spi-rspi.c 32 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223
  1. /*
  2. * SH RSPI driver
  3. *
  4. * Copyright (C) 2012, 2013 Renesas Solutions Corp.
  5. * Copyright (C) 2014 Glider bvba
  6. *
  7. * Based on spi-sh.c:
  8. * Copyright (C) 2011 Renesas Solutions Corp.
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation; version 2 of the License.
  13. *
  14. * This program is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. * GNU General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  22. *
  23. */
  24. #include <linux/module.h>
  25. #include <linux/kernel.h>
  26. #include <linux/sched.h>
  27. #include <linux/errno.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/platform_device.h>
  30. #include <linux/io.h>
  31. #include <linux/clk.h>
  32. #include <linux/dmaengine.h>
  33. #include <linux/dma-mapping.h>
  34. #include <linux/of_device.h>
  35. #include <linux/pm_runtime.h>
  36. #include <linux/sh_dma.h>
  37. #include <linux/spi/spi.h>
  38. #include <linux/spi/rspi.h>
  39. #define RSPI_SPCR 0x00 /* Control Register */
  40. #define RSPI_SSLP 0x01 /* Slave Select Polarity Register */
  41. #define RSPI_SPPCR 0x02 /* Pin Control Register */
  42. #define RSPI_SPSR 0x03 /* Status Register */
  43. #define RSPI_SPDR 0x04 /* Data Register */
  44. #define RSPI_SPSCR 0x08 /* Sequence Control Register */
  45. #define RSPI_SPSSR 0x09 /* Sequence Status Register */
  46. #define RSPI_SPBR 0x0a /* Bit Rate Register */
  47. #define RSPI_SPDCR 0x0b /* Data Control Register */
  48. #define RSPI_SPCKD 0x0c /* Clock Delay Register */
  49. #define RSPI_SSLND 0x0d /* Slave Select Negation Delay Register */
  50. #define RSPI_SPND 0x0e /* Next-Access Delay Register */
  51. #define RSPI_SPCR2 0x0f /* Control Register 2 (SH only) */
  52. #define RSPI_SPCMD0 0x10 /* Command Register 0 */
  53. #define RSPI_SPCMD1 0x12 /* Command Register 1 */
  54. #define RSPI_SPCMD2 0x14 /* Command Register 2 */
  55. #define RSPI_SPCMD3 0x16 /* Command Register 3 */
  56. #define RSPI_SPCMD4 0x18 /* Command Register 4 */
  57. #define RSPI_SPCMD5 0x1a /* Command Register 5 */
  58. #define RSPI_SPCMD6 0x1c /* Command Register 6 */
  59. #define RSPI_SPCMD7 0x1e /* Command Register 7 */
  60. #define RSPI_SPCMD(i) (RSPI_SPCMD0 + (i) * 2)
  61. #define RSPI_NUM_SPCMD 8
  62. #define RSPI_RZ_NUM_SPCMD 4
  63. #define QSPI_NUM_SPCMD 4
  64. /* RSPI on RZ only */
  65. #define RSPI_SPBFCR 0x20 /* Buffer Control Register */
  66. #define RSPI_SPBFDR 0x22 /* Buffer Data Count Setting Register */
  67. /* QSPI only */
  68. #define QSPI_SPBFCR 0x18 /* Buffer Control Register */
  69. #define QSPI_SPBDCR 0x1a /* Buffer Data Count Register */
  70. #define QSPI_SPBMUL0 0x1c /* Transfer Data Length Multiplier Setting Register 0 */
  71. #define QSPI_SPBMUL1 0x20 /* Transfer Data Length Multiplier Setting Register 1 */
  72. #define QSPI_SPBMUL2 0x24 /* Transfer Data Length Multiplier Setting Register 2 */
  73. #define QSPI_SPBMUL3 0x28 /* Transfer Data Length Multiplier Setting Register 3 */
  74. #define QSPI_SPBMUL(i) (QSPI_SPBMUL0 + (i) * 4)
  75. /* SPCR - Control Register */
  76. #define SPCR_SPRIE 0x80 /* Receive Interrupt Enable */
  77. #define SPCR_SPE 0x40 /* Function Enable */
  78. #define SPCR_SPTIE 0x20 /* Transmit Interrupt Enable */
  79. #define SPCR_SPEIE 0x10 /* Error Interrupt Enable */
  80. #define SPCR_MSTR 0x08 /* Master/Slave Mode Select */
  81. #define SPCR_MODFEN 0x04 /* Mode Fault Error Detection Enable */
  82. /* RSPI on SH only */
  83. #define SPCR_TXMD 0x02 /* TX Only Mode (vs. Full Duplex) */
  84. #define SPCR_SPMS 0x01 /* 3-wire Mode (vs. 4-wire) */
  85. /* QSPI on R-Car Gen2 only */
  86. #define SPCR_WSWAP 0x02 /* Word Swap of read-data for DMAC */
  87. #define SPCR_BSWAP 0x01 /* Byte Swap of read-data for DMAC */
  88. /* SSLP - Slave Select Polarity Register */
  89. #define SSLP_SSL1P 0x02 /* SSL1 Signal Polarity Setting */
  90. #define SSLP_SSL0P 0x01 /* SSL0 Signal Polarity Setting */
  91. /* SPPCR - Pin Control Register */
  92. #define SPPCR_MOIFE 0x20 /* MOSI Idle Value Fixing Enable */
  93. #define SPPCR_MOIFV 0x10 /* MOSI Idle Fixed Value */
  94. #define SPPCR_SPOM 0x04
  95. #define SPPCR_SPLP2 0x02 /* Loopback Mode 2 (non-inverting) */
  96. #define SPPCR_SPLP 0x01 /* Loopback Mode (inverting) */
  97. #define SPPCR_IO3FV 0x04 /* Single-/Dual-SPI Mode IO3 Output Fixed Value */
  98. #define SPPCR_IO2FV 0x04 /* Single-/Dual-SPI Mode IO2 Output Fixed Value */
  99. /* SPSR - Status Register */
  100. #define SPSR_SPRF 0x80 /* Receive Buffer Full Flag */
  101. #define SPSR_TEND 0x40 /* Transmit End */
  102. #define SPSR_SPTEF 0x20 /* Transmit Buffer Empty Flag */
  103. #define SPSR_PERF 0x08 /* Parity Error Flag */
  104. #define SPSR_MODF 0x04 /* Mode Fault Error Flag */
  105. #define SPSR_IDLNF 0x02 /* RSPI Idle Flag */
  106. #define SPSR_OVRF 0x01 /* Overrun Error Flag (RSPI only) */
  107. /* SPSCR - Sequence Control Register */
  108. #define SPSCR_SPSLN_MASK 0x07 /* Sequence Length Specification */
  109. /* SPSSR - Sequence Status Register */
  110. #define SPSSR_SPECM_MASK 0x70 /* Command Error Mask */
  111. #define SPSSR_SPCP_MASK 0x07 /* Command Pointer Mask */
  112. /* SPDCR - Data Control Register */
  113. #define SPDCR_TXDMY 0x80 /* Dummy Data Transmission Enable */
  114. #define SPDCR_SPLW1 0x40 /* Access Width Specification (RZ) */
  115. #define SPDCR_SPLW0 0x20 /* Access Width Specification (RZ) */
  116. #define SPDCR_SPLLWORD (SPDCR_SPLW1 | SPDCR_SPLW0)
  117. #define SPDCR_SPLWORD SPDCR_SPLW1
  118. #define SPDCR_SPLBYTE SPDCR_SPLW0
  119. #define SPDCR_SPLW 0x20 /* Access Width Specification (SH) */
  120. #define SPDCR_SPRDTD 0x10 /* Receive Transmit Data Select (SH) */
  121. #define SPDCR_SLSEL1 0x08
  122. #define SPDCR_SLSEL0 0x04
  123. #define SPDCR_SLSEL_MASK 0x0c /* SSL1 Output Select (SH) */
  124. #define SPDCR_SPFC1 0x02
  125. #define SPDCR_SPFC0 0x01
  126. #define SPDCR_SPFC_MASK 0x03 /* Frame Count Setting (1-4) (SH) */
  127. /* SPCKD - Clock Delay Register */
  128. #define SPCKD_SCKDL_MASK 0x07 /* Clock Delay Setting (1-8) */
  129. /* SSLND - Slave Select Negation Delay Register */
  130. #define SSLND_SLNDL_MASK 0x07 /* SSL Negation Delay Setting (1-8) */
  131. /* SPND - Next-Access Delay Register */
  132. #define SPND_SPNDL_MASK 0x07 /* Next-Access Delay Setting (1-8) */
  133. /* SPCR2 - Control Register 2 */
  134. #define SPCR2_PTE 0x08 /* Parity Self-Test Enable */
  135. #define SPCR2_SPIE 0x04 /* Idle Interrupt Enable */
  136. #define SPCR2_SPOE 0x02 /* Odd Parity Enable (vs. Even) */
  137. #define SPCR2_SPPE 0x01 /* Parity Enable */
  138. /* SPCMDn - Command Registers */
  139. #define SPCMD_SCKDEN 0x8000 /* Clock Delay Setting Enable */
  140. #define SPCMD_SLNDEN 0x4000 /* SSL Negation Delay Setting Enable */
  141. #define SPCMD_SPNDEN 0x2000 /* Next-Access Delay Enable */
  142. #define SPCMD_LSBF 0x1000 /* LSB First */
  143. #define SPCMD_SPB_MASK 0x0f00 /* Data Length Setting */
  144. #define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK)
  145. #define SPCMD_SPB_8BIT 0x0000 /* QSPI only */
  146. #define SPCMD_SPB_16BIT 0x0100
  147. #define SPCMD_SPB_20BIT 0x0000
  148. #define SPCMD_SPB_24BIT 0x0100
  149. #define SPCMD_SPB_32BIT 0x0200
  150. #define SPCMD_SSLKP 0x0080 /* SSL Signal Level Keeping */
  151. #define SPCMD_SPIMOD_MASK 0x0060 /* SPI Operating Mode (QSPI only) */
  152. #define SPCMD_SPIMOD1 0x0040
  153. #define SPCMD_SPIMOD0 0x0020
  154. #define SPCMD_SPIMOD_SINGLE 0
  155. #define SPCMD_SPIMOD_DUAL SPCMD_SPIMOD0
  156. #define SPCMD_SPIMOD_QUAD SPCMD_SPIMOD1
  157. #define SPCMD_SPRW 0x0010 /* SPI Read/Write Access (Dual/Quad) */
  158. #define SPCMD_SSLA_MASK 0x0030 /* SSL Assert Signal Setting (RSPI) */
  159. #define SPCMD_BRDV_MASK 0x000c /* Bit Rate Division Setting */
  160. #define SPCMD_CPOL 0x0002 /* Clock Polarity Setting */
  161. #define SPCMD_CPHA 0x0001 /* Clock Phase Setting */
  162. /* SPBFCR - Buffer Control Register */
  163. #define SPBFCR_TXRST 0x80 /* Transmit Buffer Data Reset */
  164. #define SPBFCR_RXRST 0x40 /* Receive Buffer Data Reset */
  165. #define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */
  166. #define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */
  167. struct rspi_data {
  168. void __iomem *addr;
  169. u32 max_speed_hz;
  170. struct spi_master *master;
  171. wait_queue_head_t wait;
  172. struct clk *clk;
  173. u16 spcmd;
  174. u8 spsr;
  175. u8 sppcr;
  176. int rx_irq, tx_irq;
  177. const struct spi_ops *ops;
  178. unsigned dma_callbacked:1;
  179. unsigned byte_access:1;
  180. };
  181. static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
  182. {
  183. iowrite8(data, rspi->addr + offset);
  184. }
  185. static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
  186. {
  187. iowrite16(data, rspi->addr + offset);
  188. }
  189. static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
  190. {
  191. iowrite32(data, rspi->addr + offset);
  192. }
  193. static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
  194. {
  195. return ioread8(rspi->addr + offset);
  196. }
  197. static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
  198. {
  199. return ioread16(rspi->addr + offset);
  200. }
  201. static void rspi_write_data(const struct rspi_data *rspi, u16 data)
  202. {
  203. if (rspi->byte_access)
  204. rspi_write8(rspi, data, RSPI_SPDR);
  205. else /* 16 bit */
  206. rspi_write16(rspi, data, RSPI_SPDR);
  207. }
  208. static u16 rspi_read_data(const struct rspi_data *rspi)
  209. {
  210. if (rspi->byte_access)
  211. return rspi_read8(rspi, RSPI_SPDR);
  212. else /* 16 bit */
  213. return rspi_read16(rspi, RSPI_SPDR);
  214. }
  215. /* optional functions */
  216. struct spi_ops {
  217. int (*set_config_register)(struct rspi_data *rspi, int access_size);
  218. int (*transfer_one)(struct spi_master *master, struct spi_device *spi,
  219. struct spi_transfer *xfer);
  220. u16 mode_bits;
  221. u16 flags;
  222. u16 fifo_size;
  223. };
  224. /*
  225. * functions for RSPI on legacy SH
  226. */
  227. static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
  228. {
  229. int spbr;
  230. /* Sets output mode, MOSI signal, and (optionally) loopback */
  231. rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
  232. /* Sets transfer bit rate */
  233. spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
  234. 2 * rspi->max_speed_hz) - 1;
  235. rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
  236. /* Disable dummy transmission, set 16-bit word access, 1 frame */
  237. rspi_write8(rspi, 0, RSPI_SPDCR);
  238. rspi->byte_access = 0;
  239. /* Sets RSPCK, SSL, next-access delay value */
  240. rspi_write8(rspi, 0x00, RSPI_SPCKD);
  241. rspi_write8(rspi, 0x00, RSPI_SSLND);
  242. rspi_write8(rspi, 0x00, RSPI_SPND);
  243. /* Sets parity, interrupt mask */
  244. rspi_write8(rspi, 0x00, RSPI_SPCR2);
  245. /* Sets SPCMD */
  246. rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
  247. rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
  248. /* Sets RSPI mode */
  249. rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
  250. return 0;
  251. }
  252. /*
  253. * functions for RSPI on RZ
  254. */
  255. static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
  256. {
  257. int spbr;
  258. /* Sets output mode, MOSI signal, and (optionally) loopback */
  259. rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
  260. /* Sets transfer bit rate */
  261. spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
  262. 2 * rspi->max_speed_hz) - 1;
  263. rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
  264. /* Disable dummy transmission, set byte access */
  265. rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
  266. rspi->byte_access = 1;
  267. /* Sets RSPCK, SSL, next-access delay value */
  268. rspi_write8(rspi, 0x00, RSPI_SPCKD);
  269. rspi_write8(rspi, 0x00, RSPI_SSLND);
  270. rspi_write8(rspi, 0x00, RSPI_SPND);
  271. /* Sets SPCMD */
  272. rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
  273. rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
  274. /* Sets RSPI mode */
  275. rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
  276. return 0;
  277. }
  278. /*
  279. * functions for QSPI
  280. */
  281. static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
  282. {
  283. int spbr;
  284. /* Sets output mode, MOSI signal, and (optionally) loopback */
  285. rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
  286. /* Sets transfer bit rate */
  287. spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 2 * rspi->max_speed_hz);
  288. rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
  289. /* Disable dummy transmission, set byte access */
  290. rspi_write8(rspi, 0, RSPI_SPDCR);
  291. rspi->byte_access = 1;
  292. /* Sets RSPCK, SSL, next-access delay value */
  293. rspi_write8(rspi, 0x00, RSPI_SPCKD);
  294. rspi_write8(rspi, 0x00, RSPI_SSLND);
  295. rspi_write8(rspi, 0x00, RSPI_SPND);
  296. /* Data Length Setting */
  297. if (access_size == 8)
  298. rspi->spcmd |= SPCMD_SPB_8BIT;
  299. else if (access_size == 16)
  300. rspi->spcmd |= SPCMD_SPB_16BIT;
  301. else
  302. rspi->spcmd |= SPCMD_SPB_32BIT;
  303. rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
  304. /* Resets transfer data length */
  305. rspi_write32(rspi, 0, QSPI_SPBMUL0);
  306. /* Resets transmit and receive buffer */
  307. rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
  308. /* Sets buffer to allow normal operation */
  309. rspi_write8(rspi, 0x00, QSPI_SPBFCR);
  310. /* Sets SPCMD */
  311. rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
  312. /* Enables SPI function in master mode */
  313. rspi_write8(rspi, SPCR_SPE | SPCR_MSTR, RSPI_SPCR);
  314. return 0;
  315. }
  316. #define set_config_register(spi, n) spi->ops->set_config_register(spi, n)
  317. static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
  318. {
  319. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
  320. }
  321. static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
  322. {
  323. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
  324. }
  325. static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
  326. u8 enable_bit)
  327. {
  328. int ret;
  329. rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
  330. if (rspi->spsr & wait_mask)
  331. return 0;
  332. rspi_enable_irq(rspi, enable_bit);
  333. ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
  334. if (ret == 0 && !(rspi->spsr & wait_mask))
  335. return -ETIMEDOUT;
  336. return 0;
  337. }
  338. static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
  339. {
  340. return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
  341. }
  342. static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
  343. {
  344. return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
  345. }
  346. static int rspi_data_out(struct rspi_data *rspi, u8 data)
  347. {
  348. int error = rspi_wait_for_tx_empty(rspi);
  349. if (error < 0) {
  350. dev_err(&rspi->master->dev, "transmit timeout\n");
  351. return error;
  352. }
  353. rspi_write_data(rspi, data);
  354. return 0;
  355. }
  356. static int rspi_data_in(struct rspi_data *rspi)
  357. {
  358. int error;
  359. u8 data;
  360. error = rspi_wait_for_rx_full(rspi);
  361. if (error < 0) {
  362. dev_err(&rspi->master->dev, "receive timeout\n");
  363. return error;
  364. }
  365. data = rspi_read_data(rspi);
  366. return data;
  367. }
  368. static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
  369. unsigned int n)
  370. {
  371. while (n-- > 0) {
  372. if (tx) {
  373. int ret = rspi_data_out(rspi, *tx++);
  374. if (ret < 0)
  375. return ret;
  376. }
  377. if (rx) {
  378. int ret = rspi_data_in(rspi);
  379. if (ret < 0)
  380. return ret;
  381. *rx++ = ret;
  382. }
  383. }
  384. return 0;
  385. }
  386. static void rspi_dma_complete(void *arg)
  387. {
  388. struct rspi_data *rspi = arg;
  389. rspi->dma_callbacked = 1;
  390. wake_up_interruptible(&rspi->wait);
  391. }
  392. static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
  393. struct sg_table *rx)
  394. {
  395. struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
  396. u8 irq_mask = 0;
  397. unsigned int other_irq = 0;
  398. dma_cookie_t cookie;
  399. int ret;
  400. /* First prepare and submit the DMA request(s), as this may fail */
  401. if (rx) {
  402. desc_rx = dmaengine_prep_slave_sg(rspi->master->dma_rx,
  403. rx->sgl, rx->nents, DMA_FROM_DEVICE,
  404. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  405. if (!desc_rx) {
  406. ret = -EAGAIN;
  407. goto no_dma_rx;
  408. }
  409. desc_rx->callback = rspi_dma_complete;
  410. desc_rx->callback_param = rspi;
  411. cookie = dmaengine_submit(desc_rx);
  412. if (dma_submit_error(cookie)) {
  413. ret = cookie;
  414. goto no_dma_rx;
  415. }
  416. irq_mask |= SPCR_SPRIE;
  417. }
  418. if (tx) {
  419. desc_tx = dmaengine_prep_slave_sg(rspi->master->dma_tx,
  420. tx->sgl, tx->nents, DMA_TO_DEVICE,
  421. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  422. if (!desc_tx) {
  423. ret = -EAGAIN;
  424. goto no_dma_tx;
  425. }
  426. if (rx) {
  427. /* No callback */
  428. desc_tx->callback = NULL;
  429. } else {
  430. desc_tx->callback = rspi_dma_complete;
  431. desc_tx->callback_param = rspi;
  432. }
  433. cookie = dmaengine_submit(desc_tx);
  434. if (dma_submit_error(cookie)) {
  435. ret = cookie;
  436. goto no_dma_tx;
  437. }
  438. irq_mask |= SPCR_SPTIE;
  439. }
  440. /*
  441. * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
  442. * called. So, this driver disables the IRQ while DMA transfer.
  443. */
  444. if (tx)
  445. disable_irq(other_irq = rspi->tx_irq);
  446. if (rx && rspi->rx_irq != other_irq)
  447. disable_irq(rspi->rx_irq);
  448. rspi_enable_irq(rspi, irq_mask);
  449. rspi->dma_callbacked = 0;
  450. /* Now start DMA */
  451. if (rx)
  452. dma_async_issue_pending(rspi->master->dma_rx);
  453. if (tx)
  454. dma_async_issue_pending(rspi->master->dma_tx);
  455. ret = wait_event_interruptible_timeout(rspi->wait,
  456. rspi->dma_callbacked, HZ);
  457. if (ret > 0 && rspi->dma_callbacked)
  458. ret = 0;
  459. else if (!ret) {
  460. dev_err(&rspi->master->dev, "DMA timeout\n");
  461. ret = -ETIMEDOUT;
  462. if (tx)
  463. dmaengine_terminate_all(rspi->master->dma_tx);
  464. if (rx)
  465. dmaengine_terminate_all(rspi->master->dma_rx);
  466. }
  467. rspi_disable_irq(rspi, irq_mask);
  468. if (tx)
  469. enable_irq(rspi->tx_irq);
  470. if (rx && rspi->rx_irq != other_irq)
  471. enable_irq(rspi->rx_irq);
  472. return ret;
  473. no_dma_tx:
  474. if (rx)
  475. dmaengine_terminate_all(rspi->master->dma_rx);
  476. no_dma_rx:
  477. if (ret == -EAGAIN) {
  478. pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
  479. dev_driver_string(&rspi->master->dev),
  480. dev_name(&rspi->master->dev));
  481. }
  482. return ret;
  483. }
  484. static void rspi_receive_init(const struct rspi_data *rspi)
  485. {
  486. u8 spsr;
  487. spsr = rspi_read8(rspi, RSPI_SPSR);
  488. if (spsr & SPSR_SPRF)
  489. rspi_read_data(rspi); /* dummy read */
  490. if (spsr & SPSR_OVRF)
  491. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
  492. RSPI_SPSR);
  493. }
  494. static void rspi_rz_receive_init(const struct rspi_data *rspi)
  495. {
  496. rspi_receive_init(rspi);
  497. rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
  498. rspi_write8(rspi, 0, RSPI_SPBFCR);
  499. }
  500. static void qspi_receive_init(const struct rspi_data *rspi)
  501. {
  502. u8 spsr;
  503. spsr = rspi_read8(rspi, RSPI_SPSR);
  504. if (spsr & SPSR_SPRF)
  505. rspi_read_data(rspi); /* dummy read */
  506. rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
  507. rspi_write8(rspi, 0, QSPI_SPBFCR);
  508. }
  509. static bool __rspi_can_dma(const struct rspi_data *rspi,
  510. const struct spi_transfer *xfer)
  511. {
  512. return xfer->len > rspi->ops->fifo_size;
  513. }
  514. static bool rspi_can_dma(struct spi_master *master, struct spi_device *spi,
  515. struct spi_transfer *xfer)
  516. {
  517. struct rspi_data *rspi = spi_master_get_devdata(master);
  518. return __rspi_can_dma(rspi, xfer);
  519. }
  520. static int rspi_common_transfer(struct rspi_data *rspi,
  521. struct spi_transfer *xfer)
  522. {
  523. int ret;
  524. if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
  525. /* rx_buf can be NULL on RSPI on SH in TX-only Mode */
  526. ret = rspi_dma_transfer(rspi, &xfer->tx_sg,
  527. xfer->rx_buf ? &xfer->rx_sg : NULL);
  528. if (ret != -EAGAIN)
  529. return ret;
  530. }
  531. ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
  532. if (ret < 0)
  533. return ret;
  534. /* Wait for the last transmission */
  535. rspi_wait_for_tx_empty(rspi);
  536. return 0;
  537. }
  538. static int rspi_transfer_one(struct spi_master *master, struct spi_device *spi,
  539. struct spi_transfer *xfer)
  540. {
  541. struct rspi_data *rspi = spi_master_get_devdata(master);
  542. u8 spcr;
  543. spcr = rspi_read8(rspi, RSPI_SPCR);
  544. if (xfer->rx_buf) {
  545. rspi_receive_init(rspi);
  546. spcr &= ~SPCR_TXMD;
  547. } else {
  548. spcr |= SPCR_TXMD;
  549. }
  550. rspi_write8(rspi, spcr, RSPI_SPCR);
  551. return rspi_common_transfer(rspi, xfer);
  552. }
  553. static int rspi_rz_transfer_one(struct spi_master *master,
  554. struct spi_device *spi,
  555. struct spi_transfer *xfer)
  556. {
  557. struct rspi_data *rspi = spi_master_get_devdata(master);
  558. rspi_rz_receive_init(rspi);
  559. return rspi_common_transfer(rspi, xfer);
  560. }
  561. static int qspi_transfer_out_in(struct rspi_data *rspi,
  562. struct spi_transfer *xfer)
  563. {
  564. qspi_receive_init(rspi);
  565. return rspi_common_transfer(rspi, xfer);
  566. }
  567. static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
  568. {
  569. int ret;
  570. if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
  571. ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
  572. if (ret != -EAGAIN)
  573. return ret;
  574. }
  575. ret = rspi_pio_transfer(rspi, xfer->tx_buf, NULL, xfer->len);
  576. if (ret < 0)
  577. return ret;
  578. /* Wait for the last transmission */
  579. rspi_wait_for_tx_empty(rspi);
  580. return 0;
  581. }
  582. static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
  583. {
  584. if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
  585. int ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
  586. if (ret != -EAGAIN)
  587. return ret;
  588. }
  589. return rspi_pio_transfer(rspi, NULL, xfer->rx_buf, xfer->len);
  590. }
  591. static int qspi_transfer_one(struct spi_master *master, struct spi_device *spi,
  592. struct spi_transfer *xfer)
  593. {
  594. struct rspi_data *rspi = spi_master_get_devdata(master);
  595. if (spi->mode & SPI_LOOP) {
  596. return qspi_transfer_out_in(rspi, xfer);
  597. } else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
  598. /* Quad or Dual SPI Write */
  599. return qspi_transfer_out(rspi, xfer);
  600. } else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
  601. /* Quad or Dual SPI Read */
  602. return qspi_transfer_in(rspi, xfer);
  603. } else {
  604. /* Single SPI Transfer */
  605. return qspi_transfer_out_in(rspi, xfer);
  606. }
  607. }
  608. static int rspi_setup(struct spi_device *spi)
  609. {
  610. struct rspi_data *rspi = spi_master_get_devdata(spi->master);
  611. rspi->max_speed_hz = spi->max_speed_hz;
  612. rspi->spcmd = SPCMD_SSLKP;
  613. if (spi->mode & SPI_CPOL)
  614. rspi->spcmd |= SPCMD_CPOL;
  615. if (spi->mode & SPI_CPHA)
  616. rspi->spcmd |= SPCMD_CPHA;
  617. /* CMOS output mode and MOSI signal from previous transfer */
  618. rspi->sppcr = 0;
  619. if (spi->mode & SPI_LOOP)
  620. rspi->sppcr |= SPPCR_SPLP;
  621. set_config_register(rspi, 8);
  622. return 0;
  623. }
  624. static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
  625. {
  626. if (xfer->tx_buf)
  627. switch (xfer->tx_nbits) {
  628. case SPI_NBITS_QUAD:
  629. return SPCMD_SPIMOD_QUAD;
  630. case SPI_NBITS_DUAL:
  631. return SPCMD_SPIMOD_DUAL;
  632. default:
  633. return 0;
  634. }
  635. if (xfer->rx_buf)
  636. switch (xfer->rx_nbits) {
  637. case SPI_NBITS_QUAD:
  638. return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
  639. case SPI_NBITS_DUAL:
  640. return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
  641. default:
  642. return 0;
  643. }
  644. return 0;
  645. }
  646. static int qspi_setup_sequencer(struct rspi_data *rspi,
  647. const struct spi_message *msg)
  648. {
  649. const struct spi_transfer *xfer;
  650. unsigned int i = 0, len = 0;
  651. u16 current_mode = 0xffff, mode;
  652. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  653. mode = qspi_transfer_mode(xfer);
  654. if (mode == current_mode) {
  655. len += xfer->len;
  656. continue;
  657. }
  658. /* Transfer mode change */
  659. if (i) {
  660. /* Set transfer data length of previous transfer */
  661. rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
  662. }
  663. if (i >= QSPI_NUM_SPCMD) {
  664. dev_err(&msg->spi->dev,
  665. "Too many different transfer modes");
  666. return -EINVAL;
  667. }
  668. /* Program transfer mode for this transfer */
  669. rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
  670. current_mode = mode;
  671. len = xfer->len;
  672. i++;
  673. }
  674. if (i) {
  675. /* Set final transfer data length and sequence length */
  676. rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
  677. rspi_write8(rspi, i - 1, RSPI_SPSCR);
  678. }
  679. return 0;
  680. }
  681. static int rspi_prepare_message(struct spi_master *master,
  682. struct spi_message *msg)
  683. {
  684. struct rspi_data *rspi = spi_master_get_devdata(master);
  685. int ret;
  686. if (msg->spi->mode &
  687. (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
  688. /* Setup sequencer for messages with multiple transfer modes */
  689. ret = qspi_setup_sequencer(rspi, msg);
  690. if (ret < 0)
  691. return ret;
  692. }
  693. /* Enable SPI function in master mode */
  694. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
  695. return 0;
  696. }
  697. static int rspi_unprepare_message(struct spi_master *master,
  698. struct spi_message *msg)
  699. {
  700. struct rspi_data *rspi = spi_master_get_devdata(master);
  701. /* Disable SPI function */
  702. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
  703. /* Reset sequencer for Single SPI Transfers */
  704. rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
  705. rspi_write8(rspi, 0, RSPI_SPSCR);
  706. return 0;
  707. }
  708. static irqreturn_t rspi_irq_mux(int irq, void *_sr)
  709. {
  710. struct rspi_data *rspi = _sr;
  711. u8 spsr;
  712. irqreturn_t ret = IRQ_NONE;
  713. u8 disable_irq = 0;
  714. rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
  715. if (spsr & SPSR_SPRF)
  716. disable_irq |= SPCR_SPRIE;
  717. if (spsr & SPSR_SPTEF)
  718. disable_irq |= SPCR_SPTIE;
  719. if (disable_irq) {
  720. ret = IRQ_HANDLED;
  721. rspi_disable_irq(rspi, disable_irq);
  722. wake_up(&rspi->wait);
  723. }
  724. return ret;
  725. }
  726. static irqreturn_t rspi_irq_rx(int irq, void *_sr)
  727. {
  728. struct rspi_data *rspi = _sr;
  729. u8 spsr;
  730. rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
  731. if (spsr & SPSR_SPRF) {
  732. rspi_disable_irq(rspi, SPCR_SPRIE);
  733. wake_up(&rspi->wait);
  734. return IRQ_HANDLED;
  735. }
  736. return 0;
  737. }
  738. static irqreturn_t rspi_irq_tx(int irq, void *_sr)
  739. {
  740. struct rspi_data *rspi = _sr;
  741. u8 spsr;
  742. rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
  743. if (spsr & SPSR_SPTEF) {
  744. rspi_disable_irq(rspi, SPCR_SPTIE);
  745. wake_up(&rspi->wait);
  746. return IRQ_HANDLED;
  747. }
  748. return 0;
  749. }
  750. static struct dma_chan *rspi_request_dma_chan(struct device *dev,
  751. enum dma_transfer_direction dir,
  752. unsigned int id,
  753. dma_addr_t port_addr)
  754. {
  755. dma_cap_mask_t mask;
  756. struct dma_chan *chan;
  757. struct dma_slave_config cfg;
  758. int ret;
  759. dma_cap_zero(mask);
  760. dma_cap_set(DMA_SLAVE, mask);
  761. chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
  762. (void *)(unsigned long)id, dev,
  763. dir == DMA_MEM_TO_DEV ? "tx" : "rx");
  764. if (!chan) {
  765. dev_warn(dev, "dma_request_slave_channel_compat failed\n");
  766. return NULL;
  767. }
  768. memset(&cfg, 0, sizeof(cfg));
  769. cfg.slave_id = id;
  770. cfg.direction = dir;
  771. if (dir == DMA_MEM_TO_DEV) {
  772. cfg.dst_addr = port_addr;
  773. cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
  774. } else {
  775. cfg.src_addr = port_addr;
  776. cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
  777. }
  778. ret = dmaengine_slave_config(chan, &cfg);
  779. if (ret) {
  780. dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
  781. dma_release_channel(chan);
  782. return NULL;
  783. }
  784. return chan;
  785. }
  786. static int rspi_request_dma(struct device *dev, struct spi_master *master,
  787. const struct resource *res)
  788. {
  789. const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
  790. unsigned int dma_tx_id, dma_rx_id;
  791. if (dev->of_node) {
  792. /* In the OF case we will get the slave IDs from the DT */
  793. dma_tx_id = 0;
  794. dma_rx_id = 0;
  795. } else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) {
  796. dma_tx_id = rspi_pd->dma_tx_id;
  797. dma_rx_id = rspi_pd->dma_rx_id;
  798. } else {
  799. /* The driver assumes no error. */
  800. return 0;
  801. }
  802. master->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id,
  803. res->start + RSPI_SPDR);
  804. if (!master->dma_tx)
  805. return -ENODEV;
  806. master->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id,
  807. res->start + RSPI_SPDR);
  808. if (!master->dma_rx) {
  809. dma_release_channel(master->dma_tx);
  810. master->dma_tx = NULL;
  811. return -ENODEV;
  812. }
  813. master->can_dma = rspi_can_dma;
  814. dev_info(dev, "DMA available");
  815. return 0;
  816. }
  817. static void rspi_release_dma(struct spi_master *master)
  818. {
  819. if (master->dma_tx)
  820. dma_release_channel(master->dma_tx);
  821. if (master->dma_rx)
  822. dma_release_channel(master->dma_rx);
  823. }
  824. static int rspi_remove(struct platform_device *pdev)
  825. {
  826. struct rspi_data *rspi = platform_get_drvdata(pdev);
  827. rspi_release_dma(rspi->master);
  828. pm_runtime_disable(&pdev->dev);
  829. return 0;
  830. }
  831. static const struct spi_ops rspi_ops = {
  832. .set_config_register = rspi_set_config_register,
  833. .transfer_one = rspi_transfer_one,
  834. .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP,
  835. .flags = SPI_MASTER_MUST_TX,
  836. .fifo_size = 8,
  837. };
  838. static const struct spi_ops rspi_rz_ops = {
  839. .set_config_register = rspi_rz_set_config_register,
  840. .transfer_one = rspi_rz_transfer_one,
  841. .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP,
  842. .flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX,
  843. .fifo_size = 8, /* 8 for TX, 32 for RX */
  844. };
  845. static const struct spi_ops qspi_ops = {
  846. .set_config_register = qspi_set_config_register,
  847. .transfer_one = qspi_transfer_one,
  848. .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP |
  849. SPI_TX_DUAL | SPI_TX_QUAD |
  850. SPI_RX_DUAL | SPI_RX_QUAD,
  851. .flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX,
  852. .fifo_size = 32,
  853. };
  854. #ifdef CONFIG_OF
  855. static const struct of_device_id rspi_of_match[] = {
  856. /* RSPI on legacy SH */
  857. { .compatible = "renesas,rspi", .data = &rspi_ops },
  858. /* RSPI on RZ/A1H */
  859. { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
  860. /* QSPI on R-Car Gen2 */
  861. { .compatible = "renesas,qspi", .data = &qspi_ops },
  862. { /* sentinel */ }
  863. };
  864. MODULE_DEVICE_TABLE(of, rspi_of_match);
  865. static int rspi_parse_dt(struct device *dev, struct spi_master *master)
  866. {
  867. u32 num_cs;
  868. int error;
  869. /* Parse DT properties */
  870. error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
  871. if (error) {
  872. dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
  873. return error;
  874. }
  875. master->num_chipselect = num_cs;
  876. return 0;
  877. }
  878. #else
  879. #define rspi_of_match NULL
  880. static inline int rspi_parse_dt(struct device *dev, struct spi_master *master)
  881. {
  882. return -EINVAL;
  883. }
  884. #endif /* CONFIG_OF */
  885. static int rspi_request_irq(struct device *dev, unsigned int irq,
  886. irq_handler_t handler, const char *suffix,
  887. void *dev_id)
  888. {
  889. const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s",
  890. dev_name(dev), suffix);
  891. if (!name)
  892. return -ENOMEM;
  893. return devm_request_irq(dev, irq, handler, 0, name, dev_id);
  894. }
  895. static int rspi_probe(struct platform_device *pdev)
  896. {
  897. struct resource *res;
  898. struct spi_master *master;
  899. struct rspi_data *rspi;
  900. int ret;
  901. const struct of_device_id *of_id;
  902. const struct rspi_plat_data *rspi_pd;
  903. const struct spi_ops *ops;
  904. master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
  905. if (master == NULL) {
  906. dev_err(&pdev->dev, "spi_alloc_master error.\n");
  907. return -ENOMEM;
  908. }
  909. of_id = of_match_device(rspi_of_match, &pdev->dev);
  910. if (of_id) {
  911. ops = of_id->data;
  912. ret = rspi_parse_dt(&pdev->dev, master);
  913. if (ret)
  914. goto error1;
  915. } else {
  916. ops = (struct spi_ops *)pdev->id_entry->driver_data;
  917. rspi_pd = dev_get_platdata(&pdev->dev);
  918. if (rspi_pd && rspi_pd->num_chipselect)
  919. master->num_chipselect = rspi_pd->num_chipselect;
  920. else
  921. master->num_chipselect = 2; /* default */
  922. }
  923. /* ops parameter check */
  924. if (!ops->set_config_register) {
  925. dev_err(&pdev->dev, "there is no set_config_register\n");
  926. ret = -ENODEV;
  927. goto error1;
  928. }
  929. rspi = spi_master_get_devdata(master);
  930. platform_set_drvdata(pdev, rspi);
  931. rspi->ops = ops;
  932. rspi->master = master;
  933. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  934. rspi->addr = devm_ioremap_resource(&pdev->dev, res);
  935. if (IS_ERR(rspi->addr)) {
  936. ret = PTR_ERR(rspi->addr);
  937. goto error1;
  938. }
  939. rspi->clk = devm_clk_get(&pdev->dev, NULL);
  940. if (IS_ERR(rspi->clk)) {
  941. dev_err(&pdev->dev, "cannot get clock\n");
  942. ret = PTR_ERR(rspi->clk);
  943. goto error1;
  944. }
  945. pm_runtime_enable(&pdev->dev);
  946. init_waitqueue_head(&rspi->wait);
  947. master->bus_num = pdev->id;
  948. master->setup = rspi_setup;
  949. master->auto_runtime_pm = true;
  950. master->transfer_one = ops->transfer_one;
  951. master->prepare_message = rspi_prepare_message;
  952. master->unprepare_message = rspi_unprepare_message;
  953. master->mode_bits = ops->mode_bits;
  954. master->flags = ops->flags;
  955. master->dev.of_node = pdev->dev.of_node;
  956. ret = platform_get_irq_byname(pdev, "rx");
  957. if (ret < 0) {
  958. ret = platform_get_irq_byname(pdev, "mux");
  959. if (ret < 0)
  960. ret = platform_get_irq(pdev, 0);
  961. if (ret >= 0)
  962. rspi->rx_irq = rspi->tx_irq = ret;
  963. } else {
  964. rspi->rx_irq = ret;
  965. ret = platform_get_irq_byname(pdev, "tx");
  966. if (ret >= 0)
  967. rspi->tx_irq = ret;
  968. }
  969. if (ret < 0) {
  970. dev_err(&pdev->dev, "platform_get_irq error\n");
  971. goto error2;
  972. }
  973. if (rspi->rx_irq == rspi->tx_irq) {
  974. /* Single multiplexed interrupt */
  975. ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
  976. "mux", rspi);
  977. } else {
  978. /* Multi-interrupt mode, only SPRI and SPTI are used */
  979. ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
  980. "rx", rspi);
  981. if (!ret)
  982. ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
  983. rspi_irq_tx, "tx", rspi);
  984. }
  985. if (ret < 0) {
  986. dev_err(&pdev->dev, "request_irq error\n");
  987. goto error2;
  988. }
  989. ret = rspi_request_dma(&pdev->dev, master, res);
  990. if (ret < 0)
  991. dev_warn(&pdev->dev, "DMA not available, using PIO\n");
  992. ret = devm_spi_register_master(&pdev->dev, master);
  993. if (ret < 0) {
  994. dev_err(&pdev->dev, "spi_register_master error.\n");
  995. goto error3;
  996. }
  997. dev_info(&pdev->dev, "probed\n");
  998. return 0;
  999. error3:
  1000. rspi_release_dma(master);
  1001. error2:
  1002. pm_runtime_disable(&pdev->dev);
  1003. error1:
  1004. spi_master_put(master);
  1005. return ret;
  1006. }
  1007. static struct platform_device_id spi_driver_ids[] = {
  1008. { "rspi", (kernel_ulong_t)&rspi_ops },
  1009. { "rspi-rz", (kernel_ulong_t)&rspi_rz_ops },
  1010. { "qspi", (kernel_ulong_t)&qspi_ops },
  1011. {},
  1012. };
  1013. MODULE_DEVICE_TABLE(platform, spi_driver_ids);
  1014. static struct platform_driver rspi_driver = {
  1015. .probe = rspi_probe,
  1016. .remove = rspi_remove,
  1017. .id_table = spi_driver_ids,
  1018. .driver = {
  1019. .name = "renesas_spi",
  1020. .owner = THIS_MODULE,
  1021. .of_match_table = of_match_ptr(rspi_of_match),
  1022. },
  1023. };
  1024. module_platform_driver(rspi_driver);
  1025. MODULE_DESCRIPTION("Renesas RSPI bus driver");
  1026. MODULE_LICENSE("GPL v2");
  1027. MODULE_AUTHOR("Yoshihiro Shimoda");
  1028. MODULE_ALIAS("platform:rspi");