acpi_lpss.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713
  1. /*
  2. * ACPI support for Intel Lynxpoint LPSS.
  3. *
  4. * Copyright (C) 2013, Intel Corporation
  5. * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
  6. * Rafael J. Wysocki <rafael.j.wysocki@intel.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/acpi.h>
  13. #include <linux/clk.h>
  14. #include <linux/clkdev.h>
  15. #include <linux/clk-provider.h>
  16. #include <linux/err.h>
  17. #include <linux/io.h>
  18. #include <linux/platform_device.h>
  19. #include <linux/platform_data/clk-lpss.h>
  20. #include <linux/pm_runtime.h>
  21. #include <linux/delay.h>
  22. #include "internal.h"
  23. ACPI_MODULE_NAME("acpi_lpss");
  24. #ifdef CONFIG_X86_INTEL_LPSS
  25. #define LPSS_ADDR(desc) ((unsigned long)&desc)
  26. #define LPSS_CLK_SIZE 0x04
  27. #define LPSS_LTR_SIZE 0x18
  28. /* Offsets relative to LPSS_PRIVATE_OFFSET */
  29. #define LPSS_CLK_DIVIDER_DEF_MASK (BIT(1) | BIT(16))
  30. #define LPSS_RESETS 0x04
  31. #define LPSS_RESETS_RESET_FUNC BIT(0)
  32. #define LPSS_RESETS_RESET_APB BIT(1)
  33. #define LPSS_GENERAL 0x08
  34. #define LPSS_GENERAL_LTR_MODE_SW BIT(2)
  35. #define LPSS_GENERAL_UART_RTS_OVRD BIT(3)
  36. #define LPSS_SW_LTR 0x10
  37. #define LPSS_AUTO_LTR 0x14
  38. #define LPSS_LTR_SNOOP_REQ BIT(15)
  39. #define LPSS_LTR_SNOOP_MASK 0x0000FFFF
  40. #define LPSS_LTR_SNOOP_LAT_1US 0x800
  41. #define LPSS_LTR_SNOOP_LAT_32US 0xC00
  42. #define LPSS_LTR_SNOOP_LAT_SHIFT 5
  43. #define LPSS_LTR_SNOOP_LAT_CUTOFF 3000
  44. #define LPSS_LTR_MAX_VAL 0x3FF
  45. #define LPSS_TX_INT 0x20
  46. #define LPSS_TX_INT_MASK BIT(1)
  47. #define LPSS_PRV_REG_COUNT 9
  48. /* LPSS Flags */
  49. #define LPSS_CLK BIT(0)
  50. #define LPSS_CLK_GATE BIT(1)
  51. #define LPSS_CLK_DIVIDER BIT(2)
  52. #define LPSS_LTR BIT(3)
  53. #define LPSS_SAVE_CTX BIT(4)
  54. struct lpss_private_data;
  55. struct lpss_device_desc {
  56. unsigned int flags;
  57. unsigned int prv_offset;
  58. size_t prv_size_override;
  59. void (*setup)(struct lpss_private_data *pdata);
  60. };
  61. static struct lpss_device_desc lpss_dma_desc = {
  62. .flags = LPSS_CLK,
  63. };
  64. struct lpss_private_data {
  65. void __iomem *mmio_base;
  66. resource_size_t mmio_size;
  67. unsigned int fixed_clk_rate;
  68. struct clk *clk;
  69. const struct lpss_device_desc *dev_desc;
  70. u32 prv_reg_ctx[LPSS_PRV_REG_COUNT];
  71. };
  72. /* UART Component Parameter Register */
  73. #define LPSS_UART_CPR 0xF4
  74. #define LPSS_UART_CPR_AFCE BIT(4)
  75. static void lpss_uart_setup(struct lpss_private_data *pdata)
  76. {
  77. unsigned int offset;
  78. u32 val;
  79. offset = pdata->dev_desc->prv_offset + LPSS_TX_INT;
  80. val = readl(pdata->mmio_base + offset);
  81. writel(val | LPSS_TX_INT_MASK, pdata->mmio_base + offset);
  82. val = readl(pdata->mmio_base + LPSS_UART_CPR);
  83. if (!(val & LPSS_UART_CPR_AFCE)) {
  84. offset = pdata->dev_desc->prv_offset + LPSS_GENERAL;
  85. val = readl(pdata->mmio_base + offset);
  86. val |= LPSS_GENERAL_UART_RTS_OVRD;
  87. writel(val, pdata->mmio_base + offset);
  88. }
  89. }
  90. static void byt_i2c_setup(struct lpss_private_data *pdata)
  91. {
  92. unsigned int offset;
  93. u32 val;
  94. offset = pdata->dev_desc->prv_offset + LPSS_RESETS;
  95. val = readl(pdata->mmio_base + offset);
  96. val |= LPSS_RESETS_RESET_APB | LPSS_RESETS_RESET_FUNC;
  97. writel(val, pdata->mmio_base + offset);
  98. if (readl(pdata->mmio_base + pdata->dev_desc->prv_offset))
  99. pdata->fixed_clk_rate = 133000000;
  100. }
  101. static struct lpss_device_desc lpt_dev_desc = {
  102. .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR,
  103. .prv_offset = 0x800,
  104. };
  105. static struct lpss_device_desc lpt_i2c_dev_desc = {
  106. .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_LTR,
  107. .prv_offset = 0x800,
  108. };
  109. static struct lpss_device_desc lpt_uart_dev_desc = {
  110. .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR,
  111. .prv_offset = 0x800,
  112. .setup = lpss_uart_setup,
  113. };
  114. static struct lpss_device_desc lpt_sdio_dev_desc = {
  115. .flags = LPSS_LTR,
  116. .prv_offset = 0x1000,
  117. .prv_size_override = 0x1018,
  118. };
  119. static struct lpss_device_desc byt_pwm_dev_desc = {
  120. .flags = LPSS_SAVE_CTX,
  121. };
  122. static struct lpss_device_desc byt_uart_dev_desc = {
  123. .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
  124. .prv_offset = 0x800,
  125. .setup = lpss_uart_setup,
  126. };
  127. static struct lpss_device_desc byt_spi_dev_desc = {
  128. .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
  129. .prv_offset = 0x400,
  130. };
  131. static struct lpss_device_desc byt_sdio_dev_desc = {
  132. .flags = LPSS_CLK,
  133. };
  134. static struct lpss_device_desc byt_i2c_dev_desc = {
  135. .flags = LPSS_CLK | LPSS_SAVE_CTX,
  136. .prv_offset = 0x800,
  137. .setup = byt_i2c_setup,
  138. };
  139. #else
  140. #define LPSS_ADDR(desc) (0UL)
  141. #endif /* CONFIG_X86_INTEL_LPSS */
  142. static const struct acpi_device_id acpi_lpss_device_ids[] = {
  143. /* Generic LPSS devices */
  144. { "INTL9C60", LPSS_ADDR(lpss_dma_desc) },
  145. /* Lynxpoint LPSS devices */
  146. { "INT33C0", LPSS_ADDR(lpt_dev_desc) },
  147. { "INT33C1", LPSS_ADDR(lpt_dev_desc) },
  148. { "INT33C2", LPSS_ADDR(lpt_i2c_dev_desc) },
  149. { "INT33C3", LPSS_ADDR(lpt_i2c_dev_desc) },
  150. { "INT33C4", LPSS_ADDR(lpt_uart_dev_desc) },
  151. { "INT33C5", LPSS_ADDR(lpt_uart_dev_desc) },
  152. { "INT33C6", LPSS_ADDR(lpt_sdio_dev_desc) },
  153. { "INT33C7", },
  154. /* BayTrail LPSS devices */
  155. { "80860F09", LPSS_ADDR(byt_pwm_dev_desc) },
  156. { "80860F0A", LPSS_ADDR(byt_uart_dev_desc) },
  157. { "80860F0E", LPSS_ADDR(byt_spi_dev_desc) },
  158. { "80860F14", LPSS_ADDR(byt_sdio_dev_desc) },
  159. { "80860F41", LPSS_ADDR(byt_i2c_dev_desc) },
  160. { "INT33B2", },
  161. { "INT33FC", },
  162. /* Braswell LPSS devices */
  163. { "80862288", LPSS_ADDR(byt_pwm_dev_desc) },
  164. { "8086228A", LPSS_ADDR(byt_uart_dev_desc) },
  165. { "8086228E", LPSS_ADDR(byt_spi_dev_desc) },
  166. { "808622C1", LPSS_ADDR(byt_i2c_dev_desc) },
  167. { "INT3430", LPSS_ADDR(lpt_dev_desc) },
  168. { "INT3431", LPSS_ADDR(lpt_dev_desc) },
  169. { "INT3432", LPSS_ADDR(lpt_i2c_dev_desc) },
  170. { "INT3433", LPSS_ADDR(lpt_i2c_dev_desc) },
  171. { "INT3434", LPSS_ADDR(lpt_uart_dev_desc) },
  172. { "INT3435", LPSS_ADDR(lpt_uart_dev_desc) },
  173. { "INT3436", LPSS_ADDR(lpt_sdio_dev_desc) },
  174. { "INT3437", },
  175. /* Wildcat Point LPSS devices */
  176. { "INT3438", LPSS_ADDR(lpt_dev_desc) },
  177. { }
  178. };
  179. #ifdef CONFIG_X86_INTEL_LPSS
  180. static int is_memory(struct acpi_resource *res, void *not_used)
  181. {
  182. struct resource r;
  183. return !acpi_dev_resource_memory(res, &r);
  184. }
  185. /* LPSS main clock device. */
  186. static struct platform_device *lpss_clk_dev;
  187. static inline void lpt_register_clock_device(void)
  188. {
  189. lpss_clk_dev = platform_device_register_simple("clk-lpt", -1, NULL, 0);
  190. }
  191. static int register_device_clock(struct acpi_device *adev,
  192. struct lpss_private_data *pdata)
  193. {
  194. const struct lpss_device_desc *dev_desc = pdata->dev_desc;
  195. const char *devname = dev_name(&adev->dev);
  196. struct clk *clk = ERR_PTR(-ENODEV);
  197. struct lpss_clk_data *clk_data;
  198. const char *parent, *clk_name;
  199. void __iomem *prv_base;
  200. if (!lpss_clk_dev)
  201. lpt_register_clock_device();
  202. clk_data = platform_get_drvdata(lpss_clk_dev);
  203. if (!clk_data)
  204. return -ENODEV;
  205. clk = clk_data->clk;
  206. if (!pdata->mmio_base
  207. || pdata->mmio_size < dev_desc->prv_offset + LPSS_CLK_SIZE)
  208. return -ENODATA;
  209. parent = clk_data->name;
  210. prv_base = pdata->mmio_base + dev_desc->prv_offset;
  211. if (pdata->fixed_clk_rate) {
  212. clk = clk_register_fixed_rate(NULL, devname, parent, 0,
  213. pdata->fixed_clk_rate);
  214. goto out;
  215. }
  216. if (dev_desc->flags & LPSS_CLK_GATE) {
  217. clk = clk_register_gate(NULL, devname, parent, 0,
  218. prv_base, 0, 0, NULL);
  219. parent = devname;
  220. }
  221. if (dev_desc->flags & LPSS_CLK_DIVIDER) {
  222. /* Prevent division by zero */
  223. if (!readl(prv_base))
  224. writel(LPSS_CLK_DIVIDER_DEF_MASK, prv_base);
  225. clk_name = kasprintf(GFP_KERNEL, "%s-div", devname);
  226. if (!clk_name)
  227. return -ENOMEM;
  228. clk = clk_register_fractional_divider(NULL, clk_name, parent,
  229. 0, prv_base,
  230. 1, 15, 16, 15, 0, NULL);
  231. parent = clk_name;
  232. clk_name = kasprintf(GFP_KERNEL, "%s-update", devname);
  233. if (!clk_name) {
  234. kfree(parent);
  235. return -ENOMEM;
  236. }
  237. clk = clk_register_gate(NULL, clk_name, parent,
  238. CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE,
  239. prv_base, 31, 0, NULL);
  240. kfree(parent);
  241. kfree(clk_name);
  242. }
  243. out:
  244. if (IS_ERR(clk))
  245. return PTR_ERR(clk);
  246. pdata->clk = clk;
  247. clk_register_clkdev(clk, NULL, devname);
  248. return 0;
  249. }
  250. static int acpi_lpss_create_device(struct acpi_device *adev,
  251. const struct acpi_device_id *id)
  252. {
  253. struct lpss_device_desc *dev_desc;
  254. struct lpss_private_data *pdata;
  255. struct resource_list_entry *rentry;
  256. struct list_head resource_list;
  257. struct platform_device *pdev;
  258. int ret;
  259. dev_desc = (struct lpss_device_desc *)id->driver_data;
  260. if (!dev_desc) {
  261. pdev = acpi_create_platform_device(adev);
  262. return IS_ERR_OR_NULL(pdev) ? PTR_ERR(pdev) : 1;
  263. }
  264. pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
  265. if (!pdata)
  266. return -ENOMEM;
  267. INIT_LIST_HEAD(&resource_list);
  268. ret = acpi_dev_get_resources(adev, &resource_list, is_memory, NULL);
  269. if (ret < 0)
  270. goto err_out;
  271. list_for_each_entry(rentry, &resource_list, node)
  272. if (resource_type(&rentry->res) == IORESOURCE_MEM) {
  273. if (dev_desc->prv_size_override)
  274. pdata->mmio_size = dev_desc->prv_size_override;
  275. else
  276. pdata->mmio_size = resource_size(&rentry->res);
  277. pdata->mmio_base = ioremap(rentry->res.start,
  278. pdata->mmio_size);
  279. break;
  280. }
  281. acpi_dev_free_resource_list(&resource_list);
  282. pdata->dev_desc = dev_desc;
  283. if (dev_desc->setup)
  284. dev_desc->setup(pdata);
  285. if (dev_desc->flags & LPSS_CLK) {
  286. ret = register_device_clock(adev, pdata);
  287. if (ret) {
  288. /* Skip the device, but continue the namespace scan. */
  289. ret = 0;
  290. goto err_out;
  291. }
  292. }
  293. /*
  294. * This works around a known issue in ACPI tables where LPSS devices
  295. * have _PS0 and _PS3 without _PSC (and no power resources), so
  296. * acpi_bus_init_power() will assume that the BIOS has put them into D0.
  297. */
  298. ret = acpi_device_fix_up_power(adev);
  299. if (ret) {
  300. /* Skip the device, but continue the namespace scan. */
  301. ret = 0;
  302. goto err_out;
  303. }
  304. adev->driver_data = pdata;
  305. pdev = acpi_create_platform_device(adev);
  306. if (!IS_ERR_OR_NULL(pdev)) {
  307. return 1;
  308. }
  309. ret = PTR_ERR(pdev);
  310. adev->driver_data = NULL;
  311. err_out:
  312. kfree(pdata);
  313. return ret;
  314. }
  315. static u32 __lpss_reg_read(struct lpss_private_data *pdata, unsigned int reg)
  316. {
  317. return readl(pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
  318. }
  319. static void __lpss_reg_write(u32 val, struct lpss_private_data *pdata,
  320. unsigned int reg)
  321. {
  322. writel(val, pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
  323. }
  324. static int lpss_reg_read(struct device *dev, unsigned int reg, u32 *val)
  325. {
  326. struct acpi_device *adev;
  327. struct lpss_private_data *pdata;
  328. unsigned long flags;
  329. int ret;
  330. ret = acpi_bus_get_device(ACPI_HANDLE(dev), &adev);
  331. if (WARN_ON(ret))
  332. return ret;
  333. spin_lock_irqsave(&dev->power.lock, flags);
  334. if (pm_runtime_suspended(dev)) {
  335. ret = -EAGAIN;
  336. goto out;
  337. }
  338. pdata = acpi_driver_data(adev);
  339. if (WARN_ON(!pdata || !pdata->mmio_base)) {
  340. ret = -ENODEV;
  341. goto out;
  342. }
  343. *val = __lpss_reg_read(pdata, reg);
  344. out:
  345. spin_unlock_irqrestore(&dev->power.lock, flags);
  346. return ret;
  347. }
  348. static ssize_t lpss_ltr_show(struct device *dev, struct device_attribute *attr,
  349. char *buf)
  350. {
  351. u32 ltr_value = 0;
  352. unsigned int reg;
  353. int ret;
  354. reg = strcmp(attr->attr.name, "auto_ltr") ? LPSS_SW_LTR : LPSS_AUTO_LTR;
  355. ret = lpss_reg_read(dev, reg, &ltr_value);
  356. if (ret)
  357. return ret;
  358. return snprintf(buf, PAGE_SIZE, "%08x\n", ltr_value);
  359. }
  360. static ssize_t lpss_ltr_mode_show(struct device *dev,
  361. struct device_attribute *attr, char *buf)
  362. {
  363. u32 ltr_mode = 0;
  364. char *outstr;
  365. int ret;
  366. ret = lpss_reg_read(dev, LPSS_GENERAL, &ltr_mode);
  367. if (ret)
  368. return ret;
  369. outstr = (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) ? "sw" : "auto";
  370. return sprintf(buf, "%s\n", outstr);
  371. }
  372. static DEVICE_ATTR(auto_ltr, S_IRUSR, lpss_ltr_show, NULL);
  373. static DEVICE_ATTR(sw_ltr, S_IRUSR, lpss_ltr_show, NULL);
  374. static DEVICE_ATTR(ltr_mode, S_IRUSR, lpss_ltr_mode_show, NULL);
  375. static struct attribute *lpss_attrs[] = {
  376. &dev_attr_auto_ltr.attr,
  377. &dev_attr_sw_ltr.attr,
  378. &dev_attr_ltr_mode.attr,
  379. NULL,
  380. };
  381. static struct attribute_group lpss_attr_group = {
  382. .attrs = lpss_attrs,
  383. .name = "lpss_ltr",
  384. };
  385. static void acpi_lpss_set_ltr(struct device *dev, s32 val)
  386. {
  387. struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
  388. u32 ltr_mode, ltr_val;
  389. ltr_mode = __lpss_reg_read(pdata, LPSS_GENERAL);
  390. if (val < 0) {
  391. if (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) {
  392. ltr_mode &= ~LPSS_GENERAL_LTR_MODE_SW;
  393. __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
  394. }
  395. return;
  396. }
  397. ltr_val = __lpss_reg_read(pdata, LPSS_SW_LTR) & ~LPSS_LTR_SNOOP_MASK;
  398. if (val >= LPSS_LTR_SNOOP_LAT_CUTOFF) {
  399. ltr_val |= LPSS_LTR_SNOOP_LAT_32US;
  400. val = LPSS_LTR_MAX_VAL;
  401. } else if (val > LPSS_LTR_MAX_VAL) {
  402. ltr_val |= LPSS_LTR_SNOOP_LAT_32US | LPSS_LTR_SNOOP_REQ;
  403. val >>= LPSS_LTR_SNOOP_LAT_SHIFT;
  404. } else {
  405. ltr_val |= LPSS_LTR_SNOOP_LAT_1US | LPSS_LTR_SNOOP_REQ;
  406. }
  407. ltr_val |= val;
  408. __lpss_reg_write(ltr_val, pdata, LPSS_SW_LTR);
  409. if (!(ltr_mode & LPSS_GENERAL_LTR_MODE_SW)) {
  410. ltr_mode |= LPSS_GENERAL_LTR_MODE_SW;
  411. __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
  412. }
  413. }
  414. #ifdef CONFIG_PM
  415. /**
  416. * acpi_lpss_save_ctx() - Save the private registers of LPSS device
  417. * @dev: LPSS device
  418. *
  419. * Most LPSS devices have private registers which may loose their context when
  420. * the device is powered down. acpi_lpss_save_ctx() saves those registers into
  421. * prv_reg_ctx array.
  422. */
  423. static void acpi_lpss_save_ctx(struct device *dev)
  424. {
  425. struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
  426. unsigned int i;
  427. for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
  428. unsigned long offset = i * sizeof(u32);
  429. pdata->prv_reg_ctx[i] = __lpss_reg_read(pdata, offset);
  430. dev_dbg(dev, "saving 0x%08x from LPSS reg at offset 0x%02lx\n",
  431. pdata->prv_reg_ctx[i], offset);
  432. }
  433. }
  434. /**
  435. * acpi_lpss_restore_ctx() - Restore the private registers of LPSS device
  436. * @dev: LPSS device
  437. *
  438. * Restores the registers that were previously stored with acpi_lpss_save_ctx().
  439. */
  440. static void acpi_lpss_restore_ctx(struct device *dev)
  441. {
  442. struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
  443. unsigned int i;
  444. /*
  445. * The following delay is needed or the subsequent write operations may
  446. * fail. The LPSS devices are actually PCI devices and the PCI spec
  447. * expects 10ms delay before the device can be accessed after D3 to D0
  448. * transition.
  449. */
  450. msleep(10);
  451. for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
  452. unsigned long offset = i * sizeof(u32);
  453. __lpss_reg_write(pdata->prv_reg_ctx[i], pdata, offset);
  454. dev_dbg(dev, "restoring 0x%08x to LPSS reg at offset 0x%02lx\n",
  455. pdata->prv_reg_ctx[i], offset);
  456. }
  457. }
  458. #ifdef CONFIG_PM_SLEEP
  459. static int acpi_lpss_suspend_late(struct device *dev)
  460. {
  461. int ret = pm_generic_suspend_late(dev);
  462. if (ret)
  463. return ret;
  464. acpi_lpss_save_ctx(dev);
  465. return acpi_dev_suspend_late(dev);
  466. }
  467. static int acpi_lpss_resume_early(struct device *dev)
  468. {
  469. int ret = acpi_dev_resume_early(dev);
  470. if (ret)
  471. return ret;
  472. acpi_lpss_restore_ctx(dev);
  473. return pm_generic_resume_early(dev);
  474. }
  475. #endif /* CONFIG_PM_SLEEP */
  476. #ifdef CONFIG_PM_RUNTIME
  477. static int acpi_lpss_runtime_suspend(struct device *dev)
  478. {
  479. int ret = pm_generic_runtime_suspend(dev);
  480. if (ret)
  481. return ret;
  482. acpi_lpss_save_ctx(dev);
  483. return acpi_dev_runtime_suspend(dev);
  484. }
  485. static int acpi_lpss_runtime_resume(struct device *dev)
  486. {
  487. int ret = acpi_dev_runtime_resume(dev);
  488. if (ret)
  489. return ret;
  490. acpi_lpss_restore_ctx(dev);
  491. return pm_generic_runtime_resume(dev);
  492. }
  493. #endif /* CONFIG_PM_RUNTIME */
  494. #endif /* CONFIG_PM */
  495. static struct dev_pm_domain acpi_lpss_pm_domain = {
  496. .ops = {
  497. #ifdef CONFIG_PM_SLEEP
  498. .prepare = acpi_subsys_prepare,
  499. .complete = acpi_subsys_complete,
  500. .suspend = acpi_subsys_suspend,
  501. .suspend_late = acpi_lpss_suspend_late,
  502. .resume_early = acpi_lpss_resume_early,
  503. .freeze = acpi_subsys_freeze,
  504. .poweroff = acpi_subsys_suspend,
  505. .poweroff_late = acpi_lpss_suspend_late,
  506. .restore_early = acpi_lpss_resume_early,
  507. #endif
  508. #ifdef CONFIG_PM_RUNTIME
  509. .runtime_suspend = acpi_lpss_runtime_suspend,
  510. .runtime_resume = acpi_lpss_runtime_resume,
  511. #endif
  512. },
  513. };
  514. static int acpi_lpss_platform_notify(struct notifier_block *nb,
  515. unsigned long action, void *data)
  516. {
  517. struct platform_device *pdev = to_platform_device(data);
  518. struct lpss_private_data *pdata;
  519. struct acpi_device *adev;
  520. const struct acpi_device_id *id;
  521. id = acpi_match_device(acpi_lpss_device_ids, &pdev->dev);
  522. if (!id || !id->driver_data)
  523. return 0;
  524. if (acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
  525. return 0;
  526. pdata = acpi_driver_data(adev);
  527. if (!pdata || !pdata->mmio_base)
  528. return 0;
  529. if (pdata->mmio_size < pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) {
  530. dev_err(&pdev->dev, "MMIO size insufficient to access LTR\n");
  531. return 0;
  532. }
  533. switch (action) {
  534. case BUS_NOTIFY_BOUND_DRIVER:
  535. if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
  536. pdev->dev.pm_domain = &acpi_lpss_pm_domain;
  537. break;
  538. case BUS_NOTIFY_UNBOUND_DRIVER:
  539. if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
  540. pdev->dev.pm_domain = NULL;
  541. break;
  542. case BUS_NOTIFY_ADD_DEVICE:
  543. if (pdata->dev_desc->flags & LPSS_LTR)
  544. return sysfs_create_group(&pdev->dev.kobj,
  545. &lpss_attr_group);
  546. case BUS_NOTIFY_DEL_DEVICE:
  547. if (pdata->dev_desc->flags & LPSS_LTR)
  548. sysfs_remove_group(&pdev->dev.kobj, &lpss_attr_group);
  549. default:
  550. break;
  551. }
  552. return 0;
  553. }
  554. static struct notifier_block acpi_lpss_nb = {
  555. .notifier_call = acpi_lpss_platform_notify,
  556. };
  557. static void acpi_lpss_bind(struct device *dev)
  558. {
  559. struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
  560. if (!pdata || !pdata->mmio_base || !(pdata->dev_desc->flags & LPSS_LTR))
  561. return;
  562. if (pdata->mmio_size >= pdata->dev_desc->prv_offset + LPSS_LTR_SIZE)
  563. dev->power.set_latency_tolerance = acpi_lpss_set_ltr;
  564. else
  565. dev_err(dev, "MMIO size insufficient to access LTR\n");
  566. }
  567. static void acpi_lpss_unbind(struct device *dev)
  568. {
  569. dev->power.set_latency_tolerance = NULL;
  570. }
  571. static struct acpi_scan_handler lpss_handler = {
  572. .ids = acpi_lpss_device_ids,
  573. .attach = acpi_lpss_create_device,
  574. .bind = acpi_lpss_bind,
  575. .unbind = acpi_lpss_unbind,
  576. };
  577. void __init acpi_lpss_init(void)
  578. {
  579. if (!lpt_clk_init()) {
  580. bus_register_notifier(&platform_bus_type, &acpi_lpss_nb);
  581. acpi_scan_add_handler(&lpss_handler);
  582. }
  583. }
  584. #else
  585. static struct acpi_scan_handler lpss_handler = {
  586. .ids = acpi_lpss_device_ids,
  587. };
  588. void __init acpi_lpss_init(void)
  589. {
  590. acpi_scan_add_handler(&lpss_handler);
  591. }
  592. #endif /* CONFIG_X86_INTEL_LPSS */