i915_debugfs.c 112 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Keith Packard <keithp@keithp.com>
  26. *
  27. */
  28. #include <linux/seq_file.h>
  29. #include <linux/circ_buf.h>
  30. #include <linux/ctype.h>
  31. #include <linux/debugfs.h>
  32. #include <linux/slab.h>
  33. #include <linux/export.h>
  34. #include <linux/list_sort.h>
  35. #include <asm/msr-index.h>
  36. #include <drm/drmP.h>
  37. #include "intel_drv.h"
  38. #include "intel_ringbuffer.h"
  39. #include <drm/i915_drm.h>
  40. #include "i915_drv.h"
  41. enum {
  42. ACTIVE_LIST,
  43. INACTIVE_LIST,
  44. PINNED_LIST,
  45. };
  46. static const char *yesno(int v)
  47. {
  48. return v ? "yes" : "no";
  49. }
  50. /* As the drm_debugfs_init() routines are called before dev->dev_private is
  51. * allocated we need to hook into the minor for release. */
  52. static int
  53. drm_add_fake_info_node(struct drm_minor *minor,
  54. struct dentry *ent,
  55. const void *key)
  56. {
  57. struct drm_info_node *node;
  58. node = kmalloc(sizeof(*node), GFP_KERNEL);
  59. if (node == NULL) {
  60. debugfs_remove(ent);
  61. return -ENOMEM;
  62. }
  63. node->minor = minor;
  64. node->dent = ent;
  65. node->info_ent = (void *) key;
  66. mutex_lock(&minor->debugfs_lock);
  67. list_add(&node->list, &minor->debugfs_list);
  68. mutex_unlock(&minor->debugfs_lock);
  69. return 0;
  70. }
  71. static int i915_capabilities(struct seq_file *m, void *data)
  72. {
  73. struct drm_info_node *node = m->private;
  74. struct drm_device *dev = node->minor->dev;
  75. const struct intel_device_info *info = INTEL_INFO(dev);
  76. seq_printf(m, "gen: %d\n", info->gen);
  77. seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
  78. #define PRINT_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x))
  79. #define SEP_SEMICOLON ;
  80. DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
  81. #undef PRINT_FLAG
  82. #undef SEP_SEMICOLON
  83. return 0;
  84. }
  85. static const char *get_pin_flag(struct drm_i915_gem_object *obj)
  86. {
  87. if (obj->user_pin_count > 0)
  88. return "P";
  89. else if (i915_gem_obj_is_pinned(obj))
  90. return "p";
  91. else
  92. return " ";
  93. }
  94. static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
  95. {
  96. switch (obj->tiling_mode) {
  97. default:
  98. case I915_TILING_NONE: return " ";
  99. case I915_TILING_X: return "X";
  100. case I915_TILING_Y: return "Y";
  101. }
  102. }
  103. static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
  104. {
  105. return obj->has_global_gtt_mapping ? "g" : " ";
  106. }
  107. static void
  108. describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
  109. {
  110. struct i915_vma *vma;
  111. int pin_count = 0;
  112. seq_printf(m, "%pK: %s%s%s %8zdKiB %02x %02x %u %u %u%s%s%s",
  113. &obj->base,
  114. get_pin_flag(obj),
  115. get_tiling_flag(obj),
  116. get_global_flag(obj),
  117. obj->base.size / 1024,
  118. obj->base.read_domains,
  119. obj->base.write_domain,
  120. obj->last_read_seqno,
  121. obj->last_write_seqno,
  122. obj->last_fenced_seqno,
  123. i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
  124. obj->dirty ? " dirty" : "",
  125. obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
  126. if (obj->base.name)
  127. seq_printf(m, " (name: %d)", obj->base.name);
  128. list_for_each_entry(vma, &obj->vma_list, vma_link)
  129. if (vma->pin_count > 0)
  130. pin_count++;
  131. seq_printf(m, " (pinned x %d)", pin_count);
  132. if (obj->pin_display)
  133. seq_printf(m, " (display)");
  134. if (obj->fence_reg != I915_FENCE_REG_NONE)
  135. seq_printf(m, " (fence: %d)", obj->fence_reg);
  136. list_for_each_entry(vma, &obj->vma_list, vma_link) {
  137. if (!i915_is_ggtt(vma->vm))
  138. seq_puts(m, " (pp");
  139. else
  140. seq_puts(m, " (g");
  141. seq_printf(m, "gtt offset: %08lx, size: %08lx)",
  142. vma->node.start, vma->node.size);
  143. }
  144. if (obj->stolen)
  145. seq_printf(m, " (stolen: %08lx)", obj->stolen->start);
  146. if (obj->pin_mappable || obj->fault_mappable) {
  147. char s[3], *t = s;
  148. if (obj->pin_mappable)
  149. *t++ = 'p';
  150. if (obj->fault_mappable)
  151. *t++ = 'f';
  152. *t = '\0';
  153. seq_printf(m, " (%s mappable)", s);
  154. }
  155. if (obj->ring != NULL)
  156. seq_printf(m, " (%s)", obj->ring->name);
  157. if (obj->frontbuffer_bits)
  158. seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
  159. }
  160. static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
  161. {
  162. seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
  163. seq_putc(m, ctx->remap_slice ? 'R' : 'r');
  164. seq_putc(m, ' ');
  165. }
  166. static int i915_gem_object_list_info(struct seq_file *m, void *data)
  167. {
  168. struct drm_info_node *node = m->private;
  169. uintptr_t list = (uintptr_t) node->info_ent->data;
  170. struct list_head *head;
  171. struct drm_device *dev = node->minor->dev;
  172. struct drm_i915_private *dev_priv = dev->dev_private;
  173. struct i915_address_space *vm = &dev_priv->gtt.base;
  174. struct i915_vma *vma;
  175. size_t total_obj_size, total_gtt_size;
  176. int count, ret;
  177. ret = mutex_lock_interruptible(&dev->struct_mutex);
  178. if (ret)
  179. return ret;
  180. /* FIXME: the user of this interface might want more than just GGTT */
  181. switch (list) {
  182. case ACTIVE_LIST:
  183. seq_puts(m, "Active:\n");
  184. head = &vm->active_list;
  185. break;
  186. case INACTIVE_LIST:
  187. seq_puts(m, "Inactive:\n");
  188. head = &vm->inactive_list;
  189. break;
  190. default:
  191. mutex_unlock(&dev->struct_mutex);
  192. return -EINVAL;
  193. }
  194. total_obj_size = total_gtt_size = count = 0;
  195. list_for_each_entry(vma, head, mm_list) {
  196. seq_printf(m, " ");
  197. describe_obj(m, vma->obj);
  198. seq_printf(m, "\n");
  199. total_obj_size += vma->obj->base.size;
  200. total_gtt_size += vma->node.size;
  201. count++;
  202. }
  203. mutex_unlock(&dev->struct_mutex);
  204. seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
  205. count, total_obj_size, total_gtt_size);
  206. return 0;
  207. }
  208. static int obj_rank_by_stolen(void *priv,
  209. struct list_head *A, struct list_head *B)
  210. {
  211. struct drm_i915_gem_object *a =
  212. container_of(A, struct drm_i915_gem_object, obj_exec_link);
  213. struct drm_i915_gem_object *b =
  214. container_of(B, struct drm_i915_gem_object, obj_exec_link);
  215. return a->stolen->start - b->stolen->start;
  216. }
  217. static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
  218. {
  219. struct drm_info_node *node = m->private;
  220. struct drm_device *dev = node->minor->dev;
  221. struct drm_i915_private *dev_priv = dev->dev_private;
  222. struct drm_i915_gem_object *obj;
  223. size_t total_obj_size, total_gtt_size;
  224. LIST_HEAD(stolen);
  225. int count, ret;
  226. ret = mutex_lock_interruptible(&dev->struct_mutex);
  227. if (ret)
  228. return ret;
  229. total_obj_size = total_gtt_size = count = 0;
  230. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  231. if (obj->stolen == NULL)
  232. continue;
  233. list_add(&obj->obj_exec_link, &stolen);
  234. total_obj_size += obj->base.size;
  235. total_gtt_size += i915_gem_obj_ggtt_size(obj);
  236. count++;
  237. }
  238. list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
  239. if (obj->stolen == NULL)
  240. continue;
  241. list_add(&obj->obj_exec_link, &stolen);
  242. total_obj_size += obj->base.size;
  243. count++;
  244. }
  245. list_sort(NULL, &stolen, obj_rank_by_stolen);
  246. seq_puts(m, "Stolen:\n");
  247. while (!list_empty(&stolen)) {
  248. obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
  249. seq_puts(m, " ");
  250. describe_obj(m, obj);
  251. seq_putc(m, '\n');
  252. list_del_init(&obj->obj_exec_link);
  253. }
  254. mutex_unlock(&dev->struct_mutex);
  255. seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
  256. count, total_obj_size, total_gtt_size);
  257. return 0;
  258. }
  259. #define count_objects(list, member) do { \
  260. list_for_each_entry(obj, list, member) { \
  261. size += i915_gem_obj_ggtt_size(obj); \
  262. ++count; \
  263. if (obj->map_and_fenceable) { \
  264. mappable_size += i915_gem_obj_ggtt_size(obj); \
  265. ++mappable_count; \
  266. } \
  267. } \
  268. } while (0)
  269. struct file_stats {
  270. struct drm_i915_file_private *file_priv;
  271. int count;
  272. size_t total, unbound;
  273. size_t global, shared;
  274. size_t active, inactive;
  275. };
  276. static int per_file_stats(int id, void *ptr, void *data)
  277. {
  278. struct drm_i915_gem_object *obj = ptr;
  279. struct file_stats *stats = data;
  280. struct i915_vma *vma;
  281. stats->count++;
  282. stats->total += obj->base.size;
  283. if (obj->base.name || obj->base.dma_buf)
  284. stats->shared += obj->base.size;
  285. if (USES_FULL_PPGTT(obj->base.dev)) {
  286. list_for_each_entry(vma, &obj->vma_list, vma_link) {
  287. struct i915_hw_ppgtt *ppgtt;
  288. if (!drm_mm_node_allocated(&vma->node))
  289. continue;
  290. if (i915_is_ggtt(vma->vm)) {
  291. stats->global += obj->base.size;
  292. continue;
  293. }
  294. ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
  295. if (ppgtt->file_priv != stats->file_priv)
  296. continue;
  297. if (obj->ring) /* XXX per-vma statistic */
  298. stats->active += obj->base.size;
  299. else
  300. stats->inactive += obj->base.size;
  301. return 0;
  302. }
  303. } else {
  304. if (i915_gem_obj_ggtt_bound(obj)) {
  305. stats->global += obj->base.size;
  306. if (obj->ring)
  307. stats->active += obj->base.size;
  308. else
  309. stats->inactive += obj->base.size;
  310. return 0;
  311. }
  312. }
  313. if (!list_empty(&obj->global_list))
  314. stats->unbound += obj->base.size;
  315. return 0;
  316. }
  317. #define count_vmas(list, member) do { \
  318. list_for_each_entry(vma, list, member) { \
  319. size += i915_gem_obj_ggtt_size(vma->obj); \
  320. ++count; \
  321. if (vma->obj->map_and_fenceable) { \
  322. mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
  323. ++mappable_count; \
  324. } \
  325. } \
  326. } while (0)
  327. static int i915_gem_object_info(struct seq_file *m, void* data)
  328. {
  329. struct drm_info_node *node = m->private;
  330. struct drm_device *dev = node->minor->dev;
  331. struct drm_i915_private *dev_priv = dev->dev_private;
  332. u32 count, mappable_count, purgeable_count;
  333. size_t size, mappable_size, purgeable_size;
  334. struct drm_i915_gem_object *obj;
  335. struct i915_address_space *vm = &dev_priv->gtt.base;
  336. struct drm_file *file;
  337. struct i915_vma *vma;
  338. int ret;
  339. ret = mutex_lock_interruptible(&dev->struct_mutex);
  340. if (ret)
  341. return ret;
  342. seq_printf(m, "%u objects, %zu bytes\n",
  343. dev_priv->mm.object_count,
  344. dev_priv->mm.object_memory);
  345. size = count = mappable_size = mappable_count = 0;
  346. count_objects(&dev_priv->mm.bound_list, global_list);
  347. seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
  348. count, mappable_count, size, mappable_size);
  349. size = count = mappable_size = mappable_count = 0;
  350. count_vmas(&vm->active_list, mm_list);
  351. seq_printf(m, " %u [%u] active objects, %zu [%zu] bytes\n",
  352. count, mappable_count, size, mappable_size);
  353. size = count = mappable_size = mappable_count = 0;
  354. count_vmas(&vm->inactive_list, mm_list);
  355. seq_printf(m, " %u [%u] inactive objects, %zu [%zu] bytes\n",
  356. count, mappable_count, size, mappable_size);
  357. size = count = purgeable_size = purgeable_count = 0;
  358. list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
  359. size += obj->base.size, ++count;
  360. if (obj->madv == I915_MADV_DONTNEED)
  361. purgeable_size += obj->base.size, ++purgeable_count;
  362. }
  363. seq_printf(m, "%u unbound objects, %zu bytes\n", count, size);
  364. size = count = mappable_size = mappable_count = 0;
  365. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  366. if (obj->fault_mappable) {
  367. size += i915_gem_obj_ggtt_size(obj);
  368. ++count;
  369. }
  370. if (obj->pin_mappable) {
  371. mappable_size += i915_gem_obj_ggtt_size(obj);
  372. ++mappable_count;
  373. }
  374. if (obj->madv == I915_MADV_DONTNEED) {
  375. purgeable_size += obj->base.size;
  376. ++purgeable_count;
  377. }
  378. }
  379. seq_printf(m, "%u purgeable objects, %zu bytes\n",
  380. purgeable_count, purgeable_size);
  381. seq_printf(m, "%u pinned mappable objects, %zu bytes\n",
  382. mappable_count, mappable_size);
  383. seq_printf(m, "%u fault mappable objects, %zu bytes\n",
  384. count, size);
  385. seq_printf(m, "%zu [%lu] gtt total\n",
  386. dev_priv->gtt.base.total,
  387. dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
  388. seq_putc(m, '\n');
  389. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  390. struct file_stats stats;
  391. struct task_struct *task;
  392. memset(&stats, 0, sizeof(stats));
  393. stats.file_priv = file->driver_priv;
  394. spin_lock(&file->table_lock);
  395. idr_for_each(&file->object_idr, per_file_stats, &stats);
  396. spin_unlock(&file->table_lock);
  397. /*
  398. * Although we have a valid reference on file->pid, that does
  399. * not guarantee that the task_struct who called get_pid() is
  400. * still alive (e.g. get_pid(current) => fork() => exit()).
  401. * Therefore, we need to protect this ->comm access using RCU.
  402. */
  403. rcu_read_lock();
  404. task = pid_task(file->pid, PIDTYPE_PID);
  405. seq_printf(m, "%s: %u objects, %zu bytes (%zu active, %zu inactive, %zu global, %zu shared, %zu unbound)\n",
  406. task ? task->comm : "<unknown>",
  407. stats.count,
  408. stats.total,
  409. stats.active,
  410. stats.inactive,
  411. stats.global,
  412. stats.shared,
  413. stats.unbound);
  414. rcu_read_unlock();
  415. }
  416. mutex_unlock(&dev->struct_mutex);
  417. return 0;
  418. }
  419. static int i915_gem_gtt_info(struct seq_file *m, void *data)
  420. {
  421. struct drm_info_node *node = m->private;
  422. struct drm_device *dev = node->minor->dev;
  423. uintptr_t list = (uintptr_t) node->info_ent->data;
  424. struct drm_i915_private *dev_priv = dev->dev_private;
  425. struct drm_i915_gem_object *obj;
  426. size_t total_obj_size, total_gtt_size;
  427. int count, ret;
  428. ret = mutex_lock_interruptible(&dev->struct_mutex);
  429. if (ret)
  430. return ret;
  431. total_obj_size = total_gtt_size = count = 0;
  432. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  433. if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
  434. continue;
  435. seq_puts(m, " ");
  436. describe_obj(m, obj);
  437. seq_putc(m, '\n');
  438. total_obj_size += obj->base.size;
  439. total_gtt_size += i915_gem_obj_ggtt_size(obj);
  440. count++;
  441. }
  442. mutex_unlock(&dev->struct_mutex);
  443. seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
  444. count, total_obj_size, total_gtt_size);
  445. return 0;
  446. }
  447. static int i915_gem_pageflip_info(struct seq_file *m, void *data)
  448. {
  449. struct drm_info_node *node = m->private;
  450. struct drm_device *dev = node->minor->dev;
  451. struct drm_i915_private *dev_priv = dev->dev_private;
  452. unsigned long flags;
  453. struct intel_crtc *crtc;
  454. int ret;
  455. ret = mutex_lock_interruptible(&dev->struct_mutex);
  456. if (ret)
  457. return ret;
  458. for_each_intel_crtc(dev, crtc) {
  459. const char pipe = pipe_name(crtc->pipe);
  460. const char plane = plane_name(crtc->plane);
  461. struct intel_unpin_work *work;
  462. spin_lock_irqsave(&dev->event_lock, flags);
  463. work = crtc->unpin_work;
  464. if (work == NULL) {
  465. seq_printf(m, "No flip due on pipe %c (plane %c)\n",
  466. pipe, plane);
  467. } else {
  468. u32 addr;
  469. if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  470. seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
  471. pipe, plane);
  472. } else {
  473. seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
  474. pipe, plane);
  475. }
  476. if (work->flip_queued_ring) {
  477. seq_printf(m, "Flip queued on %s at seqno %u, next seqno %u [current breadcrumb %u], completed? %d\n",
  478. work->flip_queued_ring->name,
  479. work->flip_queued_seqno,
  480. dev_priv->next_seqno,
  481. work->flip_queued_ring->get_seqno(work->flip_queued_ring, true),
  482. i915_seqno_passed(work->flip_queued_ring->get_seqno(work->flip_queued_ring, true),
  483. work->flip_queued_seqno));
  484. } else
  485. seq_printf(m, "Flip not associated with any ring\n");
  486. seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
  487. work->flip_queued_vblank,
  488. work->flip_ready_vblank,
  489. drm_vblank_count(dev, crtc->pipe));
  490. if (work->enable_stall_check)
  491. seq_puts(m, "Stall check enabled, ");
  492. else
  493. seq_puts(m, "Stall check waiting for page flip ioctl, ");
  494. seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
  495. if (INTEL_INFO(dev)->gen >= 4)
  496. addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
  497. else
  498. addr = I915_READ(DSPADDR(crtc->plane));
  499. seq_printf(m, "Current scanout address 0x%08x\n", addr);
  500. if (work->pending_flip_obj) {
  501. seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
  502. seq_printf(m, "MMIO update completed? %d\n", addr == work->gtt_offset);
  503. }
  504. }
  505. spin_unlock_irqrestore(&dev->event_lock, flags);
  506. }
  507. mutex_unlock(&dev->struct_mutex);
  508. return 0;
  509. }
  510. static int i915_gem_request_info(struct seq_file *m, void *data)
  511. {
  512. struct drm_info_node *node = m->private;
  513. struct drm_device *dev = node->minor->dev;
  514. struct drm_i915_private *dev_priv = dev->dev_private;
  515. struct intel_engine_cs *ring;
  516. struct drm_i915_gem_request *gem_request;
  517. int ret, count, i;
  518. ret = mutex_lock_interruptible(&dev->struct_mutex);
  519. if (ret)
  520. return ret;
  521. count = 0;
  522. for_each_ring(ring, dev_priv, i) {
  523. if (list_empty(&ring->request_list))
  524. continue;
  525. seq_printf(m, "%s requests:\n", ring->name);
  526. list_for_each_entry(gem_request,
  527. &ring->request_list,
  528. list) {
  529. seq_printf(m, " %d @ %d\n",
  530. gem_request->seqno,
  531. (int) (jiffies - gem_request->emitted_jiffies));
  532. }
  533. count++;
  534. }
  535. mutex_unlock(&dev->struct_mutex);
  536. if (count == 0)
  537. seq_puts(m, "No requests\n");
  538. return 0;
  539. }
  540. static void i915_ring_seqno_info(struct seq_file *m,
  541. struct intel_engine_cs *ring)
  542. {
  543. if (ring->get_seqno) {
  544. seq_printf(m, "Current sequence (%s): %u\n",
  545. ring->name, ring->get_seqno(ring, false));
  546. }
  547. }
  548. static int i915_gem_seqno_info(struct seq_file *m, void *data)
  549. {
  550. struct drm_info_node *node = m->private;
  551. struct drm_device *dev = node->minor->dev;
  552. struct drm_i915_private *dev_priv = dev->dev_private;
  553. struct intel_engine_cs *ring;
  554. int ret, i;
  555. ret = mutex_lock_interruptible(&dev->struct_mutex);
  556. if (ret)
  557. return ret;
  558. intel_runtime_pm_get(dev_priv);
  559. for_each_ring(ring, dev_priv, i)
  560. i915_ring_seqno_info(m, ring);
  561. intel_runtime_pm_put(dev_priv);
  562. mutex_unlock(&dev->struct_mutex);
  563. return 0;
  564. }
  565. static int i915_interrupt_info(struct seq_file *m, void *data)
  566. {
  567. struct drm_info_node *node = m->private;
  568. struct drm_device *dev = node->minor->dev;
  569. struct drm_i915_private *dev_priv = dev->dev_private;
  570. struct intel_engine_cs *ring;
  571. int ret, i, pipe;
  572. ret = mutex_lock_interruptible(&dev->struct_mutex);
  573. if (ret)
  574. return ret;
  575. intel_runtime_pm_get(dev_priv);
  576. if (IS_CHERRYVIEW(dev)) {
  577. seq_printf(m, "Master Interrupt Control:\t%08x\n",
  578. I915_READ(GEN8_MASTER_IRQ));
  579. seq_printf(m, "Display IER:\t%08x\n",
  580. I915_READ(VLV_IER));
  581. seq_printf(m, "Display IIR:\t%08x\n",
  582. I915_READ(VLV_IIR));
  583. seq_printf(m, "Display IIR_RW:\t%08x\n",
  584. I915_READ(VLV_IIR_RW));
  585. seq_printf(m, "Display IMR:\t%08x\n",
  586. I915_READ(VLV_IMR));
  587. for_each_pipe(dev_priv, pipe)
  588. seq_printf(m, "Pipe %c stat:\t%08x\n",
  589. pipe_name(pipe),
  590. I915_READ(PIPESTAT(pipe)));
  591. seq_printf(m, "Port hotplug:\t%08x\n",
  592. I915_READ(PORT_HOTPLUG_EN));
  593. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  594. I915_READ(VLV_DPFLIPSTAT));
  595. seq_printf(m, "DPINVGTT:\t%08x\n",
  596. I915_READ(DPINVGTT));
  597. for (i = 0; i < 4; i++) {
  598. seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
  599. i, I915_READ(GEN8_GT_IMR(i)));
  600. seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
  601. i, I915_READ(GEN8_GT_IIR(i)));
  602. seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
  603. i, I915_READ(GEN8_GT_IER(i)));
  604. }
  605. seq_printf(m, "PCU interrupt mask:\t%08x\n",
  606. I915_READ(GEN8_PCU_IMR));
  607. seq_printf(m, "PCU interrupt identity:\t%08x\n",
  608. I915_READ(GEN8_PCU_IIR));
  609. seq_printf(m, "PCU interrupt enable:\t%08x\n",
  610. I915_READ(GEN8_PCU_IER));
  611. } else if (INTEL_INFO(dev)->gen >= 8) {
  612. seq_printf(m, "Master Interrupt Control:\t%08x\n",
  613. I915_READ(GEN8_MASTER_IRQ));
  614. for (i = 0; i < 4; i++) {
  615. seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
  616. i, I915_READ(GEN8_GT_IMR(i)));
  617. seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
  618. i, I915_READ(GEN8_GT_IIR(i)));
  619. seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
  620. i, I915_READ(GEN8_GT_IER(i)));
  621. }
  622. for_each_pipe(dev_priv, pipe) {
  623. if (!intel_display_power_enabled(dev_priv,
  624. POWER_DOMAIN_PIPE(pipe))) {
  625. seq_printf(m, "Pipe %c power disabled\n",
  626. pipe_name(pipe));
  627. continue;
  628. }
  629. seq_printf(m, "Pipe %c IMR:\t%08x\n",
  630. pipe_name(pipe),
  631. I915_READ(GEN8_DE_PIPE_IMR(pipe)));
  632. seq_printf(m, "Pipe %c IIR:\t%08x\n",
  633. pipe_name(pipe),
  634. I915_READ(GEN8_DE_PIPE_IIR(pipe)));
  635. seq_printf(m, "Pipe %c IER:\t%08x\n",
  636. pipe_name(pipe),
  637. I915_READ(GEN8_DE_PIPE_IER(pipe)));
  638. }
  639. seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
  640. I915_READ(GEN8_DE_PORT_IMR));
  641. seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
  642. I915_READ(GEN8_DE_PORT_IIR));
  643. seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
  644. I915_READ(GEN8_DE_PORT_IER));
  645. seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
  646. I915_READ(GEN8_DE_MISC_IMR));
  647. seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
  648. I915_READ(GEN8_DE_MISC_IIR));
  649. seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
  650. I915_READ(GEN8_DE_MISC_IER));
  651. seq_printf(m, "PCU interrupt mask:\t%08x\n",
  652. I915_READ(GEN8_PCU_IMR));
  653. seq_printf(m, "PCU interrupt identity:\t%08x\n",
  654. I915_READ(GEN8_PCU_IIR));
  655. seq_printf(m, "PCU interrupt enable:\t%08x\n",
  656. I915_READ(GEN8_PCU_IER));
  657. } else if (IS_VALLEYVIEW(dev)) {
  658. seq_printf(m, "Display IER:\t%08x\n",
  659. I915_READ(VLV_IER));
  660. seq_printf(m, "Display IIR:\t%08x\n",
  661. I915_READ(VLV_IIR));
  662. seq_printf(m, "Display IIR_RW:\t%08x\n",
  663. I915_READ(VLV_IIR_RW));
  664. seq_printf(m, "Display IMR:\t%08x\n",
  665. I915_READ(VLV_IMR));
  666. for_each_pipe(dev_priv, pipe)
  667. seq_printf(m, "Pipe %c stat:\t%08x\n",
  668. pipe_name(pipe),
  669. I915_READ(PIPESTAT(pipe)));
  670. seq_printf(m, "Master IER:\t%08x\n",
  671. I915_READ(VLV_MASTER_IER));
  672. seq_printf(m, "Render IER:\t%08x\n",
  673. I915_READ(GTIER));
  674. seq_printf(m, "Render IIR:\t%08x\n",
  675. I915_READ(GTIIR));
  676. seq_printf(m, "Render IMR:\t%08x\n",
  677. I915_READ(GTIMR));
  678. seq_printf(m, "PM IER:\t\t%08x\n",
  679. I915_READ(GEN6_PMIER));
  680. seq_printf(m, "PM IIR:\t\t%08x\n",
  681. I915_READ(GEN6_PMIIR));
  682. seq_printf(m, "PM IMR:\t\t%08x\n",
  683. I915_READ(GEN6_PMIMR));
  684. seq_printf(m, "Port hotplug:\t%08x\n",
  685. I915_READ(PORT_HOTPLUG_EN));
  686. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  687. I915_READ(VLV_DPFLIPSTAT));
  688. seq_printf(m, "DPINVGTT:\t%08x\n",
  689. I915_READ(DPINVGTT));
  690. } else if (!HAS_PCH_SPLIT(dev)) {
  691. seq_printf(m, "Interrupt enable: %08x\n",
  692. I915_READ(IER));
  693. seq_printf(m, "Interrupt identity: %08x\n",
  694. I915_READ(IIR));
  695. seq_printf(m, "Interrupt mask: %08x\n",
  696. I915_READ(IMR));
  697. for_each_pipe(dev_priv, pipe)
  698. seq_printf(m, "Pipe %c stat: %08x\n",
  699. pipe_name(pipe),
  700. I915_READ(PIPESTAT(pipe)));
  701. } else {
  702. seq_printf(m, "North Display Interrupt enable: %08x\n",
  703. I915_READ(DEIER));
  704. seq_printf(m, "North Display Interrupt identity: %08x\n",
  705. I915_READ(DEIIR));
  706. seq_printf(m, "North Display Interrupt mask: %08x\n",
  707. I915_READ(DEIMR));
  708. seq_printf(m, "South Display Interrupt enable: %08x\n",
  709. I915_READ(SDEIER));
  710. seq_printf(m, "South Display Interrupt identity: %08x\n",
  711. I915_READ(SDEIIR));
  712. seq_printf(m, "South Display Interrupt mask: %08x\n",
  713. I915_READ(SDEIMR));
  714. seq_printf(m, "Graphics Interrupt enable: %08x\n",
  715. I915_READ(GTIER));
  716. seq_printf(m, "Graphics Interrupt identity: %08x\n",
  717. I915_READ(GTIIR));
  718. seq_printf(m, "Graphics Interrupt mask: %08x\n",
  719. I915_READ(GTIMR));
  720. }
  721. for_each_ring(ring, dev_priv, i) {
  722. if (INTEL_INFO(dev)->gen >= 6) {
  723. seq_printf(m,
  724. "Graphics Interrupt mask (%s): %08x\n",
  725. ring->name, I915_READ_IMR(ring));
  726. }
  727. i915_ring_seqno_info(m, ring);
  728. }
  729. intel_runtime_pm_put(dev_priv);
  730. mutex_unlock(&dev->struct_mutex);
  731. return 0;
  732. }
  733. static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
  734. {
  735. struct drm_info_node *node = m->private;
  736. struct drm_device *dev = node->minor->dev;
  737. struct drm_i915_private *dev_priv = dev->dev_private;
  738. int i, ret;
  739. ret = mutex_lock_interruptible(&dev->struct_mutex);
  740. if (ret)
  741. return ret;
  742. seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
  743. seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
  744. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  745. struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
  746. seq_printf(m, "Fence %d, pin count = %d, object = ",
  747. i, dev_priv->fence_regs[i].pin_count);
  748. if (obj == NULL)
  749. seq_puts(m, "unused");
  750. else
  751. describe_obj(m, obj);
  752. seq_putc(m, '\n');
  753. }
  754. mutex_unlock(&dev->struct_mutex);
  755. return 0;
  756. }
  757. static int i915_hws_info(struct seq_file *m, void *data)
  758. {
  759. struct drm_info_node *node = m->private;
  760. struct drm_device *dev = node->minor->dev;
  761. struct drm_i915_private *dev_priv = dev->dev_private;
  762. struct intel_engine_cs *ring;
  763. const u32 *hws;
  764. int i;
  765. ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
  766. hws = ring->status_page.page_addr;
  767. if (hws == NULL)
  768. return 0;
  769. for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
  770. seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
  771. i * 4,
  772. hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
  773. }
  774. return 0;
  775. }
  776. static ssize_t
  777. i915_error_state_write(struct file *filp,
  778. const char __user *ubuf,
  779. size_t cnt,
  780. loff_t *ppos)
  781. {
  782. struct i915_error_state_file_priv *error_priv = filp->private_data;
  783. struct drm_device *dev = error_priv->dev;
  784. int ret;
  785. DRM_DEBUG_DRIVER("Resetting error state\n");
  786. ret = mutex_lock_interruptible(&dev->struct_mutex);
  787. if (ret)
  788. return ret;
  789. i915_destroy_error_state(dev);
  790. mutex_unlock(&dev->struct_mutex);
  791. return cnt;
  792. }
  793. static int i915_error_state_open(struct inode *inode, struct file *file)
  794. {
  795. struct drm_device *dev = inode->i_private;
  796. struct i915_error_state_file_priv *error_priv;
  797. error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
  798. if (!error_priv)
  799. return -ENOMEM;
  800. error_priv->dev = dev;
  801. i915_error_state_get(dev, error_priv);
  802. file->private_data = error_priv;
  803. return 0;
  804. }
  805. static int i915_error_state_release(struct inode *inode, struct file *file)
  806. {
  807. struct i915_error_state_file_priv *error_priv = file->private_data;
  808. i915_error_state_put(error_priv);
  809. kfree(error_priv);
  810. return 0;
  811. }
  812. static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
  813. size_t count, loff_t *pos)
  814. {
  815. struct i915_error_state_file_priv *error_priv = file->private_data;
  816. struct drm_i915_error_state_buf error_str;
  817. loff_t tmp_pos = 0;
  818. ssize_t ret_count = 0;
  819. int ret;
  820. ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
  821. if (ret)
  822. return ret;
  823. ret = i915_error_state_to_str(&error_str, error_priv);
  824. if (ret)
  825. goto out;
  826. ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
  827. error_str.buf,
  828. error_str.bytes);
  829. if (ret_count < 0)
  830. ret = ret_count;
  831. else
  832. *pos = error_str.start + ret_count;
  833. out:
  834. i915_error_state_buf_release(&error_str);
  835. return ret ?: ret_count;
  836. }
  837. static const struct file_operations i915_error_state_fops = {
  838. .owner = THIS_MODULE,
  839. .open = i915_error_state_open,
  840. .read = i915_error_state_read,
  841. .write = i915_error_state_write,
  842. .llseek = default_llseek,
  843. .release = i915_error_state_release,
  844. };
  845. static int
  846. i915_next_seqno_get(void *data, u64 *val)
  847. {
  848. struct drm_device *dev = data;
  849. struct drm_i915_private *dev_priv = dev->dev_private;
  850. int ret;
  851. ret = mutex_lock_interruptible(&dev->struct_mutex);
  852. if (ret)
  853. return ret;
  854. *val = dev_priv->next_seqno;
  855. mutex_unlock(&dev->struct_mutex);
  856. return 0;
  857. }
  858. static int
  859. i915_next_seqno_set(void *data, u64 val)
  860. {
  861. struct drm_device *dev = data;
  862. int ret;
  863. ret = mutex_lock_interruptible(&dev->struct_mutex);
  864. if (ret)
  865. return ret;
  866. ret = i915_gem_set_seqno(dev, val);
  867. mutex_unlock(&dev->struct_mutex);
  868. return ret;
  869. }
  870. DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
  871. i915_next_seqno_get, i915_next_seqno_set,
  872. "0x%llx\n");
  873. static int i915_frequency_info(struct seq_file *m, void *unused)
  874. {
  875. struct drm_info_node *node = m->private;
  876. struct drm_device *dev = node->minor->dev;
  877. struct drm_i915_private *dev_priv = dev->dev_private;
  878. int ret = 0;
  879. intel_runtime_pm_get(dev_priv);
  880. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  881. if (IS_GEN5(dev)) {
  882. u16 rgvswctl = I915_READ16(MEMSWCTL);
  883. u16 rgvstat = I915_READ16(MEMSTAT_ILK);
  884. seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
  885. seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
  886. seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
  887. MEMSTAT_VID_SHIFT);
  888. seq_printf(m, "Current P-state: %d\n",
  889. (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
  890. } else if (IS_GEN6(dev) || (IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) ||
  891. IS_BROADWELL(dev)) {
  892. u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  893. u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
  894. u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  895. u32 rpmodectl, rpinclimit, rpdeclimit;
  896. u32 rpstat, cagf, reqf;
  897. u32 rpupei, rpcurup, rpprevup;
  898. u32 rpdownei, rpcurdown, rpprevdown;
  899. u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
  900. int max_freq;
  901. /* RPSTAT1 is in the GT power well */
  902. ret = mutex_lock_interruptible(&dev->struct_mutex);
  903. if (ret)
  904. goto out;
  905. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  906. reqf = I915_READ(GEN6_RPNSWREQ);
  907. reqf &= ~GEN6_TURBO_DISABLE;
  908. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  909. reqf >>= 24;
  910. else
  911. reqf >>= 25;
  912. reqf *= GT_FREQUENCY_MULTIPLIER;
  913. rpmodectl = I915_READ(GEN6_RP_CONTROL);
  914. rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
  915. rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
  916. rpstat = I915_READ(GEN6_RPSTAT1);
  917. rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
  918. rpcurup = I915_READ(GEN6_RP_CUR_UP);
  919. rpprevup = I915_READ(GEN6_RP_PREV_UP);
  920. rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
  921. rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
  922. rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
  923. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  924. cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
  925. else
  926. cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
  927. cagf *= GT_FREQUENCY_MULTIPLIER;
  928. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  929. mutex_unlock(&dev->struct_mutex);
  930. if (IS_GEN6(dev) || IS_GEN7(dev)) {
  931. pm_ier = I915_READ(GEN6_PMIER);
  932. pm_imr = I915_READ(GEN6_PMIMR);
  933. pm_isr = I915_READ(GEN6_PMISR);
  934. pm_iir = I915_READ(GEN6_PMIIR);
  935. pm_mask = I915_READ(GEN6_PMINTRMSK);
  936. } else {
  937. pm_ier = I915_READ(GEN8_GT_IER(2));
  938. pm_imr = I915_READ(GEN8_GT_IMR(2));
  939. pm_isr = I915_READ(GEN8_GT_ISR(2));
  940. pm_iir = I915_READ(GEN8_GT_IIR(2));
  941. pm_mask = I915_READ(GEN6_PMINTRMSK);
  942. }
  943. seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
  944. pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
  945. seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
  946. seq_printf(m, "Render p-state ratio: %d\n",
  947. (gt_perf_status & 0xff00) >> 8);
  948. seq_printf(m, "Render p-state VID: %d\n",
  949. gt_perf_status & 0xff);
  950. seq_printf(m, "Render p-state limit: %d\n",
  951. rp_state_limits & 0xff);
  952. seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
  953. seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
  954. seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
  955. seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
  956. seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
  957. seq_printf(m, "CAGF: %dMHz\n", cagf);
  958. seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
  959. GEN6_CURICONT_MASK);
  960. seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
  961. GEN6_CURBSYTAVG_MASK);
  962. seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
  963. GEN6_CURBSYTAVG_MASK);
  964. seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
  965. GEN6_CURIAVG_MASK);
  966. seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
  967. GEN6_CURBSYTAVG_MASK);
  968. seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
  969. GEN6_CURBSYTAVG_MASK);
  970. max_freq = (rp_state_cap & 0xff0000) >> 16;
  971. seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
  972. max_freq * GT_FREQUENCY_MULTIPLIER);
  973. max_freq = (rp_state_cap & 0xff00) >> 8;
  974. seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
  975. max_freq * GT_FREQUENCY_MULTIPLIER);
  976. max_freq = rp_state_cap & 0xff;
  977. seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
  978. max_freq * GT_FREQUENCY_MULTIPLIER);
  979. seq_printf(m, "Max overclocked frequency: %dMHz\n",
  980. dev_priv->rps.max_freq * GT_FREQUENCY_MULTIPLIER);
  981. } else if (IS_VALLEYVIEW(dev)) {
  982. u32 freq_sts;
  983. mutex_lock(&dev_priv->rps.hw_lock);
  984. freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  985. seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
  986. seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
  987. seq_printf(m, "max GPU freq: %d MHz\n",
  988. vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  989. seq_printf(m, "min GPU freq: %d MHz\n",
  990. vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq));
  991. seq_printf(m, "efficient (RPe) frequency: %d MHz\n",
  992. vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
  993. seq_printf(m, "current GPU freq: %d MHz\n",
  994. vlv_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
  995. mutex_unlock(&dev_priv->rps.hw_lock);
  996. } else {
  997. seq_puts(m, "no P-state info available\n");
  998. }
  999. out:
  1000. intel_runtime_pm_put(dev_priv);
  1001. return ret;
  1002. }
  1003. static int ironlake_drpc_info(struct seq_file *m)
  1004. {
  1005. struct drm_info_node *node = m->private;
  1006. struct drm_device *dev = node->minor->dev;
  1007. struct drm_i915_private *dev_priv = dev->dev_private;
  1008. u32 rgvmodectl, rstdbyctl;
  1009. u16 crstandvid;
  1010. int ret;
  1011. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1012. if (ret)
  1013. return ret;
  1014. intel_runtime_pm_get(dev_priv);
  1015. rgvmodectl = I915_READ(MEMMODECTL);
  1016. rstdbyctl = I915_READ(RSTDBYCTL);
  1017. crstandvid = I915_READ16(CRSTANDVID);
  1018. intel_runtime_pm_put(dev_priv);
  1019. mutex_unlock(&dev->struct_mutex);
  1020. seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
  1021. "yes" : "no");
  1022. seq_printf(m, "Boost freq: %d\n",
  1023. (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
  1024. MEMMODE_BOOST_FREQ_SHIFT);
  1025. seq_printf(m, "HW control enabled: %s\n",
  1026. rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
  1027. seq_printf(m, "SW control enabled: %s\n",
  1028. rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
  1029. seq_printf(m, "Gated voltage change: %s\n",
  1030. rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
  1031. seq_printf(m, "Starting frequency: P%d\n",
  1032. (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
  1033. seq_printf(m, "Max P-state: P%d\n",
  1034. (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
  1035. seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
  1036. seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
  1037. seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
  1038. seq_printf(m, "Render standby enabled: %s\n",
  1039. (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
  1040. seq_puts(m, "Current RS state: ");
  1041. switch (rstdbyctl & RSX_STATUS_MASK) {
  1042. case RSX_STATUS_ON:
  1043. seq_puts(m, "on\n");
  1044. break;
  1045. case RSX_STATUS_RC1:
  1046. seq_puts(m, "RC1\n");
  1047. break;
  1048. case RSX_STATUS_RC1E:
  1049. seq_puts(m, "RC1E\n");
  1050. break;
  1051. case RSX_STATUS_RS1:
  1052. seq_puts(m, "RS1\n");
  1053. break;
  1054. case RSX_STATUS_RS2:
  1055. seq_puts(m, "RS2 (RC6)\n");
  1056. break;
  1057. case RSX_STATUS_RS3:
  1058. seq_puts(m, "RC3 (RC6+)\n");
  1059. break;
  1060. default:
  1061. seq_puts(m, "unknown\n");
  1062. break;
  1063. }
  1064. return 0;
  1065. }
  1066. static int vlv_drpc_info(struct seq_file *m)
  1067. {
  1068. struct drm_info_node *node = m->private;
  1069. struct drm_device *dev = node->minor->dev;
  1070. struct drm_i915_private *dev_priv = dev->dev_private;
  1071. u32 rpmodectl1, rcctl1;
  1072. unsigned fw_rendercount = 0, fw_mediacount = 0;
  1073. intel_runtime_pm_get(dev_priv);
  1074. rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
  1075. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  1076. intel_runtime_pm_put(dev_priv);
  1077. seq_printf(m, "Video Turbo Mode: %s\n",
  1078. yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
  1079. seq_printf(m, "Turbo enabled: %s\n",
  1080. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1081. seq_printf(m, "HW control enabled: %s\n",
  1082. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1083. seq_printf(m, "SW control enabled: %s\n",
  1084. yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
  1085. GEN6_RP_MEDIA_SW_MODE));
  1086. seq_printf(m, "RC6 Enabled: %s\n",
  1087. yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
  1088. GEN6_RC_CTL_EI_MODE(1))));
  1089. seq_printf(m, "Render Power Well: %s\n",
  1090. (I915_READ(VLV_GTLC_PW_STATUS) &
  1091. VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
  1092. seq_printf(m, "Media Power Well: %s\n",
  1093. (I915_READ(VLV_GTLC_PW_STATUS) &
  1094. VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
  1095. seq_printf(m, "Render RC6 residency since boot: %u\n",
  1096. I915_READ(VLV_GT_RENDER_RC6));
  1097. seq_printf(m, "Media RC6 residency since boot: %u\n",
  1098. I915_READ(VLV_GT_MEDIA_RC6));
  1099. spin_lock_irq(&dev_priv->uncore.lock);
  1100. fw_rendercount = dev_priv->uncore.fw_rendercount;
  1101. fw_mediacount = dev_priv->uncore.fw_mediacount;
  1102. spin_unlock_irq(&dev_priv->uncore.lock);
  1103. seq_printf(m, "Forcewake Render Count = %u\n", fw_rendercount);
  1104. seq_printf(m, "Forcewake Media Count = %u\n", fw_mediacount);
  1105. return 0;
  1106. }
  1107. static int gen6_drpc_info(struct seq_file *m)
  1108. {
  1109. struct drm_info_node *node = m->private;
  1110. struct drm_device *dev = node->minor->dev;
  1111. struct drm_i915_private *dev_priv = dev->dev_private;
  1112. u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
  1113. unsigned forcewake_count;
  1114. int count = 0, ret;
  1115. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1116. if (ret)
  1117. return ret;
  1118. intel_runtime_pm_get(dev_priv);
  1119. spin_lock_irq(&dev_priv->uncore.lock);
  1120. forcewake_count = dev_priv->uncore.forcewake_count;
  1121. spin_unlock_irq(&dev_priv->uncore.lock);
  1122. if (forcewake_count) {
  1123. seq_puts(m, "RC information inaccurate because somebody "
  1124. "holds a forcewake reference \n");
  1125. } else {
  1126. /* NB: we cannot use forcewake, else we read the wrong values */
  1127. while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
  1128. udelay(10);
  1129. seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
  1130. }
  1131. gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
  1132. trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
  1133. rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
  1134. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  1135. mutex_unlock(&dev->struct_mutex);
  1136. mutex_lock(&dev_priv->rps.hw_lock);
  1137. sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  1138. mutex_unlock(&dev_priv->rps.hw_lock);
  1139. intel_runtime_pm_put(dev_priv);
  1140. seq_printf(m, "Video Turbo Mode: %s\n",
  1141. yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
  1142. seq_printf(m, "HW control enabled: %s\n",
  1143. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1144. seq_printf(m, "SW control enabled: %s\n",
  1145. yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
  1146. GEN6_RP_MEDIA_SW_MODE));
  1147. seq_printf(m, "RC1e Enabled: %s\n",
  1148. yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
  1149. seq_printf(m, "RC6 Enabled: %s\n",
  1150. yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
  1151. seq_printf(m, "Deep RC6 Enabled: %s\n",
  1152. yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
  1153. seq_printf(m, "Deepest RC6 Enabled: %s\n",
  1154. yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
  1155. seq_puts(m, "Current RC state: ");
  1156. switch (gt_core_status & GEN6_RCn_MASK) {
  1157. case GEN6_RC0:
  1158. if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
  1159. seq_puts(m, "Core Power Down\n");
  1160. else
  1161. seq_puts(m, "on\n");
  1162. break;
  1163. case GEN6_RC3:
  1164. seq_puts(m, "RC3\n");
  1165. break;
  1166. case GEN6_RC6:
  1167. seq_puts(m, "RC6\n");
  1168. break;
  1169. case GEN6_RC7:
  1170. seq_puts(m, "RC7\n");
  1171. break;
  1172. default:
  1173. seq_puts(m, "Unknown\n");
  1174. break;
  1175. }
  1176. seq_printf(m, "Core Power Down: %s\n",
  1177. yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
  1178. /* Not exactly sure what this is */
  1179. seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
  1180. I915_READ(GEN6_GT_GFX_RC6_LOCKED));
  1181. seq_printf(m, "RC6 residency since boot: %u\n",
  1182. I915_READ(GEN6_GT_GFX_RC6));
  1183. seq_printf(m, "RC6+ residency since boot: %u\n",
  1184. I915_READ(GEN6_GT_GFX_RC6p));
  1185. seq_printf(m, "RC6++ residency since boot: %u\n",
  1186. I915_READ(GEN6_GT_GFX_RC6pp));
  1187. seq_printf(m, "RC6 voltage: %dmV\n",
  1188. GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
  1189. seq_printf(m, "RC6+ voltage: %dmV\n",
  1190. GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
  1191. seq_printf(m, "RC6++ voltage: %dmV\n",
  1192. GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
  1193. return 0;
  1194. }
  1195. static int i915_drpc_info(struct seq_file *m, void *unused)
  1196. {
  1197. struct drm_info_node *node = m->private;
  1198. struct drm_device *dev = node->minor->dev;
  1199. if (IS_VALLEYVIEW(dev))
  1200. return vlv_drpc_info(m);
  1201. else if (INTEL_INFO(dev)->gen >= 6)
  1202. return gen6_drpc_info(m);
  1203. else
  1204. return ironlake_drpc_info(m);
  1205. }
  1206. static int i915_fbc_status(struct seq_file *m, void *unused)
  1207. {
  1208. struct drm_info_node *node = m->private;
  1209. struct drm_device *dev = node->minor->dev;
  1210. struct drm_i915_private *dev_priv = dev->dev_private;
  1211. if (!HAS_FBC(dev)) {
  1212. seq_puts(m, "FBC unsupported on this chipset\n");
  1213. return 0;
  1214. }
  1215. intel_runtime_pm_get(dev_priv);
  1216. if (intel_fbc_enabled(dev)) {
  1217. seq_puts(m, "FBC enabled\n");
  1218. } else {
  1219. seq_puts(m, "FBC disabled: ");
  1220. switch (dev_priv->fbc.no_fbc_reason) {
  1221. case FBC_OK:
  1222. seq_puts(m, "FBC actived, but currently disabled in hardware");
  1223. break;
  1224. case FBC_UNSUPPORTED:
  1225. seq_puts(m, "unsupported by this chipset");
  1226. break;
  1227. case FBC_NO_OUTPUT:
  1228. seq_puts(m, "no outputs");
  1229. break;
  1230. case FBC_STOLEN_TOO_SMALL:
  1231. seq_puts(m, "not enough stolen memory");
  1232. break;
  1233. case FBC_UNSUPPORTED_MODE:
  1234. seq_puts(m, "mode not supported");
  1235. break;
  1236. case FBC_MODE_TOO_LARGE:
  1237. seq_puts(m, "mode too large");
  1238. break;
  1239. case FBC_BAD_PLANE:
  1240. seq_puts(m, "FBC unsupported on plane");
  1241. break;
  1242. case FBC_NOT_TILED:
  1243. seq_puts(m, "scanout buffer not tiled");
  1244. break;
  1245. case FBC_MULTIPLE_PIPES:
  1246. seq_puts(m, "multiple pipes are enabled");
  1247. break;
  1248. case FBC_MODULE_PARAM:
  1249. seq_puts(m, "disabled per module param (default off)");
  1250. break;
  1251. case FBC_CHIP_DEFAULT:
  1252. seq_puts(m, "disabled per chip default");
  1253. break;
  1254. default:
  1255. seq_puts(m, "unknown reason");
  1256. }
  1257. seq_putc(m, '\n');
  1258. }
  1259. intel_runtime_pm_put(dev_priv);
  1260. return 0;
  1261. }
  1262. static int i915_fbc_fc_get(void *data, u64 *val)
  1263. {
  1264. struct drm_device *dev = data;
  1265. struct drm_i915_private *dev_priv = dev->dev_private;
  1266. if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
  1267. return -ENODEV;
  1268. drm_modeset_lock_all(dev);
  1269. *val = dev_priv->fbc.false_color;
  1270. drm_modeset_unlock_all(dev);
  1271. return 0;
  1272. }
  1273. static int i915_fbc_fc_set(void *data, u64 val)
  1274. {
  1275. struct drm_device *dev = data;
  1276. struct drm_i915_private *dev_priv = dev->dev_private;
  1277. u32 reg;
  1278. if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
  1279. return -ENODEV;
  1280. drm_modeset_lock_all(dev);
  1281. reg = I915_READ(ILK_DPFC_CONTROL);
  1282. dev_priv->fbc.false_color = val;
  1283. I915_WRITE(ILK_DPFC_CONTROL, val ?
  1284. (reg | FBC_CTL_FALSE_COLOR) :
  1285. (reg & ~FBC_CTL_FALSE_COLOR));
  1286. drm_modeset_unlock_all(dev);
  1287. return 0;
  1288. }
  1289. DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
  1290. i915_fbc_fc_get, i915_fbc_fc_set,
  1291. "%llu\n");
  1292. static int i915_ips_status(struct seq_file *m, void *unused)
  1293. {
  1294. struct drm_info_node *node = m->private;
  1295. struct drm_device *dev = node->minor->dev;
  1296. struct drm_i915_private *dev_priv = dev->dev_private;
  1297. if (!HAS_IPS(dev)) {
  1298. seq_puts(m, "not supported\n");
  1299. return 0;
  1300. }
  1301. intel_runtime_pm_get(dev_priv);
  1302. seq_printf(m, "Enabled by kernel parameter: %s\n",
  1303. yesno(i915.enable_ips));
  1304. if (INTEL_INFO(dev)->gen >= 8) {
  1305. seq_puts(m, "Currently: unknown\n");
  1306. } else {
  1307. if (I915_READ(IPS_CTL) & IPS_ENABLE)
  1308. seq_puts(m, "Currently: enabled\n");
  1309. else
  1310. seq_puts(m, "Currently: disabled\n");
  1311. }
  1312. intel_runtime_pm_put(dev_priv);
  1313. return 0;
  1314. }
  1315. static int i915_sr_status(struct seq_file *m, void *unused)
  1316. {
  1317. struct drm_info_node *node = m->private;
  1318. struct drm_device *dev = node->minor->dev;
  1319. struct drm_i915_private *dev_priv = dev->dev_private;
  1320. bool sr_enabled = false;
  1321. intel_runtime_pm_get(dev_priv);
  1322. if (HAS_PCH_SPLIT(dev))
  1323. sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
  1324. else if (IS_CRESTLINE(dev) || IS_I945G(dev) || IS_I945GM(dev))
  1325. sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
  1326. else if (IS_I915GM(dev))
  1327. sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
  1328. else if (IS_PINEVIEW(dev))
  1329. sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
  1330. intel_runtime_pm_put(dev_priv);
  1331. seq_printf(m, "self-refresh: %s\n",
  1332. sr_enabled ? "enabled" : "disabled");
  1333. return 0;
  1334. }
  1335. static int i915_emon_status(struct seq_file *m, void *unused)
  1336. {
  1337. struct drm_info_node *node = m->private;
  1338. struct drm_device *dev = node->minor->dev;
  1339. struct drm_i915_private *dev_priv = dev->dev_private;
  1340. unsigned long temp, chipset, gfx;
  1341. int ret;
  1342. if (!IS_GEN5(dev))
  1343. return -ENODEV;
  1344. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1345. if (ret)
  1346. return ret;
  1347. temp = i915_mch_val(dev_priv);
  1348. chipset = i915_chipset_val(dev_priv);
  1349. gfx = i915_gfx_val(dev_priv);
  1350. mutex_unlock(&dev->struct_mutex);
  1351. seq_printf(m, "GMCH temp: %ld\n", temp);
  1352. seq_printf(m, "Chipset power: %ld\n", chipset);
  1353. seq_printf(m, "GFX power: %ld\n", gfx);
  1354. seq_printf(m, "Total power: %ld\n", chipset + gfx);
  1355. return 0;
  1356. }
  1357. static int i915_ring_freq_table(struct seq_file *m, void *unused)
  1358. {
  1359. struct drm_info_node *node = m->private;
  1360. struct drm_device *dev = node->minor->dev;
  1361. struct drm_i915_private *dev_priv = dev->dev_private;
  1362. int ret = 0;
  1363. int gpu_freq, ia_freq;
  1364. if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
  1365. seq_puts(m, "unsupported on this chipset\n");
  1366. return 0;
  1367. }
  1368. intel_runtime_pm_get(dev_priv);
  1369. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  1370. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  1371. if (ret)
  1372. goto out;
  1373. seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
  1374. for (gpu_freq = dev_priv->rps.min_freq_softlimit;
  1375. gpu_freq <= dev_priv->rps.max_freq_softlimit;
  1376. gpu_freq++) {
  1377. ia_freq = gpu_freq;
  1378. sandybridge_pcode_read(dev_priv,
  1379. GEN6_PCODE_READ_MIN_FREQ_TABLE,
  1380. &ia_freq);
  1381. seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
  1382. gpu_freq * GT_FREQUENCY_MULTIPLIER,
  1383. ((ia_freq >> 0) & 0xff) * 100,
  1384. ((ia_freq >> 8) & 0xff) * 100);
  1385. }
  1386. mutex_unlock(&dev_priv->rps.hw_lock);
  1387. out:
  1388. intel_runtime_pm_put(dev_priv);
  1389. return ret;
  1390. }
  1391. static int i915_opregion(struct seq_file *m, void *unused)
  1392. {
  1393. struct drm_info_node *node = m->private;
  1394. struct drm_device *dev = node->minor->dev;
  1395. struct drm_i915_private *dev_priv = dev->dev_private;
  1396. struct intel_opregion *opregion = &dev_priv->opregion;
  1397. void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
  1398. int ret;
  1399. if (data == NULL)
  1400. return -ENOMEM;
  1401. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1402. if (ret)
  1403. goto out;
  1404. if (opregion->header) {
  1405. memcpy_fromio(data, opregion->header, OPREGION_SIZE);
  1406. seq_write(m, data, OPREGION_SIZE);
  1407. }
  1408. mutex_unlock(&dev->struct_mutex);
  1409. out:
  1410. kfree(data);
  1411. return 0;
  1412. }
  1413. static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
  1414. {
  1415. struct drm_info_node *node = m->private;
  1416. struct drm_device *dev = node->minor->dev;
  1417. struct intel_fbdev *ifbdev = NULL;
  1418. struct intel_framebuffer *fb;
  1419. #ifdef CONFIG_DRM_I915_FBDEV
  1420. struct drm_i915_private *dev_priv = dev->dev_private;
  1421. ifbdev = dev_priv->fbdev;
  1422. fb = to_intel_framebuffer(ifbdev->helper.fb);
  1423. seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
  1424. fb->base.width,
  1425. fb->base.height,
  1426. fb->base.depth,
  1427. fb->base.bits_per_pixel,
  1428. atomic_read(&fb->base.refcount.refcount));
  1429. describe_obj(m, fb->obj);
  1430. seq_putc(m, '\n');
  1431. #endif
  1432. mutex_lock(&dev->mode_config.fb_lock);
  1433. list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
  1434. if (ifbdev && &fb->base == ifbdev->helper.fb)
  1435. continue;
  1436. seq_printf(m, "user size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
  1437. fb->base.width,
  1438. fb->base.height,
  1439. fb->base.depth,
  1440. fb->base.bits_per_pixel,
  1441. atomic_read(&fb->base.refcount.refcount));
  1442. describe_obj(m, fb->obj);
  1443. seq_putc(m, '\n');
  1444. }
  1445. mutex_unlock(&dev->mode_config.fb_lock);
  1446. return 0;
  1447. }
  1448. static void describe_ctx_ringbuf(struct seq_file *m,
  1449. struct intel_ringbuffer *ringbuf)
  1450. {
  1451. seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
  1452. ringbuf->space, ringbuf->head, ringbuf->tail,
  1453. ringbuf->last_retired_head);
  1454. }
  1455. static int i915_context_status(struct seq_file *m, void *unused)
  1456. {
  1457. struct drm_info_node *node = m->private;
  1458. struct drm_device *dev = node->minor->dev;
  1459. struct drm_i915_private *dev_priv = dev->dev_private;
  1460. struct intel_engine_cs *ring;
  1461. struct intel_context *ctx;
  1462. int ret, i;
  1463. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1464. if (ret)
  1465. return ret;
  1466. if (dev_priv->ips.pwrctx) {
  1467. seq_puts(m, "power context ");
  1468. describe_obj(m, dev_priv->ips.pwrctx);
  1469. seq_putc(m, '\n');
  1470. }
  1471. if (dev_priv->ips.renderctx) {
  1472. seq_puts(m, "render context ");
  1473. describe_obj(m, dev_priv->ips.renderctx);
  1474. seq_putc(m, '\n');
  1475. }
  1476. list_for_each_entry(ctx, &dev_priv->context_list, link) {
  1477. if (!i915.enable_execlists &&
  1478. ctx->legacy_hw_ctx.rcs_state == NULL)
  1479. continue;
  1480. seq_puts(m, "HW context ");
  1481. describe_ctx(m, ctx);
  1482. for_each_ring(ring, dev_priv, i) {
  1483. if (ring->default_context == ctx)
  1484. seq_printf(m, "(default context %s) ",
  1485. ring->name);
  1486. }
  1487. if (i915.enable_execlists) {
  1488. seq_putc(m, '\n');
  1489. for_each_ring(ring, dev_priv, i) {
  1490. struct drm_i915_gem_object *ctx_obj =
  1491. ctx->engine[i].state;
  1492. struct intel_ringbuffer *ringbuf =
  1493. ctx->engine[i].ringbuf;
  1494. seq_printf(m, "%s: ", ring->name);
  1495. if (ctx_obj)
  1496. describe_obj(m, ctx_obj);
  1497. if (ringbuf)
  1498. describe_ctx_ringbuf(m, ringbuf);
  1499. seq_putc(m, '\n');
  1500. }
  1501. } else {
  1502. describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
  1503. }
  1504. seq_putc(m, '\n');
  1505. }
  1506. mutex_unlock(&dev->struct_mutex);
  1507. return 0;
  1508. }
  1509. static int i915_dump_lrc(struct seq_file *m, void *unused)
  1510. {
  1511. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1512. struct drm_device *dev = node->minor->dev;
  1513. struct drm_i915_private *dev_priv = dev->dev_private;
  1514. struct intel_engine_cs *ring;
  1515. struct intel_context *ctx;
  1516. int ret, i;
  1517. if (!i915.enable_execlists) {
  1518. seq_printf(m, "Logical Ring Contexts are disabled\n");
  1519. return 0;
  1520. }
  1521. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1522. if (ret)
  1523. return ret;
  1524. list_for_each_entry(ctx, &dev_priv->context_list, link) {
  1525. for_each_ring(ring, dev_priv, i) {
  1526. struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
  1527. if (ring->default_context == ctx)
  1528. continue;
  1529. if (ctx_obj) {
  1530. struct page *page = i915_gem_object_get_page(ctx_obj, 1);
  1531. uint32_t *reg_state = kmap_atomic(page);
  1532. int j;
  1533. seq_printf(m, "CONTEXT: %s %u\n", ring->name,
  1534. intel_execlists_ctx_id(ctx_obj));
  1535. for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
  1536. seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
  1537. i915_gem_obj_ggtt_offset(ctx_obj) + 4096 + (j * 4),
  1538. reg_state[j], reg_state[j + 1],
  1539. reg_state[j + 2], reg_state[j + 3]);
  1540. }
  1541. kunmap_atomic(reg_state);
  1542. seq_putc(m, '\n');
  1543. }
  1544. }
  1545. }
  1546. mutex_unlock(&dev->struct_mutex);
  1547. return 0;
  1548. }
  1549. static int i915_execlists(struct seq_file *m, void *data)
  1550. {
  1551. struct drm_info_node *node = (struct drm_info_node *)m->private;
  1552. struct drm_device *dev = node->minor->dev;
  1553. struct drm_i915_private *dev_priv = dev->dev_private;
  1554. struct intel_engine_cs *ring;
  1555. u32 status_pointer;
  1556. u8 read_pointer;
  1557. u8 write_pointer;
  1558. u32 status;
  1559. u32 ctx_id;
  1560. struct list_head *cursor;
  1561. int ring_id, i;
  1562. int ret;
  1563. if (!i915.enable_execlists) {
  1564. seq_puts(m, "Logical Ring Contexts are disabled\n");
  1565. return 0;
  1566. }
  1567. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1568. if (ret)
  1569. return ret;
  1570. for_each_ring(ring, dev_priv, ring_id) {
  1571. struct intel_ctx_submit_request *head_req = NULL;
  1572. int count = 0;
  1573. unsigned long flags;
  1574. seq_printf(m, "%s\n", ring->name);
  1575. status = I915_READ(RING_EXECLIST_STATUS(ring));
  1576. ctx_id = I915_READ(RING_EXECLIST_STATUS(ring) + 4);
  1577. seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
  1578. status, ctx_id);
  1579. status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
  1580. seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
  1581. read_pointer = ring->next_context_status_buffer;
  1582. write_pointer = status_pointer & 0x07;
  1583. if (read_pointer > write_pointer)
  1584. write_pointer += 6;
  1585. seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
  1586. read_pointer, write_pointer);
  1587. for (i = 0; i < 6; i++) {
  1588. status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i);
  1589. ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i + 4);
  1590. seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
  1591. i, status, ctx_id);
  1592. }
  1593. spin_lock_irqsave(&ring->execlist_lock, flags);
  1594. list_for_each(cursor, &ring->execlist_queue)
  1595. count++;
  1596. head_req = list_first_entry_or_null(&ring->execlist_queue,
  1597. struct intel_ctx_submit_request, execlist_link);
  1598. spin_unlock_irqrestore(&ring->execlist_lock, flags);
  1599. seq_printf(m, "\t%d requests in queue\n", count);
  1600. if (head_req) {
  1601. struct drm_i915_gem_object *ctx_obj;
  1602. ctx_obj = head_req->ctx->engine[ring_id].state;
  1603. seq_printf(m, "\tHead request id: %u\n",
  1604. intel_execlists_ctx_id(ctx_obj));
  1605. seq_printf(m, "\tHead request tail: %u\n",
  1606. head_req->tail);
  1607. }
  1608. seq_putc(m, '\n');
  1609. }
  1610. mutex_unlock(&dev->struct_mutex);
  1611. return 0;
  1612. }
  1613. static int i915_gen6_forcewake_count_info(struct seq_file *m, void *data)
  1614. {
  1615. struct drm_info_node *node = m->private;
  1616. struct drm_device *dev = node->minor->dev;
  1617. struct drm_i915_private *dev_priv = dev->dev_private;
  1618. unsigned forcewake_count = 0, fw_rendercount = 0, fw_mediacount = 0;
  1619. spin_lock_irq(&dev_priv->uncore.lock);
  1620. if (IS_VALLEYVIEW(dev)) {
  1621. fw_rendercount = dev_priv->uncore.fw_rendercount;
  1622. fw_mediacount = dev_priv->uncore.fw_mediacount;
  1623. } else
  1624. forcewake_count = dev_priv->uncore.forcewake_count;
  1625. spin_unlock_irq(&dev_priv->uncore.lock);
  1626. if (IS_VALLEYVIEW(dev)) {
  1627. seq_printf(m, "fw_rendercount = %u\n", fw_rendercount);
  1628. seq_printf(m, "fw_mediacount = %u\n", fw_mediacount);
  1629. } else
  1630. seq_printf(m, "forcewake count = %u\n", forcewake_count);
  1631. return 0;
  1632. }
  1633. static const char *swizzle_string(unsigned swizzle)
  1634. {
  1635. switch (swizzle) {
  1636. case I915_BIT_6_SWIZZLE_NONE:
  1637. return "none";
  1638. case I915_BIT_6_SWIZZLE_9:
  1639. return "bit9";
  1640. case I915_BIT_6_SWIZZLE_9_10:
  1641. return "bit9/bit10";
  1642. case I915_BIT_6_SWIZZLE_9_11:
  1643. return "bit9/bit11";
  1644. case I915_BIT_6_SWIZZLE_9_10_11:
  1645. return "bit9/bit10/bit11";
  1646. case I915_BIT_6_SWIZZLE_9_17:
  1647. return "bit9/bit17";
  1648. case I915_BIT_6_SWIZZLE_9_10_17:
  1649. return "bit9/bit10/bit17";
  1650. case I915_BIT_6_SWIZZLE_UNKNOWN:
  1651. return "unknown";
  1652. }
  1653. return "bug";
  1654. }
  1655. static int i915_swizzle_info(struct seq_file *m, void *data)
  1656. {
  1657. struct drm_info_node *node = m->private;
  1658. struct drm_device *dev = node->minor->dev;
  1659. struct drm_i915_private *dev_priv = dev->dev_private;
  1660. int ret;
  1661. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1662. if (ret)
  1663. return ret;
  1664. intel_runtime_pm_get(dev_priv);
  1665. seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
  1666. swizzle_string(dev_priv->mm.bit_6_swizzle_x));
  1667. seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
  1668. swizzle_string(dev_priv->mm.bit_6_swizzle_y));
  1669. if (IS_GEN3(dev) || IS_GEN4(dev)) {
  1670. seq_printf(m, "DDC = 0x%08x\n",
  1671. I915_READ(DCC));
  1672. seq_printf(m, "C0DRB3 = 0x%04x\n",
  1673. I915_READ16(C0DRB3));
  1674. seq_printf(m, "C1DRB3 = 0x%04x\n",
  1675. I915_READ16(C1DRB3));
  1676. } else if (INTEL_INFO(dev)->gen >= 6) {
  1677. seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
  1678. I915_READ(MAD_DIMM_C0));
  1679. seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
  1680. I915_READ(MAD_DIMM_C1));
  1681. seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
  1682. I915_READ(MAD_DIMM_C2));
  1683. seq_printf(m, "TILECTL = 0x%08x\n",
  1684. I915_READ(TILECTL));
  1685. if (IS_GEN8(dev))
  1686. seq_printf(m, "GAMTARBMODE = 0x%08x\n",
  1687. I915_READ(GAMTARBMODE));
  1688. else
  1689. seq_printf(m, "ARB_MODE = 0x%08x\n",
  1690. I915_READ(ARB_MODE));
  1691. seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
  1692. I915_READ(DISP_ARB_CTL));
  1693. }
  1694. intel_runtime_pm_put(dev_priv);
  1695. mutex_unlock(&dev->struct_mutex);
  1696. return 0;
  1697. }
  1698. static int per_file_ctx(int id, void *ptr, void *data)
  1699. {
  1700. struct intel_context *ctx = ptr;
  1701. struct seq_file *m = data;
  1702. struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
  1703. if (!ppgtt) {
  1704. seq_printf(m, " no ppgtt for context %d\n",
  1705. ctx->user_handle);
  1706. return 0;
  1707. }
  1708. if (i915_gem_context_is_default(ctx))
  1709. seq_puts(m, " default context:\n");
  1710. else
  1711. seq_printf(m, " context %d:\n", ctx->user_handle);
  1712. ppgtt->debug_dump(ppgtt, m);
  1713. return 0;
  1714. }
  1715. static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
  1716. {
  1717. struct drm_i915_private *dev_priv = dev->dev_private;
  1718. struct intel_engine_cs *ring;
  1719. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1720. int unused, i;
  1721. if (!ppgtt)
  1722. return;
  1723. seq_printf(m, "Page directories: %d\n", ppgtt->num_pd_pages);
  1724. seq_printf(m, "Page tables: %d\n", ppgtt->num_pd_entries);
  1725. for_each_ring(ring, dev_priv, unused) {
  1726. seq_printf(m, "%s\n", ring->name);
  1727. for (i = 0; i < 4; i++) {
  1728. u32 offset = 0x270 + i * 8;
  1729. u64 pdp = I915_READ(ring->mmio_base + offset + 4);
  1730. pdp <<= 32;
  1731. pdp |= I915_READ(ring->mmio_base + offset);
  1732. seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
  1733. }
  1734. }
  1735. }
  1736. static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
  1737. {
  1738. struct drm_i915_private *dev_priv = dev->dev_private;
  1739. struct intel_engine_cs *ring;
  1740. struct drm_file *file;
  1741. int i;
  1742. if (INTEL_INFO(dev)->gen == 6)
  1743. seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
  1744. for_each_ring(ring, dev_priv, i) {
  1745. seq_printf(m, "%s\n", ring->name);
  1746. if (INTEL_INFO(dev)->gen == 7)
  1747. seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
  1748. seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
  1749. seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
  1750. seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
  1751. }
  1752. if (dev_priv->mm.aliasing_ppgtt) {
  1753. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1754. seq_puts(m, "aliasing PPGTT:\n");
  1755. seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd_offset);
  1756. ppgtt->debug_dump(ppgtt, m);
  1757. }
  1758. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  1759. struct drm_i915_file_private *file_priv = file->driver_priv;
  1760. seq_printf(m, "proc: %s\n",
  1761. get_pid_task(file->pid, PIDTYPE_PID)->comm);
  1762. idr_for_each(&file_priv->context_idr, per_file_ctx, m);
  1763. }
  1764. seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
  1765. }
  1766. static int i915_ppgtt_info(struct seq_file *m, void *data)
  1767. {
  1768. struct drm_info_node *node = m->private;
  1769. struct drm_device *dev = node->minor->dev;
  1770. struct drm_i915_private *dev_priv = dev->dev_private;
  1771. int ret = mutex_lock_interruptible(&dev->struct_mutex);
  1772. if (ret)
  1773. return ret;
  1774. intel_runtime_pm_get(dev_priv);
  1775. if (INTEL_INFO(dev)->gen >= 8)
  1776. gen8_ppgtt_info(m, dev);
  1777. else if (INTEL_INFO(dev)->gen >= 6)
  1778. gen6_ppgtt_info(m, dev);
  1779. intel_runtime_pm_put(dev_priv);
  1780. mutex_unlock(&dev->struct_mutex);
  1781. return 0;
  1782. }
  1783. static int i915_llc(struct seq_file *m, void *data)
  1784. {
  1785. struct drm_info_node *node = m->private;
  1786. struct drm_device *dev = node->minor->dev;
  1787. struct drm_i915_private *dev_priv = dev->dev_private;
  1788. /* Size calculation for LLC is a bit of a pain. Ignore for now. */
  1789. seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
  1790. seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
  1791. return 0;
  1792. }
  1793. static int i915_edp_psr_status(struct seq_file *m, void *data)
  1794. {
  1795. struct drm_info_node *node = m->private;
  1796. struct drm_device *dev = node->minor->dev;
  1797. struct drm_i915_private *dev_priv = dev->dev_private;
  1798. u32 psrperf = 0;
  1799. bool enabled = false;
  1800. intel_runtime_pm_get(dev_priv);
  1801. mutex_lock(&dev_priv->psr.lock);
  1802. seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
  1803. seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
  1804. seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
  1805. seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
  1806. seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
  1807. dev_priv->psr.busy_frontbuffer_bits);
  1808. seq_printf(m, "Re-enable work scheduled: %s\n",
  1809. yesno(work_busy(&dev_priv->psr.work.work)));
  1810. enabled = HAS_PSR(dev) &&
  1811. I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
  1812. seq_printf(m, "HW Enabled & Active bit: %s\n", yesno(enabled));
  1813. if (HAS_PSR(dev))
  1814. psrperf = I915_READ(EDP_PSR_PERF_CNT(dev)) &
  1815. EDP_PSR_PERF_CNT_MASK;
  1816. seq_printf(m, "Performance_Counter: %u\n", psrperf);
  1817. mutex_unlock(&dev_priv->psr.lock);
  1818. intel_runtime_pm_put(dev_priv);
  1819. return 0;
  1820. }
  1821. static int i915_sink_crc(struct seq_file *m, void *data)
  1822. {
  1823. struct drm_info_node *node = m->private;
  1824. struct drm_device *dev = node->minor->dev;
  1825. struct intel_encoder *encoder;
  1826. struct intel_connector *connector;
  1827. struct intel_dp *intel_dp = NULL;
  1828. int ret;
  1829. u8 crc[6];
  1830. drm_modeset_lock_all(dev);
  1831. list_for_each_entry(connector, &dev->mode_config.connector_list,
  1832. base.head) {
  1833. if (connector->base.dpms != DRM_MODE_DPMS_ON)
  1834. continue;
  1835. if (!connector->base.encoder)
  1836. continue;
  1837. encoder = to_intel_encoder(connector->base.encoder);
  1838. if (encoder->type != INTEL_OUTPUT_EDP)
  1839. continue;
  1840. intel_dp = enc_to_intel_dp(&encoder->base);
  1841. ret = intel_dp_sink_crc(intel_dp, crc);
  1842. if (ret)
  1843. goto out;
  1844. seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
  1845. crc[0], crc[1], crc[2],
  1846. crc[3], crc[4], crc[5]);
  1847. goto out;
  1848. }
  1849. ret = -ENODEV;
  1850. out:
  1851. drm_modeset_unlock_all(dev);
  1852. return ret;
  1853. }
  1854. static int i915_energy_uJ(struct seq_file *m, void *data)
  1855. {
  1856. struct drm_info_node *node = m->private;
  1857. struct drm_device *dev = node->minor->dev;
  1858. struct drm_i915_private *dev_priv = dev->dev_private;
  1859. u64 power;
  1860. u32 units;
  1861. if (INTEL_INFO(dev)->gen < 6)
  1862. return -ENODEV;
  1863. intel_runtime_pm_get(dev_priv);
  1864. rdmsrl(MSR_RAPL_POWER_UNIT, power);
  1865. power = (power & 0x1f00) >> 8;
  1866. units = 1000000 / (1 << power); /* convert to uJ */
  1867. power = I915_READ(MCH_SECP_NRG_STTS);
  1868. power *= units;
  1869. intel_runtime_pm_put(dev_priv);
  1870. seq_printf(m, "%llu", (long long unsigned)power);
  1871. return 0;
  1872. }
  1873. static int i915_pc8_status(struct seq_file *m, void *unused)
  1874. {
  1875. struct drm_info_node *node = m->private;
  1876. struct drm_device *dev = node->minor->dev;
  1877. struct drm_i915_private *dev_priv = dev->dev_private;
  1878. if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
  1879. seq_puts(m, "not supported\n");
  1880. return 0;
  1881. }
  1882. seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
  1883. seq_printf(m, "IRQs disabled: %s\n",
  1884. yesno(!intel_irqs_enabled(dev_priv)));
  1885. return 0;
  1886. }
  1887. static const char *power_domain_str(enum intel_display_power_domain domain)
  1888. {
  1889. switch (domain) {
  1890. case POWER_DOMAIN_PIPE_A:
  1891. return "PIPE_A";
  1892. case POWER_DOMAIN_PIPE_B:
  1893. return "PIPE_B";
  1894. case POWER_DOMAIN_PIPE_C:
  1895. return "PIPE_C";
  1896. case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
  1897. return "PIPE_A_PANEL_FITTER";
  1898. case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
  1899. return "PIPE_B_PANEL_FITTER";
  1900. case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
  1901. return "PIPE_C_PANEL_FITTER";
  1902. case POWER_DOMAIN_TRANSCODER_A:
  1903. return "TRANSCODER_A";
  1904. case POWER_DOMAIN_TRANSCODER_B:
  1905. return "TRANSCODER_B";
  1906. case POWER_DOMAIN_TRANSCODER_C:
  1907. return "TRANSCODER_C";
  1908. case POWER_DOMAIN_TRANSCODER_EDP:
  1909. return "TRANSCODER_EDP";
  1910. case POWER_DOMAIN_PORT_DDI_A_2_LANES:
  1911. return "PORT_DDI_A_2_LANES";
  1912. case POWER_DOMAIN_PORT_DDI_A_4_LANES:
  1913. return "PORT_DDI_A_4_LANES";
  1914. case POWER_DOMAIN_PORT_DDI_B_2_LANES:
  1915. return "PORT_DDI_B_2_LANES";
  1916. case POWER_DOMAIN_PORT_DDI_B_4_LANES:
  1917. return "PORT_DDI_B_4_LANES";
  1918. case POWER_DOMAIN_PORT_DDI_C_2_LANES:
  1919. return "PORT_DDI_C_2_LANES";
  1920. case POWER_DOMAIN_PORT_DDI_C_4_LANES:
  1921. return "PORT_DDI_C_4_LANES";
  1922. case POWER_DOMAIN_PORT_DDI_D_2_LANES:
  1923. return "PORT_DDI_D_2_LANES";
  1924. case POWER_DOMAIN_PORT_DDI_D_4_LANES:
  1925. return "PORT_DDI_D_4_LANES";
  1926. case POWER_DOMAIN_PORT_DSI:
  1927. return "PORT_DSI";
  1928. case POWER_DOMAIN_PORT_CRT:
  1929. return "PORT_CRT";
  1930. case POWER_DOMAIN_PORT_OTHER:
  1931. return "PORT_OTHER";
  1932. case POWER_DOMAIN_VGA:
  1933. return "VGA";
  1934. case POWER_DOMAIN_AUDIO:
  1935. return "AUDIO";
  1936. case POWER_DOMAIN_PLLS:
  1937. return "PLLS";
  1938. case POWER_DOMAIN_INIT:
  1939. return "INIT";
  1940. default:
  1941. WARN_ON(1);
  1942. return "?";
  1943. }
  1944. }
  1945. static int i915_power_domain_info(struct seq_file *m, void *unused)
  1946. {
  1947. struct drm_info_node *node = m->private;
  1948. struct drm_device *dev = node->minor->dev;
  1949. struct drm_i915_private *dev_priv = dev->dev_private;
  1950. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  1951. int i;
  1952. mutex_lock(&power_domains->lock);
  1953. seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
  1954. for (i = 0; i < power_domains->power_well_count; i++) {
  1955. struct i915_power_well *power_well;
  1956. enum intel_display_power_domain power_domain;
  1957. power_well = &power_domains->power_wells[i];
  1958. seq_printf(m, "%-25s %d\n", power_well->name,
  1959. power_well->count);
  1960. for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
  1961. power_domain++) {
  1962. if (!(BIT(power_domain) & power_well->domains))
  1963. continue;
  1964. seq_printf(m, " %-23s %d\n",
  1965. power_domain_str(power_domain),
  1966. power_domains->domain_use_count[power_domain]);
  1967. }
  1968. }
  1969. mutex_unlock(&power_domains->lock);
  1970. return 0;
  1971. }
  1972. static void intel_seq_print_mode(struct seq_file *m, int tabs,
  1973. struct drm_display_mode *mode)
  1974. {
  1975. int i;
  1976. for (i = 0; i < tabs; i++)
  1977. seq_putc(m, '\t');
  1978. seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
  1979. mode->base.id, mode->name,
  1980. mode->vrefresh, mode->clock,
  1981. mode->hdisplay, mode->hsync_start,
  1982. mode->hsync_end, mode->htotal,
  1983. mode->vdisplay, mode->vsync_start,
  1984. mode->vsync_end, mode->vtotal,
  1985. mode->type, mode->flags);
  1986. }
  1987. static void intel_encoder_info(struct seq_file *m,
  1988. struct intel_crtc *intel_crtc,
  1989. struct intel_encoder *intel_encoder)
  1990. {
  1991. struct drm_info_node *node = m->private;
  1992. struct drm_device *dev = node->minor->dev;
  1993. struct drm_crtc *crtc = &intel_crtc->base;
  1994. struct intel_connector *intel_connector;
  1995. struct drm_encoder *encoder;
  1996. encoder = &intel_encoder->base;
  1997. seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
  1998. encoder->base.id, encoder->name);
  1999. for_each_connector_on_encoder(dev, encoder, intel_connector) {
  2000. struct drm_connector *connector = &intel_connector->base;
  2001. seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
  2002. connector->base.id,
  2003. connector->name,
  2004. drm_get_connector_status_name(connector->status));
  2005. if (connector->status == connector_status_connected) {
  2006. struct drm_display_mode *mode = &crtc->mode;
  2007. seq_printf(m, ", mode:\n");
  2008. intel_seq_print_mode(m, 2, mode);
  2009. } else {
  2010. seq_putc(m, '\n');
  2011. }
  2012. }
  2013. }
  2014. static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2015. {
  2016. struct drm_info_node *node = m->private;
  2017. struct drm_device *dev = node->minor->dev;
  2018. struct drm_crtc *crtc = &intel_crtc->base;
  2019. struct intel_encoder *intel_encoder;
  2020. if (crtc->primary->fb)
  2021. seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
  2022. crtc->primary->fb->base.id, crtc->x, crtc->y,
  2023. crtc->primary->fb->width, crtc->primary->fb->height);
  2024. else
  2025. seq_puts(m, "\tprimary plane disabled\n");
  2026. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  2027. intel_encoder_info(m, intel_crtc, intel_encoder);
  2028. }
  2029. static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
  2030. {
  2031. struct drm_display_mode *mode = panel->fixed_mode;
  2032. seq_printf(m, "\tfixed mode:\n");
  2033. intel_seq_print_mode(m, 2, mode);
  2034. }
  2035. static void intel_dp_info(struct seq_file *m,
  2036. struct intel_connector *intel_connector)
  2037. {
  2038. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2039. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2040. seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
  2041. seq_printf(m, "\taudio support: %s\n", intel_dp->has_audio ? "yes" :
  2042. "no");
  2043. if (intel_encoder->type == INTEL_OUTPUT_EDP)
  2044. intel_panel_info(m, &intel_connector->panel);
  2045. }
  2046. static void intel_hdmi_info(struct seq_file *m,
  2047. struct intel_connector *intel_connector)
  2048. {
  2049. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2050. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
  2051. seq_printf(m, "\taudio support: %s\n", intel_hdmi->has_audio ? "yes" :
  2052. "no");
  2053. }
  2054. static void intel_lvds_info(struct seq_file *m,
  2055. struct intel_connector *intel_connector)
  2056. {
  2057. intel_panel_info(m, &intel_connector->panel);
  2058. }
  2059. static void intel_connector_info(struct seq_file *m,
  2060. struct drm_connector *connector)
  2061. {
  2062. struct intel_connector *intel_connector = to_intel_connector(connector);
  2063. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2064. struct drm_display_mode *mode;
  2065. seq_printf(m, "connector %d: type %s, status: %s\n",
  2066. connector->base.id, connector->name,
  2067. drm_get_connector_status_name(connector->status));
  2068. if (connector->status == connector_status_connected) {
  2069. seq_printf(m, "\tname: %s\n", connector->display_info.name);
  2070. seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
  2071. connector->display_info.width_mm,
  2072. connector->display_info.height_mm);
  2073. seq_printf(m, "\tsubpixel order: %s\n",
  2074. drm_get_subpixel_order_name(connector->display_info.subpixel_order));
  2075. seq_printf(m, "\tCEA rev: %d\n",
  2076. connector->display_info.cea_rev);
  2077. }
  2078. if (intel_encoder) {
  2079. if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
  2080. intel_encoder->type == INTEL_OUTPUT_EDP)
  2081. intel_dp_info(m, intel_connector);
  2082. else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
  2083. intel_hdmi_info(m, intel_connector);
  2084. else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
  2085. intel_lvds_info(m, intel_connector);
  2086. }
  2087. seq_printf(m, "\tmodes:\n");
  2088. list_for_each_entry(mode, &connector->modes, head)
  2089. intel_seq_print_mode(m, 2, mode);
  2090. }
  2091. static bool cursor_active(struct drm_device *dev, int pipe)
  2092. {
  2093. struct drm_i915_private *dev_priv = dev->dev_private;
  2094. u32 state;
  2095. if (IS_845G(dev) || IS_I865G(dev))
  2096. state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
  2097. else
  2098. state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
  2099. return state;
  2100. }
  2101. static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
  2102. {
  2103. struct drm_i915_private *dev_priv = dev->dev_private;
  2104. u32 pos;
  2105. pos = I915_READ(CURPOS(pipe));
  2106. *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
  2107. if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
  2108. *x = -*x;
  2109. *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
  2110. if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
  2111. *y = -*y;
  2112. return cursor_active(dev, pipe);
  2113. }
  2114. static int i915_display_info(struct seq_file *m, void *unused)
  2115. {
  2116. struct drm_info_node *node = m->private;
  2117. struct drm_device *dev = node->minor->dev;
  2118. struct drm_i915_private *dev_priv = dev->dev_private;
  2119. struct intel_crtc *crtc;
  2120. struct drm_connector *connector;
  2121. intel_runtime_pm_get(dev_priv);
  2122. drm_modeset_lock_all(dev);
  2123. seq_printf(m, "CRTC info\n");
  2124. seq_printf(m, "---------\n");
  2125. for_each_intel_crtc(dev, crtc) {
  2126. bool active;
  2127. int x, y;
  2128. seq_printf(m, "CRTC %d: pipe: %c, active=%s (size=%dx%d)\n",
  2129. crtc->base.base.id, pipe_name(crtc->pipe),
  2130. yesno(crtc->active), crtc->config.pipe_src_w, crtc->config.pipe_src_h);
  2131. if (crtc->active) {
  2132. intel_crtc_info(m, crtc);
  2133. active = cursor_position(dev, crtc->pipe, &x, &y);
  2134. seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
  2135. yesno(crtc->cursor_base),
  2136. x, y, crtc->cursor_width, crtc->cursor_height,
  2137. crtc->cursor_addr, yesno(active));
  2138. }
  2139. seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
  2140. yesno(!crtc->cpu_fifo_underrun_disabled),
  2141. yesno(!crtc->pch_fifo_underrun_disabled));
  2142. }
  2143. seq_printf(m, "\n");
  2144. seq_printf(m, "Connector info\n");
  2145. seq_printf(m, "--------------\n");
  2146. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  2147. intel_connector_info(m, connector);
  2148. }
  2149. drm_modeset_unlock_all(dev);
  2150. intel_runtime_pm_put(dev_priv);
  2151. return 0;
  2152. }
  2153. static int i915_semaphore_status(struct seq_file *m, void *unused)
  2154. {
  2155. struct drm_info_node *node = (struct drm_info_node *) m->private;
  2156. struct drm_device *dev = node->minor->dev;
  2157. struct drm_i915_private *dev_priv = dev->dev_private;
  2158. struct intel_engine_cs *ring;
  2159. int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  2160. int i, j, ret;
  2161. if (!i915_semaphore_is_enabled(dev)) {
  2162. seq_puts(m, "Semaphores are disabled\n");
  2163. return 0;
  2164. }
  2165. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2166. if (ret)
  2167. return ret;
  2168. intel_runtime_pm_get(dev_priv);
  2169. if (IS_BROADWELL(dev)) {
  2170. struct page *page;
  2171. uint64_t *seqno;
  2172. page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
  2173. seqno = (uint64_t *)kmap_atomic(page);
  2174. for_each_ring(ring, dev_priv, i) {
  2175. uint64_t offset;
  2176. seq_printf(m, "%s\n", ring->name);
  2177. seq_puts(m, " Last signal:");
  2178. for (j = 0; j < num_rings; j++) {
  2179. offset = i * I915_NUM_RINGS + j;
  2180. seq_printf(m, "0x%08llx (0x%02llx) ",
  2181. seqno[offset], offset * 8);
  2182. }
  2183. seq_putc(m, '\n');
  2184. seq_puts(m, " Last wait: ");
  2185. for (j = 0; j < num_rings; j++) {
  2186. offset = i + (j * I915_NUM_RINGS);
  2187. seq_printf(m, "0x%08llx (0x%02llx) ",
  2188. seqno[offset], offset * 8);
  2189. }
  2190. seq_putc(m, '\n');
  2191. }
  2192. kunmap_atomic(seqno);
  2193. } else {
  2194. seq_puts(m, " Last signal:");
  2195. for_each_ring(ring, dev_priv, i)
  2196. for (j = 0; j < num_rings; j++)
  2197. seq_printf(m, "0x%08x\n",
  2198. I915_READ(ring->semaphore.mbox.signal[j]));
  2199. seq_putc(m, '\n');
  2200. }
  2201. seq_puts(m, "\nSync seqno:\n");
  2202. for_each_ring(ring, dev_priv, i) {
  2203. for (j = 0; j < num_rings; j++) {
  2204. seq_printf(m, " 0x%08x ", ring->semaphore.sync_seqno[j]);
  2205. }
  2206. seq_putc(m, '\n');
  2207. }
  2208. seq_putc(m, '\n');
  2209. intel_runtime_pm_put(dev_priv);
  2210. mutex_unlock(&dev->struct_mutex);
  2211. return 0;
  2212. }
  2213. static int i915_shared_dplls_info(struct seq_file *m, void *unused)
  2214. {
  2215. struct drm_info_node *node = (struct drm_info_node *) m->private;
  2216. struct drm_device *dev = node->minor->dev;
  2217. struct drm_i915_private *dev_priv = dev->dev_private;
  2218. int i;
  2219. drm_modeset_lock_all(dev);
  2220. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2221. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  2222. seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
  2223. seq_printf(m, " refcount: %i, active: %i, on: %s\n", pll->refcount,
  2224. pll->active, yesno(pll->on));
  2225. seq_printf(m, " tracked hardware state:\n");
  2226. seq_printf(m, " dpll: 0x%08x\n", pll->hw_state.dpll);
  2227. seq_printf(m, " dpll_md: 0x%08x\n", pll->hw_state.dpll_md);
  2228. seq_printf(m, " fp0: 0x%08x\n", pll->hw_state.fp0);
  2229. seq_printf(m, " fp1: 0x%08x\n", pll->hw_state.fp1);
  2230. seq_printf(m, " wrpll: 0x%08x\n", pll->hw_state.wrpll);
  2231. }
  2232. drm_modeset_unlock_all(dev);
  2233. return 0;
  2234. }
  2235. static int i915_wa_registers(struct seq_file *m, void *unused)
  2236. {
  2237. int i;
  2238. int ret;
  2239. struct drm_info_node *node = (struct drm_info_node *) m->private;
  2240. struct drm_device *dev = node->minor->dev;
  2241. struct drm_i915_private *dev_priv = dev->dev_private;
  2242. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2243. if (ret)
  2244. return ret;
  2245. intel_runtime_pm_get(dev_priv);
  2246. seq_printf(m, "Workarounds applied: %d\n", dev_priv->num_wa_regs);
  2247. for (i = 0; i < dev_priv->num_wa_regs; ++i) {
  2248. u32 addr, mask;
  2249. addr = dev_priv->intel_wa_regs[i].addr;
  2250. mask = dev_priv->intel_wa_regs[i].mask;
  2251. dev_priv->intel_wa_regs[i].value = I915_READ(addr) | mask;
  2252. if (dev_priv->intel_wa_regs[i].addr)
  2253. seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X\n",
  2254. dev_priv->intel_wa_regs[i].addr,
  2255. dev_priv->intel_wa_regs[i].value,
  2256. dev_priv->intel_wa_regs[i].mask);
  2257. }
  2258. intel_runtime_pm_put(dev_priv);
  2259. mutex_unlock(&dev->struct_mutex);
  2260. return 0;
  2261. }
  2262. struct pipe_crc_info {
  2263. const char *name;
  2264. struct drm_device *dev;
  2265. enum pipe pipe;
  2266. };
  2267. static int i915_dp_mst_info(struct seq_file *m, void *unused)
  2268. {
  2269. struct drm_info_node *node = (struct drm_info_node *) m->private;
  2270. struct drm_device *dev = node->minor->dev;
  2271. struct drm_encoder *encoder;
  2272. struct intel_encoder *intel_encoder;
  2273. struct intel_digital_port *intel_dig_port;
  2274. drm_modeset_lock_all(dev);
  2275. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  2276. intel_encoder = to_intel_encoder(encoder);
  2277. if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
  2278. continue;
  2279. intel_dig_port = enc_to_dig_port(encoder);
  2280. if (!intel_dig_port->dp.can_mst)
  2281. continue;
  2282. drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
  2283. }
  2284. drm_modeset_unlock_all(dev);
  2285. return 0;
  2286. }
  2287. static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
  2288. {
  2289. struct pipe_crc_info *info = inode->i_private;
  2290. struct drm_i915_private *dev_priv = info->dev->dev_private;
  2291. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
  2292. if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
  2293. return -ENODEV;
  2294. spin_lock_irq(&pipe_crc->lock);
  2295. if (pipe_crc->opened) {
  2296. spin_unlock_irq(&pipe_crc->lock);
  2297. return -EBUSY; /* already open */
  2298. }
  2299. pipe_crc->opened = true;
  2300. filep->private_data = inode->i_private;
  2301. spin_unlock_irq(&pipe_crc->lock);
  2302. return 0;
  2303. }
  2304. static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
  2305. {
  2306. struct pipe_crc_info *info = inode->i_private;
  2307. struct drm_i915_private *dev_priv = info->dev->dev_private;
  2308. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
  2309. spin_lock_irq(&pipe_crc->lock);
  2310. pipe_crc->opened = false;
  2311. spin_unlock_irq(&pipe_crc->lock);
  2312. return 0;
  2313. }
  2314. /* (6 fields, 8 chars each, space separated (5) + '\n') */
  2315. #define PIPE_CRC_LINE_LEN (6 * 8 + 5 + 1)
  2316. /* account for \'0' */
  2317. #define PIPE_CRC_BUFFER_LEN (PIPE_CRC_LINE_LEN + 1)
  2318. static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
  2319. {
  2320. assert_spin_locked(&pipe_crc->lock);
  2321. return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
  2322. INTEL_PIPE_CRC_ENTRIES_NR);
  2323. }
  2324. static ssize_t
  2325. i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
  2326. loff_t *pos)
  2327. {
  2328. struct pipe_crc_info *info = filep->private_data;
  2329. struct drm_device *dev = info->dev;
  2330. struct drm_i915_private *dev_priv = dev->dev_private;
  2331. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
  2332. char buf[PIPE_CRC_BUFFER_LEN];
  2333. int head, tail, n_entries, n;
  2334. ssize_t bytes_read;
  2335. /*
  2336. * Don't allow user space to provide buffers not big enough to hold
  2337. * a line of data.
  2338. */
  2339. if (count < PIPE_CRC_LINE_LEN)
  2340. return -EINVAL;
  2341. if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
  2342. return 0;
  2343. /* nothing to read */
  2344. spin_lock_irq(&pipe_crc->lock);
  2345. while (pipe_crc_data_count(pipe_crc) == 0) {
  2346. int ret;
  2347. if (filep->f_flags & O_NONBLOCK) {
  2348. spin_unlock_irq(&pipe_crc->lock);
  2349. return -EAGAIN;
  2350. }
  2351. ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
  2352. pipe_crc_data_count(pipe_crc), pipe_crc->lock);
  2353. if (ret) {
  2354. spin_unlock_irq(&pipe_crc->lock);
  2355. return ret;
  2356. }
  2357. }
  2358. /* We now have one or more entries to read */
  2359. head = pipe_crc->head;
  2360. tail = pipe_crc->tail;
  2361. n_entries = min((size_t)CIRC_CNT(head, tail, INTEL_PIPE_CRC_ENTRIES_NR),
  2362. count / PIPE_CRC_LINE_LEN);
  2363. spin_unlock_irq(&pipe_crc->lock);
  2364. bytes_read = 0;
  2365. n = 0;
  2366. do {
  2367. struct intel_pipe_crc_entry *entry = &pipe_crc->entries[tail];
  2368. int ret;
  2369. bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
  2370. "%8u %8x %8x %8x %8x %8x\n",
  2371. entry->frame, entry->crc[0],
  2372. entry->crc[1], entry->crc[2],
  2373. entry->crc[3], entry->crc[4]);
  2374. ret = copy_to_user(user_buf + n * PIPE_CRC_LINE_LEN,
  2375. buf, PIPE_CRC_LINE_LEN);
  2376. if (ret == PIPE_CRC_LINE_LEN)
  2377. return -EFAULT;
  2378. BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
  2379. tail = (tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
  2380. n++;
  2381. } while (--n_entries);
  2382. spin_lock_irq(&pipe_crc->lock);
  2383. pipe_crc->tail = tail;
  2384. spin_unlock_irq(&pipe_crc->lock);
  2385. return bytes_read;
  2386. }
  2387. static const struct file_operations i915_pipe_crc_fops = {
  2388. .owner = THIS_MODULE,
  2389. .open = i915_pipe_crc_open,
  2390. .read = i915_pipe_crc_read,
  2391. .release = i915_pipe_crc_release,
  2392. };
  2393. static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
  2394. {
  2395. .name = "i915_pipe_A_crc",
  2396. .pipe = PIPE_A,
  2397. },
  2398. {
  2399. .name = "i915_pipe_B_crc",
  2400. .pipe = PIPE_B,
  2401. },
  2402. {
  2403. .name = "i915_pipe_C_crc",
  2404. .pipe = PIPE_C,
  2405. },
  2406. };
  2407. static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
  2408. enum pipe pipe)
  2409. {
  2410. struct drm_device *dev = minor->dev;
  2411. struct dentry *ent;
  2412. struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
  2413. info->dev = dev;
  2414. ent = debugfs_create_file(info->name, S_IRUGO, root, info,
  2415. &i915_pipe_crc_fops);
  2416. if (!ent)
  2417. return -ENOMEM;
  2418. return drm_add_fake_info_node(minor, ent, info);
  2419. }
  2420. static const char * const pipe_crc_sources[] = {
  2421. "none",
  2422. "plane1",
  2423. "plane2",
  2424. "pf",
  2425. "pipe",
  2426. "TV",
  2427. "DP-B",
  2428. "DP-C",
  2429. "DP-D",
  2430. "auto",
  2431. };
  2432. static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
  2433. {
  2434. BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
  2435. return pipe_crc_sources[source];
  2436. }
  2437. static int display_crc_ctl_show(struct seq_file *m, void *data)
  2438. {
  2439. struct drm_device *dev = m->private;
  2440. struct drm_i915_private *dev_priv = dev->dev_private;
  2441. int i;
  2442. for (i = 0; i < I915_MAX_PIPES; i++)
  2443. seq_printf(m, "%c %s\n", pipe_name(i),
  2444. pipe_crc_source_name(dev_priv->pipe_crc[i].source));
  2445. return 0;
  2446. }
  2447. static int display_crc_ctl_open(struct inode *inode, struct file *file)
  2448. {
  2449. struct drm_device *dev = inode->i_private;
  2450. return single_open(file, display_crc_ctl_show, dev);
  2451. }
  2452. static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
  2453. uint32_t *val)
  2454. {
  2455. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
  2456. *source = INTEL_PIPE_CRC_SOURCE_PIPE;
  2457. switch (*source) {
  2458. case INTEL_PIPE_CRC_SOURCE_PIPE:
  2459. *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
  2460. break;
  2461. case INTEL_PIPE_CRC_SOURCE_NONE:
  2462. *val = 0;
  2463. break;
  2464. default:
  2465. return -EINVAL;
  2466. }
  2467. return 0;
  2468. }
  2469. static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
  2470. enum intel_pipe_crc_source *source)
  2471. {
  2472. struct intel_encoder *encoder;
  2473. struct intel_crtc *crtc;
  2474. struct intel_digital_port *dig_port;
  2475. int ret = 0;
  2476. *source = INTEL_PIPE_CRC_SOURCE_PIPE;
  2477. drm_modeset_lock_all(dev);
  2478. for_each_intel_encoder(dev, encoder) {
  2479. if (!encoder->base.crtc)
  2480. continue;
  2481. crtc = to_intel_crtc(encoder->base.crtc);
  2482. if (crtc->pipe != pipe)
  2483. continue;
  2484. switch (encoder->type) {
  2485. case INTEL_OUTPUT_TVOUT:
  2486. *source = INTEL_PIPE_CRC_SOURCE_TV;
  2487. break;
  2488. case INTEL_OUTPUT_DISPLAYPORT:
  2489. case INTEL_OUTPUT_EDP:
  2490. dig_port = enc_to_dig_port(&encoder->base);
  2491. switch (dig_port->port) {
  2492. case PORT_B:
  2493. *source = INTEL_PIPE_CRC_SOURCE_DP_B;
  2494. break;
  2495. case PORT_C:
  2496. *source = INTEL_PIPE_CRC_SOURCE_DP_C;
  2497. break;
  2498. case PORT_D:
  2499. *source = INTEL_PIPE_CRC_SOURCE_DP_D;
  2500. break;
  2501. default:
  2502. WARN(1, "nonexisting DP port %c\n",
  2503. port_name(dig_port->port));
  2504. break;
  2505. }
  2506. break;
  2507. }
  2508. }
  2509. drm_modeset_unlock_all(dev);
  2510. return ret;
  2511. }
  2512. static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
  2513. enum pipe pipe,
  2514. enum intel_pipe_crc_source *source,
  2515. uint32_t *val)
  2516. {
  2517. struct drm_i915_private *dev_priv = dev->dev_private;
  2518. bool need_stable_symbols = false;
  2519. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
  2520. int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
  2521. if (ret)
  2522. return ret;
  2523. }
  2524. switch (*source) {
  2525. case INTEL_PIPE_CRC_SOURCE_PIPE:
  2526. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
  2527. break;
  2528. case INTEL_PIPE_CRC_SOURCE_DP_B:
  2529. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
  2530. need_stable_symbols = true;
  2531. break;
  2532. case INTEL_PIPE_CRC_SOURCE_DP_C:
  2533. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
  2534. need_stable_symbols = true;
  2535. break;
  2536. case INTEL_PIPE_CRC_SOURCE_NONE:
  2537. *val = 0;
  2538. break;
  2539. default:
  2540. return -EINVAL;
  2541. }
  2542. /*
  2543. * When the pipe CRC tap point is after the transcoders we need
  2544. * to tweak symbol-level features to produce a deterministic series of
  2545. * symbols for a given frame. We need to reset those features only once
  2546. * a frame (instead of every nth symbol):
  2547. * - DC-balance: used to ensure a better clock recovery from the data
  2548. * link (SDVO)
  2549. * - DisplayPort scrambling: used for EMI reduction
  2550. */
  2551. if (need_stable_symbols) {
  2552. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  2553. tmp |= DC_BALANCE_RESET_VLV;
  2554. if (pipe == PIPE_A)
  2555. tmp |= PIPE_A_SCRAMBLE_RESET;
  2556. else
  2557. tmp |= PIPE_B_SCRAMBLE_RESET;
  2558. I915_WRITE(PORT_DFT2_G4X, tmp);
  2559. }
  2560. return 0;
  2561. }
  2562. static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
  2563. enum pipe pipe,
  2564. enum intel_pipe_crc_source *source,
  2565. uint32_t *val)
  2566. {
  2567. struct drm_i915_private *dev_priv = dev->dev_private;
  2568. bool need_stable_symbols = false;
  2569. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
  2570. int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
  2571. if (ret)
  2572. return ret;
  2573. }
  2574. switch (*source) {
  2575. case INTEL_PIPE_CRC_SOURCE_PIPE:
  2576. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
  2577. break;
  2578. case INTEL_PIPE_CRC_SOURCE_TV:
  2579. if (!SUPPORTS_TV(dev))
  2580. return -EINVAL;
  2581. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
  2582. break;
  2583. case INTEL_PIPE_CRC_SOURCE_DP_B:
  2584. if (!IS_G4X(dev))
  2585. return -EINVAL;
  2586. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
  2587. need_stable_symbols = true;
  2588. break;
  2589. case INTEL_PIPE_CRC_SOURCE_DP_C:
  2590. if (!IS_G4X(dev))
  2591. return -EINVAL;
  2592. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
  2593. need_stable_symbols = true;
  2594. break;
  2595. case INTEL_PIPE_CRC_SOURCE_DP_D:
  2596. if (!IS_G4X(dev))
  2597. return -EINVAL;
  2598. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
  2599. need_stable_symbols = true;
  2600. break;
  2601. case INTEL_PIPE_CRC_SOURCE_NONE:
  2602. *val = 0;
  2603. break;
  2604. default:
  2605. return -EINVAL;
  2606. }
  2607. /*
  2608. * When the pipe CRC tap point is after the transcoders we need
  2609. * to tweak symbol-level features to produce a deterministic series of
  2610. * symbols for a given frame. We need to reset those features only once
  2611. * a frame (instead of every nth symbol):
  2612. * - DC-balance: used to ensure a better clock recovery from the data
  2613. * link (SDVO)
  2614. * - DisplayPort scrambling: used for EMI reduction
  2615. */
  2616. if (need_stable_symbols) {
  2617. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  2618. WARN_ON(!IS_G4X(dev));
  2619. I915_WRITE(PORT_DFT_I9XX,
  2620. I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
  2621. if (pipe == PIPE_A)
  2622. tmp |= PIPE_A_SCRAMBLE_RESET;
  2623. else
  2624. tmp |= PIPE_B_SCRAMBLE_RESET;
  2625. I915_WRITE(PORT_DFT2_G4X, tmp);
  2626. }
  2627. return 0;
  2628. }
  2629. static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
  2630. enum pipe pipe)
  2631. {
  2632. struct drm_i915_private *dev_priv = dev->dev_private;
  2633. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  2634. if (pipe == PIPE_A)
  2635. tmp &= ~PIPE_A_SCRAMBLE_RESET;
  2636. else
  2637. tmp &= ~PIPE_B_SCRAMBLE_RESET;
  2638. if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
  2639. tmp &= ~DC_BALANCE_RESET_VLV;
  2640. I915_WRITE(PORT_DFT2_G4X, tmp);
  2641. }
  2642. static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
  2643. enum pipe pipe)
  2644. {
  2645. struct drm_i915_private *dev_priv = dev->dev_private;
  2646. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  2647. if (pipe == PIPE_A)
  2648. tmp &= ~PIPE_A_SCRAMBLE_RESET;
  2649. else
  2650. tmp &= ~PIPE_B_SCRAMBLE_RESET;
  2651. I915_WRITE(PORT_DFT2_G4X, tmp);
  2652. if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
  2653. I915_WRITE(PORT_DFT_I9XX,
  2654. I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
  2655. }
  2656. }
  2657. static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
  2658. uint32_t *val)
  2659. {
  2660. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
  2661. *source = INTEL_PIPE_CRC_SOURCE_PIPE;
  2662. switch (*source) {
  2663. case INTEL_PIPE_CRC_SOURCE_PLANE1:
  2664. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
  2665. break;
  2666. case INTEL_PIPE_CRC_SOURCE_PLANE2:
  2667. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
  2668. break;
  2669. case INTEL_PIPE_CRC_SOURCE_PIPE:
  2670. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
  2671. break;
  2672. case INTEL_PIPE_CRC_SOURCE_NONE:
  2673. *val = 0;
  2674. break;
  2675. default:
  2676. return -EINVAL;
  2677. }
  2678. return 0;
  2679. }
  2680. static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
  2681. {
  2682. struct drm_i915_private *dev_priv = dev->dev_private;
  2683. struct intel_crtc *crtc =
  2684. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
  2685. drm_modeset_lock_all(dev);
  2686. /*
  2687. * If we use the eDP transcoder we need to make sure that we don't
  2688. * bypass the pfit, since otherwise the pipe CRC source won't work. Only
  2689. * relevant on hsw with pipe A when using the always-on power well
  2690. * routing.
  2691. */
  2692. if (crtc->config.cpu_transcoder == TRANSCODER_EDP &&
  2693. !crtc->config.pch_pfit.enabled) {
  2694. crtc->config.pch_pfit.force_thru = true;
  2695. intel_display_power_get(dev_priv,
  2696. POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
  2697. dev_priv->display.crtc_disable(&crtc->base);
  2698. dev_priv->display.crtc_enable(&crtc->base);
  2699. }
  2700. drm_modeset_unlock_all(dev);
  2701. }
  2702. static void hsw_undo_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
  2703. {
  2704. struct drm_i915_private *dev_priv = dev->dev_private;
  2705. struct intel_crtc *crtc =
  2706. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
  2707. drm_modeset_lock_all(dev);
  2708. /*
  2709. * If we use the eDP transcoder we need to make sure that we don't
  2710. * bypass the pfit, since otherwise the pipe CRC source won't work. Only
  2711. * relevant on hsw with pipe A when using the always-on power well
  2712. * routing.
  2713. */
  2714. if (crtc->config.pch_pfit.force_thru) {
  2715. crtc->config.pch_pfit.force_thru = false;
  2716. dev_priv->display.crtc_disable(&crtc->base);
  2717. dev_priv->display.crtc_enable(&crtc->base);
  2718. intel_display_power_put(dev_priv,
  2719. POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
  2720. }
  2721. drm_modeset_unlock_all(dev);
  2722. }
  2723. static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
  2724. enum pipe pipe,
  2725. enum intel_pipe_crc_source *source,
  2726. uint32_t *val)
  2727. {
  2728. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
  2729. *source = INTEL_PIPE_CRC_SOURCE_PF;
  2730. switch (*source) {
  2731. case INTEL_PIPE_CRC_SOURCE_PLANE1:
  2732. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
  2733. break;
  2734. case INTEL_PIPE_CRC_SOURCE_PLANE2:
  2735. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
  2736. break;
  2737. case INTEL_PIPE_CRC_SOURCE_PF:
  2738. if (IS_HASWELL(dev) && pipe == PIPE_A)
  2739. hsw_trans_edp_pipe_A_crc_wa(dev);
  2740. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
  2741. break;
  2742. case INTEL_PIPE_CRC_SOURCE_NONE:
  2743. *val = 0;
  2744. break;
  2745. default:
  2746. return -EINVAL;
  2747. }
  2748. return 0;
  2749. }
  2750. static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
  2751. enum intel_pipe_crc_source source)
  2752. {
  2753. struct drm_i915_private *dev_priv = dev->dev_private;
  2754. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
  2755. u32 val = 0; /* shut up gcc */
  2756. int ret;
  2757. if (pipe_crc->source == source)
  2758. return 0;
  2759. /* forbid changing the source without going back to 'none' */
  2760. if (pipe_crc->source && source)
  2761. return -EINVAL;
  2762. if (IS_GEN2(dev))
  2763. ret = i8xx_pipe_crc_ctl_reg(&source, &val);
  2764. else if (INTEL_INFO(dev)->gen < 5)
  2765. ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
  2766. else if (IS_VALLEYVIEW(dev))
  2767. ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
  2768. else if (IS_GEN5(dev) || IS_GEN6(dev))
  2769. ret = ilk_pipe_crc_ctl_reg(&source, &val);
  2770. else
  2771. ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
  2772. if (ret != 0)
  2773. return ret;
  2774. /* none -> real source transition */
  2775. if (source) {
  2776. DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
  2777. pipe_name(pipe), pipe_crc_source_name(source));
  2778. pipe_crc->entries = kzalloc(sizeof(*pipe_crc->entries) *
  2779. INTEL_PIPE_CRC_ENTRIES_NR,
  2780. GFP_KERNEL);
  2781. if (!pipe_crc->entries)
  2782. return -ENOMEM;
  2783. spin_lock_irq(&pipe_crc->lock);
  2784. pipe_crc->head = 0;
  2785. pipe_crc->tail = 0;
  2786. spin_unlock_irq(&pipe_crc->lock);
  2787. }
  2788. pipe_crc->source = source;
  2789. I915_WRITE(PIPE_CRC_CTL(pipe), val);
  2790. POSTING_READ(PIPE_CRC_CTL(pipe));
  2791. /* real source -> none transition */
  2792. if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
  2793. struct intel_pipe_crc_entry *entries;
  2794. struct intel_crtc *crtc =
  2795. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  2796. DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
  2797. pipe_name(pipe));
  2798. drm_modeset_lock(&crtc->base.mutex, NULL);
  2799. if (crtc->active)
  2800. intel_wait_for_vblank(dev, pipe);
  2801. drm_modeset_unlock(&crtc->base.mutex);
  2802. spin_lock_irq(&pipe_crc->lock);
  2803. entries = pipe_crc->entries;
  2804. pipe_crc->entries = NULL;
  2805. spin_unlock_irq(&pipe_crc->lock);
  2806. kfree(entries);
  2807. if (IS_G4X(dev))
  2808. g4x_undo_pipe_scramble_reset(dev, pipe);
  2809. else if (IS_VALLEYVIEW(dev))
  2810. vlv_undo_pipe_scramble_reset(dev, pipe);
  2811. else if (IS_HASWELL(dev) && pipe == PIPE_A)
  2812. hsw_undo_trans_edp_pipe_A_crc_wa(dev);
  2813. }
  2814. return 0;
  2815. }
  2816. /*
  2817. * Parse pipe CRC command strings:
  2818. * command: wsp* object wsp+ name wsp+ source wsp*
  2819. * object: 'pipe'
  2820. * name: (A | B | C)
  2821. * source: (none | plane1 | plane2 | pf)
  2822. * wsp: (#0x20 | #0x9 | #0xA)+
  2823. *
  2824. * eg.:
  2825. * "pipe A plane1" -> Start CRC computations on plane1 of pipe A
  2826. * "pipe A none" -> Stop CRC
  2827. */
  2828. static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
  2829. {
  2830. int n_words = 0;
  2831. while (*buf) {
  2832. char *end;
  2833. /* skip leading white space */
  2834. buf = skip_spaces(buf);
  2835. if (!*buf)
  2836. break; /* end of buffer */
  2837. /* find end of word */
  2838. for (end = buf; *end && !isspace(*end); end++)
  2839. ;
  2840. if (n_words == max_words) {
  2841. DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
  2842. max_words);
  2843. return -EINVAL; /* ran out of words[] before bytes */
  2844. }
  2845. if (*end)
  2846. *end++ = '\0';
  2847. words[n_words++] = buf;
  2848. buf = end;
  2849. }
  2850. return n_words;
  2851. }
  2852. enum intel_pipe_crc_object {
  2853. PIPE_CRC_OBJECT_PIPE,
  2854. };
  2855. static const char * const pipe_crc_objects[] = {
  2856. "pipe",
  2857. };
  2858. static int
  2859. display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
  2860. {
  2861. int i;
  2862. for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
  2863. if (!strcmp(buf, pipe_crc_objects[i])) {
  2864. *o = i;
  2865. return 0;
  2866. }
  2867. return -EINVAL;
  2868. }
  2869. static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
  2870. {
  2871. const char name = buf[0];
  2872. if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
  2873. return -EINVAL;
  2874. *pipe = name - 'A';
  2875. return 0;
  2876. }
  2877. static int
  2878. display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
  2879. {
  2880. int i;
  2881. for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
  2882. if (!strcmp(buf, pipe_crc_sources[i])) {
  2883. *s = i;
  2884. return 0;
  2885. }
  2886. return -EINVAL;
  2887. }
  2888. static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
  2889. {
  2890. #define N_WORDS 3
  2891. int n_words;
  2892. char *words[N_WORDS];
  2893. enum pipe pipe;
  2894. enum intel_pipe_crc_object object;
  2895. enum intel_pipe_crc_source source;
  2896. n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
  2897. if (n_words != N_WORDS) {
  2898. DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
  2899. N_WORDS);
  2900. return -EINVAL;
  2901. }
  2902. if (display_crc_ctl_parse_object(words[0], &object) < 0) {
  2903. DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
  2904. return -EINVAL;
  2905. }
  2906. if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
  2907. DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
  2908. return -EINVAL;
  2909. }
  2910. if (display_crc_ctl_parse_source(words[2], &source) < 0) {
  2911. DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
  2912. return -EINVAL;
  2913. }
  2914. return pipe_crc_set_source(dev, pipe, source);
  2915. }
  2916. static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
  2917. size_t len, loff_t *offp)
  2918. {
  2919. struct seq_file *m = file->private_data;
  2920. struct drm_device *dev = m->private;
  2921. char *tmpbuf;
  2922. int ret;
  2923. if (len == 0)
  2924. return 0;
  2925. if (len > PAGE_SIZE - 1) {
  2926. DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
  2927. PAGE_SIZE);
  2928. return -E2BIG;
  2929. }
  2930. tmpbuf = kmalloc(len + 1, GFP_KERNEL);
  2931. if (!tmpbuf)
  2932. return -ENOMEM;
  2933. if (copy_from_user(tmpbuf, ubuf, len)) {
  2934. ret = -EFAULT;
  2935. goto out;
  2936. }
  2937. tmpbuf[len] = '\0';
  2938. ret = display_crc_ctl_parse(dev, tmpbuf, len);
  2939. out:
  2940. kfree(tmpbuf);
  2941. if (ret < 0)
  2942. return ret;
  2943. *offp += len;
  2944. return len;
  2945. }
  2946. static const struct file_operations i915_display_crc_ctl_fops = {
  2947. .owner = THIS_MODULE,
  2948. .open = display_crc_ctl_open,
  2949. .read = seq_read,
  2950. .llseek = seq_lseek,
  2951. .release = single_release,
  2952. .write = display_crc_ctl_write
  2953. };
  2954. static void wm_latency_show(struct seq_file *m, const uint16_t wm[5])
  2955. {
  2956. struct drm_device *dev = m->private;
  2957. int num_levels = ilk_wm_max_level(dev) + 1;
  2958. int level;
  2959. drm_modeset_lock_all(dev);
  2960. for (level = 0; level < num_levels; level++) {
  2961. unsigned int latency = wm[level];
  2962. /* WM1+ latency values in 0.5us units */
  2963. if (level > 0)
  2964. latency *= 5;
  2965. seq_printf(m, "WM%d %u (%u.%u usec)\n",
  2966. level, wm[level],
  2967. latency / 10, latency % 10);
  2968. }
  2969. drm_modeset_unlock_all(dev);
  2970. }
  2971. static int pri_wm_latency_show(struct seq_file *m, void *data)
  2972. {
  2973. struct drm_device *dev = m->private;
  2974. wm_latency_show(m, to_i915(dev)->wm.pri_latency);
  2975. return 0;
  2976. }
  2977. static int spr_wm_latency_show(struct seq_file *m, void *data)
  2978. {
  2979. struct drm_device *dev = m->private;
  2980. wm_latency_show(m, to_i915(dev)->wm.spr_latency);
  2981. return 0;
  2982. }
  2983. static int cur_wm_latency_show(struct seq_file *m, void *data)
  2984. {
  2985. struct drm_device *dev = m->private;
  2986. wm_latency_show(m, to_i915(dev)->wm.cur_latency);
  2987. return 0;
  2988. }
  2989. static int pri_wm_latency_open(struct inode *inode, struct file *file)
  2990. {
  2991. struct drm_device *dev = inode->i_private;
  2992. if (HAS_GMCH_DISPLAY(dev))
  2993. return -ENODEV;
  2994. return single_open(file, pri_wm_latency_show, dev);
  2995. }
  2996. static int spr_wm_latency_open(struct inode *inode, struct file *file)
  2997. {
  2998. struct drm_device *dev = inode->i_private;
  2999. if (HAS_GMCH_DISPLAY(dev))
  3000. return -ENODEV;
  3001. return single_open(file, spr_wm_latency_show, dev);
  3002. }
  3003. static int cur_wm_latency_open(struct inode *inode, struct file *file)
  3004. {
  3005. struct drm_device *dev = inode->i_private;
  3006. if (HAS_GMCH_DISPLAY(dev))
  3007. return -ENODEV;
  3008. return single_open(file, cur_wm_latency_show, dev);
  3009. }
  3010. static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
  3011. size_t len, loff_t *offp, uint16_t wm[5])
  3012. {
  3013. struct seq_file *m = file->private_data;
  3014. struct drm_device *dev = m->private;
  3015. uint16_t new[5] = { 0 };
  3016. int num_levels = ilk_wm_max_level(dev) + 1;
  3017. int level;
  3018. int ret;
  3019. char tmp[32];
  3020. if (len >= sizeof(tmp))
  3021. return -EINVAL;
  3022. if (copy_from_user(tmp, ubuf, len))
  3023. return -EFAULT;
  3024. tmp[len] = '\0';
  3025. ret = sscanf(tmp, "%hu %hu %hu %hu %hu", &new[0], &new[1], &new[2], &new[3], &new[4]);
  3026. if (ret != num_levels)
  3027. return -EINVAL;
  3028. drm_modeset_lock_all(dev);
  3029. for (level = 0; level < num_levels; level++)
  3030. wm[level] = new[level];
  3031. drm_modeset_unlock_all(dev);
  3032. return len;
  3033. }
  3034. static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
  3035. size_t len, loff_t *offp)
  3036. {
  3037. struct seq_file *m = file->private_data;
  3038. struct drm_device *dev = m->private;
  3039. return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.pri_latency);
  3040. }
  3041. static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
  3042. size_t len, loff_t *offp)
  3043. {
  3044. struct seq_file *m = file->private_data;
  3045. struct drm_device *dev = m->private;
  3046. return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.spr_latency);
  3047. }
  3048. static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
  3049. size_t len, loff_t *offp)
  3050. {
  3051. struct seq_file *m = file->private_data;
  3052. struct drm_device *dev = m->private;
  3053. return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.cur_latency);
  3054. }
  3055. static const struct file_operations i915_pri_wm_latency_fops = {
  3056. .owner = THIS_MODULE,
  3057. .open = pri_wm_latency_open,
  3058. .read = seq_read,
  3059. .llseek = seq_lseek,
  3060. .release = single_release,
  3061. .write = pri_wm_latency_write
  3062. };
  3063. static const struct file_operations i915_spr_wm_latency_fops = {
  3064. .owner = THIS_MODULE,
  3065. .open = spr_wm_latency_open,
  3066. .read = seq_read,
  3067. .llseek = seq_lseek,
  3068. .release = single_release,
  3069. .write = spr_wm_latency_write
  3070. };
  3071. static const struct file_operations i915_cur_wm_latency_fops = {
  3072. .owner = THIS_MODULE,
  3073. .open = cur_wm_latency_open,
  3074. .read = seq_read,
  3075. .llseek = seq_lseek,
  3076. .release = single_release,
  3077. .write = cur_wm_latency_write
  3078. };
  3079. static int
  3080. i915_wedged_get(void *data, u64 *val)
  3081. {
  3082. struct drm_device *dev = data;
  3083. struct drm_i915_private *dev_priv = dev->dev_private;
  3084. *val = atomic_read(&dev_priv->gpu_error.reset_counter);
  3085. return 0;
  3086. }
  3087. static int
  3088. i915_wedged_set(void *data, u64 val)
  3089. {
  3090. struct drm_device *dev = data;
  3091. struct drm_i915_private *dev_priv = dev->dev_private;
  3092. intel_runtime_pm_get(dev_priv);
  3093. i915_handle_error(dev, val,
  3094. "Manually setting wedged to %llu", val);
  3095. intel_runtime_pm_put(dev_priv);
  3096. return 0;
  3097. }
  3098. DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
  3099. i915_wedged_get, i915_wedged_set,
  3100. "%llu\n");
  3101. static int
  3102. i915_ring_stop_get(void *data, u64 *val)
  3103. {
  3104. struct drm_device *dev = data;
  3105. struct drm_i915_private *dev_priv = dev->dev_private;
  3106. *val = dev_priv->gpu_error.stop_rings;
  3107. return 0;
  3108. }
  3109. static int
  3110. i915_ring_stop_set(void *data, u64 val)
  3111. {
  3112. struct drm_device *dev = data;
  3113. struct drm_i915_private *dev_priv = dev->dev_private;
  3114. int ret;
  3115. DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
  3116. ret = mutex_lock_interruptible(&dev->struct_mutex);
  3117. if (ret)
  3118. return ret;
  3119. dev_priv->gpu_error.stop_rings = val;
  3120. mutex_unlock(&dev->struct_mutex);
  3121. return 0;
  3122. }
  3123. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
  3124. i915_ring_stop_get, i915_ring_stop_set,
  3125. "0x%08llx\n");
  3126. static int
  3127. i915_ring_missed_irq_get(void *data, u64 *val)
  3128. {
  3129. struct drm_device *dev = data;
  3130. struct drm_i915_private *dev_priv = dev->dev_private;
  3131. *val = dev_priv->gpu_error.missed_irq_rings;
  3132. return 0;
  3133. }
  3134. static int
  3135. i915_ring_missed_irq_set(void *data, u64 val)
  3136. {
  3137. struct drm_device *dev = data;
  3138. struct drm_i915_private *dev_priv = dev->dev_private;
  3139. int ret;
  3140. /* Lock against concurrent debugfs callers */
  3141. ret = mutex_lock_interruptible(&dev->struct_mutex);
  3142. if (ret)
  3143. return ret;
  3144. dev_priv->gpu_error.missed_irq_rings = val;
  3145. mutex_unlock(&dev->struct_mutex);
  3146. return 0;
  3147. }
  3148. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
  3149. i915_ring_missed_irq_get, i915_ring_missed_irq_set,
  3150. "0x%08llx\n");
  3151. static int
  3152. i915_ring_test_irq_get(void *data, u64 *val)
  3153. {
  3154. struct drm_device *dev = data;
  3155. struct drm_i915_private *dev_priv = dev->dev_private;
  3156. *val = dev_priv->gpu_error.test_irq_rings;
  3157. return 0;
  3158. }
  3159. static int
  3160. i915_ring_test_irq_set(void *data, u64 val)
  3161. {
  3162. struct drm_device *dev = data;
  3163. struct drm_i915_private *dev_priv = dev->dev_private;
  3164. int ret;
  3165. DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
  3166. /* Lock against concurrent debugfs callers */
  3167. ret = mutex_lock_interruptible(&dev->struct_mutex);
  3168. if (ret)
  3169. return ret;
  3170. dev_priv->gpu_error.test_irq_rings = val;
  3171. mutex_unlock(&dev->struct_mutex);
  3172. return 0;
  3173. }
  3174. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
  3175. i915_ring_test_irq_get, i915_ring_test_irq_set,
  3176. "0x%08llx\n");
  3177. #define DROP_UNBOUND 0x1
  3178. #define DROP_BOUND 0x2
  3179. #define DROP_RETIRE 0x4
  3180. #define DROP_ACTIVE 0x8
  3181. #define DROP_ALL (DROP_UNBOUND | \
  3182. DROP_BOUND | \
  3183. DROP_RETIRE | \
  3184. DROP_ACTIVE)
  3185. static int
  3186. i915_drop_caches_get(void *data, u64 *val)
  3187. {
  3188. *val = DROP_ALL;
  3189. return 0;
  3190. }
  3191. static int
  3192. i915_drop_caches_set(void *data, u64 val)
  3193. {
  3194. struct drm_device *dev = data;
  3195. struct drm_i915_private *dev_priv = dev->dev_private;
  3196. int ret;
  3197. DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
  3198. /* No need to check and wait for gpu resets, only libdrm auto-restarts
  3199. * on ioctls on -EAGAIN. */
  3200. ret = mutex_lock_interruptible(&dev->struct_mutex);
  3201. if (ret)
  3202. return ret;
  3203. if (val & DROP_ACTIVE) {
  3204. ret = i915_gpu_idle(dev);
  3205. if (ret)
  3206. goto unlock;
  3207. }
  3208. if (val & (DROP_RETIRE | DROP_ACTIVE))
  3209. i915_gem_retire_requests(dev);
  3210. if (val & DROP_BOUND)
  3211. i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
  3212. if (val & DROP_UNBOUND)
  3213. i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
  3214. unlock:
  3215. mutex_unlock(&dev->struct_mutex);
  3216. return ret;
  3217. }
  3218. DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
  3219. i915_drop_caches_get, i915_drop_caches_set,
  3220. "0x%08llx\n");
  3221. static int
  3222. i915_max_freq_get(void *data, u64 *val)
  3223. {
  3224. struct drm_device *dev = data;
  3225. struct drm_i915_private *dev_priv = dev->dev_private;
  3226. int ret;
  3227. if (INTEL_INFO(dev)->gen < 6)
  3228. return -ENODEV;
  3229. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  3230. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  3231. if (ret)
  3232. return ret;
  3233. if (IS_VALLEYVIEW(dev))
  3234. *val = vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
  3235. else
  3236. *val = dev_priv->rps.max_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
  3237. mutex_unlock(&dev_priv->rps.hw_lock);
  3238. return 0;
  3239. }
  3240. static int
  3241. i915_max_freq_set(void *data, u64 val)
  3242. {
  3243. struct drm_device *dev = data;
  3244. struct drm_i915_private *dev_priv = dev->dev_private;
  3245. u32 rp_state_cap, hw_max, hw_min;
  3246. int ret;
  3247. if (INTEL_INFO(dev)->gen < 6)
  3248. return -ENODEV;
  3249. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  3250. DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
  3251. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  3252. if (ret)
  3253. return ret;
  3254. /*
  3255. * Turbo will still be enabled, but won't go above the set value.
  3256. */
  3257. if (IS_VALLEYVIEW(dev)) {
  3258. val = vlv_freq_opcode(dev_priv, val);
  3259. hw_max = dev_priv->rps.max_freq;
  3260. hw_min = dev_priv->rps.min_freq;
  3261. } else {
  3262. do_div(val, GT_FREQUENCY_MULTIPLIER);
  3263. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  3264. hw_max = dev_priv->rps.max_freq;
  3265. hw_min = (rp_state_cap >> 16) & 0xff;
  3266. }
  3267. if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
  3268. mutex_unlock(&dev_priv->rps.hw_lock);
  3269. return -EINVAL;
  3270. }
  3271. dev_priv->rps.max_freq_softlimit = val;
  3272. if (IS_VALLEYVIEW(dev))
  3273. valleyview_set_rps(dev, val);
  3274. else
  3275. gen6_set_rps(dev, val);
  3276. mutex_unlock(&dev_priv->rps.hw_lock);
  3277. return 0;
  3278. }
  3279. DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
  3280. i915_max_freq_get, i915_max_freq_set,
  3281. "%llu\n");
  3282. static int
  3283. i915_min_freq_get(void *data, u64 *val)
  3284. {
  3285. struct drm_device *dev = data;
  3286. struct drm_i915_private *dev_priv = dev->dev_private;
  3287. int ret;
  3288. if (INTEL_INFO(dev)->gen < 6)
  3289. return -ENODEV;
  3290. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  3291. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  3292. if (ret)
  3293. return ret;
  3294. if (IS_VALLEYVIEW(dev))
  3295. *val = vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
  3296. else
  3297. *val = dev_priv->rps.min_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
  3298. mutex_unlock(&dev_priv->rps.hw_lock);
  3299. return 0;
  3300. }
  3301. static int
  3302. i915_min_freq_set(void *data, u64 val)
  3303. {
  3304. struct drm_device *dev = data;
  3305. struct drm_i915_private *dev_priv = dev->dev_private;
  3306. u32 rp_state_cap, hw_max, hw_min;
  3307. int ret;
  3308. if (INTEL_INFO(dev)->gen < 6)
  3309. return -ENODEV;
  3310. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  3311. DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
  3312. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  3313. if (ret)
  3314. return ret;
  3315. /*
  3316. * Turbo will still be enabled, but won't go below the set value.
  3317. */
  3318. if (IS_VALLEYVIEW(dev)) {
  3319. val = vlv_freq_opcode(dev_priv, val);
  3320. hw_max = dev_priv->rps.max_freq;
  3321. hw_min = dev_priv->rps.min_freq;
  3322. } else {
  3323. do_div(val, GT_FREQUENCY_MULTIPLIER);
  3324. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  3325. hw_max = dev_priv->rps.max_freq;
  3326. hw_min = (rp_state_cap >> 16) & 0xff;
  3327. }
  3328. if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
  3329. mutex_unlock(&dev_priv->rps.hw_lock);
  3330. return -EINVAL;
  3331. }
  3332. dev_priv->rps.min_freq_softlimit = val;
  3333. if (IS_VALLEYVIEW(dev))
  3334. valleyview_set_rps(dev, val);
  3335. else
  3336. gen6_set_rps(dev, val);
  3337. mutex_unlock(&dev_priv->rps.hw_lock);
  3338. return 0;
  3339. }
  3340. DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
  3341. i915_min_freq_get, i915_min_freq_set,
  3342. "%llu\n");
  3343. static int
  3344. i915_cache_sharing_get(void *data, u64 *val)
  3345. {
  3346. struct drm_device *dev = data;
  3347. struct drm_i915_private *dev_priv = dev->dev_private;
  3348. u32 snpcr;
  3349. int ret;
  3350. if (!(IS_GEN6(dev) || IS_GEN7(dev)))
  3351. return -ENODEV;
  3352. ret = mutex_lock_interruptible(&dev->struct_mutex);
  3353. if (ret)
  3354. return ret;
  3355. intel_runtime_pm_get(dev_priv);
  3356. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  3357. intel_runtime_pm_put(dev_priv);
  3358. mutex_unlock(&dev_priv->dev->struct_mutex);
  3359. *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
  3360. return 0;
  3361. }
  3362. static int
  3363. i915_cache_sharing_set(void *data, u64 val)
  3364. {
  3365. struct drm_device *dev = data;
  3366. struct drm_i915_private *dev_priv = dev->dev_private;
  3367. u32 snpcr;
  3368. if (!(IS_GEN6(dev) || IS_GEN7(dev)))
  3369. return -ENODEV;
  3370. if (val > 3)
  3371. return -EINVAL;
  3372. intel_runtime_pm_get(dev_priv);
  3373. DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
  3374. /* Update the cache sharing policy here as well */
  3375. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  3376. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  3377. snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
  3378. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  3379. intel_runtime_pm_put(dev_priv);
  3380. return 0;
  3381. }
  3382. DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
  3383. i915_cache_sharing_get, i915_cache_sharing_set,
  3384. "%llu\n");
  3385. static int i915_forcewake_open(struct inode *inode, struct file *file)
  3386. {
  3387. struct drm_device *dev = inode->i_private;
  3388. struct drm_i915_private *dev_priv = dev->dev_private;
  3389. if (INTEL_INFO(dev)->gen < 6)
  3390. return 0;
  3391. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  3392. return 0;
  3393. }
  3394. static int i915_forcewake_release(struct inode *inode, struct file *file)
  3395. {
  3396. struct drm_device *dev = inode->i_private;
  3397. struct drm_i915_private *dev_priv = dev->dev_private;
  3398. if (INTEL_INFO(dev)->gen < 6)
  3399. return 0;
  3400. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  3401. return 0;
  3402. }
  3403. static const struct file_operations i915_forcewake_fops = {
  3404. .owner = THIS_MODULE,
  3405. .open = i915_forcewake_open,
  3406. .release = i915_forcewake_release,
  3407. };
  3408. static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
  3409. {
  3410. struct drm_device *dev = minor->dev;
  3411. struct dentry *ent;
  3412. ent = debugfs_create_file("i915_forcewake_user",
  3413. S_IRUSR,
  3414. root, dev,
  3415. &i915_forcewake_fops);
  3416. if (!ent)
  3417. return -ENOMEM;
  3418. return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
  3419. }
  3420. static int i915_debugfs_create(struct dentry *root,
  3421. struct drm_minor *minor,
  3422. const char *name,
  3423. const struct file_operations *fops)
  3424. {
  3425. struct drm_device *dev = minor->dev;
  3426. struct dentry *ent;
  3427. ent = debugfs_create_file(name,
  3428. S_IRUGO | S_IWUSR,
  3429. root, dev,
  3430. fops);
  3431. if (!ent)
  3432. return -ENOMEM;
  3433. return drm_add_fake_info_node(minor, ent, fops);
  3434. }
  3435. static const struct drm_info_list i915_debugfs_list[] = {
  3436. {"i915_capabilities", i915_capabilities, 0},
  3437. {"i915_gem_objects", i915_gem_object_info, 0},
  3438. {"i915_gem_gtt", i915_gem_gtt_info, 0},
  3439. {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
  3440. {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
  3441. {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
  3442. {"i915_gem_stolen", i915_gem_stolen_list_info },
  3443. {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
  3444. {"i915_gem_request", i915_gem_request_info, 0},
  3445. {"i915_gem_seqno", i915_gem_seqno_info, 0},
  3446. {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
  3447. {"i915_gem_interrupt", i915_interrupt_info, 0},
  3448. {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
  3449. {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
  3450. {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
  3451. {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
  3452. {"i915_frequency_info", i915_frequency_info, 0},
  3453. {"i915_drpc_info", i915_drpc_info, 0},
  3454. {"i915_emon_status", i915_emon_status, 0},
  3455. {"i915_ring_freq_table", i915_ring_freq_table, 0},
  3456. {"i915_fbc_status", i915_fbc_status, 0},
  3457. {"i915_ips_status", i915_ips_status, 0},
  3458. {"i915_sr_status", i915_sr_status, 0},
  3459. {"i915_opregion", i915_opregion, 0},
  3460. {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
  3461. {"i915_context_status", i915_context_status, 0},
  3462. {"i915_dump_lrc", i915_dump_lrc, 0},
  3463. {"i915_execlists", i915_execlists, 0},
  3464. {"i915_gen6_forcewake_count", i915_gen6_forcewake_count_info, 0},
  3465. {"i915_swizzle_info", i915_swizzle_info, 0},
  3466. {"i915_ppgtt_info", i915_ppgtt_info, 0},
  3467. {"i915_llc", i915_llc, 0},
  3468. {"i915_edp_psr_status", i915_edp_psr_status, 0},
  3469. {"i915_sink_crc_eDP1", i915_sink_crc, 0},
  3470. {"i915_energy_uJ", i915_energy_uJ, 0},
  3471. {"i915_pc8_status", i915_pc8_status, 0},
  3472. {"i915_power_domain_info", i915_power_domain_info, 0},
  3473. {"i915_display_info", i915_display_info, 0},
  3474. {"i915_semaphore_status", i915_semaphore_status, 0},
  3475. {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
  3476. {"i915_dp_mst_info", i915_dp_mst_info, 0},
  3477. {"i915_wa_registers", i915_wa_registers, 0},
  3478. };
  3479. #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
  3480. static const struct i915_debugfs_files {
  3481. const char *name;
  3482. const struct file_operations *fops;
  3483. } i915_debugfs_files[] = {
  3484. {"i915_wedged", &i915_wedged_fops},
  3485. {"i915_max_freq", &i915_max_freq_fops},
  3486. {"i915_min_freq", &i915_min_freq_fops},
  3487. {"i915_cache_sharing", &i915_cache_sharing_fops},
  3488. {"i915_ring_stop", &i915_ring_stop_fops},
  3489. {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
  3490. {"i915_ring_test_irq", &i915_ring_test_irq_fops},
  3491. {"i915_gem_drop_caches", &i915_drop_caches_fops},
  3492. {"i915_error_state", &i915_error_state_fops},
  3493. {"i915_next_seqno", &i915_next_seqno_fops},
  3494. {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
  3495. {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
  3496. {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
  3497. {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
  3498. {"i915_fbc_false_color", &i915_fbc_fc_fops},
  3499. };
  3500. void intel_display_crc_init(struct drm_device *dev)
  3501. {
  3502. struct drm_i915_private *dev_priv = dev->dev_private;
  3503. enum pipe pipe;
  3504. for_each_pipe(dev_priv, pipe) {
  3505. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
  3506. pipe_crc->opened = false;
  3507. spin_lock_init(&pipe_crc->lock);
  3508. init_waitqueue_head(&pipe_crc->wq);
  3509. }
  3510. }
  3511. int i915_debugfs_init(struct drm_minor *minor)
  3512. {
  3513. int ret, i;
  3514. ret = i915_forcewake_create(minor->debugfs_root, minor);
  3515. if (ret)
  3516. return ret;
  3517. for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
  3518. ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
  3519. if (ret)
  3520. return ret;
  3521. }
  3522. for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
  3523. ret = i915_debugfs_create(minor->debugfs_root, minor,
  3524. i915_debugfs_files[i].name,
  3525. i915_debugfs_files[i].fops);
  3526. if (ret)
  3527. return ret;
  3528. }
  3529. return drm_debugfs_create_files(i915_debugfs_list,
  3530. I915_DEBUGFS_ENTRIES,
  3531. minor->debugfs_root, minor);
  3532. }
  3533. void i915_debugfs_cleanup(struct drm_minor *minor)
  3534. {
  3535. int i;
  3536. drm_debugfs_remove_files(i915_debugfs_list,
  3537. I915_DEBUGFS_ENTRIES, minor);
  3538. drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
  3539. 1, minor);
  3540. for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
  3541. struct drm_info_list *info_list =
  3542. (struct drm_info_list *)&i915_pipe_crc_data[i];
  3543. drm_debugfs_remove_files(info_list, 1, minor);
  3544. }
  3545. for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
  3546. struct drm_info_list *info_list =
  3547. (struct drm_info_list *) i915_debugfs_files[i].fops;
  3548. drm_debugfs_remove_files(info_list, 1, minor);
  3549. }
  3550. }