(th->urg_ptr);
  4180. if (ptr && !sysctl_tcp_stdurg)
  4181. ptr--;
  4182. ptr += ntohl(th->seq);
  4183. /* Ignore urgent data that we've already seen and read. */
  4184. if (after(tp->copied_seq, ptr))
  4185. return;
  4186. /* Do not replay urg ptr.
  4187. *
  4188. * NOTE: interesting situation not covered by specs.
  4189. * Misbehaving sender may send urg ptr, pointing to segment,
  4190. * which we already have in ofo queue. We are not able to fetch
  4191. * such data and will stay in TCP_URG_NOTYET until will be eaten
  4192. * by recvmsg(). Seems, we are not obliged to handle such wicked
  4193. * situations. But it is worth to think about possibility of some
  4194. * DoSes using some hypothetical application level deadlock.
  4195. */
  4196. if (before(ptr, tp->rcv_nxt))
  4197. return;
  4198. /* Do we already have a newer (or duplicate) urgent pointer? */
  4199. if (tp->urg_data && !after(ptr, tp->urg_seq))
  4200. return;
  4201. /* Tell the world about our new urgent pointer. */
  4202. sk_send_sigurg(sk);
  4203. /* We may be adding urgent data when the last byte read was
  4204. * urgent. To do this requires some care. We cannot just ignore
  4205. * tp->copied_seq since we would read the last urgent byte again
  4206. * as data, nor can we alter copied_seq until this data arrives
  4207. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  4208. *
  4209. * NOTE. Double Dutch. Rendering to plain English: author of comment
  4210. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  4211. * and expect that both A and B disappear from stream. This is _wrong_.
  4212. * Though this happens in BSD with high probability, this is occasional.
  4213. * Any application relying on this is buggy. Note also, that fix "works"
  4214. * only in this artificial test. Insert some normal data between A and B and we will
  4215. * decline of BSD again. Verdict: it is better to remove to trap
  4216. * buggy users.
  4217. */
  4218. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  4219. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  4220. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  4221. tp->copied_seq++;
  4222. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  4223. __skb_unlink(skb, &sk->sk_receive_queue);
  4224. __kfree_skb(skb);
  4225. }
  4226. }
  4227. tp->urg_data = TCP_URG_NOTYET;
  4228. tp->urg_seq = ptr;
  4229. /* Disable header prediction. */
  4230. tp->pred_flags = 0;
  4231. }
  4232. /* This is the 'fast' part of urgent handling. */
  4233. static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
  4234. {
  4235. struct tcp_sock *tp = tcp_sk(sk);
  4236. /* Check if we get a new urgent pointer - normally not. */
  4237. if (th->urg)
  4238. tcp_check_urg(sk, th);
  4239. /* Do we wait for any urgent data? - normally not... */
  4240. if (tp->urg_data == TCP_URG_NOTYET) {
  4241. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  4242. th->syn;
  4243. /* Is the urgent pointer pointing into this packet? */
  4244. if (ptr < skb->len) {
  4245. u8 tmp;
  4246. if (skb_copy_bits(skb, ptr, &tmp, 1))
  4247. BUG();
  4248. tp->urg_data = TCP_URG_VALID | tmp;
  4249. if (!sock_flag(sk, SOCK_DEAD))
  4250. sk->sk_data_ready(sk);
  4251. }
  4252. }
  4253. }
  4254. static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
  4255. {
  4256. struct tcp_sock *tp = tcp_sk(sk);
  4257. int chunk = skb->len - hlen;
  4258. int err;
  4259. local_bh_enable();
  4260. if (skb_csum_unnecessary(skb))
  4261. err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
  4262. else
  4263. err = skb_copy_and_csum_datagram_iovec(skb, hlen,
  4264. tp->ucopy.iov);
  4265. if (!err) {
  4266. tp->ucopy.len -= chunk;
  4267. tp->copied_seq += chunk;
  4268. tcp_rcv_space_adjust(sk);
  4269. }
  4270. local_bh_disable();
  4271. return err;
  4272. }
  4273. static __sum16 __tcp_checksum_complete_user(struct sock *sk,
  4274. struct sk_buff *skb)
  4275. {
  4276. __sum16 result;
  4277. if (sock_owned_by_user(sk)) {
  4278. local_bh_enable();
  4279. result = __tcp_checksum_complete(skb);
  4280. local_bh_disable();
  4281. } else {
  4282. result = __tcp_checksum_complete(skb);
  4283. }
  4284. return result;
  4285. }
  4286. static inline bool tcp_checksum_complete_user(struct sock *sk,
  4287. struct sk_buff *skb)
  4288. {
  4289. return !skb_csum_unnecessary(skb) &&
  4290. __tcp_checksum_complete_user(sk, skb);
  4291. }
  4292. /* Does PAWS and seqno based validation of an incoming segment, flags will
  4293. * play significant role here.
  4294. */
  4295. static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
  4296. const struct tcphdr *th, int syn_inerr)
  4297. {
  4298. struct tcp_sock *tp = tcp_sk(sk);
  4299. /* RFC1323: H1. Apply PAWS check first. */
  4300. if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
  4301. tcp_paws_discard(sk, skb)) {
  4302. if (!th->rst) {
  4303. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
  4304. tcp_send_dupack(sk, skb);
  4305. goto discard;
  4306. }
  4307. /* Reset is accepted even if it did not pass PAWS. */
  4308. }
  4309. /* Step 1: check sequence number */
  4310. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4311. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4312. * (RST) segments are validated by checking their SEQ-fields."
  4313. * And page 69: "If an incoming segment is not acceptable,
  4314. * an acknowledgment should be sent in reply (unless the RST
  4315. * bit is set, if so drop the segment and return)".
  4316. */
  4317. if (!th->rst) {
  4318. if (th->syn)
  4319. goto syn_challenge;
  4320. tcp_send_dupack(sk, skb);
  4321. }
  4322. goto discard;
  4323. }
  4324. /* Step 2: check RST bit */
  4325. if (th->rst) {
  4326. /* RFC 5961 3.2 :
  4327. * If sequence number exactly matches RCV.NXT, then
  4328. * RESET the connection
  4329. * else
  4330. * Send a challenge ACK
  4331. */
  4332. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
  4333. tcp_reset(sk);
  4334. else
  4335. tcp_send_challenge_ack(sk);
  4336. goto discard;
  4337. }
  4338. /* step 3: check security and precedence [ignored] */
  4339. /* step 4: Check for a SYN
  4340. * RFC 5691 4.2 : Send a challenge ack
  4341. */
  4342. if (th->syn) {
  4343. syn_challenge:
  4344. if (syn_inerr)
  4345. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4346. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
  4347. tcp_send_challenge_ack(sk);
  4348. goto discard;
  4349. }
  4350. return true;
  4351. discard:
  4352. __kfree_skb(skb);
  4353. return false;
  4354. }
  4355. /*
  4356. * TCP receive function for the ESTABLISHED state.
  4357. *
  4358. * It is split into a fast path and a slow path. The fast path is
  4359. * disabled when:
  4360. * - A zero window was announced from us - zero window probing
  4361. * is only handled properly in the slow path.
  4362. * - Out of order segments arrived.
  4363. * - Urgent data is expected.
  4364. * - There is no buffer space left
  4365. * - Unexpected TCP flags/window values/header lengths are received
  4366. * (detected by checking the TCP header against pred_flags)
  4367. * - Data is sent in both directions. Fast path only supports pure senders
  4368. * or pure receivers (this means either the sequence number or the ack
  4369. * value must stay constant)
  4370. * - Unexpected TCP option.
  4371. *
  4372. * When these conditions are not satisfied it drops into a standard
  4373. * receive procedure patterned after RFC793 to handle all cases.
  4374. * The first three cases are guaranteed by proper pred_flags setting,
  4375. * the rest is checked inline. Fast processing is turned on in
  4376. * tcp_data_queue when everything is OK.
  4377. */
  4378. void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4379. const struct tcphdr *th, unsigned int len)
  4380. {
  4381. struct tcp_sock *tp = tcp_sk(sk);
  4382. if (unlikely(sk->sk_rx_dst == NULL))
  4383. inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4384. /*
  4385. * Header prediction.
  4386. * The code loosely follows the one in the famous
  4387. * "30 instruction TCP receive" Van Jacobson mail.
  4388. *
  4389. * Van's trick is to deposit buffers into socket queue
  4390. * on a device interrupt, to call tcp_recv function
  4391. * on the receive process context and checksum and copy
  4392. * the buffer to user space. smart...
  4393. *
  4394. * Our current scheme is not silly either but we take the
  4395. * extra cost of the net_bh soft interrupt processing...
  4396. * We do checksum and copy also but from device to kernel.
  4397. */
  4398. tp->rx_opt.saw_tstamp = 0;
  4399. /* pred_flags is 0xS?10 << 16 + snd_wnd
  4400. * if header_prediction is to be made
  4401. * 'S' will always be tp->tcp_header_len >> 2
  4402. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  4403. * turn it off (when there are holes in the receive
  4404. * space for instance)
  4405. * PSH flag is ignored.
  4406. */
  4407. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  4408. TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
  4409. !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
  4410. int tcp_header_len = tp->tcp_header_len;
  4411. /* Timestamp header prediction: tcp_header_len
  4412. * is automatically equal to th->doff*4 due to pred_flags
  4413. * match.
  4414. */
  4415. /* Check timestamp */
  4416. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  4417. /* No? Slow path! */
  4418. if (!tcp_parse_aligned_timestamp(tp, th))
  4419. goto slow_path;
  4420. /* If PAWS failed, check it more carefully in slow path */
  4421. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4422. goto slow_path;
  4423. /* DO NOT update ts_recent here, if checksum fails
  4424. * and timestamp was corrupted part, it will result
  4425. * in a hung connection since we will drop all
  4426. * future packets due to the PAWS test.
  4427. */
  4428. }
  4429. if (len <= tcp_header_len) {
  4430. /* Bulk data transfer: sender */
  4431. if (len == tcp_header_len) {
  4432. /* Predicted packet is in window by definition.
  4433. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4434. * Hence, check seq<=rcv_wup reduces to:
  4435. */
  4436. if (tcp_header_len ==
  4437. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4438. tp->rcv_nxt == tp->rcv_wup)
  4439. tcp_store_ts_recent(tp);
  4440. /* We know that such packets are checksummed
  4441. * on entry.
  4442. */
  4443. tcp_ack(sk, skb, 0);
  4444. __kfree_skb(skb);
  4445. tcp_data_snd_check(sk);
  4446. return;
  4447. } else { /* Header too small */
  4448. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4449. goto discard;
  4450. }
  4451. } else {
  4452. int eaten = 0;
  4453. bool fragstolen = false;
  4454. if (tp->ucopy.task == current &&
  4455. tp->copied_seq == tp->rcv_nxt &&
  4456. len - tcp_header_len <= tp->ucopy.len &&
  4457. sock_owned_by_user(sk)) {
  4458. __set_current_state(TASK_RUNNING);
  4459. if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
  4460. /* Predicted packet is in window by definition.
  4461. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4462. * Hence, check seq<=rcv_wup reduces to:
  4463. */
  4464. if (tcp_header_len ==
  4465. (sizeof(struct tcphdr) +
  4466. TCPOLEN_TSTAMP_ALIGNED) &&
  4467. tp->rcv_nxt == tp->rcv_wup)
  4468. tcp_store_ts_recent(tp);
  4469. tcp_rcv_rtt_measure_ts(sk, skb);
  4470. __skb_pull(skb, tcp_header_len);
  4471. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4472. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
  4473. eaten = 1;
  4474. }
  4475. }
  4476. if (!eaten) {
  4477. if (tcp_checksum_complete_user(sk, skb))
  4478. goto csum_error;
  4479. if ((int)skb->truesize > sk->sk_forward_alloc)
  4480. goto step5;
  4481. /* Predicted packet is in window by definition.
  4482. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4483. * Hence, check seq<=rcv_wup reduces to:
  4484. */
  4485. if (tcp_header_len ==
  4486. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4487. tp->rcv_nxt == tp->rcv_wup)
  4488. tcp_store_ts_recent(tp);
  4489. tcp_rcv_rtt_measure_ts(sk, skb);
  4490. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
  4491. /* Bulk data transfer: receiver */
  4492. eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
  4493. &fragstolen);
  4494. }
  4495. tcp_event_data_recv(sk, skb);
  4496. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4497. /* Well, only one small jumplet in fast path... */
  4498. tcp_ack(sk, skb, FLAG_DATA);
  4499. tcp_data_snd_check(sk);
  4500. if (!inet_csk_ack_scheduled(sk))
  4501. goto no_ack;
  4502. }
  4503. __tcp_ack_snd_check(sk, 0);
  4504. no_ack:
  4505. if (eaten)
  4506. kfree_skb_partial(skb, fragstolen);
  4507. sk->sk_data_ready(sk);
  4508. return;
  4509. }
  4510. }
  4511. slow_path:
  4512. if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
  4513. goto csum_error;
  4514. if (!th->ack && !th->rst)
  4515. goto discard;
  4516. /*
  4517. * Standard slow path.
  4518. */
  4519. if (!tcp_validate_incoming(sk, skb, th, 1))
  4520. return;
  4521. step5:
  4522. if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
  4523. goto discard;
  4524. tcp_rcv_rtt_measure_ts(sk, skb);
  4525. /* Process urgent data. */
  4526. tcp_urg(sk, skb, th);
  4527. /* step 7: process the segment text */
  4528. tcp_data_queue(sk, skb);
  4529. tcp_data_snd_check(sk);
  4530. tcp_ack_snd_check(sk);
  4531. return;
  4532. csum_error:
  4533. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
  4534. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4535. discard:
  4536. __kfree_skb(skb);
  4537. }
  4538. EXPORT_SYMBOL(tcp_rcv_established);
  4539. void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
  4540. {
  4541. struct tcp_sock *tp = tcp_sk(sk);
  4542. struct inet_connection_sock *icsk = inet_csk(sk);
  4543. tcp_set_state(sk, TCP_ESTABLISHED);
  4544. if (skb != NULL) {
  4545. icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4546. security_inet_conn_established(sk, skb);
  4547. }
  4548. /* Make sure socket is routed, for correct metrics. */
  4549. icsk->icsk_af_ops->rebuild_header(sk);
  4550. tcp_init_metrics(sk);
  4551. tcp_init_congestion_control(sk);
  4552. /* Prevent spurious tcp_cwnd_restart() on first data
  4553. * packet.
  4554. */
  4555. tp->lsndtime = tcp_time_stamp;
  4556. tcp_init_buffer_space(sk);
  4557. if (sock_flag(sk, SOCK_KEEPOPEN))
  4558. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  4559. if (!tp->rx_opt.snd_wscale)
  4560. __tcp_fast_path_on(tp, tp->snd_wnd);
  4561. else
  4562. tp->pred_flags = 0;
  4563. if (!sock_flag(sk, SOCK_DEAD)) {
  4564. sk->sk_state_change(sk);
  4565. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4566. }
  4567. }
  4568. static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
  4569. struct tcp_fastopen_cookie *cookie)
  4570. {
  4571. struct tcp_sock *tp = tcp_sk(sk);
  4572. struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
  4573. u16 mss = tp->rx_opt.mss_clamp;
  4574. bool syn_drop;
  4575. if (mss == tp->rx_opt.user_mss) {
  4576. struct tcp_options_received opt;
  4577. /* Get original SYNACK MSS value if user MSS sets mss_clamp */
  4578. tcp_clear_options(&opt);
  4579. opt.user_mss = opt.mss_clamp = 0;
  4580. tcp_parse_options(synack, &opt, 0, NULL);
  4581. mss = opt.mss_clamp;
  4582. }
  4583. if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */
  4584. cookie->len = -1;
  4585. /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
  4586. * the remote receives only the retransmitted (regular) SYNs: either
  4587. * the original SYN-data or the corresponding SYN-ACK is lost.
  4588. */
  4589. syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
  4590. tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
  4591. if (data) { /* Retransmit unacked data in SYN */
  4592. tcp_for_write_queue_from(data, sk) {
  4593. if (data == tcp_send_head(sk) ||
  4594. __tcp_retransmit_skb(sk, data))
  4595. break;
  4596. }
  4597. tcp_rearm_rto(sk);
  4598. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
  4599. return true;
  4600. }
  4601. tp->syn_data_acked = tp->syn_data;
  4602. if (tp->syn_data_acked)
  4603. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
  4604. return false;
  4605. }
  4606. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  4607. const struct tcphdr *th, unsigned int len)
  4608. {
  4609. struct inet_connection_sock *icsk = inet_csk(sk);
  4610. struct tcp_sock *tp = tcp_sk(sk);
  4611. struct tcp_fastopen_cookie foc = { .len = -1 };
  4612. int saved_clamp = tp->rx_opt.mss_clamp;
  4613. tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
  4614. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  4615. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  4616. if (th->ack) {
  4617. /* rfc793:
  4618. * "If the state is SYN-SENT then
  4619. * first check the ACK bit
  4620. * If the ACK bit is set
  4621. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  4622. * a reset (unless the RST bit is set, if so drop
  4623. * the segment and return)"
  4624. */
  4625. if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
  4626. after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
  4627. goto reset_and_undo;
  4628. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4629. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4630. tcp_time_stamp)) {
  4631. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
  4632. goto reset_and_undo;
  4633. }
  4634. /* Now ACK is acceptable.
  4635. *
  4636. * "If the RST bit is set
  4637. * If the ACK was acceptable then signal the user "error:
  4638. * connection reset", drop the segment, enter CLOSED state,
  4639. * delete TCB, and return."
  4640. */
  4641. if (th->rst) {
  4642. tcp_reset(sk);
  4643. goto discard;
  4644. }
  4645. /* rfc793:
  4646. * "fifth, if neither of the SYN or RST bits is set then
  4647. * drop the segment and return."
  4648. *
  4649. * See note below!
  4650. * --ANK(990513)
  4651. */
  4652. if (!th->syn)
  4653. goto discard_and_undo;
  4654. /* rfc793:
  4655. * "If the SYN bit is on ...
  4656. * are acceptable then ...
  4657. * (our SYN has been ACKed), change the connection
  4658. * state to ESTABLISHED..."
  4659. */
  4660. tcp_ecn_rcv_synack(tp, th);
  4661. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4662. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4663. /* Ok.. it's good. Set up sequence numbers and
  4664. * move to established.
  4665. */
  4666. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4667. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4668. /* RFC1323: The window in SYN & SYN/ACK segments is
  4669. * never scaled.
  4670. */
  4671. tp->snd_wnd = ntohs(th->window);
  4672. if (!tp->rx_opt.wscale_ok) {
  4673. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  4674. tp->window_clamp = min(tp->window_clamp, 65535U);
  4675. }
  4676. if (tp->rx_opt.saw_tstamp) {
  4677. tp->rx_opt.tstamp_ok = 1;
  4678. tp->tcp_header_len =
  4679. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4680. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4681. tcp_store_ts_recent(tp);
  4682. } else {
  4683. tp->tcp_header_len = sizeof(struct tcphdr);
  4684. }
  4685. if (tcp_is_sack(tp) && sysctl_tcp_fack)
  4686. tcp_enable_fack(tp);
  4687. tcp_mtup_init(sk);
  4688. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4689. tcp_initialize_rcv_mss(sk);
  4690. /* Remember, tcp_poll() does not lock socket!
  4691. * Change state from SYN-SENT only after copied_seq
  4692. * is initialized. */
  4693. tp->copied_seq = tp->rcv_nxt;
  4694. smp_mb();
  4695. tcp_finish_connect(sk, skb);
  4696. if ((tp->syn_fastopen || tp->syn_data) &&
  4697. tcp_rcv_fastopen_synack(sk, skb, &foc))
  4698. return -1;
  4699. if (sk->sk_write_pending ||
  4700. icsk->icsk_accept_queue.rskq_defer_accept ||
  4701. icsk->icsk_ack.pingpong) {
  4702. /* Save one ACK. Data will be ready after
  4703. * several ticks, if write_pending is set.
  4704. *
  4705. * It may be deleted, but with this feature tcpdumps
  4706. * look so _wonderfully_ clever, that I was not able
  4707. * to stand against the temptation 8) --ANK
  4708. */
  4709. inet_csk_schedule_ack(sk);
  4710. icsk->icsk_ack.lrcvtime = tcp_time_stamp;
  4711. tcp_enter_quickack_mode(sk);
  4712. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  4713. TCP_DELACK_MAX, TCP_RTO_MAX);
  4714. discard:
  4715. __kfree_skb(skb);
  4716. return 0;
  4717. } else {
  4718. tcp_send_ack(sk);
  4719. }
  4720. return -1;
  4721. }
  4722. /* No ACK in the segment */
  4723. if (th->rst) {
  4724. /* rfc793:
  4725. * "If the RST bit is set
  4726. *
  4727. * Otherwise (no ACK) drop the segment and return."
  4728. */
  4729. goto discard_and_undo;
  4730. }
  4731. /* PAWS check. */
  4732. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  4733. tcp_paws_reject(&tp->rx_opt, 0))
  4734. goto discard_and_undo;
  4735. if (th->syn) {
  4736. /* We see SYN without ACK. It is attempt of
  4737. * simultaneous connect with crossed SYNs.
  4738. * Particularly, it can be connect to self.
  4739. */
  4740. tcp_set_state(sk, TCP_SYN_RECV);
  4741. if (tp->rx_opt.saw_tstamp) {
  4742. tp->rx_opt.tstamp_ok = 1;
  4743. tcp_store_ts_recent(tp);
  4744. tp->tcp_header_len =
  4745. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4746. } else {
  4747. tp->tcp_header_len = sizeof(struct tcphdr);
  4748. }
  4749. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4750. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4751. /* RFC1323: The window in SYN & SYN/ACK segments is
  4752. * never scaled.
  4753. */
  4754. tp->snd_wnd = ntohs(th->window);
  4755. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4756. tp->max_window = tp->snd_wnd;
  4757. tcp_ecn_rcv_syn(tp, th);
  4758. tcp_mtup_init(sk);
  4759. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4760. tcp_initialize_rcv_mss(sk);
  4761. tcp_send_synack(sk);
  4762. #if 0
  4763. /* Note, we could accept data and URG from this segment.
  4764. * There are no obstacles to make this (except that we must
  4765. * either change tcp_recvmsg() to prevent it from returning data
  4766. * before 3WHS completes per RFC793, or employ TCP Fast Open).
  4767. *
  4768. * However, if we ignore data in ACKless segments sometimes,
  4769. * we have no reasons to accept it sometimes.
  4770. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  4771. * is not flawless. So, discard packet for sanity.
  4772. * Uncomment this return to process the data.
  4773. */
  4774. return -1;
  4775. #else
  4776. goto discard;
  4777. #endif
  4778. }
  4779. /* "fifth, if neither of the SYN or RST bits is set then
  4780. * drop the segment and return."
  4781. */
  4782. discard_and_undo:
  4783. tcp_clear_options(&tp->rx_opt);
  4784. tp->rx_opt.mss_clamp = saved_clamp;
  4785. goto discard;
  4786. reset_and_undo:
  4787. tcp_clear_options(&tp->rx_opt);
  4788. tp->rx_opt.mss_clamp = saved_clamp;
  4789. return 1;
  4790. }
  4791. /*
  4792. * This function implements the receiving procedure of RFC 793 for
  4793. * all states except ESTABLISHED and TIME_WAIT.
  4794. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  4795. * address independent.
  4796. */
  4797. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
  4798. const struct tcphdr *th, unsigned int len)
  4799. {
  4800. struct tcp_sock *tp = tcp_sk(sk);
  4801. struct inet_connection_sock *icsk = inet_csk(sk);
  4802. struct request_sock *req;
  4803. int queued = 0;
  4804. bool acceptable;
  4805. u32 synack_stamp;
  4806. tp->rx_opt.saw_tstamp = 0;
  4807. switch (sk->sk_state) {
  4808. case TCP_CLOSE:
  4809. goto discard;
  4810. case TCP_LISTEN:
  4811. if (th->ack)
  4812. return 1;
  4813. if (th->rst)
  4814. goto discard;
  4815. if (th->syn) {
  4816. if (th->fin)
  4817. goto discard;
  4818. if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
  4819. return 1;
  4820. /* Now we have several options: In theory there is
  4821. * nothing else in the frame. KA9Q has an option to
  4822. * send data with the syn, BSD accepts data with the
  4823. * syn up to the [to be] advertised window and
  4824. * Solaris 2.1 gives you a protocol error. For now
  4825. * we just ignore it, that fits the spec precisely
  4826. * and avoids incompatibilities. It would be nice in
  4827. * future to drop through and process the data.
  4828. *
  4829. * Now that TTCP is starting to be used we ought to
  4830. * queue this data.
  4831. * But, this leaves one open to an easy denial of
  4832. * service attack, and SYN cookies can't defend
  4833. * against this problem. So, we drop the data
  4834. * in the interest of security over speed unless
  4835. * it's still in use.
  4836. */
  4837. kfree_skb(skb);
  4838. return 0;
  4839. }
  4840. goto discard;
  4841. case TCP_SYN_SENT:
  4842. queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
  4843. if (queued >= 0)
  4844. return queued;
  4845. /* Do step6 onward by hand. */
  4846. tcp_urg(sk, skb, th);
  4847. __kfree_skb(skb);
  4848. tcp_data_snd_check(sk);
  4849. return 0;
  4850. }
  4851. req = tp->fastopen_rsk;
  4852. if (req != NULL) {
  4853. WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
  4854. sk->sk_state != TCP_FIN_WAIT1);
  4855. if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
  4856. goto discard;
  4857. }
  4858. if (!th->ack && !th->rst)
  4859. goto discard;
  4860. if (!tcp_validate_incoming(sk, skb, th, 0))
  4861. return 0;
  4862. /* step 5: check the ACK field */
  4863. acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
  4864. FLAG_UPDATE_TS_RECENT) > 0;
  4865. switch (sk->sk_state) {
  4866. case TCP_SYN_RECV:
  4867. if (!acceptable)
  4868. return 1;
  4869. /* Once we leave TCP_SYN_RECV, we no longer need req
  4870. * so release it.
  4871. */
  4872. if (req) {
  4873. synack_stamp = tcp_rsk(req)->snt_synack;
  4874. tp->total_retrans = req->num_retrans;
  4875. reqsk_fastopen_remove(sk, req, false);
  4876. } else {
  4877. synack_stamp = tp->lsndtime;
  4878. /* Make sure socket is routed, for correct metrics. */
  4879. icsk->icsk_af_ops->rebuild_header(sk);
  4880. tcp_init_congestion_control(sk);
  4881. tcp_mtup_init(sk);
  4882. tp->copied_seq = tp->rcv_nxt;
  4883. tcp_init_buffer_space(sk);
  4884. }
  4885. smp_mb();
  4886. tcp_set_state(sk, TCP_ESTABLISHED);
  4887. sk->sk_state_change(sk);
  4888. /* Note, that this wakeup is only for marginal crossed SYN case.
  4889. * Passively open sockets are not waked up, because
  4890. * sk->sk_sleep == NULL and sk->sk_socket == NULL.
  4891. */
  4892. if (sk->sk_socket)
  4893. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4894. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  4895. tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
  4896. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4897. tcp_synack_rtt_meas(sk, synack_stamp);
  4898. if (tp->rx_opt.tstamp_ok)
  4899. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4900. if (req) {
  4901. /* Re-arm the timer because data may have been sent out.
  4902. * This is similar to the regular data transmission case
  4903. * when new data has just been ack'ed.
  4904. *
  4905. * (TFO) - we could try to be more aggressive and
  4906. * retransmitting any data sooner based on when they
  4907. * are sent out.
  4908. */
  4909. tcp_rearm_rto(sk);
  4910. } else
  4911. tcp_init_metrics(sk);
  4912. tcp_update_pacing_rate(sk);
  4913. /* Prevent spurious tcp_cwnd_restart() on first data packet */
  4914. tp->lsndtime = tcp_time_stamp;
  4915. tcp_initialize_rcv_mss(sk);
  4916. tcp_fast_path_on(tp);
  4917. break;
  4918. case TCP_FIN_WAIT1: {
  4919. struct dst_entry *dst;
  4920. int tmo;
  4921. /* If we enter the TCP_FIN_WAIT1 state and we are a
  4922. * Fast Open socket and this is the first acceptable
  4923. * ACK we have received, this would have acknowledged
  4924. * our SYNACK so stop the SYNACK timer.
  4925. */
  4926. if (req != NULL) {
  4927. /* Return RST if ack_seq is invalid.
  4928. * Note that RFC793 only says to generate a
  4929. * DUPACK for it but for TCP Fast Open it seems
  4930. * better to treat this case like TCP_SYN_RECV
  4931. * above.
  4932. */
  4933. if (!acceptable)
  4934. return 1;
  4935. /* We no longer need the request sock. */
  4936. reqsk_fastopen_remove(sk, req, false);
  4937. tcp_rearm_rto(sk);
  4938. }
  4939. if (tp->snd_una != tp->write_seq)
  4940. break;
  4941. tcp_set_state(sk, TCP_FIN_WAIT2);
  4942. sk->sk_shutdown |= SEND_SHUTDOWN;
  4943. dst = __sk_dst_get(sk);
  4944. if (dst)
  4945. dst_confirm(dst);
  4946. if (!sock_flag(sk, SOCK_DEAD)) {
  4947. /* Wake up lingering close() */
  4948. sk->sk_state_change(sk);
  4949. break;
  4950. }
  4951. if (tp->linger2 < 0 ||
  4952. (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  4953. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
  4954. tcp_done(sk);
  4955. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  4956. return 1;
  4957. }
  4958. tmo = tcp_fin_time(sk);
  4959. if (tmo > TCP_TIMEWAIT_LEN) {
  4960. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  4961. } else if (th->fin || sock_owned_by_user(sk)) {
  4962. /* Bad case. We could lose such FIN otherwise.
  4963. * It is not a big problem, but it looks confusing
  4964. * and not so rare event. We still can lose it now,
  4965. * if it spins in bh_lock_sock(), but it is really
  4966. * marginal case.
  4967. */
  4968. inet_csk_reset_keepalive_timer(sk, tmo);
  4969. } else {
  4970. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  4971. goto discard;
  4972. }
  4973. break;
  4974. }
  4975. case TCP_CLOSING:
  4976. if (tp->snd_una == tp->write_seq) {
  4977. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  4978. goto discard;
  4979. }
  4980. break;
  4981. case TCP_LAST_ACK:
  4982. if (tp->snd_una == tp->write_seq) {
  4983. tcp_update_metrics(sk);
  4984. tcp_done(sk);
  4985. goto discard;
  4986. }
  4987. break;
  4988. }
  4989. /* step 6: check the URG bit */
  4990. tcp_urg(sk, skb, th);
  4991. /* step 7: process the segment text */
  4992. switch (sk->sk_state) {
  4993. case TCP_CLOSE_WAIT:
  4994. case TCP_CLOSING:
  4995. case TCP_LAST_ACK:
  4996. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  4997. break;
  4998. case TCP_FIN_WAIT1:
  4999. case TCP_FIN_WAIT2:
  5000. /* RFC 793 says to queue data in these states,
  5001. * RFC 1122 says we MUST send a reset.
  5002. * BSD 4.4 also does reset.
  5003. */
  5004. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  5005. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5006. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5007. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5008. tcp_reset(sk);
  5009. return 1;
  5010. }
  5011. }
  5012. /* Fall through */
  5013. case TCP_ESTABLISHED:
  5014. tcp_data_queue(sk, skb);
  5015. queued = 1;
  5016. break;
  5017. }
  5018. /* tcp_data could move socket to TIME-WAIT */
  5019. if (sk->sk_state != TCP_CLOSE) {
  5020. tcp_data_snd_check(sk);
  5021. tcp_ack_snd_check(sk);
  5022. }
  5023. if (!queued) {
  5024. discard:
  5025. __kfree_skb(skb);
  5026. }
  5027. return 0;
  5028. }
  5029. EXPORT_SYMBOL(tcp_rcv_state_process);
  5030. static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
  5031. {
  5032. struct inet_request_sock *ireq = inet_rsk(req);
  5033. if (family == AF_INET)
  5034. LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
  5035. &ireq->ir_rmt_addr, port);
  5036. #if IS_ENABLED(CONFIG_IPV6)
  5037. else if (family == AF_INET6)
  5038. LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI6/%u\n"),
  5039. &ireq->ir_v6_rmt_addr, port);
  5040. #endif
  5041. }
  5042. /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
  5043. *
  5044. * If we receive a SYN packet with these bits set, it means a
  5045. * network is playing bad games with TOS bits. In order to
  5046. * avoid possible false congestion notifications, we disable
  5047. * TCP ECN negociation.
  5048. *
  5049. * Exception: tcp_ca wants ECN. This is required for DCTCP
  5050. * congestion control; it requires setting ECT on all packets,
  5051. * including SYN. We inverse the test in this case: If our
  5052. * local socket wants ECN, but peer only set ece/cwr (but not
  5053. * ECT in IP header) its probably a non-DCTCP aware sender.
  5054. */
  5055. static void tcp_ecn_create_request(struct request_sock *req,
  5056. const struct sk_buff *skb,
  5057. const struct sock *listen_sk)
  5058. {
  5059. const struct tcphdr *th = tcp_hdr(skb);
  5060. const struct net *net = sock_net(listen_sk);
  5061. bool th_ecn = th->ece && th->cwr;
  5062. bool ect, need_ecn;
  5063. if (!th_ecn)
  5064. return;
  5065. ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
  5066. need_ecn = tcp_ca_needs_ecn(listen_sk);
  5067. if (!ect && !need_ecn && net->ipv4.sysctl_tcp_ecn)
  5068. inet_rsk(req)->ecn_ok = 1;
  5069. else if (ect && need_ecn)
  5070. inet_rsk(req)->ecn_ok = 1;
  5071. }
  5072. int tcp_conn_request(struct request_sock_ops *rsk_ops,
  5073. const struct tcp_request_sock_ops *af_ops,
  5074. struct sock *sk, struct sk_buff *skb)
  5075. {
  5076. struct tcp_options_received tmp_opt;
  5077. struct request_sock *req;
  5078. struct tcp_sock *tp = tcp_sk(sk);
  5079. struct dst_entry *dst = NULL;
  5080. __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
  5081. bool want_cookie = false, fastopen;
  5082. struct flowi fl;
  5083. struct tcp_fastopen_cookie foc = { .len = -1 };
  5084. int err;
  5085. /* TW buckets are converted to open requests without
  5086. * limitations, they conserve resources and peer is
  5087. * evidently real one.
  5088. */
  5089. if ((sysctl_tcp_syncookies == 2 ||
  5090. inet_csk_reqsk_queue_is_full(sk)) && !isn) {
  5091. want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
  5092. if (!want_cookie)
  5093. goto drop;
  5094. }
  5095. /* Accept backlog is full. If we have already queued enough
  5096. * of warm entries in syn queue, drop request. It is better than
  5097. * clogging syn queue with openreqs with exponentially increasing
  5098. * timeout.
  5099. */
  5100. if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
  5101. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
  5102. goto drop;
  5103. }
  5104. req = inet_reqsk_alloc(rsk_ops);
  5105. if (!req)
  5106. goto drop;
  5107. tcp_rsk(req)->af_specific = af_ops;
  5108. tcp_clear_options(&tmp_opt);
  5109. tmp_opt.mss_clamp = af_ops->mss_clamp;
  5110. tmp_opt.user_mss = tp->rx_opt.user_mss;
  5111. tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
  5112. if (want_cookie && !tmp_opt.saw_tstamp)
  5113. tcp_clear_options(&tmp_opt);
  5114. tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
  5115. tcp_openreq_init(req, &tmp_opt, skb, sk);
  5116. af_ops->init_req(req, sk, skb);
  5117. if (security_inet_conn_request(sk, skb, req))
  5118. goto drop_and_free;
  5119. if (!want_cookie || tmp_opt.tstamp_ok)
  5120. tcp_ecn_create_request(req, skb, sk);
  5121. if (want_cookie) {
  5122. isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
  5123. req->cookie_ts = tmp_opt.tstamp_ok;
  5124. } else if (!isn) {
  5125. /* VJ's idea. We save last timestamp seen
  5126. * from the destination in peer table, when entering
  5127. * state TIME-WAIT, and check against it before
  5128. * accepting new connection request.
  5129. *
  5130. * If "isn" is not zero, this request hit alive
  5131. * timewait bucket, so that all the necessary checks
  5132. * are made in the function processing timewait state.
  5133. */
  5134. if (tcp_death_row.sysctl_tw_recycle) {
  5135. bool strict;
  5136. dst = af_ops->route_req(sk, &fl, req, &strict);
  5137. if (dst && strict &&
  5138. !tcp_peer_is_proven(req, dst, true,
  5139. tmp_opt.saw_tstamp)) {
  5140. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
  5141. goto drop_and_release;
  5142. }
  5143. }
  5144. /* Kill the following clause, if you dislike this way. */
  5145. else if (!sysctl_tcp_syncookies &&
  5146. (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
  5147. (sysctl_max_syn_backlog >> 2)) &&
  5148. !tcp_peer_is_proven(req, dst, false,
  5149. tmp_opt.saw_tstamp)) {
  5150. /* Without syncookies last quarter of
  5151. * backlog is filled with destinations,
  5152. * proven to be alive.
  5153. * It means that we continue to communicate
  5154. * to destinations, already remembered
  5155. * to the moment of synflood.
  5156. */
  5157. pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
  5158. rsk_ops->family);
  5159. goto drop_and_release;
  5160. }
  5161. isn = af_ops->init_seq(skb);
  5162. }
  5163. if (!dst) {
  5164. dst = af_ops->route_req(sk, &fl, req, NULL);
  5165. if (!dst)
  5166. goto drop_and_free;
  5167. }
  5168. tcp_rsk(req)->snt_isn = isn;
  5169. tcp_openreq_init_rwin(req, sk, dst);
  5170. fastopen = !want_cookie &&
  5171. tcp_try_fastopen(sk, skb, req, &foc, dst);
  5172. err = af_ops->send_synack(sk, dst, &fl, req,
  5173. skb_get_queue_mapping(skb), &foc);
  5174. if (!fastopen) {
  5175. if (err || want_cookie)
  5176. goto drop_and_free;
  5177. tcp_rsk(req)->listener = NULL;
  5178. af_ops->queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
  5179. }
  5180. return 0;
  5181. drop_and_release:
  5182. dst_release(dst);
  5183. drop_and_free:
  5184. reqsk_free(req);
  5185. drop:
  5186. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
  5187. return 0;
  5188. }
  5189. EXPORT_SYMBOL(tcp_conn_request);