nic.h 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824
  1. /****************************************************************************
  2. * Driver for Solarflare network controllers and boards
  3. * Copyright 2005-2006 Fen Systems Ltd.
  4. * Copyright 2006-2013 Solarflare Communications Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation, incorporated herein by reference.
  9. */
  10. #ifndef EFX_NIC_H
  11. #define EFX_NIC_H
  12. #include <linux/net_tstamp.h>
  13. #include <linux/i2c-algo-bit.h>
  14. #include "net_driver.h"
  15. #include "efx.h"
  16. #include "mcdi.h"
  17. enum {
  18. EFX_REV_FALCON_A0 = 0,
  19. EFX_REV_FALCON_A1 = 1,
  20. EFX_REV_FALCON_B0 = 2,
  21. EFX_REV_SIENA_A0 = 3,
  22. EFX_REV_HUNT_A0 = 4,
  23. };
  24. static inline int efx_nic_rev(struct efx_nic *efx)
  25. {
  26. return efx->type->revision;
  27. }
  28. u32 efx_farch_fpga_ver(struct efx_nic *efx);
  29. /* NIC has two interlinked PCI functions for the same port. */
  30. static inline bool efx_nic_is_dual_func(struct efx_nic *efx)
  31. {
  32. return efx_nic_rev(efx) < EFX_REV_FALCON_B0;
  33. }
  34. /* Read the current event from the event queue */
  35. static inline efx_qword_t *efx_event(struct efx_channel *channel,
  36. unsigned int index)
  37. {
  38. return ((efx_qword_t *) (channel->eventq.buf.addr)) +
  39. (index & channel->eventq_mask);
  40. }
  41. /* See if an event is present
  42. *
  43. * We check both the high and low dword of the event for all ones. We
  44. * wrote all ones when we cleared the event, and no valid event can
  45. * have all ones in either its high or low dwords. This approach is
  46. * robust against reordering.
  47. *
  48. * Note that using a single 64-bit comparison is incorrect; even
  49. * though the CPU read will be atomic, the DMA write may not be.
  50. */
  51. static inline int efx_event_present(efx_qword_t *event)
  52. {
  53. return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
  54. EFX_DWORD_IS_ALL_ONES(event->dword[1]));
  55. }
  56. /* Returns a pointer to the specified transmit descriptor in the TX
  57. * descriptor queue belonging to the specified channel.
  58. */
  59. static inline efx_qword_t *
  60. efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
  61. {
  62. return ((efx_qword_t *) (tx_queue->txd.buf.addr)) + index;
  63. }
  64. /* Get partner of a TX queue, seen as part of the same net core queue */
  65. static struct efx_tx_queue *efx_tx_queue_partner(struct efx_tx_queue *tx_queue)
  66. {
  67. if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
  68. return tx_queue - EFX_TXQ_TYPE_OFFLOAD;
  69. else
  70. return tx_queue + EFX_TXQ_TYPE_OFFLOAD;
  71. }
  72. /* Report whether this TX queue would be empty for the given write_count.
  73. * May return false negative.
  74. */
  75. static inline bool __efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue,
  76. unsigned int write_count)
  77. {
  78. unsigned int empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
  79. if (empty_read_count == 0)
  80. return false;
  81. return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
  82. }
  83. /* Decide whether we can use TX PIO, ie. write packet data directly into
  84. * a buffer on the device. This can reduce latency at the expense of
  85. * throughput, so we only do this if both hardware and software TX rings
  86. * are empty. This also ensures that only one packet at a time can be
  87. * using the PIO buffer.
  88. */
  89. static inline bool efx_nic_may_tx_pio(struct efx_tx_queue *tx_queue)
  90. {
  91. struct efx_tx_queue *partner = efx_tx_queue_partner(tx_queue);
  92. return tx_queue->piobuf &&
  93. __efx_nic_tx_is_empty(tx_queue, tx_queue->insert_count) &&
  94. __efx_nic_tx_is_empty(partner, partner->insert_count);
  95. }
  96. /* Decide whether to push a TX descriptor to the NIC vs merely writing
  97. * the doorbell. This can reduce latency when we are adding a single
  98. * descriptor to an empty queue, but is otherwise pointless. Further,
  99. * Falcon and Siena have hardware bugs (SF bug 33851) that may be
  100. * triggered if we don't check this.
  101. * We use the write_count used for the last doorbell push, to get the
  102. * NIC's view of the tx queue.
  103. */
  104. static inline bool efx_nic_may_push_tx_desc(struct efx_tx_queue *tx_queue,
  105. unsigned int write_count)
  106. {
  107. bool was_empty = __efx_nic_tx_is_empty(tx_queue, write_count);
  108. tx_queue->empty_read_count = 0;
  109. return was_empty && tx_queue->write_count - write_count == 1;
  110. }
  111. /* Returns a pointer to the specified descriptor in the RX descriptor queue */
  112. static inline efx_qword_t *
  113. efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
  114. {
  115. return ((efx_qword_t *) (rx_queue->rxd.buf.addr)) + index;
  116. }
  117. enum {
  118. PHY_TYPE_NONE = 0,
  119. PHY_TYPE_TXC43128 = 1,
  120. PHY_TYPE_88E1111 = 2,
  121. PHY_TYPE_SFX7101 = 3,
  122. PHY_TYPE_QT2022C2 = 4,
  123. PHY_TYPE_PM8358 = 6,
  124. PHY_TYPE_SFT9001A = 8,
  125. PHY_TYPE_QT2025C = 9,
  126. PHY_TYPE_SFT9001B = 10,
  127. };
  128. #define FALCON_XMAC_LOOPBACKS \
  129. ((1 << LOOPBACK_XGMII) | \
  130. (1 << LOOPBACK_XGXS) | \
  131. (1 << LOOPBACK_XAUI))
  132. /* Alignment of PCIe DMA boundaries (4KB) */
  133. #define EFX_PAGE_SIZE 4096
  134. /* Size and alignment of buffer table entries (same) */
  135. #define EFX_BUF_SIZE EFX_PAGE_SIZE
  136. /* NIC-generic software stats */
  137. enum {
  138. GENERIC_STAT_rx_noskb_drops,
  139. GENERIC_STAT_rx_nodesc_trunc,
  140. GENERIC_STAT_COUNT
  141. };
  142. /**
  143. * struct falcon_board_type - board operations and type information
  144. * @id: Board type id, as found in NVRAM
  145. * @init: Allocate resources and initialise peripheral hardware
  146. * @init_phy: Do board-specific PHY initialisation
  147. * @fini: Shut down hardware and free resources
  148. * @set_id_led: Set state of identifying LED or revert to automatic function
  149. * @monitor: Board-specific health check function
  150. */
  151. struct falcon_board_type {
  152. u8 id;
  153. int (*init) (struct efx_nic *nic);
  154. void (*init_phy) (struct efx_nic *efx);
  155. void (*fini) (struct efx_nic *nic);
  156. void (*set_id_led) (struct efx_nic *efx, enum efx_led_mode mode);
  157. int (*monitor) (struct efx_nic *nic);
  158. };
  159. /**
  160. * struct falcon_board - board information
  161. * @type: Type of board
  162. * @major: Major rev. ('A', 'B' ...)
  163. * @minor: Minor rev. (0, 1, ...)
  164. * @i2c_adap: I2C adapter for on-board peripherals
  165. * @i2c_data: Data for bit-banging algorithm
  166. * @hwmon_client: I2C client for hardware monitor
  167. * @ioexp_client: I2C client for power/port control
  168. */
  169. struct falcon_board {
  170. const struct falcon_board_type *type;
  171. int major;
  172. int minor;
  173. struct i2c_adapter i2c_adap;
  174. struct i2c_algo_bit_data i2c_data;
  175. struct i2c_client *hwmon_client, *ioexp_client;
  176. };
  177. /**
  178. * struct falcon_spi_device - a Falcon SPI (Serial Peripheral Interface) device
  179. * @device_id: Controller's id for the device
  180. * @size: Size (in bytes)
  181. * @addr_len: Number of address bytes in read/write commands
  182. * @munge_address: Flag whether addresses should be munged.
  183. * Some devices with 9-bit addresses (e.g. AT25040A EEPROM)
  184. * use bit 3 of the command byte as address bit A8, rather
  185. * than having a two-byte address. If this flag is set, then
  186. * commands should be munged in this way.
  187. * @erase_command: Erase command (or 0 if sector erase not needed).
  188. * @erase_size: Erase sector size (in bytes)
  189. * Erase commands affect sectors with this size and alignment.
  190. * This must be a power of two.
  191. * @block_size: Write block size (in bytes).
  192. * Write commands are limited to blocks with this size and alignment.
  193. */
  194. struct falcon_spi_device {
  195. int device_id;
  196. unsigned int size;
  197. unsigned int addr_len;
  198. unsigned int munge_address:1;
  199. u8 erase_command;
  200. unsigned int erase_size;
  201. unsigned int block_size;
  202. };
  203. static inline bool falcon_spi_present(const struct falcon_spi_device *spi)
  204. {
  205. return spi->size != 0;
  206. }
  207. enum {
  208. FALCON_STAT_tx_bytes = GENERIC_STAT_COUNT,
  209. FALCON_STAT_tx_packets,
  210. FALCON_STAT_tx_pause,
  211. FALCON_STAT_tx_control,
  212. FALCON_STAT_tx_unicast,
  213. FALCON_STAT_tx_multicast,
  214. FALCON_STAT_tx_broadcast,
  215. FALCON_STAT_tx_lt64,
  216. FALCON_STAT_tx_64,
  217. FALCON_STAT_tx_65_to_127,
  218. FALCON_STAT_tx_128_to_255,
  219. FALCON_STAT_tx_256_to_511,
  220. FALCON_STAT_tx_512_to_1023,
  221. FALCON_STAT_tx_1024_to_15xx,
  222. FALCON_STAT_tx_15xx_to_jumbo,
  223. FALCON_STAT_tx_gtjumbo,
  224. FALCON_STAT_tx_non_tcpudp,
  225. FALCON_STAT_tx_mac_src_error,
  226. FALCON_STAT_tx_ip_src_error,
  227. FALCON_STAT_rx_bytes,
  228. FALCON_STAT_rx_good_bytes,
  229. FALCON_STAT_rx_bad_bytes,
  230. FALCON_STAT_rx_packets,
  231. FALCON_STAT_rx_good,
  232. FALCON_STAT_rx_bad,
  233. FALCON_STAT_rx_pause,
  234. FALCON_STAT_rx_control,
  235. FALCON_STAT_rx_unicast,
  236. FALCON_STAT_rx_multicast,
  237. FALCON_STAT_rx_broadcast,
  238. FALCON_STAT_rx_lt64,
  239. FALCON_STAT_rx_64,
  240. FALCON_STAT_rx_65_to_127,
  241. FALCON_STAT_rx_128_to_255,
  242. FALCON_STAT_rx_256_to_511,
  243. FALCON_STAT_rx_512_to_1023,
  244. FALCON_STAT_rx_1024_to_15xx,
  245. FALCON_STAT_rx_15xx_to_jumbo,
  246. FALCON_STAT_rx_gtjumbo,
  247. FALCON_STAT_rx_bad_lt64,
  248. FALCON_STAT_rx_bad_gtjumbo,
  249. FALCON_STAT_rx_overflow,
  250. FALCON_STAT_rx_symbol_error,
  251. FALCON_STAT_rx_align_error,
  252. FALCON_STAT_rx_length_error,
  253. FALCON_STAT_rx_internal_error,
  254. FALCON_STAT_rx_nodesc_drop_cnt,
  255. FALCON_STAT_COUNT
  256. };
  257. /**
  258. * struct falcon_nic_data - Falcon NIC state
  259. * @pci_dev2: Secondary function of Falcon A
  260. * @board: Board state and functions
  261. * @stats: Hardware statistics
  262. * @stats_disable_count: Nest count for disabling statistics fetches
  263. * @stats_pending: Is there a pending DMA of MAC statistics.
  264. * @stats_timer: A timer for regularly fetching MAC statistics.
  265. * @spi_flash: SPI flash device
  266. * @spi_eeprom: SPI EEPROM device
  267. * @spi_lock: SPI bus lock
  268. * @mdio_lock: MDIO bus lock
  269. * @xmac_poll_required: XMAC link state needs polling
  270. */
  271. struct falcon_nic_data {
  272. struct pci_dev *pci_dev2;
  273. struct falcon_board board;
  274. u64 stats[FALCON_STAT_COUNT];
  275. unsigned int stats_disable_count;
  276. bool stats_pending;
  277. struct timer_list stats_timer;
  278. struct falcon_spi_device spi_flash;
  279. struct falcon_spi_device spi_eeprom;
  280. struct mutex spi_lock;
  281. struct mutex mdio_lock;
  282. bool xmac_poll_required;
  283. };
  284. static inline struct falcon_board *falcon_board(struct efx_nic *efx)
  285. {
  286. struct falcon_nic_data *data = efx->nic_data;
  287. return &data->board;
  288. }
  289. enum {
  290. SIENA_STAT_tx_bytes = GENERIC_STAT_COUNT,
  291. SIENA_STAT_tx_good_bytes,
  292. SIENA_STAT_tx_bad_bytes,
  293. SIENA_STAT_tx_packets,
  294. SIENA_STAT_tx_bad,
  295. SIENA_STAT_tx_pause,
  296. SIENA_STAT_tx_control,
  297. SIENA_STAT_tx_unicast,
  298. SIENA_STAT_tx_multicast,
  299. SIENA_STAT_tx_broadcast,
  300. SIENA_STAT_tx_lt64,
  301. SIENA_STAT_tx_64,
  302. SIENA_STAT_tx_65_to_127,
  303. SIENA_STAT_tx_128_to_255,
  304. SIENA_STAT_tx_256_to_511,
  305. SIENA_STAT_tx_512_to_1023,
  306. SIENA_STAT_tx_1024_to_15xx,
  307. SIENA_STAT_tx_15xx_to_jumbo,
  308. SIENA_STAT_tx_gtjumbo,
  309. SIENA_STAT_tx_collision,
  310. SIENA_STAT_tx_single_collision,
  311. SIENA_STAT_tx_multiple_collision,
  312. SIENA_STAT_tx_excessive_collision,
  313. SIENA_STAT_tx_deferred,
  314. SIENA_STAT_tx_late_collision,
  315. SIENA_STAT_tx_excessive_deferred,
  316. SIENA_STAT_tx_non_tcpudp,
  317. SIENA_STAT_tx_mac_src_error,
  318. SIENA_STAT_tx_ip_src_error,
  319. SIENA_STAT_rx_bytes,
  320. SIENA_STAT_rx_good_bytes,
  321. SIENA_STAT_rx_bad_bytes,
  322. SIENA_STAT_rx_packets,
  323. SIENA_STAT_rx_good,
  324. SIENA_STAT_rx_bad,
  325. SIENA_STAT_rx_pause,
  326. SIENA_STAT_rx_control,
  327. SIENA_STAT_rx_unicast,
  328. SIENA_STAT_rx_multicast,
  329. SIENA_STAT_rx_broadcast,
  330. SIENA_STAT_rx_lt64,
  331. SIENA_STAT_rx_64,
  332. SIENA_STAT_rx_65_to_127,
  333. SIENA_STAT_rx_128_to_255,
  334. SIENA_STAT_rx_256_to_511,
  335. SIENA_STAT_rx_512_to_1023,
  336. SIENA_STAT_rx_1024_to_15xx,
  337. SIENA_STAT_rx_15xx_to_jumbo,
  338. SIENA_STAT_rx_gtjumbo,
  339. SIENA_STAT_rx_bad_gtjumbo,
  340. SIENA_STAT_rx_overflow,
  341. SIENA_STAT_rx_false_carrier,
  342. SIENA_STAT_rx_symbol_error,
  343. SIENA_STAT_rx_align_error,
  344. SIENA_STAT_rx_length_error,
  345. SIENA_STAT_rx_internal_error,
  346. SIENA_STAT_rx_nodesc_drop_cnt,
  347. SIENA_STAT_COUNT
  348. };
  349. /**
  350. * struct siena_nic_data - Siena NIC state
  351. * @wol_filter_id: Wake-on-LAN packet filter id
  352. * @stats: Hardware statistics
  353. */
  354. struct siena_nic_data {
  355. int wol_filter_id;
  356. u64 stats[SIENA_STAT_COUNT];
  357. };
  358. enum {
  359. EF10_STAT_tx_bytes = GENERIC_STAT_COUNT,
  360. EF10_STAT_tx_packets,
  361. EF10_STAT_tx_pause,
  362. EF10_STAT_tx_control,
  363. EF10_STAT_tx_unicast,
  364. EF10_STAT_tx_multicast,
  365. EF10_STAT_tx_broadcast,
  366. EF10_STAT_tx_lt64,
  367. EF10_STAT_tx_64,
  368. EF10_STAT_tx_65_to_127,
  369. EF10_STAT_tx_128_to_255,
  370. EF10_STAT_tx_256_to_511,
  371. EF10_STAT_tx_512_to_1023,
  372. EF10_STAT_tx_1024_to_15xx,
  373. EF10_STAT_tx_15xx_to_jumbo,
  374. EF10_STAT_rx_bytes,
  375. EF10_STAT_rx_bytes_minus_good_bytes,
  376. EF10_STAT_rx_good_bytes,
  377. EF10_STAT_rx_bad_bytes,
  378. EF10_STAT_rx_packets,
  379. EF10_STAT_rx_good,
  380. EF10_STAT_rx_bad,
  381. EF10_STAT_rx_pause,
  382. EF10_STAT_rx_control,
  383. EF10_STAT_rx_unicast,
  384. EF10_STAT_rx_multicast,
  385. EF10_STAT_rx_broadcast,
  386. EF10_STAT_rx_lt64,
  387. EF10_STAT_rx_64,
  388. EF10_STAT_rx_65_to_127,
  389. EF10_STAT_rx_128_to_255,
  390. EF10_STAT_rx_256_to_511,
  391. EF10_STAT_rx_512_to_1023,
  392. EF10_STAT_rx_1024_to_15xx,
  393. EF10_STAT_rx_15xx_to_jumbo,
  394. EF10_STAT_rx_gtjumbo,
  395. EF10_STAT_rx_bad_gtjumbo,
  396. EF10_STAT_rx_overflow,
  397. EF10_STAT_rx_align_error,
  398. EF10_STAT_rx_length_error,
  399. EF10_STAT_rx_nodesc_drops,
  400. EF10_STAT_rx_pm_trunc_bb_overflow,
  401. EF10_STAT_rx_pm_discard_bb_overflow,
  402. EF10_STAT_rx_pm_trunc_vfifo_full,
  403. EF10_STAT_rx_pm_discard_vfifo_full,
  404. EF10_STAT_rx_pm_trunc_qbb,
  405. EF10_STAT_rx_pm_discard_qbb,
  406. EF10_STAT_rx_pm_discard_mapping,
  407. EF10_STAT_rx_dp_q_disabled_packets,
  408. EF10_STAT_rx_dp_di_dropped_packets,
  409. EF10_STAT_rx_dp_streaming_packets,
  410. EF10_STAT_rx_dp_hlb_fetch,
  411. EF10_STAT_rx_dp_hlb_wait,
  412. EF10_STAT_COUNT
  413. };
  414. /* Maximum number of TX PIO buffers we may allocate to a function.
  415. * This matches the total number of buffers on each SFC9100-family
  416. * controller.
  417. */
  418. #define EF10_TX_PIOBUF_COUNT 16
  419. /**
  420. * struct efx_ef10_nic_data - EF10 architecture NIC state
  421. * @mcdi_buf: DMA buffer for MCDI
  422. * @warm_boot_count: Last seen MC warm boot count
  423. * @vi_base: Absolute index of first VI in this function
  424. * @n_allocated_vis: Number of VIs allocated to this function
  425. * @must_realloc_vis: Flag: VIs have yet to be reallocated after MC reboot
  426. * @must_restore_filters: Flag: filters have yet to be restored after MC reboot
  427. * @n_piobufs: Number of PIO buffers allocated to this function
  428. * @wc_membase: Base address of write-combining mapping of the memory BAR
  429. * @pio_write_base: Base address for writing PIO buffers
  430. * @pio_write_vi_base: Relative VI number for @pio_write_base
  431. * @piobuf_handle: Handle of each PIO buffer allocated
  432. * @must_restore_piobufs: Flag: PIO buffers have yet to be restored after MC
  433. * reboot
  434. * @rx_rss_context: Firmware handle for our RSS context
  435. * @stats: Hardware statistics
  436. * @workaround_35388: Flag: firmware supports workaround for bug 35388
  437. * @must_check_datapath_caps: Flag: @datapath_caps needs to be revalidated
  438. * after MC reboot
  439. * @datapath_caps: Capabilities of datapath firmware (FLAGS1 field of
  440. * %MC_CMD_GET_CAPABILITIES response)
  441. */
  442. struct efx_ef10_nic_data {
  443. struct efx_buffer mcdi_buf;
  444. u16 warm_boot_count;
  445. unsigned int vi_base;
  446. unsigned int n_allocated_vis;
  447. bool must_realloc_vis;
  448. bool must_restore_filters;
  449. unsigned int n_piobufs;
  450. void __iomem *wc_membase, *pio_write_base;
  451. unsigned int pio_write_vi_base;
  452. unsigned int piobuf_handle[EF10_TX_PIOBUF_COUNT];
  453. bool must_restore_piobufs;
  454. u32 rx_rss_context;
  455. u64 stats[EF10_STAT_COUNT];
  456. bool workaround_35388;
  457. bool must_check_datapath_caps;
  458. u32 datapath_caps;
  459. };
  460. /*
  461. * On the SFC9000 family each port is associated with 1 PCI physical
  462. * function (PF) handled by sfc and a configurable number of virtual
  463. * functions (VFs) that may be handled by some other driver, often in
  464. * a VM guest. The queue pointer registers are mapped in both PF and
  465. * VF BARs such that an 8K region provides access to a single RX, TX
  466. * and event queue (collectively a Virtual Interface, VI or VNIC).
  467. *
  468. * The PF has access to all 1024 VIs while VFs are mapped to VIs
  469. * according to VI_BASE and VI_SCALE: VF i has access to VIs numbered
  470. * in range [VI_BASE + i << VI_SCALE, VI_BASE + i + 1 << VI_SCALE).
  471. * The number of VIs and the VI_SCALE value are configurable but must
  472. * be established at boot time by firmware.
  473. */
  474. /* Maximum VI_SCALE parameter supported by Siena */
  475. #define EFX_VI_SCALE_MAX 6
  476. /* Base VI to use for SR-IOV. Must be aligned to (1 << EFX_VI_SCALE_MAX),
  477. * so this is the smallest allowed value. */
  478. #define EFX_VI_BASE 128U
  479. /* Maximum number of VFs allowed */
  480. #define EFX_VF_COUNT_MAX 127
  481. /* Limit EVQs on VFs to be only 8k to reduce buffer table reservation */
  482. #define EFX_MAX_VF_EVQ_SIZE 8192UL
  483. /* The number of buffer table entries reserved for each VI on a VF */
  484. #define EFX_VF_BUFTBL_PER_VI \
  485. ((EFX_MAX_VF_EVQ_SIZE + 2 * EFX_MAX_DMAQ_SIZE) * \
  486. sizeof(efx_qword_t) / EFX_BUF_SIZE)
  487. #ifdef CONFIG_SFC_SRIOV
  488. static inline bool efx_sriov_wanted(struct efx_nic *efx)
  489. {
  490. return efx->vf_count != 0;
  491. }
  492. static inline bool efx_sriov_enabled(struct efx_nic *efx)
  493. {
  494. return efx->vf_init_count != 0;
  495. }
  496. static inline unsigned int efx_vf_size(struct efx_nic *efx)
  497. {
  498. return 1 << efx->vi_scale;
  499. }
  500. int efx_init_sriov(void);
  501. void efx_sriov_probe(struct efx_nic *efx);
  502. int efx_sriov_init(struct efx_nic *efx);
  503. void efx_sriov_mac_address_changed(struct efx_nic *efx);
  504. void efx_sriov_tx_flush_done(struct efx_nic *efx, efx_qword_t *event);
  505. void efx_sriov_rx_flush_done(struct efx_nic *efx, efx_qword_t *event);
  506. void efx_sriov_event(struct efx_channel *channel, efx_qword_t *event);
  507. void efx_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq);
  508. void efx_sriov_flr(struct efx_nic *efx, unsigned flr);
  509. void efx_sriov_reset(struct efx_nic *efx);
  510. void efx_sriov_fini(struct efx_nic *efx);
  511. void efx_fini_sriov(void);
  512. #else
  513. static inline bool efx_sriov_wanted(struct efx_nic *efx) { return false; }
  514. static inline bool efx_sriov_enabled(struct efx_nic *efx) { return false; }
  515. static inline unsigned int efx_vf_size(struct efx_nic *efx) { return 0; }
  516. static inline int efx_init_sriov(void) { return 0; }
  517. static inline void efx_sriov_probe(struct efx_nic *efx) {}
  518. static inline int efx_sriov_init(struct efx_nic *efx) { return -EOPNOTSUPP; }
  519. static inline void efx_sriov_mac_address_changed(struct efx_nic *efx) {}
  520. static inline void efx_sriov_tx_flush_done(struct efx_nic *efx,
  521. efx_qword_t *event) {}
  522. static inline void efx_sriov_rx_flush_done(struct efx_nic *efx,
  523. efx_qword_t *event) {}
  524. static inline void efx_sriov_event(struct efx_channel *channel,
  525. efx_qword_t *event) {}
  526. static inline void efx_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq) {}
  527. static inline void efx_sriov_flr(struct efx_nic *efx, unsigned flr) {}
  528. static inline void efx_sriov_reset(struct efx_nic *efx) {}
  529. static inline void efx_sriov_fini(struct efx_nic *efx) {}
  530. static inline void efx_fini_sriov(void) {}
  531. #endif
  532. int efx_sriov_set_vf_mac(struct net_device *dev, int vf, u8 *mac);
  533. int efx_sriov_set_vf_vlan(struct net_device *dev, int vf, u16 vlan, u8 qos);
  534. int efx_sriov_get_vf_config(struct net_device *dev, int vf,
  535. struct ifla_vf_info *ivf);
  536. int efx_sriov_set_vf_spoofchk(struct net_device *net_dev, int vf,
  537. bool spoofchk);
  538. struct ethtool_ts_info;
  539. int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel);
  540. void efx_ptp_defer_probe_with_channel(struct efx_nic *efx);
  541. void efx_ptp_remove(struct efx_nic *efx);
  542. int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr);
  543. int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr);
  544. void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info);
  545. bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
  546. int efx_ptp_get_mode(struct efx_nic *efx);
  547. int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
  548. unsigned int new_mode);
  549. int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
  550. void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev);
  551. size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings);
  552. size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats);
  553. void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev);
  554. void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
  555. struct sk_buff *skb);
  556. static inline void efx_rx_skb_attach_timestamp(struct efx_channel *channel,
  557. struct sk_buff *skb)
  558. {
  559. if (channel->sync_events_state == SYNC_EVENTS_VALID)
  560. __efx_rx_skb_attach_timestamp(channel, skb);
  561. }
  562. void efx_ptp_start_datapath(struct efx_nic *efx);
  563. void efx_ptp_stop_datapath(struct efx_nic *efx);
  564. extern const struct efx_nic_type falcon_a1_nic_type;
  565. extern const struct efx_nic_type falcon_b0_nic_type;
  566. extern const struct efx_nic_type siena_a0_nic_type;
  567. extern const struct efx_nic_type efx_hunt_a0_nic_type;
  568. /**************************************************************************
  569. *
  570. * Externs
  571. *
  572. **************************************************************************
  573. */
  574. int falcon_probe_board(struct efx_nic *efx, u16 revision_info);
  575. /* TX data path */
  576. static inline int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
  577. {
  578. return tx_queue->efx->type->tx_probe(tx_queue);
  579. }
  580. static inline void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
  581. {
  582. tx_queue->efx->type->tx_init(tx_queue);
  583. }
  584. static inline void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
  585. {
  586. tx_queue->efx->type->tx_remove(tx_queue);
  587. }
  588. static inline void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
  589. {
  590. tx_queue->efx->type->tx_write(tx_queue);
  591. }
  592. /* RX data path */
  593. static inline int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
  594. {
  595. return rx_queue->efx->type->rx_probe(rx_queue);
  596. }
  597. static inline void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
  598. {
  599. rx_queue->efx->type->rx_init(rx_queue);
  600. }
  601. static inline void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
  602. {
  603. rx_queue->efx->type->rx_remove(rx_queue);
  604. }
  605. static inline void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
  606. {
  607. rx_queue->efx->type->rx_write(rx_queue);
  608. }
  609. static inline void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
  610. {
  611. rx_queue->efx->type->rx_defer_refill(rx_queue);
  612. }
  613. /* Event data path */
  614. static inline int efx_nic_probe_eventq(struct efx_channel *channel)
  615. {
  616. return channel->efx->type->ev_probe(channel);
  617. }
  618. static inline int efx_nic_init_eventq(struct efx_channel *channel)
  619. {
  620. return channel->efx->type->ev_init(channel);
  621. }
  622. static inline void efx_nic_fini_eventq(struct efx_channel *channel)
  623. {
  624. channel->efx->type->ev_fini(channel);
  625. }
  626. static inline void efx_nic_remove_eventq(struct efx_channel *channel)
  627. {
  628. channel->efx->type->ev_remove(channel);
  629. }
  630. static inline int
  631. efx_nic_process_eventq(struct efx_channel *channel, int quota)
  632. {
  633. return channel->efx->type->ev_process(channel, quota);
  634. }
  635. static inline void efx_nic_eventq_read_ack(struct efx_channel *channel)
  636. {
  637. channel->efx->type->ev_read_ack(channel);
  638. }
  639. void efx_nic_event_test_start(struct efx_channel *channel);
  640. /* Falcon/Siena queue operations */
  641. int efx_farch_tx_probe(struct efx_tx_queue *tx_queue);
  642. void efx_farch_tx_init(struct efx_tx_queue *tx_queue);
  643. void efx_farch_tx_fini(struct efx_tx_queue *tx_queue);
  644. void efx_farch_tx_remove(struct efx_tx_queue *tx_queue);
  645. void efx_farch_tx_write(struct efx_tx_queue *tx_queue);
  646. int efx_farch_rx_probe(struct efx_rx_queue *rx_queue);
  647. void efx_farch_rx_init(struct efx_rx_queue *rx_queue);
  648. void efx_farch_rx_fini(struct efx_rx_queue *rx_queue);
  649. void efx_farch_rx_remove(struct efx_rx_queue *rx_queue);
  650. void efx_farch_rx_write(struct efx_rx_queue *rx_queue);
  651. void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue);
  652. int efx_farch_ev_probe(struct efx_channel *channel);
  653. int efx_farch_ev_init(struct efx_channel *channel);
  654. void efx_farch_ev_fini(struct efx_channel *channel);
  655. void efx_farch_ev_remove(struct efx_channel *channel);
  656. int efx_farch_ev_process(struct efx_channel *channel, int quota);
  657. void efx_farch_ev_read_ack(struct efx_channel *channel);
  658. void efx_farch_ev_test_generate(struct efx_channel *channel);
  659. /* Falcon/Siena filter operations */
  660. int efx_farch_filter_table_probe(struct efx_nic *efx);
  661. void efx_farch_filter_table_restore(struct efx_nic *efx);
  662. void efx_farch_filter_table_remove(struct efx_nic *efx);
  663. void efx_farch_filter_update_rx_scatter(struct efx_nic *efx);
  664. s32 efx_farch_filter_insert(struct efx_nic *efx, struct efx_filter_spec *spec,
  665. bool replace);
  666. int efx_farch_filter_remove_safe(struct efx_nic *efx,
  667. enum efx_filter_priority priority,
  668. u32 filter_id);
  669. int efx_farch_filter_get_safe(struct efx_nic *efx,
  670. enum efx_filter_priority priority, u32 filter_id,
  671. struct efx_filter_spec *);
  672. int efx_farch_filter_clear_rx(struct efx_nic *efx,
  673. enum efx_filter_priority priority);
  674. u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
  675. enum efx_filter_priority priority);
  676. u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx);
  677. s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
  678. enum efx_filter_priority priority, u32 *buf,
  679. u32 size);
  680. #ifdef CONFIG_RFS_ACCEL
  681. s32 efx_farch_filter_rfs_insert(struct efx_nic *efx,
  682. struct efx_filter_spec *spec);
  683. bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
  684. unsigned int index);
  685. #endif
  686. void efx_farch_filter_sync_rx_mode(struct efx_nic *efx);
  687. bool efx_nic_event_present(struct efx_channel *channel);
  688. /* Some statistics are computed as A - B where A and B each increase
  689. * linearly with some hardware counter(s) and the counters are read
  690. * asynchronously. If the counters contributing to B are always read
  691. * after those contributing to A, the computed value may be lower than
  692. * the true value by some variable amount, and may decrease between
  693. * subsequent computations.
  694. *
  695. * We should never allow statistics to decrease or to exceed the true
  696. * value. Since the computed value will never be greater than the
  697. * true value, we can achieve this by only storing the computed value
  698. * when it increases.
  699. */
  700. static inline void efx_update_diff_stat(u64 *stat, u64 diff)
  701. {
  702. if ((s64)(diff - *stat) > 0)
  703. *stat = diff;
  704. }
  705. /* Interrupts */
  706. int efx_nic_init_interrupt(struct efx_nic *efx);
  707. void efx_nic_irq_test_start(struct efx_nic *efx);
  708. void efx_nic_fini_interrupt(struct efx_nic *efx);
  709. /* Falcon/Siena interrupts */
  710. void efx_farch_irq_enable_master(struct efx_nic *efx);
  711. void efx_farch_irq_test_generate(struct efx_nic *efx);
  712. void efx_farch_irq_disable_master(struct efx_nic *efx);
  713. irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id);
  714. irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id);
  715. irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx);
  716. static inline int efx_nic_event_test_irq_cpu(struct efx_channel *channel)
  717. {
  718. return ACCESS_ONCE(channel->event_test_cpu);
  719. }
  720. static inline int efx_nic_irq_test_irq_cpu(struct efx_nic *efx)
  721. {
  722. return ACCESS_ONCE(efx->last_irq_cpu);
  723. }
  724. /* Global Resources */
  725. int efx_nic_flush_queues(struct efx_nic *efx);
  726. void siena_prepare_flush(struct efx_nic *efx);
  727. int efx_farch_fini_dmaq(struct efx_nic *efx);
  728. void efx_farch_finish_flr(struct efx_nic *efx);
  729. void siena_finish_flush(struct efx_nic *efx);
  730. void falcon_start_nic_stats(struct efx_nic *efx);
  731. void falcon_stop_nic_stats(struct efx_nic *efx);
  732. int falcon_reset_xaui(struct efx_nic *efx);
  733. void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw);
  734. void efx_farch_init_common(struct efx_nic *efx);
  735. void efx_ef10_handle_drain_event(struct efx_nic *efx);
  736. void efx_farch_rx_push_indir_table(struct efx_nic *efx);
  737. int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
  738. unsigned int len, gfp_t gfp_flags);
  739. void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer);
  740. /* Tests */
  741. struct efx_farch_register_test {
  742. unsigned address;
  743. efx_oword_t mask;
  744. };
  745. int efx_farch_test_registers(struct efx_nic *efx,
  746. const struct efx_farch_register_test *regs,
  747. size_t n_regs);
  748. size_t efx_nic_get_regs_len(struct efx_nic *efx);
  749. void efx_nic_get_regs(struct efx_nic *efx, void *buf);
  750. size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count,
  751. const unsigned long *mask, u8 *names);
  752. void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count,
  753. const unsigned long *mask, u64 *stats,
  754. const void *dma_buf, bool accumulate);
  755. void efx_nic_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *stat);
  756. #define EFX_MAX_FLUSH_TIME 5000
  757. void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
  758. efx_qword_t *event);
  759. #endif /* EFX_NIC_H */