tlbex.c 63 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Synthesize TLB refill handlers at runtime.
  7. *
  8. * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
  9. * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki
  10. * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
  11. * Copyright (C) 2008, 2009 Cavium Networks, Inc.
  12. * Copyright (C) 2011 MIPS Technologies, Inc.
  13. *
  14. * ... and the days got worse and worse and now you see
  15. * I've gone completly out of my mind.
  16. *
  17. * They're coming to take me a away haha
  18. * they're coming to take me a away hoho hihi haha
  19. * to the funny farm where code is beautiful all the time ...
  20. *
  21. * (Condolences to Napoleon XIV)
  22. */
  23. #include <linux/bug.h>
  24. #include <linux/kernel.h>
  25. #include <linux/types.h>
  26. #include <linux/smp.h>
  27. #include <linux/string.h>
  28. #include <linux/cache.h>
  29. #include <asm/cacheflush.h>
  30. #include <asm/cpu-type.h>
  31. #include <asm/pgtable.h>
  32. #include <asm/war.h>
  33. #include <asm/uasm.h>
  34. #include <asm/setup.h>
  35. /*
  36. * TLB load/store/modify handlers.
  37. *
  38. * Only the fastpath gets synthesized at runtime, the slowpath for
  39. * do_page_fault remains normal asm.
  40. */
  41. extern void tlb_do_page_fault_0(void);
  42. extern void tlb_do_page_fault_1(void);
  43. struct work_registers {
  44. int r1;
  45. int r2;
  46. int r3;
  47. };
  48. struct tlb_reg_save {
  49. unsigned long a;
  50. unsigned long b;
  51. } ____cacheline_aligned_in_smp;
  52. static struct tlb_reg_save handler_reg_save[NR_CPUS];
  53. static inline int r45k_bvahwbug(void)
  54. {
  55. /* XXX: We should probe for the presence of this bug, but we don't. */
  56. return 0;
  57. }
  58. static inline int r4k_250MHZhwbug(void)
  59. {
  60. /* XXX: We should probe for the presence of this bug, but we don't. */
  61. return 0;
  62. }
  63. static inline int __maybe_unused bcm1250_m3_war(void)
  64. {
  65. return BCM1250_M3_WAR;
  66. }
  67. static inline int __maybe_unused r10000_llsc_war(void)
  68. {
  69. return R10000_LLSC_WAR;
  70. }
  71. static int use_bbit_insns(void)
  72. {
  73. switch (current_cpu_type()) {
  74. case CPU_CAVIUM_OCTEON:
  75. case CPU_CAVIUM_OCTEON_PLUS:
  76. case CPU_CAVIUM_OCTEON2:
  77. case CPU_CAVIUM_OCTEON3:
  78. return 1;
  79. default:
  80. return 0;
  81. }
  82. }
  83. static int use_lwx_insns(void)
  84. {
  85. switch (current_cpu_type()) {
  86. case CPU_CAVIUM_OCTEON2:
  87. case CPU_CAVIUM_OCTEON3:
  88. return 1;
  89. default:
  90. return 0;
  91. }
  92. }
  93. #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
  94. CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
  95. static bool scratchpad_available(void)
  96. {
  97. return true;
  98. }
  99. static int scratchpad_offset(int i)
  100. {
  101. /*
  102. * CVMSEG starts at address -32768 and extends for
  103. * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
  104. */
  105. i += 1; /* Kernel use starts at the top and works down. */
  106. return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
  107. }
  108. #else
  109. static bool scratchpad_available(void)
  110. {
  111. return false;
  112. }
  113. static int scratchpad_offset(int i)
  114. {
  115. BUG();
  116. /* Really unreachable, but evidently some GCC want this. */
  117. return 0;
  118. }
  119. #endif
  120. /*
  121. * Found by experiment: At least some revisions of the 4kc throw under
  122. * some circumstances a machine check exception, triggered by invalid
  123. * values in the index register. Delaying the tlbp instruction until
  124. * after the next branch, plus adding an additional nop in front of
  125. * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
  126. * why; it's not an issue caused by the core RTL.
  127. *
  128. */
  129. static int m4kc_tlbp_war(void)
  130. {
  131. return (current_cpu_data.processor_id & 0xffff00) ==
  132. (PRID_COMP_MIPS | PRID_IMP_4KC);
  133. }
  134. /* Handle labels (which must be positive integers). */
  135. enum label_id {
  136. label_second_part = 1,
  137. label_leave,
  138. label_vmalloc,
  139. label_vmalloc_done,
  140. label_tlbw_hazard_0,
  141. label_split = label_tlbw_hazard_0 + 8,
  142. label_tlbl_goaround1,
  143. label_tlbl_goaround2,
  144. label_nopage_tlbl,
  145. label_nopage_tlbs,
  146. label_nopage_tlbm,
  147. label_smp_pgtable_change,
  148. label_r3000_write_probe_fail,
  149. label_large_segbits_fault,
  150. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  151. label_tlb_huge_update,
  152. #endif
  153. };
  154. UASM_L_LA(_second_part)
  155. UASM_L_LA(_leave)
  156. UASM_L_LA(_vmalloc)
  157. UASM_L_LA(_vmalloc_done)
  158. /* _tlbw_hazard_x is handled differently. */
  159. UASM_L_LA(_split)
  160. UASM_L_LA(_tlbl_goaround1)
  161. UASM_L_LA(_tlbl_goaround2)
  162. UASM_L_LA(_nopage_tlbl)
  163. UASM_L_LA(_nopage_tlbs)
  164. UASM_L_LA(_nopage_tlbm)
  165. UASM_L_LA(_smp_pgtable_change)
  166. UASM_L_LA(_r3000_write_probe_fail)
  167. UASM_L_LA(_large_segbits_fault)
  168. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  169. UASM_L_LA(_tlb_huge_update)
  170. #endif
  171. static int hazard_instance;
  172. static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance)
  173. {
  174. switch (instance) {
  175. case 0 ... 7:
  176. uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
  177. return;
  178. default:
  179. BUG();
  180. }
  181. }
  182. static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance)
  183. {
  184. switch (instance) {
  185. case 0 ... 7:
  186. uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
  187. break;
  188. default:
  189. BUG();
  190. }
  191. }
  192. /*
  193. * pgtable bits are assigned dynamically depending on processor feature
  194. * and statically based on kernel configuration. This spits out the actual
  195. * values the kernel is using. Required to make sense from disassembled
  196. * TLB exception handlers.
  197. */
  198. static void output_pgtable_bits_defines(void)
  199. {
  200. #define pr_define(fmt, ...) \
  201. pr_debug("#define " fmt, ##__VA_ARGS__)
  202. pr_debug("#include <asm/asm.h>\n");
  203. pr_debug("#include <asm/regdef.h>\n");
  204. pr_debug("\n");
  205. pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
  206. pr_define("_PAGE_READ_SHIFT %d\n", _PAGE_READ_SHIFT);
  207. pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
  208. pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
  209. pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
  210. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  211. pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
  212. pr_define("_PAGE_SPLITTING_SHIFT %d\n", _PAGE_SPLITTING_SHIFT);
  213. #endif
  214. if (cpu_has_rixi) {
  215. #ifdef _PAGE_NO_EXEC_SHIFT
  216. pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
  217. #endif
  218. #ifdef _PAGE_NO_READ_SHIFT
  219. pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
  220. #endif
  221. }
  222. pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
  223. pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
  224. pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
  225. pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
  226. pr_debug("\n");
  227. }
  228. static inline void dump_handler(const char *symbol, const u32 *handler, int count)
  229. {
  230. int i;
  231. pr_debug("LEAF(%s)\n", symbol);
  232. pr_debug("\t.set push\n");
  233. pr_debug("\t.set noreorder\n");
  234. for (i = 0; i < count; i++)
  235. pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
  236. pr_debug("\t.set\tpop\n");
  237. pr_debug("\tEND(%s)\n", symbol);
  238. }
  239. /* The only general purpose registers allowed in TLB handlers. */
  240. #define K0 26
  241. #define K1 27
  242. /* Some CP0 registers */
  243. #define C0_INDEX 0, 0
  244. #define C0_ENTRYLO0 2, 0
  245. #define C0_TCBIND 2, 2
  246. #define C0_ENTRYLO1 3, 0
  247. #define C0_CONTEXT 4, 0
  248. #define C0_PAGEMASK 5, 0
  249. #define C0_BADVADDR 8, 0
  250. #define C0_ENTRYHI 10, 0
  251. #define C0_EPC 14, 0
  252. #define C0_XCONTEXT 20, 0
  253. #ifdef CONFIG_64BIT
  254. # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
  255. #else
  256. # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
  257. #endif
  258. /* The worst case length of the handler is around 18 instructions for
  259. * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
  260. * Maximum space available is 32 instructions for R3000 and 64
  261. * instructions for R4000.
  262. *
  263. * We deliberately chose a buffer size of 128, so we won't scribble
  264. * over anything important on overflow before we panic.
  265. */
  266. static u32 tlb_handler[128];
  267. /* simply assume worst case size for labels and relocs */
  268. static struct uasm_label labels[128];
  269. static struct uasm_reloc relocs[128];
  270. static int check_for_high_segbits;
  271. static unsigned int kscratch_used_mask;
  272. static inline int __maybe_unused c0_kscratch(void)
  273. {
  274. switch (current_cpu_type()) {
  275. case CPU_XLP:
  276. case CPU_XLR:
  277. return 22;
  278. default:
  279. return 31;
  280. }
  281. }
  282. static int allocate_kscratch(void)
  283. {
  284. int r;
  285. unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
  286. r = ffs(a);
  287. if (r == 0)
  288. return -1;
  289. r--; /* make it zero based */
  290. kscratch_used_mask |= (1 << r);
  291. return r;
  292. }
  293. static int scratch_reg;
  294. static int pgd_reg;
  295. enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
  296. static struct work_registers build_get_work_registers(u32 **p)
  297. {
  298. struct work_registers r;
  299. if (scratch_reg >= 0) {
  300. /* Save in CPU local C0_KScratch? */
  301. UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg);
  302. r.r1 = K0;
  303. r.r2 = K1;
  304. r.r3 = 1;
  305. return r;
  306. }
  307. if (num_possible_cpus() > 1) {
  308. /* Get smp_processor_id */
  309. UASM_i_CPUID_MFC0(p, K0, SMP_CPUID_REG);
  310. UASM_i_SRL_SAFE(p, K0, K0, SMP_CPUID_REGSHIFT);
  311. /* handler_reg_save index in K0 */
  312. UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
  313. UASM_i_LA(p, K1, (long)&handler_reg_save);
  314. UASM_i_ADDU(p, K0, K0, K1);
  315. } else {
  316. UASM_i_LA(p, K0, (long)&handler_reg_save);
  317. }
  318. /* K0 now points to save area, save $1 and $2 */
  319. UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
  320. UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
  321. r.r1 = K1;
  322. r.r2 = 1;
  323. r.r3 = 2;
  324. return r;
  325. }
  326. static void build_restore_work_registers(u32 **p)
  327. {
  328. if (scratch_reg >= 0) {
  329. UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
  330. return;
  331. }
  332. /* K0 already points to save area, restore $1 and $2 */
  333. UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
  334. UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
  335. }
  336. #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
  337. /*
  338. * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
  339. * we cannot do r3000 under these circumstances.
  340. *
  341. * Declare pgd_current here instead of including mmu_context.h to avoid type
  342. * conflicts for tlbmiss_handler_setup_pgd
  343. */
  344. extern unsigned long pgd_current[];
  345. /*
  346. * The R3000 TLB handler is simple.
  347. */
  348. static void build_r3000_tlb_refill_handler(void)
  349. {
  350. long pgdc = (long)pgd_current;
  351. u32 *p;
  352. memset(tlb_handler, 0, sizeof(tlb_handler));
  353. p = tlb_handler;
  354. uasm_i_mfc0(&p, K0, C0_BADVADDR);
  355. uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
  356. uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
  357. uasm_i_srl(&p, K0, K0, 22); /* load delay */
  358. uasm_i_sll(&p, K0, K0, 2);
  359. uasm_i_addu(&p, K1, K1, K0);
  360. uasm_i_mfc0(&p, K0, C0_CONTEXT);
  361. uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
  362. uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
  363. uasm_i_addu(&p, K1, K1, K0);
  364. uasm_i_lw(&p, K0, 0, K1);
  365. uasm_i_nop(&p); /* load delay */
  366. uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
  367. uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
  368. uasm_i_tlbwr(&p); /* cp0 delay */
  369. uasm_i_jr(&p, K1);
  370. uasm_i_rfe(&p); /* branch delay */
  371. if (p > tlb_handler + 32)
  372. panic("TLB refill handler space exceeded");
  373. pr_debug("Wrote TLB refill handler (%u instructions).\n",
  374. (unsigned int)(p - tlb_handler));
  375. memcpy((void *)ebase, tlb_handler, 0x80);
  376. local_flush_icache_range(ebase, ebase + 0x80);
  377. dump_handler("r3000_tlb_refill", (u32 *)ebase, 32);
  378. }
  379. #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
  380. /*
  381. * The R4000 TLB handler is much more complicated. We have two
  382. * consecutive handler areas with 32 instructions space each.
  383. * Since they aren't used at the same time, we can overflow in the
  384. * other one.To keep things simple, we first assume linear space,
  385. * then we relocate it to the final handler layout as needed.
  386. */
  387. static u32 final_handler[64];
  388. /*
  389. * Hazards
  390. *
  391. * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
  392. * 2. A timing hazard exists for the TLBP instruction.
  393. *
  394. * stalling_instruction
  395. * TLBP
  396. *
  397. * The JTLB is being read for the TLBP throughout the stall generated by the
  398. * previous instruction. This is not really correct as the stalling instruction
  399. * can modify the address used to access the JTLB. The failure symptom is that
  400. * the TLBP instruction will use an address created for the stalling instruction
  401. * and not the address held in C0_ENHI and thus report the wrong results.
  402. *
  403. * The software work-around is to not allow the instruction preceding the TLBP
  404. * to stall - make it an NOP or some other instruction guaranteed not to stall.
  405. *
  406. * Errata 2 will not be fixed. This errata is also on the R5000.
  407. *
  408. * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
  409. */
  410. static void __maybe_unused build_tlb_probe_entry(u32 **p)
  411. {
  412. switch (current_cpu_type()) {
  413. /* Found by experiment: R4600 v2.0/R4700 needs this, too. */
  414. case CPU_R4600:
  415. case CPU_R4700:
  416. case CPU_R5000:
  417. case CPU_NEVADA:
  418. uasm_i_nop(p);
  419. uasm_i_tlbp(p);
  420. break;
  421. default:
  422. uasm_i_tlbp(p);
  423. break;
  424. }
  425. }
  426. /*
  427. * Write random or indexed TLB entry, and care about the hazards from
  428. * the preceding mtc0 and for the following eret.
  429. */
  430. enum tlb_write_entry { tlb_random, tlb_indexed };
  431. static void build_tlb_write_entry(u32 **p, struct uasm_label **l,
  432. struct uasm_reloc **r,
  433. enum tlb_write_entry wmode)
  434. {
  435. void(*tlbw)(u32 **) = NULL;
  436. switch (wmode) {
  437. case tlb_random: tlbw = uasm_i_tlbwr; break;
  438. case tlb_indexed: tlbw = uasm_i_tlbwi; break;
  439. }
  440. if (cpu_has_mips_r2) {
  441. /*
  442. * The architecture spec says an ehb is required here,
  443. * but a number of cores do not have the hazard and
  444. * using an ehb causes an expensive pipeline stall.
  445. */
  446. switch (current_cpu_type()) {
  447. case CPU_M14KC:
  448. case CPU_74K:
  449. case CPU_1074K:
  450. case CPU_PROAPTIV:
  451. case CPU_P5600:
  452. case CPU_M5150:
  453. break;
  454. default:
  455. uasm_i_ehb(p);
  456. break;
  457. }
  458. tlbw(p);
  459. return;
  460. }
  461. switch (current_cpu_type()) {
  462. case CPU_R4000PC:
  463. case CPU_R4000SC:
  464. case CPU_R4000MC:
  465. case CPU_R4400PC:
  466. case CPU_R4400SC:
  467. case CPU_R4400MC:
  468. /*
  469. * This branch uses up a mtc0 hazard nop slot and saves
  470. * two nops after the tlbw instruction.
  471. */
  472. uasm_bgezl_hazard(p, r, hazard_instance);
  473. tlbw(p);
  474. uasm_bgezl_label(l, p, hazard_instance);
  475. hazard_instance++;
  476. uasm_i_nop(p);
  477. break;
  478. case CPU_R4600:
  479. case CPU_R4700:
  480. uasm_i_nop(p);
  481. tlbw(p);
  482. uasm_i_nop(p);
  483. break;
  484. case CPU_R5000:
  485. case CPU_NEVADA:
  486. uasm_i_nop(p); /* QED specifies 2 nops hazard */
  487. uasm_i_nop(p); /* QED specifies 2 nops hazard */
  488. tlbw(p);
  489. break;
  490. case CPU_R4300:
  491. case CPU_5KC:
  492. case CPU_TX49XX:
  493. case CPU_PR4450:
  494. case CPU_XLR:
  495. uasm_i_nop(p);
  496. tlbw(p);
  497. break;
  498. case CPU_R10000:
  499. case CPU_R12000:
  500. case CPU_R14000:
  501. case CPU_4KC:
  502. case CPU_4KEC:
  503. case CPU_M14KC:
  504. case CPU_M14KEC:
  505. case CPU_SB1:
  506. case CPU_SB1A:
  507. case CPU_4KSC:
  508. case CPU_20KC:
  509. case CPU_25KF:
  510. case CPU_BMIPS32:
  511. case CPU_BMIPS3300:
  512. case CPU_BMIPS4350:
  513. case CPU_BMIPS4380:
  514. case CPU_BMIPS5000:
  515. case CPU_LOONGSON2:
  516. case CPU_LOONGSON3:
  517. case CPU_R5500:
  518. if (m4kc_tlbp_war())
  519. uasm_i_nop(p);
  520. case CPU_ALCHEMY:
  521. tlbw(p);
  522. break;
  523. case CPU_RM7000:
  524. uasm_i_nop(p);
  525. uasm_i_nop(p);
  526. uasm_i_nop(p);
  527. uasm_i_nop(p);
  528. tlbw(p);
  529. break;
  530. case CPU_VR4111:
  531. case CPU_VR4121:
  532. case CPU_VR4122:
  533. case CPU_VR4181:
  534. case CPU_VR4181A:
  535. uasm_i_nop(p);
  536. uasm_i_nop(p);
  537. tlbw(p);
  538. uasm_i_nop(p);
  539. uasm_i_nop(p);
  540. break;
  541. case CPU_VR4131:
  542. case CPU_VR4133:
  543. case CPU_R5432:
  544. uasm_i_nop(p);
  545. uasm_i_nop(p);
  546. tlbw(p);
  547. break;
  548. case CPU_JZRISC:
  549. tlbw(p);
  550. uasm_i_nop(p);
  551. break;
  552. default:
  553. panic("No TLB refill handler yet (CPU type: %d)",
  554. current_cpu_type());
  555. break;
  556. }
  557. }
  558. static __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
  559. unsigned int reg)
  560. {
  561. if (cpu_has_rixi) {
  562. UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
  563. } else {
  564. #ifdef CONFIG_64BIT_PHYS_ADDR
  565. uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
  566. #else
  567. UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
  568. #endif
  569. }
  570. }
  571. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  572. static void build_restore_pagemask(u32 **p, struct uasm_reloc **r,
  573. unsigned int tmp, enum label_id lid,
  574. int restore_scratch)
  575. {
  576. if (restore_scratch) {
  577. /* Reset default page size */
  578. if (PM_DEFAULT_MASK >> 16) {
  579. uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
  580. uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
  581. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  582. uasm_il_b(p, r, lid);
  583. } else if (PM_DEFAULT_MASK) {
  584. uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
  585. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  586. uasm_il_b(p, r, lid);
  587. } else {
  588. uasm_i_mtc0(p, 0, C0_PAGEMASK);
  589. uasm_il_b(p, r, lid);
  590. }
  591. if (scratch_reg >= 0)
  592. UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
  593. else
  594. UASM_i_LW(p, 1, scratchpad_offset(0), 0);
  595. } else {
  596. /* Reset default page size */
  597. if (PM_DEFAULT_MASK >> 16) {
  598. uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
  599. uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
  600. uasm_il_b(p, r, lid);
  601. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  602. } else if (PM_DEFAULT_MASK) {
  603. uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
  604. uasm_il_b(p, r, lid);
  605. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  606. } else {
  607. uasm_il_b(p, r, lid);
  608. uasm_i_mtc0(p, 0, C0_PAGEMASK);
  609. }
  610. }
  611. }
  612. static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l,
  613. struct uasm_reloc **r,
  614. unsigned int tmp,
  615. enum tlb_write_entry wmode,
  616. int restore_scratch)
  617. {
  618. /* Set huge page tlb entry size */
  619. uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
  620. uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
  621. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  622. build_tlb_write_entry(p, l, r, wmode);
  623. build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
  624. }
  625. /*
  626. * Check if Huge PTE is present, if so then jump to LABEL.
  627. */
  628. static void
  629. build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
  630. unsigned int pmd, int lid)
  631. {
  632. UASM_i_LW(p, tmp, 0, pmd);
  633. if (use_bbit_insns()) {
  634. uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
  635. } else {
  636. uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
  637. uasm_il_bnez(p, r, tmp, lid);
  638. }
  639. }
  640. static void build_huge_update_entries(u32 **p, unsigned int pte,
  641. unsigned int tmp)
  642. {
  643. int small_sequence;
  644. /*
  645. * A huge PTE describes an area the size of the
  646. * configured huge page size. This is twice the
  647. * of the large TLB entry size we intend to use.
  648. * A TLB entry half the size of the configured
  649. * huge page size is configured into entrylo0
  650. * and entrylo1 to cover the contiguous huge PTE
  651. * address space.
  652. */
  653. small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
  654. /* We can clobber tmp. It isn't used after this.*/
  655. if (!small_sequence)
  656. uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
  657. build_convert_pte_to_entrylo(p, pte);
  658. UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
  659. /* convert to entrylo1 */
  660. if (small_sequence)
  661. UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
  662. else
  663. UASM_i_ADDU(p, pte, pte, tmp);
  664. UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
  665. }
  666. static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r,
  667. struct uasm_label **l,
  668. unsigned int pte,
  669. unsigned int ptr)
  670. {
  671. #ifdef CONFIG_SMP
  672. UASM_i_SC(p, pte, 0, ptr);
  673. uasm_il_beqz(p, r, pte, label_tlb_huge_update);
  674. UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
  675. #else
  676. UASM_i_SW(p, pte, 0, ptr);
  677. #endif
  678. build_huge_update_entries(p, pte, ptr);
  679. build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
  680. }
  681. #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
  682. #ifdef CONFIG_64BIT
  683. /*
  684. * TMP and PTR are scratch.
  685. * TMP will be clobbered, PTR will hold the pmd entry.
  686. */
  687. static void
  688. build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
  689. unsigned int tmp, unsigned int ptr)
  690. {
  691. #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
  692. long pgdc = (long)pgd_current;
  693. #endif
  694. /*
  695. * The vmalloc handling is not in the hotpath.
  696. */
  697. uasm_i_dmfc0(p, tmp, C0_BADVADDR);
  698. if (check_for_high_segbits) {
  699. /*
  700. * The kernel currently implicitely assumes that the
  701. * MIPS SEGBITS parameter for the processor is
  702. * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
  703. * allocate virtual addresses outside the maximum
  704. * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
  705. * that doesn't prevent user code from accessing the
  706. * higher xuseg addresses. Here, we make sure that
  707. * everything but the lower xuseg addresses goes down
  708. * the module_alloc/vmalloc path.
  709. */
  710. uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
  711. uasm_il_bnez(p, r, ptr, label_vmalloc);
  712. } else {
  713. uasm_il_bltz(p, r, tmp, label_vmalloc);
  714. }
  715. /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
  716. if (pgd_reg != -1) {
  717. /* pgd is in pgd_reg */
  718. UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
  719. } else {
  720. #if defined(CONFIG_MIPS_PGD_C0_CONTEXT)
  721. /*
  722. * &pgd << 11 stored in CONTEXT [23..63].
  723. */
  724. UASM_i_MFC0(p, ptr, C0_CONTEXT);
  725. /* Clear lower 23 bits of context. */
  726. uasm_i_dins(p, ptr, 0, 0, 23);
  727. /* 1 0 1 0 1 << 6 xkphys cached */
  728. uasm_i_ori(p, ptr, ptr, 0x540);
  729. uasm_i_drotr(p, ptr, ptr, 11);
  730. #elif defined(CONFIG_SMP)
  731. UASM_i_CPUID_MFC0(p, ptr, SMP_CPUID_REG);
  732. uasm_i_dsrl_safe(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
  733. UASM_i_LA_mostly(p, tmp, pgdc);
  734. uasm_i_daddu(p, ptr, ptr, tmp);
  735. uasm_i_dmfc0(p, tmp, C0_BADVADDR);
  736. uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
  737. #else
  738. UASM_i_LA_mostly(p, ptr, pgdc);
  739. uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
  740. #endif
  741. }
  742. uasm_l_vmalloc_done(l, *p);
  743. /* get pgd offset in bytes */
  744. uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
  745. uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
  746. uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
  747. #ifndef __PAGETABLE_PMD_FOLDED
  748. uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
  749. uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
  750. uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
  751. uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
  752. uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
  753. #endif
  754. }
  755. /*
  756. * BVADDR is the faulting address, PTR is scratch.
  757. * PTR will hold the pgd for vmalloc.
  758. */
  759. static void
  760. build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
  761. unsigned int bvaddr, unsigned int ptr,
  762. enum vmalloc64_mode mode)
  763. {
  764. long swpd = (long)swapper_pg_dir;
  765. int single_insn_swpd;
  766. int did_vmalloc_branch = 0;
  767. single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
  768. uasm_l_vmalloc(l, *p);
  769. if (mode != not_refill && check_for_high_segbits) {
  770. if (single_insn_swpd) {
  771. uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
  772. uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
  773. did_vmalloc_branch = 1;
  774. /* fall through */
  775. } else {
  776. uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
  777. }
  778. }
  779. if (!did_vmalloc_branch) {
  780. if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
  781. uasm_il_b(p, r, label_vmalloc_done);
  782. uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
  783. } else {
  784. UASM_i_LA_mostly(p, ptr, swpd);
  785. uasm_il_b(p, r, label_vmalloc_done);
  786. if (uasm_in_compat_space_p(swpd))
  787. uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
  788. else
  789. uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
  790. }
  791. }
  792. if (mode != not_refill && check_for_high_segbits) {
  793. uasm_l_large_segbits_fault(l, *p);
  794. /*
  795. * We get here if we are an xsseg address, or if we are
  796. * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
  797. *
  798. * Ignoring xsseg (assume disabled so would generate
  799. * (address errors?), the only remaining possibility
  800. * is the upper xuseg addresses. On processors with
  801. * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
  802. * addresses would have taken an address error. We try
  803. * to mimic that here by taking a load/istream page
  804. * fault.
  805. */
  806. UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
  807. uasm_i_jr(p, ptr);
  808. if (mode == refill_scratch) {
  809. if (scratch_reg >= 0)
  810. UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
  811. else
  812. UASM_i_LW(p, 1, scratchpad_offset(0), 0);
  813. } else {
  814. uasm_i_nop(p);
  815. }
  816. }
  817. }
  818. #else /* !CONFIG_64BIT */
  819. /*
  820. * TMP and PTR are scratch.
  821. * TMP will be clobbered, PTR will hold the pgd entry.
  822. */
  823. static void __maybe_unused
  824. build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
  825. {
  826. if (pgd_reg != -1) {
  827. /* pgd is in pgd_reg */
  828. uasm_i_mfc0(p, ptr, c0_kscratch(), pgd_reg);
  829. uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
  830. } else {
  831. long pgdc = (long)pgd_current;
  832. /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
  833. #ifdef CONFIG_SMP
  834. uasm_i_mfc0(p, ptr, SMP_CPUID_REG);
  835. UASM_i_LA_mostly(p, tmp, pgdc);
  836. uasm_i_srl(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
  837. uasm_i_addu(p, ptr, tmp, ptr);
  838. #else
  839. UASM_i_LA_mostly(p, ptr, pgdc);
  840. #endif
  841. uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
  842. uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
  843. }
  844. uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
  845. uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
  846. uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
  847. }
  848. #endif /* !CONFIG_64BIT */
  849. static void build_adjust_context(u32 **p, unsigned int ctx)
  850. {
  851. unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
  852. unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
  853. switch (current_cpu_type()) {
  854. case CPU_VR41XX:
  855. case CPU_VR4111:
  856. case CPU_VR4121:
  857. case CPU_VR4122:
  858. case CPU_VR4131:
  859. case CPU_VR4181:
  860. case CPU_VR4181A:
  861. case CPU_VR4133:
  862. shift += 2;
  863. break;
  864. default:
  865. break;
  866. }
  867. if (shift)
  868. UASM_i_SRL(p, ctx, ctx, shift);
  869. uasm_i_andi(p, ctx, ctx, mask);
  870. }
  871. static void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
  872. {
  873. /*
  874. * Bug workaround for the Nevada. It seems as if under certain
  875. * circumstances the move from cp0_context might produce a
  876. * bogus result when the mfc0 instruction and its consumer are
  877. * in a different cacheline or a load instruction, probably any
  878. * memory reference, is between them.
  879. */
  880. switch (current_cpu_type()) {
  881. case CPU_NEVADA:
  882. UASM_i_LW(p, ptr, 0, ptr);
  883. GET_CONTEXT(p, tmp); /* get context reg */
  884. break;
  885. default:
  886. GET_CONTEXT(p, tmp); /* get context reg */
  887. UASM_i_LW(p, ptr, 0, ptr);
  888. break;
  889. }
  890. build_adjust_context(p, tmp);
  891. UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
  892. }
  893. static void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep)
  894. {
  895. /*
  896. * 64bit address support (36bit on a 32bit CPU) in a 32bit
  897. * Kernel is a special case. Only a few CPUs use it.
  898. */
  899. #ifdef CONFIG_64BIT_PHYS_ADDR
  900. if (cpu_has_64bits) {
  901. uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
  902. uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
  903. if (cpu_has_rixi) {
  904. UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
  905. UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
  906. UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
  907. } else {
  908. uasm_i_dsrl_safe(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
  909. UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
  910. uasm_i_dsrl_safe(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
  911. }
  912. UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
  913. } else {
  914. int pte_off_even = sizeof(pte_t) / 2;
  915. int pte_off_odd = pte_off_even + sizeof(pte_t);
  916. /* The pte entries are pre-shifted */
  917. uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
  918. UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
  919. uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
  920. UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
  921. }
  922. #else
  923. UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
  924. UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
  925. if (r45k_bvahwbug())
  926. build_tlb_probe_entry(p);
  927. if (cpu_has_rixi) {
  928. UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
  929. if (r4k_250MHZhwbug())
  930. UASM_i_MTC0(p, 0, C0_ENTRYLO0);
  931. UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
  932. UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
  933. } else {
  934. UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
  935. if (r4k_250MHZhwbug())
  936. UASM_i_MTC0(p, 0, C0_ENTRYLO0);
  937. UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
  938. UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
  939. if (r45k_bvahwbug())
  940. uasm_i_mfc0(p, tmp, C0_INDEX);
  941. }
  942. if (r4k_250MHZhwbug())
  943. UASM_i_MTC0(p, 0, C0_ENTRYLO1);
  944. UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
  945. #endif
  946. }
  947. struct mips_huge_tlb_info {
  948. int huge_pte;
  949. int restore_scratch;
  950. bool need_reload_pte;
  951. };
  952. static struct mips_huge_tlb_info
  953. build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
  954. struct uasm_reloc **r, unsigned int tmp,
  955. unsigned int ptr, int c0_scratch_reg)
  956. {
  957. struct mips_huge_tlb_info rv;
  958. unsigned int even, odd;
  959. int vmalloc_branch_delay_filled = 0;
  960. const int scratch = 1; /* Our extra working register */
  961. rv.huge_pte = scratch;
  962. rv.restore_scratch = 0;
  963. rv.need_reload_pte = false;
  964. if (check_for_high_segbits) {
  965. UASM_i_MFC0(p, tmp, C0_BADVADDR);
  966. if (pgd_reg != -1)
  967. UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
  968. else
  969. UASM_i_MFC0(p, ptr, C0_CONTEXT);
  970. if (c0_scratch_reg >= 0)
  971. UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
  972. else
  973. UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
  974. uasm_i_dsrl_safe(p, scratch, tmp,
  975. PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
  976. uasm_il_bnez(p, r, scratch, label_vmalloc);
  977. if (pgd_reg == -1) {
  978. vmalloc_branch_delay_filled = 1;
  979. /* Clear lower 23 bits of context. */
  980. uasm_i_dins(p, ptr, 0, 0, 23);
  981. }
  982. } else {
  983. if (pgd_reg != -1)
  984. UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
  985. else
  986. UASM_i_MFC0(p, ptr, C0_CONTEXT);
  987. UASM_i_MFC0(p, tmp, C0_BADVADDR);
  988. if (c0_scratch_reg >= 0)
  989. UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
  990. else
  991. UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
  992. if (pgd_reg == -1)
  993. /* Clear lower 23 bits of context. */
  994. uasm_i_dins(p, ptr, 0, 0, 23);
  995. uasm_il_bltz(p, r, tmp, label_vmalloc);
  996. }
  997. if (pgd_reg == -1) {
  998. vmalloc_branch_delay_filled = 1;
  999. /* 1 0 1 0 1 << 6 xkphys cached */
  1000. uasm_i_ori(p, ptr, ptr, 0x540);
  1001. uasm_i_drotr(p, ptr, ptr, 11);
  1002. }
  1003. #ifdef __PAGETABLE_PMD_FOLDED
  1004. #define LOC_PTEP scratch
  1005. #else
  1006. #define LOC_PTEP ptr
  1007. #endif
  1008. if (!vmalloc_branch_delay_filled)
  1009. /* get pgd offset in bytes */
  1010. uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
  1011. uasm_l_vmalloc_done(l, *p);
  1012. /*
  1013. * tmp ptr
  1014. * fall-through case = badvaddr *pgd_current
  1015. * vmalloc case = badvaddr swapper_pg_dir
  1016. */
  1017. if (vmalloc_branch_delay_filled)
  1018. /* get pgd offset in bytes */
  1019. uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
  1020. #ifdef __PAGETABLE_PMD_FOLDED
  1021. GET_CONTEXT(p, tmp); /* get context reg */
  1022. #endif
  1023. uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
  1024. if (use_lwx_insns()) {
  1025. UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
  1026. } else {
  1027. uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
  1028. uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
  1029. }
  1030. #ifndef __PAGETABLE_PMD_FOLDED
  1031. /* get pmd offset in bytes */
  1032. uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
  1033. uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
  1034. GET_CONTEXT(p, tmp); /* get context reg */
  1035. if (use_lwx_insns()) {
  1036. UASM_i_LWX(p, scratch, scratch, ptr);
  1037. } else {
  1038. uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
  1039. UASM_i_LW(p, scratch, 0, ptr);
  1040. }
  1041. #endif
  1042. /* Adjust the context during the load latency. */
  1043. build_adjust_context(p, tmp);
  1044. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1045. uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
  1046. /*
  1047. * The in the LWX case we don't want to do the load in the
  1048. * delay slot. It cannot issue in the same cycle and may be
  1049. * speculative and unneeded.
  1050. */
  1051. if (use_lwx_insns())
  1052. uasm_i_nop(p);
  1053. #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
  1054. /* build_update_entries */
  1055. if (use_lwx_insns()) {
  1056. even = ptr;
  1057. odd = tmp;
  1058. UASM_i_LWX(p, even, scratch, tmp);
  1059. UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
  1060. UASM_i_LWX(p, odd, scratch, tmp);
  1061. } else {
  1062. UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
  1063. even = tmp;
  1064. odd = ptr;
  1065. UASM_i_LW(p, even, 0, ptr); /* get even pte */
  1066. UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
  1067. }
  1068. if (cpu_has_rixi) {
  1069. uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
  1070. UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
  1071. uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
  1072. } else {
  1073. uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
  1074. UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
  1075. uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
  1076. }
  1077. UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
  1078. if (c0_scratch_reg >= 0) {
  1079. UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg);
  1080. build_tlb_write_entry(p, l, r, tlb_random);
  1081. uasm_l_leave(l, *p);
  1082. rv.restore_scratch = 1;
  1083. } else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13) {
  1084. build_tlb_write_entry(p, l, r, tlb_random);
  1085. uasm_l_leave(l, *p);
  1086. UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
  1087. } else {
  1088. UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
  1089. build_tlb_write_entry(p, l, r, tlb_random);
  1090. uasm_l_leave(l, *p);
  1091. rv.restore_scratch = 1;
  1092. }
  1093. uasm_i_eret(p); /* return from trap */
  1094. return rv;
  1095. }
  1096. /*
  1097. * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
  1098. * because EXL == 0. If we wrap, we can also use the 32 instruction
  1099. * slots before the XTLB refill exception handler which belong to the
  1100. * unused TLB refill exception.
  1101. */
  1102. #define MIPS64_REFILL_INSNS 32
  1103. static void build_r4000_tlb_refill_handler(void)
  1104. {
  1105. u32 *p = tlb_handler;
  1106. struct uasm_label *l = labels;
  1107. struct uasm_reloc *r = relocs;
  1108. u32 *f;
  1109. unsigned int final_len;
  1110. struct mips_huge_tlb_info htlb_info __maybe_unused;
  1111. enum vmalloc64_mode vmalloc_mode __maybe_unused;
  1112. memset(tlb_handler, 0, sizeof(tlb_handler));
  1113. memset(labels, 0, sizeof(labels));
  1114. memset(relocs, 0, sizeof(relocs));
  1115. memset(final_handler, 0, sizeof(final_handler));
  1116. if (IS_ENABLED(CONFIG_64BIT) && (scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) {
  1117. htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
  1118. scratch_reg);
  1119. vmalloc_mode = refill_scratch;
  1120. } else {
  1121. htlb_info.huge_pte = K0;
  1122. htlb_info.restore_scratch = 0;
  1123. htlb_info.need_reload_pte = true;
  1124. vmalloc_mode = refill_noscratch;
  1125. /*
  1126. * create the plain linear handler
  1127. */
  1128. if (bcm1250_m3_war()) {
  1129. unsigned int segbits = 44;
  1130. uasm_i_dmfc0(&p, K0, C0_BADVADDR);
  1131. uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
  1132. uasm_i_xor(&p, K0, K0, K1);
  1133. uasm_i_dsrl_safe(&p, K1, K0, 62);
  1134. uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
  1135. uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
  1136. uasm_i_or(&p, K0, K0, K1);
  1137. uasm_il_bnez(&p, &r, K0, label_leave);
  1138. /* No need for uasm_i_nop */
  1139. }
  1140. #ifdef CONFIG_64BIT
  1141. build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
  1142. #else
  1143. build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
  1144. #endif
  1145. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1146. build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
  1147. #endif
  1148. build_get_ptep(&p, K0, K1);
  1149. build_update_entries(&p, K0, K1);
  1150. build_tlb_write_entry(&p, &l, &r, tlb_random);
  1151. uasm_l_leave(&l, p);
  1152. uasm_i_eret(&p); /* return from trap */
  1153. }
  1154. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1155. uasm_l_tlb_huge_update(&l, p);
  1156. if (htlb_info.need_reload_pte)
  1157. UASM_i_LW(&p, htlb_info.huge_pte, 0, K1);
  1158. build_huge_update_entries(&p, htlb_info.huge_pte, K1);
  1159. build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
  1160. htlb_info.restore_scratch);
  1161. #endif
  1162. #ifdef CONFIG_64BIT
  1163. build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
  1164. #endif
  1165. /*
  1166. * Overflow check: For the 64bit handler, we need at least one
  1167. * free instruction slot for the wrap-around branch. In worst
  1168. * case, if the intended insertion point is a delay slot, we
  1169. * need three, with the second nop'ed and the third being
  1170. * unused.
  1171. */
  1172. switch (boot_cpu_type()) {
  1173. default:
  1174. if (sizeof(long) == 4) {
  1175. case CPU_LOONGSON2:
  1176. /* Loongson2 ebase is different than r4k, we have more space */
  1177. if ((p - tlb_handler) > 64)
  1178. panic("TLB refill handler space exceeded");
  1179. /*
  1180. * Now fold the handler in the TLB refill handler space.
  1181. */
  1182. f = final_handler;
  1183. /* Simplest case, just copy the handler. */
  1184. uasm_copy_handler(relocs, labels, tlb_handler, p, f);
  1185. final_len = p - tlb_handler;
  1186. break;
  1187. } else {
  1188. if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
  1189. || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
  1190. && uasm_insn_has_bdelay(relocs,
  1191. tlb_handler + MIPS64_REFILL_INSNS - 3)))
  1192. panic("TLB refill handler space exceeded");
  1193. /*
  1194. * Now fold the handler in the TLB refill handler space.
  1195. */
  1196. f = final_handler + MIPS64_REFILL_INSNS;
  1197. if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
  1198. /* Just copy the handler. */
  1199. uasm_copy_handler(relocs, labels, tlb_handler, p, f);
  1200. final_len = p - tlb_handler;
  1201. } else {
  1202. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1203. const enum label_id ls = label_tlb_huge_update;
  1204. #else
  1205. const enum label_id ls = label_vmalloc;
  1206. #endif
  1207. u32 *split;
  1208. int ov = 0;
  1209. int i;
  1210. for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
  1211. ;
  1212. BUG_ON(i == ARRAY_SIZE(labels));
  1213. split = labels[i].addr;
  1214. /*
  1215. * See if we have overflown one way or the other.
  1216. */
  1217. if (split > tlb_handler + MIPS64_REFILL_INSNS ||
  1218. split < p - MIPS64_REFILL_INSNS)
  1219. ov = 1;
  1220. if (ov) {
  1221. /*
  1222. * Split two instructions before the end. One
  1223. * for the branch and one for the instruction
  1224. * in the delay slot.
  1225. */
  1226. split = tlb_handler + MIPS64_REFILL_INSNS - 2;
  1227. /*
  1228. * If the branch would fall in a delay slot,
  1229. * we must back up an additional instruction
  1230. * so that it is no longer in a delay slot.
  1231. */
  1232. if (uasm_insn_has_bdelay(relocs, split - 1))
  1233. split--;
  1234. }
  1235. /* Copy first part of the handler. */
  1236. uasm_copy_handler(relocs, labels, tlb_handler, split, f);
  1237. f += split - tlb_handler;
  1238. if (ov) {
  1239. /* Insert branch. */
  1240. uasm_l_split(&l, final_handler);
  1241. uasm_il_b(&f, &r, label_split);
  1242. if (uasm_insn_has_bdelay(relocs, split))
  1243. uasm_i_nop(&f);
  1244. else {
  1245. uasm_copy_handler(relocs, labels,
  1246. split, split + 1, f);
  1247. uasm_move_labels(labels, f, f + 1, -1);
  1248. f++;
  1249. split++;
  1250. }
  1251. }
  1252. /* Copy the rest of the handler. */
  1253. uasm_copy_handler(relocs, labels, split, p, final_handler);
  1254. final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
  1255. (p - split);
  1256. }
  1257. }
  1258. break;
  1259. }
  1260. uasm_resolve_relocs(relocs, labels);
  1261. pr_debug("Wrote TLB refill handler (%u instructions).\n",
  1262. final_len);
  1263. memcpy((void *)ebase, final_handler, 0x100);
  1264. local_flush_icache_range(ebase, ebase + 0x100);
  1265. dump_handler("r4000_tlb_refill", (u32 *)ebase, 64);
  1266. }
  1267. extern u32 handle_tlbl[], handle_tlbl_end[];
  1268. extern u32 handle_tlbs[], handle_tlbs_end[];
  1269. extern u32 handle_tlbm[], handle_tlbm_end[];
  1270. extern u32 tlbmiss_handler_setup_pgd_start[], tlbmiss_handler_setup_pgd[];
  1271. extern u32 tlbmiss_handler_setup_pgd_end[];
  1272. static void build_setup_pgd(void)
  1273. {
  1274. const int a0 = 4;
  1275. const int __maybe_unused a1 = 5;
  1276. const int __maybe_unused a2 = 6;
  1277. u32 *p = tlbmiss_handler_setup_pgd_start;
  1278. const int tlbmiss_handler_setup_pgd_size =
  1279. tlbmiss_handler_setup_pgd_end - tlbmiss_handler_setup_pgd_start;
  1280. #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
  1281. long pgdc = (long)pgd_current;
  1282. #endif
  1283. memset(tlbmiss_handler_setup_pgd, 0, tlbmiss_handler_setup_pgd_size *
  1284. sizeof(tlbmiss_handler_setup_pgd[0]));
  1285. memset(labels, 0, sizeof(labels));
  1286. memset(relocs, 0, sizeof(relocs));
  1287. pgd_reg = allocate_kscratch();
  1288. #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
  1289. if (pgd_reg == -1) {
  1290. struct uasm_label *l = labels;
  1291. struct uasm_reloc *r = relocs;
  1292. /* PGD << 11 in c0_Context */
  1293. /*
  1294. * If it is a ckseg0 address, convert to a physical
  1295. * address. Shifting right by 29 and adding 4 will
  1296. * result in zero for these addresses.
  1297. *
  1298. */
  1299. UASM_i_SRA(&p, a1, a0, 29);
  1300. UASM_i_ADDIU(&p, a1, a1, 4);
  1301. uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
  1302. uasm_i_nop(&p);
  1303. uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
  1304. uasm_l_tlbl_goaround1(&l, p);
  1305. UASM_i_SLL(&p, a0, a0, 11);
  1306. uasm_i_jr(&p, 31);
  1307. UASM_i_MTC0(&p, a0, C0_CONTEXT);
  1308. } else {
  1309. /* PGD in c0_KScratch */
  1310. uasm_i_jr(&p, 31);
  1311. UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
  1312. }
  1313. #else
  1314. #ifdef CONFIG_SMP
  1315. /* Save PGD to pgd_current[smp_processor_id()] */
  1316. UASM_i_CPUID_MFC0(&p, a1, SMP_CPUID_REG);
  1317. UASM_i_SRL_SAFE(&p, a1, a1, SMP_CPUID_PTRSHIFT);
  1318. UASM_i_LA_mostly(&p, a2, pgdc);
  1319. UASM_i_ADDU(&p, a2, a2, a1);
  1320. UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
  1321. #else
  1322. UASM_i_LA_mostly(&p, a2, pgdc);
  1323. UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
  1324. #endif /* SMP */
  1325. uasm_i_jr(&p, 31);
  1326. /* if pgd_reg is allocated, save PGD also to scratch register */
  1327. if (pgd_reg != -1)
  1328. UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
  1329. else
  1330. uasm_i_nop(&p);
  1331. #endif
  1332. if (p >= tlbmiss_handler_setup_pgd_end)
  1333. panic("tlbmiss_handler_setup_pgd space exceeded");
  1334. uasm_resolve_relocs(relocs, labels);
  1335. pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
  1336. (unsigned int)(p - tlbmiss_handler_setup_pgd));
  1337. dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd,
  1338. tlbmiss_handler_setup_pgd_size);
  1339. }
  1340. static void
  1341. iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
  1342. {
  1343. #ifdef CONFIG_SMP
  1344. # ifdef CONFIG_64BIT_PHYS_ADDR
  1345. if (cpu_has_64bits)
  1346. uasm_i_lld(p, pte, 0, ptr);
  1347. else
  1348. # endif
  1349. UASM_i_LL(p, pte, 0, ptr);
  1350. #else
  1351. # ifdef CONFIG_64BIT_PHYS_ADDR
  1352. if (cpu_has_64bits)
  1353. uasm_i_ld(p, pte, 0, ptr);
  1354. else
  1355. # endif
  1356. UASM_i_LW(p, pte, 0, ptr);
  1357. #endif
  1358. }
  1359. static void
  1360. iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
  1361. unsigned int mode)
  1362. {
  1363. #ifdef CONFIG_64BIT_PHYS_ADDR
  1364. unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
  1365. #endif
  1366. uasm_i_ori(p, pte, pte, mode);
  1367. #ifdef CONFIG_SMP
  1368. # ifdef CONFIG_64BIT_PHYS_ADDR
  1369. if (cpu_has_64bits)
  1370. uasm_i_scd(p, pte, 0, ptr);
  1371. else
  1372. # endif
  1373. UASM_i_SC(p, pte, 0, ptr);
  1374. if (r10000_llsc_war())
  1375. uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
  1376. else
  1377. uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
  1378. # ifdef CONFIG_64BIT_PHYS_ADDR
  1379. if (!cpu_has_64bits) {
  1380. /* no uasm_i_nop needed */
  1381. uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
  1382. uasm_i_ori(p, pte, pte, hwmode);
  1383. uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
  1384. uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
  1385. /* no uasm_i_nop needed */
  1386. uasm_i_lw(p, pte, 0, ptr);
  1387. } else
  1388. uasm_i_nop(p);
  1389. # else
  1390. uasm_i_nop(p);
  1391. # endif
  1392. #else
  1393. # ifdef CONFIG_64BIT_PHYS_ADDR
  1394. if (cpu_has_64bits)
  1395. uasm_i_sd(p, pte, 0, ptr);
  1396. else
  1397. # endif
  1398. UASM_i_SW(p, pte, 0, ptr);
  1399. # ifdef CONFIG_64BIT_PHYS_ADDR
  1400. if (!cpu_has_64bits) {
  1401. uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
  1402. uasm_i_ori(p, pte, pte, hwmode);
  1403. uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
  1404. uasm_i_lw(p, pte, 0, ptr);
  1405. }
  1406. # endif
  1407. #endif
  1408. }
  1409. /*
  1410. * Check if PTE is present, if not then jump to LABEL. PTR points to
  1411. * the page table where this PTE is located, PTE will be re-loaded
  1412. * with it's original value.
  1413. */
  1414. static void
  1415. build_pte_present(u32 **p, struct uasm_reloc **r,
  1416. int pte, int ptr, int scratch, enum label_id lid)
  1417. {
  1418. int t = scratch >= 0 ? scratch : pte;
  1419. if (cpu_has_rixi) {
  1420. if (use_bbit_insns()) {
  1421. uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
  1422. uasm_i_nop(p);
  1423. } else {
  1424. uasm_i_andi(p, t, pte, _PAGE_PRESENT);
  1425. uasm_il_beqz(p, r, t, lid);
  1426. if (pte == t)
  1427. /* You lose the SMP race :-(*/
  1428. iPTE_LW(p, pte, ptr);
  1429. }
  1430. } else {
  1431. uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_READ);
  1432. uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_READ);
  1433. uasm_il_bnez(p, r, t, lid);
  1434. if (pte == t)
  1435. /* You lose the SMP race :-(*/
  1436. iPTE_LW(p, pte, ptr);
  1437. }
  1438. }
  1439. /* Make PTE valid, store result in PTR. */
  1440. static void
  1441. build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
  1442. unsigned int ptr)
  1443. {
  1444. unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
  1445. iPTE_SW(p, r, pte, ptr, mode);
  1446. }
  1447. /*
  1448. * Check if PTE can be written to, if not branch to LABEL. Regardless
  1449. * restore PTE with value from PTR when done.
  1450. */
  1451. static void
  1452. build_pte_writable(u32 **p, struct uasm_reloc **r,
  1453. unsigned int pte, unsigned int ptr, int scratch,
  1454. enum label_id lid)
  1455. {
  1456. int t = scratch >= 0 ? scratch : pte;
  1457. uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_WRITE);
  1458. uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_WRITE);
  1459. uasm_il_bnez(p, r, t, lid);
  1460. if (pte == t)
  1461. /* You lose the SMP race :-(*/
  1462. iPTE_LW(p, pte, ptr);
  1463. else
  1464. uasm_i_nop(p);
  1465. }
  1466. /* Make PTE writable, update software status bits as well, then store
  1467. * at PTR.
  1468. */
  1469. static void
  1470. build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
  1471. unsigned int ptr)
  1472. {
  1473. unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
  1474. | _PAGE_DIRTY);
  1475. iPTE_SW(p, r, pte, ptr, mode);
  1476. }
  1477. /*
  1478. * Check if PTE can be modified, if not branch to LABEL. Regardless
  1479. * restore PTE with value from PTR when done.
  1480. */
  1481. static void
  1482. build_pte_modifiable(u32 **p, struct uasm_reloc **r,
  1483. unsigned int pte, unsigned int ptr, int scratch,
  1484. enum label_id lid)
  1485. {
  1486. if (use_bbit_insns()) {
  1487. uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
  1488. uasm_i_nop(p);
  1489. } else {
  1490. int t = scratch >= 0 ? scratch : pte;
  1491. uasm_i_andi(p, t, pte, _PAGE_WRITE);
  1492. uasm_il_beqz(p, r, t, lid);
  1493. if (pte == t)
  1494. /* You lose the SMP race :-(*/
  1495. iPTE_LW(p, pte, ptr);
  1496. }
  1497. }
  1498. #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
  1499. /*
  1500. * R3000 style TLB load/store/modify handlers.
  1501. */
  1502. /*
  1503. * This places the pte into ENTRYLO0 and writes it with tlbwi.
  1504. * Then it returns.
  1505. */
  1506. static void
  1507. build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
  1508. {
  1509. uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
  1510. uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
  1511. uasm_i_tlbwi(p);
  1512. uasm_i_jr(p, tmp);
  1513. uasm_i_rfe(p); /* branch delay */
  1514. }
  1515. /*
  1516. * This places the pte into ENTRYLO0 and writes it with tlbwi
  1517. * or tlbwr as appropriate. This is because the index register
  1518. * may have the probe fail bit set as a result of a trap on a
  1519. * kseg2 access, i.e. without refill. Then it returns.
  1520. */
  1521. static void
  1522. build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
  1523. struct uasm_reloc **r, unsigned int pte,
  1524. unsigned int tmp)
  1525. {
  1526. uasm_i_mfc0(p, tmp, C0_INDEX);
  1527. uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
  1528. uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
  1529. uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
  1530. uasm_i_tlbwi(p); /* cp0 delay */
  1531. uasm_i_jr(p, tmp);
  1532. uasm_i_rfe(p); /* branch delay */
  1533. uasm_l_r3000_write_probe_fail(l, *p);
  1534. uasm_i_tlbwr(p); /* cp0 delay */
  1535. uasm_i_jr(p, tmp);
  1536. uasm_i_rfe(p); /* branch delay */
  1537. }
  1538. static void
  1539. build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
  1540. unsigned int ptr)
  1541. {
  1542. long pgdc = (long)pgd_current;
  1543. uasm_i_mfc0(p, pte, C0_BADVADDR);
  1544. uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
  1545. uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
  1546. uasm_i_srl(p, pte, pte, 22); /* load delay */
  1547. uasm_i_sll(p, pte, pte, 2);
  1548. uasm_i_addu(p, ptr, ptr, pte);
  1549. uasm_i_mfc0(p, pte, C0_CONTEXT);
  1550. uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
  1551. uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
  1552. uasm_i_addu(p, ptr, ptr, pte);
  1553. uasm_i_lw(p, pte, 0, ptr);
  1554. uasm_i_tlbp(p); /* load delay */
  1555. }
  1556. static void build_r3000_tlb_load_handler(void)
  1557. {
  1558. u32 *p = handle_tlbl;
  1559. const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
  1560. struct uasm_label *l = labels;
  1561. struct uasm_reloc *r = relocs;
  1562. memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
  1563. memset(labels, 0, sizeof(labels));
  1564. memset(relocs, 0, sizeof(relocs));
  1565. build_r3000_tlbchange_handler_head(&p, K0, K1);
  1566. build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
  1567. uasm_i_nop(&p); /* load delay */
  1568. build_make_valid(&p, &r, K0, K1);
  1569. build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
  1570. uasm_l_nopage_tlbl(&l, p);
  1571. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
  1572. uasm_i_nop(&p);
  1573. if (p >= handle_tlbl_end)
  1574. panic("TLB load handler fastpath space exceeded");
  1575. uasm_resolve_relocs(relocs, labels);
  1576. pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
  1577. (unsigned int)(p - handle_tlbl));
  1578. dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_size);
  1579. }
  1580. static void build_r3000_tlb_store_handler(void)
  1581. {
  1582. u32 *p = handle_tlbs;
  1583. const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
  1584. struct uasm_label *l = labels;
  1585. struct uasm_reloc *r = relocs;
  1586. memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
  1587. memset(labels, 0, sizeof(labels));
  1588. memset(relocs, 0, sizeof(relocs));
  1589. build_r3000_tlbchange_handler_head(&p, K0, K1);
  1590. build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
  1591. uasm_i_nop(&p); /* load delay */
  1592. build_make_write(&p, &r, K0, K1);
  1593. build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
  1594. uasm_l_nopage_tlbs(&l, p);
  1595. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1596. uasm_i_nop(&p);
  1597. if (p >= handle_tlbs_end)
  1598. panic("TLB store handler fastpath space exceeded");
  1599. uasm_resolve_relocs(relocs, labels);
  1600. pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
  1601. (unsigned int)(p - handle_tlbs));
  1602. dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_size);
  1603. }
  1604. static void build_r3000_tlb_modify_handler(void)
  1605. {
  1606. u32 *p = handle_tlbm;
  1607. const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
  1608. struct uasm_label *l = labels;
  1609. struct uasm_reloc *r = relocs;
  1610. memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
  1611. memset(labels, 0, sizeof(labels));
  1612. memset(relocs, 0, sizeof(relocs));
  1613. build_r3000_tlbchange_handler_head(&p, K0, K1);
  1614. build_pte_modifiable(&p, &r, K0, K1, -1, label_nopage_tlbm);
  1615. uasm_i_nop(&p); /* load delay */
  1616. build_make_write(&p, &r, K0, K1);
  1617. build_r3000_pte_reload_tlbwi(&p, K0, K1);
  1618. uasm_l_nopage_tlbm(&l, p);
  1619. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1620. uasm_i_nop(&p);
  1621. if (p >= handle_tlbm_end)
  1622. panic("TLB modify handler fastpath space exceeded");
  1623. uasm_resolve_relocs(relocs, labels);
  1624. pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
  1625. (unsigned int)(p - handle_tlbm));
  1626. dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_size);
  1627. }
  1628. #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
  1629. /*
  1630. * R4000 style TLB load/store/modify handlers.
  1631. */
  1632. static struct work_registers
  1633. build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
  1634. struct uasm_reloc **r)
  1635. {
  1636. struct work_registers wr = build_get_work_registers(p);
  1637. #ifdef CONFIG_64BIT
  1638. build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
  1639. #else
  1640. build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
  1641. #endif
  1642. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1643. /*
  1644. * For huge tlb entries, pmd doesn't contain an address but
  1645. * instead contains the tlb pte. Check the PAGE_HUGE bit and
  1646. * see if we need to jump to huge tlb processing.
  1647. */
  1648. build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
  1649. #endif
  1650. UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
  1651. UASM_i_LW(p, wr.r2, 0, wr.r2);
  1652. UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
  1653. uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
  1654. UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
  1655. #ifdef CONFIG_SMP
  1656. uasm_l_smp_pgtable_change(l, *p);
  1657. #endif
  1658. iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
  1659. if (!m4kc_tlbp_war())
  1660. build_tlb_probe_entry(p);
  1661. return wr;
  1662. }
  1663. static void
  1664. build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
  1665. struct uasm_reloc **r, unsigned int tmp,
  1666. unsigned int ptr)
  1667. {
  1668. uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
  1669. uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
  1670. build_update_entries(p, tmp, ptr);
  1671. build_tlb_write_entry(p, l, r, tlb_indexed);
  1672. uasm_l_leave(l, *p);
  1673. build_restore_work_registers(p);
  1674. uasm_i_eret(p); /* return from trap */
  1675. #ifdef CONFIG_64BIT
  1676. build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
  1677. #endif
  1678. }
  1679. static void build_r4000_tlb_load_handler(void)
  1680. {
  1681. u32 *p = handle_tlbl;
  1682. const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
  1683. struct uasm_label *l = labels;
  1684. struct uasm_reloc *r = relocs;
  1685. struct work_registers wr;
  1686. memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
  1687. memset(labels, 0, sizeof(labels));
  1688. memset(relocs, 0, sizeof(relocs));
  1689. if (bcm1250_m3_war()) {
  1690. unsigned int segbits = 44;
  1691. uasm_i_dmfc0(&p, K0, C0_BADVADDR);
  1692. uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
  1693. uasm_i_xor(&p, K0, K0, K1);
  1694. uasm_i_dsrl_safe(&p, K1, K0, 62);
  1695. uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
  1696. uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
  1697. uasm_i_or(&p, K0, K0, K1);
  1698. uasm_il_bnez(&p, &r, K0, label_leave);
  1699. /* No need for uasm_i_nop */
  1700. }
  1701. wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
  1702. build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
  1703. if (m4kc_tlbp_war())
  1704. build_tlb_probe_entry(&p);
  1705. if (cpu_has_rixi && !cpu_has_rixiex) {
  1706. /*
  1707. * If the page is not _PAGE_VALID, RI or XI could not
  1708. * have triggered it. Skip the expensive test..
  1709. */
  1710. if (use_bbit_insns()) {
  1711. uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
  1712. label_tlbl_goaround1);
  1713. } else {
  1714. uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
  1715. uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
  1716. }
  1717. uasm_i_nop(&p);
  1718. uasm_i_tlbr(&p);
  1719. switch (current_cpu_type()) {
  1720. default:
  1721. if (cpu_has_mips_r2) {
  1722. uasm_i_ehb(&p);
  1723. case CPU_CAVIUM_OCTEON:
  1724. case CPU_CAVIUM_OCTEON_PLUS:
  1725. case CPU_CAVIUM_OCTEON2:
  1726. break;
  1727. }
  1728. }
  1729. /* Examine entrylo 0 or 1 based on ptr. */
  1730. if (use_bbit_insns()) {
  1731. uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
  1732. } else {
  1733. uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
  1734. uasm_i_beqz(&p, wr.r3, 8);
  1735. }
  1736. /* load it in the delay slot*/
  1737. UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
  1738. /* load it if ptr is odd */
  1739. UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
  1740. /*
  1741. * If the entryLo (now in wr.r3) is valid (bit 1), RI or
  1742. * XI must have triggered it.
  1743. */
  1744. if (use_bbit_insns()) {
  1745. uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
  1746. uasm_i_nop(&p);
  1747. uasm_l_tlbl_goaround1(&l, p);
  1748. } else {
  1749. uasm_i_andi(&p, wr.r3, wr.r3, 2);
  1750. uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
  1751. uasm_i_nop(&p);
  1752. }
  1753. uasm_l_tlbl_goaround1(&l, p);
  1754. }
  1755. build_make_valid(&p, &r, wr.r1, wr.r2);
  1756. build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
  1757. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1758. /*
  1759. * This is the entry point when build_r4000_tlbchange_handler_head
  1760. * spots a huge page.
  1761. */
  1762. uasm_l_tlb_huge_update(&l, p);
  1763. iPTE_LW(&p, wr.r1, wr.r2);
  1764. build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
  1765. build_tlb_probe_entry(&p);
  1766. if (cpu_has_rixi && !cpu_has_rixiex) {
  1767. /*
  1768. * If the page is not _PAGE_VALID, RI or XI could not
  1769. * have triggered it. Skip the expensive test..
  1770. */
  1771. if (use_bbit_insns()) {
  1772. uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
  1773. label_tlbl_goaround2);
  1774. } else {
  1775. uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
  1776. uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
  1777. }
  1778. uasm_i_nop(&p);
  1779. uasm_i_tlbr(&p);
  1780. switch (current_cpu_type()) {
  1781. default:
  1782. if (cpu_has_mips_r2) {
  1783. uasm_i_ehb(&p);
  1784. case CPU_CAVIUM_OCTEON:
  1785. case CPU_CAVIUM_OCTEON_PLUS:
  1786. case CPU_CAVIUM_OCTEON2:
  1787. break;
  1788. }
  1789. }
  1790. /* Examine entrylo 0 or 1 based on ptr. */
  1791. if (use_bbit_insns()) {
  1792. uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
  1793. } else {
  1794. uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
  1795. uasm_i_beqz(&p, wr.r3, 8);
  1796. }
  1797. /* load it in the delay slot*/
  1798. UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
  1799. /* load it if ptr is odd */
  1800. UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
  1801. /*
  1802. * If the entryLo (now in wr.r3) is valid (bit 1), RI or
  1803. * XI must have triggered it.
  1804. */
  1805. if (use_bbit_insns()) {
  1806. uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
  1807. } else {
  1808. uasm_i_andi(&p, wr.r3, wr.r3, 2);
  1809. uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
  1810. }
  1811. if (PM_DEFAULT_MASK == 0)
  1812. uasm_i_nop(&p);
  1813. /*
  1814. * We clobbered C0_PAGEMASK, restore it. On the other branch
  1815. * it is restored in build_huge_tlb_write_entry.
  1816. */
  1817. build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
  1818. uasm_l_tlbl_goaround2(&l, p);
  1819. }
  1820. uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
  1821. build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
  1822. #endif
  1823. uasm_l_nopage_tlbl(&l, p);
  1824. build_restore_work_registers(&p);
  1825. #ifdef CONFIG_CPU_MICROMIPS
  1826. if ((unsigned long)tlb_do_page_fault_0 & 1) {
  1827. uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0));
  1828. uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0));
  1829. uasm_i_jr(&p, K0);
  1830. } else
  1831. #endif
  1832. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
  1833. uasm_i_nop(&p);
  1834. if (p >= handle_tlbl_end)
  1835. panic("TLB load handler fastpath space exceeded");
  1836. uasm_resolve_relocs(relocs, labels);
  1837. pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
  1838. (unsigned int)(p - handle_tlbl));
  1839. dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_size);
  1840. }
  1841. static void build_r4000_tlb_store_handler(void)
  1842. {
  1843. u32 *p = handle_tlbs;
  1844. const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
  1845. struct uasm_label *l = labels;
  1846. struct uasm_reloc *r = relocs;
  1847. struct work_registers wr;
  1848. memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
  1849. memset(labels, 0, sizeof(labels));
  1850. memset(relocs, 0, sizeof(relocs));
  1851. wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
  1852. build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
  1853. if (m4kc_tlbp_war())
  1854. build_tlb_probe_entry(&p);
  1855. build_make_write(&p, &r, wr.r1, wr.r2);
  1856. build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
  1857. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1858. /*
  1859. * This is the entry point when
  1860. * build_r4000_tlbchange_handler_head spots a huge page.
  1861. */
  1862. uasm_l_tlb_huge_update(&l, p);
  1863. iPTE_LW(&p, wr.r1, wr.r2);
  1864. build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
  1865. build_tlb_probe_entry(&p);
  1866. uasm_i_ori(&p, wr.r1, wr.r1,
  1867. _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
  1868. build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
  1869. #endif
  1870. uasm_l_nopage_tlbs(&l, p);
  1871. build_restore_work_registers(&p);
  1872. #ifdef CONFIG_CPU_MICROMIPS
  1873. if ((unsigned long)tlb_do_page_fault_1 & 1) {
  1874. uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
  1875. uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
  1876. uasm_i_jr(&p, K0);
  1877. } else
  1878. #endif
  1879. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1880. uasm_i_nop(&p);
  1881. if (p >= handle_tlbs_end)
  1882. panic("TLB store handler fastpath space exceeded");
  1883. uasm_resolve_relocs(relocs, labels);
  1884. pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
  1885. (unsigned int)(p - handle_tlbs));
  1886. dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_size);
  1887. }
  1888. static void build_r4000_tlb_modify_handler(void)
  1889. {
  1890. u32 *p = handle_tlbm;
  1891. const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
  1892. struct uasm_label *l = labels;
  1893. struct uasm_reloc *r = relocs;
  1894. struct work_registers wr;
  1895. memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
  1896. memset(labels, 0, sizeof(labels));
  1897. memset(relocs, 0, sizeof(relocs));
  1898. wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
  1899. build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
  1900. if (m4kc_tlbp_war())
  1901. build_tlb_probe_entry(&p);
  1902. /* Present and writable bits set, set accessed and dirty bits. */
  1903. build_make_write(&p, &r, wr.r1, wr.r2);
  1904. build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
  1905. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1906. /*
  1907. * This is the entry point when
  1908. * build_r4000_tlbchange_handler_head spots a huge page.
  1909. */
  1910. uasm_l_tlb_huge_update(&l, p);
  1911. iPTE_LW(&p, wr.r1, wr.r2);
  1912. build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
  1913. build_tlb_probe_entry(&p);
  1914. uasm_i_ori(&p, wr.r1, wr.r1,
  1915. _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
  1916. build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
  1917. #endif
  1918. uasm_l_nopage_tlbm(&l, p);
  1919. build_restore_work_registers(&p);
  1920. #ifdef CONFIG_CPU_MICROMIPS
  1921. if ((unsigned long)tlb_do_page_fault_1 & 1) {
  1922. uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
  1923. uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
  1924. uasm_i_jr(&p, K0);
  1925. } else
  1926. #endif
  1927. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1928. uasm_i_nop(&p);
  1929. if (p >= handle_tlbm_end)
  1930. panic("TLB modify handler fastpath space exceeded");
  1931. uasm_resolve_relocs(relocs, labels);
  1932. pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
  1933. (unsigned int)(p - handle_tlbm));
  1934. dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_size);
  1935. }
  1936. static void flush_tlb_handlers(void)
  1937. {
  1938. local_flush_icache_range((unsigned long)handle_tlbl,
  1939. (unsigned long)handle_tlbl_end);
  1940. local_flush_icache_range((unsigned long)handle_tlbs,
  1941. (unsigned long)handle_tlbs_end);
  1942. local_flush_icache_range((unsigned long)handle_tlbm,
  1943. (unsigned long)handle_tlbm_end);
  1944. local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
  1945. (unsigned long)tlbmiss_handler_setup_pgd_end);
  1946. }
  1947. static void print_htw_config(void)
  1948. {
  1949. unsigned long config;
  1950. unsigned int pwctl;
  1951. const int field = 2 * sizeof(unsigned long);
  1952. config = read_c0_pwfield();
  1953. pr_debug("PWField (0x%0*lx): GDI: 0x%02lx UDI: 0x%02lx MDI: 0x%02lx PTI: 0x%02lx PTEI: 0x%02lx\n",
  1954. field, config,
  1955. (config & MIPS_PWFIELD_GDI_MASK) >> MIPS_PWFIELD_GDI_SHIFT,
  1956. (config & MIPS_PWFIELD_UDI_MASK) >> MIPS_PWFIELD_UDI_SHIFT,
  1957. (config & MIPS_PWFIELD_MDI_MASK) >> MIPS_PWFIELD_MDI_SHIFT,
  1958. (config & MIPS_PWFIELD_PTI_MASK) >> MIPS_PWFIELD_PTI_SHIFT,
  1959. (config & MIPS_PWFIELD_PTEI_MASK) >> MIPS_PWFIELD_PTEI_SHIFT);
  1960. config = read_c0_pwsize();
  1961. pr_debug("PWSize (0x%0*lx): GDW: 0x%02lx UDW: 0x%02lx MDW: 0x%02lx PTW: 0x%02lx PTEW: 0x%02lx\n",
  1962. field, config,
  1963. (config & MIPS_PWSIZE_GDW_MASK) >> MIPS_PWSIZE_GDW_SHIFT,
  1964. (config & MIPS_PWSIZE_UDW_MASK) >> MIPS_PWSIZE_UDW_SHIFT,
  1965. (config & MIPS_PWSIZE_MDW_MASK) >> MIPS_PWSIZE_MDW_SHIFT,
  1966. (config & MIPS_PWSIZE_PTW_MASK) >> MIPS_PWSIZE_PTW_SHIFT,
  1967. (config & MIPS_PWSIZE_PTEW_MASK) >> MIPS_PWSIZE_PTEW_SHIFT);
  1968. pwctl = read_c0_pwctl();
  1969. pr_debug("PWCtl (0x%x): PWEn: 0x%x DPH: 0x%x HugePg: 0x%x Psn: 0x%x\n",
  1970. pwctl,
  1971. (pwctl & MIPS_PWCTL_PWEN_MASK) >> MIPS_PWCTL_PWEN_SHIFT,
  1972. (pwctl & MIPS_PWCTL_DPH_MASK) >> MIPS_PWCTL_DPH_SHIFT,
  1973. (pwctl & MIPS_PWCTL_HUGEPG_MASK) >> MIPS_PWCTL_HUGEPG_SHIFT,
  1974. (pwctl & MIPS_PWCTL_PSN_MASK) >> MIPS_PWCTL_PSN_SHIFT);
  1975. }
  1976. static void config_htw_params(void)
  1977. {
  1978. unsigned long pwfield, pwsize, ptei;
  1979. unsigned int config;
  1980. /*
  1981. * We are using 2-level page tables, so we only need to
  1982. * setup GDW and PTW appropriately. UDW and MDW will remain 0.
  1983. * The default value of GDI/UDI/MDI/PTI is 0xc. It is illegal to
  1984. * write values less than 0xc in these fields because the entire
  1985. * write will be dropped. As a result of which, we must preserve
  1986. * the original reset values and overwrite only what we really want.
  1987. */
  1988. pwfield = read_c0_pwfield();
  1989. /* re-initialize the GDI field */
  1990. pwfield &= ~MIPS_PWFIELD_GDI_MASK;
  1991. pwfield |= PGDIR_SHIFT << MIPS_PWFIELD_GDI_SHIFT;
  1992. /* re-initialize the PTI field including the even/odd bit */
  1993. pwfield &= ~MIPS_PWFIELD_PTI_MASK;
  1994. pwfield |= PAGE_SHIFT << MIPS_PWFIELD_PTI_SHIFT;
  1995. /* Set the PTEI right shift */
  1996. ptei = _PAGE_GLOBAL_SHIFT << MIPS_PWFIELD_PTEI_SHIFT;
  1997. pwfield |= ptei;
  1998. write_c0_pwfield(pwfield);
  1999. /* Check whether the PTEI value is supported */
  2000. back_to_back_c0_hazard();
  2001. pwfield = read_c0_pwfield();
  2002. if (((pwfield & MIPS_PWFIELD_PTEI_MASK) << MIPS_PWFIELD_PTEI_SHIFT)
  2003. != ptei) {
  2004. pr_warn("Unsupported PTEI field value: 0x%lx. HTW will not be enabled",
  2005. ptei);
  2006. /*
  2007. * Drop option to avoid HTW being enabled via another path
  2008. * (eg htw_reset())
  2009. */
  2010. current_cpu_data.options &= ~MIPS_CPU_HTW;
  2011. return;
  2012. }
  2013. pwsize = ilog2(PTRS_PER_PGD) << MIPS_PWSIZE_GDW_SHIFT;
  2014. pwsize |= ilog2(PTRS_PER_PTE) << MIPS_PWSIZE_PTW_SHIFT;
  2015. write_c0_pwsize(pwsize);
  2016. /* Make sure everything is set before we enable the HTW */
  2017. back_to_back_c0_hazard();
  2018. /* Enable HTW and disable the rest of the pwctl fields */
  2019. config = 1 << MIPS_PWCTL_PWEN_SHIFT;
  2020. write_c0_pwctl(config);
  2021. pr_info("Hardware Page Table Walker enabled\n");
  2022. print_htw_config();
  2023. }
  2024. void build_tlb_refill_handler(void)
  2025. {
  2026. /*
  2027. * The refill handler is generated per-CPU, multi-node systems
  2028. * may have local storage for it. The other handlers are only
  2029. * needed once.
  2030. */
  2031. static int run_once = 0;
  2032. output_pgtable_bits_defines();
  2033. #ifdef CONFIG_64BIT
  2034. check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
  2035. #endif
  2036. switch (current_cpu_type()) {
  2037. case CPU_R2000:
  2038. case CPU_R3000:
  2039. case CPU_R3000A:
  2040. case CPU_R3081E:
  2041. case CPU_TX3912:
  2042. case CPU_TX3922:
  2043. case CPU_TX3927:
  2044. #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
  2045. if (cpu_has_local_ebase)
  2046. build_r3000_tlb_refill_handler();
  2047. if (!run_once) {
  2048. if (!cpu_has_local_ebase)
  2049. build_r3000_tlb_refill_handler();
  2050. build_setup_pgd();
  2051. build_r3000_tlb_load_handler();
  2052. build_r3000_tlb_store_handler();
  2053. build_r3000_tlb_modify_handler();
  2054. flush_tlb_handlers();
  2055. run_once++;
  2056. }
  2057. #else
  2058. panic("No R3000 TLB refill handler");
  2059. #endif
  2060. break;
  2061. case CPU_R6000:
  2062. case CPU_R6000A:
  2063. panic("No R6000 TLB refill handler yet");
  2064. break;
  2065. case CPU_R8000:
  2066. panic("No R8000 TLB refill handler yet");
  2067. break;
  2068. default:
  2069. if (!run_once) {
  2070. scratch_reg = allocate_kscratch();
  2071. build_setup_pgd();
  2072. build_r4000_tlb_load_handler();
  2073. build_r4000_tlb_store_handler();
  2074. build_r4000_tlb_modify_handler();
  2075. if (!cpu_has_local_ebase)
  2076. build_r4000_tlb_refill_handler();
  2077. flush_tlb_handlers();
  2078. run_once++;
  2079. }
  2080. if (cpu_has_local_ebase)
  2081. build_r4000_tlb_refill_handler();
  2082. if (cpu_has_htw)
  2083. config_htw_params();
  2084. }
  2085. }