spi-sh-msiof.c 34 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247
  1. /*
  2. * SuperH MSIOF SPI Master Interface
  3. *
  4. * Copyright (c) 2009 Magnus Damm
  5. * Copyright (C) 2014 Glider bvba
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. *
  11. */
  12. #include <linux/bitmap.h>
  13. #include <linux/clk.h>
  14. #include <linux/completion.h>
  15. #include <linux/delay.h>
  16. #include <linux/dma-mapping.h>
  17. #include <linux/dmaengine.h>
  18. #include <linux/err.h>
  19. #include <linux/gpio.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/io.h>
  22. #include <linux/kernel.h>
  23. #include <linux/module.h>
  24. #include <linux/of.h>
  25. #include <linux/of_device.h>
  26. #include <linux/platform_device.h>
  27. #include <linux/pm_runtime.h>
  28. #include <linux/sh_dma.h>
  29. #include <linux/spi/sh_msiof.h>
  30. #include <linux/spi/spi.h>
  31. #include <asm/unaligned.h>
  32. struct sh_msiof_chipdata {
  33. u16 tx_fifo_size;
  34. u16 rx_fifo_size;
  35. u16 master_flags;
  36. };
  37. struct sh_msiof_spi_priv {
  38. struct spi_master *master;
  39. void __iomem *mapbase;
  40. struct clk *clk;
  41. struct platform_device *pdev;
  42. const struct sh_msiof_chipdata *chipdata;
  43. struct sh_msiof_spi_info *info;
  44. struct completion done;
  45. int tx_fifo_size;
  46. int rx_fifo_size;
  47. void *tx_dma_page;
  48. void *rx_dma_page;
  49. dma_addr_t tx_dma_addr;
  50. dma_addr_t rx_dma_addr;
  51. };
  52. #define TMDR1 0x00 /* Transmit Mode Register 1 */
  53. #define TMDR2 0x04 /* Transmit Mode Register 2 */
  54. #define TMDR3 0x08 /* Transmit Mode Register 3 */
  55. #define RMDR1 0x10 /* Receive Mode Register 1 */
  56. #define RMDR2 0x14 /* Receive Mode Register 2 */
  57. #define RMDR3 0x18 /* Receive Mode Register 3 */
  58. #define TSCR 0x20 /* Transmit Clock Select Register */
  59. #define RSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */
  60. #define CTR 0x28 /* Control Register */
  61. #define FCTR 0x30 /* FIFO Control Register */
  62. #define STR 0x40 /* Status Register */
  63. #define IER 0x44 /* Interrupt Enable Register */
  64. #define TDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */
  65. #define TDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */
  66. #define TFDR 0x50 /* Transmit FIFO Data Register */
  67. #define RDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */
  68. #define RDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */
  69. #define RFDR 0x60 /* Receive FIFO Data Register */
  70. /* TMDR1 and RMDR1 */
  71. #define MDR1_TRMD 0x80000000 /* Transfer Mode (1 = Master mode) */
  72. #define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
  73. #define MDR1_SYNCMD_SPI 0x20000000 /* Level mode/SPI */
  74. #define MDR1_SYNCMD_LR 0x30000000 /* L/R mode */
  75. #define MDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */
  76. #define MDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */
  77. #define MDR1_FLD_MASK 0x000000c0 /* Frame Sync Signal Interval (0-3) */
  78. #define MDR1_FLD_SHIFT 2
  79. #define MDR1_XXSTP 0x00000001 /* Transmission/Reception Stop on FIFO */
  80. /* TMDR1 */
  81. #define TMDR1_PCON 0x40000000 /* Transfer Signal Connection */
  82. /* TMDR2 and RMDR2 */
  83. #define MDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */
  84. #define MDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
  85. #define MDR2_GRPMASK1 0x00000001 /* Group Output Mask 1 (SH, A1) */
  86. #define MAX_WDLEN 256U
  87. /* TSCR and RSCR */
  88. #define SCR_BRPS_MASK 0x1f00 /* Prescaler Setting (1-32) */
  89. #define SCR_BRPS(i) (((i) - 1) << 8)
  90. #define SCR_BRDV_MASK 0x0007 /* Baud Rate Generator's Division Ratio */
  91. #define SCR_BRDV_DIV_2 0x0000
  92. #define SCR_BRDV_DIV_4 0x0001
  93. #define SCR_BRDV_DIV_8 0x0002
  94. #define SCR_BRDV_DIV_16 0x0003
  95. #define SCR_BRDV_DIV_32 0x0004
  96. #define SCR_BRDV_DIV_1 0x0007
  97. /* CTR */
  98. #define CTR_TSCKIZ_MASK 0xc0000000 /* Transmit Clock I/O Polarity Select */
  99. #define CTR_TSCKIZ_SCK 0x80000000 /* Disable SCK when TX disabled */
  100. #define CTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */
  101. #define CTR_RSCKIZ_MASK 0x30000000 /* Receive Clock Polarity Select */
  102. #define CTR_RSCKIZ_SCK 0x20000000 /* Must match CTR_TSCKIZ_SCK */
  103. #define CTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */
  104. #define CTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */
  105. #define CTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */
  106. #define CTR_TXDIZ_MASK 0x00c00000 /* Pin Output When TX is Disabled */
  107. #define CTR_TXDIZ_LOW 0x00000000 /* 0 */
  108. #define CTR_TXDIZ_HIGH 0x00400000 /* 1 */
  109. #define CTR_TXDIZ_HIZ 0x00800000 /* High-impedance */
  110. #define CTR_TSCKE 0x00008000 /* Transmit Serial Clock Output Enable */
  111. #define CTR_TFSE 0x00004000 /* Transmit Frame Sync Signal Output Enable */
  112. #define CTR_TXE 0x00000200 /* Transmit Enable */
  113. #define CTR_RXE 0x00000100 /* Receive Enable */
  114. /* FCTR */
  115. #define FCTR_TFWM_MASK 0xe0000000 /* Transmit FIFO Watermark */
  116. #define FCTR_TFWM_64 0x00000000 /* Transfer Request when 64 empty stages */
  117. #define FCTR_TFWM_32 0x20000000 /* Transfer Request when 32 empty stages */
  118. #define FCTR_TFWM_24 0x40000000 /* Transfer Request when 24 empty stages */
  119. #define FCTR_TFWM_16 0x60000000 /* Transfer Request when 16 empty stages */
  120. #define FCTR_TFWM_12 0x80000000 /* Transfer Request when 12 empty stages */
  121. #define FCTR_TFWM_8 0xa0000000 /* Transfer Request when 8 empty stages */
  122. #define FCTR_TFWM_4 0xc0000000 /* Transfer Request when 4 empty stages */
  123. #define FCTR_TFWM_1 0xe0000000 /* Transfer Request when 1 empty stage */
  124. #define FCTR_TFUA_MASK 0x07f00000 /* Transmit FIFO Usable Area */
  125. #define FCTR_TFUA_SHIFT 20
  126. #define FCTR_TFUA(i) ((i) << FCTR_TFUA_SHIFT)
  127. #define FCTR_RFWM_MASK 0x0000e000 /* Receive FIFO Watermark */
  128. #define FCTR_RFWM_1 0x00000000 /* Transfer Request when 1 valid stages */
  129. #define FCTR_RFWM_4 0x00002000 /* Transfer Request when 4 valid stages */
  130. #define FCTR_RFWM_8 0x00004000 /* Transfer Request when 8 valid stages */
  131. #define FCTR_RFWM_16 0x00006000 /* Transfer Request when 16 valid stages */
  132. #define FCTR_RFWM_32 0x00008000 /* Transfer Request when 32 valid stages */
  133. #define FCTR_RFWM_64 0x0000a000 /* Transfer Request when 64 valid stages */
  134. #define FCTR_RFWM_128 0x0000c000 /* Transfer Request when 128 valid stages */
  135. #define FCTR_RFWM_256 0x0000e000 /* Transfer Request when 256 valid stages */
  136. #define FCTR_RFUA_MASK 0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */
  137. #define FCTR_RFUA_SHIFT 4
  138. #define FCTR_RFUA(i) ((i) << FCTR_RFUA_SHIFT)
  139. /* STR */
  140. #define STR_TFEMP 0x20000000 /* Transmit FIFO Empty */
  141. #define STR_TDREQ 0x10000000 /* Transmit Data Transfer Request */
  142. #define STR_TEOF 0x00800000 /* Frame Transmission End */
  143. #define STR_TFSERR 0x00200000 /* Transmit Frame Synchronization Error */
  144. #define STR_TFOVF 0x00100000 /* Transmit FIFO Overflow */
  145. #define STR_TFUDF 0x00080000 /* Transmit FIFO Underflow */
  146. #define STR_RFFUL 0x00002000 /* Receive FIFO Full */
  147. #define STR_RDREQ 0x00001000 /* Receive Data Transfer Request */
  148. #define STR_REOF 0x00000080 /* Frame Reception End */
  149. #define STR_RFSERR 0x00000020 /* Receive Frame Synchronization Error */
  150. #define STR_RFUDF 0x00000010 /* Receive FIFO Underflow */
  151. #define STR_RFOVF 0x00000008 /* Receive FIFO Overflow */
  152. /* IER */
  153. #define IER_TDMAE 0x80000000 /* Transmit Data DMA Transfer Req. Enable */
  154. #define IER_TFEMPE 0x20000000 /* Transmit FIFO Empty Enable */
  155. #define IER_TDREQE 0x10000000 /* Transmit Data Transfer Request Enable */
  156. #define IER_TEOFE 0x00800000 /* Frame Transmission End Enable */
  157. #define IER_TFSERRE 0x00200000 /* Transmit Frame Sync Error Enable */
  158. #define IER_TFOVFE 0x00100000 /* Transmit FIFO Overflow Enable */
  159. #define IER_TFUDFE 0x00080000 /* Transmit FIFO Underflow Enable */
  160. #define IER_RDMAE 0x00008000 /* Receive Data DMA Transfer Req. Enable */
  161. #define IER_RFFULE 0x00002000 /* Receive FIFO Full Enable */
  162. #define IER_RDREQE 0x00001000 /* Receive Data Transfer Request Enable */
  163. #define IER_REOFE 0x00000080 /* Frame Reception End Enable */
  164. #define IER_RFSERRE 0x00000020 /* Receive Frame Sync Error Enable */
  165. #define IER_RFUDFE 0x00000010 /* Receive FIFO Underflow Enable */
  166. #define IER_RFOVFE 0x00000008 /* Receive FIFO Overflow Enable */
  167. static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
  168. {
  169. switch (reg_offs) {
  170. case TSCR:
  171. case RSCR:
  172. return ioread16(p->mapbase + reg_offs);
  173. default:
  174. return ioread32(p->mapbase + reg_offs);
  175. }
  176. }
  177. static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
  178. u32 value)
  179. {
  180. switch (reg_offs) {
  181. case TSCR:
  182. case RSCR:
  183. iowrite16(value, p->mapbase + reg_offs);
  184. break;
  185. default:
  186. iowrite32(value, p->mapbase + reg_offs);
  187. break;
  188. }
  189. }
  190. static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
  191. u32 clr, u32 set)
  192. {
  193. u32 mask = clr | set;
  194. u32 data;
  195. int k;
  196. data = sh_msiof_read(p, CTR);
  197. data &= ~clr;
  198. data |= set;
  199. sh_msiof_write(p, CTR, data);
  200. for (k = 100; k > 0; k--) {
  201. if ((sh_msiof_read(p, CTR) & mask) == set)
  202. break;
  203. udelay(10);
  204. }
  205. return k > 0 ? 0 : -ETIMEDOUT;
  206. }
  207. static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
  208. {
  209. struct sh_msiof_spi_priv *p = data;
  210. /* just disable the interrupt and wake up */
  211. sh_msiof_write(p, IER, 0);
  212. complete(&p->done);
  213. return IRQ_HANDLED;
  214. }
  215. static struct {
  216. unsigned short div;
  217. unsigned short scr;
  218. } const sh_msiof_spi_clk_table[] = {
  219. { 1, SCR_BRPS( 1) | SCR_BRDV_DIV_1 },
  220. { 2, SCR_BRPS( 1) | SCR_BRDV_DIV_2 },
  221. { 4, SCR_BRPS( 1) | SCR_BRDV_DIV_4 },
  222. { 8, SCR_BRPS( 1) | SCR_BRDV_DIV_8 },
  223. { 16, SCR_BRPS( 1) | SCR_BRDV_DIV_16 },
  224. { 32, SCR_BRPS( 1) | SCR_BRDV_DIV_32 },
  225. { 64, SCR_BRPS(32) | SCR_BRDV_DIV_2 },
  226. { 128, SCR_BRPS(32) | SCR_BRDV_DIV_4 },
  227. { 256, SCR_BRPS(32) | SCR_BRDV_DIV_8 },
  228. { 512, SCR_BRPS(32) | SCR_BRDV_DIV_16 },
  229. { 1024, SCR_BRPS(32) | SCR_BRDV_DIV_32 },
  230. };
  231. static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
  232. unsigned long parent_rate, u32 spi_hz)
  233. {
  234. unsigned long div = 1024;
  235. size_t k;
  236. if (!WARN_ON(!spi_hz || !parent_rate))
  237. div = DIV_ROUND_UP(parent_rate, spi_hz);
  238. /* TODO: make more fine grained */
  239. for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_clk_table); k++) {
  240. if (sh_msiof_spi_clk_table[k].div >= div)
  241. break;
  242. }
  243. k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_clk_table) - 1);
  244. sh_msiof_write(p, TSCR, sh_msiof_spi_clk_table[k].scr);
  245. if (!(p->chipdata->master_flags & SPI_MASTER_MUST_TX))
  246. sh_msiof_write(p, RSCR, sh_msiof_spi_clk_table[k].scr);
  247. }
  248. static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p,
  249. u32 cpol, u32 cpha,
  250. u32 tx_hi_z, u32 lsb_first, u32 cs_high)
  251. {
  252. u32 tmp;
  253. int edge;
  254. /*
  255. * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG
  256. * 0 0 10 10 1 1
  257. * 0 1 10 10 0 0
  258. * 1 0 11 11 0 0
  259. * 1 1 11 11 1 1
  260. */
  261. tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
  262. tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
  263. tmp |= lsb_first << MDR1_BITLSB_SHIFT;
  264. sh_msiof_write(p, TMDR1, tmp | MDR1_TRMD | TMDR1_PCON);
  265. if (p->chipdata->master_flags & SPI_MASTER_MUST_TX) {
  266. /* These bits are reserved if RX needs TX */
  267. tmp &= ~0x0000ffff;
  268. }
  269. sh_msiof_write(p, RMDR1, tmp);
  270. tmp = 0;
  271. tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
  272. tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
  273. edge = cpol ^ !cpha;
  274. tmp |= edge << CTR_TEDG_SHIFT;
  275. tmp |= edge << CTR_REDG_SHIFT;
  276. tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
  277. sh_msiof_write(p, CTR, tmp);
  278. }
  279. static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
  280. const void *tx_buf, void *rx_buf,
  281. u32 bits, u32 words)
  282. {
  283. u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
  284. if (tx_buf || (p->chipdata->master_flags & SPI_MASTER_MUST_TX))
  285. sh_msiof_write(p, TMDR2, dr2);
  286. else
  287. sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
  288. if (rx_buf)
  289. sh_msiof_write(p, RMDR2, dr2);
  290. }
  291. static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
  292. {
  293. sh_msiof_write(p, STR, sh_msiof_read(p, STR));
  294. }
  295. static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
  296. const void *tx_buf, int words, int fs)
  297. {
  298. const u8 *buf_8 = tx_buf;
  299. int k;
  300. for (k = 0; k < words; k++)
  301. sh_msiof_write(p, TFDR, buf_8[k] << fs);
  302. }
  303. static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
  304. const void *tx_buf, int words, int fs)
  305. {
  306. const u16 *buf_16 = tx_buf;
  307. int k;
  308. for (k = 0; k < words; k++)
  309. sh_msiof_write(p, TFDR, buf_16[k] << fs);
  310. }
  311. static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
  312. const void *tx_buf, int words, int fs)
  313. {
  314. const u16 *buf_16 = tx_buf;
  315. int k;
  316. for (k = 0; k < words; k++)
  317. sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
  318. }
  319. static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
  320. const void *tx_buf, int words, int fs)
  321. {
  322. const u32 *buf_32 = tx_buf;
  323. int k;
  324. for (k = 0; k < words; k++)
  325. sh_msiof_write(p, TFDR, buf_32[k] << fs);
  326. }
  327. static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
  328. const void *tx_buf, int words, int fs)
  329. {
  330. const u32 *buf_32 = tx_buf;
  331. int k;
  332. for (k = 0; k < words; k++)
  333. sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
  334. }
  335. static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
  336. const void *tx_buf, int words, int fs)
  337. {
  338. const u32 *buf_32 = tx_buf;
  339. int k;
  340. for (k = 0; k < words; k++)
  341. sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
  342. }
  343. static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
  344. const void *tx_buf, int words, int fs)
  345. {
  346. const u32 *buf_32 = tx_buf;
  347. int k;
  348. for (k = 0; k < words; k++)
  349. sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
  350. }
  351. static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
  352. void *rx_buf, int words, int fs)
  353. {
  354. u8 *buf_8 = rx_buf;
  355. int k;
  356. for (k = 0; k < words; k++)
  357. buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
  358. }
  359. static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
  360. void *rx_buf, int words, int fs)
  361. {
  362. u16 *buf_16 = rx_buf;
  363. int k;
  364. for (k = 0; k < words; k++)
  365. buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
  366. }
  367. static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
  368. void *rx_buf, int words, int fs)
  369. {
  370. u16 *buf_16 = rx_buf;
  371. int k;
  372. for (k = 0; k < words; k++)
  373. put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
  374. }
  375. static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
  376. void *rx_buf, int words, int fs)
  377. {
  378. u32 *buf_32 = rx_buf;
  379. int k;
  380. for (k = 0; k < words; k++)
  381. buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
  382. }
  383. static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
  384. void *rx_buf, int words, int fs)
  385. {
  386. u32 *buf_32 = rx_buf;
  387. int k;
  388. for (k = 0; k < words; k++)
  389. put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
  390. }
  391. static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
  392. void *rx_buf, int words, int fs)
  393. {
  394. u32 *buf_32 = rx_buf;
  395. int k;
  396. for (k = 0; k < words; k++)
  397. buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
  398. }
  399. static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
  400. void *rx_buf, int words, int fs)
  401. {
  402. u32 *buf_32 = rx_buf;
  403. int k;
  404. for (k = 0; k < words; k++)
  405. put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
  406. }
  407. static int sh_msiof_spi_setup(struct spi_device *spi)
  408. {
  409. struct device_node *np = spi->master->dev.of_node;
  410. struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
  411. if (!np) {
  412. /*
  413. * Use spi->controller_data for CS (same strategy as spi_gpio),
  414. * if any. otherwise let HW control CS
  415. */
  416. spi->cs_gpio = (uintptr_t)spi->controller_data;
  417. }
  418. /* Configure pins before deasserting CS */
  419. sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
  420. !!(spi->mode & SPI_CPHA),
  421. !!(spi->mode & SPI_3WIRE),
  422. !!(spi->mode & SPI_LSB_FIRST),
  423. !!(spi->mode & SPI_CS_HIGH));
  424. if (spi->cs_gpio >= 0)
  425. gpio_set_value(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
  426. return 0;
  427. }
  428. static int sh_msiof_prepare_message(struct spi_master *master,
  429. struct spi_message *msg)
  430. {
  431. struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
  432. const struct spi_device *spi = msg->spi;
  433. /* Configure pins before asserting CS */
  434. sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
  435. !!(spi->mode & SPI_CPHA),
  436. !!(spi->mode & SPI_3WIRE),
  437. !!(spi->mode & SPI_LSB_FIRST),
  438. !!(spi->mode & SPI_CS_HIGH));
  439. return 0;
  440. }
  441. static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
  442. {
  443. int ret;
  444. /* setup clock and rx/tx signals */
  445. ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
  446. if (rx_buf && !ret)
  447. ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
  448. if (!ret)
  449. ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
  450. /* start by setting frame bit */
  451. if (!ret)
  452. ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
  453. return ret;
  454. }
  455. static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
  456. {
  457. int ret;
  458. /* shut down frame, rx/tx and clock signals */
  459. ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
  460. if (!ret)
  461. ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
  462. if (rx_buf && !ret)
  463. ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
  464. if (!ret)
  465. ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
  466. return ret;
  467. }
  468. static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
  469. void (*tx_fifo)(struct sh_msiof_spi_priv *,
  470. const void *, int, int),
  471. void (*rx_fifo)(struct sh_msiof_spi_priv *,
  472. void *, int, int),
  473. const void *tx_buf, void *rx_buf,
  474. int words, int bits)
  475. {
  476. int fifo_shift;
  477. int ret;
  478. /* limit maximum word transfer to rx/tx fifo size */
  479. if (tx_buf)
  480. words = min_t(int, words, p->tx_fifo_size);
  481. if (rx_buf)
  482. words = min_t(int, words, p->rx_fifo_size);
  483. /* the fifo contents need shifting */
  484. fifo_shift = 32 - bits;
  485. /* default FIFO watermarks for PIO */
  486. sh_msiof_write(p, FCTR, 0);
  487. /* setup msiof transfer mode registers */
  488. sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
  489. sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE);
  490. /* write tx fifo */
  491. if (tx_buf)
  492. tx_fifo(p, tx_buf, words, fifo_shift);
  493. reinit_completion(&p->done);
  494. ret = sh_msiof_spi_start(p, rx_buf);
  495. if (ret) {
  496. dev_err(&p->pdev->dev, "failed to start hardware\n");
  497. goto stop_ier;
  498. }
  499. /* wait for tx fifo to be emptied / rx fifo to be filled */
  500. ret = wait_for_completion_timeout(&p->done, HZ);
  501. if (!ret) {
  502. dev_err(&p->pdev->dev, "PIO timeout\n");
  503. ret = -ETIMEDOUT;
  504. goto stop_reset;
  505. }
  506. /* read rx fifo */
  507. if (rx_buf)
  508. rx_fifo(p, rx_buf, words, fifo_shift);
  509. /* clear status bits */
  510. sh_msiof_reset_str(p);
  511. ret = sh_msiof_spi_stop(p, rx_buf);
  512. if (ret) {
  513. dev_err(&p->pdev->dev, "failed to shut down hardware\n");
  514. return ret;
  515. }
  516. return words;
  517. stop_reset:
  518. sh_msiof_reset_str(p);
  519. sh_msiof_spi_stop(p, rx_buf);
  520. stop_ier:
  521. sh_msiof_write(p, IER, 0);
  522. return ret;
  523. }
  524. static void sh_msiof_dma_complete(void *arg)
  525. {
  526. struct sh_msiof_spi_priv *p = arg;
  527. sh_msiof_write(p, IER, 0);
  528. complete(&p->done);
  529. }
  530. static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
  531. void *rx, unsigned int len)
  532. {
  533. u32 ier_bits = 0;
  534. struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
  535. dma_cookie_t cookie;
  536. int ret;
  537. /* First prepare and submit the DMA request(s), as this may fail */
  538. if (rx) {
  539. ier_bits |= IER_RDREQE | IER_RDMAE;
  540. desc_rx = dmaengine_prep_slave_single(p->master->dma_rx,
  541. p->rx_dma_addr, len, DMA_FROM_DEVICE,
  542. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  543. if (!desc_rx)
  544. return -EAGAIN;
  545. desc_rx->callback = sh_msiof_dma_complete;
  546. desc_rx->callback_param = p;
  547. cookie = dmaengine_submit(desc_rx);
  548. if (dma_submit_error(cookie))
  549. return cookie;
  550. }
  551. if (tx) {
  552. ier_bits |= IER_TDREQE | IER_TDMAE;
  553. dma_sync_single_for_device(p->master->dma_tx->device->dev,
  554. p->tx_dma_addr, len, DMA_TO_DEVICE);
  555. desc_tx = dmaengine_prep_slave_single(p->master->dma_tx,
  556. p->tx_dma_addr, len, DMA_TO_DEVICE,
  557. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  558. if (!desc_tx) {
  559. ret = -EAGAIN;
  560. goto no_dma_tx;
  561. }
  562. if (rx) {
  563. /* No callback */
  564. desc_tx->callback = NULL;
  565. } else {
  566. desc_tx->callback = sh_msiof_dma_complete;
  567. desc_tx->callback_param = p;
  568. }
  569. cookie = dmaengine_submit(desc_tx);
  570. if (dma_submit_error(cookie)) {
  571. ret = cookie;
  572. goto no_dma_tx;
  573. }
  574. }
  575. /* 1 stage FIFO watermarks for DMA */
  576. sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1);
  577. /* setup msiof transfer mode registers (32-bit words) */
  578. sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
  579. sh_msiof_write(p, IER, ier_bits);
  580. reinit_completion(&p->done);
  581. /* Now start DMA */
  582. if (rx)
  583. dma_async_issue_pending(p->master->dma_rx);
  584. if (tx)
  585. dma_async_issue_pending(p->master->dma_tx);
  586. ret = sh_msiof_spi_start(p, rx);
  587. if (ret) {
  588. dev_err(&p->pdev->dev, "failed to start hardware\n");
  589. goto stop_dma;
  590. }
  591. /* wait for tx fifo to be emptied / rx fifo to be filled */
  592. ret = wait_for_completion_timeout(&p->done, HZ);
  593. if (!ret) {
  594. dev_err(&p->pdev->dev, "DMA timeout\n");
  595. ret = -ETIMEDOUT;
  596. goto stop_reset;
  597. }
  598. /* clear status bits */
  599. sh_msiof_reset_str(p);
  600. ret = sh_msiof_spi_stop(p, rx);
  601. if (ret) {
  602. dev_err(&p->pdev->dev, "failed to shut down hardware\n");
  603. return ret;
  604. }
  605. if (rx)
  606. dma_sync_single_for_cpu(p->master->dma_rx->device->dev,
  607. p->rx_dma_addr, len,
  608. DMA_FROM_DEVICE);
  609. return 0;
  610. stop_reset:
  611. sh_msiof_reset_str(p);
  612. sh_msiof_spi_stop(p, rx);
  613. stop_dma:
  614. if (tx)
  615. dmaengine_terminate_all(p->master->dma_tx);
  616. no_dma_tx:
  617. if (rx)
  618. dmaengine_terminate_all(p->master->dma_rx);
  619. sh_msiof_write(p, IER, 0);
  620. return ret;
  621. }
  622. static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
  623. {
  624. /* src or dst can be unaligned, but not both */
  625. if ((unsigned long)src & 3) {
  626. while (words--) {
  627. *dst++ = swab32(get_unaligned(src));
  628. src++;
  629. }
  630. } else if ((unsigned long)dst & 3) {
  631. while (words--) {
  632. put_unaligned(swab32(*src++), dst);
  633. dst++;
  634. }
  635. } else {
  636. while (words--)
  637. *dst++ = swab32(*src++);
  638. }
  639. }
  640. static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
  641. {
  642. /* src or dst can be unaligned, but not both */
  643. if ((unsigned long)src & 3) {
  644. while (words--) {
  645. *dst++ = swahw32(get_unaligned(src));
  646. src++;
  647. }
  648. } else if ((unsigned long)dst & 3) {
  649. while (words--) {
  650. put_unaligned(swahw32(*src++), dst);
  651. dst++;
  652. }
  653. } else {
  654. while (words--)
  655. *dst++ = swahw32(*src++);
  656. }
  657. }
  658. static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
  659. {
  660. memcpy(dst, src, words * 4);
  661. }
  662. static int sh_msiof_transfer_one(struct spi_master *master,
  663. struct spi_device *spi,
  664. struct spi_transfer *t)
  665. {
  666. struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
  667. void (*copy32)(u32 *, const u32 *, unsigned int);
  668. void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
  669. void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
  670. const void *tx_buf = t->tx_buf;
  671. void *rx_buf = t->rx_buf;
  672. unsigned int len = t->len;
  673. unsigned int bits = t->bits_per_word;
  674. unsigned int bytes_per_word;
  675. unsigned int words;
  676. int n;
  677. bool swab;
  678. int ret;
  679. /* setup clocks (clock already enabled in chipselect()) */
  680. sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
  681. while (master->dma_tx && len > 15) {
  682. /*
  683. * DMA supports 32-bit words only, hence pack 8-bit and 16-bit
  684. * words, with byte resp. word swapping.
  685. */
  686. unsigned int l = min(len, MAX_WDLEN * 4);
  687. if (bits <= 8) {
  688. if (l & 3)
  689. break;
  690. copy32 = copy_bswap32;
  691. } else if (bits <= 16) {
  692. if (l & 1)
  693. break;
  694. copy32 = copy_wswap32;
  695. } else {
  696. copy32 = copy_plain32;
  697. }
  698. if (tx_buf)
  699. copy32(p->tx_dma_page, tx_buf, l / 4);
  700. ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
  701. if (ret == -EAGAIN) {
  702. pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
  703. dev_driver_string(&p->pdev->dev),
  704. dev_name(&p->pdev->dev));
  705. break;
  706. }
  707. if (ret)
  708. return ret;
  709. if (rx_buf) {
  710. copy32(rx_buf, p->rx_dma_page, l / 4);
  711. rx_buf += l;
  712. }
  713. if (tx_buf)
  714. tx_buf += l;
  715. len -= l;
  716. if (!len)
  717. return 0;
  718. }
  719. if (bits <= 8 && len > 15 && !(len & 3)) {
  720. bits = 32;
  721. swab = true;
  722. } else {
  723. swab = false;
  724. }
  725. /* setup bytes per word and fifo read/write functions */
  726. if (bits <= 8) {
  727. bytes_per_word = 1;
  728. tx_fifo = sh_msiof_spi_write_fifo_8;
  729. rx_fifo = sh_msiof_spi_read_fifo_8;
  730. } else if (bits <= 16) {
  731. bytes_per_word = 2;
  732. if ((unsigned long)tx_buf & 0x01)
  733. tx_fifo = sh_msiof_spi_write_fifo_16u;
  734. else
  735. tx_fifo = sh_msiof_spi_write_fifo_16;
  736. if ((unsigned long)rx_buf & 0x01)
  737. rx_fifo = sh_msiof_spi_read_fifo_16u;
  738. else
  739. rx_fifo = sh_msiof_spi_read_fifo_16;
  740. } else if (swab) {
  741. bytes_per_word = 4;
  742. if ((unsigned long)tx_buf & 0x03)
  743. tx_fifo = sh_msiof_spi_write_fifo_s32u;
  744. else
  745. tx_fifo = sh_msiof_spi_write_fifo_s32;
  746. if ((unsigned long)rx_buf & 0x03)
  747. rx_fifo = sh_msiof_spi_read_fifo_s32u;
  748. else
  749. rx_fifo = sh_msiof_spi_read_fifo_s32;
  750. } else {
  751. bytes_per_word = 4;
  752. if ((unsigned long)tx_buf & 0x03)
  753. tx_fifo = sh_msiof_spi_write_fifo_32u;
  754. else
  755. tx_fifo = sh_msiof_spi_write_fifo_32;
  756. if ((unsigned long)rx_buf & 0x03)
  757. rx_fifo = sh_msiof_spi_read_fifo_32u;
  758. else
  759. rx_fifo = sh_msiof_spi_read_fifo_32;
  760. }
  761. /* transfer in fifo sized chunks */
  762. words = len / bytes_per_word;
  763. while (words > 0) {
  764. n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
  765. words, bits);
  766. if (n < 0)
  767. return n;
  768. if (tx_buf)
  769. tx_buf += n * bytes_per_word;
  770. if (rx_buf)
  771. rx_buf += n * bytes_per_word;
  772. words -= n;
  773. }
  774. return 0;
  775. }
  776. static const struct sh_msiof_chipdata sh_data = {
  777. .tx_fifo_size = 64,
  778. .rx_fifo_size = 64,
  779. .master_flags = 0,
  780. };
  781. static const struct sh_msiof_chipdata r8a779x_data = {
  782. .tx_fifo_size = 64,
  783. .rx_fifo_size = 256,
  784. .master_flags = SPI_MASTER_MUST_TX,
  785. };
  786. static const struct of_device_id sh_msiof_match[] = {
  787. { .compatible = "renesas,sh-msiof", .data = &sh_data },
  788. { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
  789. { .compatible = "renesas,msiof-r8a7790", .data = &r8a779x_data },
  790. { .compatible = "renesas,msiof-r8a7791", .data = &r8a779x_data },
  791. { .compatible = "renesas,msiof-r8a7792", .data = &r8a779x_data },
  792. { .compatible = "renesas,msiof-r8a7793", .data = &r8a779x_data },
  793. { .compatible = "renesas,msiof-r8a7794", .data = &r8a779x_data },
  794. {},
  795. };
  796. MODULE_DEVICE_TABLE(of, sh_msiof_match);
  797. #ifdef CONFIG_OF
  798. static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
  799. {
  800. struct sh_msiof_spi_info *info;
  801. struct device_node *np = dev->of_node;
  802. u32 num_cs = 1;
  803. info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
  804. if (!info)
  805. return NULL;
  806. /* Parse the MSIOF properties */
  807. of_property_read_u32(np, "num-cs", &num_cs);
  808. of_property_read_u32(np, "renesas,tx-fifo-size",
  809. &info->tx_fifo_override);
  810. of_property_read_u32(np, "renesas,rx-fifo-size",
  811. &info->rx_fifo_override);
  812. info->num_chipselect = num_cs;
  813. return info;
  814. }
  815. #else
  816. static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
  817. {
  818. return NULL;
  819. }
  820. #endif
  821. static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
  822. enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
  823. {
  824. dma_cap_mask_t mask;
  825. struct dma_chan *chan;
  826. struct dma_slave_config cfg;
  827. int ret;
  828. dma_cap_zero(mask);
  829. dma_cap_set(DMA_SLAVE, mask);
  830. chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
  831. (void *)(unsigned long)id, dev,
  832. dir == DMA_MEM_TO_DEV ? "tx" : "rx");
  833. if (!chan) {
  834. dev_warn(dev, "dma_request_slave_channel_compat failed\n");
  835. return NULL;
  836. }
  837. memset(&cfg, 0, sizeof(cfg));
  838. cfg.slave_id = id;
  839. cfg.direction = dir;
  840. if (dir == DMA_MEM_TO_DEV) {
  841. cfg.dst_addr = port_addr;
  842. cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  843. } else {
  844. cfg.src_addr = port_addr;
  845. cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  846. }
  847. ret = dmaengine_slave_config(chan, &cfg);
  848. if (ret) {
  849. dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
  850. dma_release_channel(chan);
  851. return NULL;
  852. }
  853. return chan;
  854. }
  855. static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
  856. {
  857. struct platform_device *pdev = p->pdev;
  858. struct device *dev = &pdev->dev;
  859. const struct sh_msiof_spi_info *info = dev_get_platdata(dev);
  860. unsigned int dma_tx_id, dma_rx_id;
  861. const struct resource *res;
  862. struct spi_master *master;
  863. struct device *tx_dev, *rx_dev;
  864. if (dev->of_node) {
  865. /* In the OF case we will get the slave IDs from the DT */
  866. dma_tx_id = 0;
  867. dma_rx_id = 0;
  868. } else if (info && info->dma_tx_id && info->dma_rx_id) {
  869. dma_tx_id = info->dma_tx_id;
  870. dma_rx_id = info->dma_rx_id;
  871. } else {
  872. /* The driver assumes no error */
  873. return 0;
  874. }
  875. /* The DMA engine uses the second register set, if present */
  876. res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  877. if (!res)
  878. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  879. master = p->master;
  880. master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
  881. dma_tx_id,
  882. res->start + TFDR);
  883. if (!master->dma_tx)
  884. return -ENODEV;
  885. master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
  886. dma_rx_id,
  887. res->start + RFDR);
  888. if (!master->dma_rx)
  889. goto free_tx_chan;
  890. p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
  891. if (!p->tx_dma_page)
  892. goto free_rx_chan;
  893. p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
  894. if (!p->rx_dma_page)
  895. goto free_tx_page;
  896. tx_dev = master->dma_tx->device->dev;
  897. p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
  898. DMA_TO_DEVICE);
  899. if (dma_mapping_error(tx_dev, p->tx_dma_addr))
  900. goto free_rx_page;
  901. rx_dev = master->dma_rx->device->dev;
  902. p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
  903. DMA_FROM_DEVICE);
  904. if (dma_mapping_error(rx_dev, p->rx_dma_addr))
  905. goto unmap_tx_page;
  906. dev_info(dev, "DMA available");
  907. return 0;
  908. unmap_tx_page:
  909. dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
  910. free_rx_page:
  911. free_page((unsigned long)p->rx_dma_page);
  912. free_tx_page:
  913. free_page((unsigned long)p->tx_dma_page);
  914. free_rx_chan:
  915. dma_release_channel(master->dma_rx);
  916. free_tx_chan:
  917. dma_release_channel(master->dma_tx);
  918. master->dma_tx = NULL;
  919. return -ENODEV;
  920. }
  921. static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
  922. {
  923. struct spi_master *master = p->master;
  924. struct device *dev;
  925. if (!master->dma_tx)
  926. return;
  927. dev = &p->pdev->dev;
  928. dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr,
  929. PAGE_SIZE, DMA_FROM_DEVICE);
  930. dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr,
  931. PAGE_SIZE, DMA_TO_DEVICE);
  932. free_page((unsigned long)p->rx_dma_page);
  933. free_page((unsigned long)p->tx_dma_page);
  934. dma_release_channel(master->dma_rx);
  935. dma_release_channel(master->dma_tx);
  936. }
  937. static int sh_msiof_spi_probe(struct platform_device *pdev)
  938. {
  939. struct resource *r;
  940. struct spi_master *master;
  941. const struct of_device_id *of_id;
  942. struct sh_msiof_spi_priv *p;
  943. int i;
  944. int ret;
  945. master = spi_alloc_master(&pdev->dev, sizeof(struct sh_msiof_spi_priv));
  946. if (master == NULL) {
  947. dev_err(&pdev->dev, "failed to allocate spi master\n");
  948. return -ENOMEM;
  949. }
  950. p = spi_master_get_devdata(master);
  951. platform_set_drvdata(pdev, p);
  952. p->master = master;
  953. of_id = of_match_device(sh_msiof_match, &pdev->dev);
  954. if (of_id) {
  955. p->chipdata = of_id->data;
  956. p->info = sh_msiof_spi_parse_dt(&pdev->dev);
  957. } else {
  958. p->chipdata = (const void *)pdev->id_entry->driver_data;
  959. p->info = dev_get_platdata(&pdev->dev);
  960. }
  961. if (!p->info) {
  962. dev_err(&pdev->dev, "failed to obtain device info\n");
  963. ret = -ENXIO;
  964. goto err1;
  965. }
  966. init_completion(&p->done);
  967. p->clk = devm_clk_get(&pdev->dev, NULL);
  968. if (IS_ERR(p->clk)) {
  969. dev_err(&pdev->dev, "cannot get clock\n");
  970. ret = PTR_ERR(p->clk);
  971. goto err1;
  972. }
  973. i = platform_get_irq(pdev, 0);
  974. if (i < 0) {
  975. dev_err(&pdev->dev, "cannot get platform IRQ\n");
  976. ret = -ENOENT;
  977. goto err1;
  978. }
  979. r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  980. p->mapbase = devm_ioremap_resource(&pdev->dev, r);
  981. if (IS_ERR(p->mapbase)) {
  982. ret = PTR_ERR(p->mapbase);
  983. goto err1;
  984. }
  985. ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
  986. dev_name(&pdev->dev), p);
  987. if (ret) {
  988. dev_err(&pdev->dev, "unable to request irq\n");
  989. goto err1;
  990. }
  991. p->pdev = pdev;
  992. pm_runtime_enable(&pdev->dev);
  993. /* Platform data may override FIFO sizes */
  994. p->tx_fifo_size = p->chipdata->tx_fifo_size;
  995. p->rx_fifo_size = p->chipdata->rx_fifo_size;
  996. if (p->info->tx_fifo_override)
  997. p->tx_fifo_size = p->info->tx_fifo_override;
  998. if (p->info->rx_fifo_override)
  999. p->rx_fifo_size = p->info->rx_fifo_override;
  1000. /* init master code */
  1001. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
  1002. master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
  1003. master->flags = p->chipdata->master_flags;
  1004. master->bus_num = pdev->id;
  1005. master->dev.of_node = pdev->dev.of_node;
  1006. master->num_chipselect = p->info->num_chipselect;
  1007. master->setup = sh_msiof_spi_setup;
  1008. master->prepare_message = sh_msiof_prepare_message;
  1009. master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
  1010. master->auto_runtime_pm = true;
  1011. master->transfer_one = sh_msiof_transfer_one;
  1012. ret = sh_msiof_request_dma(p);
  1013. if (ret < 0)
  1014. dev_warn(&pdev->dev, "DMA not available, using PIO\n");
  1015. ret = devm_spi_register_master(&pdev->dev, master);
  1016. if (ret < 0) {
  1017. dev_err(&pdev->dev, "spi_register_master error.\n");
  1018. goto err2;
  1019. }
  1020. return 0;
  1021. err2:
  1022. sh_msiof_release_dma(p);
  1023. pm_runtime_disable(&pdev->dev);
  1024. err1:
  1025. spi_master_put(master);
  1026. return ret;
  1027. }
  1028. static int sh_msiof_spi_remove(struct platform_device *pdev)
  1029. {
  1030. struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
  1031. sh_msiof_release_dma(p);
  1032. pm_runtime_disable(&pdev->dev);
  1033. return 0;
  1034. }
  1035. static struct platform_device_id spi_driver_ids[] = {
  1036. { "spi_sh_msiof", (kernel_ulong_t)&sh_data },
  1037. { "spi_r8a7790_msiof", (kernel_ulong_t)&r8a779x_data },
  1038. { "spi_r8a7791_msiof", (kernel_ulong_t)&r8a779x_data },
  1039. { "spi_r8a7792_msiof", (kernel_ulong_t)&r8a779x_data },
  1040. { "spi_r8a7793_msiof", (kernel_ulong_t)&r8a779x_data },
  1041. { "spi_r8a7794_msiof", (kernel_ulong_t)&r8a779x_data },
  1042. {},
  1043. };
  1044. MODULE_DEVICE_TABLE(platform, spi_driver_ids);
  1045. static struct platform_driver sh_msiof_spi_drv = {
  1046. .probe = sh_msiof_spi_probe,
  1047. .remove = sh_msiof_spi_remove,
  1048. .id_table = spi_driver_ids,
  1049. .driver = {
  1050. .name = "spi_sh_msiof",
  1051. .owner = THIS_MODULE,
  1052. .of_match_table = of_match_ptr(sh_msiof_match),
  1053. },
  1054. };
  1055. module_platform_driver(sh_msiof_spi_drv);
  1056. MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
  1057. MODULE_AUTHOR("Magnus Damm");
  1058. MODULE_LICENSE("GPL v2");
  1059. MODULE_ALIAS("platform:spi_sh_msiof");