swiotlb-xen.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685
  1. /*
  2. * Copyright 2010
  3. * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
  4. *
  5. * This code provides a IOMMU for Xen PV guests with PCI passthrough.
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License v2.0 as published by
  9. * the Free Software Foundation
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * PV guests under Xen are running in an non-contiguous memory architecture.
  17. *
  18. * When PCI pass-through is utilized, this necessitates an IOMMU for
  19. * translating bus (DMA) to virtual and vice-versa and also providing a
  20. * mechanism to have contiguous pages for device drivers operations (say DMA
  21. * operations).
  22. *
  23. * Specifically, under Xen the Linux idea of pages is an illusion. It
  24. * assumes that pages start at zero and go up to the available memory. To
  25. * help with that, the Linux Xen MMU provides a lookup mechanism to
  26. * translate the page frame numbers (PFN) to machine frame numbers (MFN)
  27. * and vice-versa. The MFN are the "real" frame numbers. Furthermore
  28. * memory is not contiguous. Xen hypervisor stitches memory for guests
  29. * from different pools, which means there is no guarantee that PFN==MFN
  30. * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
  31. * allocated in descending order (high to low), meaning the guest might
  32. * never get any MFN's under the 4GB mark.
  33. *
  34. */
  35. #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
  36. #include <linux/bootmem.h>
  37. #include <linux/dma-mapping.h>
  38. #include <linux/export.h>
  39. #include <xen/swiotlb-xen.h>
  40. #include <xen/page.h>
  41. #include <xen/xen-ops.h>
  42. #include <xen/hvc-console.h>
  43. #include <asm/dma-mapping.h>
  44. #include <asm/xen/page-coherent.h>
  45. #include <trace/events/swiotlb.h>
  46. /*
  47. * Used to do a quick range check in swiotlb_tbl_unmap_single and
  48. * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
  49. * API.
  50. */
  51. #ifndef CONFIG_X86
  52. static unsigned long dma_alloc_coherent_mask(struct device *dev,
  53. gfp_t gfp)
  54. {
  55. unsigned long dma_mask = 0;
  56. dma_mask = dev->coherent_dma_mask;
  57. if (!dma_mask)
  58. dma_mask = (gfp & GFP_DMA) ? DMA_BIT_MASK(24) : DMA_BIT_MASK(32);
  59. return dma_mask;
  60. }
  61. #endif
  62. static char *xen_io_tlb_start, *xen_io_tlb_end;
  63. static unsigned long xen_io_tlb_nslabs;
  64. /*
  65. * Quick lookup value of the bus address of the IOTLB.
  66. */
  67. static u64 start_dma_addr;
  68. /*
  69. * Both of these functions should avoid PFN_PHYS because phys_addr_t
  70. * can be 32bit when dma_addr_t is 64bit leading to a loss in
  71. * information if the shift is done before casting to 64bit.
  72. */
  73. static inline dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
  74. {
  75. unsigned long mfn = pfn_to_mfn(PFN_DOWN(paddr));
  76. dma_addr_t dma = (dma_addr_t)mfn << PAGE_SHIFT;
  77. dma |= paddr & ~PAGE_MASK;
  78. return dma;
  79. }
  80. static inline phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
  81. {
  82. unsigned long pfn = mfn_to_pfn(PFN_DOWN(baddr));
  83. dma_addr_t dma = (dma_addr_t)pfn << PAGE_SHIFT;
  84. phys_addr_t paddr = dma;
  85. BUG_ON(paddr != dma); /* truncation has occurred, should never happen */
  86. paddr |= baddr & ~PAGE_MASK;
  87. return paddr;
  88. }
  89. static inline dma_addr_t xen_virt_to_bus(void *address)
  90. {
  91. return xen_phys_to_bus(virt_to_phys(address));
  92. }
  93. static int check_pages_physically_contiguous(unsigned long pfn,
  94. unsigned int offset,
  95. size_t length)
  96. {
  97. unsigned long next_mfn;
  98. int i;
  99. int nr_pages;
  100. next_mfn = pfn_to_mfn(pfn);
  101. nr_pages = (offset + length + PAGE_SIZE-1) >> PAGE_SHIFT;
  102. for (i = 1; i < nr_pages; i++) {
  103. if (pfn_to_mfn(++pfn) != ++next_mfn)
  104. return 0;
  105. }
  106. return 1;
  107. }
  108. static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
  109. {
  110. unsigned long pfn = PFN_DOWN(p);
  111. unsigned int offset = p & ~PAGE_MASK;
  112. if (offset + size <= PAGE_SIZE)
  113. return 0;
  114. if (check_pages_physically_contiguous(pfn, offset, size))
  115. return 0;
  116. return 1;
  117. }
  118. static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
  119. {
  120. unsigned long mfn = PFN_DOWN(dma_addr);
  121. unsigned long pfn = mfn_to_local_pfn(mfn);
  122. phys_addr_t paddr;
  123. /* If the address is outside our domain, it CAN
  124. * have the same virtual address as another address
  125. * in our domain. Therefore _only_ check address within our domain.
  126. */
  127. if (pfn_valid(pfn)) {
  128. paddr = PFN_PHYS(pfn);
  129. return paddr >= virt_to_phys(xen_io_tlb_start) &&
  130. paddr < virt_to_phys(xen_io_tlb_end);
  131. }
  132. return 0;
  133. }
  134. static int max_dma_bits = 32;
  135. static int
  136. xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
  137. {
  138. int i, rc;
  139. int dma_bits;
  140. dma_addr_t dma_handle;
  141. phys_addr_t p = virt_to_phys(buf);
  142. dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
  143. i = 0;
  144. do {
  145. int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
  146. do {
  147. rc = xen_create_contiguous_region(
  148. p + (i << IO_TLB_SHIFT),
  149. get_order(slabs << IO_TLB_SHIFT),
  150. dma_bits, &dma_handle);
  151. } while (rc && dma_bits++ < max_dma_bits);
  152. if (rc)
  153. return rc;
  154. i += slabs;
  155. } while (i < nslabs);
  156. return 0;
  157. }
  158. static unsigned long xen_set_nslabs(unsigned long nr_tbl)
  159. {
  160. if (!nr_tbl) {
  161. xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
  162. xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
  163. } else
  164. xen_io_tlb_nslabs = nr_tbl;
  165. return xen_io_tlb_nslabs << IO_TLB_SHIFT;
  166. }
  167. enum xen_swiotlb_err {
  168. XEN_SWIOTLB_UNKNOWN = 0,
  169. XEN_SWIOTLB_ENOMEM,
  170. XEN_SWIOTLB_EFIXUP
  171. };
  172. static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
  173. {
  174. switch (err) {
  175. case XEN_SWIOTLB_ENOMEM:
  176. return "Cannot allocate Xen-SWIOTLB buffer\n";
  177. case XEN_SWIOTLB_EFIXUP:
  178. return "Failed to get contiguous memory for DMA from Xen!\n"\
  179. "You either: don't have the permissions, do not have"\
  180. " enough free memory under 4GB, or the hypervisor memory"\
  181. " is too fragmented!";
  182. default:
  183. break;
  184. }
  185. return "";
  186. }
  187. int __ref xen_swiotlb_init(int verbose, bool early)
  188. {
  189. unsigned long bytes, order;
  190. int rc = -ENOMEM;
  191. enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
  192. unsigned int repeat = 3;
  193. xen_io_tlb_nslabs = swiotlb_nr_tbl();
  194. retry:
  195. bytes = xen_set_nslabs(xen_io_tlb_nslabs);
  196. order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
  197. /*
  198. * Get IO TLB memory from any location.
  199. */
  200. if (early)
  201. xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes));
  202. else {
  203. #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
  204. #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
  205. while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
  206. xen_io_tlb_start = (void *)__get_free_pages(__GFP_NOWARN, order);
  207. if (xen_io_tlb_start)
  208. break;
  209. order--;
  210. }
  211. if (order != get_order(bytes)) {
  212. pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
  213. (PAGE_SIZE << order) >> 20);
  214. xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
  215. bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
  216. }
  217. }
  218. if (!xen_io_tlb_start) {
  219. m_ret = XEN_SWIOTLB_ENOMEM;
  220. goto error;
  221. }
  222. xen_io_tlb_end = xen_io_tlb_start + bytes;
  223. /*
  224. * And replace that memory with pages under 4GB.
  225. */
  226. rc = xen_swiotlb_fixup(xen_io_tlb_start,
  227. bytes,
  228. xen_io_tlb_nslabs);
  229. if (rc) {
  230. if (early)
  231. free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes));
  232. else {
  233. free_pages((unsigned long)xen_io_tlb_start, order);
  234. xen_io_tlb_start = NULL;
  235. }
  236. m_ret = XEN_SWIOTLB_EFIXUP;
  237. goto error;
  238. }
  239. start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
  240. if (early) {
  241. if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
  242. verbose))
  243. panic("Cannot allocate SWIOTLB buffer");
  244. rc = 0;
  245. } else
  246. rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
  247. return rc;
  248. error:
  249. if (repeat--) {
  250. xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
  251. (xen_io_tlb_nslabs >> 1));
  252. pr_info("Lowering to %luMB\n",
  253. (xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
  254. goto retry;
  255. }
  256. pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
  257. if (early)
  258. panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
  259. else
  260. free_pages((unsigned long)xen_io_tlb_start, order);
  261. return rc;
  262. }
  263. void *
  264. xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
  265. dma_addr_t *dma_handle, gfp_t flags,
  266. struct dma_attrs *attrs)
  267. {
  268. void *ret;
  269. int order = get_order(size);
  270. u64 dma_mask = DMA_BIT_MASK(32);
  271. phys_addr_t phys;
  272. dma_addr_t dev_addr;
  273. /*
  274. * Ignore region specifiers - the kernel's ideas of
  275. * pseudo-phys memory layout has nothing to do with the
  276. * machine physical layout. We can't allocate highmem
  277. * because we can't return a pointer to it.
  278. */
  279. flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
  280. if (dma_alloc_from_coherent(hwdev, size, dma_handle, &ret))
  281. return ret;
  282. /* On ARM this function returns an ioremap'ped virtual address for
  283. * which virt_to_phys doesn't return the corresponding physical
  284. * address. In fact on ARM virt_to_phys only works for kernel direct
  285. * mapped RAM memory. Also see comment below.
  286. */
  287. ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs);
  288. if (!ret)
  289. return ret;
  290. if (hwdev && hwdev->coherent_dma_mask)
  291. dma_mask = dma_alloc_coherent_mask(hwdev, flags);
  292. /* At this point dma_handle is the physical address, next we are
  293. * going to set it to the machine address.
  294. * Do not use virt_to_phys(ret) because on ARM it doesn't correspond
  295. * to *dma_handle. */
  296. phys = *dma_handle;
  297. dev_addr = xen_phys_to_bus(phys);
  298. if (((dev_addr + size - 1 <= dma_mask)) &&
  299. !range_straddles_page_boundary(phys, size))
  300. *dma_handle = dev_addr;
  301. else {
  302. if (xen_create_contiguous_region(phys, order,
  303. fls64(dma_mask), dma_handle) != 0) {
  304. xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs);
  305. return NULL;
  306. }
  307. }
  308. memset(ret, 0, size);
  309. return ret;
  310. }
  311. EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent);
  312. void
  313. xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
  314. dma_addr_t dev_addr, struct dma_attrs *attrs)
  315. {
  316. int order = get_order(size);
  317. phys_addr_t phys;
  318. u64 dma_mask = DMA_BIT_MASK(32);
  319. if (dma_release_from_coherent(hwdev, order, vaddr))
  320. return;
  321. if (hwdev && hwdev->coherent_dma_mask)
  322. dma_mask = hwdev->coherent_dma_mask;
  323. /* do not use virt_to_phys because on ARM it doesn't return you the
  324. * physical address */
  325. phys = xen_bus_to_phys(dev_addr);
  326. if (((dev_addr + size - 1 > dma_mask)) ||
  327. range_straddles_page_boundary(phys, size))
  328. xen_destroy_contiguous_region(phys, order);
  329. xen_free_coherent_pages(hwdev, size, vaddr, (dma_addr_t)phys, attrs);
  330. }
  331. EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent);
  332. /*
  333. * Map a single buffer of the indicated size for DMA in streaming mode. The
  334. * physical address to use is returned.
  335. *
  336. * Once the device is given the dma address, the device owns this memory until
  337. * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
  338. */
  339. dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
  340. unsigned long offset, size_t size,
  341. enum dma_data_direction dir,
  342. struct dma_attrs *attrs)
  343. {
  344. phys_addr_t map, phys = page_to_phys(page) + offset;
  345. dma_addr_t dev_addr = xen_phys_to_bus(phys);
  346. BUG_ON(dir == DMA_NONE);
  347. /*
  348. * If the address happens to be in the device's DMA window,
  349. * we can safely return the device addr and not worry about bounce
  350. * buffering it.
  351. */
  352. if (dma_capable(dev, dev_addr, size) &&
  353. !range_straddles_page_boundary(phys, size) && !swiotlb_force) {
  354. /* we are not interested in the dma_addr returned by
  355. * xen_dma_map_page, only in the potential cache flushes executed
  356. * by the function. */
  357. xen_dma_map_page(dev, page, offset, size, dir, attrs);
  358. return dev_addr;
  359. }
  360. /*
  361. * Oh well, have to allocate and map a bounce buffer.
  362. */
  363. trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
  364. map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir);
  365. if (map == SWIOTLB_MAP_ERROR)
  366. return DMA_ERROR_CODE;
  367. xen_dma_map_page(dev, pfn_to_page(map >> PAGE_SHIFT),
  368. map & ~PAGE_MASK, size, dir, attrs);
  369. dev_addr = xen_phys_to_bus(map);
  370. /*
  371. * Ensure that the address returned is DMA'ble
  372. */
  373. if (!dma_capable(dev, dev_addr, size)) {
  374. swiotlb_tbl_unmap_single(dev, map, size, dir);
  375. dev_addr = 0;
  376. }
  377. return dev_addr;
  378. }
  379. EXPORT_SYMBOL_GPL(xen_swiotlb_map_page);
  380. /*
  381. * Unmap a single streaming mode DMA translation. The dma_addr and size must
  382. * match what was provided for in a previous xen_swiotlb_map_page call. All
  383. * other usages are undefined.
  384. *
  385. * After this call, reads by the cpu to the buffer are guaranteed to see
  386. * whatever the device wrote there.
  387. */
  388. static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
  389. size_t size, enum dma_data_direction dir,
  390. struct dma_attrs *attrs)
  391. {
  392. phys_addr_t paddr = xen_bus_to_phys(dev_addr);
  393. BUG_ON(dir == DMA_NONE);
  394. xen_dma_unmap_page(hwdev, paddr, size, dir, attrs);
  395. /* NOTE: We use dev_addr here, not paddr! */
  396. if (is_xen_swiotlb_buffer(dev_addr)) {
  397. swiotlb_tbl_unmap_single(hwdev, paddr, size, dir);
  398. return;
  399. }
  400. if (dir != DMA_FROM_DEVICE)
  401. return;
  402. /*
  403. * phys_to_virt doesn't work with hihgmem page but we could
  404. * call dma_mark_clean() with hihgmem page here. However, we
  405. * are fine since dma_mark_clean() is null on POWERPC. We can
  406. * make dma_mark_clean() take a physical address if necessary.
  407. */
  408. dma_mark_clean(phys_to_virt(paddr), size);
  409. }
  410. void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
  411. size_t size, enum dma_data_direction dir,
  412. struct dma_attrs *attrs)
  413. {
  414. xen_unmap_single(hwdev, dev_addr, size, dir, attrs);
  415. }
  416. EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page);
  417. /*
  418. * Make physical memory consistent for a single streaming mode DMA translation
  419. * after a transfer.
  420. *
  421. * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
  422. * using the cpu, yet do not wish to teardown the dma mapping, you must
  423. * call this function before doing so. At the next point you give the dma
  424. * address back to the card, you must first perform a
  425. * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
  426. */
  427. static void
  428. xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
  429. size_t size, enum dma_data_direction dir,
  430. enum dma_sync_target target)
  431. {
  432. phys_addr_t paddr = xen_bus_to_phys(dev_addr);
  433. BUG_ON(dir == DMA_NONE);
  434. if (target == SYNC_FOR_CPU)
  435. xen_dma_sync_single_for_cpu(hwdev, paddr, size, dir);
  436. /* NOTE: We use dev_addr here, not paddr! */
  437. if (is_xen_swiotlb_buffer(dev_addr))
  438. swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
  439. if (target == SYNC_FOR_DEVICE)
  440. xen_dma_sync_single_for_cpu(hwdev, paddr, size, dir);
  441. if (dir != DMA_FROM_DEVICE)
  442. return;
  443. dma_mark_clean(phys_to_virt(paddr), size);
  444. }
  445. void
  446. xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
  447. size_t size, enum dma_data_direction dir)
  448. {
  449. xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
  450. }
  451. EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu);
  452. void
  453. xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
  454. size_t size, enum dma_data_direction dir)
  455. {
  456. xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
  457. }
  458. EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device);
  459. /*
  460. * Map a set of buffers described by scatterlist in streaming mode for DMA.
  461. * This is the scatter-gather version of the above xen_swiotlb_map_page
  462. * interface. Here the scatter gather list elements are each tagged with the
  463. * appropriate dma address and length. They are obtained via
  464. * sg_dma_{address,length}(SG).
  465. *
  466. * NOTE: An implementation may be able to use a smaller number of
  467. * DMA address/length pairs than there are SG table elements.
  468. * (for example via virtual mapping capabilities)
  469. * The routine returns the number of addr/length pairs actually
  470. * used, at most nents.
  471. *
  472. * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
  473. * same here.
  474. */
  475. int
  476. xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
  477. int nelems, enum dma_data_direction dir,
  478. struct dma_attrs *attrs)
  479. {
  480. struct scatterlist *sg;
  481. int i;
  482. BUG_ON(dir == DMA_NONE);
  483. for_each_sg(sgl, sg, nelems, i) {
  484. phys_addr_t paddr = sg_phys(sg);
  485. dma_addr_t dev_addr = xen_phys_to_bus(paddr);
  486. if (swiotlb_force ||
  487. !dma_capable(hwdev, dev_addr, sg->length) ||
  488. range_straddles_page_boundary(paddr, sg->length)) {
  489. phys_addr_t map = swiotlb_tbl_map_single(hwdev,
  490. start_dma_addr,
  491. sg_phys(sg),
  492. sg->length,
  493. dir);
  494. if (map == SWIOTLB_MAP_ERROR) {
  495. dev_warn(hwdev, "swiotlb buffer is full\n");
  496. /* Don't panic here, we expect map_sg users
  497. to do proper error handling. */
  498. xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
  499. attrs);
  500. sg_dma_len(sgl) = 0;
  501. return 0;
  502. }
  503. xen_dma_map_page(hwdev, pfn_to_page(map >> PAGE_SHIFT),
  504. map & ~PAGE_MASK,
  505. sg->length,
  506. dir,
  507. attrs);
  508. sg->dma_address = xen_phys_to_bus(map);
  509. } else {
  510. /* we are not interested in the dma_addr returned by
  511. * xen_dma_map_page, only in the potential cache flushes executed
  512. * by the function. */
  513. xen_dma_map_page(hwdev, pfn_to_page(paddr >> PAGE_SHIFT),
  514. paddr & ~PAGE_MASK,
  515. sg->length,
  516. dir,
  517. attrs);
  518. sg->dma_address = dev_addr;
  519. }
  520. sg_dma_len(sg) = sg->length;
  521. }
  522. return nelems;
  523. }
  524. EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs);
  525. /*
  526. * Unmap a set of streaming mode DMA translations. Again, cpu read rules
  527. * concerning calls here are the same as for swiotlb_unmap_page() above.
  528. */
  529. void
  530. xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
  531. int nelems, enum dma_data_direction dir,
  532. struct dma_attrs *attrs)
  533. {
  534. struct scatterlist *sg;
  535. int i;
  536. BUG_ON(dir == DMA_NONE);
  537. for_each_sg(sgl, sg, nelems, i)
  538. xen_unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, attrs);
  539. }
  540. EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs);
  541. /*
  542. * Make physical memory consistent for a set of streaming mode DMA translations
  543. * after a transfer.
  544. *
  545. * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
  546. * and usage.
  547. */
  548. static void
  549. xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
  550. int nelems, enum dma_data_direction dir,
  551. enum dma_sync_target target)
  552. {
  553. struct scatterlist *sg;
  554. int i;
  555. for_each_sg(sgl, sg, nelems, i)
  556. xen_swiotlb_sync_single(hwdev, sg->dma_address,
  557. sg_dma_len(sg), dir, target);
  558. }
  559. void
  560. xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
  561. int nelems, enum dma_data_direction dir)
  562. {
  563. xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
  564. }
  565. EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu);
  566. void
  567. xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
  568. int nelems, enum dma_data_direction dir)
  569. {
  570. xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
  571. }
  572. EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device);
  573. int
  574. xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
  575. {
  576. return !dma_addr;
  577. }
  578. EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error);
  579. /*
  580. * Return whether the given device DMA address mask can be supported
  581. * properly. For example, if your device can only drive the low 24-bits
  582. * during bus mastering, then you would pass 0x00ffffff as the mask to
  583. * this function.
  584. */
  585. int
  586. xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
  587. {
  588. return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
  589. }
  590. EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported);
  591. int
  592. xen_swiotlb_set_dma_mask(struct device *dev, u64 dma_mask)
  593. {
  594. if (!dev->dma_mask || !xen_swiotlb_dma_supported(dev, dma_mask))
  595. return -EIO;
  596. *dev->dma_mask = dma_mask;
  597. return 0;
  598. }
  599. EXPORT_SYMBOL_GPL(xen_swiotlb_set_dma_mask);