segment.c 77 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084
  1. /*
  2. * fs/f2fs/segment.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/bio.h>
  14. #include <linux/blkdev.h>
  15. #include <linux/prefetch.h>
  16. #include <linux/kthread.h>
  17. #include <linux/swap.h>
  18. #include <linux/timer.h>
  19. #include "f2fs.h"
  20. #include "segment.h"
  21. #include "node.h"
  22. #include "trace.h"
  23. #include <trace/events/f2fs.h>
  24. #define __reverse_ffz(x) __reverse_ffs(~(x))
  25. static struct kmem_cache *discard_entry_slab;
  26. static struct kmem_cache *discard_cmd_slab;
  27. static struct kmem_cache *sit_entry_set_slab;
  28. static struct kmem_cache *inmem_entry_slab;
  29. static unsigned long __reverse_ulong(unsigned char *str)
  30. {
  31. unsigned long tmp = 0;
  32. int shift = 24, idx = 0;
  33. #if BITS_PER_LONG == 64
  34. shift = 56;
  35. #endif
  36. while (shift >= 0) {
  37. tmp |= (unsigned long)str[idx++] << shift;
  38. shift -= BITS_PER_BYTE;
  39. }
  40. return tmp;
  41. }
  42. /*
  43. * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
  44. * MSB and LSB are reversed in a byte by f2fs_set_bit.
  45. */
  46. static inline unsigned long __reverse_ffs(unsigned long word)
  47. {
  48. int num = 0;
  49. #if BITS_PER_LONG == 64
  50. if ((word & 0xffffffff00000000UL) == 0)
  51. num += 32;
  52. else
  53. word >>= 32;
  54. #endif
  55. if ((word & 0xffff0000) == 0)
  56. num += 16;
  57. else
  58. word >>= 16;
  59. if ((word & 0xff00) == 0)
  60. num += 8;
  61. else
  62. word >>= 8;
  63. if ((word & 0xf0) == 0)
  64. num += 4;
  65. else
  66. word >>= 4;
  67. if ((word & 0xc) == 0)
  68. num += 2;
  69. else
  70. word >>= 2;
  71. if ((word & 0x2) == 0)
  72. num += 1;
  73. return num;
  74. }
  75. /*
  76. * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
  77. * f2fs_set_bit makes MSB and LSB reversed in a byte.
  78. * @size must be integral times of unsigned long.
  79. * Example:
  80. * MSB <--> LSB
  81. * f2fs_set_bit(0, bitmap) => 1000 0000
  82. * f2fs_set_bit(7, bitmap) => 0000 0001
  83. */
  84. static unsigned long __find_rev_next_bit(const unsigned long *addr,
  85. unsigned long size, unsigned long offset)
  86. {
  87. const unsigned long *p = addr + BIT_WORD(offset);
  88. unsigned long result = size;
  89. unsigned long tmp;
  90. if (offset >= size)
  91. return size;
  92. size -= (offset & ~(BITS_PER_LONG - 1));
  93. offset %= BITS_PER_LONG;
  94. while (1) {
  95. if (*p == 0)
  96. goto pass;
  97. tmp = __reverse_ulong((unsigned char *)p);
  98. tmp &= ~0UL >> offset;
  99. if (size < BITS_PER_LONG)
  100. tmp &= (~0UL << (BITS_PER_LONG - size));
  101. if (tmp)
  102. goto found;
  103. pass:
  104. if (size <= BITS_PER_LONG)
  105. break;
  106. size -= BITS_PER_LONG;
  107. offset = 0;
  108. p++;
  109. }
  110. return result;
  111. found:
  112. return result - size + __reverse_ffs(tmp);
  113. }
  114. static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
  115. unsigned long size, unsigned long offset)
  116. {
  117. const unsigned long *p = addr + BIT_WORD(offset);
  118. unsigned long result = size;
  119. unsigned long tmp;
  120. if (offset >= size)
  121. return size;
  122. size -= (offset & ~(BITS_PER_LONG - 1));
  123. offset %= BITS_PER_LONG;
  124. while (1) {
  125. if (*p == ~0UL)
  126. goto pass;
  127. tmp = __reverse_ulong((unsigned char *)p);
  128. if (offset)
  129. tmp |= ~0UL << (BITS_PER_LONG - offset);
  130. if (size < BITS_PER_LONG)
  131. tmp |= ~0UL >> size;
  132. if (tmp != ~0UL)
  133. goto found;
  134. pass:
  135. if (size <= BITS_PER_LONG)
  136. break;
  137. size -= BITS_PER_LONG;
  138. offset = 0;
  139. p++;
  140. }
  141. return result;
  142. found:
  143. return result - size + __reverse_ffz(tmp);
  144. }
  145. void register_inmem_page(struct inode *inode, struct page *page)
  146. {
  147. struct f2fs_inode_info *fi = F2FS_I(inode);
  148. struct inmem_pages *new;
  149. f2fs_trace_pid(page);
  150. set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
  151. SetPagePrivate(page);
  152. new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
  153. /* add atomic page indices to the list */
  154. new->page = page;
  155. INIT_LIST_HEAD(&new->list);
  156. /* increase reference count with clean state */
  157. mutex_lock(&fi->inmem_lock);
  158. get_page(page);
  159. list_add_tail(&new->list, &fi->inmem_pages);
  160. inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
  161. mutex_unlock(&fi->inmem_lock);
  162. trace_f2fs_register_inmem_page(page, INMEM);
  163. }
  164. static int __revoke_inmem_pages(struct inode *inode,
  165. struct list_head *head, bool drop, bool recover)
  166. {
  167. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  168. struct inmem_pages *cur, *tmp;
  169. int err = 0;
  170. list_for_each_entry_safe(cur, tmp, head, list) {
  171. struct page *page = cur->page;
  172. if (drop)
  173. trace_f2fs_commit_inmem_page(page, INMEM_DROP);
  174. lock_page(page);
  175. if (recover) {
  176. struct dnode_of_data dn;
  177. struct node_info ni;
  178. trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
  179. set_new_dnode(&dn, inode, NULL, NULL, 0);
  180. if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) {
  181. err = -EAGAIN;
  182. goto next;
  183. }
  184. get_node_info(sbi, dn.nid, &ni);
  185. f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
  186. cur->old_addr, ni.version, true, true);
  187. f2fs_put_dnode(&dn);
  188. }
  189. next:
  190. /* we don't need to invalidate this in the sccessful status */
  191. if (drop || recover)
  192. ClearPageUptodate(page);
  193. set_page_private(page, 0);
  194. ClearPagePrivate(page);
  195. f2fs_put_page(page, 1);
  196. list_del(&cur->list);
  197. kmem_cache_free(inmem_entry_slab, cur);
  198. dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
  199. }
  200. return err;
  201. }
  202. void drop_inmem_pages(struct inode *inode)
  203. {
  204. struct f2fs_inode_info *fi = F2FS_I(inode);
  205. mutex_lock(&fi->inmem_lock);
  206. __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
  207. mutex_unlock(&fi->inmem_lock);
  208. clear_inode_flag(inode, FI_ATOMIC_FILE);
  209. stat_dec_atomic_write(inode);
  210. }
  211. void drop_inmem_page(struct inode *inode, struct page *page)
  212. {
  213. struct f2fs_inode_info *fi = F2FS_I(inode);
  214. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  215. struct list_head *head = &fi->inmem_pages;
  216. struct inmem_pages *cur = NULL;
  217. f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
  218. mutex_lock(&fi->inmem_lock);
  219. list_for_each_entry(cur, head, list) {
  220. if (cur->page == page)
  221. break;
  222. }
  223. f2fs_bug_on(sbi, !cur || cur->page != page);
  224. list_del(&cur->list);
  225. mutex_unlock(&fi->inmem_lock);
  226. dec_page_count(sbi, F2FS_INMEM_PAGES);
  227. kmem_cache_free(inmem_entry_slab, cur);
  228. ClearPageUptodate(page);
  229. set_page_private(page, 0);
  230. ClearPagePrivate(page);
  231. f2fs_put_page(page, 0);
  232. trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
  233. }
  234. static int __commit_inmem_pages(struct inode *inode,
  235. struct list_head *revoke_list)
  236. {
  237. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  238. struct f2fs_inode_info *fi = F2FS_I(inode);
  239. struct inmem_pages *cur, *tmp;
  240. struct f2fs_io_info fio = {
  241. .sbi = sbi,
  242. .type = DATA,
  243. .op = REQ_OP_WRITE,
  244. .op_flags = REQ_SYNC | REQ_PRIO,
  245. .encrypted_page = NULL,
  246. };
  247. pgoff_t last_idx = ULONG_MAX;
  248. int err = 0;
  249. list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
  250. struct page *page = cur->page;
  251. lock_page(page);
  252. if (page->mapping == inode->i_mapping) {
  253. trace_f2fs_commit_inmem_page(page, INMEM);
  254. set_page_dirty(page);
  255. f2fs_wait_on_page_writeback(page, DATA, true);
  256. if (clear_page_dirty_for_io(page)) {
  257. inode_dec_dirty_pages(inode);
  258. remove_dirty_inode(inode);
  259. }
  260. fio.page = page;
  261. err = do_write_data_page(&fio);
  262. if (err) {
  263. unlock_page(page);
  264. break;
  265. }
  266. /* record old blkaddr for revoking */
  267. cur->old_addr = fio.old_blkaddr;
  268. last_idx = page->index;
  269. }
  270. unlock_page(page);
  271. list_move_tail(&cur->list, revoke_list);
  272. }
  273. if (last_idx != ULONG_MAX)
  274. f2fs_submit_merged_bio_cond(sbi, inode, 0, last_idx,
  275. DATA, WRITE);
  276. if (!err)
  277. __revoke_inmem_pages(inode, revoke_list, false, false);
  278. return err;
  279. }
  280. int commit_inmem_pages(struct inode *inode)
  281. {
  282. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  283. struct f2fs_inode_info *fi = F2FS_I(inode);
  284. struct list_head revoke_list;
  285. int err;
  286. INIT_LIST_HEAD(&revoke_list);
  287. f2fs_balance_fs(sbi, true);
  288. f2fs_lock_op(sbi);
  289. set_inode_flag(inode, FI_ATOMIC_COMMIT);
  290. mutex_lock(&fi->inmem_lock);
  291. err = __commit_inmem_pages(inode, &revoke_list);
  292. if (err) {
  293. int ret;
  294. /*
  295. * try to revoke all committed pages, but still we could fail
  296. * due to no memory or other reason, if that happened, EAGAIN
  297. * will be returned, which means in such case, transaction is
  298. * already not integrity, caller should use journal to do the
  299. * recovery or rewrite & commit last transaction. For other
  300. * error number, revoking was done by filesystem itself.
  301. */
  302. ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
  303. if (ret)
  304. err = ret;
  305. /* drop all uncommitted pages */
  306. __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
  307. }
  308. mutex_unlock(&fi->inmem_lock);
  309. clear_inode_flag(inode, FI_ATOMIC_COMMIT);
  310. f2fs_unlock_op(sbi);
  311. return err;
  312. }
  313. /*
  314. * This function balances dirty node and dentry pages.
  315. * In addition, it controls garbage collection.
  316. */
  317. void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
  318. {
  319. #ifdef CONFIG_F2FS_FAULT_INJECTION
  320. if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
  321. f2fs_show_injection_info(FAULT_CHECKPOINT);
  322. f2fs_stop_checkpoint(sbi, false);
  323. }
  324. #endif
  325. if (!need)
  326. return;
  327. /* balance_fs_bg is able to be pending */
  328. if (excess_cached_nats(sbi))
  329. f2fs_balance_fs_bg(sbi);
  330. /*
  331. * We should do GC or end up with checkpoint, if there are so many dirty
  332. * dir/node pages without enough free segments.
  333. */
  334. if (has_not_enough_free_secs(sbi, 0, 0)) {
  335. mutex_lock(&sbi->gc_mutex);
  336. f2fs_gc(sbi, false, false);
  337. }
  338. }
  339. void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
  340. {
  341. /* try to shrink extent cache when there is no enough memory */
  342. if (!available_free_memory(sbi, EXTENT_CACHE))
  343. f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
  344. /* check the # of cached NAT entries */
  345. if (!available_free_memory(sbi, NAT_ENTRIES))
  346. try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
  347. if (!available_free_memory(sbi, FREE_NIDS))
  348. try_to_free_nids(sbi, MAX_FREE_NIDS);
  349. else
  350. build_free_nids(sbi, false, false);
  351. if (!is_idle(sbi))
  352. return;
  353. /* checkpoint is the only way to shrink partial cached entries */
  354. if (!available_free_memory(sbi, NAT_ENTRIES) ||
  355. !available_free_memory(sbi, INO_ENTRIES) ||
  356. excess_prefree_segs(sbi) ||
  357. excess_dirty_nats(sbi) ||
  358. f2fs_time_over(sbi, CP_TIME)) {
  359. if (test_opt(sbi, DATA_FLUSH)) {
  360. struct blk_plug plug;
  361. blk_start_plug(&plug);
  362. sync_dirty_inodes(sbi, FILE_INODE);
  363. blk_finish_plug(&plug);
  364. }
  365. f2fs_sync_fs(sbi->sb, true);
  366. stat_inc_bg_cp_count(sbi->stat_info);
  367. }
  368. }
  369. static int __submit_flush_wait(struct f2fs_sb_info *sbi,
  370. struct block_device *bdev)
  371. {
  372. struct bio *bio = f2fs_bio_alloc(0);
  373. int ret;
  374. bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
  375. bio->bi_bdev = bdev;
  376. ret = submit_bio_wait(bio);
  377. bio_put(bio);
  378. trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
  379. test_opt(sbi, FLUSH_MERGE), ret);
  380. return ret;
  381. }
  382. static int submit_flush_wait(struct f2fs_sb_info *sbi)
  383. {
  384. int ret = __submit_flush_wait(sbi, sbi->sb->s_bdev);
  385. int i;
  386. if (!sbi->s_ndevs || ret)
  387. return ret;
  388. for (i = 1; i < sbi->s_ndevs; i++) {
  389. ret = __submit_flush_wait(sbi, FDEV(i).bdev);
  390. if (ret)
  391. break;
  392. }
  393. return ret;
  394. }
  395. static int issue_flush_thread(void *data)
  396. {
  397. struct f2fs_sb_info *sbi = data;
  398. struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
  399. wait_queue_head_t *q = &fcc->flush_wait_queue;
  400. repeat:
  401. if (kthread_should_stop())
  402. return 0;
  403. if (!llist_empty(&fcc->issue_list)) {
  404. struct flush_cmd *cmd, *next;
  405. int ret;
  406. fcc->dispatch_list = llist_del_all(&fcc->issue_list);
  407. fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
  408. ret = submit_flush_wait(sbi);
  409. llist_for_each_entry_safe(cmd, next,
  410. fcc->dispatch_list, llnode) {
  411. cmd->ret = ret;
  412. complete(&cmd->wait);
  413. }
  414. fcc->dispatch_list = NULL;
  415. }
  416. wait_event_interruptible(*q,
  417. kthread_should_stop() || !llist_empty(&fcc->issue_list));
  418. goto repeat;
  419. }
  420. int f2fs_issue_flush(struct f2fs_sb_info *sbi)
  421. {
  422. struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
  423. struct flush_cmd cmd;
  424. if (test_opt(sbi, NOBARRIER))
  425. return 0;
  426. if (!test_opt(sbi, FLUSH_MERGE))
  427. return submit_flush_wait(sbi);
  428. if (!atomic_read(&fcc->submit_flush)) {
  429. int ret;
  430. atomic_inc(&fcc->submit_flush);
  431. ret = submit_flush_wait(sbi);
  432. atomic_dec(&fcc->submit_flush);
  433. return ret;
  434. }
  435. init_completion(&cmd.wait);
  436. atomic_inc(&fcc->submit_flush);
  437. llist_add(&cmd.llnode, &fcc->issue_list);
  438. if (!fcc->dispatch_list)
  439. wake_up(&fcc->flush_wait_queue);
  440. if (fcc->f2fs_issue_flush) {
  441. wait_for_completion(&cmd.wait);
  442. atomic_dec(&fcc->submit_flush);
  443. } else {
  444. llist_del_all(&fcc->issue_list);
  445. atomic_set(&fcc->submit_flush, 0);
  446. }
  447. return cmd.ret;
  448. }
  449. int create_flush_cmd_control(struct f2fs_sb_info *sbi)
  450. {
  451. dev_t dev = sbi->sb->s_bdev->bd_dev;
  452. struct flush_cmd_control *fcc;
  453. int err = 0;
  454. if (SM_I(sbi)->fcc_info) {
  455. fcc = SM_I(sbi)->fcc_info;
  456. goto init_thread;
  457. }
  458. fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
  459. if (!fcc)
  460. return -ENOMEM;
  461. atomic_set(&fcc->submit_flush, 0);
  462. init_waitqueue_head(&fcc->flush_wait_queue);
  463. init_llist_head(&fcc->issue_list);
  464. SM_I(sbi)->fcc_info = fcc;
  465. init_thread:
  466. fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
  467. "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
  468. if (IS_ERR(fcc->f2fs_issue_flush)) {
  469. err = PTR_ERR(fcc->f2fs_issue_flush);
  470. kfree(fcc);
  471. SM_I(sbi)->fcc_info = NULL;
  472. return err;
  473. }
  474. return err;
  475. }
  476. void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
  477. {
  478. struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
  479. if (fcc && fcc->f2fs_issue_flush) {
  480. struct task_struct *flush_thread = fcc->f2fs_issue_flush;
  481. fcc->f2fs_issue_flush = NULL;
  482. kthread_stop(flush_thread);
  483. }
  484. if (free) {
  485. kfree(fcc);
  486. SM_I(sbi)->fcc_info = NULL;
  487. }
  488. }
  489. static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
  490. enum dirty_type dirty_type)
  491. {
  492. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  493. /* need not be added */
  494. if (IS_CURSEG(sbi, segno))
  495. return;
  496. if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
  497. dirty_i->nr_dirty[dirty_type]++;
  498. if (dirty_type == DIRTY) {
  499. struct seg_entry *sentry = get_seg_entry(sbi, segno);
  500. enum dirty_type t = sentry->type;
  501. if (unlikely(t >= DIRTY)) {
  502. f2fs_bug_on(sbi, 1);
  503. return;
  504. }
  505. if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
  506. dirty_i->nr_dirty[t]++;
  507. }
  508. }
  509. static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
  510. enum dirty_type dirty_type)
  511. {
  512. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  513. if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
  514. dirty_i->nr_dirty[dirty_type]--;
  515. if (dirty_type == DIRTY) {
  516. struct seg_entry *sentry = get_seg_entry(sbi, segno);
  517. enum dirty_type t = sentry->type;
  518. if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
  519. dirty_i->nr_dirty[t]--;
  520. if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
  521. clear_bit(GET_SECNO(sbi, segno),
  522. dirty_i->victim_secmap);
  523. }
  524. }
  525. /*
  526. * Should not occur error such as -ENOMEM.
  527. * Adding dirty entry into seglist is not critical operation.
  528. * If a given segment is one of current working segments, it won't be added.
  529. */
  530. static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
  531. {
  532. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  533. unsigned short valid_blocks;
  534. if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
  535. return;
  536. mutex_lock(&dirty_i->seglist_lock);
  537. valid_blocks = get_valid_blocks(sbi, segno, 0);
  538. if (valid_blocks == 0) {
  539. __locate_dirty_segment(sbi, segno, PRE);
  540. __remove_dirty_segment(sbi, segno, DIRTY);
  541. } else if (valid_blocks < sbi->blocks_per_seg) {
  542. __locate_dirty_segment(sbi, segno, DIRTY);
  543. } else {
  544. /* Recovery routine with SSR needs this */
  545. __remove_dirty_segment(sbi, segno, DIRTY);
  546. }
  547. mutex_unlock(&dirty_i->seglist_lock);
  548. }
  549. static void __add_discard_cmd(struct f2fs_sb_info *sbi,
  550. struct block_device *bdev, block_t lstart,
  551. block_t start, block_t len)
  552. {
  553. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  554. struct list_head *cmd_list = &(dcc->discard_cmd_list);
  555. struct discard_cmd *dc;
  556. dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
  557. INIT_LIST_HEAD(&dc->list);
  558. dc->bdev = bdev;
  559. dc->lstart = lstart;
  560. dc->start = start;
  561. dc->len = len;
  562. dc->state = D_PREP;
  563. dc->error = 0;
  564. init_completion(&dc->wait);
  565. mutex_lock(&dcc->cmd_lock);
  566. list_add_tail(&dc->list, cmd_list);
  567. mutex_unlock(&dcc->cmd_lock);
  568. }
  569. static void __remove_discard_cmd(struct f2fs_sb_info *sbi, struct discard_cmd *dc)
  570. {
  571. if (dc->state == D_DONE)
  572. atomic_dec(&(SM_I(sbi)->dcc_info->submit_discard));
  573. if (dc->error == -EOPNOTSUPP)
  574. dc->error = 0;
  575. if (dc->error)
  576. f2fs_msg(sbi->sb, KERN_INFO,
  577. "Issue discard failed, ret: %d", dc->error);
  578. list_del(&dc->list);
  579. kmem_cache_free(discard_cmd_slab, dc);
  580. }
  581. static void f2fs_submit_discard_endio(struct bio *bio)
  582. {
  583. struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
  584. complete(&dc->wait);
  585. dc->error = bio->bi_error;
  586. dc->state = D_DONE;
  587. bio_put(bio);
  588. }
  589. /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
  590. static void __submit_discard_cmd(struct f2fs_sb_info *sbi,
  591. struct discard_cmd *dc)
  592. {
  593. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  594. struct bio *bio = NULL;
  595. if (dc->state != D_PREP)
  596. return;
  597. dc->error = __blkdev_issue_discard(dc->bdev,
  598. SECTOR_FROM_BLOCK(dc->start),
  599. SECTOR_FROM_BLOCK(dc->len),
  600. GFP_NOFS, 0, &bio);
  601. if (!dc->error) {
  602. /* should keep before submission to avoid D_DONE right away */
  603. dc->state = D_SUBMIT;
  604. atomic_inc(&dcc->submit_discard);
  605. if (bio) {
  606. bio->bi_private = dc;
  607. bio->bi_end_io = f2fs_submit_discard_endio;
  608. bio->bi_opf |= REQ_SYNC;
  609. submit_bio(bio);
  610. }
  611. } else {
  612. __remove_discard_cmd(sbi, dc);
  613. }
  614. }
  615. static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
  616. struct block_device *bdev, block_t blkstart, block_t blklen)
  617. {
  618. block_t lblkstart = blkstart;
  619. trace_f2fs_issue_discard(bdev, blkstart, blklen);
  620. if (sbi->s_ndevs) {
  621. int devi = f2fs_target_device_index(sbi, blkstart);
  622. blkstart -= FDEV(devi).start_blk;
  623. }
  624. __add_discard_cmd(sbi, bdev, lblkstart, blkstart, blklen);
  625. wake_up(&SM_I(sbi)->dcc_info->discard_wait_queue);
  626. return 0;
  627. }
  628. /* This should be covered by global mutex, &sit_i->sentry_lock */
  629. void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
  630. {
  631. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  632. struct list_head *wait_list = &(dcc->discard_cmd_list);
  633. struct discard_cmd *dc, *tmp;
  634. struct blk_plug plug;
  635. mutex_lock(&dcc->cmd_lock);
  636. blk_start_plug(&plug);
  637. list_for_each_entry_safe(dc, tmp, wait_list, list) {
  638. if (blkaddr == NULL_ADDR) {
  639. __submit_discard_cmd(sbi, dc);
  640. continue;
  641. }
  642. if (dc->lstart <= blkaddr && blkaddr < dc->lstart + dc->len) {
  643. if (dc->state == D_SUBMIT)
  644. wait_for_completion_io(&dc->wait);
  645. else
  646. __remove_discard_cmd(sbi, dc);
  647. }
  648. }
  649. blk_finish_plug(&plug);
  650. /* this comes from f2fs_put_super */
  651. if (blkaddr == NULL_ADDR) {
  652. list_for_each_entry_safe(dc, tmp, wait_list, list) {
  653. wait_for_completion_io(&dc->wait);
  654. __remove_discard_cmd(sbi, dc);
  655. }
  656. }
  657. mutex_unlock(&dcc->cmd_lock);
  658. }
  659. static int issue_discard_thread(void *data)
  660. {
  661. struct f2fs_sb_info *sbi = data;
  662. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  663. wait_queue_head_t *q = &dcc->discard_wait_queue;
  664. struct list_head *cmd_list = &dcc->discard_cmd_list;
  665. struct discard_cmd *dc, *tmp;
  666. struct blk_plug plug;
  667. int iter = 0;
  668. repeat:
  669. if (kthread_should_stop())
  670. return 0;
  671. blk_start_plug(&plug);
  672. mutex_lock(&dcc->cmd_lock);
  673. list_for_each_entry_safe(dc, tmp, cmd_list, list) {
  674. if (is_idle(sbi))
  675. __submit_discard_cmd(sbi, dc);
  676. if (dc->state == D_PREP && iter++ > DISCARD_ISSUE_RATE)
  677. break;
  678. if (dc->state == D_DONE)
  679. __remove_discard_cmd(sbi, dc);
  680. }
  681. mutex_unlock(&dcc->cmd_lock);
  682. blk_finish_plug(&plug);
  683. iter = 0;
  684. congestion_wait(BLK_RW_SYNC, HZ/50);
  685. wait_event_interruptible(*q,
  686. kthread_should_stop() || !list_empty(&dcc->discard_cmd_list));
  687. goto repeat;
  688. }
  689. #ifdef CONFIG_BLK_DEV_ZONED
  690. static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
  691. struct block_device *bdev, block_t blkstart, block_t blklen)
  692. {
  693. sector_t sector, nr_sects;
  694. block_t lblkstart = blkstart;
  695. int devi = 0;
  696. if (sbi->s_ndevs) {
  697. devi = f2fs_target_device_index(sbi, blkstart);
  698. blkstart -= FDEV(devi).start_blk;
  699. }
  700. /*
  701. * We need to know the type of the zone: for conventional zones,
  702. * use regular discard if the drive supports it. For sequential
  703. * zones, reset the zone write pointer.
  704. */
  705. switch (get_blkz_type(sbi, bdev, blkstart)) {
  706. case BLK_ZONE_TYPE_CONVENTIONAL:
  707. if (!blk_queue_discard(bdev_get_queue(bdev)))
  708. return 0;
  709. return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
  710. case BLK_ZONE_TYPE_SEQWRITE_REQ:
  711. case BLK_ZONE_TYPE_SEQWRITE_PREF:
  712. sector = SECTOR_FROM_BLOCK(blkstart);
  713. nr_sects = SECTOR_FROM_BLOCK(blklen);
  714. if (sector & (bdev_zone_sectors(bdev) - 1) ||
  715. nr_sects != bdev_zone_sectors(bdev)) {
  716. f2fs_msg(sbi->sb, KERN_INFO,
  717. "(%d) %s: Unaligned discard attempted (block %x + %x)",
  718. devi, sbi->s_ndevs ? FDEV(devi).path: "",
  719. blkstart, blklen);
  720. return -EIO;
  721. }
  722. trace_f2fs_issue_reset_zone(bdev, blkstart);
  723. return blkdev_reset_zones(bdev, sector,
  724. nr_sects, GFP_NOFS);
  725. default:
  726. /* Unknown zone type: broken device ? */
  727. return -EIO;
  728. }
  729. }
  730. #endif
  731. static int __issue_discard_async(struct f2fs_sb_info *sbi,
  732. struct block_device *bdev, block_t blkstart, block_t blklen)
  733. {
  734. #ifdef CONFIG_BLK_DEV_ZONED
  735. if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
  736. bdev_zoned_model(bdev) != BLK_ZONED_NONE)
  737. return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
  738. #endif
  739. return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
  740. }
  741. static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
  742. block_t blkstart, block_t blklen)
  743. {
  744. sector_t start = blkstart, len = 0;
  745. struct block_device *bdev;
  746. struct seg_entry *se;
  747. unsigned int offset;
  748. block_t i;
  749. int err = 0;
  750. bdev = f2fs_target_device(sbi, blkstart, NULL);
  751. for (i = blkstart; i < blkstart + blklen; i++, len++) {
  752. if (i != start) {
  753. struct block_device *bdev2 =
  754. f2fs_target_device(sbi, i, NULL);
  755. if (bdev2 != bdev) {
  756. err = __issue_discard_async(sbi, bdev,
  757. start, len);
  758. if (err)
  759. return err;
  760. bdev = bdev2;
  761. start = i;
  762. len = 0;
  763. }
  764. }
  765. se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
  766. offset = GET_BLKOFF_FROM_SEG0(sbi, i);
  767. if (!f2fs_test_and_set_bit(offset, se->discard_map))
  768. sbi->discard_blks--;
  769. }
  770. if (len)
  771. err = __issue_discard_async(sbi, bdev, start, len);
  772. return err;
  773. }
  774. static void __add_discard_entry(struct f2fs_sb_info *sbi,
  775. struct cp_control *cpc, struct seg_entry *se,
  776. unsigned int start, unsigned int end)
  777. {
  778. struct list_head *head = &SM_I(sbi)->dcc_info->discard_entry_list;
  779. struct discard_entry *new, *last;
  780. if (!list_empty(head)) {
  781. last = list_last_entry(head, struct discard_entry, list);
  782. if (START_BLOCK(sbi, cpc->trim_start) + start ==
  783. last->blkaddr + last->len &&
  784. last->len < MAX_DISCARD_BLOCKS(sbi)) {
  785. last->len += end - start;
  786. goto done;
  787. }
  788. }
  789. new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
  790. INIT_LIST_HEAD(&new->list);
  791. new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start;
  792. new->len = end - start;
  793. list_add_tail(&new->list, head);
  794. done:
  795. SM_I(sbi)->dcc_info->nr_discards += end - start;
  796. }
  797. static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
  798. bool check_only)
  799. {
  800. int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
  801. int max_blocks = sbi->blocks_per_seg;
  802. struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
  803. unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
  804. unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
  805. unsigned long *discard_map = (unsigned long *)se->discard_map;
  806. unsigned long *dmap = SIT_I(sbi)->tmp_map;
  807. unsigned int start = 0, end = -1;
  808. bool force = (cpc->reason == CP_DISCARD);
  809. int i;
  810. if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
  811. return false;
  812. if (!force) {
  813. if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
  814. SM_I(sbi)->dcc_info->nr_discards >=
  815. SM_I(sbi)->dcc_info->max_discards)
  816. return false;
  817. }
  818. /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
  819. for (i = 0; i < entries; i++)
  820. dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
  821. (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
  822. while (force || SM_I(sbi)->dcc_info->nr_discards <=
  823. SM_I(sbi)->dcc_info->max_discards) {
  824. start = __find_rev_next_bit(dmap, max_blocks, end + 1);
  825. if (start >= max_blocks)
  826. break;
  827. end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
  828. if (force && start && end != max_blocks
  829. && (end - start) < cpc->trim_minlen)
  830. continue;
  831. if (check_only)
  832. return true;
  833. __add_discard_entry(sbi, cpc, se, start, end);
  834. }
  835. return false;
  836. }
  837. void release_discard_addrs(struct f2fs_sb_info *sbi)
  838. {
  839. struct list_head *head = &(SM_I(sbi)->dcc_info->discard_entry_list);
  840. struct discard_entry *entry, *this;
  841. /* drop caches */
  842. list_for_each_entry_safe(entry, this, head, list) {
  843. list_del(&entry->list);
  844. kmem_cache_free(discard_entry_slab, entry);
  845. }
  846. }
  847. /*
  848. * Should call clear_prefree_segments after checkpoint is done.
  849. */
  850. static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
  851. {
  852. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  853. unsigned int segno;
  854. mutex_lock(&dirty_i->seglist_lock);
  855. for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
  856. __set_test_and_free(sbi, segno);
  857. mutex_unlock(&dirty_i->seglist_lock);
  858. }
  859. void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  860. {
  861. struct list_head *head = &(SM_I(sbi)->dcc_info->discard_entry_list);
  862. struct discard_entry *entry, *this;
  863. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  864. unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
  865. unsigned int start = 0, end = -1;
  866. unsigned int secno, start_segno;
  867. bool force = (cpc->reason == CP_DISCARD);
  868. mutex_lock(&dirty_i->seglist_lock);
  869. while (1) {
  870. int i;
  871. start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
  872. if (start >= MAIN_SEGS(sbi))
  873. break;
  874. end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
  875. start + 1);
  876. for (i = start; i < end; i++)
  877. clear_bit(i, prefree_map);
  878. dirty_i->nr_dirty[PRE] -= end - start;
  879. if (!test_opt(sbi, DISCARD))
  880. continue;
  881. if (force && start >= cpc->trim_start &&
  882. (end - 1) <= cpc->trim_end)
  883. continue;
  884. if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
  885. f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
  886. (end - start) << sbi->log_blocks_per_seg);
  887. continue;
  888. }
  889. next:
  890. secno = GET_SECNO(sbi, start);
  891. start_segno = secno * sbi->segs_per_sec;
  892. if (!IS_CURSEC(sbi, secno) &&
  893. !get_valid_blocks(sbi, start, sbi->segs_per_sec))
  894. f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
  895. sbi->segs_per_sec << sbi->log_blocks_per_seg);
  896. start = start_segno + sbi->segs_per_sec;
  897. if (start < end)
  898. goto next;
  899. else
  900. end = start - 1;
  901. }
  902. mutex_unlock(&dirty_i->seglist_lock);
  903. /* send small discards */
  904. list_for_each_entry_safe(entry, this, head, list) {
  905. if (force && entry->len < cpc->trim_minlen)
  906. goto skip;
  907. f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
  908. cpc->trimmed += entry->len;
  909. skip:
  910. list_del(&entry->list);
  911. SM_I(sbi)->dcc_info->nr_discards -= entry->len;
  912. kmem_cache_free(discard_entry_slab, entry);
  913. }
  914. }
  915. static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
  916. {
  917. dev_t dev = sbi->sb->s_bdev->bd_dev;
  918. struct discard_cmd_control *dcc;
  919. int err = 0;
  920. if (SM_I(sbi)->dcc_info) {
  921. dcc = SM_I(sbi)->dcc_info;
  922. goto init_thread;
  923. }
  924. dcc = kzalloc(sizeof(struct discard_cmd_control), GFP_KERNEL);
  925. if (!dcc)
  926. return -ENOMEM;
  927. INIT_LIST_HEAD(&dcc->discard_entry_list);
  928. INIT_LIST_HEAD(&dcc->discard_cmd_list);
  929. mutex_init(&dcc->cmd_lock);
  930. atomic_set(&dcc->submit_discard, 0);
  931. dcc->nr_discards = 0;
  932. dcc->max_discards = 0;
  933. init_waitqueue_head(&dcc->discard_wait_queue);
  934. SM_I(sbi)->dcc_info = dcc;
  935. init_thread:
  936. dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
  937. "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
  938. if (IS_ERR(dcc->f2fs_issue_discard)) {
  939. err = PTR_ERR(dcc->f2fs_issue_discard);
  940. kfree(dcc);
  941. SM_I(sbi)->dcc_info = NULL;
  942. return err;
  943. }
  944. return err;
  945. }
  946. static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi, bool free)
  947. {
  948. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  949. if (dcc && dcc->f2fs_issue_discard) {
  950. struct task_struct *discard_thread = dcc->f2fs_issue_discard;
  951. dcc->f2fs_issue_discard = NULL;
  952. kthread_stop(discard_thread);
  953. }
  954. if (free) {
  955. kfree(dcc);
  956. SM_I(sbi)->dcc_info = NULL;
  957. }
  958. }
  959. static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
  960. {
  961. struct sit_info *sit_i = SIT_I(sbi);
  962. if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
  963. sit_i->dirty_sentries++;
  964. return false;
  965. }
  966. return true;
  967. }
  968. static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
  969. unsigned int segno, int modified)
  970. {
  971. struct seg_entry *se = get_seg_entry(sbi, segno);
  972. se->type = type;
  973. if (modified)
  974. __mark_sit_entry_dirty(sbi, segno);
  975. }
  976. static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
  977. {
  978. struct seg_entry *se;
  979. unsigned int segno, offset;
  980. long int new_vblocks;
  981. segno = GET_SEGNO(sbi, blkaddr);
  982. se = get_seg_entry(sbi, segno);
  983. new_vblocks = se->valid_blocks + del;
  984. offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
  985. f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
  986. (new_vblocks > sbi->blocks_per_seg)));
  987. se->valid_blocks = new_vblocks;
  988. se->mtime = get_mtime(sbi);
  989. SIT_I(sbi)->max_mtime = se->mtime;
  990. /* Update valid block bitmap */
  991. if (del > 0) {
  992. if (f2fs_test_and_set_bit(offset, se->cur_valid_map)) {
  993. #ifdef CONFIG_F2FS_CHECK_FS
  994. if (f2fs_test_and_set_bit(offset,
  995. se->cur_valid_map_mir))
  996. f2fs_bug_on(sbi, 1);
  997. else
  998. WARN_ON(1);
  999. #else
  1000. f2fs_bug_on(sbi, 1);
  1001. #endif
  1002. }
  1003. if (f2fs_discard_en(sbi) &&
  1004. !f2fs_test_and_set_bit(offset, se->discard_map))
  1005. sbi->discard_blks--;
  1006. /* don't overwrite by SSR to keep node chain */
  1007. if (se->type == CURSEG_WARM_NODE) {
  1008. if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
  1009. se->ckpt_valid_blocks++;
  1010. }
  1011. } else {
  1012. if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map)) {
  1013. #ifdef CONFIG_F2FS_CHECK_FS
  1014. if (!f2fs_test_and_clear_bit(offset,
  1015. se->cur_valid_map_mir))
  1016. f2fs_bug_on(sbi, 1);
  1017. else
  1018. WARN_ON(1);
  1019. #else
  1020. f2fs_bug_on(sbi, 1);
  1021. #endif
  1022. }
  1023. if (f2fs_discard_en(sbi) &&
  1024. f2fs_test_and_clear_bit(offset, se->discard_map))
  1025. sbi->discard_blks++;
  1026. }
  1027. if (!f2fs_test_bit(offset, se->ckpt_valid_map))
  1028. se->ckpt_valid_blocks += del;
  1029. __mark_sit_entry_dirty(sbi, segno);
  1030. /* update total number of valid blocks to be written in ckpt area */
  1031. SIT_I(sbi)->written_valid_blocks += del;
  1032. if (sbi->segs_per_sec > 1)
  1033. get_sec_entry(sbi, segno)->valid_blocks += del;
  1034. }
  1035. void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
  1036. {
  1037. update_sit_entry(sbi, new, 1);
  1038. if (GET_SEGNO(sbi, old) != NULL_SEGNO)
  1039. update_sit_entry(sbi, old, -1);
  1040. locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
  1041. locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
  1042. }
  1043. void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
  1044. {
  1045. unsigned int segno = GET_SEGNO(sbi, addr);
  1046. struct sit_info *sit_i = SIT_I(sbi);
  1047. f2fs_bug_on(sbi, addr == NULL_ADDR);
  1048. if (addr == NEW_ADDR)
  1049. return;
  1050. /* add it into sit main buffer */
  1051. mutex_lock(&sit_i->sentry_lock);
  1052. update_sit_entry(sbi, addr, -1);
  1053. /* add it into dirty seglist */
  1054. locate_dirty_segment(sbi, segno);
  1055. mutex_unlock(&sit_i->sentry_lock);
  1056. }
  1057. bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
  1058. {
  1059. struct sit_info *sit_i = SIT_I(sbi);
  1060. unsigned int segno, offset;
  1061. struct seg_entry *se;
  1062. bool is_cp = false;
  1063. if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
  1064. return true;
  1065. mutex_lock(&sit_i->sentry_lock);
  1066. segno = GET_SEGNO(sbi, blkaddr);
  1067. se = get_seg_entry(sbi, segno);
  1068. offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
  1069. if (f2fs_test_bit(offset, se->ckpt_valid_map))
  1070. is_cp = true;
  1071. mutex_unlock(&sit_i->sentry_lock);
  1072. return is_cp;
  1073. }
  1074. /*
  1075. * This function should be resided under the curseg_mutex lock
  1076. */
  1077. static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
  1078. struct f2fs_summary *sum)
  1079. {
  1080. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1081. void *addr = curseg->sum_blk;
  1082. addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
  1083. memcpy(addr, sum, sizeof(struct f2fs_summary));
  1084. }
  1085. /*
  1086. * Calculate the number of current summary pages for writing
  1087. */
  1088. int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
  1089. {
  1090. int valid_sum_count = 0;
  1091. int i, sum_in_page;
  1092. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  1093. if (sbi->ckpt->alloc_type[i] == SSR)
  1094. valid_sum_count += sbi->blocks_per_seg;
  1095. else {
  1096. if (for_ra)
  1097. valid_sum_count += le16_to_cpu(
  1098. F2FS_CKPT(sbi)->cur_data_blkoff[i]);
  1099. else
  1100. valid_sum_count += curseg_blkoff(sbi, i);
  1101. }
  1102. }
  1103. sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
  1104. SUM_FOOTER_SIZE) / SUMMARY_SIZE;
  1105. if (valid_sum_count <= sum_in_page)
  1106. return 1;
  1107. else if ((valid_sum_count - sum_in_page) <=
  1108. (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
  1109. return 2;
  1110. return 3;
  1111. }
  1112. /*
  1113. * Caller should put this summary page
  1114. */
  1115. struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
  1116. {
  1117. return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
  1118. }
  1119. void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
  1120. {
  1121. struct page *page = grab_meta_page(sbi, blk_addr);
  1122. void *dst = page_address(page);
  1123. if (src)
  1124. memcpy(dst, src, PAGE_SIZE);
  1125. else
  1126. memset(dst, 0, PAGE_SIZE);
  1127. set_page_dirty(page);
  1128. f2fs_put_page(page, 1);
  1129. }
  1130. static void write_sum_page(struct f2fs_sb_info *sbi,
  1131. struct f2fs_summary_block *sum_blk, block_t blk_addr)
  1132. {
  1133. update_meta_page(sbi, (void *)sum_blk, blk_addr);
  1134. }
  1135. static void write_current_sum_page(struct f2fs_sb_info *sbi,
  1136. int type, block_t blk_addr)
  1137. {
  1138. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1139. struct page *page = grab_meta_page(sbi, blk_addr);
  1140. struct f2fs_summary_block *src = curseg->sum_blk;
  1141. struct f2fs_summary_block *dst;
  1142. dst = (struct f2fs_summary_block *)page_address(page);
  1143. mutex_lock(&curseg->curseg_mutex);
  1144. down_read(&curseg->journal_rwsem);
  1145. memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
  1146. up_read(&curseg->journal_rwsem);
  1147. memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
  1148. memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
  1149. mutex_unlock(&curseg->curseg_mutex);
  1150. set_page_dirty(page);
  1151. f2fs_put_page(page, 1);
  1152. }
  1153. /*
  1154. * Find a new segment from the free segments bitmap to right order
  1155. * This function should be returned with success, otherwise BUG
  1156. */
  1157. static void get_new_segment(struct f2fs_sb_info *sbi,
  1158. unsigned int *newseg, bool new_sec, int dir)
  1159. {
  1160. struct free_segmap_info *free_i = FREE_I(sbi);
  1161. unsigned int segno, secno, zoneno;
  1162. unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
  1163. unsigned int hint = *newseg / sbi->segs_per_sec;
  1164. unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
  1165. unsigned int left_start = hint;
  1166. bool init = true;
  1167. int go_left = 0;
  1168. int i;
  1169. spin_lock(&free_i->segmap_lock);
  1170. if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
  1171. segno = find_next_zero_bit(free_i->free_segmap,
  1172. (hint + 1) * sbi->segs_per_sec, *newseg + 1);
  1173. if (segno < (hint + 1) * sbi->segs_per_sec)
  1174. goto got_it;
  1175. }
  1176. find_other_zone:
  1177. secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
  1178. if (secno >= MAIN_SECS(sbi)) {
  1179. if (dir == ALLOC_RIGHT) {
  1180. secno = find_next_zero_bit(free_i->free_secmap,
  1181. MAIN_SECS(sbi), 0);
  1182. f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
  1183. } else {
  1184. go_left = 1;
  1185. left_start = hint - 1;
  1186. }
  1187. }
  1188. if (go_left == 0)
  1189. goto skip_left;
  1190. while (test_bit(left_start, free_i->free_secmap)) {
  1191. if (left_start > 0) {
  1192. left_start--;
  1193. continue;
  1194. }
  1195. left_start = find_next_zero_bit(free_i->free_secmap,
  1196. MAIN_SECS(sbi), 0);
  1197. f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
  1198. break;
  1199. }
  1200. secno = left_start;
  1201. skip_left:
  1202. hint = secno;
  1203. segno = secno * sbi->segs_per_sec;
  1204. zoneno = secno / sbi->secs_per_zone;
  1205. /* give up on finding another zone */
  1206. if (!init)
  1207. goto got_it;
  1208. if (sbi->secs_per_zone == 1)
  1209. goto got_it;
  1210. if (zoneno == old_zoneno)
  1211. goto got_it;
  1212. if (dir == ALLOC_LEFT) {
  1213. if (!go_left && zoneno + 1 >= total_zones)
  1214. goto got_it;
  1215. if (go_left && zoneno == 0)
  1216. goto got_it;
  1217. }
  1218. for (i = 0; i < NR_CURSEG_TYPE; i++)
  1219. if (CURSEG_I(sbi, i)->zone == zoneno)
  1220. break;
  1221. if (i < NR_CURSEG_TYPE) {
  1222. /* zone is in user, try another */
  1223. if (go_left)
  1224. hint = zoneno * sbi->secs_per_zone - 1;
  1225. else if (zoneno + 1 >= total_zones)
  1226. hint = 0;
  1227. else
  1228. hint = (zoneno + 1) * sbi->secs_per_zone;
  1229. init = false;
  1230. goto find_other_zone;
  1231. }
  1232. got_it:
  1233. /* set it as dirty segment in free segmap */
  1234. f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
  1235. __set_inuse(sbi, segno);
  1236. *newseg = segno;
  1237. spin_unlock(&free_i->segmap_lock);
  1238. }
  1239. static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
  1240. {
  1241. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1242. struct summary_footer *sum_footer;
  1243. curseg->segno = curseg->next_segno;
  1244. curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
  1245. curseg->next_blkoff = 0;
  1246. curseg->next_segno = NULL_SEGNO;
  1247. sum_footer = &(curseg->sum_blk->footer);
  1248. memset(sum_footer, 0, sizeof(struct summary_footer));
  1249. if (IS_DATASEG(type))
  1250. SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
  1251. if (IS_NODESEG(type))
  1252. SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
  1253. __set_sit_entry_type(sbi, type, curseg->segno, modified);
  1254. }
  1255. /*
  1256. * Allocate a current working segment.
  1257. * This function always allocates a free segment in LFS manner.
  1258. */
  1259. static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
  1260. {
  1261. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1262. unsigned int segno = curseg->segno;
  1263. int dir = ALLOC_LEFT;
  1264. write_sum_page(sbi, curseg->sum_blk,
  1265. GET_SUM_BLOCK(sbi, segno));
  1266. if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
  1267. dir = ALLOC_RIGHT;
  1268. if (test_opt(sbi, NOHEAP))
  1269. dir = ALLOC_RIGHT;
  1270. get_new_segment(sbi, &segno, new_sec, dir);
  1271. curseg->next_segno = segno;
  1272. reset_curseg(sbi, type, 1);
  1273. curseg->alloc_type = LFS;
  1274. }
  1275. static void __next_free_blkoff(struct f2fs_sb_info *sbi,
  1276. struct curseg_info *seg, block_t start)
  1277. {
  1278. struct seg_entry *se = get_seg_entry(sbi, seg->segno);
  1279. int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
  1280. unsigned long *target_map = SIT_I(sbi)->tmp_map;
  1281. unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
  1282. unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
  1283. int i, pos;
  1284. for (i = 0; i < entries; i++)
  1285. target_map[i] = ckpt_map[i] | cur_map[i];
  1286. pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
  1287. seg->next_blkoff = pos;
  1288. }
  1289. /*
  1290. * If a segment is written by LFS manner, next block offset is just obtained
  1291. * by increasing the current block offset. However, if a segment is written by
  1292. * SSR manner, next block offset obtained by calling __next_free_blkoff
  1293. */
  1294. static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
  1295. struct curseg_info *seg)
  1296. {
  1297. if (seg->alloc_type == SSR)
  1298. __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
  1299. else
  1300. seg->next_blkoff++;
  1301. }
  1302. /*
  1303. * This function always allocates a used segment(from dirty seglist) by SSR
  1304. * manner, so it should recover the existing segment information of valid blocks
  1305. */
  1306. static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
  1307. {
  1308. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  1309. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1310. unsigned int new_segno = curseg->next_segno;
  1311. struct f2fs_summary_block *sum_node;
  1312. struct page *sum_page;
  1313. write_sum_page(sbi, curseg->sum_blk,
  1314. GET_SUM_BLOCK(sbi, curseg->segno));
  1315. __set_test_and_inuse(sbi, new_segno);
  1316. mutex_lock(&dirty_i->seglist_lock);
  1317. __remove_dirty_segment(sbi, new_segno, PRE);
  1318. __remove_dirty_segment(sbi, new_segno, DIRTY);
  1319. mutex_unlock(&dirty_i->seglist_lock);
  1320. reset_curseg(sbi, type, 1);
  1321. curseg->alloc_type = SSR;
  1322. __next_free_blkoff(sbi, curseg, 0);
  1323. if (reuse) {
  1324. sum_page = get_sum_page(sbi, new_segno);
  1325. sum_node = (struct f2fs_summary_block *)page_address(sum_page);
  1326. memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
  1327. f2fs_put_page(sum_page, 1);
  1328. }
  1329. }
  1330. static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
  1331. {
  1332. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1333. const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
  1334. int i, cnt;
  1335. bool reversed = false;
  1336. /* need_SSR() already forces to do this */
  1337. if (v_ops->get_victim(sbi, &(curseg)->next_segno, BG_GC, type, SSR))
  1338. return 1;
  1339. /* For node segments, let's do SSR more intensively */
  1340. if (IS_NODESEG(type)) {
  1341. if (type >= CURSEG_WARM_NODE) {
  1342. reversed = true;
  1343. i = CURSEG_COLD_NODE;
  1344. } else {
  1345. i = CURSEG_HOT_NODE;
  1346. }
  1347. cnt = NR_CURSEG_NODE_TYPE;
  1348. } else {
  1349. if (type >= CURSEG_WARM_DATA) {
  1350. reversed = true;
  1351. i = CURSEG_COLD_DATA;
  1352. } else {
  1353. i = CURSEG_HOT_DATA;
  1354. }
  1355. cnt = NR_CURSEG_DATA_TYPE;
  1356. }
  1357. for (; cnt-- > 0; reversed ? i-- : i++) {
  1358. if (i == type)
  1359. continue;
  1360. if (v_ops->get_victim(sbi, &(curseg)->next_segno,
  1361. BG_GC, i, SSR))
  1362. return 1;
  1363. }
  1364. return 0;
  1365. }
  1366. /*
  1367. * flush out current segment and replace it with new segment
  1368. * This function should be returned with success, otherwise BUG
  1369. */
  1370. static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
  1371. int type, bool force)
  1372. {
  1373. if (force)
  1374. new_curseg(sbi, type, true);
  1375. else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
  1376. type == CURSEG_WARM_NODE)
  1377. new_curseg(sbi, type, false);
  1378. else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
  1379. change_curseg(sbi, type, true);
  1380. else
  1381. new_curseg(sbi, type, false);
  1382. stat_inc_seg_type(sbi, CURSEG_I(sbi, type));
  1383. }
  1384. void allocate_new_segments(struct f2fs_sb_info *sbi)
  1385. {
  1386. struct curseg_info *curseg;
  1387. unsigned int old_segno;
  1388. int i;
  1389. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  1390. curseg = CURSEG_I(sbi, i);
  1391. old_segno = curseg->segno;
  1392. SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
  1393. locate_dirty_segment(sbi, old_segno);
  1394. }
  1395. }
  1396. static const struct segment_allocation default_salloc_ops = {
  1397. .allocate_segment = allocate_segment_by_default,
  1398. };
  1399. bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  1400. {
  1401. __u64 trim_start = cpc->trim_start;
  1402. bool has_candidate = false;
  1403. mutex_lock(&SIT_I(sbi)->sentry_lock);
  1404. for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
  1405. if (add_discard_addrs(sbi, cpc, true)) {
  1406. has_candidate = true;
  1407. break;
  1408. }
  1409. }
  1410. mutex_unlock(&SIT_I(sbi)->sentry_lock);
  1411. cpc->trim_start = trim_start;
  1412. return has_candidate;
  1413. }
  1414. int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
  1415. {
  1416. __u64 start = F2FS_BYTES_TO_BLK(range->start);
  1417. __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
  1418. unsigned int start_segno, end_segno;
  1419. struct cp_control cpc;
  1420. int err = 0;
  1421. if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
  1422. return -EINVAL;
  1423. cpc.trimmed = 0;
  1424. if (end <= MAIN_BLKADDR(sbi))
  1425. goto out;
  1426. if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
  1427. f2fs_msg(sbi->sb, KERN_WARNING,
  1428. "Found FS corruption, run fsck to fix.");
  1429. goto out;
  1430. }
  1431. /* start/end segment number in main_area */
  1432. start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
  1433. end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
  1434. GET_SEGNO(sbi, end);
  1435. cpc.reason = CP_DISCARD;
  1436. cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
  1437. /* do checkpoint to issue discard commands safely */
  1438. for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
  1439. cpc.trim_start = start_segno;
  1440. if (sbi->discard_blks == 0)
  1441. break;
  1442. else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
  1443. cpc.trim_end = end_segno;
  1444. else
  1445. cpc.trim_end = min_t(unsigned int,
  1446. rounddown(start_segno +
  1447. BATCHED_TRIM_SEGMENTS(sbi),
  1448. sbi->segs_per_sec) - 1, end_segno);
  1449. mutex_lock(&sbi->gc_mutex);
  1450. err = write_checkpoint(sbi, &cpc);
  1451. mutex_unlock(&sbi->gc_mutex);
  1452. if (err)
  1453. break;
  1454. schedule();
  1455. }
  1456. out:
  1457. range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
  1458. return err;
  1459. }
  1460. static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
  1461. {
  1462. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1463. if (curseg->next_blkoff < sbi->blocks_per_seg)
  1464. return true;
  1465. return false;
  1466. }
  1467. static int __get_segment_type_2(struct page *page, enum page_type p_type)
  1468. {
  1469. if (p_type == DATA)
  1470. return CURSEG_HOT_DATA;
  1471. else
  1472. return CURSEG_HOT_NODE;
  1473. }
  1474. static int __get_segment_type_4(struct page *page, enum page_type p_type)
  1475. {
  1476. if (p_type == DATA) {
  1477. struct inode *inode = page->mapping->host;
  1478. if (S_ISDIR(inode->i_mode))
  1479. return CURSEG_HOT_DATA;
  1480. else
  1481. return CURSEG_COLD_DATA;
  1482. } else {
  1483. if (IS_DNODE(page) && is_cold_node(page))
  1484. return CURSEG_WARM_NODE;
  1485. else
  1486. return CURSEG_COLD_NODE;
  1487. }
  1488. }
  1489. static int __get_segment_type_6(struct page *page, enum page_type p_type)
  1490. {
  1491. if (p_type == DATA) {
  1492. struct inode *inode = page->mapping->host;
  1493. if (S_ISDIR(inode->i_mode))
  1494. return CURSEG_HOT_DATA;
  1495. else if (is_cold_data(page) || file_is_cold(inode))
  1496. return CURSEG_COLD_DATA;
  1497. else
  1498. return CURSEG_WARM_DATA;
  1499. } else {
  1500. if (IS_DNODE(page))
  1501. return is_cold_node(page) ? CURSEG_WARM_NODE :
  1502. CURSEG_HOT_NODE;
  1503. else
  1504. return CURSEG_COLD_NODE;
  1505. }
  1506. }
  1507. static int __get_segment_type(struct page *page, enum page_type p_type)
  1508. {
  1509. switch (F2FS_P_SB(page)->active_logs) {
  1510. case 2:
  1511. return __get_segment_type_2(page, p_type);
  1512. case 4:
  1513. return __get_segment_type_4(page, p_type);
  1514. }
  1515. /* NR_CURSEG_TYPE(6) logs by default */
  1516. f2fs_bug_on(F2FS_P_SB(page),
  1517. F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
  1518. return __get_segment_type_6(page, p_type);
  1519. }
  1520. void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
  1521. block_t old_blkaddr, block_t *new_blkaddr,
  1522. struct f2fs_summary *sum, int type)
  1523. {
  1524. struct sit_info *sit_i = SIT_I(sbi);
  1525. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1526. mutex_lock(&curseg->curseg_mutex);
  1527. mutex_lock(&sit_i->sentry_lock);
  1528. *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
  1529. f2fs_wait_discard_bio(sbi, *new_blkaddr);
  1530. /*
  1531. * __add_sum_entry should be resided under the curseg_mutex
  1532. * because, this function updates a summary entry in the
  1533. * current summary block.
  1534. */
  1535. __add_sum_entry(sbi, type, sum);
  1536. __refresh_next_blkoff(sbi, curseg);
  1537. stat_inc_block_count(sbi, curseg);
  1538. /*
  1539. * SIT information should be updated before segment allocation,
  1540. * since SSR needs latest valid block information.
  1541. */
  1542. refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
  1543. if (!__has_curseg_space(sbi, type))
  1544. sit_i->s_ops->allocate_segment(sbi, type, false);
  1545. mutex_unlock(&sit_i->sentry_lock);
  1546. if (page && IS_NODESEG(type))
  1547. fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
  1548. mutex_unlock(&curseg->curseg_mutex);
  1549. }
  1550. static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
  1551. {
  1552. int type = __get_segment_type(fio->page, fio->type);
  1553. int err;
  1554. if (fio->type == NODE || fio->type == DATA)
  1555. mutex_lock(&fio->sbi->wio_mutex[fio->type]);
  1556. reallocate:
  1557. allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
  1558. &fio->new_blkaddr, sum, type);
  1559. /* writeout dirty page into bdev */
  1560. err = f2fs_submit_page_mbio(fio);
  1561. if (err == -EAGAIN) {
  1562. fio->old_blkaddr = fio->new_blkaddr;
  1563. goto reallocate;
  1564. }
  1565. if (fio->type == NODE || fio->type == DATA)
  1566. mutex_unlock(&fio->sbi->wio_mutex[fio->type]);
  1567. }
  1568. void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
  1569. {
  1570. struct f2fs_io_info fio = {
  1571. .sbi = sbi,
  1572. .type = META,
  1573. .op = REQ_OP_WRITE,
  1574. .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
  1575. .old_blkaddr = page->index,
  1576. .new_blkaddr = page->index,
  1577. .page = page,
  1578. .encrypted_page = NULL,
  1579. };
  1580. if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
  1581. fio.op_flags &= ~REQ_META;
  1582. set_page_writeback(page);
  1583. f2fs_submit_page_mbio(&fio);
  1584. }
  1585. void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
  1586. {
  1587. struct f2fs_summary sum;
  1588. set_summary(&sum, nid, 0, 0);
  1589. do_write_page(&sum, fio);
  1590. }
  1591. void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
  1592. {
  1593. struct f2fs_sb_info *sbi = fio->sbi;
  1594. struct f2fs_summary sum;
  1595. struct node_info ni;
  1596. f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
  1597. get_node_info(sbi, dn->nid, &ni);
  1598. set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
  1599. do_write_page(&sum, fio);
  1600. f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
  1601. }
  1602. void rewrite_data_page(struct f2fs_io_info *fio)
  1603. {
  1604. fio->new_blkaddr = fio->old_blkaddr;
  1605. stat_inc_inplace_blocks(fio->sbi);
  1606. f2fs_submit_page_mbio(fio);
  1607. }
  1608. void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
  1609. block_t old_blkaddr, block_t new_blkaddr,
  1610. bool recover_curseg, bool recover_newaddr)
  1611. {
  1612. struct sit_info *sit_i = SIT_I(sbi);
  1613. struct curseg_info *curseg;
  1614. unsigned int segno, old_cursegno;
  1615. struct seg_entry *se;
  1616. int type;
  1617. unsigned short old_blkoff;
  1618. segno = GET_SEGNO(sbi, new_blkaddr);
  1619. se = get_seg_entry(sbi, segno);
  1620. type = se->type;
  1621. if (!recover_curseg) {
  1622. /* for recovery flow */
  1623. if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
  1624. if (old_blkaddr == NULL_ADDR)
  1625. type = CURSEG_COLD_DATA;
  1626. else
  1627. type = CURSEG_WARM_DATA;
  1628. }
  1629. } else {
  1630. if (!IS_CURSEG(sbi, segno))
  1631. type = CURSEG_WARM_DATA;
  1632. }
  1633. curseg = CURSEG_I(sbi, type);
  1634. mutex_lock(&curseg->curseg_mutex);
  1635. mutex_lock(&sit_i->sentry_lock);
  1636. old_cursegno = curseg->segno;
  1637. old_blkoff = curseg->next_blkoff;
  1638. /* change the current segment */
  1639. if (segno != curseg->segno) {
  1640. curseg->next_segno = segno;
  1641. change_curseg(sbi, type, true);
  1642. }
  1643. curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
  1644. __add_sum_entry(sbi, type, sum);
  1645. if (!recover_curseg || recover_newaddr)
  1646. update_sit_entry(sbi, new_blkaddr, 1);
  1647. if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
  1648. update_sit_entry(sbi, old_blkaddr, -1);
  1649. locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
  1650. locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
  1651. locate_dirty_segment(sbi, old_cursegno);
  1652. if (recover_curseg) {
  1653. if (old_cursegno != curseg->segno) {
  1654. curseg->next_segno = old_cursegno;
  1655. change_curseg(sbi, type, true);
  1656. }
  1657. curseg->next_blkoff = old_blkoff;
  1658. }
  1659. mutex_unlock(&sit_i->sentry_lock);
  1660. mutex_unlock(&curseg->curseg_mutex);
  1661. }
  1662. void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
  1663. block_t old_addr, block_t new_addr,
  1664. unsigned char version, bool recover_curseg,
  1665. bool recover_newaddr)
  1666. {
  1667. struct f2fs_summary sum;
  1668. set_summary(&sum, dn->nid, dn->ofs_in_node, version);
  1669. __f2fs_replace_block(sbi, &sum, old_addr, new_addr,
  1670. recover_curseg, recover_newaddr);
  1671. f2fs_update_data_blkaddr(dn, new_addr);
  1672. }
  1673. void f2fs_wait_on_page_writeback(struct page *page,
  1674. enum page_type type, bool ordered)
  1675. {
  1676. if (PageWriteback(page)) {
  1677. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  1678. f2fs_submit_merged_bio_cond(sbi, page->mapping->host,
  1679. 0, page->index, type, WRITE);
  1680. if (ordered)
  1681. wait_on_page_writeback(page);
  1682. else
  1683. wait_for_stable_page(page);
  1684. }
  1685. }
  1686. void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
  1687. block_t blkaddr)
  1688. {
  1689. struct page *cpage;
  1690. if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
  1691. return;
  1692. cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
  1693. if (cpage) {
  1694. f2fs_wait_on_page_writeback(cpage, DATA, true);
  1695. f2fs_put_page(cpage, 1);
  1696. }
  1697. }
  1698. static int read_compacted_summaries(struct f2fs_sb_info *sbi)
  1699. {
  1700. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  1701. struct curseg_info *seg_i;
  1702. unsigned char *kaddr;
  1703. struct page *page;
  1704. block_t start;
  1705. int i, j, offset;
  1706. start = start_sum_block(sbi);
  1707. page = get_meta_page(sbi, start++);
  1708. kaddr = (unsigned char *)page_address(page);
  1709. /* Step 1: restore nat cache */
  1710. seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1711. memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
  1712. /* Step 2: restore sit cache */
  1713. seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
  1714. memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
  1715. offset = 2 * SUM_JOURNAL_SIZE;
  1716. /* Step 3: restore summary entries */
  1717. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  1718. unsigned short blk_off;
  1719. unsigned int segno;
  1720. seg_i = CURSEG_I(sbi, i);
  1721. segno = le32_to_cpu(ckpt->cur_data_segno[i]);
  1722. blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
  1723. seg_i->next_segno = segno;
  1724. reset_curseg(sbi, i, 0);
  1725. seg_i->alloc_type = ckpt->alloc_type[i];
  1726. seg_i->next_blkoff = blk_off;
  1727. if (seg_i->alloc_type == SSR)
  1728. blk_off = sbi->blocks_per_seg;
  1729. for (j = 0; j < blk_off; j++) {
  1730. struct f2fs_summary *s;
  1731. s = (struct f2fs_summary *)(kaddr + offset);
  1732. seg_i->sum_blk->entries[j] = *s;
  1733. offset += SUMMARY_SIZE;
  1734. if (offset + SUMMARY_SIZE <= PAGE_SIZE -
  1735. SUM_FOOTER_SIZE)
  1736. continue;
  1737. f2fs_put_page(page, 1);
  1738. page = NULL;
  1739. page = get_meta_page(sbi, start++);
  1740. kaddr = (unsigned char *)page_address(page);
  1741. offset = 0;
  1742. }
  1743. }
  1744. f2fs_put_page(page, 1);
  1745. return 0;
  1746. }
  1747. static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
  1748. {
  1749. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  1750. struct f2fs_summary_block *sum;
  1751. struct curseg_info *curseg;
  1752. struct page *new;
  1753. unsigned short blk_off;
  1754. unsigned int segno = 0;
  1755. block_t blk_addr = 0;
  1756. /* get segment number and block addr */
  1757. if (IS_DATASEG(type)) {
  1758. segno = le32_to_cpu(ckpt->cur_data_segno[type]);
  1759. blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
  1760. CURSEG_HOT_DATA]);
  1761. if (__exist_node_summaries(sbi))
  1762. blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
  1763. else
  1764. blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
  1765. } else {
  1766. segno = le32_to_cpu(ckpt->cur_node_segno[type -
  1767. CURSEG_HOT_NODE]);
  1768. blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
  1769. CURSEG_HOT_NODE]);
  1770. if (__exist_node_summaries(sbi))
  1771. blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
  1772. type - CURSEG_HOT_NODE);
  1773. else
  1774. blk_addr = GET_SUM_BLOCK(sbi, segno);
  1775. }
  1776. new = get_meta_page(sbi, blk_addr);
  1777. sum = (struct f2fs_summary_block *)page_address(new);
  1778. if (IS_NODESEG(type)) {
  1779. if (__exist_node_summaries(sbi)) {
  1780. struct f2fs_summary *ns = &sum->entries[0];
  1781. int i;
  1782. for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
  1783. ns->version = 0;
  1784. ns->ofs_in_node = 0;
  1785. }
  1786. } else {
  1787. int err;
  1788. err = restore_node_summary(sbi, segno, sum);
  1789. if (err) {
  1790. f2fs_put_page(new, 1);
  1791. return err;
  1792. }
  1793. }
  1794. }
  1795. /* set uncompleted segment to curseg */
  1796. curseg = CURSEG_I(sbi, type);
  1797. mutex_lock(&curseg->curseg_mutex);
  1798. /* update journal info */
  1799. down_write(&curseg->journal_rwsem);
  1800. memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
  1801. up_write(&curseg->journal_rwsem);
  1802. memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
  1803. memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
  1804. curseg->next_segno = segno;
  1805. reset_curseg(sbi, type, 0);
  1806. curseg->alloc_type = ckpt->alloc_type[type];
  1807. curseg->next_blkoff = blk_off;
  1808. mutex_unlock(&curseg->curseg_mutex);
  1809. f2fs_put_page(new, 1);
  1810. return 0;
  1811. }
  1812. static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
  1813. {
  1814. int type = CURSEG_HOT_DATA;
  1815. int err;
  1816. if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
  1817. int npages = npages_for_summary_flush(sbi, true);
  1818. if (npages >= 2)
  1819. ra_meta_pages(sbi, start_sum_block(sbi), npages,
  1820. META_CP, true);
  1821. /* restore for compacted data summary */
  1822. if (read_compacted_summaries(sbi))
  1823. return -EINVAL;
  1824. type = CURSEG_HOT_NODE;
  1825. }
  1826. if (__exist_node_summaries(sbi))
  1827. ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
  1828. NR_CURSEG_TYPE - type, META_CP, true);
  1829. for (; type <= CURSEG_COLD_NODE; type++) {
  1830. err = read_normal_summaries(sbi, type);
  1831. if (err)
  1832. return err;
  1833. }
  1834. return 0;
  1835. }
  1836. static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
  1837. {
  1838. struct page *page;
  1839. unsigned char *kaddr;
  1840. struct f2fs_summary *summary;
  1841. struct curseg_info *seg_i;
  1842. int written_size = 0;
  1843. int i, j;
  1844. page = grab_meta_page(sbi, blkaddr++);
  1845. kaddr = (unsigned char *)page_address(page);
  1846. /* Step 1: write nat cache */
  1847. seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1848. memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
  1849. written_size += SUM_JOURNAL_SIZE;
  1850. /* Step 2: write sit cache */
  1851. seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
  1852. memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
  1853. written_size += SUM_JOURNAL_SIZE;
  1854. /* Step 3: write summary entries */
  1855. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  1856. unsigned short blkoff;
  1857. seg_i = CURSEG_I(sbi, i);
  1858. if (sbi->ckpt->alloc_type[i] == SSR)
  1859. blkoff = sbi->blocks_per_seg;
  1860. else
  1861. blkoff = curseg_blkoff(sbi, i);
  1862. for (j = 0; j < blkoff; j++) {
  1863. if (!page) {
  1864. page = grab_meta_page(sbi, blkaddr++);
  1865. kaddr = (unsigned char *)page_address(page);
  1866. written_size = 0;
  1867. }
  1868. summary = (struct f2fs_summary *)(kaddr + written_size);
  1869. *summary = seg_i->sum_blk->entries[j];
  1870. written_size += SUMMARY_SIZE;
  1871. if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
  1872. SUM_FOOTER_SIZE)
  1873. continue;
  1874. set_page_dirty(page);
  1875. f2fs_put_page(page, 1);
  1876. page = NULL;
  1877. }
  1878. }
  1879. if (page) {
  1880. set_page_dirty(page);
  1881. f2fs_put_page(page, 1);
  1882. }
  1883. }
  1884. static void write_normal_summaries(struct f2fs_sb_info *sbi,
  1885. block_t blkaddr, int type)
  1886. {
  1887. int i, end;
  1888. if (IS_DATASEG(type))
  1889. end = type + NR_CURSEG_DATA_TYPE;
  1890. else
  1891. end = type + NR_CURSEG_NODE_TYPE;
  1892. for (i = type; i < end; i++)
  1893. write_current_sum_page(sbi, i, blkaddr + (i - type));
  1894. }
  1895. void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
  1896. {
  1897. if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
  1898. write_compacted_summaries(sbi, start_blk);
  1899. else
  1900. write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
  1901. }
  1902. void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
  1903. {
  1904. write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
  1905. }
  1906. int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
  1907. unsigned int val, int alloc)
  1908. {
  1909. int i;
  1910. if (type == NAT_JOURNAL) {
  1911. for (i = 0; i < nats_in_cursum(journal); i++) {
  1912. if (le32_to_cpu(nid_in_journal(journal, i)) == val)
  1913. return i;
  1914. }
  1915. if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
  1916. return update_nats_in_cursum(journal, 1);
  1917. } else if (type == SIT_JOURNAL) {
  1918. for (i = 0; i < sits_in_cursum(journal); i++)
  1919. if (le32_to_cpu(segno_in_journal(journal, i)) == val)
  1920. return i;
  1921. if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
  1922. return update_sits_in_cursum(journal, 1);
  1923. }
  1924. return -1;
  1925. }
  1926. static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
  1927. unsigned int segno)
  1928. {
  1929. return get_meta_page(sbi, current_sit_addr(sbi, segno));
  1930. }
  1931. static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
  1932. unsigned int start)
  1933. {
  1934. struct sit_info *sit_i = SIT_I(sbi);
  1935. struct page *src_page, *dst_page;
  1936. pgoff_t src_off, dst_off;
  1937. void *src_addr, *dst_addr;
  1938. src_off = current_sit_addr(sbi, start);
  1939. dst_off = next_sit_addr(sbi, src_off);
  1940. /* get current sit block page without lock */
  1941. src_page = get_meta_page(sbi, src_off);
  1942. dst_page = grab_meta_page(sbi, dst_off);
  1943. f2fs_bug_on(sbi, PageDirty(src_page));
  1944. src_addr = page_address(src_page);
  1945. dst_addr = page_address(dst_page);
  1946. memcpy(dst_addr, src_addr, PAGE_SIZE);
  1947. set_page_dirty(dst_page);
  1948. f2fs_put_page(src_page, 1);
  1949. set_to_next_sit(sit_i, start);
  1950. return dst_page;
  1951. }
  1952. static struct sit_entry_set *grab_sit_entry_set(void)
  1953. {
  1954. struct sit_entry_set *ses =
  1955. f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
  1956. ses->entry_cnt = 0;
  1957. INIT_LIST_HEAD(&ses->set_list);
  1958. return ses;
  1959. }
  1960. static void release_sit_entry_set(struct sit_entry_set *ses)
  1961. {
  1962. list_del(&ses->set_list);
  1963. kmem_cache_free(sit_entry_set_slab, ses);
  1964. }
  1965. static void adjust_sit_entry_set(struct sit_entry_set *ses,
  1966. struct list_head *head)
  1967. {
  1968. struct sit_entry_set *next = ses;
  1969. if (list_is_last(&ses->set_list, head))
  1970. return;
  1971. list_for_each_entry_continue(next, head, set_list)
  1972. if (ses->entry_cnt <= next->entry_cnt)
  1973. break;
  1974. list_move_tail(&ses->set_list, &next->set_list);
  1975. }
  1976. static void add_sit_entry(unsigned int segno, struct list_head *head)
  1977. {
  1978. struct sit_entry_set *ses;
  1979. unsigned int start_segno = START_SEGNO(segno);
  1980. list_for_each_entry(ses, head, set_list) {
  1981. if (ses->start_segno == start_segno) {
  1982. ses->entry_cnt++;
  1983. adjust_sit_entry_set(ses, head);
  1984. return;
  1985. }
  1986. }
  1987. ses = grab_sit_entry_set();
  1988. ses->start_segno = start_segno;
  1989. ses->entry_cnt++;
  1990. list_add(&ses->set_list, head);
  1991. }
  1992. static void add_sits_in_set(struct f2fs_sb_info *sbi)
  1993. {
  1994. struct f2fs_sm_info *sm_info = SM_I(sbi);
  1995. struct list_head *set_list = &sm_info->sit_entry_set;
  1996. unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
  1997. unsigned int segno;
  1998. for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
  1999. add_sit_entry(segno, set_list);
  2000. }
  2001. static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
  2002. {
  2003. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2004. struct f2fs_journal *journal = curseg->journal;
  2005. int i;
  2006. down_write(&curseg->journal_rwsem);
  2007. for (i = 0; i < sits_in_cursum(journal); i++) {
  2008. unsigned int segno;
  2009. bool dirtied;
  2010. segno = le32_to_cpu(segno_in_journal(journal, i));
  2011. dirtied = __mark_sit_entry_dirty(sbi, segno);
  2012. if (!dirtied)
  2013. add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
  2014. }
  2015. update_sits_in_cursum(journal, -i);
  2016. up_write(&curseg->journal_rwsem);
  2017. }
  2018. /*
  2019. * CP calls this function, which flushes SIT entries including sit_journal,
  2020. * and moves prefree segs to free segs.
  2021. */
  2022. void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  2023. {
  2024. struct sit_info *sit_i = SIT_I(sbi);
  2025. unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
  2026. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2027. struct f2fs_journal *journal = curseg->journal;
  2028. struct sit_entry_set *ses, *tmp;
  2029. struct list_head *head = &SM_I(sbi)->sit_entry_set;
  2030. bool to_journal = true;
  2031. struct seg_entry *se;
  2032. mutex_lock(&sit_i->sentry_lock);
  2033. if (!sit_i->dirty_sentries)
  2034. goto out;
  2035. /*
  2036. * add and account sit entries of dirty bitmap in sit entry
  2037. * set temporarily
  2038. */
  2039. add_sits_in_set(sbi);
  2040. /*
  2041. * if there are no enough space in journal to store dirty sit
  2042. * entries, remove all entries from journal and add and account
  2043. * them in sit entry set.
  2044. */
  2045. if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
  2046. remove_sits_in_journal(sbi);
  2047. /*
  2048. * there are two steps to flush sit entries:
  2049. * #1, flush sit entries to journal in current cold data summary block.
  2050. * #2, flush sit entries to sit page.
  2051. */
  2052. list_for_each_entry_safe(ses, tmp, head, set_list) {
  2053. struct page *page = NULL;
  2054. struct f2fs_sit_block *raw_sit = NULL;
  2055. unsigned int start_segno = ses->start_segno;
  2056. unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
  2057. (unsigned long)MAIN_SEGS(sbi));
  2058. unsigned int segno = start_segno;
  2059. if (to_journal &&
  2060. !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
  2061. to_journal = false;
  2062. if (to_journal) {
  2063. down_write(&curseg->journal_rwsem);
  2064. } else {
  2065. page = get_next_sit_page(sbi, start_segno);
  2066. raw_sit = page_address(page);
  2067. }
  2068. /* flush dirty sit entries in region of current sit set */
  2069. for_each_set_bit_from(segno, bitmap, end) {
  2070. int offset, sit_offset;
  2071. se = get_seg_entry(sbi, segno);
  2072. /* add discard candidates */
  2073. if (cpc->reason != CP_DISCARD) {
  2074. cpc->trim_start = segno;
  2075. add_discard_addrs(sbi, cpc, false);
  2076. }
  2077. if (to_journal) {
  2078. offset = lookup_journal_in_cursum(journal,
  2079. SIT_JOURNAL, segno, 1);
  2080. f2fs_bug_on(sbi, offset < 0);
  2081. segno_in_journal(journal, offset) =
  2082. cpu_to_le32(segno);
  2083. seg_info_to_raw_sit(se,
  2084. &sit_in_journal(journal, offset));
  2085. } else {
  2086. sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
  2087. seg_info_to_raw_sit(se,
  2088. &raw_sit->entries[sit_offset]);
  2089. }
  2090. __clear_bit(segno, bitmap);
  2091. sit_i->dirty_sentries--;
  2092. ses->entry_cnt--;
  2093. }
  2094. if (to_journal)
  2095. up_write(&curseg->journal_rwsem);
  2096. else
  2097. f2fs_put_page(page, 1);
  2098. f2fs_bug_on(sbi, ses->entry_cnt);
  2099. release_sit_entry_set(ses);
  2100. }
  2101. f2fs_bug_on(sbi, !list_empty(head));
  2102. f2fs_bug_on(sbi, sit_i->dirty_sentries);
  2103. out:
  2104. if (cpc->reason == CP_DISCARD) {
  2105. __u64 trim_start = cpc->trim_start;
  2106. for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
  2107. add_discard_addrs(sbi, cpc, false);
  2108. cpc->trim_start = trim_start;
  2109. }
  2110. mutex_unlock(&sit_i->sentry_lock);
  2111. set_prefree_as_free_segments(sbi);
  2112. }
  2113. static int build_sit_info(struct f2fs_sb_info *sbi)
  2114. {
  2115. struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
  2116. struct sit_info *sit_i;
  2117. unsigned int sit_segs, start;
  2118. char *src_bitmap;
  2119. unsigned int bitmap_size;
  2120. /* allocate memory for SIT information */
  2121. sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
  2122. if (!sit_i)
  2123. return -ENOMEM;
  2124. SM_I(sbi)->sit_info = sit_i;
  2125. sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) *
  2126. sizeof(struct seg_entry), GFP_KERNEL);
  2127. if (!sit_i->sentries)
  2128. return -ENOMEM;
  2129. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  2130. sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
  2131. if (!sit_i->dirty_sentries_bitmap)
  2132. return -ENOMEM;
  2133. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  2134. sit_i->sentries[start].cur_valid_map
  2135. = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2136. sit_i->sentries[start].ckpt_valid_map
  2137. = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2138. if (!sit_i->sentries[start].cur_valid_map ||
  2139. !sit_i->sentries[start].ckpt_valid_map)
  2140. return -ENOMEM;
  2141. #ifdef CONFIG_F2FS_CHECK_FS
  2142. sit_i->sentries[start].cur_valid_map_mir
  2143. = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2144. if (!sit_i->sentries[start].cur_valid_map_mir)
  2145. return -ENOMEM;
  2146. #endif
  2147. if (f2fs_discard_en(sbi)) {
  2148. sit_i->sentries[start].discard_map
  2149. = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2150. if (!sit_i->sentries[start].discard_map)
  2151. return -ENOMEM;
  2152. }
  2153. }
  2154. sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2155. if (!sit_i->tmp_map)
  2156. return -ENOMEM;
  2157. if (sbi->segs_per_sec > 1) {
  2158. sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) *
  2159. sizeof(struct sec_entry), GFP_KERNEL);
  2160. if (!sit_i->sec_entries)
  2161. return -ENOMEM;
  2162. }
  2163. /* get information related with SIT */
  2164. sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
  2165. /* setup SIT bitmap from ckeckpoint pack */
  2166. bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
  2167. src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
  2168. sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
  2169. if (!sit_i->sit_bitmap)
  2170. return -ENOMEM;
  2171. #ifdef CONFIG_F2FS_CHECK_FS
  2172. sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
  2173. if (!sit_i->sit_bitmap_mir)
  2174. return -ENOMEM;
  2175. #endif
  2176. /* init SIT information */
  2177. sit_i->s_ops = &default_salloc_ops;
  2178. sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
  2179. sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
  2180. sit_i->written_valid_blocks = 0;
  2181. sit_i->bitmap_size = bitmap_size;
  2182. sit_i->dirty_sentries = 0;
  2183. sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
  2184. sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
  2185. sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
  2186. mutex_init(&sit_i->sentry_lock);
  2187. return 0;
  2188. }
  2189. static int build_free_segmap(struct f2fs_sb_info *sbi)
  2190. {
  2191. struct free_segmap_info *free_i;
  2192. unsigned int bitmap_size, sec_bitmap_size;
  2193. /* allocate memory for free segmap information */
  2194. free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
  2195. if (!free_i)
  2196. return -ENOMEM;
  2197. SM_I(sbi)->free_info = free_i;
  2198. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  2199. free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL);
  2200. if (!free_i->free_segmap)
  2201. return -ENOMEM;
  2202. sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
  2203. free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL);
  2204. if (!free_i->free_secmap)
  2205. return -ENOMEM;
  2206. /* set all segments as dirty temporarily */
  2207. memset(free_i->free_segmap, 0xff, bitmap_size);
  2208. memset(free_i->free_secmap, 0xff, sec_bitmap_size);
  2209. /* init free segmap information */
  2210. free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
  2211. free_i->free_segments = 0;
  2212. free_i->free_sections = 0;
  2213. spin_lock_init(&free_i->segmap_lock);
  2214. return 0;
  2215. }
  2216. static int build_curseg(struct f2fs_sb_info *sbi)
  2217. {
  2218. struct curseg_info *array;
  2219. int i;
  2220. array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
  2221. if (!array)
  2222. return -ENOMEM;
  2223. SM_I(sbi)->curseg_array = array;
  2224. for (i = 0; i < NR_CURSEG_TYPE; i++) {
  2225. mutex_init(&array[i].curseg_mutex);
  2226. array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL);
  2227. if (!array[i].sum_blk)
  2228. return -ENOMEM;
  2229. init_rwsem(&array[i].journal_rwsem);
  2230. array[i].journal = kzalloc(sizeof(struct f2fs_journal),
  2231. GFP_KERNEL);
  2232. if (!array[i].journal)
  2233. return -ENOMEM;
  2234. array[i].segno = NULL_SEGNO;
  2235. array[i].next_blkoff = 0;
  2236. }
  2237. return restore_curseg_summaries(sbi);
  2238. }
  2239. static void build_sit_entries(struct f2fs_sb_info *sbi)
  2240. {
  2241. struct sit_info *sit_i = SIT_I(sbi);
  2242. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2243. struct f2fs_journal *journal = curseg->journal;
  2244. struct seg_entry *se;
  2245. struct f2fs_sit_entry sit;
  2246. int sit_blk_cnt = SIT_BLK_CNT(sbi);
  2247. unsigned int i, start, end;
  2248. unsigned int readed, start_blk = 0;
  2249. do {
  2250. readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
  2251. META_SIT, true);
  2252. start = start_blk * sit_i->sents_per_block;
  2253. end = (start_blk + readed) * sit_i->sents_per_block;
  2254. for (; start < end && start < MAIN_SEGS(sbi); start++) {
  2255. struct f2fs_sit_block *sit_blk;
  2256. struct page *page;
  2257. se = &sit_i->sentries[start];
  2258. page = get_current_sit_page(sbi, start);
  2259. sit_blk = (struct f2fs_sit_block *)page_address(page);
  2260. sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
  2261. f2fs_put_page(page, 1);
  2262. check_block_count(sbi, start, &sit);
  2263. seg_info_from_raw_sit(se, &sit);
  2264. /* build discard map only one time */
  2265. if (f2fs_discard_en(sbi)) {
  2266. memcpy(se->discard_map, se->cur_valid_map,
  2267. SIT_VBLOCK_MAP_SIZE);
  2268. sbi->discard_blks += sbi->blocks_per_seg -
  2269. se->valid_blocks;
  2270. }
  2271. if (sbi->segs_per_sec > 1)
  2272. get_sec_entry(sbi, start)->valid_blocks +=
  2273. se->valid_blocks;
  2274. }
  2275. start_blk += readed;
  2276. } while (start_blk < sit_blk_cnt);
  2277. down_read(&curseg->journal_rwsem);
  2278. for (i = 0; i < sits_in_cursum(journal); i++) {
  2279. unsigned int old_valid_blocks;
  2280. start = le32_to_cpu(segno_in_journal(journal, i));
  2281. se = &sit_i->sentries[start];
  2282. sit = sit_in_journal(journal, i);
  2283. old_valid_blocks = se->valid_blocks;
  2284. check_block_count(sbi, start, &sit);
  2285. seg_info_from_raw_sit(se, &sit);
  2286. if (f2fs_discard_en(sbi)) {
  2287. memcpy(se->discard_map, se->cur_valid_map,
  2288. SIT_VBLOCK_MAP_SIZE);
  2289. sbi->discard_blks += old_valid_blocks -
  2290. se->valid_blocks;
  2291. }
  2292. if (sbi->segs_per_sec > 1)
  2293. get_sec_entry(sbi, start)->valid_blocks +=
  2294. se->valid_blocks - old_valid_blocks;
  2295. }
  2296. up_read(&curseg->journal_rwsem);
  2297. }
  2298. static void init_free_segmap(struct f2fs_sb_info *sbi)
  2299. {
  2300. unsigned int start;
  2301. int type;
  2302. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  2303. struct seg_entry *sentry = get_seg_entry(sbi, start);
  2304. if (!sentry->valid_blocks)
  2305. __set_free(sbi, start);
  2306. else
  2307. SIT_I(sbi)->written_valid_blocks +=
  2308. sentry->valid_blocks;
  2309. }
  2310. /* set use the current segments */
  2311. for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
  2312. struct curseg_info *curseg_t = CURSEG_I(sbi, type);
  2313. __set_test_and_inuse(sbi, curseg_t->segno);
  2314. }
  2315. }
  2316. static void init_dirty_segmap(struct f2fs_sb_info *sbi)
  2317. {
  2318. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2319. struct free_segmap_info *free_i = FREE_I(sbi);
  2320. unsigned int segno = 0, offset = 0;
  2321. unsigned short valid_blocks;
  2322. while (1) {
  2323. /* find dirty segment based on free segmap */
  2324. segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
  2325. if (segno >= MAIN_SEGS(sbi))
  2326. break;
  2327. offset = segno + 1;
  2328. valid_blocks = get_valid_blocks(sbi, segno, 0);
  2329. if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
  2330. continue;
  2331. if (valid_blocks > sbi->blocks_per_seg) {
  2332. f2fs_bug_on(sbi, 1);
  2333. continue;
  2334. }
  2335. mutex_lock(&dirty_i->seglist_lock);
  2336. __locate_dirty_segment(sbi, segno, DIRTY);
  2337. mutex_unlock(&dirty_i->seglist_lock);
  2338. }
  2339. }
  2340. static int init_victim_secmap(struct f2fs_sb_info *sbi)
  2341. {
  2342. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2343. unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
  2344. dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
  2345. if (!dirty_i->victim_secmap)
  2346. return -ENOMEM;
  2347. return 0;
  2348. }
  2349. static int build_dirty_segmap(struct f2fs_sb_info *sbi)
  2350. {
  2351. struct dirty_seglist_info *dirty_i;
  2352. unsigned int bitmap_size, i;
  2353. /* allocate memory for dirty segments list information */
  2354. dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
  2355. if (!dirty_i)
  2356. return -ENOMEM;
  2357. SM_I(sbi)->dirty_info = dirty_i;
  2358. mutex_init(&dirty_i->seglist_lock);
  2359. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  2360. for (i = 0; i < NR_DIRTY_TYPE; i++) {
  2361. dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
  2362. if (!dirty_i->dirty_segmap[i])
  2363. return -ENOMEM;
  2364. }
  2365. init_dirty_segmap(sbi);
  2366. return init_victim_secmap(sbi);
  2367. }
  2368. /*
  2369. * Update min, max modified time for cost-benefit GC algorithm
  2370. */
  2371. static void init_min_max_mtime(struct f2fs_sb_info *sbi)
  2372. {
  2373. struct sit_info *sit_i = SIT_I(sbi);
  2374. unsigned int segno;
  2375. mutex_lock(&sit_i->sentry_lock);
  2376. sit_i->min_mtime = LLONG_MAX;
  2377. for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
  2378. unsigned int i;
  2379. unsigned long long mtime = 0;
  2380. for (i = 0; i < sbi->segs_per_sec; i++)
  2381. mtime += get_seg_entry(sbi, segno + i)->mtime;
  2382. mtime = div_u64(mtime, sbi->segs_per_sec);
  2383. if (sit_i->min_mtime > mtime)
  2384. sit_i->min_mtime = mtime;
  2385. }
  2386. sit_i->max_mtime = get_mtime(sbi);
  2387. mutex_unlock(&sit_i->sentry_lock);
  2388. }
  2389. int build_segment_manager(struct f2fs_sb_info *sbi)
  2390. {
  2391. struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
  2392. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  2393. struct f2fs_sm_info *sm_info;
  2394. int err;
  2395. sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
  2396. if (!sm_info)
  2397. return -ENOMEM;
  2398. /* init sm info */
  2399. sbi->sm_info = sm_info;
  2400. sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
  2401. sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
  2402. sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
  2403. sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
  2404. sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
  2405. sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
  2406. sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
  2407. sm_info->rec_prefree_segments = sm_info->main_segments *
  2408. DEF_RECLAIM_PREFREE_SEGMENTS / 100;
  2409. if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
  2410. sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
  2411. if (!test_opt(sbi, LFS))
  2412. sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
  2413. sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
  2414. sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
  2415. sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
  2416. INIT_LIST_HEAD(&sm_info->sit_entry_set);
  2417. if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
  2418. err = create_flush_cmd_control(sbi);
  2419. if (err)
  2420. return err;
  2421. }
  2422. err = create_discard_cmd_control(sbi);
  2423. if (err)
  2424. return err;
  2425. err = build_sit_info(sbi);
  2426. if (err)
  2427. return err;
  2428. err = build_free_segmap(sbi);
  2429. if (err)
  2430. return err;
  2431. err = build_curseg(sbi);
  2432. if (err)
  2433. return err;
  2434. /* reinit free segmap based on SIT */
  2435. build_sit_entries(sbi);
  2436. init_free_segmap(sbi);
  2437. err = build_dirty_segmap(sbi);
  2438. if (err)
  2439. return err;
  2440. init_min_max_mtime(sbi);
  2441. return 0;
  2442. }
  2443. static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
  2444. enum dirty_type dirty_type)
  2445. {
  2446. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2447. mutex_lock(&dirty_i->seglist_lock);
  2448. kvfree(dirty_i->dirty_segmap[dirty_type]);
  2449. dirty_i->nr_dirty[dirty_type] = 0;
  2450. mutex_unlock(&dirty_i->seglist_lock);
  2451. }
  2452. static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
  2453. {
  2454. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2455. kvfree(dirty_i->victim_secmap);
  2456. }
  2457. static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
  2458. {
  2459. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2460. int i;
  2461. if (!dirty_i)
  2462. return;
  2463. /* discard pre-free/dirty segments list */
  2464. for (i = 0; i < NR_DIRTY_TYPE; i++)
  2465. discard_dirty_segmap(sbi, i);
  2466. destroy_victim_secmap(sbi);
  2467. SM_I(sbi)->dirty_info = NULL;
  2468. kfree(dirty_i);
  2469. }
  2470. static void destroy_curseg(struct f2fs_sb_info *sbi)
  2471. {
  2472. struct curseg_info *array = SM_I(sbi)->curseg_array;
  2473. int i;
  2474. if (!array)
  2475. return;
  2476. SM_I(sbi)->curseg_array = NULL;
  2477. for (i = 0; i < NR_CURSEG_TYPE; i++) {
  2478. kfree(array[i].sum_blk);
  2479. kfree(array[i].journal);
  2480. }
  2481. kfree(array);
  2482. }
  2483. static void destroy_free_segmap(struct f2fs_sb_info *sbi)
  2484. {
  2485. struct free_segmap_info *free_i = SM_I(sbi)->free_info;
  2486. if (!free_i)
  2487. return;
  2488. SM_I(sbi)->free_info = NULL;
  2489. kvfree(free_i->free_segmap);
  2490. kvfree(free_i->free_secmap);
  2491. kfree(free_i);
  2492. }
  2493. static void destroy_sit_info(struct f2fs_sb_info *sbi)
  2494. {
  2495. struct sit_info *sit_i = SIT_I(sbi);
  2496. unsigned int start;
  2497. if (!sit_i)
  2498. return;
  2499. if (sit_i->sentries) {
  2500. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  2501. kfree(sit_i->sentries[start].cur_valid_map);
  2502. #ifdef CONFIG_F2FS_CHECK_FS
  2503. kfree(sit_i->sentries[start].cur_valid_map_mir);
  2504. #endif
  2505. kfree(sit_i->sentries[start].ckpt_valid_map);
  2506. kfree(sit_i->sentries[start].discard_map);
  2507. }
  2508. }
  2509. kfree(sit_i->tmp_map);
  2510. kvfree(sit_i->sentries);
  2511. kvfree(sit_i->sec_entries);
  2512. kvfree(sit_i->dirty_sentries_bitmap);
  2513. SM_I(sbi)->sit_info = NULL;
  2514. kfree(sit_i->sit_bitmap);
  2515. #ifdef CONFIG_F2FS_CHECK_FS
  2516. kfree(sit_i->sit_bitmap_mir);
  2517. #endif
  2518. kfree(sit_i);
  2519. }
  2520. void destroy_segment_manager(struct f2fs_sb_info *sbi)
  2521. {
  2522. struct f2fs_sm_info *sm_info = SM_I(sbi);
  2523. if (!sm_info)
  2524. return;
  2525. destroy_flush_cmd_control(sbi, true);
  2526. destroy_discard_cmd_control(sbi, true);
  2527. destroy_dirty_segmap(sbi);
  2528. destroy_curseg(sbi);
  2529. destroy_free_segmap(sbi);
  2530. destroy_sit_info(sbi);
  2531. sbi->sm_info = NULL;
  2532. kfree(sm_info);
  2533. }
  2534. int __init create_segment_manager_caches(void)
  2535. {
  2536. discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
  2537. sizeof(struct discard_entry));
  2538. if (!discard_entry_slab)
  2539. goto fail;
  2540. discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
  2541. sizeof(struct discard_cmd));
  2542. if (!discard_cmd_slab)
  2543. goto destroy_discard_entry;
  2544. sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
  2545. sizeof(struct sit_entry_set));
  2546. if (!sit_entry_set_slab)
  2547. goto destroy_discard_cmd;
  2548. inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
  2549. sizeof(struct inmem_pages));
  2550. if (!inmem_entry_slab)
  2551. goto destroy_sit_entry_set;
  2552. return 0;
  2553. destroy_sit_entry_set:
  2554. kmem_cache_destroy(sit_entry_set_slab);
  2555. destroy_discard_cmd:
  2556. kmem_cache_destroy(discard_cmd_slab);
  2557. destroy_discard_entry:
  2558. kmem_cache_destroy(discard_entry_slab);
  2559. fail:
  2560. return -ENOMEM;
  2561. }
  2562. void destroy_segment_manager_caches(void)
  2563. {
  2564. kmem_cache_destroy(sit_entry_set_slab);
  2565. kmem_cache_destroy(discard_cmd_slab);
  2566. kmem_cache_destroy(discard_entry_slab);
  2567. kmem_cache_destroy(inmem_entry_slab);
  2568. }