arm_arch_timer.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794
  1. /*
  2. * linux/drivers/clocksource/arm_arch_timer.c
  3. *
  4. * Copyright (C) 2011 ARM Ltd.
  5. * All Rights Reserved
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/init.h>
  12. #include <linux/kernel.h>
  13. #include <linux/device.h>
  14. #include <linux/smp.h>
  15. #include <linux/cpu.h>
  16. #include <linux/cpu_pm.h>
  17. #include <linux/clockchips.h>
  18. #include <linux/interrupt.h>
  19. #include <linux/of_irq.h>
  20. #include <linux/of_address.h>
  21. #include <linux/io.h>
  22. #include <linux/slab.h>
  23. #include <linux/sched_clock.h>
  24. #include <asm/arch_timer.h>
  25. #include <asm/virt.h>
  26. #include <clocksource/arm_arch_timer.h>
  27. #define CNTTIDR 0x08
  28. #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
  29. #define CNTVCT_LO 0x08
  30. #define CNTVCT_HI 0x0c
  31. #define CNTFRQ 0x10
  32. #define CNTP_TVAL 0x28
  33. #define CNTP_CTL 0x2c
  34. #define CNTV_TVAL 0x38
  35. #define CNTV_CTL 0x3c
  36. #define ARCH_CP15_TIMER BIT(0)
  37. #define ARCH_MEM_TIMER BIT(1)
  38. static unsigned arch_timers_present __initdata;
  39. static void __iomem *arch_counter_base;
  40. struct arch_timer {
  41. void __iomem *base;
  42. struct clock_event_device evt;
  43. };
  44. #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
  45. static u32 arch_timer_rate;
  46. enum ppi_nr {
  47. PHYS_SECURE_PPI,
  48. PHYS_NONSECURE_PPI,
  49. VIRT_PPI,
  50. HYP_PPI,
  51. MAX_TIMER_PPI
  52. };
  53. static int arch_timer_ppi[MAX_TIMER_PPI];
  54. static struct clock_event_device __percpu *arch_timer_evt;
  55. static bool arch_timer_use_virtual = true;
  56. static bool arch_timer_c3stop;
  57. static bool arch_timer_mem_use_virtual;
  58. /*
  59. * Architected system timer support.
  60. */
  61. static __always_inline
  62. void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
  63. struct clock_event_device *clk)
  64. {
  65. if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
  66. struct arch_timer *timer = to_arch_timer(clk);
  67. switch (reg) {
  68. case ARCH_TIMER_REG_CTRL:
  69. writel_relaxed(val, timer->base + CNTP_CTL);
  70. break;
  71. case ARCH_TIMER_REG_TVAL:
  72. writel_relaxed(val, timer->base + CNTP_TVAL);
  73. break;
  74. }
  75. } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
  76. struct arch_timer *timer = to_arch_timer(clk);
  77. switch (reg) {
  78. case ARCH_TIMER_REG_CTRL:
  79. writel_relaxed(val, timer->base + CNTV_CTL);
  80. break;
  81. case ARCH_TIMER_REG_TVAL:
  82. writel_relaxed(val, timer->base + CNTV_TVAL);
  83. break;
  84. }
  85. } else {
  86. arch_timer_reg_write_cp15(access, reg, val);
  87. }
  88. }
  89. static __always_inline
  90. u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
  91. struct clock_event_device *clk)
  92. {
  93. u32 val;
  94. if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
  95. struct arch_timer *timer = to_arch_timer(clk);
  96. switch (reg) {
  97. case ARCH_TIMER_REG_CTRL:
  98. val = readl_relaxed(timer->base + CNTP_CTL);
  99. break;
  100. case ARCH_TIMER_REG_TVAL:
  101. val = readl_relaxed(timer->base + CNTP_TVAL);
  102. break;
  103. }
  104. } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
  105. struct arch_timer *timer = to_arch_timer(clk);
  106. switch (reg) {
  107. case ARCH_TIMER_REG_CTRL:
  108. val = readl_relaxed(timer->base + CNTV_CTL);
  109. break;
  110. case ARCH_TIMER_REG_TVAL:
  111. val = readl_relaxed(timer->base + CNTV_TVAL);
  112. break;
  113. }
  114. } else {
  115. val = arch_timer_reg_read_cp15(access, reg);
  116. }
  117. return val;
  118. }
  119. static __always_inline irqreturn_t timer_handler(const int access,
  120. struct clock_event_device *evt)
  121. {
  122. unsigned long ctrl;
  123. ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
  124. if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
  125. ctrl |= ARCH_TIMER_CTRL_IT_MASK;
  126. arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
  127. evt->event_handler(evt);
  128. return IRQ_HANDLED;
  129. }
  130. return IRQ_NONE;
  131. }
  132. static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
  133. {
  134. struct clock_event_device *evt = dev_id;
  135. return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
  136. }
  137. static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
  138. {
  139. struct clock_event_device *evt = dev_id;
  140. return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
  141. }
  142. static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
  143. {
  144. struct clock_event_device *evt = dev_id;
  145. return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
  146. }
  147. static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
  148. {
  149. struct clock_event_device *evt = dev_id;
  150. return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
  151. }
  152. static __always_inline void timer_set_mode(const int access, int mode,
  153. struct clock_event_device *clk)
  154. {
  155. unsigned long ctrl;
  156. switch (mode) {
  157. case CLOCK_EVT_MODE_UNUSED:
  158. case CLOCK_EVT_MODE_SHUTDOWN:
  159. ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
  160. ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
  161. arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
  162. break;
  163. default:
  164. break;
  165. }
  166. }
  167. static void arch_timer_set_mode_virt(enum clock_event_mode mode,
  168. struct clock_event_device *clk)
  169. {
  170. timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode, clk);
  171. }
  172. static void arch_timer_set_mode_phys(enum clock_event_mode mode,
  173. struct clock_event_device *clk)
  174. {
  175. timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode, clk);
  176. }
  177. static void arch_timer_set_mode_virt_mem(enum clock_event_mode mode,
  178. struct clock_event_device *clk)
  179. {
  180. timer_set_mode(ARCH_TIMER_MEM_VIRT_ACCESS, mode, clk);
  181. }
  182. static void arch_timer_set_mode_phys_mem(enum clock_event_mode mode,
  183. struct clock_event_device *clk)
  184. {
  185. timer_set_mode(ARCH_TIMER_MEM_PHYS_ACCESS, mode, clk);
  186. }
  187. static __always_inline void set_next_event(const int access, unsigned long evt,
  188. struct clock_event_device *clk)
  189. {
  190. unsigned long ctrl;
  191. ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
  192. ctrl |= ARCH_TIMER_CTRL_ENABLE;
  193. ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
  194. arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
  195. arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
  196. }
  197. static int arch_timer_set_next_event_virt(unsigned long evt,
  198. struct clock_event_device *clk)
  199. {
  200. set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
  201. return 0;
  202. }
  203. static int arch_timer_set_next_event_phys(unsigned long evt,
  204. struct clock_event_device *clk)
  205. {
  206. set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
  207. return 0;
  208. }
  209. static int arch_timer_set_next_event_virt_mem(unsigned long evt,
  210. struct clock_event_device *clk)
  211. {
  212. set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
  213. return 0;
  214. }
  215. static int arch_timer_set_next_event_phys_mem(unsigned long evt,
  216. struct clock_event_device *clk)
  217. {
  218. set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
  219. return 0;
  220. }
  221. static void __arch_timer_setup(unsigned type,
  222. struct clock_event_device *clk)
  223. {
  224. clk->features = CLOCK_EVT_FEAT_ONESHOT;
  225. if (type == ARCH_CP15_TIMER) {
  226. if (arch_timer_c3stop)
  227. clk->features |= CLOCK_EVT_FEAT_C3STOP;
  228. clk->name = "arch_sys_timer";
  229. clk->rating = 450;
  230. clk->cpumask = cpumask_of(smp_processor_id());
  231. if (arch_timer_use_virtual) {
  232. clk->irq = arch_timer_ppi[VIRT_PPI];
  233. clk->set_mode = arch_timer_set_mode_virt;
  234. clk->set_next_event = arch_timer_set_next_event_virt;
  235. } else {
  236. clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
  237. clk->set_mode = arch_timer_set_mode_phys;
  238. clk->set_next_event = arch_timer_set_next_event_phys;
  239. }
  240. } else {
  241. clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
  242. clk->name = "arch_mem_timer";
  243. clk->rating = 400;
  244. clk->cpumask = cpu_all_mask;
  245. if (arch_timer_mem_use_virtual) {
  246. clk->set_mode = arch_timer_set_mode_virt_mem;
  247. clk->set_next_event =
  248. arch_timer_set_next_event_virt_mem;
  249. } else {
  250. clk->set_mode = arch_timer_set_mode_phys_mem;
  251. clk->set_next_event =
  252. arch_timer_set_next_event_phys_mem;
  253. }
  254. }
  255. clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, clk);
  256. clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
  257. }
  258. static void arch_timer_evtstrm_enable(int divider)
  259. {
  260. u32 cntkctl = arch_timer_get_cntkctl();
  261. cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
  262. /* Set the divider and enable virtual event stream */
  263. cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
  264. | ARCH_TIMER_VIRT_EVT_EN;
  265. arch_timer_set_cntkctl(cntkctl);
  266. elf_hwcap |= HWCAP_EVTSTRM;
  267. #ifdef CONFIG_COMPAT
  268. compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
  269. #endif
  270. }
  271. static void arch_timer_configure_evtstream(void)
  272. {
  273. int evt_stream_div, pos;
  274. /* Find the closest power of two to the divisor */
  275. evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
  276. pos = fls(evt_stream_div);
  277. if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
  278. pos--;
  279. /* enable event stream */
  280. arch_timer_evtstrm_enable(min(pos, 15));
  281. }
  282. static void arch_counter_set_user_access(void)
  283. {
  284. u32 cntkctl = arch_timer_get_cntkctl();
  285. /* Disable user access to the timers and the physical counter */
  286. /* Also disable virtual event stream */
  287. cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
  288. | ARCH_TIMER_USR_VT_ACCESS_EN
  289. | ARCH_TIMER_VIRT_EVT_EN
  290. | ARCH_TIMER_USR_PCT_ACCESS_EN);
  291. /* Enable user access to the virtual counter */
  292. cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
  293. arch_timer_set_cntkctl(cntkctl);
  294. }
  295. static int arch_timer_setup(struct clock_event_device *clk)
  296. {
  297. __arch_timer_setup(ARCH_CP15_TIMER, clk);
  298. if (arch_timer_use_virtual)
  299. enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
  300. else {
  301. enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
  302. if (arch_timer_ppi[PHYS_NONSECURE_PPI])
  303. enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
  304. }
  305. arch_counter_set_user_access();
  306. if (IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM))
  307. arch_timer_configure_evtstream();
  308. return 0;
  309. }
  310. static void
  311. arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
  312. {
  313. /* Who has more than one independent system counter? */
  314. if (arch_timer_rate)
  315. return;
  316. /* Try to determine the frequency from the device tree or CNTFRQ */
  317. if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
  318. if (cntbase)
  319. arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
  320. else
  321. arch_timer_rate = arch_timer_get_cntfrq();
  322. }
  323. /* Check the timer frequency. */
  324. if (arch_timer_rate == 0)
  325. pr_warn("Architected timer frequency not available\n");
  326. }
  327. static void arch_timer_banner(unsigned type)
  328. {
  329. pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
  330. type & ARCH_CP15_TIMER ? "cp15" : "",
  331. type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? " and " : "",
  332. type & ARCH_MEM_TIMER ? "mmio" : "",
  333. (unsigned long)arch_timer_rate / 1000000,
  334. (unsigned long)(arch_timer_rate / 10000) % 100,
  335. type & ARCH_CP15_TIMER ?
  336. arch_timer_use_virtual ? "virt" : "phys" :
  337. "",
  338. type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? "/" : "",
  339. type & ARCH_MEM_TIMER ?
  340. arch_timer_mem_use_virtual ? "virt" : "phys" :
  341. "");
  342. }
  343. u32 arch_timer_get_rate(void)
  344. {
  345. return arch_timer_rate;
  346. }
  347. static u64 arch_counter_get_cntvct_mem(void)
  348. {
  349. u32 vct_lo, vct_hi, tmp_hi;
  350. do {
  351. vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
  352. vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
  353. tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
  354. } while (vct_hi != tmp_hi);
  355. return ((u64) vct_hi << 32) | vct_lo;
  356. }
  357. /*
  358. * Default to cp15 based access because arm64 uses this function for
  359. * sched_clock() before DT is probed and the cp15 method is guaranteed
  360. * to exist on arm64. arm doesn't use this before DT is probed so even
  361. * if we don't have the cp15 accessors we won't have a problem.
  362. */
  363. u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
  364. static cycle_t arch_counter_read(struct clocksource *cs)
  365. {
  366. return arch_timer_read_counter();
  367. }
  368. static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
  369. {
  370. return arch_timer_read_counter();
  371. }
  372. static struct clocksource clocksource_counter = {
  373. .name = "arch_sys_counter",
  374. .rating = 400,
  375. .read = arch_counter_read,
  376. .mask = CLOCKSOURCE_MASK(56),
  377. .flags = CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP,
  378. };
  379. static struct cyclecounter cyclecounter = {
  380. .read = arch_counter_read_cc,
  381. .mask = CLOCKSOURCE_MASK(56),
  382. };
  383. static struct timecounter timecounter;
  384. struct timecounter *arch_timer_get_timecounter(void)
  385. {
  386. return &timecounter;
  387. }
  388. static void __init arch_counter_register(unsigned type)
  389. {
  390. u64 start_count;
  391. /* Register the CP15 based counter if we have one */
  392. if (type & ARCH_CP15_TIMER) {
  393. arch_timer_read_counter = arch_counter_get_cntvct;
  394. } else {
  395. arch_timer_read_counter = arch_counter_get_cntvct_mem;
  396. /* If the clocksource name is "arch_sys_counter" the
  397. * VDSO will attempt to read the CP15-based counter.
  398. * Ensure this does not happen when CP15-based
  399. * counter is not available.
  400. */
  401. clocksource_counter.name = "arch_mem_counter";
  402. }
  403. start_count = arch_timer_read_counter();
  404. clocksource_register_hz(&clocksource_counter, arch_timer_rate);
  405. cyclecounter.mult = clocksource_counter.mult;
  406. cyclecounter.shift = clocksource_counter.shift;
  407. timecounter_init(&timecounter, &cyclecounter, start_count);
  408. /* 56 bits minimum, so we assume worst case rollover */
  409. sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
  410. }
  411. static void arch_timer_stop(struct clock_event_device *clk)
  412. {
  413. pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
  414. clk->irq, smp_processor_id());
  415. if (arch_timer_use_virtual)
  416. disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
  417. else {
  418. disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
  419. if (arch_timer_ppi[PHYS_NONSECURE_PPI])
  420. disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
  421. }
  422. clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk);
  423. }
  424. static int arch_timer_cpu_notify(struct notifier_block *self,
  425. unsigned long action, void *hcpu)
  426. {
  427. /*
  428. * Grab cpu pointer in each case to avoid spurious
  429. * preemptible warnings
  430. */
  431. switch (action & ~CPU_TASKS_FROZEN) {
  432. case CPU_STARTING:
  433. arch_timer_setup(this_cpu_ptr(arch_timer_evt));
  434. break;
  435. case CPU_DYING:
  436. arch_timer_stop(this_cpu_ptr(arch_timer_evt));
  437. break;
  438. }
  439. return NOTIFY_OK;
  440. }
  441. static struct notifier_block arch_timer_cpu_nb = {
  442. .notifier_call = arch_timer_cpu_notify,
  443. };
  444. #ifdef CONFIG_CPU_PM
  445. static unsigned int saved_cntkctl;
  446. static int arch_timer_cpu_pm_notify(struct notifier_block *self,
  447. unsigned long action, void *hcpu)
  448. {
  449. if (action == CPU_PM_ENTER)
  450. saved_cntkctl = arch_timer_get_cntkctl();
  451. else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
  452. arch_timer_set_cntkctl(saved_cntkctl);
  453. return NOTIFY_OK;
  454. }
  455. static struct notifier_block arch_timer_cpu_pm_notifier = {
  456. .notifier_call = arch_timer_cpu_pm_notify,
  457. };
  458. static int __init arch_timer_cpu_pm_init(void)
  459. {
  460. return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
  461. }
  462. #else
  463. static int __init arch_timer_cpu_pm_init(void)
  464. {
  465. return 0;
  466. }
  467. #endif
  468. static int __init arch_timer_register(void)
  469. {
  470. int err;
  471. int ppi;
  472. arch_timer_evt = alloc_percpu(struct clock_event_device);
  473. if (!arch_timer_evt) {
  474. err = -ENOMEM;
  475. goto out;
  476. }
  477. if (arch_timer_use_virtual) {
  478. ppi = arch_timer_ppi[VIRT_PPI];
  479. err = request_percpu_irq(ppi, arch_timer_handler_virt,
  480. "arch_timer", arch_timer_evt);
  481. } else {
  482. ppi = arch_timer_ppi[PHYS_SECURE_PPI];
  483. err = request_percpu_irq(ppi, arch_timer_handler_phys,
  484. "arch_timer", arch_timer_evt);
  485. if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
  486. ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
  487. err = request_percpu_irq(ppi, arch_timer_handler_phys,
  488. "arch_timer", arch_timer_evt);
  489. if (err)
  490. free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
  491. arch_timer_evt);
  492. }
  493. }
  494. if (err) {
  495. pr_err("arch_timer: can't register interrupt %d (%d)\n",
  496. ppi, err);
  497. goto out_free;
  498. }
  499. err = register_cpu_notifier(&arch_timer_cpu_nb);
  500. if (err)
  501. goto out_free_irq;
  502. err = arch_timer_cpu_pm_init();
  503. if (err)
  504. goto out_unreg_notify;
  505. /* Immediately configure the timer on the boot CPU */
  506. arch_timer_setup(this_cpu_ptr(arch_timer_evt));
  507. return 0;
  508. out_unreg_notify:
  509. unregister_cpu_notifier(&arch_timer_cpu_nb);
  510. out_free_irq:
  511. if (arch_timer_use_virtual)
  512. free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
  513. else {
  514. free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
  515. arch_timer_evt);
  516. if (arch_timer_ppi[PHYS_NONSECURE_PPI])
  517. free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
  518. arch_timer_evt);
  519. }
  520. out_free:
  521. free_percpu(arch_timer_evt);
  522. out:
  523. return err;
  524. }
  525. static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
  526. {
  527. int ret;
  528. irq_handler_t func;
  529. struct arch_timer *t;
  530. t = kzalloc(sizeof(*t), GFP_KERNEL);
  531. if (!t)
  532. return -ENOMEM;
  533. t->base = base;
  534. t->evt.irq = irq;
  535. __arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
  536. if (arch_timer_mem_use_virtual)
  537. func = arch_timer_handler_virt_mem;
  538. else
  539. func = arch_timer_handler_phys_mem;
  540. ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
  541. if (ret) {
  542. pr_err("arch_timer: Failed to request mem timer irq\n");
  543. kfree(t);
  544. }
  545. return ret;
  546. }
  547. static const struct of_device_id arch_timer_of_match[] __initconst = {
  548. { .compatible = "arm,armv7-timer", },
  549. { .compatible = "arm,armv8-timer", },
  550. {},
  551. };
  552. static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
  553. { .compatible = "arm,armv7-timer-mem", },
  554. {},
  555. };
  556. static bool __init
  557. arch_timer_probed(int type, const struct of_device_id *matches)
  558. {
  559. struct device_node *dn;
  560. bool probed = true;
  561. dn = of_find_matching_node(NULL, matches);
  562. if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
  563. probed = false;
  564. of_node_put(dn);
  565. return probed;
  566. }
  567. static void __init arch_timer_common_init(void)
  568. {
  569. unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
  570. /* Wait until both nodes are probed if we have two timers */
  571. if ((arch_timers_present & mask) != mask) {
  572. if (!arch_timer_probed(ARCH_MEM_TIMER, arch_timer_mem_of_match))
  573. return;
  574. if (!arch_timer_probed(ARCH_CP15_TIMER, arch_timer_of_match))
  575. return;
  576. }
  577. arch_timer_banner(arch_timers_present);
  578. arch_counter_register(arch_timers_present);
  579. arch_timer_arch_init();
  580. }
  581. static void __init arch_timer_init(struct device_node *np)
  582. {
  583. int i;
  584. if (arch_timers_present & ARCH_CP15_TIMER) {
  585. pr_warn("arch_timer: multiple nodes in dt, skipping\n");
  586. return;
  587. }
  588. arch_timers_present |= ARCH_CP15_TIMER;
  589. for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
  590. arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
  591. arch_timer_detect_rate(NULL, np);
  592. /*
  593. * If HYP mode is available, we know that the physical timer
  594. * has been configured to be accessible from PL1. Use it, so
  595. * that a guest can use the virtual timer instead.
  596. *
  597. * If no interrupt provided for virtual timer, we'll have to
  598. * stick to the physical timer. It'd better be accessible...
  599. */
  600. if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
  601. arch_timer_use_virtual = false;
  602. if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
  603. !arch_timer_ppi[PHYS_NONSECURE_PPI]) {
  604. pr_warn("arch_timer: No interrupt available, giving up\n");
  605. return;
  606. }
  607. }
  608. arch_timer_c3stop = !of_property_read_bool(np, "always-on");
  609. arch_timer_register();
  610. arch_timer_common_init();
  611. }
  612. CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_init);
  613. CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_init);
  614. static void __init arch_timer_mem_init(struct device_node *np)
  615. {
  616. struct device_node *frame, *best_frame = NULL;
  617. void __iomem *cntctlbase, *base;
  618. unsigned int irq;
  619. u32 cnttidr;
  620. arch_timers_present |= ARCH_MEM_TIMER;
  621. cntctlbase = of_iomap(np, 0);
  622. if (!cntctlbase) {
  623. pr_err("arch_timer: Can't find CNTCTLBase\n");
  624. return;
  625. }
  626. cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
  627. iounmap(cntctlbase);
  628. /*
  629. * Try to find a virtual capable frame. Otherwise fall back to a
  630. * physical capable frame.
  631. */
  632. for_each_available_child_of_node(np, frame) {
  633. int n;
  634. if (of_property_read_u32(frame, "frame-number", &n)) {
  635. pr_err("arch_timer: Missing frame-number\n");
  636. of_node_put(best_frame);
  637. of_node_put(frame);
  638. return;
  639. }
  640. if (cnttidr & CNTTIDR_VIRT(n)) {
  641. of_node_put(best_frame);
  642. best_frame = frame;
  643. arch_timer_mem_use_virtual = true;
  644. break;
  645. }
  646. of_node_put(best_frame);
  647. best_frame = of_node_get(frame);
  648. }
  649. base = arch_counter_base = of_iomap(best_frame, 0);
  650. if (!base) {
  651. pr_err("arch_timer: Can't map frame's registers\n");
  652. of_node_put(best_frame);
  653. return;
  654. }
  655. if (arch_timer_mem_use_virtual)
  656. irq = irq_of_parse_and_map(best_frame, 1);
  657. else
  658. irq = irq_of_parse_and_map(best_frame, 0);
  659. of_node_put(best_frame);
  660. if (!irq) {
  661. pr_err("arch_timer: Frame missing %s irq",
  662. arch_timer_mem_use_virtual ? "virt" : "phys");
  663. return;
  664. }
  665. arch_timer_detect_rate(base, np);
  666. arch_timer_mem_register(base, irq);
  667. arch_timer_common_init();
  668. }
  669. CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
  670. arch_timer_mem_init);