atmel-sha.c 37 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541
  1. /*
  2. * Cryptographic API.
  3. *
  4. * Support for ATMEL SHA1/SHA256 HW acceleration.
  5. *
  6. * Copyright (c) 2012 Eukréa Electromatique - ATMEL
  7. * Author: Nicolas Royer <nicolas@eukrea.com>
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as published
  11. * by the Free Software Foundation.
  12. *
  13. * Some ideas are from omap-sham.c drivers.
  14. */
  15. #include <linux/kernel.h>
  16. #include <linux/module.h>
  17. #include <linux/slab.h>
  18. #include <linux/err.h>
  19. #include <linux/clk.h>
  20. #include <linux/io.h>
  21. #include <linux/hw_random.h>
  22. #include <linux/platform_device.h>
  23. #include <linux/device.h>
  24. #include <linux/init.h>
  25. #include <linux/errno.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/irq.h>
  28. #include <linux/scatterlist.h>
  29. #include <linux/dma-mapping.h>
  30. #include <linux/of_device.h>
  31. #include <linux/delay.h>
  32. #include <linux/crypto.h>
  33. #include <linux/cryptohash.h>
  34. #include <crypto/scatterwalk.h>
  35. #include <crypto/algapi.h>
  36. #include <crypto/sha.h>
  37. #include <crypto/hash.h>
  38. #include <crypto/internal/hash.h>
  39. #include <linux/platform_data/crypto-atmel.h>
  40. #include "atmel-sha-regs.h"
  41. /* SHA flags */
  42. #define SHA_FLAGS_BUSY BIT(0)
  43. #define SHA_FLAGS_FINAL BIT(1)
  44. #define SHA_FLAGS_DMA_ACTIVE BIT(2)
  45. #define SHA_FLAGS_OUTPUT_READY BIT(3)
  46. #define SHA_FLAGS_INIT BIT(4)
  47. #define SHA_FLAGS_CPU BIT(5)
  48. #define SHA_FLAGS_DMA_READY BIT(6)
  49. #define SHA_FLAGS_FINUP BIT(16)
  50. #define SHA_FLAGS_SG BIT(17)
  51. #define SHA_FLAGS_SHA1 BIT(18)
  52. #define SHA_FLAGS_SHA224 BIT(19)
  53. #define SHA_FLAGS_SHA256 BIT(20)
  54. #define SHA_FLAGS_SHA384 BIT(21)
  55. #define SHA_FLAGS_SHA512 BIT(22)
  56. #define SHA_FLAGS_ERROR BIT(23)
  57. #define SHA_FLAGS_PAD BIT(24)
  58. #define SHA_OP_UPDATE 1
  59. #define SHA_OP_FINAL 2
  60. #define SHA_BUFFER_LEN PAGE_SIZE
  61. #define ATMEL_SHA_DMA_THRESHOLD 56
  62. struct atmel_sha_caps {
  63. bool has_dma;
  64. bool has_dualbuff;
  65. bool has_sha224;
  66. bool has_sha_384_512;
  67. };
  68. struct atmel_sha_dev;
  69. struct atmel_sha_reqctx {
  70. struct atmel_sha_dev *dd;
  71. unsigned long flags;
  72. unsigned long op;
  73. u8 digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
  74. u64 digcnt[2];
  75. size_t bufcnt;
  76. size_t buflen;
  77. dma_addr_t dma_addr;
  78. /* walk state */
  79. struct scatterlist *sg;
  80. unsigned int offset; /* offset in current sg */
  81. unsigned int total; /* total request */
  82. size_t block_size;
  83. u8 buffer[0] __aligned(sizeof(u32));
  84. };
  85. struct atmel_sha_ctx {
  86. struct atmel_sha_dev *dd;
  87. unsigned long flags;
  88. /* fallback stuff */
  89. struct crypto_shash *fallback;
  90. };
  91. #define ATMEL_SHA_QUEUE_LENGTH 50
  92. struct atmel_sha_dma {
  93. struct dma_chan *chan;
  94. struct dma_slave_config dma_conf;
  95. };
  96. struct atmel_sha_dev {
  97. struct list_head list;
  98. unsigned long phys_base;
  99. struct device *dev;
  100. struct clk *iclk;
  101. int irq;
  102. void __iomem *io_base;
  103. spinlock_t lock;
  104. int err;
  105. struct tasklet_struct done_task;
  106. unsigned long flags;
  107. struct crypto_queue queue;
  108. struct ahash_request *req;
  109. struct atmel_sha_dma dma_lch_in;
  110. struct atmel_sha_caps caps;
  111. u32 hw_version;
  112. };
  113. struct atmel_sha_drv {
  114. struct list_head dev_list;
  115. spinlock_t lock;
  116. };
  117. static struct atmel_sha_drv atmel_sha = {
  118. .dev_list = LIST_HEAD_INIT(atmel_sha.dev_list),
  119. .lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock),
  120. };
  121. static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset)
  122. {
  123. return readl_relaxed(dd->io_base + offset);
  124. }
  125. static inline void atmel_sha_write(struct atmel_sha_dev *dd,
  126. u32 offset, u32 value)
  127. {
  128. writel_relaxed(value, dd->io_base + offset);
  129. }
  130. static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx)
  131. {
  132. size_t count;
  133. while ((ctx->bufcnt < ctx->buflen) && ctx->total) {
  134. count = min(ctx->sg->length - ctx->offset, ctx->total);
  135. count = min(count, ctx->buflen - ctx->bufcnt);
  136. if (count <= 0)
  137. break;
  138. scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
  139. ctx->offset, count, 0);
  140. ctx->bufcnt += count;
  141. ctx->offset += count;
  142. ctx->total -= count;
  143. if (ctx->offset == ctx->sg->length) {
  144. ctx->sg = sg_next(ctx->sg);
  145. if (ctx->sg)
  146. ctx->offset = 0;
  147. else
  148. ctx->total = 0;
  149. }
  150. }
  151. return 0;
  152. }
  153. /*
  154. * The purpose of this padding is to ensure that the padded message is a
  155. * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
  156. * The bit "1" is appended at the end of the message followed by
  157. * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
  158. * 128 bits block (SHA384/SHA512) equals to the message length in bits
  159. * is appended.
  160. *
  161. * For SHA1/SHA224/SHA256, padlen is calculated as followed:
  162. * - if message length < 56 bytes then padlen = 56 - message length
  163. * - else padlen = 64 + 56 - message length
  164. *
  165. * For SHA384/SHA512, padlen is calculated as followed:
  166. * - if message length < 112 bytes then padlen = 112 - message length
  167. * - else padlen = 128 + 112 - message length
  168. */
  169. static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length)
  170. {
  171. unsigned int index, padlen;
  172. u64 bits[2];
  173. u64 size[2];
  174. size[0] = ctx->digcnt[0];
  175. size[1] = ctx->digcnt[1];
  176. size[0] += ctx->bufcnt;
  177. if (size[0] < ctx->bufcnt)
  178. size[1]++;
  179. size[0] += length;
  180. if (size[0] < length)
  181. size[1]++;
  182. bits[1] = cpu_to_be64(size[0] << 3);
  183. bits[0] = cpu_to_be64(size[1] << 3 | size[0] >> 61);
  184. if (ctx->flags & (SHA_FLAGS_SHA384 | SHA_FLAGS_SHA512)) {
  185. index = ctx->bufcnt & 0x7f;
  186. padlen = (index < 112) ? (112 - index) : ((128+112) - index);
  187. *(ctx->buffer + ctx->bufcnt) = 0x80;
  188. memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
  189. memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
  190. ctx->bufcnt += padlen + 16;
  191. ctx->flags |= SHA_FLAGS_PAD;
  192. } else {
  193. index = ctx->bufcnt & 0x3f;
  194. padlen = (index < 56) ? (56 - index) : ((64+56) - index);
  195. *(ctx->buffer + ctx->bufcnt) = 0x80;
  196. memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
  197. memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
  198. ctx->bufcnt += padlen + 8;
  199. ctx->flags |= SHA_FLAGS_PAD;
  200. }
  201. }
  202. static int atmel_sha_init(struct ahash_request *req)
  203. {
  204. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  205. struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
  206. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  207. struct atmel_sha_dev *dd = NULL;
  208. struct atmel_sha_dev *tmp;
  209. spin_lock_bh(&atmel_sha.lock);
  210. if (!tctx->dd) {
  211. list_for_each_entry(tmp, &atmel_sha.dev_list, list) {
  212. dd = tmp;
  213. break;
  214. }
  215. tctx->dd = dd;
  216. } else {
  217. dd = tctx->dd;
  218. }
  219. spin_unlock_bh(&atmel_sha.lock);
  220. ctx->dd = dd;
  221. ctx->flags = 0;
  222. dev_dbg(dd->dev, "init: digest size: %d\n",
  223. crypto_ahash_digestsize(tfm));
  224. switch (crypto_ahash_digestsize(tfm)) {
  225. case SHA1_DIGEST_SIZE:
  226. ctx->flags |= SHA_FLAGS_SHA1;
  227. ctx->block_size = SHA1_BLOCK_SIZE;
  228. break;
  229. case SHA224_DIGEST_SIZE:
  230. ctx->flags |= SHA_FLAGS_SHA224;
  231. ctx->block_size = SHA224_BLOCK_SIZE;
  232. break;
  233. case SHA256_DIGEST_SIZE:
  234. ctx->flags |= SHA_FLAGS_SHA256;
  235. ctx->block_size = SHA256_BLOCK_SIZE;
  236. break;
  237. case SHA384_DIGEST_SIZE:
  238. ctx->flags |= SHA_FLAGS_SHA384;
  239. ctx->block_size = SHA384_BLOCK_SIZE;
  240. break;
  241. case SHA512_DIGEST_SIZE:
  242. ctx->flags |= SHA_FLAGS_SHA512;
  243. ctx->block_size = SHA512_BLOCK_SIZE;
  244. break;
  245. default:
  246. return -EINVAL;
  247. break;
  248. }
  249. ctx->bufcnt = 0;
  250. ctx->digcnt[0] = 0;
  251. ctx->digcnt[1] = 0;
  252. ctx->buflen = SHA_BUFFER_LEN;
  253. return 0;
  254. }
  255. static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma)
  256. {
  257. struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
  258. u32 valcr = 0, valmr = SHA_MR_MODE_AUTO;
  259. if (likely(dma)) {
  260. if (!dd->caps.has_dma)
  261. atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE);
  262. valmr = SHA_MR_MODE_PDC;
  263. if (dd->caps.has_dualbuff)
  264. valmr |= SHA_MR_DUALBUFF;
  265. } else {
  266. atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
  267. }
  268. if (ctx->flags & SHA_FLAGS_SHA1)
  269. valmr |= SHA_MR_ALGO_SHA1;
  270. else if (ctx->flags & SHA_FLAGS_SHA224)
  271. valmr |= SHA_MR_ALGO_SHA224;
  272. else if (ctx->flags & SHA_FLAGS_SHA256)
  273. valmr |= SHA_MR_ALGO_SHA256;
  274. else if (ctx->flags & SHA_FLAGS_SHA384)
  275. valmr |= SHA_MR_ALGO_SHA384;
  276. else if (ctx->flags & SHA_FLAGS_SHA512)
  277. valmr |= SHA_MR_ALGO_SHA512;
  278. /* Setting CR_FIRST only for the first iteration */
  279. if (!(ctx->digcnt[0] || ctx->digcnt[1]))
  280. valcr = SHA_CR_FIRST;
  281. atmel_sha_write(dd, SHA_CR, valcr);
  282. atmel_sha_write(dd, SHA_MR, valmr);
  283. }
  284. static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf,
  285. size_t length, int final)
  286. {
  287. struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
  288. int count, len32;
  289. const u32 *buffer = (const u32 *)buf;
  290. dev_dbg(dd->dev, "xmit_cpu: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n",
  291. ctx->digcnt[1], ctx->digcnt[0], length, final);
  292. atmel_sha_write_ctrl(dd, 0);
  293. /* should be non-zero before next lines to disable clocks later */
  294. ctx->digcnt[0] += length;
  295. if (ctx->digcnt[0] < length)
  296. ctx->digcnt[1]++;
  297. if (final)
  298. dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
  299. len32 = DIV_ROUND_UP(length, sizeof(u32));
  300. dd->flags |= SHA_FLAGS_CPU;
  301. for (count = 0; count < len32; count++)
  302. atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]);
  303. return -EINPROGRESS;
  304. }
  305. static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
  306. size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
  307. {
  308. struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
  309. int len32;
  310. dev_dbg(dd->dev, "xmit_pdc: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n",
  311. ctx->digcnt[1], ctx->digcnt[0], length1, final);
  312. len32 = DIV_ROUND_UP(length1, sizeof(u32));
  313. atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS);
  314. atmel_sha_write(dd, SHA_TPR, dma_addr1);
  315. atmel_sha_write(dd, SHA_TCR, len32);
  316. len32 = DIV_ROUND_UP(length2, sizeof(u32));
  317. atmel_sha_write(dd, SHA_TNPR, dma_addr2);
  318. atmel_sha_write(dd, SHA_TNCR, len32);
  319. atmel_sha_write_ctrl(dd, 1);
  320. /* should be non-zero before next lines to disable clocks later */
  321. ctx->digcnt[0] += length1;
  322. if (ctx->digcnt[0] < length1)
  323. ctx->digcnt[1]++;
  324. if (final)
  325. dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
  326. dd->flags |= SHA_FLAGS_DMA_ACTIVE;
  327. /* Start DMA transfer */
  328. atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN);
  329. return -EINPROGRESS;
  330. }
  331. static void atmel_sha_dma_callback(void *data)
  332. {
  333. struct atmel_sha_dev *dd = data;
  334. /* dma_lch_in - completed - wait DATRDY */
  335. atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
  336. }
  337. static int atmel_sha_xmit_dma(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
  338. size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
  339. {
  340. struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
  341. struct dma_async_tx_descriptor *in_desc;
  342. struct scatterlist sg[2];
  343. dev_dbg(dd->dev, "xmit_dma: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n",
  344. ctx->digcnt[1], ctx->digcnt[0], length1, final);
  345. if (ctx->flags & (SHA_FLAGS_SHA1 | SHA_FLAGS_SHA224 |
  346. SHA_FLAGS_SHA256)) {
  347. dd->dma_lch_in.dma_conf.src_maxburst = 16;
  348. dd->dma_lch_in.dma_conf.dst_maxburst = 16;
  349. } else {
  350. dd->dma_lch_in.dma_conf.src_maxburst = 32;
  351. dd->dma_lch_in.dma_conf.dst_maxburst = 32;
  352. }
  353. dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf);
  354. if (length2) {
  355. sg_init_table(sg, 2);
  356. sg_dma_address(&sg[0]) = dma_addr1;
  357. sg_dma_len(&sg[0]) = length1;
  358. sg_dma_address(&sg[1]) = dma_addr2;
  359. sg_dma_len(&sg[1]) = length2;
  360. in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 2,
  361. DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  362. } else {
  363. sg_init_table(sg, 1);
  364. sg_dma_address(&sg[0]) = dma_addr1;
  365. sg_dma_len(&sg[0]) = length1;
  366. in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 1,
  367. DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  368. }
  369. if (!in_desc)
  370. return -EINVAL;
  371. in_desc->callback = atmel_sha_dma_callback;
  372. in_desc->callback_param = dd;
  373. atmel_sha_write_ctrl(dd, 1);
  374. /* should be non-zero before next lines to disable clocks later */
  375. ctx->digcnt[0] += length1;
  376. if (ctx->digcnt[0] < length1)
  377. ctx->digcnt[1]++;
  378. if (final)
  379. dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
  380. dd->flags |= SHA_FLAGS_DMA_ACTIVE;
  381. /* Start DMA transfer */
  382. dmaengine_submit(in_desc);
  383. dma_async_issue_pending(dd->dma_lch_in.chan);
  384. return -EINPROGRESS;
  385. }
  386. static int atmel_sha_xmit_start(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
  387. size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
  388. {
  389. if (dd->caps.has_dma)
  390. return atmel_sha_xmit_dma(dd, dma_addr1, length1,
  391. dma_addr2, length2, final);
  392. else
  393. return atmel_sha_xmit_pdc(dd, dma_addr1, length1,
  394. dma_addr2, length2, final);
  395. }
  396. static int atmel_sha_update_cpu(struct atmel_sha_dev *dd)
  397. {
  398. struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
  399. int bufcnt;
  400. atmel_sha_append_sg(ctx);
  401. atmel_sha_fill_padding(ctx, 0);
  402. bufcnt = ctx->bufcnt;
  403. ctx->bufcnt = 0;
  404. return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1);
  405. }
  406. static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd,
  407. struct atmel_sha_reqctx *ctx,
  408. size_t length, int final)
  409. {
  410. ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
  411. ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
  412. if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
  413. dev_err(dd->dev, "dma %u bytes error\n", ctx->buflen +
  414. ctx->block_size);
  415. return -EINVAL;
  416. }
  417. ctx->flags &= ~SHA_FLAGS_SG;
  418. /* next call does not fail... so no unmap in the case of error */
  419. return atmel_sha_xmit_start(dd, ctx->dma_addr, length, 0, 0, final);
  420. }
  421. static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd)
  422. {
  423. struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
  424. unsigned int final;
  425. size_t count;
  426. atmel_sha_append_sg(ctx);
  427. final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
  428. dev_dbg(dd->dev, "slow: bufcnt: %u, digcnt: 0x%llx 0x%llx, final: %d\n",
  429. ctx->bufcnt, ctx->digcnt[1], ctx->digcnt[0], final);
  430. if (final)
  431. atmel_sha_fill_padding(ctx, 0);
  432. if (final || (ctx->bufcnt == ctx->buflen && ctx->total)) {
  433. count = ctx->bufcnt;
  434. ctx->bufcnt = 0;
  435. return atmel_sha_xmit_dma_map(dd, ctx, count, final);
  436. }
  437. return 0;
  438. }
  439. static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd)
  440. {
  441. struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
  442. unsigned int length, final, tail;
  443. struct scatterlist *sg;
  444. unsigned int count;
  445. if (!ctx->total)
  446. return 0;
  447. if (ctx->bufcnt || ctx->offset)
  448. return atmel_sha_update_dma_slow(dd);
  449. dev_dbg(dd->dev, "fast: digcnt: 0x%llx 0x%llx, bufcnt: %u, total: %u\n",
  450. ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt, ctx->total);
  451. sg = ctx->sg;
  452. if (!IS_ALIGNED(sg->offset, sizeof(u32)))
  453. return atmel_sha_update_dma_slow(dd);
  454. if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->block_size))
  455. /* size is not ctx->block_size aligned */
  456. return atmel_sha_update_dma_slow(dd);
  457. length = min(ctx->total, sg->length);
  458. if (sg_is_last(sg)) {
  459. if (!(ctx->flags & SHA_FLAGS_FINUP)) {
  460. /* not last sg must be ctx->block_size aligned */
  461. tail = length & (ctx->block_size - 1);
  462. length -= tail;
  463. }
  464. }
  465. ctx->total -= length;
  466. ctx->offset = length; /* offset where to start slow */
  467. final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
  468. /* Add padding */
  469. if (final) {
  470. tail = length & (ctx->block_size - 1);
  471. length -= tail;
  472. ctx->total += tail;
  473. ctx->offset = length; /* offset where to start slow */
  474. sg = ctx->sg;
  475. atmel_sha_append_sg(ctx);
  476. atmel_sha_fill_padding(ctx, length);
  477. ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
  478. ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
  479. if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
  480. dev_err(dd->dev, "dma %u bytes error\n",
  481. ctx->buflen + ctx->block_size);
  482. return -EINVAL;
  483. }
  484. if (length == 0) {
  485. ctx->flags &= ~SHA_FLAGS_SG;
  486. count = ctx->bufcnt;
  487. ctx->bufcnt = 0;
  488. return atmel_sha_xmit_start(dd, ctx->dma_addr, count, 0,
  489. 0, final);
  490. } else {
  491. ctx->sg = sg;
  492. if (!dma_map_sg(dd->dev, ctx->sg, 1,
  493. DMA_TO_DEVICE)) {
  494. dev_err(dd->dev, "dma_map_sg error\n");
  495. return -EINVAL;
  496. }
  497. ctx->flags |= SHA_FLAGS_SG;
  498. count = ctx->bufcnt;
  499. ctx->bufcnt = 0;
  500. return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg),
  501. length, ctx->dma_addr, count, final);
  502. }
  503. }
  504. if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
  505. dev_err(dd->dev, "dma_map_sg error\n");
  506. return -EINVAL;
  507. }
  508. ctx->flags |= SHA_FLAGS_SG;
  509. /* next call does not fail... so no unmap in the case of error */
  510. return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), length, 0,
  511. 0, final);
  512. }
  513. static int atmel_sha_update_dma_stop(struct atmel_sha_dev *dd)
  514. {
  515. struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
  516. if (ctx->flags & SHA_FLAGS_SG) {
  517. dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
  518. if (ctx->sg->length == ctx->offset) {
  519. ctx->sg = sg_next(ctx->sg);
  520. if (ctx->sg)
  521. ctx->offset = 0;
  522. }
  523. if (ctx->flags & SHA_FLAGS_PAD) {
  524. dma_unmap_single(dd->dev, ctx->dma_addr,
  525. ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
  526. }
  527. } else {
  528. dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen +
  529. ctx->block_size, DMA_TO_DEVICE);
  530. }
  531. return 0;
  532. }
  533. static int atmel_sha_update_req(struct atmel_sha_dev *dd)
  534. {
  535. struct ahash_request *req = dd->req;
  536. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  537. int err;
  538. dev_dbg(dd->dev, "update_req: total: %u, digcnt: 0x%llx 0x%llx\n",
  539. ctx->total, ctx->digcnt[1], ctx->digcnt[0]);
  540. if (ctx->flags & SHA_FLAGS_CPU)
  541. err = atmel_sha_update_cpu(dd);
  542. else
  543. err = atmel_sha_update_dma_start(dd);
  544. /* wait for dma completion before can take more data */
  545. dev_dbg(dd->dev, "update: err: %d, digcnt: 0x%llx 0%llx\n",
  546. err, ctx->digcnt[1], ctx->digcnt[0]);
  547. return err;
  548. }
  549. static int atmel_sha_final_req(struct atmel_sha_dev *dd)
  550. {
  551. struct ahash_request *req = dd->req;
  552. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  553. int err = 0;
  554. int count;
  555. if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) {
  556. atmel_sha_fill_padding(ctx, 0);
  557. count = ctx->bufcnt;
  558. ctx->bufcnt = 0;
  559. err = atmel_sha_xmit_dma_map(dd, ctx, count, 1);
  560. }
  561. /* faster to handle last block with cpu */
  562. else {
  563. atmel_sha_fill_padding(ctx, 0);
  564. count = ctx->bufcnt;
  565. ctx->bufcnt = 0;
  566. err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1);
  567. }
  568. dev_dbg(dd->dev, "final_req: err: %d\n", err);
  569. return err;
  570. }
  571. static void atmel_sha_copy_hash(struct ahash_request *req)
  572. {
  573. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  574. u32 *hash = (u32 *)ctx->digest;
  575. int i;
  576. if (ctx->flags & SHA_FLAGS_SHA1)
  577. for (i = 0; i < SHA1_DIGEST_SIZE / sizeof(u32); i++)
  578. hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
  579. else if (ctx->flags & SHA_FLAGS_SHA224)
  580. for (i = 0; i < SHA224_DIGEST_SIZE / sizeof(u32); i++)
  581. hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
  582. else if (ctx->flags & SHA_FLAGS_SHA256)
  583. for (i = 0; i < SHA256_DIGEST_SIZE / sizeof(u32); i++)
  584. hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
  585. else if (ctx->flags & SHA_FLAGS_SHA384)
  586. for (i = 0; i < SHA384_DIGEST_SIZE / sizeof(u32); i++)
  587. hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
  588. else
  589. for (i = 0; i < SHA512_DIGEST_SIZE / sizeof(u32); i++)
  590. hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
  591. }
  592. static void atmel_sha_copy_ready_hash(struct ahash_request *req)
  593. {
  594. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  595. if (!req->result)
  596. return;
  597. if (ctx->flags & SHA_FLAGS_SHA1)
  598. memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE);
  599. else if (ctx->flags & SHA_FLAGS_SHA224)
  600. memcpy(req->result, ctx->digest, SHA224_DIGEST_SIZE);
  601. else if (ctx->flags & SHA_FLAGS_SHA256)
  602. memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE);
  603. else if (ctx->flags & SHA_FLAGS_SHA384)
  604. memcpy(req->result, ctx->digest, SHA384_DIGEST_SIZE);
  605. else
  606. memcpy(req->result, ctx->digest, SHA512_DIGEST_SIZE);
  607. }
  608. static int atmel_sha_finish(struct ahash_request *req)
  609. {
  610. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  611. struct atmel_sha_dev *dd = ctx->dd;
  612. int err = 0;
  613. if (ctx->digcnt[0] || ctx->digcnt[1])
  614. atmel_sha_copy_ready_hash(req);
  615. dev_dbg(dd->dev, "digcnt: 0x%llx 0x%llx, bufcnt: %d\n", ctx->digcnt[1],
  616. ctx->digcnt[0], ctx->bufcnt);
  617. return err;
  618. }
  619. static void atmel_sha_finish_req(struct ahash_request *req, int err)
  620. {
  621. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  622. struct atmel_sha_dev *dd = ctx->dd;
  623. if (!err) {
  624. atmel_sha_copy_hash(req);
  625. if (SHA_FLAGS_FINAL & dd->flags)
  626. err = atmel_sha_finish(req);
  627. } else {
  628. ctx->flags |= SHA_FLAGS_ERROR;
  629. }
  630. /* atomic operation is not needed here */
  631. dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU |
  632. SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY);
  633. clk_disable_unprepare(dd->iclk);
  634. if (req->base.complete)
  635. req->base.complete(&req->base, err);
  636. /* handle new request */
  637. tasklet_schedule(&dd->done_task);
  638. }
  639. static int atmel_sha_hw_init(struct atmel_sha_dev *dd)
  640. {
  641. clk_prepare_enable(dd->iclk);
  642. if (!(SHA_FLAGS_INIT & dd->flags)) {
  643. atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST);
  644. dd->flags |= SHA_FLAGS_INIT;
  645. dd->err = 0;
  646. }
  647. return 0;
  648. }
  649. static inline unsigned int atmel_sha_get_version(struct atmel_sha_dev *dd)
  650. {
  651. return atmel_sha_read(dd, SHA_HW_VERSION) & 0x00000fff;
  652. }
  653. static void atmel_sha_hw_version_init(struct atmel_sha_dev *dd)
  654. {
  655. atmel_sha_hw_init(dd);
  656. dd->hw_version = atmel_sha_get_version(dd);
  657. dev_info(dd->dev,
  658. "version: 0x%x\n", dd->hw_version);
  659. clk_disable_unprepare(dd->iclk);
  660. }
  661. static int atmel_sha_handle_queue(struct atmel_sha_dev *dd,
  662. struct ahash_request *req)
  663. {
  664. struct crypto_async_request *async_req, *backlog;
  665. struct atmel_sha_reqctx *ctx;
  666. unsigned long flags;
  667. int err = 0, ret = 0;
  668. spin_lock_irqsave(&dd->lock, flags);
  669. if (req)
  670. ret = ahash_enqueue_request(&dd->queue, req);
  671. if (SHA_FLAGS_BUSY & dd->flags) {
  672. spin_unlock_irqrestore(&dd->lock, flags);
  673. return ret;
  674. }
  675. backlog = crypto_get_backlog(&dd->queue);
  676. async_req = crypto_dequeue_request(&dd->queue);
  677. if (async_req)
  678. dd->flags |= SHA_FLAGS_BUSY;
  679. spin_unlock_irqrestore(&dd->lock, flags);
  680. if (!async_req)
  681. return ret;
  682. if (backlog)
  683. backlog->complete(backlog, -EINPROGRESS);
  684. req = ahash_request_cast(async_req);
  685. dd->req = req;
  686. ctx = ahash_request_ctx(req);
  687. dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n",
  688. ctx->op, req->nbytes);
  689. err = atmel_sha_hw_init(dd);
  690. if (err)
  691. goto err1;
  692. if (ctx->op == SHA_OP_UPDATE) {
  693. err = atmel_sha_update_req(dd);
  694. if (err != -EINPROGRESS && (ctx->flags & SHA_FLAGS_FINUP))
  695. /* no final() after finup() */
  696. err = atmel_sha_final_req(dd);
  697. } else if (ctx->op == SHA_OP_FINAL) {
  698. err = atmel_sha_final_req(dd);
  699. }
  700. err1:
  701. if (err != -EINPROGRESS)
  702. /* done_task will not finish it, so do it here */
  703. atmel_sha_finish_req(req, err);
  704. dev_dbg(dd->dev, "exit, err: %d\n", err);
  705. return ret;
  706. }
  707. static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op)
  708. {
  709. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  710. struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
  711. struct atmel_sha_dev *dd = tctx->dd;
  712. ctx->op = op;
  713. return atmel_sha_handle_queue(dd, req);
  714. }
  715. static int atmel_sha_update(struct ahash_request *req)
  716. {
  717. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  718. if (!req->nbytes)
  719. return 0;
  720. ctx->total = req->nbytes;
  721. ctx->sg = req->src;
  722. ctx->offset = 0;
  723. if (ctx->flags & SHA_FLAGS_FINUP) {
  724. if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD)
  725. /* faster to use CPU for short transfers */
  726. ctx->flags |= SHA_FLAGS_CPU;
  727. } else if (ctx->bufcnt + ctx->total < ctx->buflen) {
  728. atmel_sha_append_sg(ctx);
  729. return 0;
  730. }
  731. return atmel_sha_enqueue(req, SHA_OP_UPDATE);
  732. }
  733. static int atmel_sha_final(struct ahash_request *req)
  734. {
  735. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  736. struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
  737. struct atmel_sha_dev *dd = tctx->dd;
  738. int err = 0;
  739. ctx->flags |= SHA_FLAGS_FINUP;
  740. if (ctx->flags & SHA_FLAGS_ERROR)
  741. return 0; /* uncompleted hash is not needed */
  742. if (ctx->bufcnt) {
  743. return atmel_sha_enqueue(req, SHA_OP_FINAL);
  744. } else if (!(ctx->flags & SHA_FLAGS_PAD)) { /* add padding */
  745. err = atmel_sha_hw_init(dd);
  746. if (err)
  747. goto err1;
  748. dd->flags |= SHA_FLAGS_BUSY;
  749. err = atmel_sha_final_req(dd);
  750. } else {
  751. /* copy ready hash (+ finalize hmac) */
  752. return atmel_sha_finish(req);
  753. }
  754. err1:
  755. if (err != -EINPROGRESS)
  756. /* done_task will not finish it, so do it here */
  757. atmel_sha_finish_req(req, err);
  758. return err;
  759. }
  760. static int atmel_sha_finup(struct ahash_request *req)
  761. {
  762. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  763. int err1, err2;
  764. ctx->flags |= SHA_FLAGS_FINUP;
  765. err1 = atmel_sha_update(req);
  766. if (err1 == -EINPROGRESS || err1 == -EBUSY)
  767. return err1;
  768. /*
  769. * final() has to be always called to cleanup resources
  770. * even if udpate() failed, except EINPROGRESS
  771. */
  772. err2 = atmel_sha_final(req);
  773. return err1 ?: err2;
  774. }
  775. static int atmel_sha_digest(struct ahash_request *req)
  776. {
  777. return atmel_sha_init(req) ?: atmel_sha_finup(req);
  778. }
  779. static int atmel_sha_cra_init_alg(struct crypto_tfm *tfm, const char *alg_base)
  780. {
  781. struct atmel_sha_ctx *tctx = crypto_tfm_ctx(tfm);
  782. const char *alg_name = crypto_tfm_alg_name(tfm);
  783. /* Allocate a fallback and abort if it failed. */
  784. tctx->fallback = crypto_alloc_shash(alg_name, 0,
  785. CRYPTO_ALG_NEED_FALLBACK);
  786. if (IS_ERR(tctx->fallback)) {
  787. pr_err("atmel-sha: fallback driver '%s' could not be loaded.\n",
  788. alg_name);
  789. return PTR_ERR(tctx->fallback);
  790. }
  791. crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
  792. sizeof(struct atmel_sha_reqctx) +
  793. SHA_BUFFER_LEN + SHA512_BLOCK_SIZE);
  794. return 0;
  795. }
  796. static int atmel_sha_cra_init(struct crypto_tfm *tfm)
  797. {
  798. return atmel_sha_cra_init_alg(tfm, NULL);
  799. }
  800. static void atmel_sha_cra_exit(struct crypto_tfm *tfm)
  801. {
  802. struct atmel_sha_ctx *tctx = crypto_tfm_ctx(tfm);
  803. crypto_free_shash(tctx->fallback);
  804. tctx->fallback = NULL;
  805. }
  806. static struct ahash_alg sha_1_256_algs[] = {
  807. {
  808. .init = atmel_sha_init,
  809. .update = atmel_sha_update,
  810. .final = atmel_sha_final,
  811. .finup = atmel_sha_finup,
  812. .digest = atmel_sha_digest,
  813. .halg = {
  814. .digestsize = SHA1_DIGEST_SIZE,
  815. .base = {
  816. .cra_name = "sha1",
  817. .cra_driver_name = "atmel-sha1",
  818. .cra_priority = 100,
  819. .cra_flags = CRYPTO_ALG_ASYNC |
  820. CRYPTO_ALG_NEED_FALLBACK,
  821. .cra_blocksize = SHA1_BLOCK_SIZE,
  822. .cra_ctxsize = sizeof(struct atmel_sha_ctx),
  823. .cra_alignmask = 0,
  824. .cra_module = THIS_MODULE,
  825. .cra_init = atmel_sha_cra_init,
  826. .cra_exit = atmel_sha_cra_exit,
  827. }
  828. }
  829. },
  830. {
  831. .init = atmel_sha_init,
  832. .update = atmel_sha_update,
  833. .final = atmel_sha_final,
  834. .finup = atmel_sha_finup,
  835. .digest = atmel_sha_digest,
  836. .halg = {
  837. .digestsize = SHA256_DIGEST_SIZE,
  838. .base = {
  839. .cra_name = "sha256",
  840. .cra_driver_name = "atmel-sha256",
  841. .cra_priority = 100,
  842. .cra_flags = CRYPTO_ALG_ASYNC |
  843. CRYPTO_ALG_NEED_FALLBACK,
  844. .cra_blocksize = SHA256_BLOCK_SIZE,
  845. .cra_ctxsize = sizeof(struct atmel_sha_ctx),
  846. .cra_alignmask = 0,
  847. .cra_module = THIS_MODULE,
  848. .cra_init = atmel_sha_cra_init,
  849. .cra_exit = atmel_sha_cra_exit,
  850. }
  851. }
  852. },
  853. };
  854. static struct ahash_alg sha_224_alg = {
  855. .init = atmel_sha_init,
  856. .update = atmel_sha_update,
  857. .final = atmel_sha_final,
  858. .finup = atmel_sha_finup,
  859. .digest = atmel_sha_digest,
  860. .halg = {
  861. .digestsize = SHA224_DIGEST_SIZE,
  862. .base = {
  863. .cra_name = "sha224",
  864. .cra_driver_name = "atmel-sha224",
  865. .cra_priority = 100,
  866. .cra_flags = CRYPTO_ALG_ASYNC |
  867. CRYPTO_ALG_NEED_FALLBACK,
  868. .cra_blocksize = SHA224_BLOCK_SIZE,
  869. .cra_ctxsize = sizeof(struct atmel_sha_ctx),
  870. .cra_alignmask = 0,
  871. .cra_module = THIS_MODULE,
  872. .cra_init = atmel_sha_cra_init,
  873. .cra_exit = atmel_sha_cra_exit,
  874. }
  875. }
  876. };
  877. static struct ahash_alg sha_384_512_algs[] = {
  878. {
  879. .init = atmel_sha_init,
  880. .update = atmel_sha_update,
  881. .final = atmel_sha_final,
  882. .finup = atmel_sha_finup,
  883. .digest = atmel_sha_digest,
  884. .halg = {
  885. .digestsize = SHA384_DIGEST_SIZE,
  886. .base = {
  887. .cra_name = "sha384",
  888. .cra_driver_name = "atmel-sha384",
  889. .cra_priority = 100,
  890. .cra_flags = CRYPTO_ALG_ASYNC |
  891. CRYPTO_ALG_NEED_FALLBACK,
  892. .cra_blocksize = SHA384_BLOCK_SIZE,
  893. .cra_ctxsize = sizeof(struct atmel_sha_ctx),
  894. .cra_alignmask = 0x3,
  895. .cra_module = THIS_MODULE,
  896. .cra_init = atmel_sha_cra_init,
  897. .cra_exit = atmel_sha_cra_exit,
  898. }
  899. }
  900. },
  901. {
  902. .init = atmel_sha_init,
  903. .update = atmel_sha_update,
  904. .final = atmel_sha_final,
  905. .finup = atmel_sha_finup,
  906. .digest = atmel_sha_digest,
  907. .halg = {
  908. .digestsize = SHA512_DIGEST_SIZE,
  909. .base = {
  910. .cra_name = "sha512",
  911. .cra_driver_name = "atmel-sha512",
  912. .cra_priority = 100,
  913. .cra_flags = CRYPTO_ALG_ASYNC |
  914. CRYPTO_ALG_NEED_FALLBACK,
  915. .cra_blocksize = SHA512_BLOCK_SIZE,
  916. .cra_ctxsize = sizeof(struct atmel_sha_ctx),
  917. .cra_alignmask = 0x3,
  918. .cra_module = THIS_MODULE,
  919. .cra_init = atmel_sha_cra_init,
  920. .cra_exit = atmel_sha_cra_exit,
  921. }
  922. }
  923. },
  924. };
  925. static void atmel_sha_done_task(unsigned long data)
  926. {
  927. struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
  928. int err = 0;
  929. if (!(SHA_FLAGS_BUSY & dd->flags)) {
  930. atmel_sha_handle_queue(dd, NULL);
  931. return;
  932. }
  933. if (SHA_FLAGS_CPU & dd->flags) {
  934. if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
  935. dd->flags &= ~SHA_FLAGS_OUTPUT_READY;
  936. goto finish;
  937. }
  938. } else if (SHA_FLAGS_DMA_READY & dd->flags) {
  939. if (SHA_FLAGS_DMA_ACTIVE & dd->flags) {
  940. dd->flags &= ~SHA_FLAGS_DMA_ACTIVE;
  941. atmel_sha_update_dma_stop(dd);
  942. if (dd->err) {
  943. err = dd->err;
  944. goto finish;
  945. }
  946. }
  947. if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
  948. /* hash or semi-hash ready */
  949. dd->flags &= ~(SHA_FLAGS_DMA_READY |
  950. SHA_FLAGS_OUTPUT_READY);
  951. err = atmel_sha_update_dma_start(dd);
  952. if (err != -EINPROGRESS)
  953. goto finish;
  954. }
  955. }
  956. return;
  957. finish:
  958. /* finish curent request */
  959. atmel_sha_finish_req(dd->req, err);
  960. }
  961. static irqreturn_t atmel_sha_irq(int irq, void *dev_id)
  962. {
  963. struct atmel_sha_dev *sha_dd = dev_id;
  964. u32 reg;
  965. reg = atmel_sha_read(sha_dd, SHA_ISR);
  966. if (reg & atmel_sha_read(sha_dd, SHA_IMR)) {
  967. atmel_sha_write(sha_dd, SHA_IDR, reg);
  968. if (SHA_FLAGS_BUSY & sha_dd->flags) {
  969. sha_dd->flags |= SHA_FLAGS_OUTPUT_READY;
  970. if (!(SHA_FLAGS_CPU & sha_dd->flags))
  971. sha_dd->flags |= SHA_FLAGS_DMA_READY;
  972. tasklet_schedule(&sha_dd->done_task);
  973. } else {
  974. dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n");
  975. }
  976. return IRQ_HANDLED;
  977. }
  978. return IRQ_NONE;
  979. }
  980. static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd)
  981. {
  982. int i;
  983. for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++)
  984. crypto_unregister_ahash(&sha_1_256_algs[i]);
  985. if (dd->caps.has_sha224)
  986. crypto_unregister_ahash(&sha_224_alg);
  987. if (dd->caps.has_sha_384_512) {
  988. for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++)
  989. crypto_unregister_ahash(&sha_384_512_algs[i]);
  990. }
  991. }
  992. static int atmel_sha_register_algs(struct atmel_sha_dev *dd)
  993. {
  994. int err, i, j;
  995. for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) {
  996. err = crypto_register_ahash(&sha_1_256_algs[i]);
  997. if (err)
  998. goto err_sha_1_256_algs;
  999. }
  1000. if (dd->caps.has_sha224) {
  1001. err = crypto_register_ahash(&sha_224_alg);
  1002. if (err)
  1003. goto err_sha_224_algs;
  1004. }
  1005. if (dd->caps.has_sha_384_512) {
  1006. for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) {
  1007. err = crypto_register_ahash(&sha_384_512_algs[i]);
  1008. if (err)
  1009. goto err_sha_384_512_algs;
  1010. }
  1011. }
  1012. return 0;
  1013. err_sha_384_512_algs:
  1014. for (j = 0; j < i; j++)
  1015. crypto_unregister_ahash(&sha_384_512_algs[j]);
  1016. crypto_unregister_ahash(&sha_224_alg);
  1017. err_sha_224_algs:
  1018. i = ARRAY_SIZE(sha_1_256_algs);
  1019. err_sha_1_256_algs:
  1020. for (j = 0; j < i; j++)
  1021. crypto_unregister_ahash(&sha_1_256_algs[j]);
  1022. return err;
  1023. }
  1024. static bool atmel_sha_filter(struct dma_chan *chan, void *slave)
  1025. {
  1026. struct at_dma_slave *sl = slave;
  1027. if (sl && sl->dma_dev == chan->device->dev) {
  1028. chan->private = sl;
  1029. return true;
  1030. } else {
  1031. return false;
  1032. }
  1033. }
  1034. static int atmel_sha_dma_init(struct atmel_sha_dev *dd,
  1035. struct crypto_platform_data *pdata)
  1036. {
  1037. int err = -ENOMEM;
  1038. dma_cap_mask_t mask_in;
  1039. /* Try to grab DMA channel */
  1040. dma_cap_zero(mask_in);
  1041. dma_cap_set(DMA_SLAVE, mask_in);
  1042. dd->dma_lch_in.chan = dma_request_slave_channel_compat(mask_in,
  1043. atmel_sha_filter, &pdata->dma_slave->rxdata, dd->dev, "tx");
  1044. if (!dd->dma_lch_in.chan) {
  1045. dev_warn(dd->dev, "no DMA channel available\n");
  1046. return err;
  1047. }
  1048. dd->dma_lch_in.dma_conf.direction = DMA_MEM_TO_DEV;
  1049. dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base +
  1050. SHA_REG_DIN(0);
  1051. dd->dma_lch_in.dma_conf.src_maxburst = 1;
  1052. dd->dma_lch_in.dma_conf.src_addr_width =
  1053. DMA_SLAVE_BUSWIDTH_4_BYTES;
  1054. dd->dma_lch_in.dma_conf.dst_maxburst = 1;
  1055. dd->dma_lch_in.dma_conf.dst_addr_width =
  1056. DMA_SLAVE_BUSWIDTH_4_BYTES;
  1057. dd->dma_lch_in.dma_conf.device_fc = false;
  1058. return 0;
  1059. }
  1060. static void atmel_sha_dma_cleanup(struct atmel_sha_dev *dd)
  1061. {
  1062. dma_release_channel(dd->dma_lch_in.chan);
  1063. }
  1064. static void atmel_sha_get_cap(struct atmel_sha_dev *dd)
  1065. {
  1066. dd->caps.has_dma = 0;
  1067. dd->caps.has_dualbuff = 0;
  1068. dd->caps.has_sha224 = 0;
  1069. dd->caps.has_sha_384_512 = 0;
  1070. /* keep only major version number */
  1071. switch (dd->hw_version & 0xff0) {
  1072. case 0x410:
  1073. dd->caps.has_dma = 1;
  1074. dd->caps.has_dualbuff = 1;
  1075. dd->caps.has_sha224 = 1;
  1076. dd->caps.has_sha_384_512 = 1;
  1077. break;
  1078. case 0x400:
  1079. dd->caps.has_dma = 1;
  1080. dd->caps.has_dualbuff = 1;
  1081. dd->caps.has_sha224 = 1;
  1082. break;
  1083. case 0x320:
  1084. break;
  1085. default:
  1086. dev_warn(dd->dev,
  1087. "Unmanaged sha version, set minimum capabilities\n");
  1088. break;
  1089. }
  1090. }
  1091. #if defined(CONFIG_OF)
  1092. static const struct of_device_id atmel_sha_dt_ids[] = {
  1093. { .compatible = "atmel,at91sam9g46-sha" },
  1094. { /* sentinel */ }
  1095. };
  1096. MODULE_DEVICE_TABLE(of, atmel_sha_dt_ids);
  1097. static struct crypto_platform_data *atmel_sha_of_init(struct platform_device *pdev)
  1098. {
  1099. struct device_node *np = pdev->dev.of_node;
  1100. struct crypto_platform_data *pdata;
  1101. if (!np) {
  1102. dev_err(&pdev->dev, "device node not found\n");
  1103. return ERR_PTR(-EINVAL);
  1104. }
  1105. pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
  1106. if (!pdata) {
  1107. dev_err(&pdev->dev, "could not allocate memory for pdata\n");
  1108. return ERR_PTR(-ENOMEM);
  1109. }
  1110. pdata->dma_slave = devm_kzalloc(&pdev->dev,
  1111. sizeof(*(pdata->dma_slave)),
  1112. GFP_KERNEL);
  1113. if (!pdata->dma_slave) {
  1114. dev_err(&pdev->dev, "could not allocate memory for dma_slave\n");
  1115. return ERR_PTR(-ENOMEM);
  1116. }
  1117. return pdata;
  1118. }
  1119. #else /* CONFIG_OF */
  1120. static inline struct crypto_platform_data *atmel_sha_of_init(struct platform_device *dev)
  1121. {
  1122. return ERR_PTR(-EINVAL);
  1123. }
  1124. #endif
  1125. static int atmel_sha_probe(struct platform_device *pdev)
  1126. {
  1127. struct atmel_sha_dev *sha_dd;
  1128. struct crypto_platform_data *pdata;
  1129. struct device *dev = &pdev->dev;
  1130. struct resource *sha_res;
  1131. unsigned long sha_phys_size;
  1132. int err;
  1133. sha_dd = devm_kzalloc(&pdev->dev, sizeof(struct atmel_sha_dev),
  1134. GFP_KERNEL);
  1135. if (sha_dd == NULL) {
  1136. dev_err(dev, "unable to alloc data struct.\n");
  1137. err = -ENOMEM;
  1138. goto sha_dd_err;
  1139. }
  1140. sha_dd->dev = dev;
  1141. platform_set_drvdata(pdev, sha_dd);
  1142. INIT_LIST_HEAD(&sha_dd->list);
  1143. tasklet_init(&sha_dd->done_task, atmel_sha_done_task,
  1144. (unsigned long)sha_dd);
  1145. crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH);
  1146. sha_dd->irq = -1;
  1147. /* Get the base address */
  1148. sha_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1149. if (!sha_res) {
  1150. dev_err(dev, "no MEM resource info\n");
  1151. err = -ENODEV;
  1152. goto res_err;
  1153. }
  1154. sha_dd->phys_base = sha_res->start;
  1155. sha_phys_size = resource_size(sha_res);
  1156. /* Get the IRQ */
  1157. sha_dd->irq = platform_get_irq(pdev, 0);
  1158. if (sha_dd->irq < 0) {
  1159. dev_err(dev, "no IRQ resource info\n");
  1160. err = sha_dd->irq;
  1161. goto res_err;
  1162. }
  1163. err = request_irq(sha_dd->irq, atmel_sha_irq, IRQF_SHARED, "atmel-sha",
  1164. sha_dd);
  1165. if (err) {
  1166. dev_err(dev, "unable to request sha irq.\n");
  1167. goto res_err;
  1168. }
  1169. /* Initializing the clock */
  1170. sha_dd->iclk = clk_get(&pdev->dev, "sha_clk");
  1171. if (IS_ERR(sha_dd->iclk)) {
  1172. dev_err(dev, "clock intialization failed.\n");
  1173. err = PTR_ERR(sha_dd->iclk);
  1174. goto clk_err;
  1175. }
  1176. sha_dd->io_base = ioremap(sha_dd->phys_base, sha_phys_size);
  1177. if (!sha_dd->io_base) {
  1178. dev_err(dev, "can't ioremap\n");
  1179. err = -ENOMEM;
  1180. goto sha_io_err;
  1181. }
  1182. atmel_sha_hw_version_init(sha_dd);
  1183. atmel_sha_get_cap(sha_dd);
  1184. if (sha_dd->caps.has_dma) {
  1185. pdata = pdev->dev.platform_data;
  1186. if (!pdata) {
  1187. pdata = atmel_sha_of_init(pdev);
  1188. if (IS_ERR(pdata)) {
  1189. dev_err(&pdev->dev, "platform data not available\n");
  1190. err = PTR_ERR(pdata);
  1191. goto err_pdata;
  1192. }
  1193. }
  1194. if (!pdata->dma_slave) {
  1195. err = -ENXIO;
  1196. goto err_pdata;
  1197. }
  1198. err = atmel_sha_dma_init(sha_dd, pdata);
  1199. if (err)
  1200. goto err_sha_dma;
  1201. dev_info(dev, "using %s for DMA transfers\n",
  1202. dma_chan_name(sha_dd->dma_lch_in.chan));
  1203. }
  1204. spin_lock(&atmel_sha.lock);
  1205. list_add_tail(&sha_dd->list, &atmel_sha.dev_list);
  1206. spin_unlock(&atmel_sha.lock);
  1207. err = atmel_sha_register_algs(sha_dd);
  1208. if (err)
  1209. goto err_algs;
  1210. dev_info(dev, "Atmel SHA1/SHA256%s%s\n",
  1211. sha_dd->caps.has_sha224 ? "/SHA224" : "",
  1212. sha_dd->caps.has_sha_384_512 ? "/SHA384/SHA512" : "");
  1213. return 0;
  1214. err_algs:
  1215. spin_lock(&atmel_sha.lock);
  1216. list_del(&sha_dd->list);
  1217. spin_unlock(&atmel_sha.lock);
  1218. if (sha_dd->caps.has_dma)
  1219. atmel_sha_dma_cleanup(sha_dd);
  1220. err_sha_dma:
  1221. err_pdata:
  1222. iounmap(sha_dd->io_base);
  1223. sha_io_err:
  1224. clk_put(sha_dd->iclk);
  1225. clk_err:
  1226. free_irq(sha_dd->irq, sha_dd);
  1227. res_err:
  1228. tasklet_kill(&sha_dd->done_task);
  1229. sha_dd_err:
  1230. dev_err(dev, "initialization failed.\n");
  1231. return err;
  1232. }
  1233. static int atmel_sha_remove(struct platform_device *pdev)
  1234. {
  1235. static struct atmel_sha_dev *sha_dd;
  1236. sha_dd = platform_get_drvdata(pdev);
  1237. if (!sha_dd)
  1238. return -ENODEV;
  1239. spin_lock(&atmel_sha.lock);
  1240. list_del(&sha_dd->list);
  1241. spin_unlock(&atmel_sha.lock);
  1242. atmel_sha_unregister_algs(sha_dd);
  1243. tasklet_kill(&sha_dd->done_task);
  1244. if (sha_dd->caps.has_dma)
  1245. atmel_sha_dma_cleanup(sha_dd);
  1246. iounmap(sha_dd->io_base);
  1247. clk_put(sha_dd->iclk);
  1248. if (sha_dd->irq >= 0)
  1249. free_irq(sha_dd->irq, sha_dd);
  1250. return 0;
  1251. }
  1252. static struct platform_driver atmel_sha_driver = {
  1253. .probe = atmel_sha_probe,
  1254. .remove = atmel_sha_remove,
  1255. .driver = {
  1256. .name = "atmel_sha",
  1257. .owner = THIS_MODULE,
  1258. .of_match_table = of_match_ptr(atmel_sha_dt_ids),
  1259. },
  1260. };
  1261. module_platform_driver(atmel_sha_driver);
  1262. MODULE_DESCRIPTION("Atmel SHA (1/256/224/384/512) hw acceleration support.");
  1263. MODULE_LICENSE("GPL v2");
  1264. MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");