igb_ethtool.c 96 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473
  1. // SPDX-License-Identifier: GPL-2.0
  2. /* Intel(R) Gigabit Ethernet Linux driver
  3. * Copyright(c) 2007-2014 Intel Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms and conditions of the GNU General Public License,
  7. * version 2, as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, see <http://www.gnu.org/licenses/>.
  16. *
  17. * The full GNU General Public License is included in this distribution in
  18. * the file called "COPYING".
  19. *
  20. * Contact Information:
  21. * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  22. * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  23. */
  24. /* ethtool support for igb */
  25. #include <linux/vmalloc.h>
  26. #include <linux/netdevice.h>
  27. #include <linux/pci.h>
  28. #include <linux/delay.h>
  29. #include <linux/interrupt.h>
  30. #include <linux/if_ether.h>
  31. #include <linux/ethtool.h>
  32. #include <linux/sched.h>
  33. #include <linux/slab.h>
  34. #include <linux/pm_runtime.h>
  35. #include <linux/highmem.h>
  36. #include <linux/mdio.h>
  37. #include "igb.h"
  38. struct igb_stats {
  39. char stat_string[ETH_GSTRING_LEN];
  40. int sizeof_stat;
  41. int stat_offset;
  42. };
  43. #define IGB_STAT(_name, _stat) { \
  44. .stat_string = _name, \
  45. .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
  46. .stat_offset = offsetof(struct igb_adapter, _stat) \
  47. }
  48. static const struct igb_stats igb_gstrings_stats[] = {
  49. IGB_STAT("rx_packets", stats.gprc),
  50. IGB_STAT("tx_packets", stats.gptc),
  51. IGB_STAT("rx_bytes", stats.gorc),
  52. IGB_STAT("tx_bytes", stats.gotc),
  53. IGB_STAT("rx_broadcast", stats.bprc),
  54. IGB_STAT("tx_broadcast", stats.bptc),
  55. IGB_STAT("rx_multicast", stats.mprc),
  56. IGB_STAT("tx_multicast", stats.mptc),
  57. IGB_STAT("multicast", stats.mprc),
  58. IGB_STAT("collisions", stats.colc),
  59. IGB_STAT("rx_crc_errors", stats.crcerrs),
  60. IGB_STAT("rx_no_buffer_count", stats.rnbc),
  61. IGB_STAT("rx_missed_errors", stats.mpc),
  62. IGB_STAT("tx_aborted_errors", stats.ecol),
  63. IGB_STAT("tx_carrier_errors", stats.tncrs),
  64. IGB_STAT("tx_window_errors", stats.latecol),
  65. IGB_STAT("tx_abort_late_coll", stats.latecol),
  66. IGB_STAT("tx_deferred_ok", stats.dc),
  67. IGB_STAT("tx_single_coll_ok", stats.scc),
  68. IGB_STAT("tx_multi_coll_ok", stats.mcc),
  69. IGB_STAT("tx_timeout_count", tx_timeout_count),
  70. IGB_STAT("rx_long_length_errors", stats.roc),
  71. IGB_STAT("rx_short_length_errors", stats.ruc),
  72. IGB_STAT("rx_align_errors", stats.algnerrc),
  73. IGB_STAT("tx_tcp_seg_good", stats.tsctc),
  74. IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
  75. IGB_STAT("rx_flow_control_xon", stats.xonrxc),
  76. IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
  77. IGB_STAT("tx_flow_control_xon", stats.xontxc),
  78. IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
  79. IGB_STAT("rx_long_byte_count", stats.gorc),
  80. IGB_STAT("tx_dma_out_of_sync", stats.doosync),
  81. IGB_STAT("tx_smbus", stats.mgptc),
  82. IGB_STAT("rx_smbus", stats.mgprc),
  83. IGB_STAT("dropped_smbus", stats.mgpdc),
  84. IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
  85. IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
  86. IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
  87. IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
  88. IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
  89. IGB_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
  90. IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
  91. };
  92. #define IGB_NETDEV_STAT(_net_stat) { \
  93. .stat_string = __stringify(_net_stat), \
  94. .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
  95. .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
  96. }
  97. static const struct igb_stats igb_gstrings_net_stats[] = {
  98. IGB_NETDEV_STAT(rx_errors),
  99. IGB_NETDEV_STAT(tx_errors),
  100. IGB_NETDEV_STAT(tx_dropped),
  101. IGB_NETDEV_STAT(rx_length_errors),
  102. IGB_NETDEV_STAT(rx_over_errors),
  103. IGB_NETDEV_STAT(rx_frame_errors),
  104. IGB_NETDEV_STAT(rx_fifo_errors),
  105. IGB_NETDEV_STAT(tx_fifo_errors),
  106. IGB_NETDEV_STAT(tx_heartbeat_errors)
  107. };
  108. #define IGB_GLOBAL_STATS_LEN \
  109. (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
  110. #define IGB_NETDEV_STATS_LEN \
  111. (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
  112. #define IGB_RX_QUEUE_STATS_LEN \
  113. (sizeof(struct igb_rx_queue_stats) / sizeof(u64))
  114. #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
  115. #define IGB_QUEUE_STATS_LEN \
  116. ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
  117. IGB_RX_QUEUE_STATS_LEN) + \
  118. (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
  119. IGB_TX_QUEUE_STATS_LEN))
  120. #define IGB_STATS_LEN \
  121. (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
  122. enum igb_diagnostics_results {
  123. TEST_REG = 0,
  124. TEST_EEP,
  125. TEST_IRQ,
  126. TEST_LOOP,
  127. TEST_LINK
  128. };
  129. static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
  130. [TEST_REG] = "Register test (offline)",
  131. [TEST_EEP] = "Eeprom test (offline)",
  132. [TEST_IRQ] = "Interrupt test (offline)",
  133. [TEST_LOOP] = "Loopback test (offline)",
  134. [TEST_LINK] = "Link test (on/offline)"
  135. };
  136. #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
  137. static const char igb_priv_flags_strings[][ETH_GSTRING_LEN] = {
  138. #define IGB_PRIV_FLAGS_LEGACY_RX BIT(0)
  139. "legacy-rx",
  140. };
  141. #define IGB_PRIV_FLAGS_STR_LEN ARRAY_SIZE(igb_priv_flags_strings)
  142. static int igb_get_link_ksettings(struct net_device *netdev,
  143. struct ethtool_link_ksettings *cmd)
  144. {
  145. struct igb_adapter *adapter = netdev_priv(netdev);
  146. struct e1000_hw *hw = &adapter->hw;
  147. struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
  148. struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
  149. u32 status;
  150. u32 speed;
  151. u32 supported, advertising;
  152. status = rd32(E1000_STATUS);
  153. if (hw->phy.media_type == e1000_media_type_copper) {
  154. supported = (SUPPORTED_10baseT_Half |
  155. SUPPORTED_10baseT_Full |
  156. SUPPORTED_100baseT_Half |
  157. SUPPORTED_100baseT_Full |
  158. SUPPORTED_1000baseT_Full|
  159. SUPPORTED_Autoneg |
  160. SUPPORTED_TP |
  161. SUPPORTED_Pause);
  162. advertising = ADVERTISED_TP;
  163. if (hw->mac.autoneg == 1) {
  164. advertising |= ADVERTISED_Autoneg;
  165. /* the e1000 autoneg seems to match ethtool nicely */
  166. advertising |= hw->phy.autoneg_advertised;
  167. }
  168. cmd->base.port = PORT_TP;
  169. cmd->base.phy_address = hw->phy.addr;
  170. } else {
  171. supported = (SUPPORTED_FIBRE |
  172. SUPPORTED_1000baseKX_Full |
  173. SUPPORTED_Autoneg |
  174. SUPPORTED_Pause);
  175. advertising = (ADVERTISED_FIBRE |
  176. ADVERTISED_1000baseKX_Full);
  177. if (hw->mac.type == e1000_i354) {
  178. if ((hw->device_id ==
  179. E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
  180. !(status & E1000_STATUS_2P5_SKU_OVER)) {
  181. supported |= SUPPORTED_2500baseX_Full;
  182. supported &= ~SUPPORTED_1000baseKX_Full;
  183. advertising |= ADVERTISED_2500baseX_Full;
  184. advertising &= ~ADVERTISED_1000baseKX_Full;
  185. }
  186. }
  187. if (eth_flags->e100_base_fx) {
  188. supported |= SUPPORTED_100baseT_Full;
  189. advertising |= ADVERTISED_100baseT_Full;
  190. }
  191. if (hw->mac.autoneg == 1)
  192. advertising |= ADVERTISED_Autoneg;
  193. cmd->base.port = PORT_FIBRE;
  194. }
  195. if (hw->mac.autoneg != 1)
  196. advertising &= ~(ADVERTISED_Pause |
  197. ADVERTISED_Asym_Pause);
  198. switch (hw->fc.requested_mode) {
  199. case e1000_fc_full:
  200. advertising |= ADVERTISED_Pause;
  201. break;
  202. case e1000_fc_rx_pause:
  203. advertising |= (ADVERTISED_Pause |
  204. ADVERTISED_Asym_Pause);
  205. break;
  206. case e1000_fc_tx_pause:
  207. advertising |= ADVERTISED_Asym_Pause;
  208. break;
  209. default:
  210. advertising &= ~(ADVERTISED_Pause |
  211. ADVERTISED_Asym_Pause);
  212. }
  213. if (status & E1000_STATUS_LU) {
  214. if ((status & E1000_STATUS_2P5_SKU) &&
  215. !(status & E1000_STATUS_2P5_SKU_OVER)) {
  216. speed = SPEED_2500;
  217. } else if (status & E1000_STATUS_SPEED_1000) {
  218. speed = SPEED_1000;
  219. } else if (status & E1000_STATUS_SPEED_100) {
  220. speed = SPEED_100;
  221. } else {
  222. speed = SPEED_10;
  223. }
  224. if ((status & E1000_STATUS_FD) ||
  225. hw->phy.media_type != e1000_media_type_copper)
  226. cmd->base.duplex = DUPLEX_FULL;
  227. else
  228. cmd->base.duplex = DUPLEX_HALF;
  229. } else {
  230. speed = SPEED_UNKNOWN;
  231. cmd->base.duplex = DUPLEX_UNKNOWN;
  232. }
  233. cmd->base.speed = speed;
  234. if ((hw->phy.media_type == e1000_media_type_fiber) ||
  235. hw->mac.autoneg)
  236. cmd->base.autoneg = AUTONEG_ENABLE;
  237. else
  238. cmd->base.autoneg = AUTONEG_DISABLE;
  239. /* MDI-X => 2; MDI =>1; Invalid =>0 */
  240. if (hw->phy.media_type == e1000_media_type_copper)
  241. cmd->base.eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
  242. ETH_TP_MDI;
  243. else
  244. cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
  245. if (hw->phy.mdix == AUTO_ALL_MODES)
  246. cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
  247. else
  248. cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
  249. ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
  250. supported);
  251. ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
  252. advertising);
  253. return 0;
  254. }
  255. static int igb_set_link_ksettings(struct net_device *netdev,
  256. const struct ethtool_link_ksettings *cmd)
  257. {
  258. struct igb_adapter *adapter = netdev_priv(netdev);
  259. struct e1000_hw *hw = &adapter->hw;
  260. u32 advertising;
  261. /* When SoL/IDER sessions are active, autoneg/speed/duplex
  262. * cannot be changed
  263. */
  264. if (igb_check_reset_block(hw)) {
  265. dev_err(&adapter->pdev->dev,
  266. "Cannot change link characteristics when SoL/IDER is active.\n");
  267. return -EINVAL;
  268. }
  269. /* MDI setting is only allowed when autoneg enabled because
  270. * some hardware doesn't allow MDI setting when speed or
  271. * duplex is forced.
  272. */
  273. if (cmd->base.eth_tp_mdix_ctrl) {
  274. if (hw->phy.media_type != e1000_media_type_copper)
  275. return -EOPNOTSUPP;
  276. if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
  277. (cmd->base.autoneg != AUTONEG_ENABLE)) {
  278. dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
  279. return -EINVAL;
  280. }
  281. }
  282. while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
  283. usleep_range(1000, 2000);
  284. ethtool_convert_link_mode_to_legacy_u32(&advertising,
  285. cmd->link_modes.advertising);
  286. if (cmd->base.autoneg == AUTONEG_ENABLE) {
  287. hw->mac.autoneg = 1;
  288. if (hw->phy.media_type == e1000_media_type_fiber) {
  289. hw->phy.autoneg_advertised = advertising |
  290. ADVERTISED_FIBRE |
  291. ADVERTISED_Autoneg;
  292. switch (adapter->link_speed) {
  293. case SPEED_2500:
  294. hw->phy.autoneg_advertised =
  295. ADVERTISED_2500baseX_Full;
  296. break;
  297. case SPEED_1000:
  298. hw->phy.autoneg_advertised =
  299. ADVERTISED_1000baseT_Full;
  300. break;
  301. case SPEED_100:
  302. hw->phy.autoneg_advertised =
  303. ADVERTISED_100baseT_Full;
  304. break;
  305. default:
  306. break;
  307. }
  308. } else {
  309. hw->phy.autoneg_advertised = advertising |
  310. ADVERTISED_TP |
  311. ADVERTISED_Autoneg;
  312. }
  313. advertising = hw->phy.autoneg_advertised;
  314. if (adapter->fc_autoneg)
  315. hw->fc.requested_mode = e1000_fc_default;
  316. } else {
  317. u32 speed = cmd->base.speed;
  318. /* calling this overrides forced MDI setting */
  319. if (igb_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
  320. clear_bit(__IGB_RESETTING, &adapter->state);
  321. return -EINVAL;
  322. }
  323. }
  324. /* MDI-X => 2; MDI => 1; Auto => 3 */
  325. if (cmd->base.eth_tp_mdix_ctrl) {
  326. /* fix up the value for auto (3 => 0) as zero is mapped
  327. * internally to auto
  328. */
  329. if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
  330. hw->phy.mdix = AUTO_ALL_MODES;
  331. else
  332. hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
  333. }
  334. /* reset the link */
  335. if (netif_running(adapter->netdev)) {
  336. igb_down(adapter);
  337. igb_up(adapter);
  338. } else
  339. igb_reset(adapter);
  340. clear_bit(__IGB_RESETTING, &adapter->state);
  341. return 0;
  342. }
  343. static u32 igb_get_link(struct net_device *netdev)
  344. {
  345. struct igb_adapter *adapter = netdev_priv(netdev);
  346. struct e1000_mac_info *mac = &adapter->hw.mac;
  347. /* If the link is not reported up to netdev, interrupts are disabled,
  348. * and so the physical link state may have changed since we last
  349. * looked. Set get_link_status to make sure that the true link
  350. * state is interrogated, rather than pulling a cached and possibly
  351. * stale link state from the driver.
  352. */
  353. if (!netif_carrier_ok(netdev))
  354. mac->get_link_status = 1;
  355. return igb_has_link(adapter);
  356. }
  357. static void igb_get_pauseparam(struct net_device *netdev,
  358. struct ethtool_pauseparam *pause)
  359. {
  360. struct igb_adapter *adapter = netdev_priv(netdev);
  361. struct e1000_hw *hw = &adapter->hw;
  362. pause->autoneg =
  363. (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
  364. if (hw->fc.current_mode == e1000_fc_rx_pause)
  365. pause->rx_pause = 1;
  366. else if (hw->fc.current_mode == e1000_fc_tx_pause)
  367. pause->tx_pause = 1;
  368. else if (hw->fc.current_mode == e1000_fc_full) {
  369. pause->rx_pause = 1;
  370. pause->tx_pause = 1;
  371. }
  372. }
  373. static int igb_set_pauseparam(struct net_device *netdev,
  374. struct ethtool_pauseparam *pause)
  375. {
  376. struct igb_adapter *adapter = netdev_priv(netdev);
  377. struct e1000_hw *hw = &adapter->hw;
  378. int retval = 0;
  379. /* 100basefx does not support setting link flow control */
  380. if (hw->dev_spec._82575.eth_flags.e100_base_fx)
  381. return -EINVAL;
  382. adapter->fc_autoneg = pause->autoneg;
  383. while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
  384. usleep_range(1000, 2000);
  385. if (adapter->fc_autoneg == AUTONEG_ENABLE) {
  386. hw->fc.requested_mode = e1000_fc_default;
  387. if (netif_running(adapter->netdev)) {
  388. igb_down(adapter);
  389. igb_up(adapter);
  390. } else {
  391. igb_reset(adapter);
  392. }
  393. } else {
  394. if (pause->rx_pause && pause->tx_pause)
  395. hw->fc.requested_mode = e1000_fc_full;
  396. else if (pause->rx_pause && !pause->tx_pause)
  397. hw->fc.requested_mode = e1000_fc_rx_pause;
  398. else if (!pause->rx_pause && pause->tx_pause)
  399. hw->fc.requested_mode = e1000_fc_tx_pause;
  400. else if (!pause->rx_pause && !pause->tx_pause)
  401. hw->fc.requested_mode = e1000_fc_none;
  402. hw->fc.current_mode = hw->fc.requested_mode;
  403. retval = ((hw->phy.media_type == e1000_media_type_copper) ?
  404. igb_force_mac_fc(hw) : igb_setup_link(hw));
  405. }
  406. clear_bit(__IGB_RESETTING, &adapter->state);
  407. return retval;
  408. }
  409. static u32 igb_get_msglevel(struct net_device *netdev)
  410. {
  411. struct igb_adapter *adapter = netdev_priv(netdev);
  412. return adapter->msg_enable;
  413. }
  414. static void igb_set_msglevel(struct net_device *netdev, u32 data)
  415. {
  416. struct igb_adapter *adapter = netdev_priv(netdev);
  417. adapter->msg_enable = data;
  418. }
  419. static int igb_get_regs_len(struct net_device *netdev)
  420. {
  421. #define IGB_REGS_LEN 739
  422. return IGB_REGS_LEN * sizeof(u32);
  423. }
  424. static void igb_get_regs(struct net_device *netdev,
  425. struct ethtool_regs *regs, void *p)
  426. {
  427. struct igb_adapter *adapter = netdev_priv(netdev);
  428. struct e1000_hw *hw = &adapter->hw;
  429. u32 *regs_buff = p;
  430. u8 i;
  431. memset(p, 0, IGB_REGS_LEN * sizeof(u32));
  432. regs->version = (1u << 24) | (hw->revision_id << 16) | hw->device_id;
  433. /* General Registers */
  434. regs_buff[0] = rd32(E1000_CTRL);
  435. regs_buff[1] = rd32(E1000_STATUS);
  436. regs_buff[2] = rd32(E1000_CTRL_EXT);
  437. regs_buff[3] = rd32(E1000_MDIC);
  438. regs_buff[4] = rd32(E1000_SCTL);
  439. regs_buff[5] = rd32(E1000_CONNSW);
  440. regs_buff[6] = rd32(E1000_VET);
  441. regs_buff[7] = rd32(E1000_LEDCTL);
  442. regs_buff[8] = rd32(E1000_PBA);
  443. regs_buff[9] = rd32(E1000_PBS);
  444. regs_buff[10] = rd32(E1000_FRTIMER);
  445. regs_buff[11] = rd32(E1000_TCPTIMER);
  446. /* NVM Register */
  447. regs_buff[12] = rd32(E1000_EECD);
  448. /* Interrupt */
  449. /* Reading EICS for EICR because they read the
  450. * same but EICS does not clear on read
  451. */
  452. regs_buff[13] = rd32(E1000_EICS);
  453. regs_buff[14] = rd32(E1000_EICS);
  454. regs_buff[15] = rd32(E1000_EIMS);
  455. regs_buff[16] = rd32(E1000_EIMC);
  456. regs_buff[17] = rd32(E1000_EIAC);
  457. regs_buff[18] = rd32(E1000_EIAM);
  458. /* Reading ICS for ICR because they read the
  459. * same but ICS does not clear on read
  460. */
  461. regs_buff[19] = rd32(E1000_ICS);
  462. regs_buff[20] = rd32(E1000_ICS);
  463. regs_buff[21] = rd32(E1000_IMS);
  464. regs_buff[22] = rd32(E1000_IMC);
  465. regs_buff[23] = rd32(E1000_IAC);
  466. regs_buff[24] = rd32(E1000_IAM);
  467. regs_buff[25] = rd32(E1000_IMIRVP);
  468. /* Flow Control */
  469. regs_buff[26] = rd32(E1000_FCAL);
  470. regs_buff[27] = rd32(E1000_FCAH);
  471. regs_buff[28] = rd32(E1000_FCTTV);
  472. regs_buff[29] = rd32(E1000_FCRTL);
  473. regs_buff[30] = rd32(E1000_FCRTH);
  474. regs_buff[31] = rd32(E1000_FCRTV);
  475. /* Receive */
  476. regs_buff[32] = rd32(E1000_RCTL);
  477. regs_buff[33] = rd32(E1000_RXCSUM);
  478. regs_buff[34] = rd32(E1000_RLPML);
  479. regs_buff[35] = rd32(E1000_RFCTL);
  480. regs_buff[36] = rd32(E1000_MRQC);
  481. regs_buff[37] = rd32(E1000_VT_CTL);
  482. /* Transmit */
  483. regs_buff[38] = rd32(E1000_TCTL);
  484. regs_buff[39] = rd32(E1000_TCTL_EXT);
  485. regs_buff[40] = rd32(E1000_TIPG);
  486. regs_buff[41] = rd32(E1000_DTXCTL);
  487. /* Wake Up */
  488. regs_buff[42] = rd32(E1000_WUC);
  489. regs_buff[43] = rd32(E1000_WUFC);
  490. regs_buff[44] = rd32(E1000_WUS);
  491. regs_buff[45] = rd32(E1000_IPAV);
  492. regs_buff[46] = rd32(E1000_WUPL);
  493. /* MAC */
  494. regs_buff[47] = rd32(E1000_PCS_CFG0);
  495. regs_buff[48] = rd32(E1000_PCS_LCTL);
  496. regs_buff[49] = rd32(E1000_PCS_LSTAT);
  497. regs_buff[50] = rd32(E1000_PCS_ANADV);
  498. regs_buff[51] = rd32(E1000_PCS_LPAB);
  499. regs_buff[52] = rd32(E1000_PCS_NPTX);
  500. regs_buff[53] = rd32(E1000_PCS_LPABNP);
  501. /* Statistics */
  502. regs_buff[54] = adapter->stats.crcerrs;
  503. regs_buff[55] = adapter->stats.algnerrc;
  504. regs_buff[56] = adapter->stats.symerrs;
  505. regs_buff[57] = adapter->stats.rxerrc;
  506. regs_buff[58] = adapter->stats.mpc;
  507. regs_buff[59] = adapter->stats.scc;
  508. regs_buff[60] = adapter->stats.ecol;
  509. regs_buff[61] = adapter->stats.mcc;
  510. regs_buff[62] = adapter->stats.latecol;
  511. regs_buff[63] = adapter->stats.colc;
  512. regs_buff[64] = adapter->stats.dc;
  513. regs_buff[65] = adapter->stats.tncrs;
  514. regs_buff[66] = adapter->stats.sec;
  515. regs_buff[67] = adapter->stats.htdpmc;
  516. regs_buff[68] = adapter->stats.rlec;
  517. regs_buff[69] = adapter->stats.xonrxc;
  518. regs_buff[70] = adapter->stats.xontxc;
  519. regs_buff[71] = adapter->stats.xoffrxc;
  520. regs_buff[72] = adapter->stats.xofftxc;
  521. regs_buff[73] = adapter->stats.fcruc;
  522. regs_buff[74] = adapter->stats.prc64;
  523. regs_buff[75] = adapter->stats.prc127;
  524. regs_buff[76] = adapter->stats.prc255;
  525. regs_buff[77] = adapter->stats.prc511;
  526. regs_buff[78] = adapter->stats.prc1023;
  527. regs_buff[79] = adapter->stats.prc1522;
  528. regs_buff[80] = adapter->stats.gprc;
  529. regs_buff[81] = adapter->stats.bprc;
  530. regs_buff[82] = adapter->stats.mprc;
  531. regs_buff[83] = adapter->stats.gptc;
  532. regs_buff[84] = adapter->stats.gorc;
  533. regs_buff[86] = adapter->stats.gotc;
  534. regs_buff[88] = adapter->stats.rnbc;
  535. regs_buff[89] = adapter->stats.ruc;
  536. regs_buff[90] = adapter->stats.rfc;
  537. regs_buff[91] = adapter->stats.roc;
  538. regs_buff[92] = adapter->stats.rjc;
  539. regs_buff[93] = adapter->stats.mgprc;
  540. regs_buff[94] = adapter->stats.mgpdc;
  541. regs_buff[95] = adapter->stats.mgptc;
  542. regs_buff[96] = adapter->stats.tor;
  543. regs_buff[98] = adapter->stats.tot;
  544. regs_buff[100] = adapter->stats.tpr;
  545. regs_buff[101] = adapter->stats.tpt;
  546. regs_buff[102] = adapter->stats.ptc64;
  547. regs_buff[103] = adapter->stats.ptc127;
  548. regs_buff[104] = adapter->stats.ptc255;
  549. regs_buff[105] = adapter->stats.ptc511;
  550. regs_buff[106] = adapter->stats.ptc1023;
  551. regs_buff[107] = adapter->stats.ptc1522;
  552. regs_buff[108] = adapter->stats.mptc;
  553. regs_buff[109] = adapter->stats.bptc;
  554. regs_buff[110] = adapter->stats.tsctc;
  555. regs_buff[111] = adapter->stats.iac;
  556. regs_buff[112] = adapter->stats.rpthc;
  557. regs_buff[113] = adapter->stats.hgptc;
  558. regs_buff[114] = adapter->stats.hgorc;
  559. regs_buff[116] = adapter->stats.hgotc;
  560. regs_buff[118] = adapter->stats.lenerrs;
  561. regs_buff[119] = adapter->stats.scvpc;
  562. regs_buff[120] = adapter->stats.hrmpc;
  563. for (i = 0; i < 4; i++)
  564. regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
  565. for (i = 0; i < 4; i++)
  566. regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
  567. for (i = 0; i < 4; i++)
  568. regs_buff[129 + i] = rd32(E1000_RDBAL(i));
  569. for (i = 0; i < 4; i++)
  570. regs_buff[133 + i] = rd32(E1000_RDBAH(i));
  571. for (i = 0; i < 4; i++)
  572. regs_buff[137 + i] = rd32(E1000_RDLEN(i));
  573. for (i = 0; i < 4; i++)
  574. regs_buff[141 + i] = rd32(E1000_RDH(i));
  575. for (i = 0; i < 4; i++)
  576. regs_buff[145 + i] = rd32(E1000_RDT(i));
  577. for (i = 0; i < 4; i++)
  578. regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
  579. for (i = 0; i < 10; i++)
  580. regs_buff[153 + i] = rd32(E1000_EITR(i));
  581. for (i = 0; i < 8; i++)
  582. regs_buff[163 + i] = rd32(E1000_IMIR(i));
  583. for (i = 0; i < 8; i++)
  584. regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
  585. for (i = 0; i < 16; i++)
  586. regs_buff[179 + i] = rd32(E1000_RAL(i));
  587. for (i = 0; i < 16; i++)
  588. regs_buff[195 + i] = rd32(E1000_RAH(i));
  589. for (i = 0; i < 4; i++)
  590. regs_buff[211 + i] = rd32(E1000_TDBAL(i));
  591. for (i = 0; i < 4; i++)
  592. regs_buff[215 + i] = rd32(E1000_TDBAH(i));
  593. for (i = 0; i < 4; i++)
  594. regs_buff[219 + i] = rd32(E1000_TDLEN(i));
  595. for (i = 0; i < 4; i++)
  596. regs_buff[223 + i] = rd32(E1000_TDH(i));
  597. for (i = 0; i < 4; i++)
  598. regs_buff[227 + i] = rd32(E1000_TDT(i));
  599. for (i = 0; i < 4; i++)
  600. regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
  601. for (i = 0; i < 4; i++)
  602. regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
  603. for (i = 0; i < 4; i++)
  604. regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
  605. for (i = 0; i < 4; i++)
  606. regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
  607. for (i = 0; i < 4; i++)
  608. regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
  609. for (i = 0; i < 4; i++)
  610. regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
  611. for (i = 0; i < 32; i++)
  612. regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
  613. for (i = 0; i < 128; i++)
  614. regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
  615. for (i = 0; i < 128; i++)
  616. regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
  617. for (i = 0; i < 4; i++)
  618. regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
  619. regs_buff[547] = rd32(E1000_TDFH);
  620. regs_buff[548] = rd32(E1000_TDFT);
  621. regs_buff[549] = rd32(E1000_TDFHS);
  622. regs_buff[550] = rd32(E1000_TDFPC);
  623. if (hw->mac.type > e1000_82580) {
  624. regs_buff[551] = adapter->stats.o2bgptc;
  625. regs_buff[552] = adapter->stats.b2ospc;
  626. regs_buff[553] = adapter->stats.o2bspc;
  627. regs_buff[554] = adapter->stats.b2ogprc;
  628. }
  629. if (hw->mac.type != e1000_82576)
  630. return;
  631. for (i = 0; i < 12; i++)
  632. regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
  633. for (i = 0; i < 4; i++)
  634. regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
  635. for (i = 0; i < 12; i++)
  636. regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
  637. for (i = 0; i < 12; i++)
  638. regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
  639. for (i = 0; i < 12; i++)
  640. regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
  641. for (i = 0; i < 12; i++)
  642. regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
  643. for (i = 0; i < 12; i++)
  644. regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
  645. for (i = 0; i < 12; i++)
  646. regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
  647. for (i = 0; i < 12; i++)
  648. regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
  649. for (i = 0; i < 12; i++)
  650. regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
  651. for (i = 0; i < 12; i++)
  652. regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
  653. for (i = 0; i < 12; i++)
  654. regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
  655. for (i = 0; i < 12; i++)
  656. regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
  657. for (i = 0; i < 12; i++)
  658. regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
  659. for (i = 0; i < 12; i++)
  660. regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
  661. for (i = 0; i < 12; i++)
  662. regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
  663. }
  664. static int igb_get_eeprom_len(struct net_device *netdev)
  665. {
  666. struct igb_adapter *adapter = netdev_priv(netdev);
  667. return adapter->hw.nvm.word_size * 2;
  668. }
  669. static int igb_get_eeprom(struct net_device *netdev,
  670. struct ethtool_eeprom *eeprom, u8 *bytes)
  671. {
  672. struct igb_adapter *adapter = netdev_priv(netdev);
  673. struct e1000_hw *hw = &adapter->hw;
  674. u16 *eeprom_buff;
  675. int first_word, last_word;
  676. int ret_val = 0;
  677. u16 i;
  678. if (eeprom->len == 0)
  679. return -EINVAL;
  680. eeprom->magic = hw->vendor_id | (hw->device_id << 16);
  681. first_word = eeprom->offset >> 1;
  682. last_word = (eeprom->offset + eeprom->len - 1) >> 1;
  683. eeprom_buff = kmalloc(sizeof(u16) *
  684. (last_word - first_word + 1), GFP_KERNEL);
  685. if (!eeprom_buff)
  686. return -ENOMEM;
  687. if (hw->nvm.type == e1000_nvm_eeprom_spi)
  688. ret_val = hw->nvm.ops.read(hw, first_word,
  689. last_word - first_word + 1,
  690. eeprom_buff);
  691. else {
  692. for (i = 0; i < last_word - first_word + 1; i++) {
  693. ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
  694. &eeprom_buff[i]);
  695. if (ret_val)
  696. break;
  697. }
  698. }
  699. /* Device's eeprom is always little-endian, word addressable */
  700. for (i = 0; i < last_word - first_word + 1; i++)
  701. le16_to_cpus(&eeprom_buff[i]);
  702. memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
  703. eeprom->len);
  704. kfree(eeprom_buff);
  705. return ret_val;
  706. }
  707. static int igb_set_eeprom(struct net_device *netdev,
  708. struct ethtool_eeprom *eeprom, u8 *bytes)
  709. {
  710. struct igb_adapter *adapter = netdev_priv(netdev);
  711. struct e1000_hw *hw = &adapter->hw;
  712. u16 *eeprom_buff;
  713. void *ptr;
  714. int max_len, first_word, last_word, ret_val = 0;
  715. u16 i;
  716. if (eeprom->len == 0)
  717. return -EOPNOTSUPP;
  718. if ((hw->mac.type >= e1000_i210) &&
  719. !igb_get_flash_presence_i210(hw)) {
  720. return -EOPNOTSUPP;
  721. }
  722. if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
  723. return -EFAULT;
  724. max_len = hw->nvm.word_size * 2;
  725. first_word = eeprom->offset >> 1;
  726. last_word = (eeprom->offset + eeprom->len - 1) >> 1;
  727. eeprom_buff = kmalloc(max_len, GFP_KERNEL);
  728. if (!eeprom_buff)
  729. return -ENOMEM;
  730. ptr = (void *)eeprom_buff;
  731. if (eeprom->offset & 1) {
  732. /* need read/modify/write of first changed EEPROM word
  733. * only the second byte of the word is being modified
  734. */
  735. ret_val = hw->nvm.ops.read(hw, first_word, 1,
  736. &eeprom_buff[0]);
  737. ptr++;
  738. }
  739. if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
  740. /* need read/modify/write of last changed EEPROM word
  741. * only the first byte of the word is being modified
  742. */
  743. ret_val = hw->nvm.ops.read(hw, last_word, 1,
  744. &eeprom_buff[last_word - first_word]);
  745. }
  746. /* Device's eeprom is always little-endian, word addressable */
  747. for (i = 0; i < last_word - first_word + 1; i++)
  748. le16_to_cpus(&eeprom_buff[i]);
  749. memcpy(ptr, bytes, eeprom->len);
  750. for (i = 0; i < last_word - first_word + 1; i++)
  751. eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
  752. ret_val = hw->nvm.ops.write(hw, first_word,
  753. last_word - first_word + 1, eeprom_buff);
  754. /* Update the checksum if nvm write succeeded */
  755. if (ret_val == 0)
  756. hw->nvm.ops.update(hw);
  757. igb_set_fw_version(adapter);
  758. kfree(eeprom_buff);
  759. return ret_val;
  760. }
  761. static void igb_get_drvinfo(struct net_device *netdev,
  762. struct ethtool_drvinfo *drvinfo)
  763. {
  764. struct igb_adapter *adapter = netdev_priv(netdev);
  765. strlcpy(drvinfo->driver, igb_driver_name, sizeof(drvinfo->driver));
  766. strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
  767. /* EEPROM image version # is reported as firmware version # for
  768. * 82575 controllers
  769. */
  770. strlcpy(drvinfo->fw_version, adapter->fw_version,
  771. sizeof(drvinfo->fw_version));
  772. strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
  773. sizeof(drvinfo->bus_info));
  774. drvinfo->n_priv_flags = IGB_PRIV_FLAGS_STR_LEN;
  775. }
  776. static void igb_get_ringparam(struct net_device *netdev,
  777. struct ethtool_ringparam *ring)
  778. {
  779. struct igb_adapter *adapter = netdev_priv(netdev);
  780. ring->rx_max_pending = IGB_MAX_RXD;
  781. ring->tx_max_pending = IGB_MAX_TXD;
  782. ring->rx_pending = adapter->rx_ring_count;
  783. ring->tx_pending = adapter->tx_ring_count;
  784. }
  785. static int igb_set_ringparam(struct net_device *netdev,
  786. struct ethtool_ringparam *ring)
  787. {
  788. struct igb_adapter *adapter = netdev_priv(netdev);
  789. struct igb_ring *temp_ring;
  790. int i, err = 0;
  791. u16 new_rx_count, new_tx_count;
  792. if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
  793. return -EINVAL;
  794. new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
  795. new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
  796. new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
  797. new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
  798. new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
  799. new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
  800. if ((new_tx_count == adapter->tx_ring_count) &&
  801. (new_rx_count == adapter->rx_ring_count)) {
  802. /* nothing to do */
  803. return 0;
  804. }
  805. while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
  806. usleep_range(1000, 2000);
  807. if (!netif_running(adapter->netdev)) {
  808. for (i = 0; i < adapter->num_tx_queues; i++)
  809. adapter->tx_ring[i]->count = new_tx_count;
  810. for (i = 0; i < adapter->num_rx_queues; i++)
  811. adapter->rx_ring[i]->count = new_rx_count;
  812. adapter->tx_ring_count = new_tx_count;
  813. adapter->rx_ring_count = new_rx_count;
  814. goto clear_reset;
  815. }
  816. if (adapter->num_tx_queues > adapter->num_rx_queues)
  817. temp_ring = vmalloc(adapter->num_tx_queues *
  818. sizeof(struct igb_ring));
  819. else
  820. temp_ring = vmalloc(adapter->num_rx_queues *
  821. sizeof(struct igb_ring));
  822. if (!temp_ring) {
  823. err = -ENOMEM;
  824. goto clear_reset;
  825. }
  826. igb_down(adapter);
  827. /* We can't just free everything and then setup again,
  828. * because the ISRs in MSI-X mode get passed pointers
  829. * to the Tx and Rx ring structs.
  830. */
  831. if (new_tx_count != adapter->tx_ring_count) {
  832. for (i = 0; i < adapter->num_tx_queues; i++) {
  833. memcpy(&temp_ring[i], adapter->tx_ring[i],
  834. sizeof(struct igb_ring));
  835. temp_ring[i].count = new_tx_count;
  836. err = igb_setup_tx_resources(&temp_ring[i]);
  837. if (err) {
  838. while (i) {
  839. i--;
  840. igb_free_tx_resources(&temp_ring[i]);
  841. }
  842. goto err_setup;
  843. }
  844. }
  845. for (i = 0; i < adapter->num_tx_queues; i++) {
  846. igb_free_tx_resources(adapter->tx_ring[i]);
  847. memcpy(adapter->tx_ring[i], &temp_ring[i],
  848. sizeof(struct igb_ring));
  849. }
  850. adapter->tx_ring_count = new_tx_count;
  851. }
  852. if (new_rx_count != adapter->rx_ring_count) {
  853. for (i = 0; i < adapter->num_rx_queues; i++) {
  854. memcpy(&temp_ring[i], adapter->rx_ring[i],
  855. sizeof(struct igb_ring));
  856. temp_ring[i].count = new_rx_count;
  857. err = igb_setup_rx_resources(&temp_ring[i]);
  858. if (err) {
  859. while (i) {
  860. i--;
  861. igb_free_rx_resources(&temp_ring[i]);
  862. }
  863. goto err_setup;
  864. }
  865. }
  866. for (i = 0; i < adapter->num_rx_queues; i++) {
  867. igb_free_rx_resources(adapter->rx_ring[i]);
  868. memcpy(adapter->rx_ring[i], &temp_ring[i],
  869. sizeof(struct igb_ring));
  870. }
  871. adapter->rx_ring_count = new_rx_count;
  872. }
  873. err_setup:
  874. igb_up(adapter);
  875. vfree(temp_ring);
  876. clear_reset:
  877. clear_bit(__IGB_RESETTING, &adapter->state);
  878. return err;
  879. }
  880. /* ethtool register test data */
  881. struct igb_reg_test {
  882. u16 reg;
  883. u16 reg_offset;
  884. u16 array_len;
  885. u16 test_type;
  886. u32 mask;
  887. u32 write;
  888. };
  889. /* In the hardware, registers are laid out either singly, in arrays
  890. * spaced 0x100 bytes apart, or in contiguous tables. We assume
  891. * most tests take place on arrays or single registers (handled
  892. * as a single-element array) and special-case the tables.
  893. * Table tests are always pattern tests.
  894. *
  895. * We also make provision for some required setup steps by specifying
  896. * registers to be written without any read-back testing.
  897. */
  898. #define PATTERN_TEST 1
  899. #define SET_READ_TEST 2
  900. #define WRITE_NO_TEST 3
  901. #define TABLE32_TEST 4
  902. #define TABLE64_TEST_LO 5
  903. #define TABLE64_TEST_HI 6
  904. /* i210 reg test */
  905. static struct igb_reg_test reg_test_i210[] = {
  906. { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  907. { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  908. { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  909. { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  910. { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  911. { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
  912. /* RDH is read-only for i210, only test RDT. */
  913. { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  914. { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
  915. { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  916. { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
  917. { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  918. { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  919. { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
  920. { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  921. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  922. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
  923. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
  924. { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  925. { E1000_RA, 0, 16, TABLE64_TEST_LO,
  926. 0xFFFFFFFF, 0xFFFFFFFF },
  927. { E1000_RA, 0, 16, TABLE64_TEST_HI,
  928. 0x900FFFFF, 0xFFFFFFFF },
  929. { E1000_MTA, 0, 128, TABLE32_TEST,
  930. 0xFFFFFFFF, 0xFFFFFFFF },
  931. { 0, 0, 0, 0, 0 }
  932. };
  933. /* i350 reg test */
  934. static struct igb_reg_test reg_test_i350[] = {
  935. { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  936. { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  937. { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  938. { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
  939. { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  940. { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  941. { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
  942. { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  943. { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  944. { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
  945. /* RDH is read-only for i350, only test RDT. */
  946. { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  947. { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  948. { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
  949. { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  950. { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
  951. { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  952. { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  953. { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
  954. { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  955. { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  956. { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
  957. { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  958. { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  959. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  960. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
  961. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
  962. { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  963. { E1000_RA, 0, 16, TABLE64_TEST_LO,
  964. 0xFFFFFFFF, 0xFFFFFFFF },
  965. { E1000_RA, 0, 16, TABLE64_TEST_HI,
  966. 0xC3FFFFFF, 0xFFFFFFFF },
  967. { E1000_RA2, 0, 16, TABLE64_TEST_LO,
  968. 0xFFFFFFFF, 0xFFFFFFFF },
  969. { E1000_RA2, 0, 16, TABLE64_TEST_HI,
  970. 0xC3FFFFFF, 0xFFFFFFFF },
  971. { E1000_MTA, 0, 128, TABLE32_TEST,
  972. 0xFFFFFFFF, 0xFFFFFFFF },
  973. { 0, 0, 0, 0 }
  974. };
  975. /* 82580 reg test */
  976. static struct igb_reg_test reg_test_82580[] = {
  977. { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  978. { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  979. { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  980. { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  981. { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  982. { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  983. { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
  984. { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  985. { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  986. { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
  987. /* RDH is read-only for 82580, only test RDT. */
  988. { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  989. { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  990. { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
  991. { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  992. { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
  993. { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  994. { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  995. { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
  996. { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  997. { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  998. { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
  999. { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  1000. { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  1001. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  1002. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
  1003. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
  1004. { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  1005. { E1000_RA, 0, 16, TABLE64_TEST_LO,
  1006. 0xFFFFFFFF, 0xFFFFFFFF },
  1007. { E1000_RA, 0, 16, TABLE64_TEST_HI,
  1008. 0x83FFFFFF, 0xFFFFFFFF },
  1009. { E1000_RA2, 0, 8, TABLE64_TEST_LO,
  1010. 0xFFFFFFFF, 0xFFFFFFFF },
  1011. { E1000_RA2, 0, 8, TABLE64_TEST_HI,
  1012. 0x83FFFFFF, 0xFFFFFFFF },
  1013. { E1000_MTA, 0, 128, TABLE32_TEST,
  1014. 0xFFFFFFFF, 0xFFFFFFFF },
  1015. { 0, 0, 0, 0 }
  1016. };
  1017. /* 82576 reg test */
  1018. static struct igb_reg_test reg_test_82576[] = {
  1019. { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1020. { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  1021. { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  1022. { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1023. { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  1024. { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1025. { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
  1026. { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  1027. { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1028. { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
  1029. /* Enable all RX queues before testing. */
  1030. { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
  1031. E1000_RXDCTL_QUEUE_ENABLE },
  1032. { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0,
  1033. E1000_RXDCTL_QUEUE_ENABLE },
  1034. /* RDH is read-only for 82576, only test RDT. */
  1035. { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  1036. { E1000_RDT(4), 0x40, 12, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  1037. { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
  1038. { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 0 },
  1039. { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
  1040. { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  1041. { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
  1042. { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  1043. { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1044. { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
  1045. { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  1046. { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1047. { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
  1048. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  1049. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
  1050. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
  1051. { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  1052. { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
  1053. { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
  1054. { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
  1055. { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
  1056. { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1057. { 0, 0, 0, 0 }
  1058. };
  1059. /* 82575 register test */
  1060. static struct igb_reg_test reg_test_82575[] = {
  1061. { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1062. { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  1063. { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  1064. { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1065. { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  1066. { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1067. { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
  1068. /* Enable all four RX queues before testing. */
  1069. { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
  1070. E1000_RXDCTL_QUEUE_ENABLE },
  1071. /* RDH is read-only for 82575, only test RDT. */
  1072. { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  1073. { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
  1074. { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
  1075. { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  1076. { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
  1077. { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  1078. { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1079. { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
  1080. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  1081. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
  1082. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
  1083. { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  1084. { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
  1085. { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
  1086. { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
  1087. { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1088. { 0, 0, 0, 0 }
  1089. };
  1090. static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
  1091. int reg, u32 mask, u32 write)
  1092. {
  1093. struct e1000_hw *hw = &adapter->hw;
  1094. u32 pat, val;
  1095. static const u32 _test[] = {
  1096. 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
  1097. for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
  1098. wr32(reg, (_test[pat] & write));
  1099. val = rd32(reg) & mask;
  1100. if (val != (_test[pat] & write & mask)) {
  1101. dev_err(&adapter->pdev->dev,
  1102. "pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
  1103. reg, val, (_test[pat] & write & mask));
  1104. *data = reg;
  1105. return true;
  1106. }
  1107. }
  1108. return false;
  1109. }
  1110. static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
  1111. int reg, u32 mask, u32 write)
  1112. {
  1113. struct e1000_hw *hw = &adapter->hw;
  1114. u32 val;
  1115. wr32(reg, write & mask);
  1116. val = rd32(reg);
  1117. if ((write & mask) != (val & mask)) {
  1118. dev_err(&adapter->pdev->dev,
  1119. "set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
  1120. reg, (val & mask), (write & mask));
  1121. *data = reg;
  1122. return true;
  1123. }
  1124. return false;
  1125. }
  1126. #define REG_PATTERN_TEST(reg, mask, write) \
  1127. do { \
  1128. if (reg_pattern_test(adapter, data, reg, mask, write)) \
  1129. return 1; \
  1130. } while (0)
  1131. #define REG_SET_AND_CHECK(reg, mask, write) \
  1132. do { \
  1133. if (reg_set_and_check(adapter, data, reg, mask, write)) \
  1134. return 1; \
  1135. } while (0)
  1136. static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
  1137. {
  1138. struct e1000_hw *hw = &adapter->hw;
  1139. struct igb_reg_test *test;
  1140. u32 value, before, after;
  1141. u32 i, toggle;
  1142. switch (adapter->hw.mac.type) {
  1143. case e1000_i350:
  1144. case e1000_i354:
  1145. test = reg_test_i350;
  1146. toggle = 0x7FEFF3FF;
  1147. break;
  1148. case e1000_i210:
  1149. case e1000_i211:
  1150. test = reg_test_i210;
  1151. toggle = 0x7FEFF3FF;
  1152. break;
  1153. case e1000_82580:
  1154. test = reg_test_82580;
  1155. toggle = 0x7FEFF3FF;
  1156. break;
  1157. case e1000_82576:
  1158. test = reg_test_82576;
  1159. toggle = 0x7FFFF3FF;
  1160. break;
  1161. default:
  1162. test = reg_test_82575;
  1163. toggle = 0x7FFFF3FF;
  1164. break;
  1165. }
  1166. /* Because the status register is such a special case,
  1167. * we handle it separately from the rest of the register
  1168. * tests. Some bits are read-only, some toggle, and some
  1169. * are writable on newer MACs.
  1170. */
  1171. before = rd32(E1000_STATUS);
  1172. value = (rd32(E1000_STATUS) & toggle);
  1173. wr32(E1000_STATUS, toggle);
  1174. after = rd32(E1000_STATUS) & toggle;
  1175. if (value != after) {
  1176. dev_err(&adapter->pdev->dev,
  1177. "failed STATUS register test got: 0x%08X expected: 0x%08X\n",
  1178. after, value);
  1179. *data = 1;
  1180. return 1;
  1181. }
  1182. /* restore previous status */
  1183. wr32(E1000_STATUS, before);
  1184. /* Perform the remainder of the register test, looping through
  1185. * the test table until we either fail or reach the null entry.
  1186. */
  1187. while (test->reg) {
  1188. for (i = 0; i < test->array_len; i++) {
  1189. switch (test->test_type) {
  1190. case PATTERN_TEST:
  1191. REG_PATTERN_TEST(test->reg +
  1192. (i * test->reg_offset),
  1193. test->mask,
  1194. test->write);
  1195. break;
  1196. case SET_READ_TEST:
  1197. REG_SET_AND_CHECK(test->reg +
  1198. (i * test->reg_offset),
  1199. test->mask,
  1200. test->write);
  1201. break;
  1202. case WRITE_NO_TEST:
  1203. writel(test->write,
  1204. (adapter->hw.hw_addr + test->reg)
  1205. + (i * test->reg_offset));
  1206. break;
  1207. case TABLE32_TEST:
  1208. REG_PATTERN_TEST(test->reg + (i * 4),
  1209. test->mask,
  1210. test->write);
  1211. break;
  1212. case TABLE64_TEST_LO:
  1213. REG_PATTERN_TEST(test->reg + (i * 8),
  1214. test->mask,
  1215. test->write);
  1216. break;
  1217. case TABLE64_TEST_HI:
  1218. REG_PATTERN_TEST((test->reg + 4) + (i * 8),
  1219. test->mask,
  1220. test->write);
  1221. break;
  1222. }
  1223. }
  1224. test++;
  1225. }
  1226. *data = 0;
  1227. return 0;
  1228. }
  1229. static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
  1230. {
  1231. struct e1000_hw *hw = &adapter->hw;
  1232. *data = 0;
  1233. /* Validate eeprom on all parts but flashless */
  1234. switch (hw->mac.type) {
  1235. case e1000_i210:
  1236. case e1000_i211:
  1237. if (igb_get_flash_presence_i210(hw)) {
  1238. if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
  1239. *data = 2;
  1240. }
  1241. break;
  1242. default:
  1243. if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
  1244. *data = 2;
  1245. break;
  1246. }
  1247. return *data;
  1248. }
  1249. static irqreturn_t igb_test_intr(int irq, void *data)
  1250. {
  1251. struct igb_adapter *adapter = (struct igb_adapter *) data;
  1252. struct e1000_hw *hw = &adapter->hw;
  1253. adapter->test_icr |= rd32(E1000_ICR);
  1254. return IRQ_HANDLED;
  1255. }
  1256. static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
  1257. {
  1258. struct e1000_hw *hw = &adapter->hw;
  1259. struct net_device *netdev = adapter->netdev;
  1260. u32 mask, ics_mask, i = 0, shared_int = true;
  1261. u32 irq = adapter->pdev->irq;
  1262. *data = 0;
  1263. /* Hook up test interrupt handler just for this test */
  1264. if (adapter->flags & IGB_FLAG_HAS_MSIX) {
  1265. if (request_irq(adapter->msix_entries[0].vector,
  1266. igb_test_intr, 0, netdev->name, adapter)) {
  1267. *data = 1;
  1268. return -1;
  1269. }
  1270. } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
  1271. shared_int = false;
  1272. if (request_irq(irq,
  1273. igb_test_intr, 0, netdev->name, adapter)) {
  1274. *data = 1;
  1275. return -1;
  1276. }
  1277. } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
  1278. netdev->name, adapter)) {
  1279. shared_int = false;
  1280. } else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
  1281. netdev->name, adapter)) {
  1282. *data = 1;
  1283. return -1;
  1284. }
  1285. dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
  1286. (shared_int ? "shared" : "unshared"));
  1287. /* Disable all the interrupts */
  1288. wr32(E1000_IMC, ~0);
  1289. wrfl();
  1290. usleep_range(10000, 11000);
  1291. /* Define all writable bits for ICS */
  1292. switch (hw->mac.type) {
  1293. case e1000_82575:
  1294. ics_mask = 0x37F47EDD;
  1295. break;
  1296. case e1000_82576:
  1297. ics_mask = 0x77D4FBFD;
  1298. break;
  1299. case e1000_82580:
  1300. ics_mask = 0x77DCFED5;
  1301. break;
  1302. case e1000_i350:
  1303. case e1000_i354:
  1304. case e1000_i210:
  1305. case e1000_i211:
  1306. ics_mask = 0x77DCFED5;
  1307. break;
  1308. default:
  1309. ics_mask = 0x7FFFFFFF;
  1310. break;
  1311. }
  1312. /* Test each interrupt */
  1313. for (; i < 31; i++) {
  1314. /* Interrupt to test */
  1315. mask = BIT(i);
  1316. if (!(mask & ics_mask))
  1317. continue;
  1318. if (!shared_int) {
  1319. /* Disable the interrupt to be reported in
  1320. * the cause register and then force the same
  1321. * interrupt and see if one gets posted. If
  1322. * an interrupt was posted to the bus, the
  1323. * test failed.
  1324. */
  1325. adapter->test_icr = 0;
  1326. /* Flush any pending interrupts */
  1327. wr32(E1000_ICR, ~0);
  1328. wr32(E1000_IMC, mask);
  1329. wr32(E1000_ICS, mask);
  1330. wrfl();
  1331. usleep_range(10000, 11000);
  1332. if (adapter->test_icr & mask) {
  1333. *data = 3;
  1334. break;
  1335. }
  1336. }
  1337. /* Enable the interrupt to be reported in
  1338. * the cause register and then force the same
  1339. * interrupt and see if one gets posted. If
  1340. * an interrupt was not posted to the bus, the
  1341. * test failed.
  1342. */
  1343. adapter->test_icr = 0;
  1344. /* Flush any pending interrupts */
  1345. wr32(E1000_ICR, ~0);
  1346. wr32(E1000_IMS, mask);
  1347. wr32(E1000_ICS, mask);
  1348. wrfl();
  1349. usleep_range(10000, 11000);
  1350. if (!(adapter->test_icr & mask)) {
  1351. *data = 4;
  1352. break;
  1353. }
  1354. if (!shared_int) {
  1355. /* Disable the other interrupts to be reported in
  1356. * the cause register and then force the other
  1357. * interrupts and see if any get posted. If
  1358. * an interrupt was posted to the bus, the
  1359. * test failed.
  1360. */
  1361. adapter->test_icr = 0;
  1362. /* Flush any pending interrupts */
  1363. wr32(E1000_ICR, ~0);
  1364. wr32(E1000_IMC, ~mask);
  1365. wr32(E1000_ICS, ~mask);
  1366. wrfl();
  1367. usleep_range(10000, 11000);
  1368. if (adapter->test_icr & mask) {
  1369. *data = 5;
  1370. break;
  1371. }
  1372. }
  1373. }
  1374. /* Disable all the interrupts */
  1375. wr32(E1000_IMC, ~0);
  1376. wrfl();
  1377. usleep_range(10000, 11000);
  1378. /* Unhook test interrupt handler */
  1379. if (adapter->flags & IGB_FLAG_HAS_MSIX)
  1380. free_irq(adapter->msix_entries[0].vector, adapter);
  1381. else
  1382. free_irq(irq, adapter);
  1383. return *data;
  1384. }
  1385. static void igb_free_desc_rings(struct igb_adapter *adapter)
  1386. {
  1387. igb_free_tx_resources(&adapter->test_tx_ring);
  1388. igb_free_rx_resources(&adapter->test_rx_ring);
  1389. }
  1390. static int igb_setup_desc_rings(struct igb_adapter *adapter)
  1391. {
  1392. struct igb_ring *tx_ring = &adapter->test_tx_ring;
  1393. struct igb_ring *rx_ring = &adapter->test_rx_ring;
  1394. struct e1000_hw *hw = &adapter->hw;
  1395. int ret_val;
  1396. /* Setup Tx descriptor ring and Tx buffers */
  1397. tx_ring->count = IGB_DEFAULT_TXD;
  1398. tx_ring->dev = &adapter->pdev->dev;
  1399. tx_ring->netdev = adapter->netdev;
  1400. tx_ring->reg_idx = adapter->vfs_allocated_count;
  1401. if (igb_setup_tx_resources(tx_ring)) {
  1402. ret_val = 1;
  1403. goto err_nomem;
  1404. }
  1405. igb_setup_tctl(adapter);
  1406. igb_configure_tx_ring(adapter, tx_ring);
  1407. /* Setup Rx descriptor ring and Rx buffers */
  1408. rx_ring->count = IGB_DEFAULT_RXD;
  1409. rx_ring->dev = &adapter->pdev->dev;
  1410. rx_ring->netdev = adapter->netdev;
  1411. rx_ring->reg_idx = adapter->vfs_allocated_count;
  1412. if (igb_setup_rx_resources(rx_ring)) {
  1413. ret_val = 3;
  1414. goto err_nomem;
  1415. }
  1416. /* set the default queue to queue 0 of PF */
  1417. wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
  1418. /* enable receive ring */
  1419. igb_setup_rctl(adapter);
  1420. igb_configure_rx_ring(adapter, rx_ring);
  1421. igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
  1422. return 0;
  1423. err_nomem:
  1424. igb_free_desc_rings(adapter);
  1425. return ret_val;
  1426. }
  1427. static void igb_phy_disable_receiver(struct igb_adapter *adapter)
  1428. {
  1429. struct e1000_hw *hw = &adapter->hw;
  1430. /* Write out to PHY registers 29 and 30 to disable the Receiver. */
  1431. igb_write_phy_reg(hw, 29, 0x001F);
  1432. igb_write_phy_reg(hw, 30, 0x8FFC);
  1433. igb_write_phy_reg(hw, 29, 0x001A);
  1434. igb_write_phy_reg(hw, 30, 0x8FF0);
  1435. }
  1436. static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
  1437. {
  1438. struct e1000_hw *hw = &adapter->hw;
  1439. u32 ctrl_reg = 0;
  1440. hw->mac.autoneg = false;
  1441. if (hw->phy.type == e1000_phy_m88) {
  1442. if (hw->phy.id != I210_I_PHY_ID) {
  1443. /* Auto-MDI/MDIX Off */
  1444. igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
  1445. /* reset to update Auto-MDI/MDIX */
  1446. igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
  1447. /* autoneg off */
  1448. igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
  1449. } else {
  1450. /* force 1000, set loopback */
  1451. igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
  1452. igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
  1453. }
  1454. } else if (hw->phy.type == e1000_phy_82580) {
  1455. /* enable MII loopback */
  1456. igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
  1457. }
  1458. /* add small delay to avoid loopback test failure */
  1459. msleep(50);
  1460. /* force 1000, set loopback */
  1461. igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
  1462. /* Now set up the MAC to the same speed/duplex as the PHY. */
  1463. ctrl_reg = rd32(E1000_CTRL);
  1464. ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
  1465. ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
  1466. E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
  1467. E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
  1468. E1000_CTRL_FD | /* Force Duplex to FULL */
  1469. E1000_CTRL_SLU); /* Set link up enable bit */
  1470. if (hw->phy.type == e1000_phy_m88)
  1471. ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
  1472. wr32(E1000_CTRL, ctrl_reg);
  1473. /* Disable the receiver on the PHY so when a cable is plugged in, the
  1474. * PHY does not begin to autoneg when a cable is reconnected to the NIC.
  1475. */
  1476. if (hw->phy.type == e1000_phy_m88)
  1477. igb_phy_disable_receiver(adapter);
  1478. mdelay(500);
  1479. return 0;
  1480. }
  1481. static int igb_set_phy_loopback(struct igb_adapter *adapter)
  1482. {
  1483. return igb_integrated_phy_loopback(adapter);
  1484. }
  1485. static int igb_setup_loopback_test(struct igb_adapter *adapter)
  1486. {
  1487. struct e1000_hw *hw = &adapter->hw;
  1488. u32 reg;
  1489. reg = rd32(E1000_CTRL_EXT);
  1490. /* use CTRL_EXT to identify link type as SGMII can appear as copper */
  1491. if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
  1492. if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
  1493. (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
  1494. (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
  1495. (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
  1496. (hw->device_id == E1000_DEV_ID_I354_SGMII) ||
  1497. (hw->device_id == E1000_DEV_ID_I354_BACKPLANE_2_5GBPS)) {
  1498. /* Enable DH89xxCC MPHY for near end loopback */
  1499. reg = rd32(E1000_MPHY_ADDR_CTL);
  1500. reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
  1501. E1000_MPHY_PCS_CLK_REG_OFFSET;
  1502. wr32(E1000_MPHY_ADDR_CTL, reg);
  1503. reg = rd32(E1000_MPHY_DATA);
  1504. reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
  1505. wr32(E1000_MPHY_DATA, reg);
  1506. }
  1507. reg = rd32(E1000_RCTL);
  1508. reg |= E1000_RCTL_LBM_TCVR;
  1509. wr32(E1000_RCTL, reg);
  1510. wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
  1511. reg = rd32(E1000_CTRL);
  1512. reg &= ~(E1000_CTRL_RFCE |
  1513. E1000_CTRL_TFCE |
  1514. E1000_CTRL_LRST);
  1515. reg |= E1000_CTRL_SLU |
  1516. E1000_CTRL_FD;
  1517. wr32(E1000_CTRL, reg);
  1518. /* Unset switch control to serdes energy detect */
  1519. reg = rd32(E1000_CONNSW);
  1520. reg &= ~E1000_CONNSW_ENRGSRC;
  1521. wr32(E1000_CONNSW, reg);
  1522. /* Unset sigdetect for SERDES loopback on
  1523. * 82580 and newer devices.
  1524. */
  1525. if (hw->mac.type >= e1000_82580) {
  1526. reg = rd32(E1000_PCS_CFG0);
  1527. reg |= E1000_PCS_CFG_IGN_SD;
  1528. wr32(E1000_PCS_CFG0, reg);
  1529. }
  1530. /* Set PCS register for forced speed */
  1531. reg = rd32(E1000_PCS_LCTL);
  1532. reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/
  1533. reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
  1534. E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
  1535. E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
  1536. E1000_PCS_LCTL_FSD | /* Force Speed */
  1537. E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
  1538. wr32(E1000_PCS_LCTL, reg);
  1539. return 0;
  1540. }
  1541. return igb_set_phy_loopback(adapter);
  1542. }
  1543. static void igb_loopback_cleanup(struct igb_adapter *adapter)
  1544. {
  1545. struct e1000_hw *hw = &adapter->hw;
  1546. u32 rctl;
  1547. u16 phy_reg;
  1548. if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
  1549. (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
  1550. (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
  1551. (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
  1552. (hw->device_id == E1000_DEV_ID_I354_SGMII)) {
  1553. u32 reg;
  1554. /* Disable near end loopback on DH89xxCC */
  1555. reg = rd32(E1000_MPHY_ADDR_CTL);
  1556. reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
  1557. E1000_MPHY_PCS_CLK_REG_OFFSET;
  1558. wr32(E1000_MPHY_ADDR_CTL, reg);
  1559. reg = rd32(E1000_MPHY_DATA);
  1560. reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
  1561. wr32(E1000_MPHY_DATA, reg);
  1562. }
  1563. rctl = rd32(E1000_RCTL);
  1564. rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
  1565. wr32(E1000_RCTL, rctl);
  1566. hw->mac.autoneg = true;
  1567. igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
  1568. if (phy_reg & MII_CR_LOOPBACK) {
  1569. phy_reg &= ~MII_CR_LOOPBACK;
  1570. igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
  1571. igb_phy_sw_reset(hw);
  1572. }
  1573. }
  1574. static void igb_create_lbtest_frame(struct sk_buff *skb,
  1575. unsigned int frame_size)
  1576. {
  1577. memset(skb->data, 0xFF, frame_size);
  1578. frame_size /= 2;
  1579. memset(&skb->data[frame_size], 0xAA, frame_size - 1);
  1580. memset(&skb->data[frame_size + 10], 0xBE, 1);
  1581. memset(&skb->data[frame_size + 12], 0xAF, 1);
  1582. }
  1583. static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
  1584. unsigned int frame_size)
  1585. {
  1586. unsigned char *data;
  1587. bool match = true;
  1588. frame_size >>= 1;
  1589. data = kmap(rx_buffer->page);
  1590. if (data[3] != 0xFF ||
  1591. data[frame_size + 10] != 0xBE ||
  1592. data[frame_size + 12] != 0xAF)
  1593. match = false;
  1594. kunmap(rx_buffer->page);
  1595. return match;
  1596. }
  1597. static int igb_clean_test_rings(struct igb_ring *rx_ring,
  1598. struct igb_ring *tx_ring,
  1599. unsigned int size)
  1600. {
  1601. union e1000_adv_rx_desc *rx_desc;
  1602. struct igb_rx_buffer *rx_buffer_info;
  1603. struct igb_tx_buffer *tx_buffer_info;
  1604. u16 rx_ntc, tx_ntc, count = 0;
  1605. /* initialize next to clean and descriptor values */
  1606. rx_ntc = rx_ring->next_to_clean;
  1607. tx_ntc = tx_ring->next_to_clean;
  1608. rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
  1609. while (rx_desc->wb.upper.length) {
  1610. /* check Rx buffer */
  1611. rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
  1612. /* sync Rx buffer for CPU read */
  1613. dma_sync_single_for_cpu(rx_ring->dev,
  1614. rx_buffer_info->dma,
  1615. size,
  1616. DMA_FROM_DEVICE);
  1617. /* verify contents of skb */
  1618. if (igb_check_lbtest_frame(rx_buffer_info, size))
  1619. count++;
  1620. /* sync Rx buffer for device write */
  1621. dma_sync_single_for_device(rx_ring->dev,
  1622. rx_buffer_info->dma,
  1623. size,
  1624. DMA_FROM_DEVICE);
  1625. /* unmap buffer on Tx side */
  1626. tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
  1627. /* Free all the Tx ring sk_buffs */
  1628. dev_kfree_skb_any(tx_buffer_info->skb);
  1629. /* unmap skb header data */
  1630. dma_unmap_single(tx_ring->dev,
  1631. dma_unmap_addr(tx_buffer_info, dma),
  1632. dma_unmap_len(tx_buffer_info, len),
  1633. DMA_TO_DEVICE);
  1634. dma_unmap_len_set(tx_buffer_info, len, 0);
  1635. /* increment Rx/Tx next to clean counters */
  1636. rx_ntc++;
  1637. if (rx_ntc == rx_ring->count)
  1638. rx_ntc = 0;
  1639. tx_ntc++;
  1640. if (tx_ntc == tx_ring->count)
  1641. tx_ntc = 0;
  1642. /* fetch next descriptor */
  1643. rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
  1644. }
  1645. netdev_tx_reset_queue(txring_txq(tx_ring));
  1646. /* re-map buffers to ring, store next to clean values */
  1647. igb_alloc_rx_buffers(rx_ring, count);
  1648. rx_ring->next_to_clean = rx_ntc;
  1649. tx_ring->next_to_clean = tx_ntc;
  1650. return count;
  1651. }
  1652. static int igb_run_loopback_test(struct igb_adapter *adapter)
  1653. {
  1654. struct igb_ring *tx_ring = &adapter->test_tx_ring;
  1655. struct igb_ring *rx_ring = &adapter->test_rx_ring;
  1656. u16 i, j, lc, good_cnt;
  1657. int ret_val = 0;
  1658. unsigned int size = IGB_RX_HDR_LEN;
  1659. netdev_tx_t tx_ret_val;
  1660. struct sk_buff *skb;
  1661. /* allocate test skb */
  1662. skb = alloc_skb(size, GFP_KERNEL);
  1663. if (!skb)
  1664. return 11;
  1665. /* place data into test skb */
  1666. igb_create_lbtest_frame(skb, size);
  1667. skb_put(skb, size);
  1668. /* Calculate the loop count based on the largest descriptor ring
  1669. * The idea is to wrap the largest ring a number of times using 64
  1670. * send/receive pairs during each loop
  1671. */
  1672. if (rx_ring->count <= tx_ring->count)
  1673. lc = ((tx_ring->count / 64) * 2) + 1;
  1674. else
  1675. lc = ((rx_ring->count / 64) * 2) + 1;
  1676. for (j = 0; j <= lc; j++) { /* loop count loop */
  1677. /* reset count of good packets */
  1678. good_cnt = 0;
  1679. /* place 64 packets on the transmit queue*/
  1680. for (i = 0; i < 64; i++) {
  1681. skb_get(skb);
  1682. tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
  1683. if (tx_ret_val == NETDEV_TX_OK)
  1684. good_cnt++;
  1685. }
  1686. if (good_cnt != 64) {
  1687. ret_val = 12;
  1688. break;
  1689. }
  1690. /* allow 200 milliseconds for packets to go from Tx to Rx */
  1691. msleep(200);
  1692. good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
  1693. if (good_cnt != 64) {
  1694. ret_val = 13;
  1695. break;
  1696. }
  1697. } /* end loop count loop */
  1698. /* free the original skb */
  1699. kfree_skb(skb);
  1700. return ret_val;
  1701. }
  1702. static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
  1703. {
  1704. /* PHY loopback cannot be performed if SoL/IDER
  1705. * sessions are active
  1706. */
  1707. if (igb_check_reset_block(&adapter->hw)) {
  1708. dev_err(&adapter->pdev->dev,
  1709. "Cannot do PHY loopback test when SoL/IDER is active.\n");
  1710. *data = 0;
  1711. goto out;
  1712. }
  1713. if (adapter->hw.mac.type == e1000_i354) {
  1714. dev_info(&adapter->pdev->dev,
  1715. "Loopback test not supported on i354.\n");
  1716. *data = 0;
  1717. goto out;
  1718. }
  1719. *data = igb_setup_desc_rings(adapter);
  1720. if (*data)
  1721. goto out;
  1722. *data = igb_setup_loopback_test(adapter);
  1723. if (*data)
  1724. goto err_loopback;
  1725. *data = igb_run_loopback_test(adapter);
  1726. igb_loopback_cleanup(adapter);
  1727. err_loopback:
  1728. igb_free_desc_rings(adapter);
  1729. out:
  1730. return *data;
  1731. }
  1732. static int igb_link_test(struct igb_adapter *adapter, u64 *data)
  1733. {
  1734. struct e1000_hw *hw = &adapter->hw;
  1735. *data = 0;
  1736. if (hw->phy.media_type == e1000_media_type_internal_serdes) {
  1737. int i = 0;
  1738. hw->mac.serdes_has_link = false;
  1739. /* On some blade server designs, link establishment
  1740. * could take as long as 2-3 minutes
  1741. */
  1742. do {
  1743. hw->mac.ops.check_for_link(&adapter->hw);
  1744. if (hw->mac.serdes_has_link)
  1745. return *data;
  1746. msleep(20);
  1747. } while (i++ < 3750);
  1748. *data = 1;
  1749. } else {
  1750. hw->mac.ops.check_for_link(&adapter->hw);
  1751. if (hw->mac.autoneg)
  1752. msleep(5000);
  1753. if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
  1754. *data = 1;
  1755. }
  1756. return *data;
  1757. }
  1758. static void igb_diag_test(struct net_device *netdev,
  1759. struct ethtool_test *eth_test, u64 *data)
  1760. {
  1761. struct igb_adapter *adapter = netdev_priv(netdev);
  1762. u16 autoneg_advertised;
  1763. u8 forced_speed_duplex, autoneg;
  1764. bool if_running = netif_running(netdev);
  1765. set_bit(__IGB_TESTING, &adapter->state);
  1766. /* can't do offline tests on media switching devices */
  1767. if (adapter->hw.dev_spec._82575.mas_capable)
  1768. eth_test->flags &= ~ETH_TEST_FL_OFFLINE;
  1769. if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
  1770. /* Offline tests */
  1771. /* save speed, duplex, autoneg settings */
  1772. autoneg_advertised = adapter->hw.phy.autoneg_advertised;
  1773. forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
  1774. autoneg = adapter->hw.mac.autoneg;
  1775. dev_info(&adapter->pdev->dev, "offline testing starting\n");
  1776. /* power up link for link test */
  1777. igb_power_up_link(adapter);
  1778. /* Link test performed before hardware reset so autoneg doesn't
  1779. * interfere with test result
  1780. */
  1781. if (igb_link_test(adapter, &data[TEST_LINK]))
  1782. eth_test->flags |= ETH_TEST_FL_FAILED;
  1783. if (if_running)
  1784. /* indicate we're in test mode */
  1785. igb_close(netdev);
  1786. else
  1787. igb_reset(adapter);
  1788. if (igb_reg_test(adapter, &data[TEST_REG]))
  1789. eth_test->flags |= ETH_TEST_FL_FAILED;
  1790. igb_reset(adapter);
  1791. if (igb_eeprom_test(adapter, &data[TEST_EEP]))
  1792. eth_test->flags |= ETH_TEST_FL_FAILED;
  1793. igb_reset(adapter);
  1794. if (igb_intr_test(adapter, &data[TEST_IRQ]))
  1795. eth_test->flags |= ETH_TEST_FL_FAILED;
  1796. igb_reset(adapter);
  1797. /* power up link for loopback test */
  1798. igb_power_up_link(adapter);
  1799. if (igb_loopback_test(adapter, &data[TEST_LOOP]))
  1800. eth_test->flags |= ETH_TEST_FL_FAILED;
  1801. /* restore speed, duplex, autoneg settings */
  1802. adapter->hw.phy.autoneg_advertised = autoneg_advertised;
  1803. adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
  1804. adapter->hw.mac.autoneg = autoneg;
  1805. /* force this routine to wait until autoneg complete/timeout */
  1806. adapter->hw.phy.autoneg_wait_to_complete = true;
  1807. igb_reset(adapter);
  1808. adapter->hw.phy.autoneg_wait_to_complete = false;
  1809. clear_bit(__IGB_TESTING, &adapter->state);
  1810. if (if_running)
  1811. igb_open(netdev);
  1812. } else {
  1813. dev_info(&adapter->pdev->dev, "online testing starting\n");
  1814. /* PHY is powered down when interface is down */
  1815. if (if_running && igb_link_test(adapter, &data[TEST_LINK]))
  1816. eth_test->flags |= ETH_TEST_FL_FAILED;
  1817. else
  1818. data[TEST_LINK] = 0;
  1819. /* Online tests aren't run; pass by default */
  1820. data[TEST_REG] = 0;
  1821. data[TEST_EEP] = 0;
  1822. data[TEST_IRQ] = 0;
  1823. data[TEST_LOOP] = 0;
  1824. clear_bit(__IGB_TESTING, &adapter->state);
  1825. }
  1826. msleep_interruptible(4 * 1000);
  1827. }
  1828. static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
  1829. {
  1830. struct igb_adapter *adapter = netdev_priv(netdev);
  1831. wol->wolopts = 0;
  1832. if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
  1833. return;
  1834. wol->supported = WAKE_UCAST | WAKE_MCAST |
  1835. WAKE_BCAST | WAKE_MAGIC |
  1836. WAKE_PHY;
  1837. /* apply any specific unsupported masks here */
  1838. switch (adapter->hw.device_id) {
  1839. default:
  1840. break;
  1841. }
  1842. if (adapter->wol & E1000_WUFC_EX)
  1843. wol->wolopts |= WAKE_UCAST;
  1844. if (adapter->wol & E1000_WUFC_MC)
  1845. wol->wolopts |= WAKE_MCAST;
  1846. if (adapter->wol & E1000_WUFC_BC)
  1847. wol->wolopts |= WAKE_BCAST;
  1848. if (adapter->wol & E1000_WUFC_MAG)
  1849. wol->wolopts |= WAKE_MAGIC;
  1850. if (adapter->wol & E1000_WUFC_LNKC)
  1851. wol->wolopts |= WAKE_PHY;
  1852. }
  1853. static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
  1854. {
  1855. struct igb_adapter *adapter = netdev_priv(netdev);
  1856. if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
  1857. return -EOPNOTSUPP;
  1858. if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
  1859. return wol->wolopts ? -EOPNOTSUPP : 0;
  1860. /* these settings will always override what we currently have */
  1861. adapter->wol = 0;
  1862. if (wol->wolopts & WAKE_UCAST)
  1863. adapter->wol |= E1000_WUFC_EX;
  1864. if (wol->wolopts & WAKE_MCAST)
  1865. adapter->wol |= E1000_WUFC_MC;
  1866. if (wol->wolopts & WAKE_BCAST)
  1867. adapter->wol |= E1000_WUFC_BC;
  1868. if (wol->wolopts & WAKE_MAGIC)
  1869. adapter->wol |= E1000_WUFC_MAG;
  1870. if (wol->wolopts & WAKE_PHY)
  1871. adapter->wol |= E1000_WUFC_LNKC;
  1872. device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
  1873. return 0;
  1874. }
  1875. /* bit defines for adapter->led_status */
  1876. #define IGB_LED_ON 0
  1877. static int igb_set_phys_id(struct net_device *netdev,
  1878. enum ethtool_phys_id_state state)
  1879. {
  1880. struct igb_adapter *adapter = netdev_priv(netdev);
  1881. struct e1000_hw *hw = &adapter->hw;
  1882. switch (state) {
  1883. case ETHTOOL_ID_ACTIVE:
  1884. igb_blink_led(hw);
  1885. return 2;
  1886. case ETHTOOL_ID_ON:
  1887. igb_blink_led(hw);
  1888. break;
  1889. case ETHTOOL_ID_OFF:
  1890. igb_led_off(hw);
  1891. break;
  1892. case ETHTOOL_ID_INACTIVE:
  1893. igb_led_off(hw);
  1894. clear_bit(IGB_LED_ON, &adapter->led_status);
  1895. igb_cleanup_led(hw);
  1896. break;
  1897. }
  1898. return 0;
  1899. }
  1900. static int igb_set_coalesce(struct net_device *netdev,
  1901. struct ethtool_coalesce *ec)
  1902. {
  1903. struct igb_adapter *adapter = netdev_priv(netdev);
  1904. int i;
  1905. if (ec->rx_max_coalesced_frames ||
  1906. ec->rx_coalesce_usecs_irq ||
  1907. ec->rx_max_coalesced_frames_irq ||
  1908. ec->tx_max_coalesced_frames ||
  1909. ec->tx_coalesce_usecs_irq ||
  1910. ec->stats_block_coalesce_usecs ||
  1911. ec->use_adaptive_rx_coalesce ||
  1912. ec->use_adaptive_tx_coalesce ||
  1913. ec->pkt_rate_low ||
  1914. ec->rx_coalesce_usecs_low ||
  1915. ec->rx_max_coalesced_frames_low ||
  1916. ec->tx_coalesce_usecs_low ||
  1917. ec->tx_max_coalesced_frames_low ||
  1918. ec->pkt_rate_high ||
  1919. ec->rx_coalesce_usecs_high ||
  1920. ec->rx_max_coalesced_frames_high ||
  1921. ec->tx_coalesce_usecs_high ||
  1922. ec->tx_max_coalesced_frames_high ||
  1923. ec->rate_sample_interval)
  1924. return -ENOTSUPP;
  1925. if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
  1926. ((ec->rx_coalesce_usecs > 3) &&
  1927. (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
  1928. (ec->rx_coalesce_usecs == 2))
  1929. return -EINVAL;
  1930. if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
  1931. ((ec->tx_coalesce_usecs > 3) &&
  1932. (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
  1933. (ec->tx_coalesce_usecs == 2))
  1934. return -EINVAL;
  1935. if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
  1936. return -EINVAL;
  1937. /* If ITR is disabled, disable DMAC */
  1938. if (ec->rx_coalesce_usecs == 0) {
  1939. if (adapter->flags & IGB_FLAG_DMAC)
  1940. adapter->flags &= ~IGB_FLAG_DMAC;
  1941. }
  1942. /* convert to rate of irq's per second */
  1943. if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
  1944. adapter->rx_itr_setting = ec->rx_coalesce_usecs;
  1945. else
  1946. adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
  1947. /* convert to rate of irq's per second */
  1948. if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
  1949. adapter->tx_itr_setting = adapter->rx_itr_setting;
  1950. else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
  1951. adapter->tx_itr_setting = ec->tx_coalesce_usecs;
  1952. else
  1953. adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
  1954. for (i = 0; i < adapter->num_q_vectors; i++) {
  1955. struct igb_q_vector *q_vector = adapter->q_vector[i];
  1956. q_vector->tx.work_limit = adapter->tx_work_limit;
  1957. if (q_vector->rx.ring)
  1958. q_vector->itr_val = adapter->rx_itr_setting;
  1959. else
  1960. q_vector->itr_val = adapter->tx_itr_setting;
  1961. if (q_vector->itr_val && q_vector->itr_val <= 3)
  1962. q_vector->itr_val = IGB_START_ITR;
  1963. q_vector->set_itr = 1;
  1964. }
  1965. return 0;
  1966. }
  1967. static int igb_get_coalesce(struct net_device *netdev,
  1968. struct ethtool_coalesce *ec)
  1969. {
  1970. struct igb_adapter *adapter = netdev_priv(netdev);
  1971. if (adapter->rx_itr_setting <= 3)
  1972. ec->rx_coalesce_usecs = adapter->rx_itr_setting;
  1973. else
  1974. ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
  1975. if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
  1976. if (adapter->tx_itr_setting <= 3)
  1977. ec->tx_coalesce_usecs = adapter->tx_itr_setting;
  1978. else
  1979. ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
  1980. }
  1981. return 0;
  1982. }
  1983. static int igb_nway_reset(struct net_device *netdev)
  1984. {
  1985. struct igb_adapter *adapter = netdev_priv(netdev);
  1986. if (netif_running(netdev))
  1987. igb_reinit_locked(adapter);
  1988. return 0;
  1989. }
  1990. static int igb_get_sset_count(struct net_device *netdev, int sset)
  1991. {
  1992. switch (sset) {
  1993. case ETH_SS_STATS:
  1994. return IGB_STATS_LEN;
  1995. case ETH_SS_TEST:
  1996. return IGB_TEST_LEN;
  1997. case ETH_SS_PRIV_FLAGS:
  1998. return IGB_PRIV_FLAGS_STR_LEN;
  1999. default:
  2000. return -ENOTSUPP;
  2001. }
  2002. }
  2003. static void igb_get_ethtool_stats(struct net_device *netdev,
  2004. struct ethtool_stats *stats, u64 *data)
  2005. {
  2006. struct igb_adapter *adapter = netdev_priv(netdev);
  2007. struct rtnl_link_stats64 *net_stats = &adapter->stats64;
  2008. unsigned int start;
  2009. struct igb_ring *ring;
  2010. int i, j;
  2011. char *p;
  2012. spin_lock(&adapter->stats64_lock);
  2013. igb_update_stats(adapter);
  2014. for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
  2015. p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
  2016. data[i] = (igb_gstrings_stats[i].sizeof_stat ==
  2017. sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
  2018. }
  2019. for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
  2020. p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
  2021. data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
  2022. sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
  2023. }
  2024. for (j = 0; j < adapter->num_tx_queues; j++) {
  2025. u64 restart2;
  2026. ring = adapter->tx_ring[j];
  2027. do {
  2028. start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
  2029. data[i] = ring->tx_stats.packets;
  2030. data[i+1] = ring->tx_stats.bytes;
  2031. data[i+2] = ring->tx_stats.restart_queue;
  2032. } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
  2033. do {
  2034. start = u64_stats_fetch_begin_irq(&ring->tx_syncp2);
  2035. restart2 = ring->tx_stats.restart_queue2;
  2036. } while (u64_stats_fetch_retry_irq(&ring->tx_syncp2, start));
  2037. data[i+2] += restart2;
  2038. i += IGB_TX_QUEUE_STATS_LEN;
  2039. }
  2040. for (j = 0; j < adapter->num_rx_queues; j++) {
  2041. ring = adapter->rx_ring[j];
  2042. do {
  2043. start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
  2044. data[i] = ring->rx_stats.packets;
  2045. data[i+1] = ring->rx_stats.bytes;
  2046. data[i+2] = ring->rx_stats.drops;
  2047. data[i+3] = ring->rx_stats.csum_err;
  2048. data[i+4] = ring->rx_stats.alloc_failed;
  2049. } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
  2050. i += IGB_RX_QUEUE_STATS_LEN;
  2051. }
  2052. spin_unlock(&adapter->stats64_lock);
  2053. }
  2054. static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
  2055. {
  2056. struct igb_adapter *adapter = netdev_priv(netdev);
  2057. u8 *p = data;
  2058. int i;
  2059. switch (stringset) {
  2060. case ETH_SS_TEST:
  2061. memcpy(data, *igb_gstrings_test,
  2062. IGB_TEST_LEN*ETH_GSTRING_LEN);
  2063. break;
  2064. case ETH_SS_STATS:
  2065. for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
  2066. memcpy(p, igb_gstrings_stats[i].stat_string,
  2067. ETH_GSTRING_LEN);
  2068. p += ETH_GSTRING_LEN;
  2069. }
  2070. for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
  2071. memcpy(p, igb_gstrings_net_stats[i].stat_string,
  2072. ETH_GSTRING_LEN);
  2073. p += ETH_GSTRING_LEN;
  2074. }
  2075. for (i = 0; i < adapter->num_tx_queues; i++) {
  2076. sprintf(p, "tx_queue_%u_packets", i);
  2077. p += ETH_GSTRING_LEN;
  2078. sprintf(p, "tx_queue_%u_bytes", i);
  2079. p += ETH_GSTRING_LEN;
  2080. sprintf(p, "tx_queue_%u_restart", i);
  2081. p += ETH_GSTRING_LEN;
  2082. }
  2083. for (i = 0; i < adapter->num_rx_queues; i++) {
  2084. sprintf(p, "rx_queue_%u_packets", i);
  2085. p += ETH_GSTRING_LEN;
  2086. sprintf(p, "rx_queue_%u_bytes", i);
  2087. p += ETH_GSTRING_LEN;
  2088. sprintf(p, "rx_queue_%u_drops", i);
  2089. p += ETH_GSTRING_LEN;
  2090. sprintf(p, "rx_queue_%u_csum_err", i);
  2091. p += ETH_GSTRING_LEN;
  2092. sprintf(p, "rx_queue_%u_alloc_failed", i);
  2093. p += ETH_GSTRING_LEN;
  2094. }
  2095. /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
  2096. break;
  2097. case ETH_SS_PRIV_FLAGS:
  2098. memcpy(data, igb_priv_flags_strings,
  2099. IGB_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN);
  2100. break;
  2101. }
  2102. }
  2103. static int igb_get_ts_info(struct net_device *dev,
  2104. struct ethtool_ts_info *info)
  2105. {
  2106. struct igb_adapter *adapter = netdev_priv(dev);
  2107. if (adapter->ptp_clock)
  2108. info->phc_index = ptp_clock_index(adapter->ptp_clock);
  2109. else
  2110. info->phc_index = -1;
  2111. switch (adapter->hw.mac.type) {
  2112. case e1000_82575:
  2113. info->so_timestamping =
  2114. SOF_TIMESTAMPING_TX_SOFTWARE |
  2115. SOF_TIMESTAMPING_RX_SOFTWARE |
  2116. SOF_TIMESTAMPING_SOFTWARE;
  2117. return 0;
  2118. case e1000_82576:
  2119. case e1000_82580:
  2120. case e1000_i350:
  2121. case e1000_i354:
  2122. case e1000_i210:
  2123. case e1000_i211:
  2124. info->so_timestamping =
  2125. SOF_TIMESTAMPING_TX_SOFTWARE |
  2126. SOF_TIMESTAMPING_RX_SOFTWARE |
  2127. SOF_TIMESTAMPING_SOFTWARE |
  2128. SOF_TIMESTAMPING_TX_HARDWARE |
  2129. SOF_TIMESTAMPING_RX_HARDWARE |
  2130. SOF_TIMESTAMPING_RAW_HARDWARE;
  2131. info->tx_types =
  2132. BIT(HWTSTAMP_TX_OFF) |
  2133. BIT(HWTSTAMP_TX_ON);
  2134. info->rx_filters = BIT(HWTSTAMP_FILTER_NONE);
  2135. /* 82576 does not support timestamping all packets. */
  2136. if (adapter->hw.mac.type >= e1000_82580)
  2137. info->rx_filters |= BIT(HWTSTAMP_FILTER_ALL);
  2138. else
  2139. info->rx_filters |=
  2140. BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
  2141. BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
  2142. BIT(HWTSTAMP_FILTER_PTP_V2_EVENT);
  2143. return 0;
  2144. default:
  2145. return -EOPNOTSUPP;
  2146. }
  2147. }
  2148. #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
  2149. static int igb_get_ethtool_nfc_entry(struct igb_adapter *adapter,
  2150. struct ethtool_rxnfc *cmd)
  2151. {
  2152. struct ethtool_rx_flow_spec *fsp = &cmd->fs;
  2153. struct igb_nfc_filter *rule = NULL;
  2154. /* report total rule count */
  2155. cmd->data = IGB_MAX_RXNFC_FILTERS;
  2156. hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
  2157. if (fsp->location <= rule->sw_idx)
  2158. break;
  2159. }
  2160. if (!rule || fsp->location != rule->sw_idx)
  2161. return -EINVAL;
  2162. if (rule->filter.match_flags) {
  2163. fsp->flow_type = ETHER_FLOW;
  2164. fsp->ring_cookie = rule->action;
  2165. if (rule->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
  2166. fsp->h_u.ether_spec.h_proto = rule->filter.etype;
  2167. fsp->m_u.ether_spec.h_proto = ETHER_TYPE_FULL_MASK;
  2168. }
  2169. if (rule->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI) {
  2170. fsp->flow_type |= FLOW_EXT;
  2171. fsp->h_ext.vlan_tci = rule->filter.vlan_tci;
  2172. fsp->m_ext.vlan_tci = htons(VLAN_PRIO_MASK);
  2173. }
  2174. return 0;
  2175. }
  2176. return -EINVAL;
  2177. }
  2178. static int igb_get_ethtool_nfc_all(struct igb_adapter *adapter,
  2179. struct ethtool_rxnfc *cmd,
  2180. u32 *rule_locs)
  2181. {
  2182. struct igb_nfc_filter *rule;
  2183. int cnt = 0;
  2184. /* report total rule count */
  2185. cmd->data = IGB_MAX_RXNFC_FILTERS;
  2186. hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
  2187. if (cnt == cmd->rule_cnt)
  2188. return -EMSGSIZE;
  2189. rule_locs[cnt] = rule->sw_idx;
  2190. cnt++;
  2191. }
  2192. cmd->rule_cnt = cnt;
  2193. return 0;
  2194. }
  2195. static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
  2196. struct ethtool_rxnfc *cmd)
  2197. {
  2198. cmd->data = 0;
  2199. /* Report default options for RSS on igb */
  2200. switch (cmd->flow_type) {
  2201. case TCP_V4_FLOW:
  2202. cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
  2203. /* Fall through */
  2204. case UDP_V4_FLOW:
  2205. if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
  2206. cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
  2207. /* Fall through */
  2208. case SCTP_V4_FLOW:
  2209. case AH_ESP_V4_FLOW:
  2210. case AH_V4_FLOW:
  2211. case ESP_V4_FLOW:
  2212. case IPV4_FLOW:
  2213. cmd->data |= RXH_IP_SRC | RXH_IP_DST;
  2214. break;
  2215. case TCP_V6_FLOW:
  2216. cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
  2217. /* Fall through */
  2218. case UDP_V6_FLOW:
  2219. if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
  2220. cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
  2221. /* Fall through */
  2222. case SCTP_V6_FLOW:
  2223. case AH_ESP_V6_FLOW:
  2224. case AH_V6_FLOW:
  2225. case ESP_V6_FLOW:
  2226. case IPV6_FLOW:
  2227. cmd->data |= RXH_IP_SRC | RXH_IP_DST;
  2228. break;
  2229. default:
  2230. return -EINVAL;
  2231. }
  2232. return 0;
  2233. }
  2234. static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
  2235. u32 *rule_locs)
  2236. {
  2237. struct igb_adapter *adapter = netdev_priv(dev);
  2238. int ret = -EOPNOTSUPP;
  2239. switch (cmd->cmd) {
  2240. case ETHTOOL_GRXRINGS:
  2241. cmd->data = adapter->num_rx_queues;
  2242. ret = 0;
  2243. break;
  2244. case ETHTOOL_GRXCLSRLCNT:
  2245. cmd->rule_cnt = adapter->nfc_filter_count;
  2246. ret = 0;
  2247. break;
  2248. case ETHTOOL_GRXCLSRULE:
  2249. ret = igb_get_ethtool_nfc_entry(adapter, cmd);
  2250. break;
  2251. case ETHTOOL_GRXCLSRLALL:
  2252. ret = igb_get_ethtool_nfc_all(adapter, cmd, rule_locs);
  2253. break;
  2254. case ETHTOOL_GRXFH:
  2255. ret = igb_get_rss_hash_opts(adapter, cmd);
  2256. break;
  2257. default:
  2258. break;
  2259. }
  2260. return ret;
  2261. }
  2262. #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
  2263. IGB_FLAG_RSS_FIELD_IPV6_UDP)
  2264. static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
  2265. struct ethtool_rxnfc *nfc)
  2266. {
  2267. u32 flags = adapter->flags;
  2268. /* RSS does not support anything other than hashing
  2269. * to queues on src and dst IPs and ports
  2270. */
  2271. if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
  2272. RXH_L4_B_0_1 | RXH_L4_B_2_3))
  2273. return -EINVAL;
  2274. switch (nfc->flow_type) {
  2275. case TCP_V4_FLOW:
  2276. case TCP_V6_FLOW:
  2277. if (!(nfc->data & RXH_IP_SRC) ||
  2278. !(nfc->data & RXH_IP_DST) ||
  2279. !(nfc->data & RXH_L4_B_0_1) ||
  2280. !(nfc->data & RXH_L4_B_2_3))
  2281. return -EINVAL;
  2282. break;
  2283. case UDP_V4_FLOW:
  2284. if (!(nfc->data & RXH_IP_SRC) ||
  2285. !(nfc->data & RXH_IP_DST))
  2286. return -EINVAL;
  2287. switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
  2288. case 0:
  2289. flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
  2290. break;
  2291. case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
  2292. flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
  2293. break;
  2294. default:
  2295. return -EINVAL;
  2296. }
  2297. break;
  2298. case UDP_V6_FLOW:
  2299. if (!(nfc->data & RXH_IP_SRC) ||
  2300. !(nfc->data & RXH_IP_DST))
  2301. return -EINVAL;
  2302. switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
  2303. case 0:
  2304. flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
  2305. break;
  2306. case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
  2307. flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
  2308. break;
  2309. default:
  2310. return -EINVAL;
  2311. }
  2312. break;
  2313. case AH_ESP_V4_FLOW:
  2314. case AH_V4_FLOW:
  2315. case ESP_V4_FLOW:
  2316. case SCTP_V4_FLOW:
  2317. case AH_ESP_V6_FLOW:
  2318. case AH_V6_FLOW:
  2319. case ESP_V6_FLOW:
  2320. case SCTP_V6_FLOW:
  2321. if (!(nfc->data & RXH_IP_SRC) ||
  2322. !(nfc->data & RXH_IP_DST) ||
  2323. (nfc->data & RXH_L4_B_0_1) ||
  2324. (nfc->data & RXH_L4_B_2_3))
  2325. return -EINVAL;
  2326. break;
  2327. default:
  2328. return -EINVAL;
  2329. }
  2330. /* if we changed something we need to update flags */
  2331. if (flags != adapter->flags) {
  2332. struct e1000_hw *hw = &adapter->hw;
  2333. u32 mrqc = rd32(E1000_MRQC);
  2334. if ((flags & UDP_RSS_FLAGS) &&
  2335. !(adapter->flags & UDP_RSS_FLAGS))
  2336. dev_err(&adapter->pdev->dev,
  2337. "enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
  2338. adapter->flags = flags;
  2339. /* Perform hash on these packet types */
  2340. mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
  2341. E1000_MRQC_RSS_FIELD_IPV4_TCP |
  2342. E1000_MRQC_RSS_FIELD_IPV6 |
  2343. E1000_MRQC_RSS_FIELD_IPV6_TCP;
  2344. mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
  2345. E1000_MRQC_RSS_FIELD_IPV6_UDP);
  2346. if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
  2347. mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
  2348. if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
  2349. mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
  2350. wr32(E1000_MRQC, mrqc);
  2351. }
  2352. return 0;
  2353. }
  2354. static int igb_rxnfc_write_etype_filter(struct igb_adapter *adapter,
  2355. struct igb_nfc_filter *input)
  2356. {
  2357. struct e1000_hw *hw = &adapter->hw;
  2358. u8 i;
  2359. u32 etqf;
  2360. u16 etype;
  2361. /* find an empty etype filter register */
  2362. for (i = 0; i < MAX_ETYPE_FILTER; ++i) {
  2363. if (!adapter->etype_bitmap[i])
  2364. break;
  2365. }
  2366. if (i == MAX_ETYPE_FILTER) {
  2367. dev_err(&adapter->pdev->dev, "ethtool -N: etype filters are all used.\n");
  2368. return -EINVAL;
  2369. }
  2370. adapter->etype_bitmap[i] = true;
  2371. etqf = rd32(E1000_ETQF(i));
  2372. etype = ntohs(input->filter.etype & ETHER_TYPE_FULL_MASK);
  2373. etqf |= E1000_ETQF_FILTER_ENABLE;
  2374. etqf &= ~E1000_ETQF_ETYPE_MASK;
  2375. etqf |= (etype & E1000_ETQF_ETYPE_MASK);
  2376. etqf &= ~E1000_ETQF_QUEUE_MASK;
  2377. etqf |= ((input->action << E1000_ETQF_QUEUE_SHIFT)
  2378. & E1000_ETQF_QUEUE_MASK);
  2379. etqf |= E1000_ETQF_QUEUE_ENABLE;
  2380. wr32(E1000_ETQF(i), etqf);
  2381. input->etype_reg_index = i;
  2382. return 0;
  2383. }
  2384. static int igb_rxnfc_write_vlan_prio_filter(struct igb_adapter *adapter,
  2385. struct igb_nfc_filter *input)
  2386. {
  2387. struct e1000_hw *hw = &adapter->hw;
  2388. u8 vlan_priority;
  2389. u16 queue_index;
  2390. u32 vlapqf;
  2391. vlapqf = rd32(E1000_VLAPQF);
  2392. vlan_priority = (ntohs(input->filter.vlan_tci) & VLAN_PRIO_MASK)
  2393. >> VLAN_PRIO_SHIFT;
  2394. queue_index = (vlapqf >> (vlan_priority * 4)) & E1000_VLAPQF_QUEUE_MASK;
  2395. /* check whether this vlan prio is already set */
  2396. if ((vlapqf & E1000_VLAPQF_P_VALID(vlan_priority)) &&
  2397. (queue_index != input->action)) {
  2398. dev_err(&adapter->pdev->dev, "ethtool rxnfc set vlan prio filter failed.\n");
  2399. return -EEXIST;
  2400. }
  2401. vlapqf |= E1000_VLAPQF_P_VALID(vlan_priority);
  2402. vlapqf |= E1000_VLAPQF_QUEUE_SEL(vlan_priority, input->action);
  2403. wr32(E1000_VLAPQF, vlapqf);
  2404. return 0;
  2405. }
  2406. int igb_add_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
  2407. {
  2408. int err = -EINVAL;
  2409. if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
  2410. err = igb_rxnfc_write_etype_filter(adapter, input);
  2411. if (err)
  2412. return err;
  2413. }
  2414. if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
  2415. err = igb_rxnfc_write_vlan_prio_filter(adapter, input);
  2416. return err;
  2417. }
  2418. static void igb_clear_etype_filter_regs(struct igb_adapter *adapter,
  2419. u16 reg_index)
  2420. {
  2421. struct e1000_hw *hw = &adapter->hw;
  2422. u32 etqf = rd32(E1000_ETQF(reg_index));
  2423. etqf &= ~E1000_ETQF_QUEUE_ENABLE;
  2424. etqf &= ~E1000_ETQF_QUEUE_MASK;
  2425. etqf &= ~E1000_ETQF_FILTER_ENABLE;
  2426. wr32(E1000_ETQF(reg_index), etqf);
  2427. adapter->etype_bitmap[reg_index] = false;
  2428. }
  2429. static void igb_clear_vlan_prio_filter(struct igb_adapter *adapter,
  2430. u16 vlan_tci)
  2431. {
  2432. struct e1000_hw *hw = &adapter->hw;
  2433. u8 vlan_priority;
  2434. u32 vlapqf;
  2435. vlan_priority = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
  2436. vlapqf = rd32(E1000_VLAPQF);
  2437. vlapqf &= ~E1000_VLAPQF_P_VALID(vlan_priority);
  2438. vlapqf &= ~E1000_VLAPQF_QUEUE_SEL(vlan_priority,
  2439. E1000_VLAPQF_QUEUE_MASK);
  2440. wr32(E1000_VLAPQF, vlapqf);
  2441. }
  2442. int igb_erase_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
  2443. {
  2444. if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE)
  2445. igb_clear_etype_filter_regs(adapter,
  2446. input->etype_reg_index);
  2447. if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
  2448. igb_clear_vlan_prio_filter(adapter,
  2449. ntohs(input->filter.vlan_tci));
  2450. return 0;
  2451. }
  2452. static int igb_update_ethtool_nfc_entry(struct igb_adapter *adapter,
  2453. struct igb_nfc_filter *input,
  2454. u16 sw_idx)
  2455. {
  2456. struct igb_nfc_filter *rule, *parent;
  2457. int err = -EINVAL;
  2458. parent = NULL;
  2459. rule = NULL;
  2460. hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
  2461. /* hash found, or no matching entry */
  2462. if (rule->sw_idx >= sw_idx)
  2463. break;
  2464. parent = rule;
  2465. }
  2466. /* if there is an old rule occupying our place remove it */
  2467. if (rule && (rule->sw_idx == sw_idx)) {
  2468. if (!input)
  2469. err = igb_erase_filter(adapter, rule);
  2470. hlist_del(&rule->nfc_node);
  2471. kfree(rule);
  2472. adapter->nfc_filter_count--;
  2473. }
  2474. /* If no input this was a delete, err should be 0 if a rule was
  2475. * successfully found and removed from the list else -EINVAL
  2476. */
  2477. if (!input)
  2478. return err;
  2479. /* initialize node */
  2480. INIT_HLIST_NODE(&input->nfc_node);
  2481. /* add filter to the list */
  2482. if (parent)
  2483. hlist_add_behind(&parent->nfc_node, &input->nfc_node);
  2484. else
  2485. hlist_add_head(&input->nfc_node, &adapter->nfc_filter_list);
  2486. /* update counts */
  2487. adapter->nfc_filter_count++;
  2488. return 0;
  2489. }
  2490. static int igb_add_ethtool_nfc_entry(struct igb_adapter *adapter,
  2491. struct ethtool_rxnfc *cmd)
  2492. {
  2493. struct net_device *netdev = adapter->netdev;
  2494. struct ethtool_rx_flow_spec *fsp =
  2495. (struct ethtool_rx_flow_spec *)&cmd->fs;
  2496. struct igb_nfc_filter *input, *rule;
  2497. int err = 0;
  2498. if (!(netdev->hw_features & NETIF_F_NTUPLE))
  2499. return -EOPNOTSUPP;
  2500. /* Don't allow programming if the action is a queue greater than
  2501. * the number of online Rx queues.
  2502. */
  2503. if ((fsp->ring_cookie == RX_CLS_FLOW_DISC) ||
  2504. (fsp->ring_cookie >= adapter->num_rx_queues)) {
  2505. dev_err(&adapter->pdev->dev, "ethtool -N: The specified action is invalid\n");
  2506. return -EINVAL;
  2507. }
  2508. /* Don't allow indexes to exist outside of available space */
  2509. if (fsp->location >= IGB_MAX_RXNFC_FILTERS) {
  2510. dev_err(&adapter->pdev->dev, "Location out of range\n");
  2511. return -EINVAL;
  2512. }
  2513. if ((fsp->flow_type & ~FLOW_EXT) != ETHER_FLOW)
  2514. return -EINVAL;
  2515. if (fsp->m_u.ether_spec.h_proto != ETHER_TYPE_FULL_MASK &&
  2516. fsp->m_ext.vlan_tci != htons(VLAN_PRIO_MASK))
  2517. return -EINVAL;
  2518. input = kzalloc(sizeof(*input), GFP_KERNEL);
  2519. if (!input)
  2520. return -ENOMEM;
  2521. if (fsp->m_u.ether_spec.h_proto == ETHER_TYPE_FULL_MASK) {
  2522. input->filter.etype = fsp->h_u.ether_spec.h_proto;
  2523. input->filter.match_flags = IGB_FILTER_FLAG_ETHER_TYPE;
  2524. }
  2525. if ((fsp->flow_type & FLOW_EXT) && fsp->m_ext.vlan_tci) {
  2526. if (fsp->m_ext.vlan_tci != htons(VLAN_PRIO_MASK)) {
  2527. err = -EINVAL;
  2528. goto err_out;
  2529. }
  2530. input->filter.vlan_tci = fsp->h_ext.vlan_tci;
  2531. input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
  2532. }
  2533. input->action = fsp->ring_cookie;
  2534. input->sw_idx = fsp->location;
  2535. spin_lock(&adapter->nfc_lock);
  2536. hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
  2537. if (!memcmp(&input->filter, &rule->filter,
  2538. sizeof(input->filter))) {
  2539. err = -EEXIST;
  2540. dev_err(&adapter->pdev->dev,
  2541. "ethtool: this filter is already set\n");
  2542. goto err_out_w_lock;
  2543. }
  2544. }
  2545. err = igb_add_filter(adapter, input);
  2546. if (err)
  2547. goto err_out_w_lock;
  2548. igb_update_ethtool_nfc_entry(adapter, input, input->sw_idx);
  2549. spin_unlock(&adapter->nfc_lock);
  2550. return 0;
  2551. err_out_w_lock:
  2552. spin_unlock(&adapter->nfc_lock);
  2553. err_out:
  2554. kfree(input);
  2555. return err;
  2556. }
  2557. static int igb_del_ethtool_nfc_entry(struct igb_adapter *adapter,
  2558. struct ethtool_rxnfc *cmd)
  2559. {
  2560. struct ethtool_rx_flow_spec *fsp =
  2561. (struct ethtool_rx_flow_spec *)&cmd->fs;
  2562. int err;
  2563. spin_lock(&adapter->nfc_lock);
  2564. err = igb_update_ethtool_nfc_entry(adapter, NULL, fsp->location);
  2565. spin_unlock(&adapter->nfc_lock);
  2566. return err;
  2567. }
  2568. static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
  2569. {
  2570. struct igb_adapter *adapter = netdev_priv(dev);
  2571. int ret = -EOPNOTSUPP;
  2572. switch (cmd->cmd) {
  2573. case ETHTOOL_SRXFH:
  2574. ret = igb_set_rss_hash_opt(adapter, cmd);
  2575. break;
  2576. case ETHTOOL_SRXCLSRLINS:
  2577. ret = igb_add_ethtool_nfc_entry(adapter, cmd);
  2578. break;
  2579. case ETHTOOL_SRXCLSRLDEL:
  2580. ret = igb_del_ethtool_nfc_entry(adapter, cmd);
  2581. default:
  2582. break;
  2583. }
  2584. return ret;
  2585. }
  2586. static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
  2587. {
  2588. struct igb_adapter *adapter = netdev_priv(netdev);
  2589. struct e1000_hw *hw = &adapter->hw;
  2590. u32 ret_val;
  2591. u16 phy_data;
  2592. if ((hw->mac.type < e1000_i350) ||
  2593. (hw->phy.media_type != e1000_media_type_copper))
  2594. return -EOPNOTSUPP;
  2595. edata->supported = (SUPPORTED_1000baseT_Full |
  2596. SUPPORTED_100baseT_Full);
  2597. if (!hw->dev_spec._82575.eee_disable)
  2598. edata->advertised =
  2599. mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
  2600. /* The IPCNFG and EEER registers are not supported on I354. */
  2601. if (hw->mac.type == e1000_i354) {
  2602. igb_get_eee_status_i354(hw, (bool *)&edata->eee_active);
  2603. } else {
  2604. u32 eeer;
  2605. eeer = rd32(E1000_EEER);
  2606. /* EEE status on negotiated link */
  2607. if (eeer & E1000_EEER_EEE_NEG)
  2608. edata->eee_active = true;
  2609. if (eeer & E1000_EEER_TX_LPI_EN)
  2610. edata->tx_lpi_enabled = true;
  2611. }
  2612. /* EEE Link Partner Advertised */
  2613. switch (hw->mac.type) {
  2614. case e1000_i350:
  2615. ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
  2616. &phy_data);
  2617. if (ret_val)
  2618. return -ENODATA;
  2619. edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
  2620. break;
  2621. case e1000_i354:
  2622. case e1000_i210:
  2623. case e1000_i211:
  2624. ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
  2625. E1000_EEE_LP_ADV_DEV_I210,
  2626. &phy_data);
  2627. if (ret_val)
  2628. return -ENODATA;
  2629. edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
  2630. break;
  2631. default:
  2632. break;
  2633. }
  2634. edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
  2635. if ((hw->mac.type == e1000_i354) &&
  2636. (edata->eee_enabled))
  2637. edata->tx_lpi_enabled = true;
  2638. /* Report correct negotiated EEE status for devices that
  2639. * wrongly report EEE at half-duplex
  2640. */
  2641. if (adapter->link_duplex == HALF_DUPLEX) {
  2642. edata->eee_enabled = false;
  2643. edata->eee_active = false;
  2644. edata->tx_lpi_enabled = false;
  2645. edata->advertised &= ~edata->advertised;
  2646. }
  2647. return 0;
  2648. }
  2649. static int igb_set_eee(struct net_device *netdev,
  2650. struct ethtool_eee *edata)
  2651. {
  2652. struct igb_adapter *adapter = netdev_priv(netdev);
  2653. struct e1000_hw *hw = &adapter->hw;
  2654. struct ethtool_eee eee_curr;
  2655. bool adv1g_eee = true, adv100m_eee = true;
  2656. s32 ret_val;
  2657. if ((hw->mac.type < e1000_i350) ||
  2658. (hw->phy.media_type != e1000_media_type_copper))
  2659. return -EOPNOTSUPP;
  2660. memset(&eee_curr, 0, sizeof(struct ethtool_eee));
  2661. ret_val = igb_get_eee(netdev, &eee_curr);
  2662. if (ret_val)
  2663. return ret_val;
  2664. if (eee_curr.eee_enabled) {
  2665. if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
  2666. dev_err(&adapter->pdev->dev,
  2667. "Setting EEE tx-lpi is not supported\n");
  2668. return -EINVAL;
  2669. }
  2670. /* Tx LPI timer is not implemented currently */
  2671. if (edata->tx_lpi_timer) {
  2672. dev_err(&adapter->pdev->dev,
  2673. "Setting EEE Tx LPI timer is not supported\n");
  2674. return -EINVAL;
  2675. }
  2676. if (!edata->advertised || (edata->advertised &
  2677. ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL))) {
  2678. dev_err(&adapter->pdev->dev,
  2679. "EEE Advertisement supports only 100Tx and/or 100T full duplex\n");
  2680. return -EINVAL;
  2681. }
  2682. adv100m_eee = !!(edata->advertised & ADVERTISE_100_FULL);
  2683. adv1g_eee = !!(edata->advertised & ADVERTISE_1000_FULL);
  2684. } else if (!edata->eee_enabled) {
  2685. dev_err(&adapter->pdev->dev,
  2686. "Setting EEE options are not supported with EEE disabled\n");
  2687. return -EINVAL;
  2688. }
  2689. adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
  2690. if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
  2691. hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
  2692. adapter->flags |= IGB_FLAG_EEE;
  2693. /* reset link */
  2694. if (netif_running(netdev))
  2695. igb_reinit_locked(adapter);
  2696. else
  2697. igb_reset(adapter);
  2698. }
  2699. if (hw->mac.type == e1000_i354)
  2700. ret_val = igb_set_eee_i354(hw, adv1g_eee, adv100m_eee);
  2701. else
  2702. ret_val = igb_set_eee_i350(hw, adv1g_eee, adv100m_eee);
  2703. if (ret_val) {
  2704. dev_err(&adapter->pdev->dev,
  2705. "Problem setting EEE advertisement options\n");
  2706. return -EINVAL;
  2707. }
  2708. return 0;
  2709. }
  2710. static int igb_get_module_info(struct net_device *netdev,
  2711. struct ethtool_modinfo *modinfo)
  2712. {
  2713. struct igb_adapter *adapter = netdev_priv(netdev);
  2714. struct e1000_hw *hw = &adapter->hw;
  2715. u32 status = 0;
  2716. u16 sff8472_rev, addr_mode;
  2717. bool page_swap = false;
  2718. if ((hw->phy.media_type == e1000_media_type_copper) ||
  2719. (hw->phy.media_type == e1000_media_type_unknown))
  2720. return -EOPNOTSUPP;
  2721. /* Check whether we support SFF-8472 or not */
  2722. status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
  2723. if (status)
  2724. return -EIO;
  2725. /* addressing mode is not supported */
  2726. status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
  2727. if (status)
  2728. return -EIO;
  2729. /* addressing mode is not supported */
  2730. if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
  2731. hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
  2732. page_swap = true;
  2733. }
  2734. if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
  2735. /* We have an SFP, but it does not support SFF-8472 */
  2736. modinfo->type = ETH_MODULE_SFF_8079;
  2737. modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
  2738. } else {
  2739. /* We have an SFP which supports a revision of SFF-8472 */
  2740. modinfo->type = ETH_MODULE_SFF_8472;
  2741. modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
  2742. }
  2743. return 0;
  2744. }
  2745. static int igb_get_module_eeprom(struct net_device *netdev,
  2746. struct ethtool_eeprom *ee, u8 *data)
  2747. {
  2748. struct igb_adapter *adapter = netdev_priv(netdev);
  2749. struct e1000_hw *hw = &adapter->hw;
  2750. u32 status = 0;
  2751. u16 *dataword;
  2752. u16 first_word, last_word;
  2753. int i = 0;
  2754. if (ee->len == 0)
  2755. return -EINVAL;
  2756. first_word = ee->offset >> 1;
  2757. last_word = (ee->offset + ee->len - 1) >> 1;
  2758. dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1),
  2759. GFP_KERNEL);
  2760. if (!dataword)
  2761. return -ENOMEM;
  2762. /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
  2763. for (i = 0; i < last_word - first_word + 1; i++) {
  2764. status = igb_read_phy_reg_i2c(hw, (first_word + i) * 2,
  2765. &dataword[i]);
  2766. if (status) {
  2767. /* Error occurred while reading module */
  2768. kfree(dataword);
  2769. return -EIO;
  2770. }
  2771. be16_to_cpus(&dataword[i]);
  2772. }
  2773. memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
  2774. kfree(dataword);
  2775. return 0;
  2776. }
  2777. static int igb_ethtool_begin(struct net_device *netdev)
  2778. {
  2779. struct igb_adapter *adapter = netdev_priv(netdev);
  2780. pm_runtime_get_sync(&adapter->pdev->dev);
  2781. return 0;
  2782. }
  2783. static void igb_ethtool_complete(struct net_device *netdev)
  2784. {
  2785. struct igb_adapter *adapter = netdev_priv(netdev);
  2786. pm_runtime_put(&adapter->pdev->dev);
  2787. }
  2788. static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
  2789. {
  2790. return IGB_RETA_SIZE;
  2791. }
  2792. static int igb_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key,
  2793. u8 *hfunc)
  2794. {
  2795. struct igb_adapter *adapter = netdev_priv(netdev);
  2796. int i;
  2797. if (hfunc)
  2798. *hfunc = ETH_RSS_HASH_TOP;
  2799. if (!indir)
  2800. return 0;
  2801. for (i = 0; i < IGB_RETA_SIZE; i++)
  2802. indir[i] = adapter->rss_indir_tbl[i];
  2803. return 0;
  2804. }
  2805. void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
  2806. {
  2807. struct e1000_hw *hw = &adapter->hw;
  2808. u32 reg = E1000_RETA(0);
  2809. u32 shift = 0;
  2810. int i = 0;
  2811. switch (hw->mac.type) {
  2812. case e1000_82575:
  2813. shift = 6;
  2814. break;
  2815. case e1000_82576:
  2816. /* 82576 supports 2 RSS queues for SR-IOV */
  2817. if (adapter->vfs_allocated_count)
  2818. shift = 3;
  2819. break;
  2820. default:
  2821. break;
  2822. }
  2823. while (i < IGB_RETA_SIZE) {
  2824. u32 val = 0;
  2825. int j;
  2826. for (j = 3; j >= 0; j--) {
  2827. val <<= 8;
  2828. val |= adapter->rss_indir_tbl[i + j];
  2829. }
  2830. wr32(reg, val << shift);
  2831. reg += 4;
  2832. i += 4;
  2833. }
  2834. }
  2835. static int igb_set_rxfh(struct net_device *netdev, const u32 *indir,
  2836. const u8 *key, const u8 hfunc)
  2837. {
  2838. struct igb_adapter *adapter = netdev_priv(netdev);
  2839. struct e1000_hw *hw = &adapter->hw;
  2840. int i;
  2841. u32 num_queues;
  2842. /* We do not allow change in unsupported parameters */
  2843. if (key ||
  2844. (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
  2845. return -EOPNOTSUPP;
  2846. if (!indir)
  2847. return 0;
  2848. num_queues = adapter->rss_queues;
  2849. switch (hw->mac.type) {
  2850. case e1000_82576:
  2851. /* 82576 supports 2 RSS queues for SR-IOV */
  2852. if (adapter->vfs_allocated_count)
  2853. num_queues = 2;
  2854. break;
  2855. default:
  2856. break;
  2857. }
  2858. /* Verify user input. */
  2859. for (i = 0; i < IGB_RETA_SIZE; i++)
  2860. if (indir[i] >= num_queues)
  2861. return -EINVAL;
  2862. for (i = 0; i < IGB_RETA_SIZE; i++)
  2863. adapter->rss_indir_tbl[i] = indir[i];
  2864. igb_write_rss_indir_tbl(adapter);
  2865. return 0;
  2866. }
  2867. static unsigned int igb_max_channels(struct igb_adapter *adapter)
  2868. {
  2869. return igb_get_max_rss_queues(adapter);
  2870. }
  2871. static void igb_get_channels(struct net_device *netdev,
  2872. struct ethtool_channels *ch)
  2873. {
  2874. struct igb_adapter *adapter = netdev_priv(netdev);
  2875. /* Report maximum channels */
  2876. ch->max_combined = igb_max_channels(adapter);
  2877. /* Report info for other vector */
  2878. if (adapter->flags & IGB_FLAG_HAS_MSIX) {
  2879. ch->max_other = NON_Q_VECTORS;
  2880. ch->other_count = NON_Q_VECTORS;
  2881. }
  2882. ch->combined_count = adapter->rss_queues;
  2883. }
  2884. static int igb_set_channels(struct net_device *netdev,
  2885. struct ethtool_channels *ch)
  2886. {
  2887. struct igb_adapter *adapter = netdev_priv(netdev);
  2888. unsigned int count = ch->combined_count;
  2889. unsigned int max_combined = 0;
  2890. /* Verify they are not requesting separate vectors */
  2891. if (!count || ch->rx_count || ch->tx_count)
  2892. return -EINVAL;
  2893. /* Verify other_count is valid and has not been changed */
  2894. if (ch->other_count != NON_Q_VECTORS)
  2895. return -EINVAL;
  2896. /* Verify the number of channels doesn't exceed hw limits */
  2897. max_combined = igb_max_channels(adapter);
  2898. if (count > max_combined)
  2899. return -EINVAL;
  2900. if (count != adapter->rss_queues) {
  2901. adapter->rss_queues = count;
  2902. igb_set_flag_queue_pairs(adapter, max_combined);
  2903. /* Hardware has to reinitialize queues and interrupts to
  2904. * match the new configuration.
  2905. */
  2906. return igb_reinit_queues(adapter);
  2907. }
  2908. return 0;
  2909. }
  2910. static u32 igb_get_priv_flags(struct net_device *netdev)
  2911. {
  2912. struct igb_adapter *adapter = netdev_priv(netdev);
  2913. u32 priv_flags = 0;
  2914. if (adapter->flags & IGB_FLAG_RX_LEGACY)
  2915. priv_flags |= IGB_PRIV_FLAGS_LEGACY_RX;
  2916. return priv_flags;
  2917. }
  2918. static int igb_set_priv_flags(struct net_device *netdev, u32 priv_flags)
  2919. {
  2920. struct igb_adapter *adapter = netdev_priv(netdev);
  2921. unsigned int flags = adapter->flags;
  2922. flags &= ~IGB_FLAG_RX_LEGACY;
  2923. if (priv_flags & IGB_PRIV_FLAGS_LEGACY_RX)
  2924. flags |= IGB_FLAG_RX_LEGACY;
  2925. if (flags != adapter->flags) {
  2926. adapter->flags = flags;
  2927. /* reset interface to repopulate queues */
  2928. if (netif_running(netdev))
  2929. igb_reinit_locked(adapter);
  2930. }
  2931. return 0;
  2932. }
  2933. static const struct ethtool_ops igb_ethtool_ops = {
  2934. .get_drvinfo = igb_get_drvinfo,
  2935. .get_regs_len = igb_get_regs_len,
  2936. .get_regs = igb_get_regs,
  2937. .get_wol = igb_get_wol,
  2938. .set_wol = igb_set_wol,
  2939. .get_msglevel = igb_get_msglevel,
  2940. .set_msglevel = igb_set_msglevel,
  2941. .nway_reset = igb_nway_reset,
  2942. .get_link = igb_get_link,
  2943. .get_eeprom_len = igb_get_eeprom_len,
  2944. .get_eeprom = igb_get_eeprom,
  2945. .set_eeprom = igb_set_eeprom,
  2946. .get_ringparam = igb_get_ringparam,
  2947. .set_ringparam = igb_set_ringparam,
  2948. .get_pauseparam = igb_get_pauseparam,
  2949. .set_pauseparam = igb_set_pauseparam,
  2950. .self_test = igb_diag_test,
  2951. .get_strings = igb_get_strings,
  2952. .set_phys_id = igb_set_phys_id,
  2953. .get_sset_count = igb_get_sset_count,
  2954. .get_ethtool_stats = igb_get_ethtool_stats,
  2955. .get_coalesce = igb_get_coalesce,
  2956. .set_coalesce = igb_set_coalesce,
  2957. .get_ts_info = igb_get_ts_info,
  2958. .get_rxnfc = igb_get_rxnfc,
  2959. .set_rxnfc = igb_set_rxnfc,
  2960. .get_eee = igb_get_eee,
  2961. .set_eee = igb_set_eee,
  2962. .get_module_info = igb_get_module_info,
  2963. .get_module_eeprom = igb_get_module_eeprom,
  2964. .get_rxfh_indir_size = igb_get_rxfh_indir_size,
  2965. .get_rxfh = igb_get_rxfh,
  2966. .set_rxfh = igb_set_rxfh,
  2967. .get_channels = igb_get_channels,
  2968. .set_channels = igb_set_channels,
  2969. .get_priv_flags = igb_get_priv_flags,
  2970. .set_priv_flags = igb_set_priv_flags,
  2971. .begin = igb_ethtool_begin,
  2972. .complete = igb_ethtool_complete,
  2973. .get_link_ksettings = igb_get_link_ksettings,
  2974. .set_link_ksettings = igb_set_link_ksettings,
  2975. };
  2976. void igb_set_ethtool_ops(struct net_device *netdev)
  2977. {
  2978. netdev->ethtool_ops = &igb_ethtool_ops;
  2979. }