msgbuf.c 38 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486
  1. /* Copyright (c) 2014 Broadcom Corporation
  2. *
  3. * Permission to use, copy, modify, and/or distribute this software for any
  4. * purpose with or without fee is hereby granted, provided that the above
  5. * copyright notice and this permission notice appear in all copies.
  6. *
  7. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  8. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  9. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  10. * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  11. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
  12. * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
  13. * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  14. */
  15. /*******************************************************************************
  16. * Communicates with the dongle by using dcmd codes.
  17. * For certain dcmd codes, the dongle interprets string data from the host.
  18. ******************************************************************************/
  19. #include <linux/types.h>
  20. #include <linux/netdevice.h>
  21. #include <brcmu_utils.h>
  22. #include <brcmu_wifi.h>
  23. #include "dhd.h"
  24. #include "dhd_dbg.h"
  25. #include "proto.h"
  26. #include "msgbuf.h"
  27. #include "commonring.h"
  28. #include "flowring.h"
  29. #include "dhd_bus.h"
  30. #include "tracepoint.h"
  31. #define MSGBUF_IOCTL_RESP_TIMEOUT 2000
  32. #define MSGBUF_TYPE_GEN_STATUS 0x1
  33. #define MSGBUF_TYPE_RING_STATUS 0x2
  34. #define MSGBUF_TYPE_FLOW_RING_CREATE 0x3
  35. #define MSGBUF_TYPE_FLOW_RING_CREATE_CMPLT 0x4
  36. #define MSGBUF_TYPE_FLOW_RING_DELETE 0x5
  37. #define MSGBUF_TYPE_FLOW_RING_DELETE_CMPLT 0x6
  38. #define MSGBUF_TYPE_FLOW_RING_FLUSH 0x7
  39. #define MSGBUF_TYPE_FLOW_RING_FLUSH_CMPLT 0x8
  40. #define MSGBUF_TYPE_IOCTLPTR_REQ 0x9
  41. #define MSGBUF_TYPE_IOCTLPTR_REQ_ACK 0xA
  42. #define MSGBUF_TYPE_IOCTLRESP_BUF_POST 0xB
  43. #define MSGBUF_TYPE_IOCTL_CMPLT 0xC
  44. #define MSGBUF_TYPE_EVENT_BUF_POST 0xD
  45. #define MSGBUF_TYPE_WL_EVENT 0xE
  46. #define MSGBUF_TYPE_TX_POST 0xF
  47. #define MSGBUF_TYPE_TX_STATUS 0x10
  48. #define MSGBUF_TYPE_RXBUF_POST 0x11
  49. #define MSGBUF_TYPE_RX_CMPLT 0x12
  50. #define MSGBUF_TYPE_LPBK_DMAXFER 0x13
  51. #define MSGBUF_TYPE_LPBK_DMAXFER_CMPLT 0x14
  52. #define NR_TX_PKTIDS 2048
  53. #define NR_RX_PKTIDS 1024
  54. #define BRCMF_IOCTL_REQ_PKTID 0xFFFE
  55. #define BRCMF_MSGBUF_MAX_PKT_SIZE 2048
  56. #define BRCMF_MSGBUF_RXBUFPOST_THRESHOLD 32
  57. #define BRCMF_MSGBUF_MAX_IOCTLRESPBUF_POST 8
  58. #define BRCMF_MSGBUF_MAX_EVENTBUF_POST 8
  59. #define BRCMF_MSGBUF_PKT_FLAGS_FRAME_802_3 0x01
  60. #define BRCMF_MSGBUF_PKT_FLAGS_PRIO_SHIFT 5
  61. #define BRCMF_MSGBUF_TX_FLUSH_CNT1 32
  62. #define BRCMF_MSGBUF_TX_FLUSH_CNT2 96
  63. struct msgbuf_common_hdr {
  64. u8 msgtype;
  65. u8 ifidx;
  66. u8 flags;
  67. u8 rsvd0;
  68. __le32 request_id;
  69. };
  70. struct msgbuf_buf_addr {
  71. __le32 low_addr;
  72. __le32 high_addr;
  73. };
  74. struct msgbuf_ioctl_req_hdr {
  75. struct msgbuf_common_hdr msg;
  76. __le32 cmd;
  77. __le16 trans_id;
  78. __le16 input_buf_len;
  79. __le16 output_buf_len;
  80. __le16 rsvd0[3];
  81. struct msgbuf_buf_addr req_buf_addr;
  82. __le32 rsvd1[2];
  83. };
  84. struct msgbuf_tx_msghdr {
  85. struct msgbuf_common_hdr msg;
  86. u8 txhdr[ETH_HLEN];
  87. u8 flags;
  88. u8 seg_cnt;
  89. struct msgbuf_buf_addr metadata_buf_addr;
  90. struct msgbuf_buf_addr data_buf_addr;
  91. __le16 metadata_buf_len;
  92. __le16 data_len;
  93. __le32 rsvd0;
  94. };
  95. struct msgbuf_rx_bufpost {
  96. struct msgbuf_common_hdr msg;
  97. __le16 metadata_buf_len;
  98. __le16 data_buf_len;
  99. __le32 rsvd0;
  100. struct msgbuf_buf_addr metadata_buf_addr;
  101. struct msgbuf_buf_addr data_buf_addr;
  102. };
  103. struct msgbuf_rx_ioctl_resp_or_event {
  104. struct msgbuf_common_hdr msg;
  105. __le16 host_buf_len;
  106. __le16 rsvd0[3];
  107. struct msgbuf_buf_addr host_buf_addr;
  108. __le32 rsvd1[4];
  109. };
  110. struct msgbuf_completion_hdr {
  111. __le16 status;
  112. __le16 flow_ring_id;
  113. };
  114. struct msgbuf_rx_event {
  115. struct msgbuf_common_hdr msg;
  116. struct msgbuf_completion_hdr compl_hdr;
  117. __le16 event_data_len;
  118. __le16 seqnum;
  119. __le16 rsvd0[4];
  120. };
  121. struct msgbuf_ioctl_resp_hdr {
  122. struct msgbuf_common_hdr msg;
  123. struct msgbuf_completion_hdr compl_hdr;
  124. __le16 resp_len;
  125. __le16 trans_id;
  126. __le32 cmd;
  127. __le32 rsvd0;
  128. };
  129. struct msgbuf_tx_status {
  130. struct msgbuf_common_hdr msg;
  131. struct msgbuf_completion_hdr compl_hdr;
  132. __le16 metadata_len;
  133. __le16 tx_status;
  134. };
  135. struct msgbuf_rx_complete {
  136. struct msgbuf_common_hdr msg;
  137. struct msgbuf_completion_hdr compl_hdr;
  138. __le16 metadata_len;
  139. __le16 data_len;
  140. __le16 data_offset;
  141. __le16 flags;
  142. __le32 rx_status_0;
  143. __le32 rx_status_1;
  144. __le32 rsvd0;
  145. };
  146. struct msgbuf_tx_flowring_create_req {
  147. struct msgbuf_common_hdr msg;
  148. u8 da[ETH_ALEN];
  149. u8 sa[ETH_ALEN];
  150. u8 tid;
  151. u8 if_flags;
  152. __le16 flow_ring_id;
  153. u8 tc;
  154. u8 priority;
  155. __le16 int_vector;
  156. __le16 max_items;
  157. __le16 len_item;
  158. struct msgbuf_buf_addr flow_ring_addr;
  159. };
  160. struct msgbuf_tx_flowring_delete_req {
  161. struct msgbuf_common_hdr msg;
  162. __le16 flow_ring_id;
  163. __le16 reason;
  164. __le32 rsvd0[7];
  165. };
  166. struct msgbuf_flowring_create_resp {
  167. struct msgbuf_common_hdr msg;
  168. struct msgbuf_completion_hdr compl_hdr;
  169. __le32 rsvd0[3];
  170. };
  171. struct msgbuf_flowring_delete_resp {
  172. struct msgbuf_common_hdr msg;
  173. struct msgbuf_completion_hdr compl_hdr;
  174. __le32 rsvd0[3];
  175. };
  176. struct msgbuf_flowring_flush_resp {
  177. struct msgbuf_common_hdr msg;
  178. struct msgbuf_completion_hdr compl_hdr;
  179. __le32 rsvd0[3];
  180. };
  181. struct brcmf_msgbuf_work_item {
  182. struct list_head queue;
  183. u32 flowid;
  184. int ifidx;
  185. u8 sa[ETH_ALEN];
  186. u8 da[ETH_ALEN];
  187. };
  188. struct brcmf_msgbuf {
  189. struct brcmf_pub *drvr;
  190. struct brcmf_commonring **commonrings;
  191. struct brcmf_commonring **flowrings;
  192. dma_addr_t *flowring_dma_handle;
  193. u16 nrof_flowrings;
  194. u16 rx_dataoffset;
  195. u32 max_rxbufpost;
  196. u16 rx_metadata_offset;
  197. u32 rxbufpost;
  198. u32 max_ioctlrespbuf;
  199. u32 cur_ioctlrespbuf;
  200. u32 max_eventbuf;
  201. u32 cur_eventbuf;
  202. void *ioctbuf;
  203. dma_addr_t ioctbuf_handle;
  204. u32 ioctbuf_phys_hi;
  205. u32 ioctbuf_phys_lo;
  206. int ioctl_resp_status;
  207. u32 ioctl_resp_ret_len;
  208. u32 ioctl_resp_pktid;
  209. u16 data_seq_no;
  210. u16 ioctl_seq_no;
  211. u32 reqid;
  212. wait_queue_head_t ioctl_resp_wait;
  213. bool ctl_completed;
  214. struct brcmf_msgbuf_pktids *tx_pktids;
  215. struct brcmf_msgbuf_pktids *rx_pktids;
  216. struct brcmf_flowring *flow;
  217. struct workqueue_struct *txflow_wq;
  218. struct work_struct txflow_work;
  219. unsigned long *flow_map;
  220. unsigned long *txstatus_done_map;
  221. struct work_struct flowring_work;
  222. spinlock_t flowring_work_lock;
  223. struct list_head work_queue;
  224. };
  225. struct brcmf_msgbuf_pktid {
  226. atomic_t allocated;
  227. u16 data_offset;
  228. struct sk_buff *skb;
  229. dma_addr_t physaddr;
  230. };
  231. struct brcmf_msgbuf_pktids {
  232. u32 array_size;
  233. u32 last_allocated_idx;
  234. enum dma_data_direction direction;
  235. struct brcmf_msgbuf_pktid *array;
  236. };
  237. /* dma flushing needs implementation for mips and arm platforms. Should
  238. * be put in util. Note, this is not real flushing. It is virtual non
  239. * cached memory. Only write buffers should have to be drained. Though
  240. * this may be different depending on platform......
  241. */
  242. #define brcmf_dma_flush(addr, len)
  243. #define brcmf_dma_invalidate_cache(addr, len)
  244. static void brcmf_msgbuf_rxbuf_ioctlresp_post(struct brcmf_msgbuf *msgbuf);
  245. static struct brcmf_msgbuf_pktids *
  246. brcmf_msgbuf_init_pktids(u32 nr_array_entries,
  247. enum dma_data_direction direction)
  248. {
  249. struct brcmf_msgbuf_pktid *array;
  250. struct brcmf_msgbuf_pktids *pktids;
  251. array = kcalloc(nr_array_entries, sizeof(*array), GFP_KERNEL);
  252. if (!array)
  253. return NULL;
  254. pktids = kzalloc(sizeof(*pktids), GFP_KERNEL);
  255. if (!pktids) {
  256. kfree(array);
  257. return NULL;
  258. }
  259. pktids->array = array;
  260. pktids->array_size = nr_array_entries;
  261. return pktids;
  262. }
  263. static int
  264. brcmf_msgbuf_alloc_pktid(struct device *dev,
  265. struct brcmf_msgbuf_pktids *pktids,
  266. struct sk_buff *skb, u16 data_offset,
  267. dma_addr_t *physaddr, u32 *idx)
  268. {
  269. struct brcmf_msgbuf_pktid *array;
  270. u32 count;
  271. array = pktids->array;
  272. *physaddr = dma_map_single(dev, skb->data + data_offset,
  273. skb->len - data_offset, pktids->direction);
  274. if (dma_mapping_error(dev, *physaddr)) {
  275. brcmf_err("dma_map_single failed !!\n");
  276. return -ENOMEM;
  277. }
  278. *idx = pktids->last_allocated_idx;
  279. count = 0;
  280. do {
  281. (*idx)++;
  282. if (*idx == pktids->array_size)
  283. *idx = 0;
  284. if (array[*idx].allocated.counter == 0)
  285. if (atomic_cmpxchg(&array[*idx].allocated, 0, 1) == 0)
  286. break;
  287. count++;
  288. } while (count < pktids->array_size);
  289. if (count == pktids->array_size)
  290. return -ENOMEM;
  291. array[*idx].data_offset = data_offset;
  292. array[*idx].physaddr = *physaddr;
  293. array[*idx].skb = skb;
  294. pktids->last_allocated_idx = *idx;
  295. return 0;
  296. }
  297. static struct sk_buff *
  298. brcmf_msgbuf_get_pktid(struct device *dev, struct brcmf_msgbuf_pktids *pktids,
  299. u32 idx)
  300. {
  301. struct brcmf_msgbuf_pktid *pktid;
  302. struct sk_buff *skb;
  303. if (idx >= pktids->array_size) {
  304. brcmf_err("Invalid packet id %d (max %d)\n", idx,
  305. pktids->array_size);
  306. return NULL;
  307. }
  308. if (pktids->array[idx].allocated.counter) {
  309. pktid = &pktids->array[idx];
  310. dma_unmap_single(dev, pktid->physaddr,
  311. pktid->skb->len - pktid->data_offset,
  312. pktids->direction);
  313. skb = pktid->skb;
  314. pktid->allocated.counter = 0;
  315. return skb;
  316. } else {
  317. brcmf_err("Invalid packet id %d (not in use)\n", idx);
  318. }
  319. return NULL;
  320. }
  321. static void
  322. brcmf_msgbuf_release_array(struct device *dev,
  323. struct brcmf_msgbuf_pktids *pktids)
  324. {
  325. struct brcmf_msgbuf_pktid *array;
  326. struct brcmf_msgbuf_pktid *pktid;
  327. u32 count;
  328. array = pktids->array;
  329. count = 0;
  330. do {
  331. if (array[count].allocated.counter) {
  332. pktid = &array[count];
  333. dma_unmap_single(dev, pktid->physaddr,
  334. pktid->skb->len - pktid->data_offset,
  335. pktids->direction);
  336. brcmu_pkt_buf_free_skb(pktid->skb);
  337. }
  338. count++;
  339. } while (count < pktids->array_size);
  340. kfree(array);
  341. kfree(pktids);
  342. }
  343. static void brcmf_msgbuf_release_pktids(struct brcmf_msgbuf *msgbuf)
  344. {
  345. if (msgbuf->rx_pktids)
  346. brcmf_msgbuf_release_array(msgbuf->drvr->bus_if->dev,
  347. msgbuf->rx_pktids);
  348. if (msgbuf->tx_pktids)
  349. brcmf_msgbuf_release_array(msgbuf->drvr->bus_if->dev,
  350. msgbuf->tx_pktids);
  351. }
  352. static int brcmf_msgbuf_tx_ioctl(struct brcmf_pub *drvr, int ifidx,
  353. uint cmd, void *buf, uint len)
  354. {
  355. struct brcmf_msgbuf *msgbuf = (struct brcmf_msgbuf *)drvr->proto->pd;
  356. struct brcmf_commonring *commonring;
  357. struct msgbuf_ioctl_req_hdr *request;
  358. u16 buf_len;
  359. void *ret_ptr;
  360. int err;
  361. commonring = msgbuf->commonrings[BRCMF_H2D_MSGRING_CONTROL_SUBMIT];
  362. brcmf_commonring_lock(commonring);
  363. ret_ptr = brcmf_commonring_reserve_for_write(commonring);
  364. if (!ret_ptr) {
  365. brcmf_err("Failed to reserve space in commonring\n");
  366. brcmf_commonring_unlock(commonring);
  367. return -ENOMEM;
  368. }
  369. msgbuf->reqid++;
  370. request = (struct msgbuf_ioctl_req_hdr *)ret_ptr;
  371. request->msg.msgtype = MSGBUF_TYPE_IOCTLPTR_REQ;
  372. request->msg.ifidx = (u8)ifidx;
  373. request->msg.flags = 0;
  374. request->msg.request_id = cpu_to_le32(BRCMF_IOCTL_REQ_PKTID);
  375. request->cmd = cpu_to_le32(cmd);
  376. request->output_buf_len = cpu_to_le16(len);
  377. request->trans_id = cpu_to_le16(msgbuf->reqid);
  378. buf_len = min_t(u16, len, BRCMF_TX_IOCTL_MAX_MSG_SIZE);
  379. request->input_buf_len = cpu_to_le16(buf_len);
  380. request->req_buf_addr.high_addr = cpu_to_le32(msgbuf->ioctbuf_phys_hi);
  381. request->req_buf_addr.low_addr = cpu_to_le32(msgbuf->ioctbuf_phys_lo);
  382. if (buf)
  383. memcpy(msgbuf->ioctbuf, buf, buf_len);
  384. else
  385. memset(msgbuf->ioctbuf, 0, buf_len);
  386. brcmf_dma_flush(ioctl_buf, buf_len);
  387. err = brcmf_commonring_write_complete(commonring);
  388. brcmf_commonring_unlock(commonring);
  389. return err;
  390. }
  391. static int brcmf_msgbuf_ioctl_resp_wait(struct brcmf_msgbuf *msgbuf)
  392. {
  393. return wait_event_timeout(msgbuf->ioctl_resp_wait,
  394. msgbuf->ctl_completed,
  395. msecs_to_jiffies(MSGBUF_IOCTL_RESP_TIMEOUT));
  396. }
  397. static void brcmf_msgbuf_ioctl_resp_wake(struct brcmf_msgbuf *msgbuf)
  398. {
  399. if (waitqueue_active(&msgbuf->ioctl_resp_wait)) {
  400. msgbuf->ctl_completed = true;
  401. wake_up(&msgbuf->ioctl_resp_wait);
  402. }
  403. }
  404. static int brcmf_msgbuf_query_dcmd(struct brcmf_pub *drvr, int ifidx,
  405. uint cmd, void *buf, uint len)
  406. {
  407. struct brcmf_msgbuf *msgbuf = (struct brcmf_msgbuf *)drvr->proto->pd;
  408. struct sk_buff *skb = NULL;
  409. int timeout;
  410. int err;
  411. brcmf_dbg(MSGBUF, "ifidx=%d, cmd=%d, len=%d\n", ifidx, cmd, len);
  412. msgbuf->ctl_completed = false;
  413. err = brcmf_msgbuf_tx_ioctl(drvr, ifidx, cmd, buf, len);
  414. if (err)
  415. return err;
  416. timeout = brcmf_msgbuf_ioctl_resp_wait(msgbuf);
  417. if (!timeout) {
  418. brcmf_err("Timeout on response for query command\n");
  419. return -EIO;
  420. }
  421. skb = brcmf_msgbuf_get_pktid(msgbuf->drvr->bus_if->dev,
  422. msgbuf->rx_pktids,
  423. msgbuf->ioctl_resp_pktid);
  424. if (msgbuf->ioctl_resp_ret_len != 0) {
  425. if (!skb) {
  426. brcmf_err("Invalid packet id idx recv'd %d\n",
  427. msgbuf->ioctl_resp_pktid);
  428. return -EBADF;
  429. }
  430. memcpy(buf, skb->data, (len < msgbuf->ioctl_resp_ret_len) ?
  431. len : msgbuf->ioctl_resp_ret_len);
  432. }
  433. if (skb)
  434. brcmu_pkt_buf_free_skb(skb);
  435. return msgbuf->ioctl_resp_status;
  436. }
  437. static int brcmf_msgbuf_set_dcmd(struct brcmf_pub *drvr, int ifidx,
  438. uint cmd, void *buf, uint len)
  439. {
  440. return brcmf_msgbuf_query_dcmd(drvr, ifidx, cmd, buf, len);
  441. }
  442. static int brcmf_msgbuf_hdrpull(struct brcmf_pub *drvr, bool do_fws,
  443. u8 *ifidx, struct sk_buff *skb)
  444. {
  445. return -ENODEV;
  446. }
  447. static void
  448. brcmf_msgbuf_remove_flowring(struct brcmf_msgbuf *msgbuf, u16 flowid)
  449. {
  450. u32 dma_sz;
  451. void *dma_buf;
  452. brcmf_dbg(MSGBUF, "Removing flowring %d\n", flowid);
  453. dma_sz = BRCMF_H2D_TXFLOWRING_MAX_ITEM * BRCMF_H2D_TXFLOWRING_ITEMSIZE;
  454. dma_buf = msgbuf->flowrings[flowid]->buf_addr;
  455. dma_free_coherent(msgbuf->drvr->bus_if->dev, dma_sz, dma_buf,
  456. msgbuf->flowring_dma_handle[flowid]);
  457. brcmf_flowring_delete(msgbuf->flow, flowid);
  458. }
  459. static struct brcmf_msgbuf_work_item *
  460. brcmf_msgbuf_dequeue_work(struct brcmf_msgbuf *msgbuf)
  461. {
  462. struct brcmf_msgbuf_work_item *work = NULL;
  463. ulong flags;
  464. spin_lock_irqsave(&msgbuf->flowring_work_lock, flags);
  465. if (!list_empty(&msgbuf->work_queue)) {
  466. work = list_first_entry(&msgbuf->work_queue,
  467. struct brcmf_msgbuf_work_item, queue);
  468. list_del(&work->queue);
  469. }
  470. spin_unlock_irqrestore(&msgbuf->flowring_work_lock, flags);
  471. return work;
  472. }
  473. static u32
  474. brcmf_msgbuf_flowring_create_worker(struct brcmf_msgbuf *msgbuf,
  475. struct brcmf_msgbuf_work_item *work)
  476. {
  477. struct msgbuf_tx_flowring_create_req *create;
  478. struct brcmf_commonring *commonring;
  479. void *ret_ptr;
  480. u32 flowid;
  481. void *dma_buf;
  482. u32 dma_sz;
  483. long long address;
  484. int err;
  485. flowid = work->flowid;
  486. dma_sz = BRCMF_H2D_TXFLOWRING_MAX_ITEM * BRCMF_H2D_TXFLOWRING_ITEMSIZE;
  487. dma_buf = dma_alloc_coherent(msgbuf->drvr->bus_if->dev, dma_sz,
  488. &msgbuf->flowring_dma_handle[flowid],
  489. GFP_KERNEL);
  490. if (!dma_buf) {
  491. brcmf_err("dma_alloc_coherent failed\n");
  492. brcmf_flowring_delete(msgbuf->flow, flowid);
  493. return BRCMF_FLOWRING_INVALID_ID;
  494. }
  495. brcmf_commonring_config(msgbuf->flowrings[flowid],
  496. BRCMF_H2D_TXFLOWRING_MAX_ITEM,
  497. BRCMF_H2D_TXFLOWRING_ITEMSIZE, dma_buf);
  498. commonring = msgbuf->commonrings[BRCMF_H2D_MSGRING_CONTROL_SUBMIT];
  499. brcmf_commonring_lock(commonring);
  500. ret_ptr = brcmf_commonring_reserve_for_write(commonring);
  501. if (!ret_ptr) {
  502. brcmf_err("Failed to reserve space in commonring\n");
  503. brcmf_commonring_unlock(commonring);
  504. brcmf_msgbuf_remove_flowring(msgbuf, flowid);
  505. return BRCMF_FLOWRING_INVALID_ID;
  506. }
  507. create = (struct msgbuf_tx_flowring_create_req *)ret_ptr;
  508. create->msg.msgtype = MSGBUF_TYPE_FLOW_RING_CREATE;
  509. create->msg.ifidx = work->ifidx;
  510. create->msg.request_id = 0;
  511. create->tid = brcmf_flowring_tid(msgbuf->flow, flowid);
  512. create->flow_ring_id = cpu_to_le16(flowid +
  513. BRCMF_NROF_H2D_COMMON_MSGRINGS);
  514. memcpy(create->sa, work->sa, ETH_ALEN);
  515. memcpy(create->da, work->da, ETH_ALEN);
  516. address = (long long)(long)msgbuf->flowring_dma_handle[flowid];
  517. create->flow_ring_addr.high_addr = cpu_to_le32(address >> 32);
  518. create->flow_ring_addr.low_addr = cpu_to_le32(address & 0xffffffff);
  519. create->max_items = cpu_to_le16(BRCMF_H2D_TXFLOWRING_MAX_ITEM);
  520. create->len_item = cpu_to_le16(BRCMF_H2D_TXFLOWRING_ITEMSIZE);
  521. brcmf_dbg(MSGBUF, "Send Flow Create Req flow ID %d for peer %pM prio %d ifindex %d\n",
  522. flowid, work->da, create->tid, work->ifidx);
  523. err = brcmf_commonring_write_complete(commonring);
  524. brcmf_commonring_unlock(commonring);
  525. if (err) {
  526. brcmf_err("Failed to write commonring\n");
  527. brcmf_msgbuf_remove_flowring(msgbuf, flowid);
  528. return BRCMF_FLOWRING_INVALID_ID;
  529. }
  530. return flowid;
  531. }
  532. static void brcmf_msgbuf_flowring_worker(struct work_struct *work)
  533. {
  534. struct brcmf_msgbuf *msgbuf;
  535. struct brcmf_msgbuf_work_item *create;
  536. msgbuf = container_of(work, struct brcmf_msgbuf, flowring_work);
  537. while ((create = brcmf_msgbuf_dequeue_work(msgbuf))) {
  538. brcmf_msgbuf_flowring_create_worker(msgbuf, create);
  539. kfree(create);
  540. }
  541. }
  542. static u32 brcmf_msgbuf_flowring_create(struct brcmf_msgbuf *msgbuf, int ifidx,
  543. struct sk_buff *skb)
  544. {
  545. struct brcmf_msgbuf_work_item *create;
  546. struct ethhdr *eh = (struct ethhdr *)(skb->data);
  547. u32 flowid;
  548. ulong flags;
  549. create = kzalloc(sizeof(*create), GFP_ATOMIC);
  550. if (create == NULL)
  551. return BRCMF_FLOWRING_INVALID_ID;
  552. flowid = brcmf_flowring_create(msgbuf->flow, eh->h_dest,
  553. skb->priority, ifidx);
  554. if (flowid == BRCMF_FLOWRING_INVALID_ID) {
  555. kfree(create);
  556. return flowid;
  557. }
  558. create->flowid = flowid;
  559. create->ifidx = ifidx;
  560. memcpy(create->sa, eh->h_source, ETH_ALEN);
  561. memcpy(create->da, eh->h_dest, ETH_ALEN);
  562. spin_lock_irqsave(&msgbuf->flowring_work_lock, flags);
  563. list_add_tail(&create->queue, &msgbuf->work_queue);
  564. spin_unlock_irqrestore(&msgbuf->flowring_work_lock, flags);
  565. schedule_work(&msgbuf->flowring_work);
  566. return flowid;
  567. }
  568. static void brcmf_msgbuf_txflow(struct brcmf_msgbuf *msgbuf, u8 flowid)
  569. {
  570. struct brcmf_flowring *flow = msgbuf->flow;
  571. struct brcmf_commonring *commonring;
  572. void *ret_ptr;
  573. u32 count;
  574. struct sk_buff *skb;
  575. dma_addr_t physaddr;
  576. u32 pktid;
  577. struct msgbuf_tx_msghdr *tx_msghdr;
  578. long long address;
  579. commonring = msgbuf->flowrings[flowid];
  580. if (!brcmf_commonring_write_available(commonring))
  581. return;
  582. brcmf_commonring_lock(commonring);
  583. count = BRCMF_MSGBUF_TX_FLUSH_CNT2 - BRCMF_MSGBUF_TX_FLUSH_CNT1;
  584. while (brcmf_flowring_qlen(flow, flowid)) {
  585. skb = brcmf_flowring_dequeue(flow, flowid);
  586. if (skb == NULL) {
  587. brcmf_err("No SKB, but qlen %d\n",
  588. brcmf_flowring_qlen(flow, flowid));
  589. break;
  590. }
  591. skb_orphan(skb);
  592. if (brcmf_msgbuf_alloc_pktid(msgbuf->drvr->bus_if->dev,
  593. msgbuf->tx_pktids, skb, ETH_HLEN,
  594. &physaddr, &pktid)) {
  595. brcmf_flowring_reinsert(flow, flowid, skb);
  596. brcmf_err("No PKTID available !!\n");
  597. break;
  598. }
  599. ret_ptr = brcmf_commonring_reserve_for_write(commonring);
  600. if (!ret_ptr) {
  601. brcmf_msgbuf_get_pktid(msgbuf->drvr->bus_if->dev,
  602. msgbuf->tx_pktids, pktid);
  603. brcmf_flowring_reinsert(flow, flowid, skb);
  604. break;
  605. }
  606. count++;
  607. tx_msghdr = (struct msgbuf_tx_msghdr *)ret_ptr;
  608. tx_msghdr->msg.msgtype = MSGBUF_TYPE_TX_POST;
  609. tx_msghdr->msg.request_id = cpu_to_le32(pktid);
  610. tx_msghdr->msg.ifidx = brcmf_flowring_ifidx_get(flow, flowid);
  611. tx_msghdr->flags = BRCMF_MSGBUF_PKT_FLAGS_FRAME_802_3;
  612. tx_msghdr->flags |= (skb->priority & 0x07) <<
  613. BRCMF_MSGBUF_PKT_FLAGS_PRIO_SHIFT;
  614. tx_msghdr->seg_cnt = 1;
  615. memcpy(tx_msghdr->txhdr, skb->data, ETH_HLEN);
  616. tx_msghdr->data_len = cpu_to_le16(skb->len - ETH_HLEN);
  617. address = (long long)(long)physaddr;
  618. tx_msghdr->data_buf_addr.high_addr = cpu_to_le32(address >> 32);
  619. tx_msghdr->data_buf_addr.low_addr =
  620. cpu_to_le32(address & 0xffffffff);
  621. tx_msghdr->metadata_buf_len = 0;
  622. tx_msghdr->metadata_buf_addr.high_addr = 0;
  623. tx_msghdr->metadata_buf_addr.low_addr = 0;
  624. if (count >= BRCMF_MSGBUF_TX_FLUSH_CNT2) {
  625. brcmf_commonring_write_complete(commonring);
  626. count = 0;
  627. }
  628. }
  629. if (count)
  630. brcmf_commonring_write_complete(commonring);
  631. brcmf_commonring_unlock(commonring);
  632. }
  633. static void brcmf_msgbuf_txflow_worker(struct work_struct *worker)
  634. {
  635. struct brcmf_msgbuf *msgbuf;
  636. u32 flowid;
  637. msgbuf = container_of(worker, struct brcmf_msgbuf, txflow_work);
  638. for_each_set_bit(flowid, msgbuf->flow_map, msgbuf->nrof_flowrings) {
  639. clear_bit(flowid, msgbuf->flow_map);
  640. brcmf_msgbuf_txflow(msgbuf, flowid);
  641. }
  642. }
  643. static int brcmf_msgbuf_schedule_txdata(struct brcmf_msgbuf *msgbuf, u32 flowid)
  644. {
  645. set_bit(flowid, msgbuf->flow_map);
  646. queue_work(msgbuf->txflow_wq, &msgbuf->txflow_work);
  647. return 0;
  648. }
  649. static int brcmf_msgbuf_txdata(struct brcmf_pub *drvr, int ifidx,
  650. u8 offset, struct sk_buff *skb)
  651. {
  652. struct brcmf_msgbuf *msgbuf = (struct brcmf_msgbuf *)drvr->proto->pd;
  653. struct brcmf_flowring *flow = msgbuf->flow;
  654. struct ethhdr *eh = (struct ethhdr *)(skb->data);
  655. u32 flowid;
  656. flowid = brcmf_flowring_lookup(flow, eh->h_dest, skb->priority, ifidx);
  657. if (flowid == BRCMF_FLOWRING_INVALID_ID) {
  658. flowid = brcmf_msgbuf_flowring_create(msgbuf, ifidx, skb);
  659. if (flowid == BRCMF_FLOWRING_INVALID_ID)
  660. return -ENOMEM;
  661. }
  662. brcmf_flowring_enqueue(flow, flowid, skb);
  663. brcmf_msgbuf_schedule_txdata(msgbuf, flowid);
  664. return 0;
  665. }
  666. static void
  667. brcmf_msgbuf_configure_addr_mode(struct brcmf_pub *drvr, int ifidx,
  668. enum proto_addr_mode addr_mode)
  669. {
  670. struct brcmf_msgbuf *msgbuf = (struct brcmf_msgbuf *)drvr->proto->pd;
  671. brcmf_flowring_configure_addr_mode(msgbuf->flow, ifidx, addr_mode);
  672. }
  673. static void
  674. brcmf_msgbuf_delete_peer(struct brcmf_pub *drvr, int ifidx, u8 peer[ETH_ALEN])
  675. {
  676. struct brcmf_msgbuf *msgbuf = (struct brcmf_msgbuf *)drvr->proto->pd;
  677. brcmf_flowring_delete_peer(msgbuf->flow, ifidx, peer);
  678. }
  679. static void
  680. brcmf_msgbuf_add_tdls_peer(struct brcmf_pub *drvr, int ifidx, u8 peer[ETH_ALEN])
  681. {
  682. struct brcmf_msgbuf *msgbuf = (struct brcmf_msgbuf *)drvr->proto->pd;
  683. brcmf_flowring_add_tdls_peer(msgbuf->flow, ifidx, peer);
  684. }
  685. static void
  686. brcmf_msgbuf_process_ioctl_complete(struct brcmf_msgbuf *msgbuf, void *buf)
  687. {
  688. struct msgbuf_ioctl_resp_hdr *ioctl_resp;
  689. ioctl_resp = (struct msgbuf_ioctl_resp_hdr *)buf;
  690. msgbuf->ioctl_resp_status =
  691. (s16)le16_to_cpu(ioctl_resp->compl_hdr.status);
  692. msgbuf->ioctl_resp_ret_len = le16_to_cpu(ioctl_resp->resp_len);
  693. msgbuf->ioctl_resp_pktid = le32_to_cpu(ioctl_resp->msg.request_id);
  694. brcmf_msgbuf_ioctl_resp_wake(msgbuf);
  695. if (msgbuf->cur_ioctlrespbuf)
  696. msgbuf->cur_ioctlrespbuf--;
  697. brcmf_msgbuf_rxbuf_ioctlresp_post(msgbuf);
  698. }
  699. static void
  700. brcmf_msgbuf_process_txstatus(struct brcmf_msgbuf *msgbuf, void *buf)
  701. {
  702. struct msgbuf_tx_status *tx_status;
  703. u32 idx;
  704. struct sk_buff *skb;
  705. u16 flowid;
  706. tx_status = (struct msgbuf_tx_status *)buf;
  707. idx = le32_to_cpu(tx_status->msg.request_id);
  708. flowid = le16_to_cpu(tx_status->compl_hdr.flow_ring_id);
  709. flowid -= BRCMF_NROF_H2D_COMMON_MSGRINGS;
  710. skb = brcmf_msgbuf_get_pktid(msgbuf->drvr->bus_if->dev,
  711. msgbuf->tx_pktids, idx);
  712. if (!skb) {
  713. brcmf_err("Invalid packet id idx recv'd %d\n", idx);
  714. return;
  715. }
  716. set_bit(flowid, msgbuf->txstatus_done_map);
  717. brcmf_txfinalize(msgbuf->drvr, skb, tx_status->msg.ifidx, true);
  718. }
  719. static u32 brcmf_msgbuf_rxbuf_data_post(struct brcmf_msgbuf *msgbuf, u32 count)
  720. {
  721. struct brcmf_commonring *commonring;
  722. void *ret_ptr;
  723. struct sk_buff *skb;
  724. u16 alloced;
  725. u32 pktlen;
  726. dma_addr_t physaddr;
  727. struct msgbuf_rx_bufpost *rx_bufpost;
  728. long long address;
  729. u32 pktid;
  730. u32 i;
  731. commonring = msgbuf->commonrings[BRCMF_H2D_MSGRING_RXPOST_SUBMIT];
  732. ret_ptr = brcmf_commonring_reserve_for_write_multiple(commonring,
  733. count,
  734. &alloced);
  735. if (!ret_ptr) {
  736. brcmf_err("Failed to reserve space in commonring\n");
  737. return 0;
  738. }
  739. for (i = 0; i < alloced; i++) {
  740. rx_bufpost = (struct msgbuf_rx_bufpost *)ret_ptr;
  741. memset(rx_bufpost, 0, sizeof(*rx_bufpost));
  742. skb = brcmu_pkt_buf_get_skb(BRCMF_MSGBUF_MAX_PKT_SIZE);
  743. if (skb == NULL) {
  744. brcmf_err("Failed to alloc SKB\n");
  745. brcmf_commonring_write_cancel(commonring, alloced - i);
  746. break;
  747. }
  748. pktlen = skb->len;
  749. if (brcmf_msgbuf_alloc_pktid(msgbuf->drvr->bus_if->dev,
  750. msgbuf->rx_pktids, skb, 0,
  751. &physaddr, &pktid)) {
  752. dev_kfree_skb_any(skb);
  753. brcmf_err("No PKTID available !!\n");
  754. brcmf_commonring_write_cancel(commonring, alloced - i);
  755. break;
  756. }
  757. if (msgbuf->rx_metadata_offset) {
  758. address = (long long)(long)physaddr;
  759. rx_bufpost->metadata_buf_len =
  760. cpu_to_le16(msgbuf->rx_metadata_offset);
  761. rx_bufpost->metadata_buf_addr.high_addr =
  762. cpu_to_le32(address >> 32);
  763. rx_bufpost->metadata_buf_addr.low_addr =
  764. cpu_to_le32(address & 0xffffffff);
  765. skb_pull(skb, msgbuf->rx_metadata_offset);
  766. pktlen = skb->len;
  767. physaddr += msgbuf->rx_metadata_offset;
  768. }
  769. rx_bufpost->msg.msgtype = MSGBUF_TYPE_RXBUF_POST;
  770. rx_bufpost->msg.request_id = cpu_to_le32(pktid);
  771. address = (long long)(long)physaddr;
  772. rx_bufpost->data_buf_len = cpu_to_le16((u16)pktlen);
  773. rx_bufpost->data_buf_addr.high_addr =
  774. cpu_to_le32(address >> 32);
  775. rx_bufpost->data_buf_addr.low_addr =
  776. cpu_to_le32(address & 0xffffffff);
  777. ret_ptr += brcmf_commonring_len_item(commonring);
  778. }
  779. if (i)
  780. brcmf_commonring_write_complete(commonring);
  781. return i;
  782. }
  783. static void
  784. brcmf_msgbuf_rxbuf_data_fill(struct brcmf_msgbuf *msgbuf)
  785. {
  786. u32 fillbufs;
  787. u32 retcount;
  788. fillbufs = msgbuf->max_rxbufpost - msgbuf->rxbufpost;
  789. while (fillbufs) {
  790. retcount = brcmf_msgbuf_rxbuf_data_post(msgbuf, fillbufs);
  791. if (!retcount)
  792. break;
  793. msgbuf->rxbufpost += retcount;
  794. fillbufs -= retcount;
  795. }
  796. }
  797. static void
  798. brcmf_msgbuf_update_rxbufpost_count(struct brcmf_msgbuf *msgbuf, u16 rxcnt)
  799. {
  800. msgbuf->rxbufpost -= rxcnt;
  801. if (msgbuf->rxbufpost <= (msgbuf->max_rxbufpost -
  802. BRCMF_MSGBUF_RXBUFPOST_THRESHOLD))
  803. brcmf_msgbuf_rxbuf_data_fill(msgbuf);
  804. }
  805. static u32
  806. brcmf_msgbuf_rxbuf_ctrl_post(struct brcmf_msgbuf *msgbuf, bool event_buf,
  807. u32 count)
  808. {
  809. struct brcmf_commonring *commonring;
  810. void *ret_ptr;
  811. struct sk_buff *skb;
  812. u16 alloced;
  813. u32 pktlen;
  814. dma_addr_t physaddr;
  815. struct msgbuf_rx_ioctl_resp_or_event *rx_bufpost;
  816. long long address;
  817. u32 pktid;
  818. u32 i;
  819. commonring = msgbuf->commonrings[BRCMF_H2D_MSGRING_CONTROL_SUBMIT];
  820. brcmf_commonring_lock(commonring);
  821. ret_ptr = brcmf_commonring_reserve_for_write_multiple(commonring,
  822. count,
  823. &alloced);
  824. if (!ret_ptr) {
  825. brcmf_err("Failed to reserve space in commonring\n");
  826. brcmf_commonring_unlock(commonring);
  827. return 0;
  828. }
  829. for (i = 0; i < alloced; i++) {
  830. rx_bufpost = (struct msgbuf_rx_ioctl_resp_or_event *)ret_ptr;
  831. memset(rx_bufpost, 0, sizeof(*rx_bufpost));
  832. skb = brcmu_pkt_buf_get_skb(BRCMF_MSGBUF_MAX_PKT_SIZE);
  833. if (skb == NULL) {
  834. brcmf_err("Failed to alloc SKB\n");
  835. brcmf_commonring_write_cancel(commonring, alloced - i);
  836. break;
  837. }
  838. pktlen = skb->len;
  839. if (brcmf_msgbuf_alloc_pktid(msgbuf->drvr->bus_if->dev,
  840. msgbuf->rx_pktids, skb, 0,
  841. &physaddr, &pktid)) {
  842. dev_kfree_skb_any(skb);
  843. brcmf_err("No PKTID available !!\n");
  844. brcmf_commonring_write_cancel(commonring, alloced - i);
  845. break;
  846. }
  847. if (event_buf)
  848. rx_bufpost->msg.msgtype = MSGBUF_TYPE_EVENT_BUF_POST;
  849. else
  850. rx_bufpost->msg.msgtype =
  851. MSGBUF_TYPE_IOCTLRESP_BUF_POST;
  852. rx_bufpost->msg.request_id = cpu_to_le32(pktid);
  853. address = (long long)(long)physaddr;
  854. rx_bufpost->host_buf_len = cpu_to_le16((u16)pktlen);
  855. rx_bufpost->host_buf_addr.high_addr =
  856. cpu_to_le32(address >> 32);
  857. rx_bufpost->host_buf_addr.low_addr =
  858. cpu_to_le32(address & 0xffffffff);
  859. ret_ptr += brcmf_commonring_len_item(commonring);
  860. }
  861. if (i)
  862. brcmf_commonring_write_complete(commonring);
  863. brcmf_commonring_unlock(commonring);
  864. return i;
  865. }
  866. static void brcmf_msgbuf_rxbuf_ioctlresp_post(struct brcmf_msgbuf *msgbuf)
  867. {
  868. u32 count;
  869. count = msgbuf->max_ioctlrespbuf - msgbuf->cur_ioctlrespbuf;
  870. count = brcmf_msgbuf_rxbuf_ctrl_post(msgbuf, false, count);
  871. msgbuf->cur_ioctlrespbuf += count;
  872. }
  873. static void brcmf_msgbuf_rxbuf_event_post(struct brcmf_msgbuf *msgbuf)
  874. {
  875. u32 count;
  876. count = msgbuf->max_eventbuf - msgbuf->cur_eventbuf;
  877. count = brcmf_msgbuf_rxbuf_ctrl_post(msgbuf, true, count);
  878. msgbuf->cur_eventbuf += count;
  879. }
  880. static void
  881. brcmf_msgbuf_rx_skb(struct brcmf_msgbuf *msgbuf, struct sk_buff *skb,
  882. u8 ifidx)
  883. {
  884. struct brcmf_if *ifp;
  885. ifp = msgbuf->drvr->iflist[ifidx];
  886. if (!ifp || !ifp->ndev) {
  887. brcmu_pkt_buf_free_skb(skb);
  888. return;
  889. }
  890. brcmf_netif_rx(ifp, skb);
  891. }
  892. static void brcmf_msgbuf_process_event(struct brcmf_msgbuf *msgbuf, void *buf)
  893. {
  894. struct msgbuf_rx_event *event;
  895. u32 idx;
  896. u16 buflen;
  897. struct sk_buff *skb;
  898. event = (struct msgbuf_rx_event *)buf;
  899. idx = le32_to_cpu(event->msg.request_id);
  900. buflen = le16_to_cpu(event->event_data_len);
  901. if (msgbuf->cur_eventbuf)
  902. msgbuf->cur_eventbuf--;
  903. brcmf_msgbuf_rxbuf_event_post(msgbuf);
  904. skb = brcmf_msgbuf_get_pktid(msgbuf->drvr->bus_if->dev,
  905. msgbuf->rx_pktids, idx);
  906. if (!skb)
  907. return;
  908. if (msgbuf->rx_dataoffset)
  909. skb_pull(skb, msgbuf->rx_dataoffset);
  910. skb_trim(skb, buflen);
  911. brcmf_msgbuf_rx_skb(msgbuf, skb, event->msg.ifidx);
  912. }
  913. static void
  914. brcmf_msgbuf_process_rx_complete(struct brcmf_msgbuf *msgbuf, void *buf)
  915. {
  916. struct msgbuf_rx_complete *rx_complete;
  917. struct sk_buff *skb;
  918. u16 data_offset;
  919. u16 buflen;
  920. u32 idx;
  921. brcmf_msgbuf_update_rxbufpost_count(msgbuf, 1);
  922. rx_complete = (struct msgbuf_rx_complete *)buf;
  923. data_offset = le16_to_cpu(rx_complete->data_offset);
  924. buflen = le16_to_cpu(rx_complete->data_len);
  925. idx = le32_to_cpu(rx_complete->msg.request_id);
  926. skb = brcmf_msgbuf_get_pktid(msgbuf->drvr->bus_if->dev,
  927. msgbuf->rx_pktids, idx);
  928. if (data_offset)
  929. skb_pull(skb, data_offset);
  930. else if (msgbuf->rx_dataoffset)
  931. skb_pull(skb, msgbuf->rx_dataoffset);
  932. skb_trim(skb, buflen);
  933. brcmf_msgbuf_rx_skb(msgbuf, skb, rx_complete->msg.ifidx);
  934. }
  935. static void
  936. brcmf_msgbuf_process_flow_ring_create_response(struct brcmf_msgbuf *msgbuf,
  937. void *buf)
  938. {
  939. struct msgbuf_flowring_create_resp *flowring_create_resp;
  940. u16 status;
  941. u16 flowid;
  942. flowring_create_resp = (struct msgbuf_flowring_create_resp *)buf;
  943. flowid = le16_to_cpu(flowring_create_resp->compl_hdr.flow_ring_id);
  944. flowid -= BRCMF_NROF_H2D_COMMON_MSGRINGS;
  945. status = le16_to_cpu(flowring_create_resp->compl_hdr.status);
  946. if (status) {
  947. brcmf_err("Flowring creation failed, code %d\n", status);
  948. brcmf_msgbuf_remove_flowring(msgbuf, flowid);
  949. return;
  950. }
  951. brcmf_dbg(MSGBUF, "Flowring %d Create response status %d\n", flowid,
  952. status);
  953. brcmf_flowring_open(msgbuf->flow, flowid);
  954. brcmf_msgbuf_schedule_txdata(msgbuf, flowid);
  955. }
  956. static void
  957. brcmf_msgbuf_process_flow_ring_delete_response(struct brcmf_msgbuf *msgbuf,
  958. void *buf)
  959. {
  960. struct msgbuf_flowring_delete_resp *flowring_delete_resp;
  961. u16 status;
  962. u16 flowid;
  963. flowring_delete_resp = (struct msgbuf_flowring_delete_resp *)buf;
  964. flowid = le16_to_cpu(flowring_delete_resp->compl_hdr.flow_ring_id);
  965. flowid -= BRCMF_NROF_H2D_COMMON_MSGRINGS;
  966. status = le16_to_cpu(flowring_delete_resp->compl_hdr.status);
  967. if (status) {
  968. brcmf_err("Flowring deletion failed, code %d\n", status);
  969. brcmf_flowring_delete(msgbuf->flow, flowid);
  970. return;
  971. }
  972. brcmf_dbg(MSGBUF, "Flowring %d Delete response status %d\n", flowid,
  973. status);
  974. brcmf_msgbuf_remove_flowring(msgbuf, flowid);
  975. }
  976. static void brcmf_msgbuf_process_msgtype(struct brcmf_msgbuf *msgbuf, void *buf)
  977. {
  978. struct msgbuf_common_hdr *msg;
  979. msg = (struct msgbuf_common_hdr *)buf;
  980. switch (msg->msgtype) {
  981. case MSGBUF_TYPE_FLOW_RING_CREATE_CMPLT:
  982. brcmf_dbg(MSGBUF, "MSGBUF_TYPE_FLOW_RING_CREATE_CMPLT\n");
  983. brcmf_msgbuf_process_flow_ring_create_response(msgbuf, buf);
  984. break;
  985. case MSGBUF_TYPE_FLOW_RING_DELETE_CMPLT:
  986. brcmf_dbg(MSGBUF, "MSGBUF_TYPE_FLOW_RING_DELETE_CMPLT\n");
  987. brcmf_msgbuf_process_flow_ring_delete_response(msgbuf, buf);
  988. break;
  989. case MSGBUF_TYPE_IOCTLPTR_REQ_ACK:
  990. brcmf_dbg(MSGBUF, "MSGBUF_TYPE_IOCTLPTR_REQ_ACK\n");
  991. break;
  992. case MSGBUF_TYPE_IOCTL_CMPLT:
  993. brcmf_dbg(MSGBUF, "MSGBUF_TYPE_IOCTL_CMPLT\n");
  994. brcmf_msgbuf_process_ioctl_complete(msgbuf, buf);
  995. break;
  996. case MSGBUF_TYPE_WL_EVENT:
  997. brcmf_dbg(MSGBUF, "MSGBUF_TYPE_WL_EVENT\n");
  998. brcmf_msgbuf_process_event(msgbuf, buf);
  999. break;
  1000. case MSGBUF_TYPE_TX_STATUS:
  1001. brcmf_dbg(MSGBUF, "MSGBUF_TYPE_TX_STATUS\n");
  1002. brcmf_msgbuf_process_txstatus(msgbuf, buf);
  1003. break;
  1004. case MSGBUF_TYPE_RX_CMPLT:
  1005. brcmf_dbg(MSGBUF, "MSGBUF_TYPE_RX_CMPLT\n");
  1006. brcmf_msgbuf_process_rx_complete(msgbuf, buf);
  1007. break;
  1008. default:
  1009. brcmf_err("Unsupported msgtype %d\n", msg->msgtype);
  1010. break;
  1011. }
  1012. }
  1013. static void brcmf_msgbuf_process_rx(struct brcmf_msgbuf *msgbuf,
  1014. struct brcmf_commonring *commonring)
  1015. {
  1016. void *buf;
  1017. u16 count;
  1018. again:
  1019. buf = brcmf_commonring_get_read_ptr(commonring, &count);
  1020. if (buf == NULL)
  1021. return;
  1022. while (count) {
  1023. brcmf_msgbuf_process_msgtype(msgbuf,
  1024. buf + msgbuf->rx_dataoffset);
  1025. buf += brcmf_commonring_len_item(commonring);
  1026. count--;
  1027. }
  1028. brcmf_commonring_read_complete(commonring);
  1029. if (commonring->r_ptr == 0)
  1030. goto again;
  1031. }
  1032. int brcmf_proto_msgbuf_rx_trigger(struct device *dev)
  1033. {
  1034. struct brcmf_bus *bus_if = dev_get_drvdata(dev);
  1035. struct brcmf_pub *drvr = bus_if->drvr;
  1036. struct brcmf_msgbuf *msgbuf = (struct brcmf_msgbuf *)drvr->proto->pd;
  1037. void *buf;
  1038. u32 flowid;
  1039. buf = msgbuf->commonrings[BRCMF_D2H_MSGRING_RX_COMPLETE];
  1040. brcmf_msgbuf_process_rx(msgbuf, buf);
  1041. buf = msgbuf->commonrings[BRCMF_D2H_MSGRING_TX_COMPLETE];
  1042. brcmf_msgbuf_process_rx(msgbuf, buf);
  1043. buf = msgbuf->commonrings[BRCMF_D2H_MSGRING_CONTROL_COMPLETE];
  1044. brcmf_msgbuf_process_rx(msgbuf, buf);
  1045. for_each_set_bit(flowid, msgbuf->txstatus_done_map,
  1046. msgbuf->nrof_flowrings) {
  1047. clear_bit(flowid, msgbuf->txstatus_done_map);
  1048. if (brcmf_flowring_qlen(msgbuf->flow, flowid))
  1049. brcmf_msgbuf_schedule_txdata(msgbuf, flowid);
  1050. }
  1051. return 0;
  1052. }
  1053. void brcmf_msgbuf_delete_flowring(struct brcmf_pub *drvr, u8 flowid)
  1054. {
  1055. struct brcmf_msgbuf *msgbuf = (struct brcmf_msgbuf *)drvr->proto->pd;
  1056. struct msgbuf_tx_flowring_delete_req *delete;
  1057. struct brcmf_commonring *commonring;
  1058. void *ret_ptr;
  1059. u8 ifidx;
  1060. int err;
  1061. commonring = msgbuf->commonrings[BRCMF_H2D_MSGRING_CONTROL_SUBMIT];
  1062. brcmf_commonring_lock(commonring);
  1063. ret_ptr = brcmf_commonring_reserve_for_write(commonring);
  1064. if (!ret_ptr) {
  1065. brcmf_err("FW unaware, flowring will be removed !!\n");
  1066. brcmf_commonring_unlock(commonring);
  1067. brcmf_msgbuf_remove_flowring(msgbuf, flowid);
  1068. return;
  1069. }
  1070. delete = (struct msgbuf_tx_flowring_delete_req *)ret_ptr;
  1071. ifidx = brcmf_flowring_ifidx_get(msgbuf->flow, flowid);
  1072. delete->msg.msgtype = MSGBUF_TYPE_FLOW_RING_DELETE;
  1073. delete->msg.ifidx = ifidx;
  1074. delete->msg.request_id = 0;
  1075. delete->flow_ring_id = cpu_to_le16(flowid +
  1076. BRCMF_NROF_H2D_COMMON_MSGRINGS);
  1077. delete->reason = 0;
  1078. brcmf_dbg(MSGBUF, "Send Flow Delete Req flow ID %d, ifindex %d\n",
  1079. flowid, ifidx);
  1080. err = brcmf_commonring_write_complete(commonring);
  1081. brcmf_commonring_unlock(commonring);
  1082. if (err) {
  1083. brcmf_err("Failed to submit RING_DELETE, flowring will be removed\n");
  1084. brcmf_msgbuf_remove_flowring(msgbuf, flowid);
  1085. }
  1086. }
  1087. int brcmf_proto_msgbuf_attach(struct brcmf_pub *drvr)
  1088. {
  1089. struct brcmf_bus_msgbuf *if_msgbuf;
  1090. struct brcmf_msgbuf *msgbuf;
  1091. long long address;
  1092. u32 count;
  1093. if_msgbuf = drvr->bus_if->msgbuf;
  1094. msgbuf = kzalloc(sizeof(*msgbuf), GFP_KERNEL);
  1095. if (!msgbuf)
  1096. goto fail;
  1097. msgbuf->txflow_wq = create_singlethread_workqueue("msgbuf_txflow");
  1098. if (msgbuf->txflow_wq == NULL) {
  1099. brcmf_err("workqueue creation failed\n");
  1100. goto fail;
  1101. }
  1102. INIT_WORK(&msgbuf->txflow_work, brcmf_msgbuf_txflow_worker);
  1103. count = BITS_TO_LONGS(if_msgbuf->nrof_flowrings);
  1104. msgbuf->flow_map = kzalloc(count, GFP_KERNEL);
  1105. if (!msgbuf->flow_map)
  1106. goto fail;
  1107. msgbuf->txstatus_done_map = kzalloc(count, GFP_KERNEL);
  1108. if (!msgbuf->txstatus_done_map)
  1109. goto fail;
  1110. msgbuf->drvr = drvr;
  1111. msgbuf->ioctbuf = dma_alloc_coherent(drvr->bus_if->dev,
  1112. BRCMF_TX_IOCTL_MAX_MSG_SIZE,
  1113. &msgbuf->ioctbuf_handle,
  1114. GFP_KERNEL);
  1115. if (!msgbuf->ioctbuf)
  1116. goto fail;
  1117. address = (long long)(long)msgbuf->ioctbuf_handle;
  1118. msgbuf->ioctbuf_phys_hi = address >> 32;
  1119. msgbuf->ioctbuf_phys_lo = address & 0xffffffff;
  1120. drvr->proto->hdrpull = brcmf_msgbuf_hdrpull;
  1121. drvr->proto->query_dcmd = brcmf_msgbuf_query_dcmd;
  1122. drvr->proto->set_dcmd = brcmf_msgbuf_set_dcmd;
  1123. drvr->proto->txdata = brcmf_msgbuf_txdata;
  1124. drvr->proto->configure_addr_mode = brcmf_msgbuf_configure_addr_mode;
  1125. drvr->proto->delete_peer = brcmf_msgbuf_delete_peer;
  1126. drvr->proto->add_tdls_peer = brcmf_msgbuf_add_tdls_peer;
  1127. drvr->proto->pd = msgbuf;
  1128. init_waitqueue_head(&msgbuf->ioctl_resp_wait);
  1129. msgbuf->commonrings =
  1130. (struct brcmf_commonring **)if_msgbuf->commonrings;
  1131. msgbuf->flowrings = (struct brcmf_commonring **)if_msgbuf->flowrings;
  1132. msgbuf->nrof_flowrings = if_msgbuf->nrof_flowrings;
  1133. msgbuf->flowring_dma_handle = kzalloc(msgbuf->nrof_flowrings *
  1134. sizeof(*msgbuf->flowring_dma_handle), GFP_KERNEL);
  1135. if (!msgbuf->flowring_dma_handle)
  1136. goto fail;
  1137. msgbuf->rx_dataoffset = if_msgbuf->rx_dataoffset;
  1138. msgbuf->max_rxbufpost = if_msgbuf->max_rxbufpost;
  1139. msgbuf->max_ioctlrespbuf = BRCMF_MSGBUF_MAX_IOCTLRESPBUF_POST;
  1140. msgbuf->max_eventbuf = BRCMF_MSGBUF_MAX_EVENTBUF_POST;
  1141. msgbuf->tx_pktids = brcmf_msgbuf_init_pktids(NR_TX_PKTIDS,
  1142. DMA_TO_DEVICE);
  1143. if (!msgbuf->tx_pktids)
  1144. goto fail;
  1145. msgbuf->rx_pktids = brcmf_msgbuf_init_pktids(NR_RX_PKTIDS,
  1146. DMA_FROM_DEVICE);
  1147. if (!msgbuf->rx_pktids)
  1148. goto fail;
  1149. msgbuf->flow = brcmf_flowring_attach(drvr->bus_if->dev,
  1150. if_msgbuf->nrof_flowrings);
  1151. if (!msgbuf->flow)
  1152. goto fail;
  1153. brcmf_dbg(MSGBUF, "Feeding buffers, rx data %d, rx event %d, rx ioctl resp %d\n",
  1154. msgbuf->max_rxbufpost, msgbuf->max_eventbuf,
  1155. msgbuf->max_ioctlrespbuf);
  1156. count = 0;
  1157. do {
  1158. brcmf_msgbuf_rxbuf_data_fill(msgbuf);
  1159. if (msgbuf->max_rxbufpost != msgbuf->rxbufpost)
  1160. msleep(10);
  1161. else
  1162. break;
  1163. count++;
  1164. } while (count < 10);
  1165. brcmf_msgbuf_rxbuf_event_post(msgbuf);
  1166. brcmf_msgbuf_rxbuf_ioctlresp_post(msgbuf);
  1167. INIT_WORK(&msgbuf->flowring_work, brcmf_msgbuf_flowring_worker);
  1168. spin_lock_init(&msgbuf->flowring_work_lock);
  1169. INIT_LIST_HEAD(&msgbuf->work_queue);
  1170. return 0;
  1171. fail:
  1172. if (msgbuf) {
  1173. kfree(msgbuf->flow_map);
  1174. kfree(msgbuf->txstatus_done_map);
  1175. brcmf_msgbuf_release_pktids(msgbuf);
  1176. kfree(msgbuf->flowring_dma_handle);
  1177. if (msgbuf->ioctbuf)
  1178. dma_free_coherent(drvr->bus_if->dev,
  1179. BRCMF_TX_IOCTL_MAX_MSG_SIZE,
  1180. msgbuf->ioctbuf,
  1181. msgbuf->ioctbuf_handle);
  1182. kfree(msgbuf);
  1183. }
  1184. return -ENOMEM;
  1185. }
  1186. void brcmf_proto_msgbuf_detach(struct brcmf_pub *drvr)
  1187. {
  1188. struct brcmf_msgbuf *msgbuf;
  1189. struct brcmf_msgbuf_work_item *work;
  1190. brcmf_dbg(TRACE, "Enter\n");
  1191. if (drvr->proto->pd) {
  1192. msgbuf = (struct brcmf_msgbuf *)drvr->proto->pd;
  1193. cancel_work_sync(&msgbuf->flowring_work);
  1194. while (!list_empty(&msgbuf->work_queue)) {
  1195. work = list_first_entry(&msgbuf->work_queue,
  1196. struct brcmf_msgbuf_work_item,
  1197. queue);
  1198. list_del(&work->queue);
  1199. kfree(work);
  1200. }
  1201. kfree(msgbuf->flow_map);
  1202. kfree(msgbuf->txstatus_done_map);
  1203. if (msgbuf->txflow_wq)
  1204. destroy_workqueue(msgbuf->txflow_wq);
  1205. brcmf_flowring_detach(msgbuf->flow);
  1206. dma_free_coherent(drvr->bus_if->dev,
  1207. BRCMF_TX_IOCTL_MAX_MSG_SIZE,
  1208. msgbuf->ioctbuf, msgbuf->ioctbuf_handle);
  1209. brcmf_msgbuf_release_pktids(msgbuf);
  1210. kfree(msgbuf->flowring_dma_handle);
  1211. kfree(msgbuf);
  1212. drvr->proto->pd = NULL;
  1213. }
  1214. }