rtc-pcf8563.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471
  1. /*
  2. * An I2C driver for the Philips PCF8563 RTC
  3. * Copyright 2005-06 Tower Technologies
  4. *
  5. * Author: Alessandro Zummo <a.zummo@towertech.it>
  6. * Maintainers: http://www.nslu2-linux.org/
  7. *
  8. * based on the other drivers in this same directory.
  9. *
  10. * http://www.semiconductors.philips.com/acrobat/datasheets/PCF8563-04.pdf
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License version 2 as
  14. * published by the Free Software Foundation.
  15. */
  16. #include <linux/i2c.h>
  17. #include <linux/bcd.h>
  18. #include <linux/rtc.h>
  19. #include <linux/slab.h>
  20. #include <linux/module.h>
  21. #include <linux/of.h>
  22. #include <linux/err.h>
  23. #define DRV_VERSION "0.4.3"
  24. #define PCF8563_REG_ST1 0x00 /* status */
  25. #define PCF8563_REG_ST2 0x01
  26. #define PCF8563_BIT_AIE (1 << 1)
  27. #define PCF8563_BIT_AF (1 << 3)
  28. #define PCF8563_REG_SC 0x02 /* datetime */
  29. #define PCF8563_REG_MN 0x03
  30. #define PCF8563_REG_HR 0x04
  31. #define PCF8563_REG_DM 0x05
  32. #define PCF8563_REG_DW 0x06
  33. #define PCF8563_REG_MO 0x07
  34. #define PCF8563_REG_YR 0x08
  35. #define PCF8563_REG_AMN 0x09 /* alarm */
  36. #define PCF8563_REG_CLKO 0x0D /* clock out */
  37. #define PCF8563_REG_TMRC 0x0E /* timer control */
  38. #define PCF8563_REG_TMR 0x0F /* timer */
  39. #define PCF8563_SC_LV 0x80 /* low voltage */
  40. #define PCF8563_MO_C 0x80 /* century */
  41. static struct i2c_driver pcf8563_driver;
  42. struct pcf8563 {
  43. struct rtc_device *rtc;
  44. /*
  45. * The meaning of MO_C bit varies by the chip type.
  46. * From PCF8563 datasheet: this bit is toggled when the years
  47. * register overflows from 99 to 00
  48. * 0 indicates the century is 20xx
  49. * 1 indicates the century is 19xx
  50. * From RTC8564 datasheet: this bit indicates change of
  51. * century. When the year digit data overflows from 99 to 00,
  52. * this bit is set. By presetting it to 0 while still in the
  53. * 20th century, it will be set in year 2000, ...
  54. * There seems no reliable way to know how the system use this
  55. * bit. So let's do it heuristically, assuming we are live in
  56. * 1970...2069.
  57. */
  58. int c_polarity; /* 0: MO_C=1 means 19xx, otherwise MO_C=1 means 20xx */
  59. int voltage_low; /* incicates if a low_voltage was detected */
  60. struct i2c_client *client;
  61. };
  62. static int pcf8563_read_block_data(struct i2c_client *client, unsigned char reg,
  63. unsigned char length, unsigned char *buf)
  64. {
  65. struct i2c_msg msgs[] = {
  66. {/* setup read ptr */
  67. .addr = client->addr,
  68. .len = 1,
  69. .buf = &reg,
  70. },
  71. {
  72. .addr = client->addr,
  73. .flags = I2C_M_RD,
  74. .len = length,
  75. .buf = buf
  76. },
  77. };
  78. if ((i2c_transfer(client->adapter, msgs, 2)) != 2) {
  79. dev_err(&client->dev, "%s: read error\n", __func__);
  80. return -EIO;
  81. }
  82. return 0;
  83. }
  84. static int pcf8563_write_block_data(struct i2c_client *client,
  85. unsigned char reg, unsigned char length,
  86. unsigned char *buf)
  87. {
  88. int i, err;
  89. for (i = 0; i < length; i++) {
  90. unsigned char data[2] = { reg + i, buf[i] };
  91. err = i2c_master_send(client, data, sizeof(data));
  92. if (err != sizeof(data)) {
  93. dev_err(&client->dev,
  94. "%s: err=%d addr=%02x, data=%02x\n",
  95. __func__, err, data[0], data[1]);
  96. return -EIO;
  97. }
  98. }
  99. return 0;
  100. }
  101. static int pcf8563_set_alarm_mode(struct i2c_client *client, bool on)
  102. {
  103. unsigned char buf[2];
  104. int err;
  105. err = pcf8563_read_block_data(client, PCF8563_REG_ST2, 1, buf + 1);
  106. if (err < 0)
  107. return err;
  108. if (on)
  109. buf[1] |= PCF8563_BIT_AIE;
  110. else
  111. buf[1] &= ~PCF8563_BIT_AIE;
  112. buf[1] &= ~PCF8563_BIT_AF;
  113. buf[0] = PCF8563_REG_ST2;
  114. err = pcf8563_write_block_data(client, PCF8563_REG_ST2, 1, buf + 1);
  115. if (err < 0) {
  116. dev_err(&client->dev, "%s: write error\n", __func__);
  117. return -EIO;
  118. }
  119. return 0;
  120. }
  121. static int pcf8563_get_alarm_mode(struct i2c_client *client, unsigned char *en,
  122. unsigned char *pen)
  123. {
  124. unsigned char buf;
  125. int err;
  126. err = pcf8563_read_block_data(client, PCF8563_REG_ST2, 1, &buf);
  127. if (err)
  128. return err;
  129. if (en)
  130. *en = !!(buf & PCF8563_BIT_AIE);
  131. if (pen)
  132. *pen = !!(buf & PCF8563_BIT_AF);
  133. return 0;
  134. }
  135. static irqreturn_t pcf8563_irq(int irq, void *dev_id)
  136. {
  137. struct pcf8563 *pcf8563 = i2c_get_clientdata(dev_id);
  138. int err;
  139. char pending;
  140. err = pcf8563_get_alarm_mode(pcf8563->client, NULL, &pending);
  141. if (err)
  142. return IRQ_NONE;
  143. if (pending) {
  144. rtc_update_irq(pcf8563->rtc, 1, RTC_IRQF | RTC_AF);
  145. pcf8563_set_alarm_mode(pcf8563->client, 1);
  146. return IRQ_HANDLED;
  147. }
  148. return IRQ_NONE;
  149. }
  150. /*
  151. * In the routines that deal directly with the pcf8563 hardware, we use
  152. * rtc_time -- month 0-11, hour 0-23, yr = calendar year-epoch.
  153. */
  154. static int pcf8563_get_datetime(struct i2c_client *client, struct rtc_time *tm)
  155. {
  156. struct pcf8563 *pcf8563 = i2c_get_clientdata(client);
  157. unsigned char buf[9];
  158. int err;
  159. err = pcf8563_read_block_data(client, PCF8563_REG_ST1, 9, buf);
  160. if (err)
  161. return err;
  162. if (buf[PCF8563_REG_SC] & PCF8563_SC_LV) {
  163. pcf8563->voltage_low = 1;
  164. dev_info(&client->dev,
  165. "low voltage detected, date/time is not reliable.\n");
  166. }
  167. dev_dbg(&client->dev,
  168. "%s: raw data is st1=%02x, st2=%02x, sec=%02x, min=%02x, hr=%02x, "
  169. "mday=%02x, wday=%02x, mon=%02x, year=%02x\n",
  170. __func__,
  171. buf[0], buf[1], buf[2], buf[3],
  172. buf[4], buf[5], buf[6], buf[7],
  173. buf[8]);
  174. tm->tm_sec = bcd2bin(buf[PCF8563_REG_SC] & 0x7F);
  175. tm->tm_min = bcd2bin(buf[PCF8563_REG_MN] & 0x7F);
  176. tm->tm_hour = bcd2bin(buf[PCF8563_REG_HR] & 0x3F); /* rtc hr 0-23 */
  177. tm->tm_mday = bcd2bin(buf[PCF8563_REG_DM] & 0x3F);
  178. tm->tm_wday = buf[PCF8563_REG_DW] & 0x07;
  179. tm->tm_mon = bcd2bin(buf[PCF8563_REG_MO] & 0x1F) - 1; /* rtc mn 1-12 */
  180. tm->tm_year = bcd2bin(buf[PCF8563_REG_YR]);
  181. if (tm->tm_year < 70)
  182. tm->tm_year += 100; /* assume we are in 1970...2069 */
  183. /* detect the polarity heuristically. see note above. */
  184. pcf8563->c_polarity = (buf[PCF8563_REG_MO] & PCF8563_MO_C) ?
  185. (tm->tm_year >= 100) : (tm->tm_year < 100);
  186. dev_dbg(&client->dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
  187. "mday=%d, mon=%d, year=%d, wday=%d\n",
  188. __func__,
  189. tm->tm_sec, tm->tm_min, tm->tm_hour,
  190. tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
  191. /* the clock can give out invalid datetime, but we cannot return
  192. * -EINVAL otherwise hwclock will refuse to set the time on bootup.
  193. */
  194. if (rtc_valid_tm(tm) < 0)
  195. dev_err(&client->dev, "retrieved date/time is not valid.\n");
  196. return 0;
  197. }
  198. static int pcf8563_set_datetime(struct i2c_client *client, struct rtc_time *tm)
  199. {
  200. struct pcf8563 *pcf8563 = i2c_get_clientdata(client);
  201. int err;
  202. unsigned char buf[9];
  203. dev_dbg(&client->dev, "%s: secs=%d, mins=%d, hours=%d, "
  204. "mday=%d, mon=%d, year=%d, wday=%d\n",
  205. __func__,
  206. tm->tm_sec, tm->tm_min, tm->tm_hour,
  207. tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
  208. /* hours, minutes and seconds */
  209. buf[PCF8563_REG_SC] = bin2bcd(tm->tm_sec);
  210. buf[PCF8563_REG_MN] = bin2bcd(tm->tm_min);
  211. buf[PCF8563_REG_HR] = bin2bcd(tm->tm_hour);
  212. buf[PCF8563_REG_DM] = bin2bcd(tm->tm_mday);
  213. /* month, 1 - 12 */
  214. buf[PCF8563_REG_MO] = bin2bcd(tm->tm_mon + 1);
  215. /* year and century */
  216. buf[PCF8563_REG_YR] = bin2bcd(tm->tm_year % 100);
  217. if (pcf8563->c_polarity ? (tm->tm_year >= 100) : (tm->tm_year < 100))
  218. buf[PCF8563_REG_MO] |= PCF8563_MO_C;
  219. buf[PCF8563_REG_DW] = tm->tm_wday & 0x07;
  220. err = pcf8563_write_block_data(client, PCF8563_REG_SC,
  221. 9 - PCF8563_REG_SC, buf + PCF8563_REG_SC);
  222. if (err)
  223. return err;
  224. return 0;
  225. }
  226. #ifdef CONFIG_RTC_INTF_DEV
  227. static int pcf8563_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
  228. {
  229. struct pcf8563 *pcf8563 = i2c_get_clientdata(to_i2c_client(dev));
  230. struct rtc_time tm;
  231. switch (cmd) {
  232. case RTC_VL_READ:
  233. if (pcf8563->voltage_low)
  234. dev_info(dev, "low voltage detected, date/time is not reliable.\n");
  235. if (copy_to_user((void __user *)arg, &pcf8563->voltage_low,
  236. sizeof(int)))
  237. return -EFAULT;
  238. return 0;
  239. case RTC_VL_CLR:
  240. /*
  241. * Clear the VL bit in the seconds register in case
  242. * the time has not been set already (which would
  243. * have cleared it). This does not really matter
  244. * because of the cached voltage_low value but do it
  245. * anyway for consistency.
  246. */
  247. if (pcf8563_get_datetime(to_i2c_client(dev), &tm))
  248. pcf8563_set_datetime(to_i2c_client(dev), &tm);
  249. /* Clear the cached value. */
  250. pcf8563->voltage_low = 0;
  251. return 0;
  252. default:
  253. return -ENOIOCTLCMD;
  254. }
  255. }
  256. #else
  257. #define pcf8563_rtc_ioctl NULL
  258. #endif
  259. static int pcf8563_rtc_read_time(struct device *dev, struct rtc_time *tm)
  260. {
  261. return pcf8563_get_datetime(to_i2c_client(dev), tm);
  262. }
  263. static int pcf8563_rtc_set_time(struct device *dev, struct rtc_time *tm)
  264. {
  265. return pcf8563_set_datetime(to_i2c_client(dev), tm);
  266. }
  267. static int pcf8563_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *tm)
  268. {
  269. struct i2c_client *client = to_i2c_client(dev);
  270. unsigned char buf[4];
  271. int err;
  272. err = pcf8563_read_block_data(client, PCF8563_REG_AMN, 4, buf);
  273. if (err)
  274. return err;
  275. dev_dbg(&client->dev,
  276. "%s: raw data is min=%02x, hr=%02x, mday=%02x, wday=%02x\n",
  277. __func__, buf[0], buf[1], buf[2], buf[3]);
  278. tm->time.tm_min = bcd2bin(buf[0] & 0x7F);
  279. tm->time.tm_hour = bcd2bin(buf[1] & 0x7F);
  280. tm->time.tm_mday = bcd2bin(buf[2] & 0x1F);
  281. tm->time.tm_wday = bcd2bin(buf[3] & 0x7);
  282. tm->time.tm_mon = -1;
  283. tm->time.tm_year = -1;
  284. tm->time.tm_yday = -1;
  285. tm->time.tm_isdst = -1;
  286. err = pcf8563_get_alarm_mode(client, &tm->enabled, &tm->pending);
  287. if (err < 0)
  288. return err;
  289. dev_dbg(&client->dev, "%s: tm is mins=%d, hours=%d, mday=%d, wday=%d,"
  290. " enabled=%d, pending=%d\n", __func__, tm->time.tm_min,
  291. tm->time.tm_hour, tm->time.tm_mday, tm->time.tm_wday,
  292. tm->enabled, tm->pending);
  293. return 0;
  294. }
  295. static int pcf8563_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *tm)
  296. {
  297. struct i2c_client *client = to_i2c_client(dev);
  298. unsigned char buf[4];
  299. int err;
  300. dev_dbg(dev, "%s, min=%d hour=%d wday=%d mday=%d "
  301. "enabled=%d pending=%d\n", __func__,
  302. tm->time.tm_min, tm->time.tm_hour, tm->time.tm_wday,
  303. tm->time.tm_mday, tm->enabled, tm->pending);
  304. buf[0] = bin2bcd(tm->time.tm_min);
  305. buf[1] = bin2bcd(tm->time.tm_hour);
  306. buf[2] = bin2bcd(tm->time.tm_mday);
  307. buf[3] = tm->time.tm_wday & 0x07;
  308. err = pcf8563_write_block_data(client, PCF8563_REG_AMN, 4, buf);
  309. if (err)
  310. return err;
  311. return pcf8563_set_alarm_mode(client, 1);
  312. }
  313. static int pcf8563_irq_enable(struct device *dev, unsigned int enabled)
  314. {
  315. return pcf8563_set_alarm_mode(to_i2c_client(dev), !!enabled);
  316. }
  317. static const struct rtc_class_ops pcf8563_rtc_ops = {
  318. .ioctl = pcf8563_rtc_ioctl,
  319. .read_time = pcf8563_rtc_read_time,
  320. .set_time = pcf8563_rtc_set_time,
  321. .read_alarm = pcf8563_rtc_read_alarm,
  322. .set_alarm = pcf8563_rtc_set_alarm,
  323. .alarm_irq_enable = pcf8563_irq_enable,
  324. };
  325. static int pcf8563_probe(struct i2c_client *client,
  326. const struct i2c_device_id *id)
  327. {
  328. struct pcf8563 *pcf8563;
  329. int err;
  330. dev_dbg(&client->dev, "%s\n", __func__);
  331. if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C))
  332. return -ENODEV;
  333. pcf8563 = devm_kzalloc(&client->dev, sizeof(struct pcf8563),
  334. GFP_KERNEL);
  335. if (!pcf8563)
  336. return -ENOMEM;
  337. dev_info(&client->dev, "chip found, driver version " DRV_VERSION "\n");
  338. i2c_set_clientdata(client, pcf8563);
  339. pcf8563->client = client;
  340. device_set_wakeup_capable(&client->dev, 1);
  341. pcf8563->rtc = devm_rtc_device_register(&client->dev,
  342. pcf8563_driver.driver.name,
  343. &pcf8563_rtc_ops, THIS_MODULE);
  344. if (IS_ERR(pcf8563->rtc))
  345. return PTR_ERR(pcf8563->rtc);
  346. if (client->irq > 0) {
  347. err = devm_request_threaded_irq(&client->dev, client->irq,
  348. NULL, pcf8563_irq,
  349. IRQF_SHARED|IRQF_ONESHOT|IRQF_TRIGGER_FALLING,
  350. pcf8563->rtc->name, client);
  351. if (err) {
  352. dev_err(&client->dev, "unable to request IRQ %d\n",
  353. client->irq);
  354. return err;
  355. }
  356. }
  357. return 0;
  358. }
  359. static const struct i2c_device_id pcf8563_id[] = {
  360. { "pcf8563", 0 },
  361. { "rtc8564", 0 },
  362. { }
  363. };
  364. MODULE_DEVICE_TABLE(i2c, pcf8563_id);
  365. #ifdef CONFIG_OF
  366. static const struct of_device_id pcf8563_of_match[] = {
  367. { .compatible = "nxp,pcf8563" },
  368. {}
  369. };
  370. MODULE_DEVICE_TABLE(of, pcf8563_of_match);
  371. #endif
  372. static struct i2c_driver pcf8563_driver = {
  373. .driver = {
  374. .name = "rtc-pcf8563",
  375. .owner = THIS_MODULE,
  376. .of_match_table = of_match_ptr(pcf8563_of_match),
  377. },
  378. .probe = pcf8563_probe,
  379. .id_table = pcf8563_id,
  380. };
  381. module_i2c_driver(pcf8563_driver);
  382. MODULE_AUTHOR("Alessandro Zummo <a.zummo@towertech.it>");
  383. MODULE_DESCRIPTION("Philips PCF8563/Epson RTC8564 RTC driver");
  384. MODULE_LICENSE("GPL");
  385. MODULE_VERSION(DRV_VERSION);