i915_gem_tiling.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include <linux/string.h>
  28. #include <linux/bitops.h>
  29. #include <drm/drmP.h>
  30. #include <drm/i915_drm.h>
  31. #include "i915_drv.h"
  32. /** @file i915_gem_tiling.c
  33. *
  34. * Support for managing tiling state of buffer objects.
  35. *
  36. * The idea behind tiling is to increase cache hit rates by rearranging
  37. * pixel data so that a group of pixel accesses are in the same cacheline.
  38. * Performance improvement from doing this on the back/depth buffer are on
  39. * the order of 30%.
  40. *
  41. * Intel architectures make this somewhat more complicated, though, by
  42. * adjustments made to addressing of data when the memory is in interleaved
  43. * mode (matched pairs of DIMMS) to improve memory bandwidth.
  44. * For interleaved memory, the CPU sends every sequential 64 bytes
  45. * to an alternate memory channel so it can get the bandwidth from both.
  46. *
  47. * The GPU also rearranges its accesses for increased bandwidth to interleaved
  48. * memory, and it matches what the CPU does for non-tiled. However, when tiled
  49. * it does it a little differently, since one walks addresses not just in the
  50. * X direction but also Y. So, along with alternating channels when bit
  51. * 6 of the address flips, it also alternates when other bits flip -- Bits 9
  52. * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
  53. * are common to both the 915 and 965-class hardware.
  54. *
  55. * The CPU also sometimes XORs in higher bits as well, to improve
  56. * bandwidth doing strided access like we do so frequently in graphics. This
  57. * is called "Channel XOR Randomization" in the MCH documentation. The result
  58. * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
  59. * decode.
  60. *
  61. * All of this bit 6 XORing has an effect on our memory management,
  62. * as we need to make sure that the 3d driver can correctly address object
  63. * contents.
  64. *
  65. * If we don't have interleaved memory, all tiling is safe and no swizzling is
  66. * required.
  67. *
  68. * When bit 17 is XORed in, we simply refuse to tile at all. Bit
  69. * 17 is not just a page offset, so as we page an objet out and back in,
  70. * individual pages in it will have different bit 17 addresses, resulting in
  71. * each 64 bytes being swapped with its neighbor!
  72. *
  73. * Otherwise, if interleaved, we have to tell the 3d driver what the address
  74. * swizzling it needs to do is, since it's writing with the CPU to the pages
  75. * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
  76. * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
  77. * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
  78. * to match what the GPU expects.
  79. */
  80. /**
  81. * Detects bit 6 swizzling of address lookup between IGD access and CPU
  82. * access through main memory.
  83. */
  84. void
  85. i915_gem_detect_bit_6_swizzle(struct drm_device *dev)
  86. {
  87. struct drm_i915_private *dev_priv = dev->dev_private;
  88. uint32_t swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
  89. uint32_t swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
  90. if (INTEL_INFO(dev)->gen >= 8 || IS_VALLEYVIEW(dev)) {
  91. /*
  92. * On BDW+, swizzling is not used. We leave the CPU memory
  93. * controller in charge of optimizing memory accesses without
  94. * the extra address manipulation GPU side.
  95. *
  96. * VLV and CHV don't have GPU swizzling.
  97. */
  98. swizzle_x = I915_BIT_6_SWIZZLE_NONE;
  99. swizzle_y = I915_BIT_6_SWIZZLE_NONE;
  100. } else if (INTEL_INFO(dev)->gen >= 6) {
  101. uint32_t dimm_c0, dimm_c1;
  102. dimm_c0 = I915_READ(MAD_DIMM_C0);
  103. dimm_c1 = I915_READ(MAD_DIMM_C1);
  104. dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
  105. dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
  106. /* Enable swizzling when the channels are populated with
  107. * identically sized dimms. We don't need to check the 3rd
  108. * channel because no cpu with gpu attached ships in that
  109. * configuration. Also, swizzling only makes sense for 2
  110. * channels anyway. */
  111. if (dimm_c0 == dimm_c1) {
  112. swizzle_x = I915_BIT_6_SWIZZLE_9_10;
  113. swizzle_y = I915_BIT_6_SWIZZLE_9;
  114. } else {
  115. swizzle_x = I915_BIT_6_SWIZZLE_NONE;
  116. swizzle_y = I915_BIT_6_SWIZZLE_NONE;
  117. }
  118. } else if (IS_GEN5(dev)) {
  119. /* On Ironlake whatever DRAM config, GPU always do
  120. * same swizzling setup.
  121. */
  122. swizzle_x = I915_BIT_6_SWIZZLE_9_10;
  123. swizzle_y = I915_BIT_6_SWIZZLE_9;
  124. } else if (IS_GEN2(dev)) {
  125. /* As far as we know, the 865 doesn't have these bit 6
  126. * swizzling issues.
  127. */
  128. swizzle_x = I915_BIT_6_SWIZZLE_NONE;
  129. swizzle_y = I915_BIT_6_SWIZZLE_NONE;
  130. } else if (IS_MOBILE(dev) || (IS_GEN3(dev) && !IS_G33(dev))) {
  131. uint32_t dcc;
  132. /* On 9xx chipsets, channel interleave by the CPU is
  133. * determined by DCC. For single-channel, neither the CPU
  134. * nor the GPU do swizzling. For dual channel interleaved,
  135. * the GPU's interleave is bit 9 and 10 for X tiled, and bit
  136. * 9 for Y tiled. The CPU's interleave is independent, and
  137. * can be based on either bit 11 (haven't seen this yet) or
  138. * bit 17 (common).
  139. */
  140. dcc = I915_READ(DCC);
  141. switch (dcc & DCC_ADDRESSING_MODE_MASK) {
  142. case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
  143. case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
  144. swizzle_x = I915_BIT_6_SWIZZLE_NONE;
  145. swizzle_y = I915_BIT_6_SWIZZLE_NONE;
  146. break;
  147. case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
  148. if (dcc & DCC_CHANNEL_XOR_DISABLE) {
  149. /* This is the base swizzling by the GPU for
  150. * tiled buffers.
  151. */
  152. swizzle_x = I915_BIT_6_SWIZZLE_9_10;
  153. swizzle_y = I915_BIT_6_SWIZZLE_9;
  154. } else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
  155. /* Bit 11 swizzling by the CPU in addition. */
  156. swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
  157. swizzle_y = I915_BIT_6_SWIZZLE_9_11;
  158. } else {
  159. /* Bit 17 swizzling by the CPU in addition. */
  160. swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
  161. swizzle_y = I915_BIT_6_SWIZZLE_9_17;
  162. }
  163. break;
  164. }
  165. if (dcc == 0xffffffff) {
  166. DRM_ERROR("Couldn't read from MCHBAR. "
  167. "Disabling tiling.\n");
  168. swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
  169. swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
  170. }
  171. } else {
  172. /* The 965, G33, and newer, have a very flexible memory
  173. * configuration. It will enable dual-channel mode
  174. * (interleaving) on as much memory as it can, and the GPU
  175. * will additionally sometimes enable different bit 6
  176. * swizzling for tiled objects from the CPU.
  177. *
  178. * Here's what I found on the G965:
  179. * slot fill memory size swizzling
  180. * 0A 0B 1A 1B 1-ch 2-ch
  181. * 512 0 0 0 512 0 O
  182. * 512 0 512 0 16 1008 X
  183. * 512 0 0 512 16 1008 X
  184. * 0 512 0 512 16 1008 X
  185. * 1024 1024 1024 0 2048 1024 O
  186. *
  187. * We could probably detect this based on either the DRB
  188. * matching, which was the case for the swizzling required in
  189. * the table above, or from the 1-ch value being less than
  190. * the minimum size of a rank.
  191. */
  192. if (I915_READ16(C0DRB3) != I915_READ16(C1DRB3)) {
  193. swizzle_x = I915_BIT_6_SWIZZLE_NONE;
  194. swizzle_y = I915_BIT_6_SWIZZLE_NONE;
  195. } else {
  196. swizzle_x = I915_BIT_6_SWIZZLE_9_10;
  197. swizzle_y = I915_BIT_6_SWIZZLE_9;
  198. }
  199. }
  200. dev_priv->mm.bit_6_swizzle_x = swizzle_x;
  201. dev_priv->mm.bit_6_swizzle_y = swizzle_y;
  202. }
  203. /* Check pitch constriants for all chips & tiling formats */
  204. static bool
  205. i915_tiling_ok(struct drm_device *dev, int stride, int size, int tiling_mode)
  206. {
  207. int tile_width;
  208. /* Linear is always fine */
  209. if (tiling_mode == I915_TILING_NONE)
  210. return true;
  211. if (IS_GEN2(dev) ||
  212. (tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
  213. tile_width = 128;
  214. else
  215. tile_width = 512;
  216. /* check maximum stride & object size */
  217. /* i965+ stores the end address of the gtt mapping in the fence
  218. * reg, so dont bother to check the size */
  219. if (INTEL_INFO(dev)->gen >= 7) {
  220. if (stride / 128 > GEN7_FENCE_MAX_PITCH_VAL)
  221. return false;
  222. } else if (INTEL_INFO(dev)->gen >= 4) {
  223. if (stride / 128 > I965_FENCE_MAX_PITCH_VAL)
  224. return false;
  225. } else {
  226. if (stride > 8192)
  227. return false;
  228. if (IS_GEN3(dev)) {
  229. if (size > I830_FENCE_MAX_SIZE_VAL << 20)
  230. return false;
  231. } else {
  232. if (size > I830_FENCE_MAX_SIZE_VAL << 19)
  233. return false;
  234. }
  235. }
  236. if (stride < tile_width)
  237. return false;
  238. /* 965+ just needs multiples of tile width */
  239. if (INTEL_INFO(dev)->gen >= 4) {
  240. if (stride & (tile_width - 1))
  241. return false;
  242. return true;
  243. }
  244. /* Pre-965 needs power of two tile widths */
  245. if (stride & (stride - 1))
  246. return false;
  247. return true;
  248. }
  249. /* Is the current GTT allocation valid for the change in tiling? */
  250. static bool
  251. i915_gem_object_fence_ok(struct drm_i915_gem_object *obj, int tiling_mode)
  252. {
  253. u32 size;
  254. if (tiling_mode == I915_TILING_NONE)
  255. return true;
  256. if (INTEL_INFO(obj->base.dev)->gen >= 4)
  257. return true;
  258. if (INTEL_INFO(obj->base.dev)->gen == 3) {
  259. if (i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK)
  260. return false;
  261. } else {
  262. if (i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK)
  263. return false;
  264. }
  265. size = i915_gem_get_gtt_size(obj->base.dev, obj->base.size, tiling_mode);
  266. if (i915_gem_obj_ggtt_size(obj) != size)
  267. return false;
  268. if (i915_gem_obj_ggtt_offset(obj) & (size - 1))
  269. return false;
  270. return true;
  271. }
  272. /**
  273. * Sets the tiling mode of an object, returning the required swizzling of
  274. * bit 6 of addresses in the object.
  275. */
  276. int
  277. i915_gem_set_tiling(struct drm_device *dev, void *data,
  278. struct drm_file *file)
  279. {
  280. struct drm_i915_gem_set_tiling *args = data;
  281. struct drm_i915_private *dev_priv = dev->dev_private;
  282. struct drm_i915_gem_object *obj;
  283. int ret = 0;
  284. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  285. if (&obj->base == NULL)
  286. return -ENOENT;
  287. if (!i915_tiling_ok(dev,
  288. args->stride, obj->base.size, args->tiling_mode)) {
  289. drm_gem_object_unreference_unlocked(&obj->base);
  290. return -EINVAL;
  291. }
  292. if (i915_gem_obj_is_pinned(obj) || obj->framebuffer_references) {
  293. drm_gem_object_unreference_unlocked(&obj->base);
  294. return -EBUSY;
  295. }
  296. if (args->tiling_mode == I915_TILING_NONE) {
  297. args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
  298. args->stride = 0;
  299. } else {
  300. if (args->tiling_mode == I915_TILING_X)
  301. args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
  302. else
  303. args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
  304. /* Hide bit 17 swizzling from the user. This prevents old Mesa
  305. * from aborting the application on sw fallbacks to bit 17,
  306. * and we use the pread/pwrite bit17 paths to swizzle for it.
  307. * If there was a user that was relying on the swizzle
  308. * information for drm_intel_bo_map()ed reads/writes this would
  309. * break it, but we don't have any of those.
  310. */
  311. if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
  312. args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
  313. if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
  314. args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
  315. /* If we can't handle the swizzling, make it untiled. */
  316. if (args->swizzle_mode == I915_BIT_6_SWIZZLE_UNKNOWN) {
  317. args->tiling_mode = I915_TILING_NONE;
  318. args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
  319. args->stride = 0;
  320. }
  321. }
  322. mutex_lock(&dev->struct_mutex);
  323. if (args->tiling_mode != obj->tiling_mode ||
  324. args->stride != obj->stride) {
  325. /* We need to rebind the object if its current allocation
  326. * no longer meets the alignment restrictions for its new
  327. * tiling mode. Otherwise we can just leave it alone, but
  328. * need to ensure that any fence register is updated before
  329. * the next fenced (either through the GTT or by the BLT unit
  330. * on older GPUs) access.
  331. *
  332. * After updating the tiling parameters, we then flag whether
  333. * we need to update an associated fence register. Note this
  334. * has to also include the unfenced register the GPU uses
  335. * whilst executing a fenced command for an untiled object.
  336. */
  337. obj->map_and_fenceable =
  338. !i915_gem_obj_ggtt_bound(obj) ||
  339. (i915_gem_obj_ggtt_offset(obj) +
  340. obj->base.size <= dev_priv->gtt.mappable_end &&
  341. i915_gem_object_fence_ok(obj, args->tiling_mode));
  342. /* Rebind if we need a change of alignment */
  343. if (!obj->map_and_fenceable) {
  344. u32 unfenced_align =
  345. i915_gem_get_gtt_alignment(dev, obj->base.size,
  346. args->tiling_mode,
  347. false);
  348. if (i915_gem_obj_ggtt_offset(obj) & (unfenced_align - 1))
  349. ret = i915_gem_object_ggtt_unbind(obj);
  350. }
  351. if (ret == 0) {
  352. obj->fence_dirty =
  353. obj->last_fenced_seqno ||
  354. obj->fence_reg != I915_FENCE_REG_NONE;
  355. obj->tiling_mode = args->tiling_mode;
  356. obj->stride = args->stride;
  357. /* Force the fence to be reacquired for GTT access */
  358. i915_gem_release_mmap(obj);
  359. }
  360. }
  361. /* we have to maintain this existing ABI... */
  362. args->stride = obj->stride;
  363. args->tiling_mode = obj->tiling_mode;
  364. /* Try to preallocate memory required to save swizzling on put-pages */
  365. if (i915_gem_object_needs_bit17_swizzle(obj)) {
  366. if (obj->bit_17 == NULL) {
  367. obj->bit_17 = kcalloc(BITS_TO_LONGS(obj->base.size >> PAGE_SHIFT),
  368. sizeof(long), GFP_KERNEL);
  369. }
  370. } else {
  371. kfree(obj->bit_17);
  372. obj->bit_17 = NULL;
  373. }
  374. drm_gem_object_unreference(&obj->base);
  375. mutex_unlock(&dev->struct_mutex);
  376. return ret;
  377. }
  378. /**
  379. * Returns the current tiling mode and required bit 6 swizzling for the object.
  380. */
  381. int
  382. i915_gem_get_tiling(struct drm_device *dev, void *data,
  383. struct drm_file *file)
  384. {
  385. struct drm_i915_gem_get_tiling *args = data;
  386. struct drm_i915_private *dev_priv = dev->dev_private;
  387. struct drm_i915_gem_object *obj;
  388. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  389. if (&obj->base == NULL)
  390. return -ENOENT;
  391. mutex_lock(&dev->struct_mutex);
  392. args->tiling_mode = obj->tiling_mode;
  393. switch (obj->tiling_mode) {
  394. case I915_TILING_X:
  395. args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
  396. break;
  397. case I915_TILING_Y:
  398. args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
  399. break;
  400. case I915_TILING_NONE:
  401. args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
  402. break;
  403. default:
  404. DRM_ERROR("unknown tiling mode\n");
  405. }
  406. /* Hide bit 17 from the user -- see comment in i915_gem_set_tiling */
  407. if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
  408. args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
  409. if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
  410. args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
  411. drm_gem_object_unreference(&obj->base);
  412. mutex_unlock(&dev->struct_mutex);
  413. return 0;
  414. }
  415. /**
  416. * Swap every 64 bytes of this page around, to account for it having a new
  417. * bit 17 of its physical address and therefore being interpreted differently
  418. * by the GPU.
  419. */
  420. static void
  421. i915_gem_swizzle_page(struct page *page)
  422. {
  423. char temp[64];
  424. char *vaddr;
  425. int i;
  426. vaddr = kmap(page);
  427. for (i = 0; i < PAGE_SIZE; i += 128) {
  428. memcpy(temp, &vaddr[i], 64);
  429. memcpy(&vaddr[i], &vaddr[i + 64], 64);
  430. memcpy(&vaddr[i + 64], temp, 64);
  431. }
  432. kunmap(page);
  433. }
  434. void
  435. i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj)
  436. {
  437. struct sg_page_iter sg_iter;
  438. int i;
  439. if (obj->bit_17 == NULL)
  440. return;
  441. i = 0;
  442. for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
  443. struct page *page = sg_page_iter_page(&sg_iter);
  444. char new_bit_17 = page_to_phys(page) >> 17;
  445. if ((new_bit_17 & 0x1) !=
  446. (test_bit(i, obj->bit_17) != 0)) {
  447. i915_gem_swizzle_page(page);
  448. set_page_dirty(page);
  449. }
  450. i++;
  451. }
  452. }
  453. void
  454. i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj)
  455. {
  456. struct sg_page_iter sg_iter;
  457. int page_count = obj->base.size >> PAGE_SHIFT;
  458. int i;
  459. if (obj->bit_17 == NULL) {
  460. obj->bit_17 = kcalloc(BITS_TO_LONGS(page_count),
  461. sizeof(long), GFP_KERNEL);
  462. if (obj->bit_17 == NULL) {
  463. DRM_ERROR("Failed to allocate memory for bit 17 "
  464. "record\n");
  465. return;
  466. }
  467. }
  468. i = 0;
  469. for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
  470. if (page_to_phys(sg_page_iter_page(&sg_iter)) & (1 << 17))
  471. __set_bit(i, obj->bit_17);
  472. else
  473. __clear_bit(i, obj->bit_17);
  474. i++;
  475. }
  476. }