page_alloc.c 182 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/compiler.h>
  25. #include <linux/kernel.h>
  26. #include <linux/kmemcheck.h>
  27. #include <linux/module.h>
  28. #include <linux/suspend.h>
  29. #include <linux/pagevec.h>
  30. #include <linux/blkdev.h>
  31. #include <linux/slab.h>
  32. #include <linux/ratelimit.h>
  33. #include <linux/oom.h>
  34. #include <linux/notifier.h>
  35. #include <linux/topology.h>
  36. #include <linux/sysctl.h>
  37. #include <linux/cpu.h>
  38. #include <linux/cpuset.h>
  39. #include <linux/memory_hotplug.h>
  40. #include <linux/nodemask.h>
  41. #include <linux/vmalloc.h>
  42. #include <linux/vmstat.h>
  43. #include <linux/mempolicy.h>
  44. #include <linux/stop_machine.h>
  45. #include <linux/sort.h>
  46. #include <linux/pfn.h>
  47. #include <linux/backing-dev.h>
  48. #include <linux/fault-inject.h>
  49. #include <linux/page-isolation.h>
  50. #include <linux/page_cgroup.h>
  51. #include <linux/debugobjects.h>
  52. #include <linux/kmemleak.h>
  53. #include <linux/compaction.h>
  54. #include <trace/events/kmem.h>
  55. #include <linux/prefetch.h>
  56. #include <linux/mm_inline.h>
  57. #include <linux/migrate.h>
  58. #include <linux/page-debug-flags.h>
  59. #include <linux/hugetlb.h>
  60. #include <linux/sched/rt.h>
  61. #include <asm/sections.h>
  62. #include <asm/tlbflush.h>
  63. #include <asm/div64.h>
  64. #include "internal.h"
  65. /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  66. static DEFINE_MUTEX(pcp_batch_high_lock);
  67. #define MIN_PERCPU_PAGELIST_FRACTION (8)
  68. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  69. DEFINE_PER_CPU(int, numa_node);
  70. EXPORT_PER_CPU_SYMBOL(numa_node);
  71. #endif
  72. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  73. /*
  74. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  75. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  76. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  77. * defined in <linux/topology.h>.
  78. */
  79. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  80. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  81. int _node_numa_mem_[MAX_NUMNODES];
  82. #endif
  83. /*
  84. * Array of node states.
  85. */
  86. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  87. [N_POSSIBLE] = NODE_MASK_ALL,
  88. [N_ONLINE] = { { [0] = 1UL } },
  89. #ifndef CONFIG_NUMA
  90. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  91. #ifdef CONFIG_HIGHMEM
  92. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  93. #endif
  94. #ifdef CONFIG_MOVABLE_NODE
  95. [N_MEMORY] = { { [0] = 1UL } },
  96. #endif
  97. [N_CPU] = { { [0] = 1UL } },
  98. #endif /* NUMA */
  99. };
  100. EXPORT_SYMBOL(node_states);
  101. /* Protect totalram_pages and zone->managed_pages */
  102. static DEFINE_SPINLOCK(managed_page_count_lock);
  103. unsigned long totalram_pages __read_mostly;
  104. unsigned long totalreserve_pages __read_mostly;
  105. /*
  106. * When calculating the number of globally allowed dirty pages, there
  107. * is a certain number of per-zone reserves that should not be
  108. * considered dirtyable memory. This is the sum of those reserves
  109. * over all existing zones that contribute dirtyable memory.
  110. */
  111. unsigned long dirty_balance_reserve __read_mostly;
  112. int percpu_pagelist_fraction;
  113. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  114. #ifdef CONFIG_PM_SLEEP
  115. /*
  116. * The following functions are used by the suspend/hibernate code to temporarily
  117. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  118. * while devices are suspended. To avoid races with the suspend/hibernate code,
  119. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  120. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  121. * guaranteed not to run in parallel with that modification).
  122. */
  123. static gfp_t saved_gfp_mask;
  124. void pm_restore_gfp_mask(void)
  125. {
  126. WARN_ON(!mutex_is_locked(&pm_mutex));
  127. if (saved_gfp_mask) {
  128. gfp_allowed_mask = saved_gfp_mask;
  129. saved_gfp_mask = 0;
  130. }
  131. }
  132. void pm_restrict_gfp_mask(void)
  133. {
  134. WARN_ON(!mutex_is_locked(&pm_mutex));
  135. WARN_ON(saved_gfp_mask);
  136. saved_gfp_mask = gfp_allowed_mask;
  137. gfp_allowed_mask &= ~GFP_IOFS;
  138. }
  139. bool pm_suspended_storage(void)
  140. {
  141. if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
  142. return false;
  143. return true;
  144. }
  145. #endif /* CONFIG_PM_SLEEP */
  146. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  147. int pageblock_order __read_mostly;
  148. #endif
  149. static void __free_pages_ok(struct page *page, unsigned int order);
  150. /*
  151. * results with 256, 32 in the lowmem_reserve sysctl:
  152. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  153. * 1G machine -> (16M dma, 784M normal, 224M high)
  154. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  155. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  156. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  157. *
  158. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  159. * don't need any ZONE_NORMAL reservation
  160. */
  161. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  162. #ifdef CONFIG_ZONE_DMA
  163. 256,
  164. #endif
  165. #ifdef CONFIG_ZONE_DMA32
  166. 256,
  167. #endif
  168. #ifdef CONFIG_HIGHMEM
  169. 32,
  170. #endif
  171. 32,
  172. };
  173. EXPORT_SYMBOL(totalram_pages);
  174. static char * const zone_names[MAX_NR_ZONES] = {
  175. #ifdef CONFIG_ZONE_DMA
  176. "DMA",
  177. #endif
  178. #ifdef CONFIG_ZONE_DMA32
  179. "DMA32",
  180. #endif
  181. "Normal",
  182. #ifdef CONFIG_HIGHMEM
  183. "HighMem",
  184. #endif
  185. "Movable",
  186. };
  187. int min_free_kbytes = 1024;
  188. int user_min_free_kbytes = -1;
  189. static unsigned long __meminitdata nr_kernel_pages;
  190. static unsigned long __meminitdata nr_all_pages;
  191. static unsigned long __meminitdata dma_reserve;
  192. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  193. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  194. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  195. static unsigned long __initdata required_kernelcore;
  196. static unsigned long __initdata required_movablecore;
  197. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  198. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  199. int movable_zone;
  200. EXPORT_SYMBOL(movable_zone);
  201. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  202. #if MAX_NUMNODES > 1
  203. int nr_node_ids __read_mostly = MAX_NUMNODES;
  204. int nr_online_nodes __read_mostly = 1;
  205. EXPORT_SYMBOL(nr_node_ids);
  206. EXPORT_SYMBOL(nr_online_nodes);
  207. #endif
  208. int page_group_by_mobility_disabled __read_mostly;
  209. void set_pageblock_migratetype(struct page *page, int migratetype)
  210. {
  211. if (unlikely(page_group_by_mobility_disabled &&
  212. migratetype < MIGRATE_PCPTYPES))
  213. migratetype = MIGRATE_UNMOVABLE;
  214. set_pageblock_flags_group(page, (unsigned long)migratetype,
  215. PB_migrate, PB_migrate_end);
  216. }
  217. bool oom_killer_disabled __read_mostly;
  218. #ifdef CONFIG_DEBUG_VM
  219. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  220. {
  221. int ret = 0;
  222. unsigned seq;
  223. unsigned long pfn = page_to_pfn(page);
  224. unsigned long sp, start_pfn;
  225. do {
  226. seq = zone_span_seqbegin(zone);
  227. start_pfn = zone->zone_start_pfn;
  228. sp = zone->spanned_pages;
  229. if (!zone_spans_pfn(zone, pfn))
  230. ret = 1;
  231. } while (zone_span_seqretry(zone, seq));
  232. if (ret)
  233. pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
  234. pfn, zone_to_nid(zone), zone->name,
  235. start_pfn, start_pfn + sp);
  236. return ret;
  237. }
  238. static int page_is_consistent(struct zone *zone, struct page *page)
  239. {
  240. if (!pfn_valid_within(page_to_pfn(page)))
  241. return 0;
  242. if (zone != page_zone(page))
  243. return 0;
  244. return 1;
  245. }
  246. /*
  247. * Temporary debugging check for pages not lying within a given zone.
  248. */
  249. static int bad_range(struct zone *zone, struct page *page)
  250. {
  251. if (page_outside_zone_boundaries(zone, page))
  252. return 1;
  253. if (!page_is_consistent(zone, page))
  254. return 1;
  255. return 0;
  256. }
  257. #else
  258. static inline int bad_range(struct zone *zone, struct page *page)
  259. {
  260. return 0;
  261. }
  262. #endif
  263. static void bad_page(struct page *page, const char *reason,
  264. unsigned long bad_flags)
  265. {
  266. static unsigned long resume;
  267. static unsigned long nr_shown;
  268. static unsigned long nr_unshown;
  269. /* Don't complain about poisoned pages */
  270. if (PageHWPoison(page)) {
  271. page_mapcount_reset(page); /* remove PageBuddy */
  272. return;
  273. }
  274. /*
  275. * Allow a burst of 60 reports, then keep quiet for that minute;
  276. * or allow a steady drip of one report per second.
  277. */
  278. if (nr_shown == 60) {
  279. if (time_before(jiffies, resume)) {
  280. nr_unshown++;
  281. goto out;
  282. }
  283. if (nr_unshown) {
  284. printk(KERN_ALERT
  285. "BUG: Bad page state: %lu messages suppressed\n",
  286. nr_unshown);
  287. nr_unshown = 0;
  288. }
  289. nr_shown = 0;
  290. }
  291. if (nr_shown++ == 0)
  292. resume = jiffies + 60 * HZ;
  293. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  294. current->comm, page_to_pfn(page));
  295. dump_page_badflags(page, reason, bad_flags);
  296. print_modules();
  297. dump_stack();
  298. out:
  299. /* Leave bad fields for debug, except PageBuddy could make trouble */
  300. page_mapcount_reset(page); /* remove PageBuddy */
  301. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  302. }
  303. /*
  304. * Higher-order pages are called "compound pages". They are structured thusly:
  305. *
  306. * The first PAGE_SIZE page is called the "head page".
  307. *
  308. * The remaining PAGE_SIZE pages are called "tail pages".
  309. *
  310. * All pages have PG_compound set. All tail pages have their ->first_page
  311. * pointing at the head page.
  312. *
  313. * The first tail page's ->lru.next holds the address of the compound page's
  314. * put_page() function. Its ->lru.prev holds the order of allocation.
  315. * This usage means that zero-order pages may not be compound.
  316. */
  317. static void free_compound_page(struct page *page)
  318. {
  319. __free_pages_ok(page, compound_order(page));
  320. }
  321. void prep_compound_page(struct page *page, unsigned long order)
  322. {
  323. int i;
  324. int nr_pages = 1 << order;
  325. set_compound_page_dtor(page, free_compound_page);
  326. set_compound_order(page, order);
  327. __SetPageHead(page);
  328. for (i = 1; i < nr_pages; i++) {
  329. struct page *p = page + i;
  330. set_page_count(p, 0);
  331. p->first_page = page;
  332. /* Make sure p->first_page is always valid for PageTail() */
  333. smp_wmb();
  334. __SetPageTail(p);
  335. }
  336. }
  337. /* update __split_huge_page_refcount if you change this function */
  338. static int destroy_compound_page(struct page *page, unsigned long order)
  339. {
  340. int i;
  341. int nr_pages = 1 << order;
  342. int bad = 0;
  343. if (unlikely(compound_order(page) != order)) {
  344. bad_page(page, "wrong compound order", 0);
  345. bad++;
  346. }
  347. __ClearPageHead(page);
  348. for (i = 1; i < nr_pages; i++) {
  349. struct page *p = page + i;
  350. if (unlikely(!PageTail(p))) {
  351. bad_page(page, "PageTail not set", 0);
  352. bad++;
  353. } else if (unlikely(p->first_page != page)) {
  354. bad_page(page, "first_page not consistent", 0);
  355. bad++;
  356. }
  357. __ClearPageTail(p);
  358. }
  359. return bad;
  360. }
  361. static inline void prep_zero_page(struct page *page, unsigned int order,
  362. gfp_t gfp_flags)
  363. {
  364. int i;
  365. /*
  366. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  367. * and __GFP_HIGHMEM from hard or soft interrupt context.
  368. */
  369. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  370. for (i = 0; i < (1 << order); i++)
  371. clear_highpage(page + i);
  372. }
  373. #ifdef CONFIG_DEBUG_PAGEALLOC
  374. unsigned int _debug_guardpage_minorder;
  375. static int __init debug_guardpage_minorder_setup(char *buf)
  376. {
  377. unsigned long res;
  378. if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
  379. printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
  380. return 0;
  381. }
  382. _debug_guardpage_minorder = res;
  383. printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
  384. return 0;
  385. }
  386. __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
  387. static inline void set_page_guard_flag(struct page *page)
  388. {
  389. __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
  390. }
  391. static inline void clear_page_guard_flag(struct page *page)
  392. {
  393. __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
  394. }
  395. #else
  396. static inline void set_page_guard_flag(struct page *page) { }
  397. static inline void clear_page_guard_flag(struct page *page) { }
  398. #endif
  399. static inline void set_page_order(struct page *page, unsigned int order)
  400. {
  401. set_page_private(page, order);
  402. __SetPageBuddy(page);
  403. }
  404. static inline void rmv_page_order(struct page *page)
  405. {
  406. __ClearPageBuddy(page);
  407. set_page_private(page, 0);
  408. }
  409. /*
  410. * Locate the struct page for both the matching buddy in our
  411. * pair (buddy1) and the combined O(n+1) page they form (page).
  412. *
  413. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  414. * the following equation:
  415. * B2 = B1 ^ (1 << O)
  416. * For example, if the starting buddy (buddy2) is #8 its order
  417. * 1 buddy is #10:
  418. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  419. *
  420. * 2) Any buddy B will have an order O+1 parent P which
  421. * satisfies the following equation:
  422. * P = B & ~(1 << O)
  423. *
  424. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  425. */
  426. static inline unsigned long
  427. __find_buddy_index(unsigned long page_idx, unsigned int order)
  428. {
  429. return page_idx ^ (1 << order);
  430. }
  431. /*
  432. * This function checks whether a page is free && is the buddy
  433. * we can do coalesce a page and its buddy if
  434. * (a) the buddy is not in a hole &&
  435. * (b) the buddy is in the buddy system &&
  436. * (c) a page and its buddy have the same order &&
  437. * (d) a page and its buddy are in the same zone.
  438. *
  439. * For recording whether a page is in the buddy system, we set ->_mapcount
  440. * PAGE_BUDDY_MAPCOUNT_VALUE.
  441. * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
  442. * serialized by zone->lock.
  443. *
  444. * For recording page's order, we use page_private(page).
  445. */
  446. static inline int page_is_buddy(struct page *page, struct page *buddy,
  447. unsigned int order)
  448. {
  449. if (!pfn_valid_within(page_to_pfn(buddy)))
  450. return 0;
  451. if (page_is_guard(buddy) && page_order(buddy) == order) {
  452. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  453. if (page_zone_id(page) != page_zone_id(buddy))
  454. return 0;
  455. return 1;
  456. }
  457. if (PageBuddy(buddy) && page_order(buddy) == order) {
  458. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  459. /*
  460. * zone check is done late to avoid uselessly
  461. * calculating zone/node ids for pages that could
  462. * never merge.
  463. */
  464. if (page_zone_id(page) != page_zone_id(buddy))
  465. return 0;
  466. return 1;
  467. }
  468. return 0;
  469. }
  470. /*
  471. * Freeing function for a buddy system allocator.
  472. *
  473. * The concept of a buddy system is to maintain direct-mapped table
  474. * (containing bit values) for memory blocks of various "orders".
  475. * The bottom level table contains the map for the smallest allocatable
  476. * units of memory (here, pages), and each level above it describes
  477. * pairs of units from the levels below, hence, "buddies".
  478. * At a high level, all that happens here is marking the table entry
  479. * at the bottom level available, and propagating the changes upward
  480. * as necessary, plus some accounting needed to play nicely with other
  481. * parts of the VM system.
  482. * At each level, we keep a list of pages, which are heads of continuous
  483. * free pages of length of (1 << order) and marked with _mapcount
  484. * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
  485. * field.
  486. * So when we are allocating or freeing one, we can derive the state of the
  487. * other. That is, if we allocate a small block, and both were
  488. * free, the remainder of the region must be split into blocks.
  489. * If a block is freed, and its buddy is also free, then this
  490. * triggers coalescing into a block of larger size.
  491. *
  492. * -- nyc
  493. */
  494. static inline void __free_one_page(struct page *page,
  495. unsigned long pfn,
  496. struct zone *zone, unsigned int order,
  497. int migratetype)
  498. {
  499. unsigned long page_idx;
  500. unsigned long combined_idx;
  501. unsigned long uninitialized_var(buddy_idx);
  502. struct page *buddy;
  503. VM_BUG_ON(!zone_is_initialized(zone));
  504. if (unlikely(PageCompound(page)))
  505. if (unlikely(destroy_compound_page(page, order)))
  506. return;
  507. VM_BUG_ON(migratetype == -1);
  508. page_idx = pfn & ((1 << MAX_ORDER) - 1);
  509. VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
  510. VM_BUG_ON_PAGE(bad_range(zone, page), page);
  511. while (order < MAX_ORDER-1) {
  512. buddy_idx = __find_buddy_index(page_idx, order);
  513. buddy = page + (buddy_idx - page_idx);
  514. if (!page_is_buddy(page, buddy, order))
  515. break;
  516. /*
  517. * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
  518. * merge with it and move up one order.
  519. */
  520. if (page_is_guard(buddy)) {
  521. clear_page_guard_flag(buddy);
  522. set_page_private(page, 0);
  523. __mod_zone_freepage_state(zone, 1 << order,
  524. migratetype);
  525. } else {
  526. list_del(&buddy->lru);
  527. zone->free_area[order].nr_free--;
  528. rmv_page_order(buddy);
  529. }
  530. combined_idx = buddy_idx & page_idx;
  531. page = page + (combined_idx - page_idx);
  532. page_idx = combined_idx;
  533. order++;
  534. }
  535. set_page_order(page, order);
  536. /*
  537. * If this is not the largest possible page, check if the buddy
  538. * of the next-highest order is free. If it is, it's possible
  539. * that pages are being freed that will coalesce soon. In case,
  540. * that is happening, add the free page to the tail of the list
  541. * so it's less likely to be used soon and more likely to be merged
  542. * as a higher order page
  543. */
  544. if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
  545. struct page *higher_page, *higher_buddy;
  546. combined_idx = buddy_idx & page_idx;
  547. higher_page = page + (combined_idx - page_idx);
  548. buddy_idx = __find_buddy_index(combined_idx, order + 1);
  549. higher_buddy = higher_page + (buddy_idx - combined_idx);
  550. if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
  551. list_add_tail(&page->lru,
  552. &zone->free_area[order].free_list[migratetype]);
  553. goto out;
  554. }
  555. }
  556. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  557. out:
  558. zone->free_area[order].nr_free++;
  559. }
  560. static inline int free_pages_check(struct page *page)
  561. {
  562. const char *bad_reason = NULL;
  563. unsigned long bad_flags = 0;
  564. if (unlikely(page_mapcount(page)))
  565. bad_reason = "nonzero mapcount";
  566. if (unlikely(page->mapping != NULL))
  567. bad_reason = "non-NULL mapping";
  568. if (unlikely(atomic_read(&page->_count) != 0))
  569. bad_reason = "nonzero _count";
  570. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
  571. bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
  572. bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
  573. }
  574. if (unlikely(mem_cgroup_bad_page_check(page)))
  575. bad_reason = "cgroup check failed";
  576. if (unlikely(bad_reason)) {
  577. bad_page(page, bad_reason, bad_flags);
  578. return 1;
  579. }
  580. page_cpupid_reset_last(page);
  581. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  582. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  583. return 0;
  584. }
  585. /*
  586. * Frees a number of pages from the PCP lists
  587. * Assumes all pages on list are in same zone, and of same order.
  588. * count is the number of pages to free.
  589. *
  590. * If the zone was previously in an "all pages pinned" state then look to
  591. * see if this freeing clears that state.
  592. *
  593. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  594. * pinned" detection logic.
  595. */
  596. static void free_pcppages_bulk(struct zone *zone, int count,
  597. struct per_cpu_pages *pcp)
  598. {
  599. int migratetype = 0;
  600. int batch_free = 0;
  601. int to_free = count;
  602. unsigned long nr_scanned;
  603. spin_lock(&zone->lock);
  604. nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
  605. if (nr_scanned)
  606. __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
  607. while (to_free) {
  608. struct page *page;
  609. struct list_head *list;
  610. /*
  611. * Remove pages from lists in a round-robin fashion. A
  612. * batch_free count is maintained that is incremented when an
  613. * empty list is encountered. This is so more pages are freed
  614. * off fuller lists instead of spinning excessively around empty
  615. * lists
  616. */
  617. do {
  618. batch_free++;
  619. if (++migratetype == MIGRATE_PCPTYPES)
  620. migratetype = 0;
  621. list = &pcp->lists[migratetype];
  622. } while (list_empty(list));
  623. /* This is the only non-empty list. Free them all. */
  624. if (batch_free == MIGRATE_PCPTYPES)
  625. batch_free = to_free;
  626. do {
  627. int mt; /* migratetype of the to-be-freed page */
  628. page = list_entry(list->prev, struct page, lru);
  629. /* must delete as __free_one_page list manipulates */
  630. list_del(&page->lru);
  631. mt = get_freepage_migratetype(page);
  632. /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
  633. __free_one_page(page, page_to_pfn(page), zone, 0, mt);
  634. trace_mm_page_pcpu_drain(page, 0, mt);
  635. if (likely(!is_migrate_isolate_page(page))) {
  636. __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
  637. if (is_migrate_cma(mt))
  638. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
  639. }
  640. } while (--to_free && --batch_free && !list_empty(list));
  641. }
  642. spin_unlock(&zone->lock);
  643. }
  644. static void free_one_page(struct zone *zone,
  645. struct page *page, unsigned long pfn,
  646. unsigned int order,
  647. int migratetype)
  648. {
  649. unsigned long nr_scanned;
  650. spin_lock(&zone->lock);
  651. nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
  652. if (nr_scanned)
  653. __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
  654. __free_one_page(page, pfn, zone, order, migratetype);
  655. if (unlikely(!is_migrate_isolate(migratetype)))
  656. __mod_zone_freepage_state(zone, 1 << order, migratetype);
  657. spin_unlock(&zone->lock);
  658. }
  659. static bool free_pages_prepare(struct page *page, unsigned int order)
  660. {
  661. int i;
  662. int bad = 0;
  663. trace_mm_page_free(page, order);
  664. kmemcheck_free_shadow(page, order);
  665. if (PageAnon(page))
  666. page->mapping = NULL;
  667. for (i = 0; i < (1 << order); i++)
  668. bad += free_pages_check(page + i);
  669. if (bad)
  670. return false;
  671. if (!PageHighMem(page)) {
  672. debug_check_no_locks_freed(page_address(page),
  673. PAGE_SIZE << order);
  674. debug_check_no_obj_freed(page_address(page),
  675. PAGE_SIZE << order);
  676. }
  677. arch_free_page(page, order);
  678. kernel_map_pages(page, 1 << order, 0);
  679. return true;
  680. }
  681. static void __free_pages_ok(struct page *page, unsigned int order)
  682. {
  683. unsigned long flags;
  684. int migratetype;
  685. unsigned long pfn = page_to_pfn(page);
  686. if (!free_pages_prepare(page, order))
  687. return;
  688. migratetype = get_pfnblock_migratetype(page, pfn);
  689. local_irq_save(flags);
  690. __count_vm_events(PGFREE, 1 << order);
  691. set_freepage_migratetype(page, migratetype);
  692. free_one_page(page_zone(page), page, pfn, order, migratetype);
  693. local_irq_restore(flags);
  694. }
  695. void __init __free_pages_bootmem(struct page *page, unsigned int order)
  696. {
  697. unsigned int nr_pages = 1 << order;
  698. struct page *p = page;
  699. unsigned int loop;
  700. prefetchw(p);
  701. for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
  702. prefetchw(p + 1);
  703. __ClearPageReserved(p);
  704. set_page_count(p, 0);
  705. }
  706. __ClearPageReserved(p);
  707. set_page_count(p, 0);
  708. page_zone(page)->managed_pages += nr_pages;
  709. set_page_refcounted(page);
  710. __free_pages(page, order);
  711. }
  712. #ifdef CONFIG_CMA
  713. /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
  714. void __init init_cma_reserved_pageblock(struct page *page)
  715. {
  716. unsigned i = pageblock_nr_pages;
  717. struct page *p = page;
  718. do {
  719. __ClearPageReserved(p);
  720. set_page_count(p, 0);
  721. } while (++p, --i);
  722. set_pageblock_migratetype(page, MIGRATE_CMA);
  723. if (pageblock_order >= MAX_ORDER) {
  724. i = pageblock_nr_pages;
  725. p = page;
  726. do {
  727. set_page_refcounted(p);
  728. __free_pages(p, MAX_ORDER - 1);
  729. p += MAX_ORDER_NR_PAGES;
  730. } while (i -= MAX_ORDER_NR_PAGES);
  731. } else {
  732. set_page_refcounted(page);
  733. __free_pages(page, pageblock_order);
  734. }
  735. adjust_managed_page_count(page, pageblock_nr_pages);
  736. }
  737. #endif
  738. /*
  739. * The order of subdivision here is critical for the IO subsystem.
  740. * Please do not alter this order without good reasons and regression
  741. * testing. Specifically, as large blocks of memory are subdivided,
  742. * the order in which smaller blocks are delivered depends on the order
  743. * they're subdivided in this function. This is the primary factor
  744. * influencing the order in which pages are delivered to the IO
  745. * subsystem according to empirical testing, and this is also justified
  746. * by considering the behavior of a buddy system containing a single
  747. * large block of memory acted on by a series of small allocations.
  748. * This behavior is a critical factor in sglist merging's success.
  749. *
  750. * -- nyc
  751. */
  752. static inline void expand(struct zone *zone, struct page *page,
  753. int low, int high, struct free_area *area,
  754. int migratetype)
  755. {
  756. unsigned long size = 1 << high;
  757. while (high > low) {
  758. area--;
  759. high--;
  760. size >>= 1;
  761. VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
  762. #ifdef CONFIG_DEBUG_PAGEALLOC
  763. if (high < debug_guardpage_minorder()) {
  764. /*
  765. * Mark as guard pages (or page), that will allow to
  766. * merge back to allocator when buddy will be freed.
  767. * Corresponding page table entries will not be touched,
  768. * pages will stay not present in virtual address space
  769. */
  770. INIT_LIST_HEAD(&page[size].lru);
  771. set_page_guard_flag(&page[size]);
  772. set_page_private(&page[size], high);
  773. /* Guard pages are not available for any usage */
  774. __mod_zone_freepage_state(zone, -(1 << high),
  775. migratetype);
  776. continue;
  777. }
  778. #endif
  779. list_add(&page[size].lru, &area->free_list[migratetype]);
  780. area->nr_free++;
  781. set_page_order(&page[size], high);
  782. }
  783. }
  784. /*
  785. * This page is about to be returned from the page allocator
  786. */
  787. static inline int check_new_page(struct page *page)
  788. {
  789. const char *bad_reason = NULL;
  790. unsigned long bad_flags = 0;
  791. if (unlikely(page_mapcount(page)))
  792. bad_reason = "nonzero mapcount";
  793. if (unlikely(page->mapping != NULL))
  794. bad_reason = "non-NULL mapping";
  795. if (unlikely(atomic_read(&page->_count) != 0))
  796. bad_reason = "nonzero _count";
  797. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
  798. bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
  799. bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
  800. }
  801. if (unlikely(mem_cgroup_bad_page_check(page)))
  802. bad_reason = "cgroup check failed";
  803. if (unlikely(bad_reason)) {
  804. bad_page(page, bad_reason, bad_flags);
  805. return 1;
  806. }
  807. return 0;
  808. }
  809. static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags)
  810. {
  811. int i;
  812. for (i = 0; i < (1 << order); i++) {
  813. struct page *p = page + i;
  814. if (unlikely(check_new_page(p)))
  815. return 1;
  816. }
  817. set_page_private(page, 0);
  818. set_page_refcounted(page);
  819. arch_alloc_page(page, order);
  820. kernel_map_pages(page, 1 << order, 1);
  821. if (gfp_flags & __GFP_ZERO)
  822. prep_zero_page(page, order, gfp_flags);
  823. if (order && (gfp_flags & __GFP_COMP))
  824. prep_compound_page(page, order);
  825. return 0;
  826. }
  827. /*
  828. * Go through the free lists for the given migratetype and remove
  829. * the smallest available page from the freelists
  830. */
  831. static inline
  832. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  833. int migratetype)
  834. {
  835. unsigned int current_order;
  836. struct free_area *area;
  837. struct page *page;
  838. /* Find a page of the appropriate size in the preferred list */
  839. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  840. area = &(zone->free_area[current_order]);
  841. if (list_empty(&area->free_list[migratetype]))
  842. continue;
  843. page = list_entry(area->free_list[migratetype].next,
  844. struct page, lru);
  845. list_del(&page->lru);
  846. rmv_page_order(page);
  847. area->nr_free--;
  848. expand(zone, page, order, current_order, area, migratetype);
  849. set_freepage_migratetype(page, migratetype);
  850. return page;
  851. }
  852. return NULL;
  853. }
  854. /*
  855. * This array describes the order lists are fallen back to when
  856. * the free lists for the desirable migrate type are depleted
  857. */
  858. static int fallbacks[MIGRATE_TYPES][4] = {
  859. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  860. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  861. #ifdef CONFIG_CMA
  862. [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  863. [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
  864. #else
  865. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  866. #endif
  867. [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
  868. #ifdef CONFIG_MEMORY_ISOLATION
  869. [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
  870. #endif
  871. };
  872. /*
  873. * Move the free pages in a range to the free lists of the requested type.
  874. * Note that start_page and end_pages are not aligned on a pageblock
  875. * boundary. If alignment is required, use move_freepages_block()
  876. */
  877. int move_freepages(struct zone *zone,
  878. struct page *start_page, struct page *end_page,
  879. int migratetype)
  880. {
  881. struct page *page;
  882. unsigned long order;
  883. int pages_moved = 0;
  884. #ifndef CONFIG_HOLES_IN_ZONE
  885. /*
  886. * page_zone is not safe to call in this context when
  887. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  888. * anyway as we check zone boundaries in move_freepages_block().
  889. * Remove at a later date when no bug reports exist related to
  890. * grouping pages by mobility
  891. */
  892. VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
  893. #endif
  894. for (page = start_page; page <= end_page;) {
  895. /* Make sure we are not inadvertently changing nodes */
  896. VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
  897. if (!pfn_valid_within(page_to_pfn(page))) {
  898. page++;
  899. continue;
  900. }
  901. if (!PageBuddy(page)) {
  902. page++;
  903. continue;
  904. }
  905. order = page_order(page);
  906. list_move(&page->lru,
  907. &zone->free_area[order].free_list[migratetype]);
  908. set_freepage_migratetype(page, migratetype);
  909. page += 1 << order;
  910. pages_moved += 1 << order;
  911. }
  912. return pages_moved;
  913. }
  914. int move_freepages_block(struct zone *zone, struct page *page,
  915. int migratetype)
  916. {
  917. unsigned long start_pfn, end_pfn;
  918. struct page *start_page, *end_page;
  919. start_pfn = page_to_pfn(page);
  920. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  921. start_page = pfn_to_page(start_pfn);
  922. end_page = start_page + pageblock_nr_pages - 1;
  923. end_pfn = start_pfn + pageblock_nr_pages - 1;
  924. /* Do not cross zone boundaries */
  925. if (!zone_spans_pfn(zone, start_pfn))
  926. start_page = page;
  927. if (!zone_spans_pfn(zone, end_pfn))
  928. return 0;
  929. return move_freepages(zone, start_page, end_page, migratetype);
  930. }
  931. static void change_pageblock_range(struct page *pageblock_page,
  932. int start_order, int migratetype)
  933. {
  934. int nr_pageblocks = 1 << (start_order - pageblock_order);
  935. while (nr_pageblocks--) {
  936. set_pageblock_migratetype(pageblock_page, migratetype);
  937. pageblock_page += pageblock_nr_pages;
  938. }
  939. }
  940. /*
  941. * If breaking a large block of pages, move all free pages to the preferred
  942. * allocation list. If falling back for a reclaimable kernel allocation, be
  943. * more aggressive about taking ownership of free pages.
  944. *
  945. * On the other hand, never change migration type of MIGRATE_CMA pageblocks
  946. * nor move CMA pages to different free lists. We don't want unmovable pages
  947. * to be allocated from MIGRATE_CMA areas.
  948. *
  949. * Returns the new migratetype of the pageblock (or the same old migratetype
  950. * if it was unchanged).
  951. */
  952. static int try_to_steal_freepages(struct zone *zone, struct page *page,
  953. int start_type, int fallback_type)
  954. {
  955. int current_order = page_order(page);
  956. /*
  957. * When borrowing from MIGRATE_CMA, we need to release the excess
  958. * buddy pages to CMA itself. We also ensure the freepage_migratetype
  959. * is set to CMA so it is returned to the correct freelist in case
  960. * the page ends up being not actually allocated from the pcp lists.
  961. */
  962. if (is_migrate_cma(fallback_type))
  963. return fallback_type;
  964. /* Take ownership for orders >= pageblock_order */
  965. if (current_order >= pageblock_order) {
  966. change_pageblock_range(page, current_order, start_type);
  967. return start_type;
  968. }
  969. if (current_order >= pageblock_order / 2 ||
  970. start_type == MIGRATE_RECLAIMABLE ||
  971. page_group_by_mobility_disabled) {
  972. int pages;
  973. pages = move_freepages_block(zone, page, start_type);
  974. /* Claim the whole block if over half of it is free */
  975. if (pages >= (1 << (pageblock_order-1)) ||
  976. page_group_by_mobility_disabled) {
  977. set_pageblock_migratetype(page, start_type);
  978. return start_type;
  979. }
  980. }
  981. return fallback_type;
  982. }
  983. /* Remove an element from the buddy allocator from the fallback list */
  984. static inline struct page *
  985. __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
  986. {
  987. struct free_area *area;
  988. unsigned int current_order;
  989. struct page *page;
  990. int migratetype, new_type, i;
  991. /* Find the largest possible block of pages in the other list */
  992. for (current_order = MAX_ORDER-1;
  993. current_order >= order && current_order <= MAX_ORDER-1;
  994. --current_order) {
  995. for (i = 0;; i++) {
  996. migratetype = fallbacks[start_migratetype][i];
  997. /* MIGRATE_RESERVE handled later if necessary */
  998. if (migratetype == MIGRATE_RESERVE)
  999. break;
  1000. area = &(zone->free_area[current_order]);
  1001. if (list_empty(&area->free_list[migratetype]))
  1002. continue;
  1003. page = list_entry(area->free_list[migratetype].next,
  1004. struct page, lru);
  1005. area->nr_free--;
  1006. new_type = try_to_steal_freepages(zone, page,
  1007. start_migratetype,
  1008. migratetype);
  1009. /* Remove the page from the freelists */
  1010. list_del(&page->lru);
  1011. rmv_page_order(page);
  1012. expand(zone, page, order, current_order, area,
  1013. new_type);
  1014. /* The freepage_migratetype may differ from pageblock's
  1015. * migratetype depending on the decisions in
  1016. * try_to_steal_freepages. This is OK as long as it does
  1017. * not differ for MIGRATE_CMA type.
  1018. */
  1019. set_freepage_migratetype(page, new_type);
  1020. trace_mm_page_alloc_extfrag(page, order, current_order,
  1021. start_migratetype, migratetype, new_type);
  1022. return page;
  1023. }
  1024. }
  1025. return NULL;
  1026. }
  1027. /*
  1028. * Do the hard work of removing an element from the buddy allocator.
  1029. * Call me with the zone->lock already held.
  1030. */
  1031. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  1032. int migratetype)
  1033. {
  1034. struct page *page;
  1035. retry_reserve:
  1036. page = __rmqueue_smallest(zone, order, migratetype);
  1037. if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
  1038. page = __rmqueue_fallback(zone, order, migratetype);
  1039. /*
  1040. * Use MIGRATE_RESERVE rather than fail an allocation. goto
  1041. * is used because __rmqueue_smallest is an inline function
  1042. * and we want just one call site
  1043. */
  1044. if (!page) {
  1045. migratetype = MIGRATE_RESERVE;
  1046. goto retry_reserve;
  1047. }
  1048. }
  1049. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  1050. return page;
  1051. }
  1052. /*
  1053. * Obtain a specified number of elements from the buddy allocator, all under
  1054. * a single hold of the lock, for efficiency. Add them to the supplied list.
  1055. * Returns the number of new pages which were placed at *list.
  1056. */
  1057. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  1058. unsigned long count, struct list_head *list,
  1059. int migratetype, bool cold)
  1060. {
  1061. int i;
  1062. spin_lock(&zone->lock);
  1063. for (i = 0; i < count; ++i) {
  1064. struct page *page = __rmqueue(zone, order, migratetype);
  1065. if (unlikely(page == NULL))
  1066. break;
  1067. /*
  1068. * Split buddy pages returned by expand() are received here
  1069. * in physical page order. The page is added to the callers and
  1070. * list and the list head then moves forward. From the callers
  1071. * perspective, the linked list is ordered by page number in
  1072. * some conditions. This is useful for IO devices that can
  1073. * merge IO requests if the physical pages are ordered
  1074. * properly.
  1075. */
  1076. if (likely(!cold))
  1077. list_add(&page->lru, list);
  1078. else
  1079. list_add_tail(&page->lru, list);
  1080. list = &page->lru;
  1081. if (is_migrate_cma(get_freepage_migratetype(page)))
  1082. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
  1083. -(1 << order));
  1084. }
  1085. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  1086. spin_unlock(&zone->lock);
  1087. return i;
  1088. }
  1089. #ifdef CONFIG_NUMA
  1090. /*
  1091. * Called from the vmstat counter updater to drain pagesets of this
  1092. * currently executing processor on remote nodes after they have
  1093. * expired.
  1094. *
  1095. * Note that this function must be called with the thread pinned to
  1096. * a single processor.
  1097. */
  1098. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  1099. {
  1100. unsigned long flags;
  1101. int to_drain, batch;
  1102. local_irq_save(flags);
  1103. batch = ACCESS_ONCE(pcp->batch);
  1104. to_drain = min(pcp->count, batch);
  1105. if (to_drain > 0) {
  1106. free_pcppages_bulk(zone, to_drain, pcp);
  1107. pcp->count -= to_drain;
  1108. }
  1109. local_irq_restore(flags);
  1110. }
  1111. #endif
  1112. /*
  1113. * Drain pages of the indicated processor.
  1114. *
  1115. * The processor must either be the current processor and the
  1116. * thread pinned to the current processor or a processor that
  1117. * is not online.
  1118. */
  1119. static void drain_pages(unsigned int cpu)
  1120. {
  1121. unsigned long flags;
  1122. struct zone *zone;
  1123. for_each_populated_zone(zone) {
  1124. struct per_cpu_pageset *pset;
  1125. struct per_cpu_pages *pcp;
  1126. local_irq_save(flags);
  1127. pset = per_cpu_ptr(zone->pageset, cpu);
  1128. pcp = &pset->pcp;
  1129. if (pcp->count) {
  1130. free_pcppages_bulk(zone, pcp->count, pcp);
  1131. pcp->count = 0;
  1132. }
  1133. local_irq_restore(flags);
  1134. }
  1135. }
  1136. /*
  1137. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  1138. */
  1139. void drain_local_pages(void *arg)
  1140. {
  1141. drain_pages(smp_processor_id());
  1142. }
  1143. /*
  1144. * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
  1145. *
  1146. * Note that this code is protected against sending an IPI to an offline
  1147. * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
  1148. * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
  1149. * nothing keeps CPUs from showing up after we populated the cpumask and
  1150. * before the call to on_each_cpu_mask().
  1151. */
  1152. void drain_all_pages(void)
  1153. {
  1154. int cpu;
  1155. struct per_cpu_pageset *pcp;
  1156. struct zone *zone;
  1157. /*
  1158. * Allocate in the BSS so we wont require allocation in
  1159. * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
  1160. */
  1161. static cpumask_t cpus_with_pcps;
  1162. /*
  1163. * We don't care about racing with CPU hotplug event
  1164. * as offline notification will cause the notified
  1165. * cpu to drain that CPU pcps and on_each_cpu_mask
  1166. * disables preemption as part of its processing
  1167. */
  1168. for_each_online_cpu(cpu) {
  1169. bool has_pcps = false;
  1170. for_each_populated_zone(zone) {
  1171. pcp = per_cpu_ptr(zone->pageset, cpu);
  1172. if (pcp->pcp.count) {
  1173. has_pcps = true;
  1174. break;
  1175. }
  1176. }
  1177. if (has_pcps)
  1178. cpumask_set_cpu(cpu, &cpus_with_pcps);
  1179. else
  1180. cpumask_clear_cpu(cpu, &cpus_with_pcps);
  1181. }
  1182. on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
  1183. }
  1184. #ifdef CONFIG_HIBERNATION
  1185. void mark_free_pages(struct zone *zone)
  1186. {
  1187. unsigned long pfn, max_zone_pfn;
  1188. unsigned long flags;
  1189. unsigned int order, t;
  1190. struct list_head *curr;
  1191. if (zone_is_empty(zone))
  1192. return;
  1193. spin_lock_irqsave(&zone->lock, flags);
  1194. max_zone_pfn = zone_end_pfn(zone);
  1195. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  1196. if (pfn_valid(pfn)) {
  1197. struct page *page = pfn_to_page(pfn);
  1198. if (!swsusp_page_is_forbidden(page))
  1199. swsusp_unset_page_free(page);
  1200. }
  1201. for_each_migratetype_order(order, t) {
  1202. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  1203. unsigned long i;
  1204. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  1205. for (i = 0; i < (1UL << order); i++)
  1206. swsusp_set_page_free(pfn_to_page(pfn + i));
  1207. }
  1208. }
  1209. spin_unlock_irqrestore(&zone->lock, flags);
  1210. }
  1211. #endif /* CONFIG_PM */
  1212. /*
  1213. * Free a 0-order page
  1214. * cold == true ? free a cold page : free a hot page
  1215. */
  1216. void free_hot_cold_page(struct page *page, bool cold)
  1217. {
  1218. struct zone *zone = page_zone(page);
  1219. struct per_cpu_pages *pcp;
  1220. unsigned long flags;
  1221. unsigned long pfn = page_to_pfn(page);
  1222. int migratetype;
  1223. if (!free_pages_prepare(page, 0))
  1224. return;
  1225. migratetype = get_pfnblock_migratetype(page, pfn);
  1226. set_freepage_migratetype(page, migratetype);
  1227. local_irq_save(flags);
  1228. __count_vm_event(PGFREE);
  1229. /*
  1230. * We only track unmovable, reclaimable and movable on pcp lists.
  1231. * Free ISOLATE pages back to the allocator because they are being
  1232. * offlined but treat RESERVE as movable pages so we can get those
  1233. * areas back if necessary. Otherwise, we may have to free
  1234. * excessively into the page allocator
  1235. */
  1236. if (migratetype >= MIGRATE_PCPTYPES) {
  1237. if (unlikely(is_migrate_isolate(migratetype))) {
  1238. free_one_page(zone, page, pfn, 0, migratetype);
  1239. goto out;
  1240. }
  1241. migratetype = MIGRATE_MOVABLE;
  1242. }
  1243. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1244. if (!cold)
  1245. list_add(&page->lru, &pcp->lists[migratetype]);
  1246. else
  1247. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  1248. pcp->count++;
  1249. if (pcp->count >= pcp->high) {
  1250. unsigned long batch = ACCESS_ONCE(pcp->batch);
  1251. free_pcppages_bulk(zone, batch, pcp);
  1252. pcp->count -= batch;
  1253. }
  1254. out:
  1255. local_irq_restore(flags);
  1256. }
  1257. /*
  1258. * Free a list of 0-order pages
  1259. */
  1260. void free_hot_cold_page_list(struct list_head *list, bool cold)
  1261. {
  1262. struct page *page, *next;
  1263. list_for_each_entry_safe(page, next, list, lru) {
  1264. trace_mm_page_free_batched(page, cold);
  1265. free_hot_cold_page(page, cold);
  1266. }
  1267. }
  1268. /*
  1269. * split_page takes a non-compound higher-order page, and splits it into
  1270. * n (1<<order) sub-pages: page[0..n]
  1271. * Each sub-page must be freed individually.
  1272. *
  1273. * Note: this is probably too low level an operation for use in drivers.
  1274. * Please consult with lkml before using this in your driver.
  1275. */
  1276. void split_page(struct page *page, unsigned int order)
  1277. {
  1278. int i;
  1279. VM_BUG_ON_PAGE(PageCompound(page), page);
  1280. VM_BUG_ON_PAGE(!page_count(page), page);
  1281. #ifdef CONFIG_KMEMCHECK
  1282. /*
  1283. * Split shadow pages too, because free(page[0]) would
  1284. * otherwise free the whole shadow.
  1285. */
  1286. if (kmemcheck_page_is_tracked(page))
  1287. split_page(virt_to_page(page[0].shadow), order);
  1288. #endif
  1289. for (i = 1; i < (1 << order); i++)
  1290. set_page_refcounted(page + i);
  1291. }
  1292. EXPORT_SYMBOL_GPL(split_page);
  1293. static int __isolate_free_page(struct page *page, unsigned int order)
  1294. {
  1295. unsigned long watermark;
  1296. struct zone *zone;
  1297. int mt;
  1298. BUG_ON(!PageBuddy(page));
  1299. zone = page_zone(page);
  1300. mt = get_pageblock_migratetype(page);
  1301. if (!is_migrate_isolate(mt)) {
  1302. /* Obey watermarks as if the page was being allocated */
  1303. watermark = low_wmark_pages(zone) + (1 << order);
  1304. if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
  1305. return 0;
  1306. __mod_zone_freepage_state(zone, -(1UL << order), mt);
  1307. }
  1308. /* Remove page from free list */
  1309. list_del(&page->lru);
  1310. zone->free_area[order].nr_free--;
  1311. rmv_page_order(page);
  1312. /* Set the pageblock if the isolated page is at least a pageblock */
  1313. if (order >= pageblock_order - 1) {
  1314. struct page *endpage = page + (1 << order) - 1;
  1315. for (; page < endpage; page += pageblock_nr_pages) {
  1316. int mt = get_pageblock_migratetype(page);
  1317. if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
  1318. set_pageblock_migratetype(page,
  1319. MIGRATE_MOVABLE);
  1320. }
  1321. }
  1322. return 1UL << order;
  1323. }
  1324. /*
  1325. * Similar to split_page except the page is already free. As this is only
  1326. * being used for migration, the migratetype of the block also changes.
  1327. * As this is called with interrupts disabled, the caller is responsible
  1328. * for calling arch_alloc_page() and kernel_map_page() after interrupts
  1329. * are enabled.
  1330. *
  1331. * Note: this is probably too low level an operation for use in drivers.
  1332. * Please consult with lkml before using this in your driver.
  1333. */
  1334. int split_free_page(struct page *page)
  1335. {
  1336. unsigned int order;
  1337. int nr_pages;
  1338. order = page_order(page);
  1339. nr_pages = __isolate_free_page(page, order);
  1340. if (!nr_pages)
  1341. return 0;
  1342. /* Split into individual pages */
  1343. set_page_refcounted(page);
  1344. split_page(page, order);
  1345. return nr_pages;
  1346. }
  1347. /*
  1348. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  1349. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  1350. * or two.
  1351. */
  1352. static inline
  1353. struct page *buffered_rmqueue(struct zone *preferred_zone,
  1354. struct zone *zone, unsigned int order,
  1355. gfp_t gfp_flags, int migratetype)
  1356. {
  1357. unsigned long flags;
  1358. struct page *page;
  1359. bool cold = ((gfp_flags & __GFP_COLD) != 0);
  1360. again:
  1361. if (likely(order == 0)) {
  1362. struct per_cpu_pages *pcp;
  1363. struct list_head *list;
  1364. local_irq_save(flags);
  1365. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1366. list = &pcp->lists[migratetype];
  1367. if (list_empty(list)) {
  1368. pcp->count += rmqueue_bulk(zone, 0,
  1369. pcp->batch, list,
  1370. migratetype, cold);
  1371. if (unlikely(list_empty(list)))
  1372. goto failed;
  1373. }
  1374. if (cold)
  1375. page = list_entry(list->prev, struct page, lru);
  1376. else
  1377. page = list_entry(list->next, struct page, lru);
  1378. list_del(&page->lru);
  1379. pcp->count--;
  1380. } else {
  1381. if (unlikely(gfp_flags & __GFP_NOFAIL)) {
  1382. /*
  1383. * __GFP_NOFAIL is not to be used in new code.
  1384. *
  1385. * All __GFP_NOFAIL callers should be fixed so that they
  1386. * properly detect and handle allocation failures.
  1387. *
  1388. * We most definitely don't want callers attempting to
  1389. * allocate greater than order-1 page units with
  1390. * __GFP_NOFAIL.
  1391. */
  1392. WARN_ON_ONCE(order > 1);
  1393. }
  1394. spin_lock_irqsave(&zone->lock, flags);
  1395. page = __rmqueue(zone, order, migratetype);
  1396. spin_unlock(&zone->lock);
  1397. if (!page)
  1398. goto failed;
  1399. __mod_zone_freepage_state(zone, -(1 << order),
  1400. get_freepage_migratetype(page));
  1401. }
  1402. __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
  1403. if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
  1404. !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
  1405. set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
  1406. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  1407. zone_statistics(preferred_zone, zone, gfp_flags);
  1408. local_irq_restore(flags);
  1409. VM_BUG_ON_PAGE(bad_range(zone, page), page);
  1410. if (prep_new_page(page, order, gfp_flags))
  1411. goto again;
  1412. return page;
  1413. failed:
  1414. local_irq_restore(flags);
  1415. return NULL;
  1416. }
  1417. #ifdef CONFIG_FAIL_PAGE_ALLOC
  1418. static struct {
  1419. struct fault_attr attr;
  1420. u32 ignore_gfp_highmem;
  1421. u32 ignore_gfp_wait;
  1422. u32 min_order;
  1423. } fail_page_alloc = {
  1424. .attr = FAULT_ATTR_INITIALIZER,
  1425. .ignore_gfp_wait = 1,
  1426. .ignore_gfp_highmem = 1,
  1427. .min_order = 1,
  1428. };
  1429. static int __init setup_fail_page_alloc(char *str)
  1430. {
  1431. return setup_fault_attr(&fail_page_alloc.attr, str);
  1432. }
  1433. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1434. static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1435. {
  1436. if (order < fail_page_alloc.min_order)
  1437. return false;
  1438. if (gfp_mask & __GFP_NOFAIL)
  1439. return false;
  1440. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1441. return false;
  1442. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1443. return false;
  1444. return should_fail(&fail_page_alloc.attr, 1 << order);
  1445. }
  1446. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1447. static int __init fail_page_alloc_debugfs(void)
  1448. {
  1449. umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1450. struct dentry *dir;
  1451. dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
  1452. &fail_page_alloc.attr);
  1453. if (IS_ERR(dir))
  1454. return PTR_ERR(dir);
  1455. if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1456. &fail_page_alloc.ignore_gfp_wait))
  1457. goto fail;
  1458. if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1459. &fail_page_alloc.ignore_gfp_highmem))
  1460. goto fail;
  1461. if (!debugfs_create_u32("min-order", mode, dir,
  1462. &fail_page_alloc.min_order))
  1463. goto fail;
  1464. return 0;
  1465. fail:
  1466. debugfs_remove_recursive(dir);
  1467. return -ENOMEM;
  1468. }
  1469. late_initcall(fail_page_alloc_debugfs);
  1470. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1471. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1472. static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1473. {
  1474. return false;
  1475. }
  1476. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1477. /*
  1478. * Return true if free pages are above 'mark'. This takes into account the order
  1479. * of the allocation.
  1480. */
  1481. static bool __zone_watermark_ok(struct zone *z, unsigned int order,
  1482. unsigned long mark, int classzone_idx, int alloc_flags,
  1483. long free_pages)
  1484. {
  1485. /* free_pages my go negative - that's OK */
  1486. long min = mark;
  1487. int o;
  1488. long free_cma = 0;
  1489. free_pages -= (1 << order) - 1;
  1490. if (alloc_flags & ALLOC_HIGH)
  1491. min -= min / 2;
  1492. if (alloc_flags & ALLOC_HARDER)
  1493. min -= min / 4;
  1494. #ifdef CONFIG_CMA
  1495. /* If allocation can't use CMA areas don't use free CMA pages */
  1496. if (!(alloc_flags & ALLOC_CMA))
  1497. free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
  1498. #endif
  1499. if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
  1500. return false;
  1501. for (o = 0; o < order; o++) {
  1502. /* At the next order, this order's pages become unavailable */
  1503. free_pages -= z->free_area[o].nr_free << o;
  1504. /* Require fewer higher order pages to be free */
  1505. min >>= 1;
  1506. if (free_pages <= min)
  1507. return false;
  1508. }
  1509. return true;
  1510. }
  1511. bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
  1512. int classzone_idx, int alloc_flags)
  1513. {
  1514. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1515. zone_page_state(z, NR_FREE_PAGES));
  1516. }
  1517. bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
  1518. unsigned long mark, int classzone_idx, int alloc_flags)
  1519. {
  1520. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  1521. if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
  1522. free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
  1523. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1524. free_pages);
  1525. }
  1526. #ifdef CONFIG_NUMA
  1527. /*
  1528. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1529. * skip over zones that are not allowed by the cpuset, or that have
  1530. * been recently (in last second) found to be nearly full. See further
  1531. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1532. * that have to skip over a lot of full or unallowed zones.
  1533. *
  1534. * If the zonelist cache is present in the passed zonelist, then
  1535. * returns a pointer to the allowed node mask (either the current
  1536. * tasks mems_allowed, or node_states[N_MEMORY].)
  1537. *
  1538. * If the zonelist cache is not available for this zonelist, does
  1539. * nothing and returns NULL.
  1540. *
  1541. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1542. * a second since last zap'd) then we zap it out (clear its bits.)
  1543. *
  1544. * We hold off even calling zlc_setup, until after we've checked the
  1545. * first zone in the zonelist, on the theory that most allocations will
  1546. * be satisfied from that first zone, so best to examine that zone as
  1547. * quickly as we can.
  1548. */
  1549. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1550. {
  1551. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1552. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1553. zlc = zonelist->zlcache_ptr;
  1554. if (!zlc)
  1555. return NULL;
  1556. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1557. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1558. zlc->last_full_zap = jiffies;
  1559. }
  1560. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1561. &cpuset_current_mems_allowed :
  1562. &node_states[N_MEMORY];
  1563. return allowednodes;
  1564. }
  1565. /*
  1566. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1567. * if it is worth looking at further for free memory:
  1568. * 1) Check that the zone isn't thought to be full (doesn't have its
  1569. * bit set in the zonelist_cache fullzones BITMAP).
  1570. * 2) Check that the zones node (obtained from the zonelist_cache
  1571. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1572. * Return true (non-zero) if zone is worth looking at further, or
  1573. * else return false (zero) if it is not.
  1574. *
  1575. * This check -ignores- the distinction between various watermarks,
  1576. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1577. * found to be full for any variation of these watermarks, it will
  1578. * be considered full for up to one second by all requests, unless
  1579. * we are so low on memory on all allowed nodes that we are forced
  1580. * into the second scan of the zonelist.
  1581. *
  1582. * In the second scan we ignore this zonelist cache and exactly
  1583. * apply the watermarks to all zones, even it is slower to do so.
  1584. * We are low on memory in the second scan, and should leave no stone
  1585. * unturned looking for a free page.
  1586. */
  1587. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1588. nodemask_t *allowednodes)
  1589. {
  1590. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1591. int i; /* index of *z in zonelist zones */
  1592. int n; /* node that zone *z is on */
  1593. zlc = zonelist->zlcache_ptr;
  1594. if (!zlc)
  1595. return 1;
  1596. i = z - zonelist->_zonerefs;
  1597. n = zlc->z_to_n[i];
  1598. /* This zone is worth trying if it is allowed but not full */
  1599. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1600. }
  1601. /*
  1602. * Given 'z' scanning a zonelist, set the corresponding bit in
  1603. * zlc->fullzones, so that subsequent attempts to allocate a page
  1604. * from that zone don't waste time re-examining it.
  1605. */
  1606. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1607. {
  1608. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1609. int i; /* index of *z in zonelist zones */
  1610. zlc = zonelist->zlcache_ptr;
  1611. if (!zlc)
  1612. return;
  1613. i = z - zonelist->_zonerefs;
  1614. set_bit(i, zlc->fullzones);
  1615. }
  1616. /*
  1617. * clear all zones full, called after direct reclaim makes progress so that
  1618. * a zone that was recently full is not skipped over for up to a second
  1619. */
  1620. static void zlc_clear_zones_full(struct zonelist *zonelist)
  1621. {
  1622. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1623. zlc = zonelist->zlcache_ptr;
  1624. if (!zlc)
  1625. return;
  1626. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1627. }
  1628. static bool zone_local(struct zone *local_zone, struct zone *zone)
  1629. {
  1630. return local_zone->node == zone->node;
  1631. }
  1632. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  1633. {
  1634. return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
  1635. RECLAIM_DISTANCE;
  1636. }
  1637. #else /* CONFIG_NUMA */
  1638. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1639. {
  1640. return NULL;
  1641. }
  1642. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1643. nodemask_t *allowednodes)
  1644. {
  1645. return 1;
  1646. }
  1647. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1648. {
  1649. }
  1650. static void zlc_clear_zones_full(struct zonelist *zonelist)
  1651. {
  1652. }
  1653. static bool zone_local(struct zone *local_zone, struct zone *zone)
  1654. {
  1655. return true;
  1656. }
  1657. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  1658. {
  1659. return true;
  1660. }
  1661. #endif /* CONFIG_NUMA */
  1662. static void reset_alloc_batches(struct zone *preferred_zone)
  1663. {
  1664. struct zone *zone = preferred_zone->zone_pgdat->node_zones;
  1665. do {
  1666. mod_zone_page_state(zone, NR_ALLOC_BATCH,
  1667. high_wmark_pages(zone) - low_wmark_pages(zone) -
  1668. atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
  1669. clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
  1670. } while (zone++ != preferred_zone);
  1671. }
  1672. /*
  1673. * get_page_from_freelist goes through the zonelist trying to allocate
  1674. * a page.
  1675. */
  1676. static struct page *
  1677. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1678. struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
  1679. struct zone *preferred_zone, int classzone_idx, int migratetype)
  1680. {
  1681. struct zoneref *z;
  1682. struct page *page = NULL;
  1683. struct zone *zone;
  1684. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1685. int zlc_active = 0; /* set if using zonelist_cache */
  1686. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1687. bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
  1688. (gfp_mask & __GFP_WRITE);
  1689. int nr_fair_skipped = 0;
  1690. bool zonelist_rescan;
  1691. zonelist_scan:
  1692. zonelist_rescan = false;
  1693. /*
  1694. * Scan zonelist, looking for a zone with enough free.
  1695. * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
  1696. */
  1697. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1698. high_zoneidx, nodemask) {
  1699. unsigned long mark;
  1700. if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
  1701. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1702. continue;
  1703. if (cpusets_enabled() &&
  1704. (alloc_flags & ALLOC_CPUSET) &&
  1705. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1706. continue;
  1707. /*
  1708. * Distribute pages in proportion to the individual
  1709. * zone size to ensure fair page aging. The zone a
  1710. * page was allocated in should have no effect on the
  1711. * time the page has in memory before being reclaimed.
  1712. */
  1713. if (alloc_flags & ALLOC_FAIR) {
  1714. if (!zone_local(preferred_zone, zone))
  1715. break;
  1716. if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
  1717. nr_fair_skipped++;
  1718. continue;
  1719. }
  1720. }
  1721. /*
  1722. * When allocating a page cache page for writing, we
  1723. * want to get it from a zone that is within its dirty
  1724. * limit, such that no single zone holds more than its
  1725. * proportional share of globally allowed dirty pages.
  1726. * The dirty limits take into account the zone's
  1727. * lowmem reserves and high watermark so that kswapd
  1728. * should be able to balance it without having to
  1729. * write pages from its LRU list.
  1730. *
  1731. * This may look like it could increase pressure on
  1732. * lower zones by failing allocations in higher zones
  1733. * before they are full. But the pages that do spill
  1734. * over are limited as the lower zones are protected
  1735. * by this very same mechanism. It should not become
  1736. * a practical burden to them.
  1737. *
  1738. * XXX: For now, allow allocations to potentially
  1739. * exceed the per-zone dirty limit in the slowpath
  1740. * (ALLOC_WMARK_LOW unset) before going into reclaim,
  1741. * which is important when on a NUMA setup the allowed
  1742. * zones are together not big enough to reach the
  1743. * global limit. The proper fix for these situations
  1744. * will require awareness of zones in the
  1745. * dirty-throttling and the flusher threads.
  1746. */
  1747. if (consider_zone_dirty && !zone_dirty_ok(zone))
  1748. continue;
  1749. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  1750. if (!zone_watermark_ok(zone, order, mark,
  1751. classzone_idx, alloc_flags)) {
  1752. int ret;
  1753. /* Checked here to keep the fast path fast */
  1754. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  1755. if (alloc_flags & ALLOC_NO_WATERMARKS)
  1756. goto try_this_zone;
  1757. if (IS_ENABLED(CONFIG_NUMA) &&
  1758. !did_zlc_setup && nr_online_nodes > 1) {
  1759. /*
  1760. * we do zlc_setup if there are multiple nodes
  1761. * and before considering the first zone allowed
  1762. * by the cpuset.
  1763. */
  1764. allowednodes = zlc_setup(zonelist, alloc_flags);
  1765. zlc_active = 1;
  1766. did_zlc_setup = 1;
  1767. }
  1768. if (zone_reclaim_mode == 0 ||
  1769. !zone_allows_reclaim(preferred_zone, zone))
  1770. goto this_zone_full;
  1771. /*
  1772. * As we may have just activated ZLC, check if the first
  1773. * eligible zone has failed zone_reclaim recently.
  1774. */
  1775. if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
  1776. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1777. continue;
  1778. ret = zone_reclaim(zone, gfp_mask, order);
  1779. switch (ret) {
  1780. case ZONE_RECLAIM_NOSCAN:
  1781. /* did not scan */
  1782. continue;
  1783. case ZONE_RECLAIM_FULL:
  1784. /* scanned but unreclaimable */
  1785. continue;
  1786. default:
  1787. /* did we reclaim enough */
  1788. if (zone_watermark_ok(zone, order, mark,
  1789. classzone_idx, alloc_flags))
  1790. goto try_this_zone;
  1791. /*
  1792. * Failed to reclaim enough to meet watermark.
  1793. * Only mark the zone full if checking the min
  1794. * watermark or if we failed to reclaim just
  1795. * 1<<order pages or else the page allocator
  1796. * fastpath will prematurely mark zones full
  1797. * when the watermark is between the low and
  1798. * min watermarks.
  1799. */
  1800. if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
  1801. ret == ZONE_RECLAIM_SOME)
  1802. goto this_zone_full;
  1803. continue;
  1804. }
  1805. }
  1806. try_this_zone:
  1807. page = buffered_rmqueue(preferred_zone, zone, order,
  1808. gfp_mask, migratetype);
  1809. if (page)
  1810. break;
  1811. this_zone_full:
  1812. if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
  1813. zlc_mark_zone_full(zonelist, z);
  1814. }
  1815. if (page) {
  1816. /*
  1817. * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
  1818. * necessary to allocate the page. The expectation is
  1819. * that the caller is taking steps that will free more
  1820. * memory. The caller should avoid the page being used
  1821. * for !PFMEMALLOC purposes.
  1822. */
  1823. page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
  1824. return page;
  1825. }
  1826. /*
  1827. * The first pass makes sure allocations are spread fairly within the
  1828. * local node. However, the local node might have free pages left
  1829. * after the fairness batches are exhausted, and remote zones haven't
  1830. * even been considered yet. Try once more without fairness, and
  1831. * include remote zones now, before entering the slowpath and waking
  1832. * kswapd: prefer spilling to a remote zone over swapping locally.
  1833. */
  1834. if (alloc_flags & ALLOC_FAIR) {
  1835. alloc_flags &= ~ALLOC_FAIR;
  1836. if (nr_fair_skipped) {
  1837. zonelist_rescan = true;
  1838. reset_alloc_batches(preferred_zone);
  1839. }
  1840. if (nr_online_nodes > 1)
  1841. zonelist_rescan = true;
  1842. }
  1843. if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
  1844. /* Disable zlc cache for second zonelist scan */
  1845. zlc_active = 0;
  1846. zonelist_rescan = true;
  1847. }
  1848. if (zonelist_rescan)
  1849. goto zonelist_scan;
  1850. return NULL;
  1851. }
  1852. /*
  1853. * Large machines with many possible nodes should not always dump per-node
  1854. * meminfo in irq context.
  1855. */
  1856. static inline bool should_suppress_show_mem(void)
  1857. {
  1858. bool ret = false;
  1859. #if NODES_SHIFT > 8
  1860. ret = in_interrupt();
  1861. #endif
  1862. return ret;
  1863. }
  1864. static DEFINE_RATELIMIT_STATE(nopage_rs,
  1865. DEFAULT_RATELIMIT_INTERVAL,
  1866. DEFAULT_RATELIMIT_BURST);
  1867. void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
  1868. {
  1869. unsigned int filter = SHOW_MEM_FILTER_NODES;
  1870. if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
  1871. debug_guardpage_minorder() > 0)
  1872. return;
  1873. /*
  1874. * This documents exceptions given to allocations in certain
  1875. * contexts that are allowed to allocate outside current's set
  1876. * of allowed nodes.
  1877. */
  1878. if (!(gfp_mask & __GFP_NOMEMALLOC))
  1879. if (test_thread_flag(TIF_MEMDIE) ||
  1880. (current->flags & (PF_MEMALLOC | PF_EXITING)))
  1881. filter &= ~SHOW_MEM_FILTER_NODES;
  1882. if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
  1883. filter &= ~SHOW_MEM_FILTER_NODES;
  1884. if (fmt) {
  1885. struct va_format vaf;
  1886. va_list args;
  1887. va_start(args, fmt);
  1888. vaf.fmt = fmt;
  1889. vaf.va = &args;
  1890. pr_warn("%pV", &vaf);
  1891. va_end(args);
  1892. }
  1893. pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
  1894. current->comm, order, gfp_mask);
  1895. dump_stack();
  1896. if (!should_suppress_show_mem())
  1897. show_mem(filter);
  1898. }
  1899. static inline int
  1900. should_alloc_retry(gfp_t gfp_mask, unsigned int order,
  1901. unsigned long did_some_progress,
  1902. unsigned long pages_reclaimed)
  1903. {
  1904. /* Do not loop if specifically requested */
  1905. if (gfp_mask & __GFP_NORETRY)
  1906. return 0;
  1907. /* Always retry if specifically requested */
  1908. if (gfp_mask & __GFP_NOFAIL)
  1909. return 1;
  1910. /*
  1911. * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
  1912. * making forward progress without invoking OOM. Suspend also disables
  1913. * storage devices so kswapd will not help. Bail if we are suspending.
  1914. */
  1915. if (!did_some_progress && pm_suspended_storage())
  1916. return 0;
  1917. /*
  1918. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1919. * means __GFP_NOFAIL, but that may not be true in other
  1920. * implementations.
  1921. */
  1922. if (order <= PAGE_ALLOC_COSTLY_ORDER)
  1923. return 1;
  1924. /*
  1925. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1926. * specified, then we retry until we no longer reclaim any pages
  1927. * (above), or we've reclaimed an order of pages at least as
  1928. * large as the allocation's order. In both cases, if the
  1929. * allocation still fails, we stop retrying.
  1930. */
  1931. if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
  1932. return 1;
  1933. return 0;
  1934. }
  1935. static inline struct page *
  1936. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  1937. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1938. nodemask_t *nodemask, struct zone *preferred_zone,
  1939. int classzone_idx, int migratetype)
  1940. {
  1941. struct page *page;
  1942. /* Acquire the per-zone oom lock for each zone */
  1943. if (!oom_zonelist_trylock(zonelist, gfp_mask)) {
  1944. schedule_timeout_uninterruptible(1);
  1945. return NULL;
  1946. }
  1947. /*
  1948. * PM-freezer should be notified that there might be an OOM killer on
  1949. * its way to kill and wake somebody up. This is too early and we might
  1950. * end up not killing anything but false positives are acceptable.
  1951. * See freeze_processes.
  1952. */
  1953. note_oom_kill();
  1954. /*
  1955. * Go through the zonelist yet one more time, keep very high watermark
  1956. * here, this is only to catch a parallel oom killing, we must fail if
  1957. * we're still under heavy pressure.
  1958. */
  1959. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1960. order, zonelist, high_zoneidx,
  1961. ALLOC_WMARK_HIGH|ALLOC_CPUSET,
  1962. preferred_zone, classzone_idx, migratetype);
  1963. if (page)
  1964. goto out;
  1965. if (!(gfp_mask & __GFP_NOFAIL)) {
  1966. /* The OOM killer will not help higher order allocs */
  1967. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1968. goto out;
  1969. /* The OOM killer does not needlessly kill tasks for lowmem */
  1970. if (high_zoneidx < ZONE_NORMAL)
  1971. goto out;
  1972. /*
  1973. * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
  1974. * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
  1975. * The caller should handle page allocation failure by itself if
  1976. * it specifies __GFP_THISNODE.
  1977. * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
  1978. */
  1979. if (gfp_mask & __GFP_THISNODE)
  1980. goto out;
  1981. }
  1982. /* Exhausted what can be done so it's blamo time */
  1983. out_of_memory(zonelist, gfp_mask, order, nodemask, false);
  1984. out:
  1985. oom_zonelist_unlock(zonelist, gfp_mask);
  1986. return page;
  1987. }
  1988. #ifdef CONFIG_COMPACTION
  1989. /* Try memory compaction for high-order allocations before reclaim */
  1990. static struct page *
  1991. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  1992. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1993. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1994. int classzone_idx, int migratetype, enum migrate_mode mode,
  1995. int *contended_compaction, bool *deferred_compaction)
  1996. {
  1997. struct zone *last_compact_zone = NULL;
  1998. unsigned long compact_result;
  1999. struct page *page;
  2000. if (!order)
  2001. return NULL;
  2002. current->flags |= PF_MEMALLOC;
  2003. compact_result = try_to_compact_pages(zonelist, order, gfp_mask,
  2004. nodemask, mode,
  2005. contended_compaction,
  2006. &last_compact_zone);
  2007. current->flags &= ~PF_MEMALLOC;
  2008. switch (compact_result) {
  2009. case COMPACT_DEFERRED:
  2010. *deferred_compaction = true;
  2011. /* fall-through */
  2012. case COMPACT_SKIPPED:
  2013. return NULL;
  2014. default:
  2015. break;
  2016. }
  2017. /*
  2018. * At least in one zone compaction wasn't deferred or skipped, so let's
  2019. * count a compaction stall
  2020. */
  2021. count_vm_event(COMPACTSTALL);
  2022. /* Page migration frees to the PCP lists but we want merging */
  2023. drain_pages(get_cpu());
  2024. put_cpu();
  2025. page = get_page_from_freelist(gfp_mask, nodemask,
  2026. order, zonelist, high_zoneidx,
  2027. alloc_flags & ~ALLOC_NO_WATERMARKS,
  2028. preferred_zone, classzone_idx, migratetype);
  2029. if (page) {
  2030. struct zone *zone = page_zone(page);
  2031. zone->compact_blockskip_flush = false;
  2032. compaction_defer_reset(zone, order, true);
  2033. count_vm_event(COMPACTSUCCESS);
  2034. return page;
  2035. }
  2036. /*
  2037. * last_compact_zone is where try_to_compact_pages thought allocation
  2038. * should succeed, so it did not defer compaction. But here we know
  2039. * that it didn't succeed, so we do the defer.
  2040. */
  2041. if (last_compact_zone && mode != MIGRATE_ASYNC)
  2042. defer_compaction(last_compact_zone, order);
  2043. /*
  2044. * It's bad if compaction run occurs and fails. The most likely reason
  2045. * is that pages exist, but not enough to satisfy watermarks.
  2046. */
  2047. count_vm_event(COMPACTFAIL);
  2048. cond_resched();
  2049. return NULL;
  2050. }
  2051. #else
  2052. static inline struct page *
  2053. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  2054. struct zonelist *zonelist, enum zone_type high_zoneidx,
  2055. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  2056. int classzone_idx, int migratetype, enum migrate_mode mode,
  2057. int *contended_compaction, bool *deferred_compaction)
  2058. {
  2059. return NULL;
  2060. }
  2061. #endif /* CONFIG_COMPACTION */
  2062. /* Perform direct synchronous page reclaim */
  2063. static int
  2064. __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
  2065. nodemask_t *nodemask)
  2066. {
  2067. struct reclaim_state reclaim_state;
  2068. int progress;
  2069. cond_resched();
  2070. /* We now go into synchronous reclaim */
  2071. cpuset_memory_pressure_bump();
  2072. current->flags |= PF_MEMALLOC;
  2073. lockdep_set_current_reclaim_state(gfp_mask);
  2074. reclaim_state.reclaimed_slab = 0;
  2075. current->reclaim_state = &reclaim_state;
  2076. progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
  2077. current->reclaim_state = NULL;
  2078. lockdep_clear_current_reclaim_state();
  2079. current->flags &= ~PF_MEMALLOC;
  2080. cond_resched();
  2081. return progress;
  2082. }
  2083. /* The really slow allocator path where we enter direct reclaim */
  2084. static inline struct page *
  2085. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  2086. struct zonelist *zonelist, enum zone_type high_zoneidx,
  2087. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  2088. int classzone_idx, int migratetype, unsigned long *did_some_progress)
  2089. {
  2090. struct page *page = NULL;
  2091. bool drained = false;
  2092. *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
  2093. nodemask);
  2094. if (unlikely(!(*did_some_progress)))
  2095. return NULL;
  2096. /* After successful reclaim, reconsider all zones for allocation */
  2097. if (IS_ENABLED(CONFIG_NUMA))
  2098. zlc_clear_zones_full(zonelist);
  2099. retry:
  2100. page = get_page_from_freelist(gfp_mask, nodemask, order,
  2101. zonelist, high_zoneidx,
  2102. alloc_flags & ~ALLOC_NO_WATERMARKS,
  2103. preferred_zone, classzone_idx,
  2104. migratetype);
  2105. /*
  2106. * If an allocation failed after direct reclaim, it could be because
  2107. * pages are pinned on the per-cpu lists. Drain them and try again
  2108. */
  2109. if (!page && !drained) {
  2110. drain_all_pages();
  2111. drained = true;
  2112. goto retry;
  2113. }
  2114. return page;
  2115. }
  2116. /*
  2117. * This is called in the allocator slow-path if the allocation request is of
  2118. * sufficient urgency to ignore watermarks and take other desperate measures
  2119. */
  2120. static inline struct page *
  2121. __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
  2122. struct zonelist *zonelist, enum zone_type high_zoneidx,
  2123. nodemask_t *nodemask, struct zone *preferred_zone,
  2124. int classzone_idx, int migratetype)
  2125. {
  2126. struct page *page;
  2127. do {
  2128. page = get_page_from_freelist(gfp_mask, nodemask, order,
  2129. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
  2130. preferred_zone, classzone_idx, migratetype);
  2131. if (!page && gfp_mask & __GFP_NOFAIL)
  2132. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  2133. } while (!page && (gfp_mask & __GFP_NOFAIL));
  2134. return page;
  2135. }
  2136. static void wake_all_kswapds(unsigned int order,
  2137. struct zonelist *zonelist,
  2138. enum zone_type high_zoneidx,
  2139. struct zone *preferred_zone,
  2140. nodemask_t *nodemask)
  2141. {
  2142. struct zoneref *z;
  2143. struct zone *zone;
  2144. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  2145. high_zoneidx, nodemask)
  2146. wakeup_kswapd(zone, order, zone_idx(preferred_zone));
  2147. }
  2148. static inline int
  2149. gfp_to_alloc_flags(gfp_t gfp_mask)
  2150. {
  2151. int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  2152. const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
  2153. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  2154. BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
  2155. /*
  2156. * The caller may dip into page reserves a bit more if the caller
  2157. * cannot run direct reclaim, or if the caller has realtime scheduling
  2158. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  2159. * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
  2160. */
  2161. alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
  2162. if (atomic) {
  2163. /*
  2164. * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
  2165. * if it can't schedule.
  2166. */
  2167. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2168. alloc_flags |= ALLOC_HARDER;
  2169. /*
  2170. * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
  2171. * comment for __cpuset_node_allowed_softwall().
  2172. */
  2173. alloc_flags &= ~ALLOC_CPUSET;
  2174. } else if (unlikely(rt_task(current)) && !in_interrupt())
  2175. alloc_flags |= ALLOC_HARDER;
  2176. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  2177. if (gfp_mask & __GFP_MEMALLOC)
  2178. alloc_flags |= ALLOC_NO_WATERMARKS;
  2179. else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
  2180. alloc_flags |= ALLOC_NO_WATERMARKS;
  2181. else if (!in_interrupt() &&
  2182. ((current->flags & PF_MEMALLOC) ||
  2183. unlikely(test_thread_flag(TIF_MEMDIE))))
  2184. alloc_flags |= ALLOC_NO_WATERMARKS;
  2185. }
  2186. #ifdef CONFIG_CMA
  2187. if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
  2188. alloc_flags |= ALLOC_CMA;
  2189. #endif
  2190. return alloc_flags;
  2191. }
  2192. bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
  2193. {
  2194. return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
  2195. }
  2196. static inline struct page *
  2197. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  2198. struct zonelist *zonelist, enum zone_type high_zoneidx,
  2199. nodemask_t *nodemask, struct zone *preferred_zone,
  2200. int classzone_idx, int migratetype)
  2201. {
  2202. const gfp_t wait = gfp_mask & __GFP_WAIT;
  2203. struct page *page = NULL;
  2204. int alloc_flags;
  2205. unsigned long pages_reclaimed = 0;
  2206. unsigned long did_some_progress;
  2207. enum migrate_mode migration_mode = MIGRATE_ASYNC;
  2208. bool deferred_compaction = false;
  2209. int contended_compaction = COMPACT_CONTENDED_NONE;
  2210. /*
  2211. * In the slowpath, we sanity check order to avoid ever trying to
  2212. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  2213. * be using allocators in order of preference for an area that is
  2214. * too large.
  2215. */
  2216. if (order >= MAX_ORDER) {
  2217. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  2218. return NULL;
  2219. }
  2220. /*
  2221. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  2222. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  2223. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  2224. * using a larger set of nodes after it has established that the
  2225. * allowed per node queues are empty and that nodes are
  2226. * over allocated.
  2227. */
  2228. if (IS_ENABLED(CONFIG_NUMA) &&
  2229. (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  2230. goto nopage;
  2231. restart:
  2232. if (!(gfp_mask & __GFP_NO_KSWAPD))
  2233. wake_all_kswapds(order, zonelist, high_zoneidx,
  2234. preferred_zone, nodemask);
  2235. /*
  2236. * OK, we're below the kswapd watermark and have kicked background
  2237. * reclaim. Now things get more complex, so set up alloc_flags according
  2238. * to how we want to proceed.
  2239. */
  2240. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  2241. /*
  2242. * Find the true preferred zone if the allocation is unconstrained by
  2243. * cpusets.
  2244. */
  2245. if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) {
  2246. struct zoneref *preferred_zoneref;
  2247. preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
  2248. NULL, &preferred_zone);
  2249. classzone_idx = zonelist_zone_idx(preferred_zoneref);
  2250. }
  2251. rebalance:
  2252. /* This is the last chance, in general, before the goto nopage. */
  2253. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  2254. high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
  2255. preferred_zone, classzone_idx, migratetype);
  2256. if (page)
  2257. goto got_pg;
  2258. /* Allocate without watermarks if the context allows */
  2259. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  2260. /*
  2261. * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
  2262. * the allocation is high priority and these type of
  2263. * allocations are system rather than user orientated
  2264. */
  2265. zonelist = node_zonelist(numa_node_id(), gfp_mask);
  2266. page = __alloc_pages_high_priority(gfp_mask, order,
  2267. zonelist, high_zoneidx, nodemask,
  2268. preferred_zone, classzone_idx, migratetype);
  2269. if (page) {
  2270. goto got_pg;
  2271. }
  2272. }
  2273. /* Atomic allocations - we can't balance anything */
  2274. if (!wait) {
  2275. /*
  2276. * All existing users of the deprecated __GFP_NOFAIL are
  2277. * blockable, so warn of any new users that actually allow this
  2278. * type of allocation to fail.
  2279. */
  2280. WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
  2281. goto nopage;
  2282. }
  2283. /* Avoid recursion of direct reclaim */
  2284. if (current->flags & PF_MEMALLOC)
  2285. goto nopage;
  2286. /* Avoid allocations with no watermarks from looping endlessly */
  2287. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  2288. goto nopage;
  2289. /*
  2290. * Try direct compaction. The first pass is asynchronous. Subsequent
  2291. * attempts after direct reclaim are synchronous
  2292. */
  2293. page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
  2294. high_zoneidx, nodemask, alloc_flags,
  2295. preferred_zone,
  2296. classzone_idx, migratetype,
  2297. migration_mode, &contended_compaction,
  2298. &deferred_compaction);
  2299. if (page)
  2300. goto got_pg;
  2301. /* Checks for THP-specific high-order allocations */
  2302. if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
  2303. /*
  2304. * If compaction is deferred for high-order allocations, it is
  2305. * because sync compaction recently failed. If this is the case
  2306. * and the caller requested a THP allocation, we do not want
  2307. * to heavily disrupt the system, so we fail the allocation
  2308. * instead of entering direct reclaim.
  2309. */
  2310. if (deferred_compaction)
  2311. goto nopage;
  2312. /*
  2313. * In all zones where compaction was attempted (and not
  2314. * deferred or skipped), lock contention has been detected.
  2315. * For THP allocation we do not want to disrupt the others
  2316. * so we fallback to base pages instead.
  2317. */
  2318. if (contended_compaction == COMPACT_CONTENDED_LOCK)
  2319. goto nopage;
  2320. /*
  2321. * If compaction was aborted due to need_resched(), we do not
  2322. * want to further increase allocation latency, unless it is
  2323. * khugepaged trying to collapse.
  2324. */
  2325. if (contended_compaction == COMPACT_CONTENDED_SCHED
  2326. && !(current->flags & PF_KTHREAD))
  2327. goto nopage;
  2328. }
  2329. /*
  2330. * It can become very expensive to allocate transparent hugepages at
  2331. * fault, so use asynchronous memory compaction for THP unless it is
  2332. * khugepaged trying to collapse.
  2333. */
  2334. if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
  2335. (current->flags & PF_KTHREAD))
  2336. migration_mode = MIGRATE_SYNC_LIGHT;
  2337. /* Try direct reclaim and then allocating */
  2338. page = __alloc_pages_direct_reclaim(gfp_mask, order,
  2339. zonelist, high_zoneidx,
  2340. nodemask,
  2341. alloc_flags, preferred_zone,
  2342. classzone_idx, migratetype,
  2343. &did_some_progress);
  2344. if (page)
  2345. goto got_pg;
  2346. /*
  2347. * If we failed to make any progress reclaiming, then we are
  2348. * running out of options and have to consider going OOM
  2349. */
  2350. if (!did_some_progress) {
  2351. if (oom_gfp_allowed(gfp_mask)) {
  2352. if (oom_killer_disabled)
  2353. goto nopage;
  2354. /* Coredumps can quickly deplete all memory reserves */
  2355. if ((current->flags & PF_DUMPCORE) &&
  2356. !(gfp_mask & __GFP_NOFAIL))
  2357. goto nopage;
  2358. page = __alloc_pages_may_oom(gfp_mask, order,
  2359. zonelist, high_zoneidx,
  2360. nodemask, preferred_zone,
  2361. classzone_idx, migratetype);
  2362. if (page)
  2363. goto got_pg;
  2364. if (!(gfp_mask & __GFP_NOFAIL)) {
  2365. /*
  2366. * The oom killer is not called for high-order
  2367. * allocations that may fail, so if no progress
  2368. * is being made, there are no other options and
  2369. * retrying is unlikely to help.
  2370. */
  2371. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2372. goto nopage;
  2373. /*
  2374. * The oom killer is not called for lowmem
  2375. * allocations to prevent needlessly killing
  2376. * innocent tasks.
  2377. */
  2378. if (high_zoneidx < ZONE_NORMAL)
  2379. goto nopage;
  2380. }
  2381. goto restart;
  2382. }
  2383. }
  2384. /* Check if we should retry the allocation */
  2385. pages_reclaimed += did_some_progress;
  2386. if (should_alloc_retry(gfp_mask, order, did_some_progress,
  2387. pages_reclaimed)) {
  2388. /* Wait for some write requests to complete then retry */
  2389. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  2390. goto rebalance;
  2391. } else {
  2392. /*
  2393. * High-order allocations do not necessarily loop after
  2394. * direct reclaim and reclaim/compaction depends on compaction
  2395. * being called after reclaim so call directly if necessary
  2396. */
  2397. page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
  2398. high_zoneidx, nodemask, alloc_flags,
  2399. preferred_zone,
  2400. classzone_idx, migratetype,
  2401. migration_mode, &contended_compaction,
  2402. &deferred_compaction);
  2403. if (page)
  2404. goto got_pg;
  2405. }
  2406. nopage:
  2407. warn_alloc_failed(gfp_mask, order, NULL);
  2408. return page;
  2409. got_pg:
  2410. if (kmemcheck_enabled)
  2411. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  2412. return page;
  2413. }
  2414. /*
  2415. * This is the 'heart' of the zoned buddy allocator.
  2416. */
  2417. struct page *
  2418. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  2419. struct zonelist *zonelist, nodemask_t *nodemask)
  2420. {
  2421. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  2422. struct zone *preferred_zone;
  2423. struct zoneref *preferred_zoneref;
  2424. struct page *page = NULL;
  2425. int migratetype = gfpflags_to_migratetype(gfp_mask);
  2426. unsigned int cpuset_mems_cookie;
  2427. int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
  2428. int classzone_idx;
  2429. gfp_mask &= gfp_allowed_mask;
  2430. lockdep_trace_alloc(gfp_mask);
  2431. might_sleep_if(gfp_mask & __GFP_WAIT);
  2432. if (should_fail_alloc_page(gfp_mask, order))
  2433. return NULL;
  2434. /*
  2435. * Check the zones suitable for the gfp_mask contain at least one
  2436. * valid zone. It's possible to have an empty zonelist as a result
  2437. * of GFP_THISNODE and a memoryless node
  2438. */
  2439. if (unlikely(!zonelist->_zonerefs->zone))
  2440. return NULL;
  2441. if (IS_ENABLED(CONFIG_CMA) && migratetype == MIGRATE_MOVABLE)
  2442. alloc_flags |= ALLOC_CMA;
  2443. retry_cpuset:
  2444. cpuset_mems_cookie = read_mems_allowed_begin();
  2445. /* The preferred zone is used for statistics later */
  2446. preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
  2447. nodemask ? : &cpuset_current_mems_allowed,
  2448. &preferred_zone);
  2449. if (!preferred_zone)
  2450. goto out;
  2451. classzone_idx = zonelist_zone_idx(preferred_zoneref);
  2452. /* First allocation attempt */
  2453. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  2454. zonelist, high_zoneidx, alloc_flags,
  2455. preferred_zone, classzone_idx, migratetype);
  2456. if (unlikely(!page)) {
  2457. /*
  2458. * Runtime PM, block IO and its error handling path
  2459. * can deadlock because I/O on the device might not
  2460. * complete.
  2461. */
  2462. gfp_mask = memalloc_noio_flags(gfp_mask);
  2463. page = __alloc_pages_slowpath(gfp_mask, order,
  2464. zonelist, high_zoneidx, nodemask,
  2465. preferred_zone, classzone_idx, migratetype);
  2466. }
  2467. trace_mm_page_alloc(page, order, gfp_mask, migratetype);
  2468. out:
  2469. /*
  2470. * When updating a task's mems_allowed, it is possible to race with
  2471. * parallel threads in such a way that an allocation can fail while
  2472. * the mask is being updated. If a page allocation is about to fail,
  2473. * check if the cpuset changed during allocation and if so, retry.
  2474. */
  2475. if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
  2476. goto retry_cpuset;
  2477. return page;
  2478. }
  2479. EXPORT_SYMBOL(__alloc_pages_nodemask);
  2480. /*
  2481. * Common helper functions.
  2482. */
  2483. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  2484. {
  2485. struct page *page;
  2486. /*
  2487. * __get_free_pages() returns a 32-bit address, which cannot represent
  2488. * a highmem page
  2489. */
  2490. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  2491. page = alloc_pages(gfp_mask, order);
  2492. if (!page)
  2493. return 0;
  2494. return (unsigned long) page_address(page);
  2495. }
  2496. EXPORT_SYMBOL(__get_free_pages);
  2497. unsigned long get_zeroed_page(gfp_t gfp_mask)
  2498. {
  2499. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  2500. }
  2501. EXPORT_SYMBOL(get_zeroed_page);
  2502. void __free_pages(struct page *page, unsigned int order)
  2503. {
  2504. if (put_page_testzero(page)) {
  2505. if (order == 0)
  2506. free_hot_cold_page(page, false);
  2507. else
  2508. __free_pages_ok(page, order);
  2509. }
  2510. }
  2511. EXPORT_SYMBOL(__free_pages);
  2512. void free_pages(unsigned long addr, unsigned int order)
  2513. {
  2514. if (addr != 0) {
  2515. VM_BUG_ON(!virt_addr_valid((void *)addr));
  2516. __free_pages(virt_to_page((void *)addr), order);
  2517. }
  2518. }
  2519. EXPORT_SYMBOL(free_pages);
  2520. /*
  2521. * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
  2522. * of the current memory cgroup.
  2523. *
  2524. * It should be used when the caller would like to use kmalloc, but since the
  2525. * allocation is large, it has to fall back to the page allocator.
  2526. */
  2527. struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
  2528. {
  2529. struct page *page;
  2530. struct mem_cgroup *memcg = NULL;
  2531. if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
  2532. return NULL;
  2533. page = alloc_pages(gfp_mask, order);
  2534. memcg_kmem_commit_charge(page, memcg, order);
  2535. return page;
  2536. }
  2537. struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
  2538. {
  2539. struct page *page;
  2540. struct mem_cgroup *memcg = NULL;
  2541. if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
  2542. return NULL;
  2543. page = alloc_pages_node(nid, gfp_mask, order);
  2544. memcg_kmem_commit_charge(page, memcg, order);
  2545. return page;
  2546. }
  2547. /*
  2548. * __free_kmem_pages and free_kmem_pages will free pages allocated with
  2549. * alloc_kmem_pages.
  2550. */
  2551. void __free_kmem_pages(struct page *page, unsigned int order)
  2552. {
  2553. memcg_kmem_uncharge_pages(page, order);
  2554. __free_pages(page, order);
  2555. }
  2556. void free_kmem_pages(unsigned long addr, unsigned int order)
  2557. {
  2558. if (addr != 0) {
  2559. VM_BUG_ON(!virt_addr_valid((void *)addr));
  2560. __free_kmem_pages(virt_to_page((void *)addr), order);
  2561. }
  2562. }
  2563. static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
  2564. {
  2565. if (addr) {
  2566. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  2567. unsigned long used = addr + PAGE_ALIGN(size);
  2568. split_page(virt_to_page((void *)addr), order);
  2569. while (used < alloc_end) {
  2570. free_page(used);
  2571. used += PAGE_SIZE;
  2572. }
  2573. }
  2574. return (void *)addr;
  2575. }
  2576. /**
  2577. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  2578. * @size: the number of bytes to allocate
  2579. * @gfp_mask: GFP flags for the allocation
  2580. *
  2581. * This function is similar to alloc_pages(), except that it allocates the
  2582. * minimum number of pages to satisfy the request. alloc_pages() can only
  2583. * allocate memory in power-of-two pages.
  2584. *
  2585. * This function is also limited by MAX_ORDER.
  2586. *
  2587. * Memory allocated by this function must be released by free_pages_exact().
  2588. */
  2589. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  2590. {
  2591. unsigned int order = get_order(size);
  2592. unsigned long addr;
  2593. addr = __get_free_pages(gfp_mask, order);
  2594. return make_alloc_exact(addr, order, size);
  2595. }
  2596. EXPORT_SYMBOL(alloc_pages_exact);
  2597. /**
  2598. * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
  2599. * pages on a node.
  2600. * @nid: the preferred node ID where memory should be allocated
  2601. * @size: the number of bytes to allocate
  2602. * @gfp_mask: GFP flags for the allocation
  2603. *
  2604. * Like alloc_pages_exact(), but try to allocate on node nid first before falling
  2605. * back.
  2606. * Note this is not alloc_pages_exact_node() which allocates on a specific node,
  2607. * but is not exact.
  2608. */
  2609. void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
  2610. {
  2611. unsigned order = get_order(size);
  2612. struct page *p = alloc_pages_node(nid, gfp_mask, order);
  2613. if (!p)
  2614. return NULL;
  2615. return make_alloc_exact((unsigned long)page_address(p), order, size);
  2616. }
  2617. /**
  2618. * free_pages_exact - release memory allocated via alloc_pages_exact()
  2619. * @virt: the value returned by alloc_pages_exact.
  2620. * @size: size of allocation, same value as passed to alloc_pages_exact().
  2621. *
  2622. * Release the memory allocated by a previous call to alloc_pages_exact.
  2623. */
  2624. void free_pages_exact(void *virt, size_t size)
  2625. {
  2626. unsigned long addr = (unsigned long)virt;
  2627. unsigned long end = addr + PAGE_ALIGN(size);
  2628. while (addr < end) {
  2629. free_page(addr);
  2630. addr += PAGE_SIZE;
  2631. }
  2632. }
  2633. EXPORT_SYMBOL(free_pages_exact);
  2634. /**
  2635. * nr_free_zone_pages - count number of pages beyond high watermark
  2636. * @offset: The zone index of the highest zone
  2637. *
  2638. * nr_free_zone_pages() counts the number of counts pages which are beyond the
  2639. * high watermark within all zones at or below a given zone index. For each
  2640. * zone, the number of pages is calculated as:
  2641. * managed_pages - high_pages
  2642. */
  2643. static unsigned long nr_free_zone_pages(int offset)
  2644. {
  2645. struct zoneref *z;
  2646. struct zone *zone;
  2647. /* Just pick one node, since fallback list is circular */
  2648. unsigned long sum = 0;
  2649. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  2650. for_each_zone_zonelist(zone, z, zonelist, offset) {
  2651. unsigned long size = zone->managed_pages;
  2652. unsigned long high = high_wmark_pages(zone);
  2653. if (size > high)
  2654. sum += size - high;
  2655. }
  2656. return sum;
  2657. }
  2658. /**
  2659. * nr_free_buffer_pages - count number of pages beyond high watermark
  2660. *
  2661. * nr_free_buffer_pages() counts the number of pages which are beyond the high
  2662. * watermark within ZONE_DMA and ZONE_NORMAL.
  2663. */
  2664. unsigned long nr_free_buffer_pages(void)
  2665. {
  2666. return nr_free_zone_pages(gfp_zone(GFP_USER));
  2667. }
  2668. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  2669. /**
  2670. * nr_free_pagecache_pages - count number of pages beyond high watermark
  2671. *
  2672. * nr_free_pagecache_pages() counts the number of pages which are beyond the
  2673. * high watermark within all zones.
  2674. */
  2675. unsigned long nr_free_pagecache_pages(void)
  2676. {
  2677. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  2678. }
  2679. static inline void show_node(struct zone *zone)
  2680. {
  2681. if (IS_ENABLED(CONFIG_NUMA))
  2682. printk("Node %d ", zone_to_nid(zone));
  2683. }
  2684. void si_meminfo(struct sysinfo *val)
  2685. {
  2686. val->totalram = totalram_pages;
  2687. val->sharedram = global_page_state(NR_SHMEM);
  2688. val->freeram = global_page_state(NR_FREE_PAGES);
  2689. val->bufferram = nr_blockdev_pages();
  2690. val->totalhigh = totalhigh_pages;
  2691. val->freehigh = nr_free_highpages();
  2692. val->mem_unit = PAGE_SIZE;
  2693. }
  2694. EXPORT_SYMBOL(si_meminfo);
  2695. #ifdef CONFIG_NUMA
  2696. void si_meminfo_node(struct sysinfo *val, int nid)
  2697. {
  2698. int zone_type; /* needs to be signed */
  2699. unsigned long managed_pages = 0;
  2700. pg_data_t *pgdat = NODE_DATA(nid);
  2701. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
  2702. managed_pages += pgdat->node_zones[zone_type].managed_pages;
  2703. val->totalram = managed_pages;
  2704. val->sharedram = node_page_state(nid, NR_SHMEM);
  2705. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  2706. #ifdef CONFIG_HIGHMEM
  2707. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
  2708. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  2709. NR_FREE_PAGES);
  2710. #else
  2711. val->totalhigh = 0;
  2712. val->freehigh = 0;
  2713. #endif
  2714. val->mem_unit = PAGE_SIZE;
  2715. }
  2716. #endif
  2717. /*
  2718. * Determine whether the node should be displayed or not, depending on whether
  2719. * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
  2720. */
  2721. bool skip_free_areas_node(unsigned int flags, int nid)
  2722. {
  2723. bool ret = false;
  2724. unsigned int cpuset_mems_cookie;
  2725. if (!(flags & SHOW_MEM_FILTER_NODES))
  2726. goto out;
  2727. do {
  2728. cpuset_mems_cookie = read_mems_allowed_begin();
  2729. ret = !node_isset(nid, cpuset_current_mems_allowed);
  2730. } while (read_mems_allowed_retry(cpuset_mems_cookie));
  2731. out:
  2732. return ret;
  2733. }
  2734. #define K(x) ((x) << (PAGE_SHIFT-10))
  2735. static void show_migration_types(unsigned char type)
  2736. {
  2737. static const char types[MIGRATE_TYPES] = {
  2738. [MIGRATE_UNMOVABLE] = 'U',
  2739. [MIGRATE_RECLAIMABLE] = 'E',
  2740. [MIGRATE_MOVABLE] = 'M',
  2741. [MIGRATE_RESERVE] = 'R',
  2742. #ifdef CONFIG_CMA
  2743. [MIGRATE_CMA] = 'C',
  2744. #endif
  2745. #ifdef CONFIG_MEMORY_ISOLATION
  2746. [MIGRATE_ISOLATE] = 'I',
  2747. #endif
  2748. };
  2749. char tmp[MIGRATE_TYPES + 1];
  2750. char *p = tmp;
  2751. int i;
  2752. for (i = 0; i < MIGRATE_TYPES; i++) {
  2753. if (type & (1 << i))
  2754. *p++ = types[i];
  2755. }
  2756. *p = '\0';
  2757. printk("(%s) ", tmp);
  2758. }
  2759. /*
  2760. * Show free area list (used inside shift_scroll-lock stuff)
  2761. * We also calculate the percentage fragmentation. We do this by counting the
  2762. * memory on each free list with the exception of the first item on the list.
  2763. * Suppresses nodes that are not allowed by current's cpuset if
  2764. * SHOW_MEM_FILTER_NODES is passed.
  2765. */
  2766. void show_free_areas(unsigned int filter)
  2767. {
  2768. int cpu;
  2769. struct zone *zone;
  2770. for_each_populated_zone(zone) {
  2771. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2772. continue;
  2773. show_node(zone);
  2774. printk("%s per-cpu:\n", zone->name);
  2775. for_each_online_cpu(cpu) {
  2776. struct per_cpu_pageset *pageset;
  2777. pageset = per_cpu_ptr(zone->pageset, cpu);
  2778. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  2779. cpu, pageset->pcp.high,
  2780. pageset->pcp.batch, pageset->pcp.count);
  2781. }
  2782. }
  2783. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  2784. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  2785. " unevictable:%lu"
  2786. " dirty:%lu writeback:%lu unstable:%lu\n"
  2787. " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  2788. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
  2789. " free_cma:%lu\n",
  2790. global_page_state(NR_ACTIVE_ANON),
  2791. global_page_state(NR_INACTIVE_ANON),
  2792. global_page_state(NR_ISOLATED_ANON),
  2793. global_page_state(NR_ACTIVE_FILE),
  2794. global_page_state(NR_INACTIVE_FILE),
  2795. global_page_state(NR_ISOLATED_FILE),
  2796. global_page_state(NR_UNEVICTABLE),
  2797. global_page_state(NR_FILE_DIRTY),
  2798. global_page_state(NR_WRITEBACK),
  2799. global_page_state(NR_UNSTABLE_NFS),
  2800. global_page_state(NR_FREE_PAGES),
  2801. global_page_state(NR_SLAB_RECLAIMABLE),
  2802. global_page_state(NR_SLAB_UNRECLAIMABLE),
  2803. global_page_state(NR_FILE_MAPPED),
  2804. global_page_state(NR_SHMEM),
  2805. global_page_state(NR_PAGETABLE),
  2806. global_page_state(NR_BOUNCE),
  2807. global_page_state(NR_FREE_CMA_PAGES));
  2808. for_each_populated_zone(zone) {
  2809. int i;
  2810. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2811. continue;
  2812. show_node(zone);
  2813. printk("%s"
  2814. " free:%lukB"
  2815. " min:%lukB"
  2816. " low:%lukB"
  2817. " high:%lukB"
  2818. " active_anon:%lukB"
  2819. " inactive_anon:%lukB"
  2820. " active_file:%lukB"
  2821. " inactive_file:%lukB"
  2822. " unevictable:%lukB"
  2823. " isolated(anon):%lukB"
  2824. " isolated(file):%lukB"
  2825. " present:%lukB"
  2826. " managed:%lukB"
  2827. " mlocked:%lukB"
  2828. " dirty:%lukB"
  2829. " writeback:%lukB"
  2830. " mapped:%lukB"
  2831. " shmem:%lukB"
  2832. " slab_reclaimable:%lukB"
  2833. " slab_unreclaimable:%lukB"
  2834. " kernel_stack:%lukB"
  2835. " pagetables:%lukB"
  2836. " unstable:%lukB"
  2837. " bounce:%lukB"
  2838. " free_cma:%lukB"
  2839. " writeback_tmp:%lukB"
  2840. " pages_scanned:%lu"
  2841. " all_unreclaimable? %s"
  2842. "\n",
  2843. zone->name,
  2844. K(zone_page_state(zone, NR_FREE_PAGES)),
  2845. K(min_wmark_pages(zone)),
  2846. K(low_wmark_pages(zone)),
  2847. K(high_wmark_pages(zone)),
  2848. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  2849. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  2850. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  2851. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  2852. K(zone_page_state(zone, NR_UNEVICTABLE)),
  2853. K(zone_page_state(zone, NR_ISOLATED_ANON)),
  2854. K(zone_page_state(zone, NR_ISOLATED_FILE)),
  2855. K(zone->present_pages),
  2856. K(zone->managed_pages),
  2857. K(zone_page_state(zone, NR_MLOCK)),
  2858. K(zone_page_state(zone, NR_FILE_DIRTY)),
  2859. K(zone_page_state(zone, NR_WRITEBACK)),
  2860. K(zone_page_state(zone, NR_FILE_MAPPED)),
  2861. K(zone_page_state(zone, NR_SHMEM)),
  2862. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  2863. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  2864. zone_page_state(zone, NR_KERNEL_STACK) *
  2865. THREAD_SIZE / 1024,
  2866. K(zone_page_state(zone, NR_PAGETABLE)),
  2867. K(zone_page_state(zone, NR_UNSTABLE_NFS)),
  2868. K(zone_page_state(zone, NR_BOUNCE)),
  2869. K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
  2870. K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
  2871. K(zone_page_state(zone, NR_PAGES_SCANNED)),
  2872. (!zone_reclaimable(zone) ? "yes" : "no")
  2873. );
  2874. printk("lowmem_reserve[]:");
  2875. for (i = 0; i < MAX_NR_ZONES; i++)
  2876. printk(" %ld", zone->lowmem_reserve[i]);
  2877. printk("\n");
  2878. }
  2879. for_each_populated_zone(zone) {
  2880. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  2881. unsigned char types[MAX_ORDER];
  2882. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2883. continue;
  2884. show_node(zone);
  2885. printk("%s: ", zone->name);
  2886. spin_lock_irqsave(&zone->lock, flags);
  2887. for (order = 0; order < MAX_ORDER; order++) {
  2888. struct free_area *area = &zone->free_area[order];
  2889. int type;
  2890. nr[order] = area->nr_free;
  2891. total += nr[order] << order;
  2892. types[order] = 0;
  2893. for (type = 0; type < MIGRATE_TYPES; type++) {
  2894. if (!list_empty(&area->free_list[type]))
  2895. types[order] |= 1 << type;
  2896. }
  2897. }
  2898. spin_unlock_irqrestore(&zone->lock, flags);
  2899. for (order = 0; order < MAX_ORDER; order++) {
  2900. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  2901. if (nr[order])
  2902. show_migration_types(types[order]);
  2903. }
  2904. printk("= %lukB\n", K(total));
  2905. }
  2906. hugetlb_show_meminfo();
  2907. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  2908. show_swap_cache_info();
  2909. }
  2910. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  2911. {
  2912. zoneref->zone = zone;
  2913. zoneref->zone_idx = zone_idx(zone);
  2914. }
  2915. /*
  2916. * Builds allocation fallback zone lists.
  2917. *
  2918. * Add all populated zones of a node to the zonelist.
  2919. */
  2920. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  2921. int nr_zones)
  2922. {
  2923. struct zone *zone;
  2924. enum zone_type zone_type = MAX_NR_ZONES;
  2925. do {
  2926. zone_type--;
  2927. zone = pgdat->node_zones + zone_type;
  2928. if (populated_zone(zone)) {
  2929. zoneref_set_zone(zone,
  2930. &zonelist->_zonerefs[nr_zones++]);
  2931. check_highest_zone(zone_type);
  2932. }
  2933. } while (zone_type);
  2934. return nr_zones;
  2935. }
  2936. /*
  2937. * zonelist_order:
  2938. * 0 = automatic detection of better ordering.
  2939. * 1 = order by ([node] distance, -zonetype)
  2940. * 2 = order by (-zonetype, [node] distance)
  2941. *
  2942. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  2943. * the same zonelist. So only NUMA can configure this param.
  2944. */
  2945. #define ZONELIST_ORDER_DEFAULT 0
  2946. #define ZONELIST_ORDER_NODE 1
  2947. #define ZONELIST_ORDER_ZONE 2
  2948. /* zonelist order in the kernel.
  2949. * set_zonelist_order() will set this to NODE or ZONE.
  2950. */
  2951. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2952. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  2953. #ifdef CONFIG_NUMA
  2954. /* The value user specified ....changed by config */
  2955. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2956. /* string for sysctl */
  2957. #define NUMA_ZONELIST_ORDER_LEN 16
  2958. char numa_zonelist_order[16] = "default";
  2959. /*
  2960. * interface for configure zonelist ordering.
  2961. * command line option "numa_zonelist_order"
  2962. * = "[dD]efault - default, automatic configuration.
  2963. * = "[nN]ode - order by node locality, then by zone within node
  2964. * = "[zZ]one - order by zone, then by locality within zone
  2965. */
  2966. static int __parse_numa_zonelist_order(char *s)
  2967. {
  2968. if (*s == 'd' || *s == 'D') {
  2969. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2970. } else if (*s == 'n' || *s == 'N') {
  2971. user_zonelist_order = ZONELIST_ORDER_NODE;
  2972. } else if (*s == 'z' || *s == 'Z') {
  2973. user_zonelist_order = ZONELIST_ORDER_ZONE;
  2974. } else {
  2975. printk(KERN_WARNING
  2976. "Ignoring invalid numa_zonelist_order value: "
  2977. "%s\n", s);
  2978. return -EINVAL;
  2979. }
  2980. return 0;
  2981. }
  2982. static __init int setup_numa_zonelist_order(char *s)
  2983. {
  2984. int ret;
  2985. if (!s)
  2986. return 0;
  2987. ret = __parse_numa_zonelist_order(s);
  2988. if (ret == 0)
  2989. strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
  2990. return ret;
  2991. }
  2992. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  2993. /*
  2994. * sysctl handler for numa_zonelist_order
  2995. */
  2996. int numa_zonelist_order_handler(struct ctl_table *table, int write,
  2997. void __user *buffer, size_t *length,
  2998. loff_t *ppos)
  2999. {
  3000. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  3001. int ret;
  3002. static DEFINE_MUTEX(zl_order_mutex);
  3003. mutex_lock(&zl_order_mutex);
  3004. if (write) {
  3005. if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
  3006. ret = -EINVAL;
  3007. goto out;
  3008. }
  3009. strcpy(saved_string, (char *)table->data);
  3010. }
  3011. ret = proc_dostring(table, write, buffer, length, ppos);
  3012. if (ret)
  3013. goto out;
  3014. if (write) {
  3015. int oldval = user_zonelist_order;
  3016. ret = __parse_numa_zonelist_order((char *)table->data);
  3017. if (ret) {
  3018. /*
  3019. * bogus value. restore saved string
  3020. */
  3021. strncpy((char *)table->data, saved_string,
  3022. NUMA_ZONELIST_ORDER_LEN);
  3023. user_zonelist_order = oldval;
  3024. } else if (oldval != user_zonelist_order) {
  3025. mutex_lock(&zonelists_mutex);
  3026. build_all_zonelists(NULL, NULL);
  3027. mutex_unlock(&zonelists_mutex);
  3028. }
  3029. }
  3030. out:
  3031. mutex_unlock(&zl_order_mutex);
  3032. return ret;
  3033. }
  3034. #define MAX_NODE_LOAD (nr_online_nodes)
  3035. static int node_load[MAX_NUMNODES];
  3036. /**
  3037. * find_next_best_node - find the next node that should appear in a given node's fallback list
  3038. * @node: node whose fallback list we're appending
  3039. * @used_node_mask: nodemask_t of already used nodes
  3040. *
  3041. * We use a number of factors to determine which is the next node that should
  3042. * appear on a given node's fallback list. The node should not have appeared
  3043. * already in @node's fallback list, and it should be the next closest node
  3044. * according to the distance array (which contains arbitrary distance values
  3045. * from each node to each node in the system), and should also prefer nodes
  3046. * with no CPUs, since presumably they'll have very little allocation pressure
  3047. * on them otherwise.
  3048. * It returns -1 if no node is found.
  3049. */
  3050. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  3051. {
  3052. int n, val;
  3053. int min_val = INT_MAX;
  3054. int best_node = NUMA_NO_NODE;
  3055. const struct cpumask *tmp = cpumask_of_node(0);
  3056. /* Use the local node if we haven't already */
  3057. if (!node_isset(node, *used_node_mask)) {
  3058. node_set(node, *used_node_mask);
  3059. return node;
  3060. }
  3061. for_each_node_state(n, N_MEMORY) {
  3062. /* Don't want a node to appear more than once */
  3063. if (node_isset(n, *used_node_mask))
  3064. continue;
  3065. /* Use the distance array to find the distance */
  3066. val = node_distance(node, n);
  3067. /* Penalize nodes under us ("prefer the next node") */
  3068. val += (n < node);
  3069. /* Give preference to headless and unused nodes */
  3070. tmp = cpumask_of_node(n);
  3071. if (!cpumask_empty(tmp))
  3072. val += PENALTY_FOR_NODE_WITH_CPUS;
  3073. /* Slight preference for less loaded node */
  3074. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  3075. val += node_load[n];
  3076. if (val < min_val) {
  3077. min_val = val;
  3078. best_node = n;
  3079. }
  3080. }
  3081. if (best_node >= 0)
  3082. node_set(best_node, *used_node_mask);
  3083. return best_node;
  3084. }
  3085. /*
  3086. * Build zonelists ordered by node and zones within node.
  3087. * This results in maximum locality--normal zone overflows into local
  3088. * DMA zone, if any--but risks exhausting DMA zone.
  3089. */
  3090. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  3091. {
  3092. int j;
  3093. struct zonelist *zonelist;
  3094. zonelist = &pgdat->node_zonelists[0];
  3095. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  3096. ;
  3097. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  3098. zonelist->_zonerefs[j].zone = NULL;
  3099. zonelist->_zonerefs[j].zone_idx = 0;
  3100. }
  3101. /*
  3102. * Build gfp_thisnode zonelists
  3103. */
  3104. static void build_thisnode_zonelists(pg_data_t *pgdat)
  3105. {
  3106. int j;
  3107. struct zonelist *zonelist;
  3108. zonelist = &pgdat->node_zonelists[1];
  3109. j = build_zonelists_node(pgdat, zonelist, 0);
  3110. zonelist->_zonerefs[j].zone = NULL;
  3111. zonelist->_zonerefs[j].zone_idx = 0;
  3112. }
  3113. /*
  3114. * Build zonelists ordered by zone and nodes within zones.
  3115. * This results in conserving DMA zone[s] until all Normal memory is
  3116. * exhausted, but results in overflowing to remote node while memory
  3117. * may still exist in local DMA zone.
  3118. */
  3119. static int node_order[MAX_NUMNODES];
  3120. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  3121. {
  3122. int pos, j, node;
  3123. int zone_type; /* needs to be signed */
  3124. struct zone *z;
  3125. struct zonelist *zonelist;
  3126. zonelist = &pgdat->node_zonelists[0];
  3127. pos = 0;
  3128. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  3129. for (j = 0; j < nr_nodes; j++) {
  3130. node = node_order[j];
  3131. z = &NODE_DATA(node)->node_zones[zone_type];
  3132. if (populated_zone(z)) {
  3133. zoneref_set_zone(z,
  3134. &zonelist->_zonerefs[pos++]);
  3135. check_highest_zone(zone_type);
  3136. }
  3137. }
  3138. }
  3139. zonelist->_zonerefs[pos].zone = NULL;
  3140. zonelist->_zonerefs[pos].zone_idx = 0;
  3141. }
  3142. #if defined(CONFIG_64BIT)
  3143. /*
  3144. * Devices that require DMA32/DMA are relatively rare and do not justify a
  3145. * penalty to every machine in case the specialised case applies. Default
  3146. * to Node-ordering on 64-bit NUMA machines
  3147. */
  3148. static int default_zonelist_order(void)
  3149. {
  3150. return ZONELIST_ORDER_NODE;
  3151. }
  3152. #else
  3153. /*
  3154. * On 32-bit, the Normal zone needs to be preserved for allocations accessible
  3155. * by the kernel. If processes running on node 0 deplete the low memory zone
  3156. * then reclaim will occur more frequency increasing stalls and potentially
  3157. * be easier to OOM if a large percentage of the zone is under writeback or
  3158. * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
  3159. * Hence, default to zone ordering on 32-bit.
  3160. */
  3161. static int default_zonelist_order(void)
  3162. {
  3163. return ZONELIST_ORDER_ZONE;
  3164. }
  3165. #endif /* CONFIG_64BIT */
  3166. static void set_zonelist_order(void)
  3167. {
  3168. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  3169. current_zonelist_order = default_zonelist_order();
  3170. else
  3171. current_zonelist_order = user_zonelist_order;
  3172. }
  3173. static void build_zonelists(pg_data_t *pgdat)
  3174. {
  3175. int j, node, load;
  3176. enum zone_type i;
  3177. nodemask_t used_mask;
  3178. int local_node, prev_node;
  3179. struct zonelist *zonelist;
  3180. int order = current_zonelist_order;
  3181. /* initialize zonelists */
  3182. for (i = 0; i < MAX_ZONELISTS; i++) {
  3183. zonelist = pgdat->node_zonelists + i;
  3184. zonelist->_zonerefs[0].zone = NULL;
  3185. zonelist->_zonerefs[0].zone_idx = 0;
  3186. }
  3187. /* NUMA-aware ordering of nodes */
  3188. local_node = pgdat->node_id;
  3189. load = nr_online_nodes;
  3190. prev_node = local_node;
  3191. nodes_clear(used_mask);
  3192. memset(node_order, 0, sizeof(node_order));
  3193. j = 0;
  3194. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  3195. /*
  3196. * We don't want to pressure a particular node.
  3197. * So adding penalty to the first node in same
  3198. * distance group to make it round-robin.
  3199. */
  3200. if (node_distance(local_node, node) !=
  3201. node_distance(local_node, prev_node))
  3202. node_load[node] = load;
  3203. prev_node = node;
  3204. load--;
  3205. if (order == ZONELIST_ORDER_NODE)
  3206. build_zonelists_in_node_order(pgdat, node);
  3207. else
  3208. node_order[j++] = node; /* remember order */
  3209. }
  3210. if (order == ZONELIST_ORDER_ZONE) {
  3211. /* calculate node order -- i.e., DMA last! */
  3212. build_zonelists_in_zone_order(pgdat, j);
  3213. }
  3214. build_thisnode_zonelists(pgdat);
  3215. }
  3216. /* Construct the zonelist performance cache - see further mmzone.h */
  3217. static void build_zonelist_cache(pg_data_t *pgdat)
  3218. {
  3219. struct zonelist *zonelist;
  3220. struct zonelist_cache *zlc;
  3221. struct zoneref *z;
  3222. zonelist = &pgdat->node_zonelists[0];
  3223. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  3224. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  3225. for (z = zonelist->_zonerefs; z->zone; z++)
  3226. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  3227. }
  3228. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  3229. /*
  3230. * Return node id of node used for "local" allocations.
  3231. * I.e., first node id of first zone in arg node's generic zonelist.
  3232. * Used for initializing percpu 'numa_mem', which is used primarily
  3233. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  3234. */
  3235. int local_memory_node(int node)
  3236. {
  3237. struct zone *zone;
  3238. (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  3239. gfp_zone(GFP_KERNEL),
  3240. NULL,
  3241. &zone);
  3242. return zone->node;
  3243. }
  3244. #endif
  3245. #else /* CONFIG_NUMA */
  3246. static void set_zonelist_order(void)
  3247. {
  3248. current_zonelist_order = ZONELIST_ORDER_ZONE;
  3249. }
  3250. static void build_zonelists(pg_data_t *pgdat)
  3251. {
  3252. int node, local_node;
  3253. enum zone_type j;
  3254. struct zonelist *zonelist;
  3255. local_node = pgdat->node_id;
  3256. zonelist = &pgdat->node_zonelists[0];
  3257. j = build_zonelists_node(pgdat, zonelist, 0);
  3258. /*
  3259. * Now we build the zonelist so that it contains the zones
  3260. * of all the other nodes.
  3261. * We don't want to pressure a particular node, so when
  3262. * building the zones for node N, we make sure that the
  3263. * zones coming right after the local ones are those from
  3264. * node N+1 (modulo N)
  3265. */
  3266. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  3267. if (!node_online(node))
  3268. continue;
  3269. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  3270. }
  3271. for (node = 0; node < local_node; node++) {
  3272. if (!node_online(node))
  3273. continue;
  3274. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  3275. }
  3276. zonelist->_zonerefs[j].zone = NULL;
  3277. zonelist->_zonerefs[j].zone_idx = 0;
  3278. }
  3279. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  3280. static void build_zonelist_cache(pg_data_t *pgdat)
  3281. {
  3282. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  3283. }
  3284. #endif /* CONFIG_NUMA */
  3285. /*
  3286. * Boot pageset table. One per cpu which is going to be used for all
  3287. * zones and all nodes. The parameters will be set in such a way
  3288. * that an item put on a list will immediately be handed over to
  3289. * the buddy list. This is safe since pageset manipulation is done
  3290. * with interrupts disabled.
  3291. *
  3292. * The boot_pagesets must be kept even after bootup is complete for
  3293. * unused processors and/or zones. They do play a role for bootstrapping
  3294. * hotplugged processors.
  3295. *
  3296. * zoneinfo_show() and maybe other functions do
  3297. * not check if the processor is online before following the pageset pointer.
  3298. * Other parts of the kernel may not check if the zone is available.
  3299. */
  3300. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  3301. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  3302. static void setup_zone_pageset(struct zone *zone);
  3303. /*
  3304. * Global mutex to protect against size modification of zonelists
  3305. * as well as to serialize pageset setup for the new populated zone.
  3306. */
  3307. DEFINE_MUTEX(zonelists_mutex);
  3308. /* return values int ....just for stop_machine() */
  3309. static int __build_all_zonelists(void *data)
  3310. {
  3311. int nid;
  3312. int cpu;
  3313. pg_data_t *self = data;
  3314. #ifdef CONFIG_NUMA
  3315. memset(node_load, 0, sizeof(node_load));
  3316. #endif
  3317. if (self && !node_online(self->node_id)) {
  3318. build_zonelists(self);
  3319. build_zonelist_cache(self);
  3320. }
  3321. for_each_online_node(nid) {
  3322. pg_data_t *pgdat = NODE_DATA(nid);
  3323. build_zonelists(pgdat);
  3324. build_zonelist_cache(pgdat);
  3325. }
  3326. /*
  3327. * Initialize the boot_pagesets that are going to be used
  3328. * for bootstrapping processors. The real pagesets for
  3329. * each zone will be allocated later when the per cpu
  3330. * allocator is available.
  3331. *
  3332. * boot_pagesets are used also for bootstrapping offline
  3333. * cpus if the system is already booted because the pagesets
  3334. * are needed to initialize allocators on a specific cpu too.
  3335. * F.e. the percpu allocator needs the page allocator which
  3336. * needs the percpu allocator in order to allocate its pagesets
  3337. * (a chicken-egg dilemma).
  3338. */
  3339. for_each_possible_cpu(cpu) {
  3340. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  3341. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  3342. /*
  3343. * We now know the "local memory node" for each node--
  3344. * i.e., the node of the first zone in the generic zonelist.
  3345. * Set up numa_mem percpu variable for on-line cpus. During
  3346. * boot, only the boot cpu should be on-line; we'll init the
  3347. * secondary cpus' numa_mem as they come on-line. During
  3348. * node/memory hotplug, we'll fixup all on-line cpus.
  3349. */
  3350. if (cpu_online(cpu))
  3351. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  3352. #endif
  3353. }
  3354. return 0;
  3355. }
  3356. /*
  3357. * Called with zonelists_mutex held always
  3358. * unless system_state == SYSTEM_BOOTING.
  3359. */
  3360. void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
  3361. {
  3362. set_zonelist_order();
  3363. if (system_state == SYSTEM_BOOTING) {
  3364. __build_all_zonelists(NULL);
  3365. mminit_verify_zonelist();
  3366. cpuset_init_current_mems_allowed();
  3367. } else {
  3368. #ifdef CONFIG_MEMORY_HOTPLUG
  3369. if (zone)
  3370. setup_zone_pageset(zone);
  3371. #endif
  3372. /* we have to stop all cpus to guarantee there is no user
  3373. of zonelist */
  3374. stop_machine(__build_all_zonelists, pgdat, NULL);
  3375. /* cpuset refresh routine should be here */
  3376. }
  3377. vm_total_pages = nr_free_pagecache_pages();
  3378. /*
  3379. * Disable grouping by mobility if the number of pages in the
  3380. * system is too low to allow the mechanism to work. It would be
  3381. * more accurate, but expensive to check per-zone. This check is
  3382. * made on memory-hotadd so a system can start with mobility
  3383. * disabled and enable it later
  3384. */
  3385. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  3386. page_group_by_mobility_disabled = 1;
  3387. else
  3388. page_group_by_mobility_disabled = 0;
  3389. printk("Built %i zonelists in %s order, mobility grouping %s. "
  3390. "Total pages: %ld\n",
  3391. nr_online_nodes,
  3392. zonelist_order_name[current_zonelist_order],
  3393. page_group_by_mobility_disabled ? "off" : "on",
  3394. vm_total_pages);
  3395. #ifdef CONFIG_NUMA
  3396. printk("Policy zone: %s\n", zone_names[policy_zone]);
  3397. #endif
  3398. }
  3399. /*
  3400. * Helper functions to size the waitqueue hash table.
  3401. * Essentially these want to choose hash table sizes sufficiently
  3402. * large so that collisions trying to wait on pages are rare.
  3403. * But in fact, the number of active page waitqueues on typical
  3404. * systems is ridiculously low, less than 200. So this is even
  3405. * conservative, even though it seems large.
  3406. *
  3407. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  3408. * waitqueues, i.e. the size of the waitq table given the number of pages.
  3409. */
  3410. #define PAGES_PER_WAITQUEUE 256
  3411. #ifndef CONFIG_MEMORY_HOTPLUG
  3412. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3413. {
  3414. unsigned long size = 1;
  3415. pages /= PAGES_PER_WAITQUEUE;
  3416. while (size < pages)
  3417. size <<= 1;
  3418. /*
  3419. * Once we have dozens or even hundreds of threads sleeping
  3420. * on IO we've got bigger problems than wait queue collision.
  3421. * Limit the size of the wait table to a reasonable size.
  3422. */
  3423. size = min(size, 4096UL);
  3424. return max(size, 4UL);
  3425. }
  3426. #else
  3427. /*
  3428. * A zone's size might be changed by hot-add, so it is not possible to determine
  3429. * a suitable size for its wait_table. So we use the maximum size now.
  3430. *
  3431. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  3432. *
  3433. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  3434. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  3435. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  3436. *
  3437. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  3438. * or more by the traditional way. (See above). It equals:
  3439. *
  3440. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  3441. * ia64(16K page size) : = ( 8G + 4M)byte.
  3442. * powerpc (64K page size) : = (32G +16M)byte.
  3443. */
  3444. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3445. {
  3446. return 4096UL;
  3447. }
  3448. #endif
  3449. /*
  3450. * This is an integer logarithm so that shifts can be used later
  3451. * to extract the more random high bits from the multiplicative
  3452. * hash function before the remainder is taken.
  3453. */
  3454. static inline unsigned long wait_table_bits(unsigned long size)
  3455. {
  3456. return ffz(~size);
  3457. }
  3458. /*
  3459. * Check if a pageblock contains reserved pages
  3460. */
  3461. static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
  3462. {
  3463. unsigned long pfn;
  3464. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  3465. if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
  3466. return 1;
  3467. }
  3468. return 0;
  3469. }
  3470. /*
  3471. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  3472. * of blocks reserved is based on min_wmark_pages(zone). The memory within
  3473. * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
  3474. * higher will lead to a bigger reserve which will get freed as contiguous
  3475. * blocks as reclaim kicks in
  3476. */
  3477. static void setup_zone_migrate_reserve(struct zone *zone)
  3478. {
  3479. unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
  3480. struct page *page;
  3481. unsigned long block_migratetype;
  3482. int reserve;
  3483. int old_reserve;
  3484. /*
  3485. * Get the start pfn, end pfn and the number of blocks to reserve
  3486. * We have to be careful to be aligned to pageblock_nr_pages to
  3487. * make sure that we always check pfn_valid for the first page in
  3488. * the block.
  3489. */
  3490. start_pfn = zone->zone_start_pfn;
  3491. end_pfn = zone_end_pfn(zone);
  3492. start_pfn = roundup(start_pfn, pageblock_nr_pages);
  3493. reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
  3494. pageblock_order;
  3495. /*
  3496. * Reserve blocks are generally in place to help high-order atomic
  3497. * allocations that are short-lived. A min_free_kbytes value that
  3498. * would result in more than 2 reserve blocks for atomic allocations
  3499. * is assumed to be in place to help anti-fragmentation for the
  3500. * future allocation of hugepages at runtime.
  3501. */
  3502. reserve = min(2, reserve);
  3503. old_reserve = zone->nr_migrate_reserve_block;
  3504. /* When memory hot-add, we almost always need to do nothing */
  3505. if (reserve == old_reserve)
  3506. return;
  3507. zone->nr_migrate_reserve_block = reserve;
  3508. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  3509. if (!pfn_valid(pfn))
  3510. continue;
  3511. page = pfn_to_page(pfn);
  3512. /* Watch out for overlapping nodes */
  3513. if (page_to_nid(page) != zone_to_nid(zone))
  3514. continue;
  3515. block_migratetype = get_pageblock_migratetype(page);
  3516. /* Only test what is necessary when the reserves are not met */
  3517. if (reserve > 0) {
  3518. /*
  3519. * Blocks with reserved pages will never free, skip
  3520. * them.
  3521. */
  3522. block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
  3523. if (pageblock_is_reserved(pfn, block_end_pfn))
  3524. continue;
  3525. /* If this block is reserved, account for it */
  3526. if (block_migratetype == MIGRATE_RESERVE) {
  3527. reserve--;
  3528. continue;
  3529. }
  3530. /* Suitable for reserving if this block is movable */
  3531. if (block_migratetype == MIGRATE_MOVABLE) {
  3532. set_pageblock_migratetype(page,
  3533. MIGRATE_RESERVE);
  3534. move_freepages_block(zone, page,
  3535. MIGRATE_RESERVE);
  3536. reserve--;
  3537. continue;
  3538. }
  3539. } else if (!old_reserve) {
  3540. /*
  3541. * At boot time we don't need to scan the whole zone
  3542. * for turning off MIGRATE_RESERVE.
  3543. */
  3544. break;
  3545. }
  3546. /*
  3547. * If the reserve is met and this is a previous reserved block,
  3548. * take it back
  3549. */
  3550. if (block_migratetype == MIGRATE_RESERVE) {
  3551. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3552. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  3553. }
  3554. }
  3555. }
  3556. /*
  3557. * Initially all pages are reserved - free ones are freed
  3558. * up by free_all_bootmem() once the early boot process is
  3559. * done. Non-atomic initialization, single-pass.
  3560. */
  3561. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  3562. unsigned long start_pfn, enum memmap_context context)
  3563. {
  3564. struct page *page;
  3565. unsigned long end_pfn = start_pfn + size;
  3566. unsigned long pfn;
  3567. struct zone *z;
  3568. if (highest_memmap_pfn < end_pfn - 1)
  3569. highest_memmap_pfn = end_pfn - 1;
  3570. z = &NODE_DATA(nid)->node_zones[zone];
  3571. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  3572. /*
  3573. * There can be holes in boot-time mem_map[]s
  3574. * handed to this function. They do not
  3575. * exist on hotplugged memory.
  3576. */
  3577. if (context == MEMMAP_EARLY) {
  3578. if (!early_pfn_valid(pfn))
  3579. continue;
  3580. if (!early_pfn_in_nid(pfn, nid))
  3581. continue;
  3582. }
  3583. page = pfn_to_page(pfn);
  3584. set_page_links(page, zone, nid, pfn);
  3585. mminit_verify_page_links(page, zone, nid, pfn);
  3586. init_page_count(page);
  3587. page_mapcount_reset(page);
  3588. page_cpupid_reset_last(page);
  3589. SetPageReserved(page);
  3590. /*
  3591. * Mark the block movable so that blocks are reserved for
  3592. * movable at startup. This will force kernel allocations
  3593. * to reserve their blocks rather than leaking throughout
  3594. * the address space during boot when many long-lived
  3595. * kernel allocations are made. Later some blocks near
  3596. * the start are marked MIGRATE_RESERVE by
  3597. * setup_zone_migrate_reserve()
  3598. *
  3599. * bitmap is created for zone's valid pfn range. but memmap
  3600. * can be created for invalid pages (for alignment)
  3601. * check here not to call set_pageblock_migratetype() against
  3602. * pfn out of zone.
  3603. */
  3604. if ((z->zone_start_pfn <= pfn)
  3605. && (pfn < zone_end_pfn(z))
  3606. && !(pfn & (pageblock_nr_pages - 1)))
  3607. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3608. INIT_LIST_HEAD(&page->lru);
  3609. #ifdef WANT_PAGE_VIRTUAL
  3610. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  3611. if (!is_highmem_idx(zone))
  3612. set_page_address(page, __va(pfn << PAGE_SHIFT));
  3613. #endif
  3614. }
  3615. }
  3616. static void __meminit zone_init_free_lists(struct zone *zone)
  3617. {
  3618. unsigned int order, t;
  3619. for_each_migratetype_order(order, t) {
  3620. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  3621. zone->free_area[order].nr_free = 0;
  3622. }
  3623. }
  3624. #ifndef __HAVE_ARCH_MEMMAP_INIT
  3625. #define memmap_init(size, nid, zone, start_pfn) \
  3626. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  3627. #endif
  3628. static int zone_batchsize(struct zone *zone)
  3629. {
  3630. #ifdef CONFIG_MMU
  3631. int batch;
  3632. /*
  3633. * The per-cpu-pages pools are set to around 1000th of the
  3634. * size of the zone. But no more than 1/2 of a meg.
  3635. *
  3636. * OK, so we don't know how big the cache is. So guess.
  3637. */
  3638. batch = zone->managed_pages / 1024;
  3639. if (batch * PAGE_SIZE > 512 * 1024)
  3640. batch = (512 * 1024) / PAGE_SIZE;
  3641. batch /= 4; /* We effectively *= 4 below */
  3642. if (batch < 1)
  3643. batch = 1;
  3644. /*
  3645. * Clamp the batch to a 2^n - 1 value. Having a power
  3646. * of 2 value was found to be more likely to have
  3647. * suboptimal cache aliasing properties in some cases.
  3648. *
  3649. * For example if 2 tasks are alternately allocating
  3650. * batches of pages, one task can end up with a lot
  3651. * of pages of one half of the possible page colors
  3652. * and the other with pages of the other colors.
  3653. */
  3654. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  3655. return batch;
  3656. #else
  3657. /* The deferral and batching of frees should be suppressed under NOMMU
  3658. * conditions.
  3659. *
  3660. * The problem is that NOMMU needs to be able to allocate large chunks
  3661. * of contiguous memory as there's no hardware page translation to
  3662. * assemble apparent contiguous memory from discontiguous pages.
  3663. *
  3664. * Queueing large contiguous runs of pages for batching, however,
  3665. * causes the pages to actually be freed in smaller chunks. As there
  3666. * can be a significant delay between the individual batches being
  3667. * recycled, this leads to the once large chunks of space being
  3668. * fragmented and becoming unavailable for high-order allocations.
  3669. */
  3670. return 0;
  3671. #endif
  3672. }
  3673. /*
  3674. * pcp->high and pcp->batch values are related and dependent on one another:
  3675. * ->batch must never be higher then ->high.
  3676. * The following function updates them in a safe manner without read side
  3677. * locking.
  3678. *
  3679. * Any new users of pcp->batch and pcp->high should ensure they can cope with
  3680. * those fields changing asynchronously (acording the the above rule).
  3681. *
  3682. * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
  3683. * outside of boot time (or some other assurance that no concurrent updaters
  3684. * exist).
  3685. */
  3686. static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
  3687. unsigned long batch)
  3688. {
  3689. /* start with a fail safe value for batch */
  3690. pcp->batch = 1;
  3691. smp_wmb();
  3692. /* Update high, then batch, in order */
  3693. pcp->high = high;
  3694. smp_wmb();
  3695. pcp->batch = batch;
  3696. }
  3697. /* a companion to pageset_set_high() */
  3698. static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
  3699. {
  3700. pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
  3701. }
  3702. static void pageset_init(struct per_cpu_pageset *p)
  3703. {
  3704. struct per_cpu_pages *pcp;
  3705. int migratetype;
  3706. memset(p, 0, sizeof(*p));
  3707. pcp = &p->pcp;
  3708. pcp->count = 0;
  3709. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  3710. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  3711. }
  3712. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  3713. {
  3714. pageset_init(p);
  3715. pageset_set_batch(p, batch);
  3716. }
  3717. /*
  3718. * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
  3719. * to the value high for the pageset p.
  3720. */
  3721. static void pageset_set_high(struct per_cpu_pageset *p,
  3722. unsigned long high)
  3723. {
  3724. unsigned long batch = max(1UL, high / 4);
  3725. if ((high / 4) > (PAGE_SHIFT * 8))
  3726. batch = PAGE_SHIFT * 8;
  3727. pageset_update(&p->pcp, high, batch);
  3728. }
  3729. static void pageset_set_high_and_batch(struct zone *zone,
  3730. struct per_cpu_pageset *pcp)
  3731. {
  3732. if (percpu_pagelist_fraction)
  3733. pageset_set_high(pcp,
  3734. (zone->managed_pages /
  3735. percpu_pagelist_fraction));
  3736. else
  3737. pageset_set_batch(pcp, zone_batchsize(zone));
  3738. }
  3739. static void __meminit zone_pageset_init(struct zone *zone, int cpu)
  3740. {
  3741. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  3742. pageset_init(pcp);
  3743. pageset_set_high_and_batch(zone, pcp);
  3744. }
  3745. static void __meminit setup_zone_pageset(struct zone *zone)
  3746. {
  3747. int cpu;
  3748. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  3749. for_each_possible_cpu(cpu)
  3750. zone_pageset_init(zone, cpu);
  3751. }
  3752. /*
  3753. * Allocate per cpu pagesets and initialize them.
  3754. * Before this call only boot pagesets were available.
  3755. */
  3756. void __init setup_per_cpu_pageset(void)
  3757. {
  3758. struct zone *zone;
  3759. for_each_populated_zone(zone)
  3760. setup_zone_pageset(zone);
  3761. }
  3762. static noinline __init_refok
  3763. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  3764. {
  3765. int i;
  3766. size_t alloc_size;
  3767. /*
  3768. * The per-page waitqueue mechanism uses hashed waitqueues
  3769. * per zone.
  3770. */
  3771. zone->wait_table_hash_nr_entries =
  3772. wait_table_hash_nr_entries(zone_size_pages);
  3773. zone->wait_table_bits =
  3774. wait_table_bits(zone->wait_table_hash_nr_entries);
  3775. alloc_size = zone->wait_table_hash_nr_entries
  3776. * sizeof(wait_queue_head_t);
  3777. if (!slab_is_available()) {
  3778. zone->wait_table = (wait_queue_head_t *)
  3779. memblock_virt_alloc_node_nopanic(
  3780. alloc_size, zone->zone_pgdat->node_id);
  3781. } else {
  3782. /*
  3783. * This case means that a zone whose size was 0 gets new memory
  3784. * via memory hot-add.
  3785. * But it may be the case that a new node was hot-added. In
  3786. * this case vmalloc() will not be able to use this new node's
  3787. * memory - this wait_table must be initialized to use this new
  3788. * node itself as well.
  3789. * To use this new node's memory, further consideration will be
  3790. * necessary.
  3791. */
  3792. zone->wait_table = vmalloc(alloc_size);
  3793. }
  3794. if (!zone->wait_table)
  3795. return -ENOMEM;
  3796. for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  3797. init_waitqueue_head(zone->wait_table + i);
  3798. return 0;
  3799. }
  3800. static __meminit void zone_pcp_init(struct zone *zone)
  3801. {
  3802. /*
  3803. * per cpu subsystem is not up at this point. The following code
  3804. * relies on the ability of the linker to provide the
  3805. * offset of a (static) per cpu variable into the per cpu area.
  3806. */
  3807. zone->pageset = &boot_pageset;
  3808. if (populated_zone(zone))
  3809. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  3810. zone->name, zone->present_pages,
  3811. zone_batchsize(zone));
  3812. }
  3813. int __meminit init_currently_empty_zone(struct zone *zone,
  3814. unsigned long zone_start_pfn,
  3815. unsigned long size,
  3816. enum memmap_context context)
  3817. {
  3818. struct pglist_data *pgdat = zone->zone_pgdat;
  3819. int ret;
  3820. ret = zone_wait_table_init(zone, size);
  3821. if (ret)
  3822. return ret;
  3823. pgdat->nr_zones = zone_idx(zone) + 1;
  3824. zone->zone_start_pfn = zone_start_pfn;
  3825. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  3826. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  3827. pgdat->node_id,
  3828. (unsigned long)zone_idx(zone),
  3829. zone_start_pfn, (zone_start_pfn + size));
  3830. zone_init_free_lists(zone);
  3831. return 0;
  3832. }
  3833. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  3834. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  3835. /*
  3836. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  3837. */
  3838. int __meminit __early_pfn_to_nid(unsigned long pfn)
  3839. {
  3840. unsigned long start_pfn, end_pfn;
  3841. int nid;
  3842. /*
  3843. * NOTE: The following SMP-unsafe globals are only used early in boot
  3844. * when the kernel is running single-threaded.
  3845. */
  3846. static unsigned long __meminitdata last_start_pfn, last_end_pfn;
  3847. static int __meminitdata last_nid;
  3848. if (last_start_pfn <= pfn && pfn < last_end_pfn)
  3849. return last_nid;
  3850. nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
  3851. if (nid != -1) {
  3852. last_start_pfn = start_pfn;
  3853. last_end_pfn = end_pfn;
  3854. last_nid = nid;
  3855. }
  3856. return nid;
  3857. }
  3858. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  3859. int __meminit early_pfn_to_nid(unsigned long pfn)
  3860. {
  3861. int nid;
  3862. nid = __early_pfn_to_nid(pfn);
  3863. if (nid >= 0)
  3864. return nid;
  3865. /* just returns 0 */
  3866. return 0;
  3867. }
  3868. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  3869. bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  3870. {
  3871. int nid;
  3872. nid = __early_pfn_to_nid(pfn);
  3873. if (nid >= 0 && nid != node)
  3874. return false;
  3875. return true;
  3876. }
  3877. #endif
  3878. /**
  3879. * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
  3880. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  3881. * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
  3882. *
  3883. * If an architecture guarantees that all ranges registered contain no holes
  3884. * and may be freed, this this function may be used instead of calling
  3885. * memblock_free_early_nid() manually.
  3886. */
  3887. void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
  3888. {
  3889. unsigned long start_pfn, end_pfn;
  3890. int i, this_nid;
  3891. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
  3892. start_pfn = min(start_pfn, max_low_pfn);
  3893. end_pfn = min(end_pfn, max_low_pfn);
  3894. if (start_pfn < end_pfn)
  3895. memblock_free_early_nid(PFN_PHYS(start_pfn),
  3896. (end_pfn - start_pfn) << PAGE_SHIFT,
  3897. this_nid);
  3898. }
  3899. }
  3900. /**
  3901. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  3902. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  3903. *
  3904. * If an architecture guarantees that all ranges registered contain no holes and may
  3905. * be freed, this function may be used instead of calling memory_present() manually.
  3906. */
  3907. void __init sparse_memory_present_with_active_regions(int nid)
  3908. {
  3909. unsigned long start_pfn, end_pfn;
  3910. int i, this_nid;
  3911. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
  3912. memory_present(this_nid, start_pfn, end_pfn);
  3913. }
  3914. /**
  3915. * get_pfn_range_for_nid - Return the start and end page frames for a node
  3916. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  3917. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  3918. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  3919. *
  3920. * It returns the start and end page frame of a node based on information
  3921. * provided by memblock_set_node(). If called for a node
  3922. * with no available memory, a warning is printed and the start and end
  3923. * PFNs will be 0.
  3924. */
  3925. void __meminit get_pfn_range_for_nid(unsigned int nid,
  3926. unsigned long *start_pfn, unsigned long *end_pfn)
  3927. {
  3928. unsigned long this_start_pfn, this_end_pfn;
  3929. int i;
  3930. *start_pfn = -1UL;
  3931. *end_pfn = 0;
  3932. for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
  3933. *start_pfn = min(*start_pfn, this_start_pfn);
  3934. *end_pfn = max(*end_pfn, this_end_pfn);
  3935. }
  3936. if (*start_pfn == -1UL)
  3937. *start_pfn = 0;
  3938. }
  3939. /*
  3940. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  3941. * assumption is made that zones within a node are ordered in monotonic
  3942. * increasing memory addresses so that the "highest" populated zone is used
  3943. */
  3944. static void __init find_usable_zone_for_movable(void)
  3945. {
  3946. int zone_index;
  3947. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  3948. if (zone_index == ZONE_MOVABLE)
  3949. continue;
  3950. if (arch_zone_highest_possible_pfn[zone_index] >
  3951. arch_zone_lowest_possible_pfn[zone_index])
  3952. break;
  3953. }
  3954. VM_BUG_ON(zone_index == -1);
  3955. movable_zone = zone_index;
  3956. }
  3957. /*
  3958. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  3959. * because it is sized independent of architecture. Unlike the other zones,
  3960. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  3961. * in each node depending on the size of each node and how evenly kernelcore
  3962. * is distributed. This helper function adjusts the zone ranges
  3963. * provided by the architecture for a given node by using the end of the
  3964. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  3965. * zones within a node are in order of monotonic increases memory addresses
  3966. */
  3967. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  3968. unsigned long zone_type,
  3969. unsigned long node_start_pfn,
  3970. unsigned long node_end_pfn,
  3971. unsigned long *zone_start_pfn,
  3972. unsigned long *zone_end_pfn)
  3973. {
  3974. /* Only adjust if ZONE_MOVABLE is on this node */
  3975. if (zone_movable_pfn[nid]) {
  3976. /* Size ZONE_MOVABLE */
  3977. if (zone_type == ZONE_MOVABLE) {
  3978. *zone_start_pfn = zone_movable_pfn[nid];
  3979. *zone_end_pfn = min(node_end_pfn,
  3980. arch_zone_highest_possible_pfn[movable_zone]);
  3981. /* Adjust for ZONE_MOVABLE starting within this range */
  3982. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  3983. *zone_end_pfn > zone_movable_pfn[nid]) {
  3984. *zone_end_pfn = zone_movable_pfn[nid];
  3985. /* Check if this whole range is within ZONE_MOVABLE */
  3986. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  3987. *zone_start_pfn = *zone_end_pfn;
  3988. }
  3989. }
  3990. /*
  3991. * Return the number of pages a zone spans in a node, including holes
  3992. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  3993. */
  3994. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3995. unsigned long zone_type,
  3996. unsigned long node_start_pfn,
  3997. unsigned long node_end_pfn,
  3998. unsigned long *ignored)
  3999. {
  4000. unsigned long zone_start_pfn, zone_end_pfn;
  4001. /* Get the start and end of the zone */
  4002. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  4003. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  4004. adjust_zone_range_for_zone_movable(nid, zone_type,
  4005. node_start_pfn, node_end_pfn,
  4006. &zone_start_pfn, &zone_end_pfn);
  4007. /* Check that this node has pages within the zone's required range */
  4008. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  4009. return 0;
  4010. /* Move the zone boundaries inside the node if necessary */
  4011. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  4012. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  4013. /* Return the spanned pages */
  4014. return zone_end_pfn - zone_start_pfn;
  4015. }
  4016. /*
  4017. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  4018. * then all holes in the requested range will be accounted for.
  4019. */
  4020. unsigned long __meminit __absent_pages_in_range(int nid,
  4021. unsigned long range_start_pfn,
  4022. unsigned long range_end_pfn)
  4023. {
  4024. unsigned long nr_absent = range_end_pfn - range_start_pfn;
  4025. unsigned long start_pfn, end_pfn;
  4026. int i;
  4027. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  4028. start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
  4029. end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
  4030. nr_absent -= end_pfn - start_pfn;
  4031. }
  4032. return nr_absent;
  4033. }
  4034. /**
  4035. * absent_pages_in_range - Return number of page frames in holes within a range
  4036. * @start_pfn: The start PFN to start searching for holes
  4037. * @end_pfn: The end PFN to stop searching for holes
  4038. *
  4039. * It returns the number of pages frames in memory holes within a range.
  4040. */
  4041. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  4042. unsigned long end_pfn)
  4043. {
  4044. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  4045. }
  4046. /* Return the number of page frames in holes in a zone on a node */
  4047. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  4048. unsigned long zone_type,
  4049. unsigned long node_start_pfn,
  4050. unsigned long node_end_pfn,
  4051. unsigned long *ignored)
  4052. {
  4053. unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
  4054. unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
  4055. unsigned long zone_start_pfn, zone_end_pfn;
  4056. zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
  4057. zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
  4058. adjust_zone_range_for_zone_movable(nid, zone_type,
  4059. node_start_pfn, node_end_pfn,
  4060. &zone_start_pfn, &zone_end_pfn);
  4061. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  4062. }
  4063. #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4064. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  4065. unsigned long zone_type,
  4066. unsigned long node_start_pfn,
  4067. unsigned long node_end_pfn,
  4068. unsigned long *zones_size)
  4069. {
  4070. return zones_size[zone_type];
  4071. }
  4072. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  4073. unsigned long zone_type,
  4074. unsigned long node_start_pfn,
  4075. unsigned long node_end_pfn,
  4076. unsigned long *zholes_size)
  4077. {
  4078. if (!zholes_size)
  4079. return 0;
  4080. return zholes_size[zone_type];
  4081. }
  4082. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4083. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  4084. unsigned long node_start_pfn,
  4085. unsigned long node_end_pfn,
  4086. unsigned long *zones_size,
  4087. unsigned long *zholes_size)
  4088. {
  4089. unsigned long realtotalpages, totalpages = 0;
  4090. enum zone_type i;
  4091. for (i = 0; i < MAX_NR_ZONES; i++)
  4092. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  4093. node_start_pfn,
  4094. node_end_pfn,
  4095. zones_size);
  4096. pgdat->node_spanned_pages = totalpages;
  4097. realtotalpages = totalpages;
  4098. for (i = 0; i < MAX_NR_ZONES; i++)
  4099. realtotalpages -=
  4100. zone_absent_pages_in_node(pgdat->node_id, i,
  4101. node_start_pfn, node_end_pfn,
  4102. zholes_size);
  4103. pgdat->node_present_pages = realtotalpages;
  4104. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  4105. realtotalpages);
  4106. }
  4107. #ifndef CONFIG_SPARSEMEM
  4108. /*
  4109. * Calculate the size of the zone->blockflags rounded to an unsigned long
  4110. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  4111. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  4112. * round what is now in bits to nearest long in bits, then return it in
  4113. * bytes.
  4114. */
  4115. static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
  4116. {
  4117. unsigned long usemapsize;
  4118. zonesize += zone_start_pfn & (pageblock_nr_pages-1);
  4119. usemapsize = roundup(zonesize, pageblock_nr_pages);
  4120. usemapsize = usemapsize >> pageblock_order;
  4121. usemapsize *= NR_PAGEBLOCK_BITS;
  4122. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  4123. return usemapsize / 8;
  4124. }
  4125. static void __init setup_usemap(struct pglist_data *pgdat,
  4126. struct zone *zone,
  4127. unsigned long zone_start_pfn,
  4128. unsigned long zonesize)
  4129. {
  4130. unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
  4131. zone->pageblock_flags = NULL;
  4132. if (usemapsize)
  4133. zone->pageblock_flags =
  4134. memblock_virt_alloc_node_nopanic(usemapsize,
  4135. pgdat->node_id);
  4136. }
  4137. #else
  4138. static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
  4139. unsigned long zone_start_pfn, unsigned long zonesize) {}
  4140. #endif /* CONFIG_SPARSEMEM */
  4141. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  4142. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  4143. void __paginginit set_pageblock_order(void)
  4144. {
  4145. unsigned int order;
  4146. /* Check that pageblock_nr_pages has not already been setup */
  4147. if (pageblock_order)
  4148. return;
  4149. if (HPAGE_SHIFT > PAGE_SHIFT)
  4150. order = HUGETLB_PAGE_ORDER;
  4151. else
  4152. order = MAX_ORDER - 1;
  4153. /*
  4154. * Assume the largest contiguous order of interest is a huge page.
  4155. * This value may be variable depending on boot parameters on IA64 and
  4156. * powerpc.
  4157. */
  4158. pageblock_order = order;
  4159. }
  4160. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  4161. /*
  4162. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  4163. * is unused as pageblock_order is set at compile-time. See
  4164. * include/linux/pageblock-flags.h for the values of pageblock_order based on
  4165. * the kernel config
  4166. */
  4167. void __paginginit set_pageblock_order(void)
  4168. {
  4169. }
  4170. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  4171. static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
  4172. unsigned long present_pages)
  4173. {
  4174. unsigned long pages = spanned_pages;
  4175. /*
  4176. * Provide a more accurate estimation if there are holes within
  4177. * the zone and SPARSEMEM is in use. If there are holes within the
  4178. * zone, each populated memory region may cost us one or two extra
  4179. * memmap pages due to alignment because memmap pages for each
  4180. * populated regions may not naturally algined on page boundary.
  4181. * So the (present_pages >> 4) heuristic is a tradeoff for that.
  4182. */
  4183. if (spanned_pages > present_pages + (present_pages >> 4) &&
  4184. IS_ENABLED(CONFIG_SPARSEMEM))
  4185. pages = present_pages;
  4186. return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
  4187. }
  4188. /*
  4189. * Set up the zone data structures:
  4190. * - mark all pages reserved
  4191. * - mark all memory queues empty
  4192. * - clear the memory bitmaps
  4193. *
  4194. * NOTE: pgdat should get zeroed by caller.
  4195. */
  4196. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  4197. unsigned long node_start_pfn, unsigned long node_end_pfn,
  4198. unsigned long *zones_size, unsigned long *zholes_size)
  4199. {
  4200. enum zone_type j;
  4201. int nid = pgdat->node_id;
  4202. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  4203. int ret;
  4204. pgdat_resize_init(pgdat);
  4205. #ifdef CONFIG_NUMA_BALANCING
  4206. spin_lock_init(&pgdat->numabalancing_migrate_lock);
  4207. pgdat->numabalancing_migrate_nr_pages = 0;
  4208. pgdat->numabalancing_migrate_next_window = jiffies;
  4209. #endif
  4210. init_waitqueue_head(&pgdat->kswapd_wait);
  4211. init_waitqueue_head(&pgdat->pfmemalloc_wait);
  4212. pgdat_page_cgroup_init(pgdat);
  4213. for (j = 0; j < MAX_NR_ZONES; j++) {
  4214. struct zone *zone = pgdat->node_zones + j;
  4215. unsigned long size, realsize, freesize, memmap_pages;
  4216. size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
  4217. node_end_pfn, zones_size);
  4218. realsize = freesize = size - zone_absent_pages_in_node(nid, j,
  4219. node_start_pfn,
  4220. node_end_pfn,
  4221. zholes_size);
  4222. /*
  4223. * Adjust freesize so that it accounts for how much memory
  4224. * is used by this zone for memmap. This affects the watermark
  4225. * and per-cpu initialisations
  4226. */
  4227. memmap_pages = calc_memmap_size(size, realsize);
  4228. if (freesize >= memmap_pages) {
  4229. freesize -= memmap_pages;
  4230. if (memmap_pages)
  4231. printk(KERN_DEBUG
  4232. " %s zone: %lu pages used for memmap\n",
  4233. zone_names[j], memmap_pages);
  4234. } else
  4235. printk(KERN_WARNING
  4236. " %s zone: %lu pages exceeds freesize %lu\n",
  4237. zone_names[j], memmap_pages, freesize);
  4238. /* Account for reserved pages */
  4239. if (j == 0 && freesize > dma_reserve) {
  4240. freesize -= dma_reserve;
  4241. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  4242. zone_names[0], dma_reserve);
  4243. }
  4244. if (!is_highmem_idx(j))
  4245. nr_kernel_pages += freesize;
  4246. /* Charge for highmem memmap if there are enough kernel pages */
  4247. else if (nr_kernel_pages > memmap_pages * 2)
  4248. nr_kernel_pages -= memmap_pages;
  4249. nr_all_pages += freesize;
  4250. zone->spanned_pages = size;
  4251. zone->present_pages = realsize;
  4252. /*
  4253. * Set an approximate value for lowmem here, it will be adjusted
  4254. * when the bootmem allocator frees pages into the buddy system.
  4255. * And all highmem pages will be managed by the buddy system.
  4256. */
  4257. zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
  4258. #ifdef CONFIG_NUMA
  4259. zone->node = nid;
  4260. zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
  4261. / 100;
  4262. zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
  4263. #endif
  4264. zone->name = zone_names[j];
  4265. spin_lock_init(&zone->lock);
  4266. spin_lock_init(&zone->lru_lock);
  4267. zone_seqlock_init(zone);
  4268. zone->zone_pgdat = pgdat;
  4269. zone_pcp_init(zone);
  4270. /* For bootup, initialized properly in watermark setup */
  4271. mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
  4272. lruvec_init(&zone->lruvec);
  4273. if (!size)
  4274. continue;
  4275. set_pageblock_order();
  4276. setup_usemap(pgdat, zone, zone_start_pfn, size);
  4277. ret = init_currently_empty_zone(zone, zone_start_pfn,
  4278. size, MEMMAP_EARLY);
  4279. BUG_ON(ret);
  4280. memmap_init(size, nid, j, zone_start_pfn);
  4281. zone_start_pfn += size;
  4282. }
  4283. }
  4284. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  4285. {
  4286. /* Skip empty nodes */
  4287. if (!pgdat->node_spanned_pages)
  4288. return;
  4289. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  4290. /* ia64 gets its own node_mem_map, before this, without bootmem */
  4291. if (!pgdat->node_mem_map) {
  4292. unsigned long size, start, end;
  4293. struct page *map;
  4294. /*
  4295. * The zone's endpoints aren't required to be MAX_ORDER
  4296. * aligned but the node_mem_map endpoints must be in order
  4297. * for the buddy allocator to function correctly.
  4298. */
  4299. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  4300. end = pgdat_end_pfn(pgdat);
  4301. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  4302. size = (end - start) * sizeof(struct page);
  4303. map = alloc_remap(pgdat->node_id, size);
  4304. if (!map)
  4305. map = memblock_virt_alloc_node_nopanic(size,
  4306. pgdat->node_id);
  4307. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  4308. }
  4309. #ifndef CONFIG_NEED_MULTIPLE_NODES
  4310. /*
  4311. * With no DISCONTIG, the global mem_map is just set as node 0's
  4312. */
  4313. if (pgdat == NODE_DATA(0)) {
  4314. mem_map = NODE_DATA(0)->node_mem_map;
  4315. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4316. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  4317. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  4318. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4319. }
  4320. #endif
  4321. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  4322. }
  4323. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  4324. unsigned long node_start_pfn, unsigned long *zholes_size)
  4325. {
  4326. pg_data_t *pgdat = NODE_DATA(nid);
  4327. unsigned long start_pfn = 0;
  4328. unsigned long end_pfn = 0;
  4329. /* pg_data_t should be reset to zero when it's allocated */
  4330. WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
  4331. pgdat->node_id = nid;
  4332. pgdat->node_start_pfn = node_start_pfn;
  4333. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4334. get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
  4335. printk(KERN_INFO "Initmem setup node %d [mem %#010Lx-%#010Lx]\n", nid,
  4336. (u64) start_pfn << PAGE_SHIFT, (u64) (end_pfn << PAGE_SHIFT) - 1);
  4337. #endif
  4338. calculate_node_totalpages(pgdat, start_pfn, end_pfn,
  4339. zones_size, zholes_size);
  4340. alloc_node_mem_map(pgdat);
  4341. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  4342. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  4343. nid, (unsigned long)pgdat,
  4344. (unsigned long)pgdat->node_mem_map);
  4345. #endif
  4346. free_area_init_core(pgdat, start_pfn, end_pfn,
  4347. zones_size, zholes_size);
  4348. }
  4349. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4350. #if MAX_NUMNODES > 1
  4351. /*
  4352. * Figure out the number of possible node ids.
  4353. */
  4354. void __init setup_nr_node_ids(void)
  4355. {
  4356. unsigned int node;
  4357. unsigned int highest = 0;
  4358. for_each_node_mask(node, node_possible_map)
  4359. highest = node;
  4360. nr_node_ids = highest + 1;
  4361. }
  4362. #endif
  4363. /**
  4364. * node_map_pfn_alignment - determine the maximum internode alignment
  4365. *
  4366. * This function should be called after node map is populated and sorted.
  4367. * It calculates the maximum power of two alignment which can distinguish
  4368. * all the nodes.
  4369. *
  4370. * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
  4371. * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
  4372. * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
  4373. * shifted, 1GiB is enough and this function will indicate so.
  4374. *
  4375. * This is used to test whether pfn -> nid mapping of the chosen memory
  4376. * model has fine enough granularity to avoid incorrect mapping for the
  4377. * populated node map.
  4378. *
  4379. * Returns the determined alignment in pfn's. 0 if there is no alignment
  4380. * requirement (single node).
  4381. */
  4382. unsigned long __init node_map_pfn_alignment(void)
  4383. {
  4384. unsigned long accl_mask = 0, last_end = 0;
  4385. unsigned long start, end, mask;
  4386. int last_nid = -1;
  4387. int i, nid;
  4388. for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
  4389. if (!start || last_nid < 0 || last_nid == nid) {
  4390. last_nid = nid;
  4391. last_end = end;
  4392. continue;
  4393. }
  4394. /*
  4395. * Start with a mask granular enough to pin-point to the
  4396. * start pfn and tick off bits one-by-one until it becomes
  4397. * too coarse to separate the current node from the last.
  4398. */
  4399. mask = ~((1 << __ffs(start)) - 1);
  4400. while (mask && last_end <= (start & (mask << 1)))
  4401. mask <<= 1;
  4402. /* accumulate all internode masks */
  4403. accl_mask |= mask;
  4404. }
  4405. /* convert mask to number of pages */
  4406. return ~accl_mask + 1;
  4407. }
  4408. /* Find the lowest pfn for a node */
  4409. static unsigned long __init find_min_pfn_for_node(int nid)
  4410. {
  4411. unsigned long min_pfn = ULONG_MAX;
  4412. unsigned long start_pfn;
  4413. int i;
  4414. for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
  4415. min_pfn = min(min_pfn, start_pfn);
  4416. if (min_pfn == ULONG_MAX) {
  4417. printk(KERN_WARNING
  4418. "Could not find start_pfn for node %d\n", nid);
  4419. return 0;
  4420. }
  4421. return min_pfn;
  4422. }
  4423. /**
  4424. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  4425. *
  4426. * It returns the minimum PFN based on information provided via
  4427. * memblock_set_node().
  4428. */
  4429. unsigned long __init find_min_pfn_with_active_regions(void)
  4430. {
  4431. return find_min_pfn_for_node(MAX_NUMNODES);
  4432. }
  4433. /*
  4434. * early_calculate_totalpages()
  4435. * Sum pages in active regions for movable zone.
  4436. * Populate N_MEMORY for calculating usable_nodes.
  4437. */
  4438. static unsigned long __init early_calculate_totalpages(void)
  4439. {
  4440. unsigned long totalpages = 0;
  4441. unsigned long start_pfn, end_pfn;
  4442. int i, nid;
  4443. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
  4444. unsigned long pages = end_pfn - start_pfn;
  4445. totalpages += pages;
  4446. if (pages)
  4447. node_set_state(nid, N_MEMORY);
  4448. }
  4449. return totalpages;
  4450. }
  4451. /*
  4452. * Find the PFN the Movable zone begins in each node. Kernel memory
  4453. * is spread evenly between nodes as long as the nodes have enough
  4454. * memory. When they don't, some nodes will have more kernelcore than
  4455. * others
  4456. */
  4457. static void __init find_zone_movable_pfns_for_nodes(void)
  4458. {
  4459. int i, nid;
  4460. unsigned long usable_startpfn;
  4461. unsigned long kernelcore_node, kernelcore_remaining;
  4462. /* save the state before borrow the nodemask */
  4463. nodemask_t saved_node_state = node_states[N_MEMORY];
  4464. unsigned long totalpages = early_calculate_totalpages();
  4465. int usable_nodes = nodes_weight(node_states[N_MEMORY]);
  4466. struct memblock_region *r;
  4467. /* Need to find movable_zone earlier when movable_node is specified. */
  4468. find_usable_zone_for_movable();
  4469. /*
  4470. * If movable_node is specified, ignore kernelcore and movablecore
  4471. * options.
  4472. */
  4473. if (movable_node_is_enabled()) {
  4474. for_each_memblock(memory, r) {
  4475. if (!memblock_is_hotpluggable(r))
  4476. continue;
  4477. nid = r->nid;
  4478. usable_startpfn = PFN_DOWN(r->base);
  4479. zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
  4480. min(usable_startpfn, zone_movable_pfn[nid]) :
  4481. usable_startpfn;
  4482. }
  4483. goto out2;
  4484. }
  4485. /*
  4486. * If movablecore=nn[KMG] was specified, calculate what size of
  4487. * kernelcore that corresponds so that memory usable for
  4488. * any allocation type is evenly spread. If both kernelcore
  4489. * and movablecore are specified, then the value of kernelcore
  4490. * will be used for required_kernelcore if it's greater than
  4491. * what movablecore would have allowed.
  4492. */
  4493. if (required_movablecore) {
  4494. unsigned long corepages;
  4495. /*
  4496. * Round-up so that ZONE_MOVABLE is at least as large as what
  4497. * was requested by the user
  4498. */
  4499. required_movablecore =
  4500. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  4501. corepages = totalpages - required_movablecore;
  4502. required_kernelcore = max(required_kernelcore, corepages);
  4503. }
  4504. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  4505. if (!required_kernelcore)
  4506. goto out;
  4507. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  4508. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  4509. restart:
  4510. /* Spread kernelcore memory as evenly as possible throughout nodes */
  4511. kernelcore_node = required_kernelcore / usable_nodes;
  4512. for_each_node_state(nid, N_MEMORY) {
  4513. unsigned long start_pfn, end_pfn;
  4514. /*
  4515. * Recalculate kernelcore_node if the division per node
  4516. * now exceeds what is necessary to satisfy the requested
  4517. * amount of memory for the kernel
  4518. */
  4519. if (required_kernelcore < kernelcore_node)
  4520. kernelcore_node = required_kernelcore / usable_nodes;
  4521. /*
  4522. * As the map is walked, we track how much memory is usable
  4523. * by the kernel using kernelcore_remaining. When it is
  4524. * 0, the rest of the node is usable by ZONE_MOVABLE
  4525. */
  4526. kernelcore_remaining = kernelcore_node;
  4527. /* Go through each range of PFNs within this node */
  4528. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  4529. unsigned long size_pages;
  4530. start_pfn = max(start_pfn, zone_movable_pfn[nid]);
  4531. if (start_pfn >= end_pfn)
  4532. continue;
  4533. /* Account for what is only usable for kernelcore */
  4534. if (start_pfn < usable_startpfn) {
  4535. unsigned long kernel_pages;
  4536. kernel_pages = min(end_pfn, usable_startpfn)
  4537. - start_pfn;
  4538. kernelcore_remaining -= min(kernel_pages,
  4539. kernelcore_remaining);
  4540. required_kernelcore -= min(kernel_pages,
  4541. required_kernelcore);
  4542. /* Continue if range is now fully accounted */
  4543. if (end_pfn <= usable_startpfn) {
  4544. /*
  4545. * Push zone_movable_pfn to the end so
  4546. * that if we have to rebalance
  4547. * kernelcore across nodes, we will
  4548. * not double account here
  4549. */
  4550. zone_movable_pfn[nid] = end_pfn;
  4551. continue;
  4552. }
  4553. start_pfn = usable_startpfn;
  4554. }
  4555. /*
  4556. * The usable PFN range for ZONE_MOVABLE is from
  4557. * start_pfn->end_pfn. Calculate size_pages as the
  4558. * number of pages used as kernelcore
  4559. */
  4560. size_pages = end_pfn - start_pfn;
  4561. if (size_pages > kernelcore_remaining)
  4562. size_pages = kernelcore_remaining;
  4563. zone_movable_pfn[nid] = start_pfn + size_pages;
  4564. /*
  4565. * Some kernelcore has been met, update counts and
  4566. * break if the kernelcore for this node has been
  4567. * satisfied
  4568. */
  4569. required_kernelcore -= min(required_kernelcore,
  4570. size_pages);
  4571. kernelcore_remaining -= size_pages;
  4572. if (!kernelcore_remaining)
  4573. break;
  4574. }
  4575. }
  4576. /*
  4577. * If there is still required_kernelcore, we do another pass with one
  4578. * less node in the count. This will push zone_movable_pfn[nid] further
  4579. * along on the nodes that still have memory until kernelcore is
  4580. * satisfied
  4581. */
  4582. usable_nodes--;
  4583. if (usable_nodes && required_kernelcore > usable_nodes)
  4584. goto restart;
  4585. out2:
  4586. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  4587. for (nid = 0; nid < MAX_NUMNODES; nid++)
  4588. zone_movable_pfn[nid] =
  4589. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  4590. out:
  4591. /* restore the node_state */
  4592. node_states[N_MEMORY] = saved_node_state;
  4593. }
  4594. /* Any regular or high memory on that node ? */
  4595. static void check_for_memory(pg_data_t *pgdat, int nid)
  4596. {
  4597. enum zone_type zone_type;
  4598. if (N_MEMORY == N_NORMAL_MEMORY)
  4599. return;
  4600. for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
  4601. struct zone *zone = &pgdat->node_zones[zone_type];
  4602. if (populated_zone(zone)) {
  4603. node_set_state(nid, N_HIGH_MEMORY);
  4604. if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
  4605. zone_type <= ZONE_NORMAL)
  4606. node_set_state(nid, N_NORMAL_MEMORY);
  4607. break;
  4608. }
  4609. }
  4610. }
  4611. /**
  4612. * free_area_init_nodes - Initialise all pg_data_t and zone data
  4613. * @max_zone_pfn: an array of max PFNs for each zone
  4614. *
  4615. * This will call free_area_init_node() for each active node in the system.
  4616. * Using the page ranges provided by memblock_set_node(), the size of each
  4617. * zone in each node and their holes is calculated. If the maximum PFN
  4618. * between two adjacent zones match, it is assumed that the zone is empty.
  4619. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  4620. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  4621. * starts where the previous one ended. For example, ZONE_DMA32 starts
  4622. * at arch_max_dma_pfn.
  4623. */
  4624. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  4625. {
  4626. unsigned long start_pfn, end_pfn;
  4627. int i, nid;
  4628. /* Record where the zone boundaries are */
  4629. memset(arch_zone_lowest_possible_pfn, 0,
  4630. sizeof(arch_zone_lowest_possible_pfn));
  4631. memset(arch_zone_highest_possible_pfn, 0,
  4632. sizeof(arch_zone_highest_possible_pfn));
  4633. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  4634. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  4635. for (i = 1; i < MAX_NR_ZONES; i++) {
  4636. if (i == ZONE_MOVABLE)
  4637. continue;
  4638. arch_zone_lowest_possible_pfn[i] =
  4639. arch_zone_highest_possible_pfn[i-1];
  4640. arch_zone_highest_possible_pfn[i] =
  4641. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  4642. }
  4643. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  4644. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  4645. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  4646. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  4647. find_zone_movable_pfns_for_nodes();
  4648. /* Print out the zone ranges */
  4649. printk("Zone ranges:\n");
  4650. for (i = 0; i < MAX_NR_ZONES; i++) {
  4651. if (i == ZONE_MOVABLE)
  4652. continue;
  4653. printk(KERN_CONT " %-8s ", zone_names[i]);
  4654. if (arch_zone_lowest_possible_pfn[i] ==
  4655. arch_zone_highest_possible_pfn[i])
  4656. printk(KERN_CONT "empty\n");
  4657. else
  4658. printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
  4659. arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
  4660. (arch_zone_highest_possible_pfn[i]
  4661. << PAGE_SHIFT) - 1);
  4662. }
  4663. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  4664. printk("Movable zone start for each node\n");
  4665. for (i = 0; i < MAX_NUMNODES; i++) {
  4666. if (zone_movable_pfn[i])
  4667. printk(" Node %d: %#010lx\n", i,
  4668. zone_movable_pfn[i] << PAGE_SHIFT);
  4669. }
  4670. /* Print out the early node map */
  4671. printk("Early memory node ranges\n");
  4672. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  4673. printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
  4674. start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
  4675. /* Initialise every node */
  4676. mminit_verify_pageflags_layout();
  4677. setup_nr_node_ids();
  4678. for_each_online_node(nid) {
  4679. pg_data_t *pgdat = NODE_DATA(nid);
  4680. free_area_init_node(nid, NULL,
  4681. find_min_pfn_for_node(nid), NULL);
  4682. /* Any memory on that node */
  4683. if (pgdat->node_present_pages)
  4684. node_set_state(nid, N_MEMORY);
  4685. check_for_memory(pgdat, nid);
  4686. }
  4687. }
  4688. static int __init cmdline_parse_core(char *p, unsigned long *core)
  4689. {
  4690. unsigned long long coremem;
  4691. if (!p)
  4692. return -EINVAL;
  4693. coremem = memparse(p, &p);
  4694. *core = coremem >> PAGE_SHIFT;
  4695. /* Paranoid check that UL is enough for the coremem value */
  4696. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  4697. return 0;
  4698. }
  4699. /*
  4700. * kernelcore=size sets the amount of memory for use for allocations that
  4701. * cannot be reclaimed or migrated.
  4702. */
  4703. static int __init cmdline_parse_kernelcore(char *p)
  4704. {
  4705. return cmdline_parse_core(p, &required_kernelcore);
  4706. }
  4707. /*
  4708. * movablecore=size sets the amount of memory for use for allocations that
  4709. * can be reclaimed or migrated.
  4710. */
  4711. static int __init cmdline_parse_movablecore(char *p)
  4712. {
  4713. return cmdline_parse_core(p, &required_movablecore);
  4714. }
  4715. early_param("kernelcore", cmdline_parse_kernelcore);
  4716. early_param("movablecore", cmdline_parse_movablecore);
  4717. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4718. void adjust_managed_page_count(struct page *page, long count)
  4719. {
  4720. spin_lock(&managed_page_count_lock);
  4721. page_zone(page)->managed_pages += count;
  4722. totalram_pages += count;
  4723. #ifdef CONFIG_HIGHMEM
  4724. if (PageHighMem(page))
  4725. totalhigh_pages += count;
  4726. #endif
  4727. spin_unlock(&managed_page_count_lock);
  4728. }
  4729. EXPORT_SYMBOL(adjust_managed_page_count);
  4730. unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
  4731. {
  4732. void *pos;
  4733. unsigned long pages = 0;
  4734. start = (void *)PAGE_ALIGN((unsigned long)start);
  4735. end = (void *)((unsigned long)end & PAGE_MASK);
  4736. for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
  4737. if ((unsigned int)poison <= 0xFF)
  4738. memset(pos, poison, PAGE_SIZE);
  4739. free_reserved_page(virt_to_page(pos));
  4740. }
  4741. if (pages && s)
  4742. pr_info("Freeing %s memory: %ldK (%p - %p)\n",
  4743. s, pages << (PAGE_SHIFT - 10), start, end);
  4744. return pages;
  4745. }
  4746. EXPORT_SYMBOL(free_reserved_area);
  4747. #ifdef CONFIG_HIGHMEM
  4748. void free_highmem_page(struct page *page)
  4749. {
  4750. __free_reserved_page(page);
  4751. totalram_pages++;
  4752. page_zone(page)->managed_pages++;
  4753. totalhigh_pages++;
  4754. }
  4755. #endif
  4756. void __init mem_init_print_info(const char *str)
  4757. {
  4758. unsigned long physpages, codesize, datasize, rosize, bss_size;
  4759. unsigned long init_code_size, init_data_size;
  4760. physpages = get_num_physpages();
  4761. codesize = _etext - _stext;
  4762. datasize = _edata - _sdata;
  4763. rosize = __end_rodata - __start_rodata;
  4764. bss_size = __bss_stop - __bss_start;
  4765. init_data_size = __init_end - __init_begin;
  4766. init_code_size = _einittext - _sinittext;
  4767. /*
  4768. * Detect special cases and adjust section sizes accordingly:
  4769. * 1) .init.* may be embedded into .data sections
  4770. * 2) .init.text.* may be out of [__init_begin, __init_end],
  4771. * please refer to arch/tile/kernel/vmlinux.lds.S.
  4772. * 3) .rodata.* may be embedded into .text or .data sections.
  4773. */
  4774. #define adj_init_size(start, end, size, pos, adj) \
  4775. do { \
  4776. if (start <= pos && pos < end && size > adj) \
  4777. size -= adj; \
  4778. } while (0)
  4779. adj_init_size(__init_begin, __init_end, init_data_size,
  4780. _sinittext, init_code_size);
  4781. adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
  4782. adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
  4783. adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
  4784. adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
  4785. #undef adj_init_size
  4786. printk("Memory: %luK/%luK available "
  4787. "(%luK kernel code, %luK rwdata, %luK rodata, "
  4788. "%luK init, %luK bss, %luK reserved"
  4789. #ifdef CONFIG_HIGHMEM
  4790. ", %luK highmem"
  4791. #endif
  4792. "%s%s)\n",
  4793. nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
  4794. codesize >> 10, datasize >> 10, rosize >> 10,
  4795. (init_data_size + init_code_size) >> 10, bss_size >> 10,
  4796. (physpages - totalram_pages) << (PAGE_SHIFT-10),
  4797. #ifdef CONFIG_HIGHMEM
  4798. totalhigh_pages << (PAGE_SHIFT-10),
  4799. #endif
  4800. str ? ", " : "", str ? str : "");
  4801. }
  4802. /**
  4803. * set_dma_reserve - set the specified number of pages reserved in the first zone
  4804. * @new_dma_reserve: The number of pages to mark reserved
  4805. *
  4806. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  4807. * In the DMA zone, a significant percentage may be consumed by kernel image
  4808. * and other unfreeable allocations which can skew the watermarks badly. This
  4809. * function may optionally be used to account for unfreeable pages in the
  4810. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  4811. * smaller per-cpu batchsize.
  4812. */
  4813. void __init set_dma_reserve(unsigned long new_dma_reserve)
  4814. {
  4815. dma_reserve = new_dma_reserve;
  4816. }
  4817. void __init free_area_init(unsigned long *zones_size)
  4818. {
  4819. free_area_init_node(0, zones_size,
  4820. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  4821. }
  4822. static int page_alloc_cpu_notify(struct notifier_block *self,
  4823. unsigned long action, void *hcpu)
  4824. {
  4825. int cpu = (unsigned long)hcpu;
  4826. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  4827. lru_add_drain_cpu(cpu);
  4828. drain_pages(cpu);
  4829. /*
  4830. * Spill the event counters of the dead processor
  4831. * into the current processors event counters.
  4832. * This artificially elevates the count of the current
  4833. * processor.
  4834. */
  4835. vm_events_fold_cpu(cpu);
  4836. /*
  4837. * Zero the differential counters of the dead processor
  4838. * so that the vm statistics are consistent.
  4839. *
  4840. * This is only okay since the processor is dead and cannot
  4841. * race with what we are doing.
  4842. */
  4843. cpu_vm_stats_fold(cpu);
  4844. }
  4845. return NOTIFY_OK;
  4846. }
  4847. void __init page_alloc_init(void)
  4848. {
  4849. hotcpu_notifier(page_alloc_cpu_notify, 0);
  4850. }
  4851. /*
  4852. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  4853. * or min_free_kbytes changes.
  4854. */
  4855. static void calculate_totalreserve_pages(void)
  4856. {
  4857. struct pglist_data *pgdat;
  4858. unsigned long reserve_pages = 0;
  4859. enum zone_type i, j;
  4860. for_each_online_pgdat(pgdat) {
  4861. for (i = 0; i < MAX_NR_ZONES; i++) {
  4862. struct zone *zone = pgdat->node_zones + i;
  4863. long max = 0;
  4864. /* Find valid and maximum lowmem_reserve in the zone */
  4865. for (j = i; j < MAX_NR_ZONES; j++) {
  4866. if (zone->lowmem_reserve[j] > max)
  4867. max = zone->lowmem_reserve[j];
  4868. }
  4869. /* we treat the high watermark as reserved pages. */
  4870. max += high_wmark_pages(zone);
  4871. if (max > zone->managed_pages)
  4872. max = zone->managed_pages;
  4873. reserve_pages += max;
  4874. /*
  4875. * Lowmem reserves are not available to
  4876. * GFP_HIGHUSER page cache allocations and
  4877. * kswapd tries to balance zones to their high
  4878. * watermark. As a result, neither should be
  4879. * regarded as dirtyable memory, to prevent a
  4880. * situation where reclaim has to clean pages
  4881. * in order to balance the zones.
  4882. */
  4883. zone->dirty_balance_reserve = max;
  4884. }
  4885. }
  4886. dirty_balance_reserve = reserve_pages;
  4887. totalreserve_pages = reserve_pages;
  4888. }
  4889. /*
  4890. * setup_per_zone_lowmem_reserve - called whenever
  4891. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  4892. * has a correct pages reserved value, so an adequate number of
  4893. * pages are left in the zone after a successful __alloc_pages().
  4894. */
  4895. static void setup_per_zone_lowmem_reserve(void)
  4896. {
  4897. struct pglist_data *pgdat;
  4898. enum zone_type j, idx;
  4899. for_each_online_pgdat(pgdat) {
  4900. for (j = 0; j < MAX_NR_ZONES; j++) {
  4901. struct zone *zone = pgdat->node_zones + j;
  4902. unsigned long managed_pages = zone->managed_pages;
  4903. zone->lowmem_reserve[j] = 0;
  4904. idx = j;
  4905. while (idx) {
  4906. struct zone *lower_zone;
  4907. idx--;
  4908. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  4909. sysctl_lowmem_reserve_ratio[idx] = 1;
  4910. lower_zone = pgdat->node_zones + idx;
  4911. lower_zone->lowmem_reserve[j] = managed_pages /
  4912. sysctl_lowmem_reserve_ratio[idx];
  4913. managed_pages += lower_zone->managed_pages;
  4914. }
  4915. }
  4916. }
  4917. /* update totalreserve_pages */
  4918. calculate_totalreserve_pages();
  4919. }
  4920. static void __setup_per_zone_wmarks(void)
  4921. {
  4922. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  4923. unsigned long lowmem_pages = 0;
  4924. struct zone *zone;
  4925. unsigned long flags;
  4926. /* Calculate total number of !ZONE_HIGHMEM pages */
  4927. for_each_zone(zone) {
  4928. if (!is_highmem(zone))
  4929. lowmem_pages += zone->managed_pages;
  4930. }
  4931. for_each_zone(zone) {
  4932. u64 tmp;
  4933. spin_lock_irqsave(&zone->lock, flags);
  4934. tmp = (u64)pages_min * zone->managed_pages;
  4935. do_div(tmp, lowmem_pages);
  4936. if (is_highmem(zone)) {
  4937. /*
  4938. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  4939. * need highmem pages, so cap pages_min to a small
  4940. * value here.
  4941. *
  4942. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  4943. * deltas controls asynch page reclaim, and so should
  4944. * not be capped for highmem.
  4945. */
  4946. unsigned long min_pages;
  4947. min_pages = zone->managed_pages / 1024;
  4948. min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
  4949. zone->watermark[WMARK_MIN] = min_pages;
  4950. } else {
  4951. /*
  4952. * If it's a lowmem zone, reserve a number of pages
  4953. * proportionate to the zone's size.
  4954. */
  4955. zone->watermark[WMARK_MIN] = tmp;
  4956. }
  4957. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
  4958. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
  4959. __mod_zone_page_state(zone, NR_ALLOC_BATCH,
  4960. high_wmark_pages(zone) - low_wmark_pages(zone) -
  4961. atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
  4962. setup_zone_migrate_reserve(zone);
  4963. spin_unlock_irqrestore(&zone->lock, flags);
  4964. }
  4965. /* update totalreserve_pages */
  4966. calculate_totalreserve_pages();
  4967. }
  4968. /**
  4969. * setup_per_zone_wmarks - called when min_free_kbytes changes
  4970. * or when memory is hot-{added|removed}
  4971. *
  4972. * Ensures that the watermark[min,low,high] values for each zone are set
  4973. * correctly with respect to min_free_kbytes.
  4974. */
  4975. void setup_per_zone_wmarks(void)
  4976. {
  4977. mutex_lock(&zonelists_mutex);
  4978. __setup_per_zone_wmarks();
  4979. mutex_unlock(&zonelists_mutex);
  4980. }
  4981. /*
  4982. * The inactive anon list should be small enough that the VM never has to
  4983. * do too much work, but large enough that each inactive page has a chance
  4984. * to be referenced again before it is swapped out.
  4985. *
  4986. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  4987. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  4988. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  4989. * the anonymous pages are kept on the inactive list.
  4990. *
  4991. * total target max
  4992. * memory ratio inactive anon
  4993. * -------------------------------------
  4994. * 10MB 1 5MB
  4995. * 100MB 1 50MB
  4996. * 1GB 3 250MB
  4997. * 10GB 10 0.9GB
  4998. * 100GB 31 3GB
  4999. * 1TB 101 10GB
  5000. * 10TB 320 32GB
  5001. */
  5002. static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
  5003. {
  5004. unsigned int gb, ratio;
  5005. /* Zone size in gigabytes */
  5006. gb = zone->managed_pages >> (30 - PAGE_SHIFT);
  5007. if (gb)
  5008. ratio = int_sqrt(10 * gb);
  5009. else
  5010. ratio = 1;
  5011. zone->inactive_ratio = ratio;
  5012. }
  5013. static void __meminit setup_per_zone_inactive_ratio(void)
  5014. {
  5015. struct zone *zone;
  5016. for_each_zone(zone)
  5017. calculate_zone_inactive_ratio(zone);
  5018. }
  5019. /*
  5020. * Initialise min_free_kbytes.
  5021. *
  5022. * For small machines we want it small (128k min). For large machines
  5023. * we want it large (64MB max). But it is not linear, because network
  5024. * bandwidth does not increase linearly with machine size. We use
  5025. *
  5026. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  5027. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  5028. *
  5029. * which yields
  5030. *
  5031. * 16MB: 512k
  5032. * 32MB: 724k
  5033. * 64MB: 1024k
  5034. * 128MB: 1448k
  5035. * 256MB: 2048k
  5036. * 512MB: 2896k
  5037. * 1024MB: 4096k
  5038. * 2048MB: 5792k
  5039. * 4096MB: 8192k
  5040. * 8192MB: 11584k
  5041. * 16384MB: 16384k
  5042. */
  5043. int __meminit init_per_zone_wmark_min(void)
  5044. {
  5045. unsigned long lowmem_kbytes;
  5046. int new_min_free_kbytes;
  5047. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  5048. new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  5049. if (new_min_free_kbytes > user_min_free_kbytes) {
  5050. min_free_kbytes = new_min_free_kbytes;
  5051. if (min_free_kbytes < 128)
  5052. min_free_kbytes = 128;
  5053. if (min_free_kbytes > 65536)
  5054. min_free_kbytes = 65536;
  5055. } else {
  5056. pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
  5057. new_min_free_kbytes, user_min_free_kbytes);
  5058. }
  5059. setup_per_zone_wmarks();
  5060. refresh_zone_stat_thresholds();
  5061. setup_per_zone_lowmem_reserve();
  5062. setup_per_zone_inactive_ratio();
  5063. return 0;
  5064. }
  5065. module_init(init_per_zone_wmark_min)
  5066. /*
  5067. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  5068. * that we can call two helper functions whenever min_free_kbytes
  5069. * changes.
  5070. */
  5071. int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
  5072. void __user *buffer, size_t *length, loff_t *ppos)
  5073. {
  5074. int rc;
  5075. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5076. if (rc)
  5077. return rc;
  5078. if (write) {
  5079. user_min_free_kbytes = min_free_kbytes;
  5080. setup_per_zone_wmarks();
  5081. }
  5082. return 0;
  5083. }
  5084. #ifdef CONFIG_NUMA
  5085. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
  5086. void __user *buffer, size_t *length, loff_t *ppos)
  5087. {
  5088. struct zone *zone;
  5089. int rc;
  5090. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5091. if (rc)
  5092. return rc;
  5093. for_each_zone(zone)
  5094. zone->min_unmapped_pages = (zone->managed_pages *
  5095. sysctl_min_unmapped_ratio) / 100;
  5096. return 0;
  5097. }
  5098. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
  5099. void __user *buffer, size_t *length, loff_t *ppos)
  5100. {
  5101. struct zone *zone;
  5102. int rc;
  5103. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5104. if (rc)
  5105. return rc;
  5106. for_each_zone(zone)
  5107. zone->min_slab_pages = (zone->managed_pages *
  5108. sysctl_min_slab_ratio) / 100;
  5109. return 0;
  5110. }
  5111. #endif
  5112. /*
  5113. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  5114. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  5115. * whenever sysctl_lowmem_reserve_ratio changes.
  5116. *
  5117. * The reserve ratio obviously has absolutely no relation with the
  5118. * minimum watermarks. The lowmem reserve ratio can only make sense
  5119. * if in function of the boot time zone sizes.
  5120. */
  5121. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
  5122. void __user *buffer, size_t *length, loff_t *ppos)
  5123. {
  5124. proc_dointvec_minmax(table, write, buffer, length, ppos);
  5125. setup_per_zone_lowmem_reserve();
  5126. return 0;
  5127. }
  5128. /*
  5129. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  5130. * cpu. It is the fraction of total pages in each zone that a hot per cpu
  5131. * pagelist can have before it gets flushed back to buddy allocator.
  5132. */
  5133. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
  5134. void __user *buffer, size_t *length, loff_t *ppos)
  5135. {
  5136. struct zone *zone;
  5137. int old_percpu_pagelist_fraction;
  5138. int ret;
  5139. mutex_lock(&pcp_batch_high_lock);
  5140. old_percpu_pagelist_fraction = percpu_pagelist_fraction;
  5141. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5142. if (!write || ret < 0)
  5143. goto out;
  5144. /* Sanity checking to avoid pcp imbalance */
  5145. if (percpu_pagelist_fraction &&
  5146. percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
  5147. percpu_pagelist_fraction = old_percpu_pagelist_fraction;
  5148. ret = -EINVAL;
  5149. goto out;
  5150. }
  5151. /* No change? */
  5152. if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
  5153. goto out;
  5154. for_each_populated_zone(zone) {
  5155. unsigned int cpu;
  5156. for_each_possible_cpu(cpu)
  5157. pageset_set_high_and_batch(zone,
  5158. per_cpu_ptr(zone->pageset, cpu));
  5159. }
  5160. out:
  5161. mutex_unlock(&pcp_batch_high_lock);
  5162. return ret;
  5163. }
  5164. int hashdist = HASHDIST_DEFAULT;
  5165. #ifdef CONFIG_NUMA
  5166. static int __init set_hashdist(char *str)
  5167. {
  5168. if (!str)
  5169. return 0;
  5170. hashdist = simple_strtoul(str, &str, 0);
  5171. return 1;
  5172. }
  5173. __setup("hashdist=", set_hashdist);
  5174. #endif
  5175. /*
  5176. * allocate a large system hash table from bootmem
  5177. * - it is assumed that the hash table must contain an exact power-of-2
  5178. * quantity of entries
  5179. * - limit is the number of hash buckets, not the total allocation size
  5180. */
  5181. void *__init alloc_large_system_hash(const char *tablename,
  5182. unsigned long bucketsize,
  5183. unsigned long numentries,
  5184. int scale,
  5185. int flags,
  5186. unsigned int *_hash_shift,
  5187. unsigned int *_hash_mask,
  5188. unsigned long low_limit,
  5189. unsigned long high_limit)
  5190. {
  5191. unsigned long long max = high_limit;
  5192. unsigned long log2qty, size;
  5193. void *table = NULL;
  5194. /* allow the kernel cmdline to have a say */
  5195. if (!numentries) {
  5196. /* round applicable memory size up to nearest megabyte */
  5197. numentries = nr_kernel_pages;
  5198. /* It isn't necessary when PAGE_SIZE >= 1MB */
  5199. if (PAGE_SHIFT < 20)
  5200. numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
  5201. /* limit to 1 bucket per 2^scale bytes of low memory */
  5202. if (scale > PAGE_SHIFT)
  5203. numentries >>= (scale - PAGE_SHIFT);
  5204. else
  5205. numentries <<= (PAGE_SHIFT - scale);
  5206. /* Make sure we've got at least a 0-order allocation.. */
  5207. if (unlikely(flags & HASH_SMALL)) {
  5208. /* Makes no sense without HASH_EARLY */
  5209. WARN_ON(!(flags & HASH_EARLY));
  5210. if (!(numentries >> *_hash_shift)) {
  5211. numentries = 1UL << *_hash_shift;
  5212. BUG_ON(!numentries);
  5213. }
  5214. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  5215. numentries = PAGE_SIZE / bucketsize;
  5216. }
  5217. numentries = roundup_pow_of_two(numentries);
  5218. /* limit allocation size to 1/16 total memory by default */
  5219. if (max == 0) {
  5220. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  5221. do_div(max, bucketsize);
  5222. }
  5223. max = min(max, 0x80000000ULL);
  5224. if (numentries < low_limit)
  5225. numentries = low_limit;
  5226. if (numentries > max)
  5227. numentries = max;
  5228. log2qty = ilog2(numentries);
  5229. do {
  5230. size = bucketsize << log2qty;
  5231. if (flags & HASH_EARLY)
  5232. table = memblock_virt_alloc_nopanic(size, 0);
  5233. else if (hashdist)
  5234. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  5235. else {
  5236. /*
  5237. * If bucketsize is not a power-of-two, we may free
  5238. * some pages at the end of hash table which
  5239. * alloc_pages_exact() automatically does
  5240. */
  5241. if (get_order(size) < MAX_ORDER) {
  5242. table = alloc_pages_exact(size, GFP_ATOMIC);
  5243. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  5244. }
  5245. }
  5246. } while (!table && size > PAGE_SIZE && --log2qty);
  5247. if (!table)
  5248. panic("Failed to allocate %s hash table\n", tablename);
  5249. printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
  5250. tablename,
  5251. (1UL << log2qty),
  5252. ilog2(size) - PAGE_SHIFT,
  5253. size);
  5254. if (_hash_shift)
  5255. *_hash_shift = log2qty;
  5256. if (_hash_mask)
  5257. *_hash_mask = (1 << log2qty) - 1;
  5258. return table;
  5259. }
  5260. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  5261. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  5262. unsigned long pfn)
  5263. {
  5264. #ifdef CONFIG_SPARSEMEM
  5265. return __pfn_to_section(pfn)->pageblock_flags;
  5266. #else
  5267. return zone->pageblock_flags;
  5268. #endif /* CONFIG_SPARSEMEM */
  5269. }
  5270. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  5271. {
  5272. #ifdef CONFIG_SPARSEMEM
  5273. pfn &= (PAGES_PER_SECTION-1);
  5274. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  5275. #else
  5276. pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
  5277. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  5278. #endif /* CONFIG_SPARSEMEM */
  5279. }
  5280. /**
  5281. * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
  5282. * @page: The page within the block of interest
  5283. * @pfn: The target page frame number
  5284. * @end_bitidx: The last bit of interest to retrieve
  5285. * @mask: mask of bits that the caller is interested in
  5286. *
  5287. * Return: pageblock_bits flags
  5288. */
  5289. unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
  5290. unsigned long end_bitidx,
  5291. unsigned long mask)
  5292. {
  5293. struct zone *zone;
  5294. unsigned long *bitmap;
  5295. unsigned long bitidx, word_bitidx;
  5296. unsigned long word;
  5297. zone = page_zone(page);
  5298. bitmap = get_pageblock_bitmap(zone, pfn);
  5299. bitidx = pfn_to_bitidx(zone, pfn);
  5300. word_bitidx = bitidx / BITS_PER_LONG;
  5301. bitidx &= (BITS_PER_LONG-1);
  5302. word = bitmap[word_bitidx];
  5303. bitidx += end_bitidx;
  5304. return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
  5305. }
  5306. /**
  5307. * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
  5308. * @page: The page within the block of interest
  5309. * @flags: The flags to set
  5310. * @pfn: The target page frame number
  5311. * @end_bitidx: The last bit of interest
  5312. * @mask: mask of bits that the caller is interested in
  5313. */
  5314. void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
  5315. unsigned long pfn,
  5316. unsigned long end_bitidx,
  5317. unsigned long mask)
  5318. {
  5319. struct zone *zone;
  5320. unsigned long *bitmap;
  5321. unsigned long bitidx, word_bitidx;
  5322. unsigned long old_word, word;
  5323. BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
  5324. zone = page_zone(page);
  5325. bitmap = get_pageblock_bitmap(zone, pfn);
  5326. bitidx = pfn_to_bitidx(zone, pfn);
  5327. word_bitidx = bitidx / BITS_PER_LONG;
  5328. bitidx &= (BITS_PER_LONG-1);
  5329. VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
  5330. bitidx += end_bitidx;
  5331. mask <<= (BITS_PER_LONG - bitidx - 1);
  5332. flags <<= (BITS_PER_LONG - bitidx - 1);
  5333. word = ACCESS_ONCE(bitmap[word_bitidx]);
  5334. for (;;) {
  5335. old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
  5336. if (word == old_word)
  5337. break;
  5338. word = old_word;
  5339. }
  5340. }
  5341. /*
  5342. * This function checks whether pageblock includes unmovable pages or not.
  5343. * If @count is not zero, it is okay to include less @count unmovable pages
  5344. *
  5345. * PageLRU check without isolation or lru_lock could race so that
  5346. * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
  5347. * expect this function should be exact.
  5348. */
  5349. bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
  5350. bool skip_hwpoisoned_pages)
  5351. {
  5352. unsigned long pfn, iter, found;
  5353. int mt;
  5354. /*
  5355. * For avoiding noise data, lru_add_drain_all() should be called
  5356. * If ZONE_MOVABLE, the zone never contains unmovable pages
  5357. */
  5358. if (zone_idx(zone) == ZONE_MOVABLE)
  5359. return false;
  5360. mt = get_pageblock_migratetype(page);
  5361. if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
  5362. return false;
  5363. pfn = page_to_pfn(page);
  5364. for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
  5365. unsigned long check = pfn + iter;
  5366. if (!pfn_valid_within(check))
  5367. continue;
  5368. page = pfn_to_page(check);
  5369. /*
  5370. * Hugepages are not in LRU lists, but they're movable.
  5371. * We need not scan over tail pages bacause we don't
  5372. * handle each tail page individually in migration.
  5373. */
  5374. if (PageHuge(page)) {
  5375. iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
  5376. continue;
  5377. }
  5378. /*
  5379. * We can't use page_count without pin a page
  5380. * because another CPU can free compound page.
  5381. * This check already skips compound tails of THP
  5382. * because their page->_count is zero at all time.
  5383. */
  5384. if (!atomic_read(&page->_count)) {
  5385. if (PageBuddy(page))
  5386. iter += (1 << page_order(page)) - 1;
  5387. continue;
  5388. }
  5389. /*
  5390. * The HWPoisoned page may be not in buddy system, and
  5391. * page_count() is not 0.
  5392. */
  5393. if (skip_hwpoisoned_pages && PageHWPoison(page))
  5394. continue;
  5395. if (!PageLRU(page))
  5396. found++;
  5397. /*
  5398. * If there are RECLAIMABLE pages, we need to check it.
  5399. * But now, memory offline itself doesn't call shrink_slab()
  5400. * and it still to be fixed.
  5401. */
  5402. /*
  5403. * If the page is not RAM, page_count()should be 0.
  5404. * we don't need more check. This is an _used_ not-movable page.
  5405. *
  5406. * The problematic thing here is PG_reserved pages. PG_reserved
  5407. * is set to both of a memory hole page and a _used_ kernel
  5408. * page at boot.
  5409. */
  5410. if (found > count)
  5411. return true;
  5412. }
  5413. return false;
  5414. }
  5415. bool is_pageblock_removable_nolock(struct page *page)
  5416. {
  5417. struct zone *zone;
  5418. unsigned long pfn;
  5419. /*
  5420. * We have to be careful here because we are iterating over memory
  5421. * sections which are not zone aware so we might end up outside of
  5422. * the zone but still within the section.
  5423. * We have to take care about the node as well. If the node is offline
  5424. * its NODE_DATA will be NULL - see page_zone.
  5425. */
  5426. if (!node_online(page_to_nid(page)))
  5427. return false;
  5428. zone = page_zone(page);
  5429. pfn = page_to_pfn(page);
  5430. if (!zone_spans_pfn(zone, pfn))
  5431. return false;
  5432. return !has_unmovable_pages(zone, page, 0, true);
  5433. }
  5434. #ifdef CONFIG_CMA
  5435. static unsigned long pfn_max_align_down(unsigned long pfn)
  5436. {
  5437. return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
  5438. pageblock_nr_pages) - 1);
  5439. }
  5440. static unsigned long pfn_max_align_up(unsigned long pfn)
  5441. {
  5442. return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
  5443. pageblock_nr_pages));
  5444. }
  5445. /* [start, end) must belong to a single zone. */
  5446. static int __alloc_contig_migrate_range(struct compact_control *cc,
  5447. unsigned long start, unsigned long end)
  5448. {
  5449. /* This function is based on compact_zone() from compaction.c. */
  5450. unsigned long nr_reclaimed;
  5451. unsigned long pfn = start;
  5452. unsigned int tries = 0;
  5453. int ret = 0;
  5454. migrate_prep();
  5455. while (pfn < end || !list_empty(&cc->migratepages)) {
  5456. if (fatal_signal_pending(current)) {
  5457. ret = -EINTR;
  5458. break;
  5459. }
  5460. if (list_empty(&cc->migratepages)) {
  5461. cc->nr_migratepages = 0;
  5462. pfn = isolate_migratepages_range(cc, pfn, end);
  5463. if (!pfn) {
  5464. ret = -EINTR;
  5465. break;
  5466. }
  5467. tries = 0;
  5468. } else if (++tries == 5) {
  5469. ret = ret < 0 ? ret : -EBUSY;
  5470. break;
  5471. }
  5472. nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
  5473. &cc->migratepages);
  5474. cc->nr_migratepages -= nr_reclaimed;
  5475. ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
  5476. NULL, 0, cc->mode, MR_CMA);
  5477. }
  5478. if (ret < 0) {
  5479. putback_movable_pages(&cc->migratepages);
  5480. return ret;
  5481. }
  5482. return 0;
  5483. }
  5484. /**
  5485. * alloc_contig_range() -- tries to allocate given range of pages
  5486. * @start: start PFN to allocate
  5487. * @end: one-past-the-last PFN to allocate
  5488. * @migratetype: migratetype of the underlaying pageblocks (either
  5489. * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
  5490. * in range must have the same migratetype and it must
  5491. * be either of the two.
  5492. *
  5493. * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
  5494. * aligned, however it's the caller's responsibility to guarantee that
  5495. * we are the only thread that changes migrate type of pageblocks the
  5496. * pages fall in.
  5497. *
  5498. * The PFN range must belong to a single zone.
  5499. *
  5500. * Returns zero on success or negative error code. On success all
  5501. * pages which PFN is in [start, end) are allocated for the caller and
  5502. * need to be freed with free_contig_range().
  5503. */
  5504. int alloc_contig_range(unsigned long start, unsigned long end,
  5505. unsigned migratetype)
  5506. {
  5507. unsigned long outer_start, outer_end;
  5508. int ret = 0, order;
  5509. struct compact_control cc = {
  5510. .nr_migratepages = 0,
  5511. .order = -1,
  5512. .zone = page_zone(pfn_to_page(start)),
  5513. .mode = MIGRATE_SYNC,
  5514. .ignore_skip_hint = true,
  5515. };
  5516. INIT_LIST_HEAD(&cc.migratepages);
  5517. /*
  5518. * What we do here is we mark all pageblocks in range as
  5519. * MIGRATE_ISOLATE. Because pageblock and max order pages may
  5520. * have different sizes, and due to the way page allocator
  5521. * work, we align the range to biggest of the two pages so
  5522. * that page allocator won't try to merge buddies from
  5523. * different pageblocks and change MIGRATE_ISOLATE to some
  5524. * other migration type.
  5525. *
  5526. * Once the pageblocks are marked as MIGRATE_ISOLATE, we
  5527. * migrate the pages from an unaligned range (ie. pages that
  5528. * we are interested in). This will put all the pages in
  5529. * range back to page allocator as MIGRATE_ISOLATE.
  5530. *
  5531. * When this is done, we take the pages in range from page
  5532. * allocator removing them from the buddy system. This way
  5533. * page allocator will never consider using them.
  5534. *
  5535. * This lets us mark the pageblocks back as
  5536. * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
  5537. * aligned range but not in the unaligned, original range are
  5538. * put back to page allocator so that buddy can use them.
  5539. */
  5540. ret = start_isolate_page_range(pfn_max_align_down(start),
  5541. pfn_max_align_up(end), migratetype,
  5542. false);
  5543. if (ret)
  5544. return ret;
  5545. ret = __alloc_contig_migrate_range(&cc, start, end);
  5546. if (ret)
  5547. goto done;
  5548. /*
  5549. * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
  5550. * aligned blocks that are marked as MIGRATE_ISOLATE. What's
  5551. * more, all pages in [start, end) are free in page allocator.
  5552. * What we are going to do is to allocate all pages from
  5553. * [start, end) (that is remove them from page allocator).
  5554. *
  5555. * The only problem is that pages at the beginning and at the
  5556. * end of interesting range may be not aligned with pages that
  5557. * page allocator holds, ie. they can be part of higher order
  5558. * pages. Because of this, we reserve the bigger range and
  5559. * once this is done free the pages we are not interested in.
  5560. *
  5561. * We don't have to hold zone->lock here because the pages are
  5562. * isolated thus they won't get removed from buddy.
  5563. */
  5564. lru_add_drain_all();
  5565. drain_all_pages();
  5566. order = 0;
  5567. outer_start = start;
  5568. while (!PageBuddy(pfn_to_page(outer_start))) {
  5569. if (++order >= MAX_ORDER) {
  5570. ret = -EBUSY;
  5571. goto done;
  5572. }
  5573. outer_start &= ~0UL << order;
  5574. }
  5575. /* Make sure the range is really isolated. */
  5576. if (test_pages_isolated(outer_start, end, false)) {
  5577. pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
  5578. outer_start, end);
  5579. ret = -EBUSY;
  5580. goto done;
  5581. }
  5582. /* Grab isolated pages from freelists. */
  5583. outer_end = isolate_freepages_range(&cc, outer_start, end);
  5584. if (!outer_end) {
  5585. ret = -EBUSY;
  5586. goto done;
  5587. }
  5588. /* Free head and tail (if any) */
  5589. if (start != outer_start)
  5590. free_contig_range(outer_start, start - outer_start);
  5591. if (end != outer_end)
  5592. free_contig_range(end, outer_end - end);
  5593. done:
  5594. undo_isolate_page_range(pfn_max_align_down(start),
  5595. pfn_max_align_up(end), migratetype);
  5596. return ret;
  5597. }
  5598. void free_contig_range(unsigned long pfn, unsigned nr_pages)
  5599. {
  5600. unsigned int count = 0;
  5601. for (; nr_pages--; pfn++) {
  5602. struct page *page = pfn_to_page(pfn);
  5603. count += page_count(page) != 1;
  5604. __free_page(page);
  5605. }
  5606. WARN(count != 0, "%d pages are still in use!\n", count);
  5607. }
  5608. #endif
  5609. #ifdef CONFIG_MEMORY_HOTPLUG
  5610. /*
  5611. * The zone indicated has a new number of managed_pages; batch sizes and percpu
  5612. * page high values need to be recalulated.
  5613. */
  5614. void __meminit zone_pcp_update(struct zone *zone)
  5615. {
  5616. unsigned cpu;
  5617. mutex_lock(&pcp_batch_high_lock);
  5618. for_each_possible_cpu(cpu)
  5619. pageset_set_high_and_batch(zone,
  5620. per_cpu_ptr(zone->pageset, cpu));
  5621. mutex_unlock(&pcp_batch_high_lock);
  5622. }
  5623. #endif
  5624. void zone_pcp_reset(struct zone *zone)
  5625. {
  5626. unsigned long flags;
  5627. int cpu;
  5628. struct per_cpu_pageset *pset;
  5629. /* avoid races with drain_pages() */
  5630. local_irq_save(flags);
  5631. if (zone->pageset != &boot_pageset) {
  5632. for_each_online_cpu(cpu) {
  5633. pset = per_cpu_ptr(zone->pageset, cpu);
  5634. drain_zonestat(zone, pset);
  5635. }
  5636. free_percpu(zone->pageset);
  5637. zone->pageset = &boot_pageset;
  5638. }
  5639. local_irq_restore(flags);
  5640. }
  5641. #ifdef CONFIG_MEMORY_HOTREMOVE
  5642. /*
  5643. * All pages in the range must be isolated before calling this.
  5644. */
  5645. void
  5646. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  5647. {
  5648. struct page *page;
  5649. struct zone *zone;
  5650. unsigned int order, i;
  5651. unsigned long pfn;
  5652. unsigned long flags;
  5653. /* find the first valid pfn */
  5654. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  5655. if (pfn_valid(pfn))
  5656. break;
  5657. if (pfn == end_pfn)
  5658. return;
  5659. zone = page_zone(pfn_to_page(pfn));
  5660. spin_lock_irqsave(&zone->lock, flags);
  5661. pfn = start_pfn;
  5662. while (pfn < end_pfn) {
  5663. if (!pfn_valid(pfn)) {
  5664. pfn++;
  5665. continue;
  5666. }
  5667. page = pfn_to_page(pfn);
  5668. /*
  5669. * The HWPoisoned page may be not in buddy system, and
  5670. * page_count() is not 0.
  5671. */
  5672. if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
  5673. pfn++;
  5674. SetPageReserved(page);
  5675. continue;
  5676. }
  5677. BUG_ON(page_count(page));
  5678. BUG_ON(!PageBuddy(page));
  5679. order = page_order(page);
  5680. #ifdef CONFIG_DEBUG_VM
  5681. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  5682. pfn, 1 << order, end_pfn);
  5683. #endif
  5684. list_del(&page->lru);
  5685. rmv_page_order(page);
  5686. zone->free_area[order].nr_free--;
  5687. for (i = 0; i < (1 << order); i++)
  5688. SetPageReserved((page+i));
  5689. pfn += (1 << order);
  5690. }
  5691. spin_unlock_irqrestore(&zone->lock, flags);
  5692. }
  5693. #endif
  5694. #ifdef CONFIG_MEMORY_FAILURE
  5695. bool is_free_buddy_page(struct page *page)
  5696. {
  5697. struct zone *zone = page_zone(page);
  5698. unsigned long pfn = page_to_pfn(page);
  5699. unsigned long flags;
  5700. unsigned int order;
  5701. spin_lock_irqsave(&zone->lock, flags);
  5702. for (order = 0; order < MAX_ORDER; order++) {
  5703. struct page *page_head = page - (pfn & ((1 << order) - 1));
  5704. if (PageBuddy(page_head) && page_order(page_head) >= order)
  5705. break;
  5706. }
  5707. spin_unlock_irqrestore(&zone->lock, flags);
  5708. return order < MAX_ORDER;
  5709. }
  5710. #endif