update.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937
  1. /*
  2. * Read-Copy Update mechanism for mutual exclusion
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, you can access it online at
  16. * http://www.gnu.org/licenses/gpl-2.0.html.
  17. *
  18. * Copyright IBM Corporation, 2001
  19. *
  20. * Authors: Dipankar Sarma <dipankar@in.ibm.com>
  21. * Manfred Spraul <manfred@colorfullife.com>
  22. *
  23. * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  24. * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  25. * Papers:
  26. * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
  27. * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
  28. *
  29. * For detailed explanation of Read-Copy Update mechanism see -
  30. * http://lse.sourceforge.net/locking/rcupdate.html
  31. *
  32. */
  33. #include <linux/types.h>
  34. #include <linux/kernel.h>
  35. #include <linux/init.h>
  36. #include <linux/spinlock.h>
  37. #include <linux/smp.h>
  38. #include <linux/interrupt.h>
  39. #include <linux/sched/signal.h>
  40. #include <linux/sched/debug.h>
  41. #include <linux/atomic.h>
  42. #include <linux/bitops.h>
  43. #include <linux/percpu.h>
  44. #include <linux/notifier.h>
  45. #include <linux/cpu.h>
  46. #include <linux/mutex.h>
  47. #include <linux/export.h>
  48. #include <linux/hardirq.h>
  49. #include <linux/delay.h>
  50. #include <linux/moduleparam.h>
  51. #include <linux/kthread.h>
  52. #include <linux/tick.h>
  53. #include <linux/rcupdate_wait.h>
  54. #define CREATE_TRACE_POINTS
  55. #include "rcu.h"
  56. #ifdef MODULE_PARAM_PREFIX
  57. #undef MODULE_PARAM_PREFIX
  58. #endif
  59. #define MODULE_PARAM_PREFIX "rcupdate."
  60. #ifndef CONFIG_TINY_RCU
  61. module_param(rcu_expedited, int, 0);
  62. module_param(rcu_normal, int, 0);
  63. static int rcu_normal_after_boot;
  64. module_param(rcu_normal_after_boot, int, 0);
  65. #endif /* #ifndef CONFIG_TINY_RCU */
  66. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  67. /**
  68. * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
  69. *
  70. * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
  71. * RCU-sched read-side critical section. In absence of
  72. * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
  73. * critical section unless it can prove otherwise. Note that disabling
  74. * of preemption (including disabling irqs) counts as an RCU-sched
  75. * read-side critical section. This is useful for debug checks in functions
  76. * that required that they be called within an RCU-sched read-side
  77. * critical section.
  78. *
  79. * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
  80. * and while lockdep is disabled.
  81. *
  82. * Note that if the CPU is in the idle loop from an RCU point of
  83. * view (ie: that we are in the section between rcu_idle_enter() and
  84. * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
  85. * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs
  86. * that are in such a section, considering these as in extended quiescent
  87. * state, so such a CPU is effectively never in an RCU read-side critical
  88. * section regardless of what RCU primitives it invokes. This state of
  89. * affairs is required --- we need to keep an RCU-free window in idle
  90. * where the CPU may possibly enter into low power mode. This way we can
  91. * notice an extended quiescent state to other CPUs that started a grace
  92. * period. Otherwise we would delay any grace period as long as we run in
  93. * the idle task.
  94. *
  95. * Similarly, we avoid claiming an SRCU read lock held if the current
  96. * CPU is offline.
  97. */
  98. int rcu_read_lock_sched_held(void)
  99. {
  100. int lockdep_opinion = 0;
  101. if (!debug_lockdep_rcu_enabled())
  102. return 1;
  103. if (!rcu_is_watching())
  104. return 0;
  105. if (!rcu_lockdep_current_cpu_online())
  106. return 0;
  107. if (debug_locks)
  108. lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
  109. return lockdep_opinion || !preemptible();
  110. }
  111. EXPORT_SYMBOL(rcu_read_lock_sched_held);
  112. #endif
  113. #ifndef CONFIG_TINY_RCU
  114. /*
  115. * Should expedited grace-period primitives always fall back to their
  116. * non-expedited counterparts? Intended for use within RCU. Note
  117. * that if the user specifies both rcu_expedited and rcu_normal, then
  118. * rcu_normal wins. (Except during the time period during boot from
  119. * when the first task is spawned until the rcu_set_runtime_mode()
  120. * core_initcall() is invoked, at which point everything is expedited.)
  121. */
  122. bool rcu_gp_is_normal(void)
  123. {
  124. return READ_ONCE(rcu_normal) &&
  125. rcu_scheduler_active != RCU_SCHEDULER_INIT;
  126. }
  127. EXPORT_SYMBOL_GPL(rcu_gp_is_normal);
  128. static atomic_t rcu_expedited_nesting = ATOMIC_INIT(1);
  129. /*
  130. * Should normal grace-period primitives be expedited? Intended for
  131. * use within RCU. Note that this function takes the rcu_expedited
  132. * sysfs/boot variable and rcu_scheduler_active into account as well
  133. * as the rcu_expedite_gp() nesting. So looping on rcu_unexpedite_gp()
  134. * until rcu_gp_is_expedited() returns false is a -really- bad idea.
  135. */
  136. bool rcu_gp_is_expedited(void)
  137. {
  138. return rcu_expedited || atomic_read(&rcu_expedited_nesting) ||
  139. rcu_scheduler_active == RCU_SCHEDULER_INIT;
  140. }
  141. EXPORT_SYMBOL_GPL(rcu_gp_is_expedited);
  142. /**
  143. * rcu_expedite_gp - Expedite future RCU grace periods
  144. *
  145. * After a call to this function, future calls to synchronize_rcu() and
  146. * friends act as the corresponding synchronize_rcu_expedited() function
  147. * had instead been called.
  148. */
  149. void rcu_expedite_gp(void)
  150. {
  151. atomic_inc(&rcu_expedited_nesting);
  152. }
  153. EXPORT_SYMBOL_GPL(rcu_expedite_gp);
  154. /**
  155. * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation
  156. *
  157. * Undo a prior call to rcu_expedite_gp(). If all prior calls to
  158. * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(),
  159. * and if the rcu_expedited sysfs/boot parameter is not set, then all
  160. * subsequent calls to synchronize_rcu() and friends will return to
  161. * their normal non-expedited behavior.
  162. */
  163. void rcu_unexpedite_gp(void)
  164. {
  165. atomic_dec(&rcu_expedited_nesting);
  166. }
  167. EXPORT_SYMBOL_GPL(rcu_unexpedite_gp);
  168. /*
  169. * Inform RCU of the end of the in-kernel boot sequence.
  170. */
  171. void rcu_end_inkernel_boot(void)
  172. {
  173. rcu_unexpedite_gp();
  174. if (rcu_normal_after_boot)
  175. WRITE_ONCE(rcu_normal, 1);
  176. }
  177. #endif /* #ifndef CONFIG_TINY_RCU */
  178. /*
  179. * Test each non-SRCU synchronous grace-period wait API. This is
  180. * useful just after a change in mode for these primitives, and
  181. * during early boot.
  182. */
  183. void rcu_test_sync_prims(void)
  184. {
  185. if (!IS_ENABLED(CONFIG_PROVE_RCU))
  186. return;
  187. synchronize_rcu();
  188. synchronize_rcu_bh();
  189. synchronize_sched();
  190. synchronize_rcu_expedited();
  191. synchronize_rcu_bh_expedited();
  192. synchronize_sched_expedited();
  193. }
  194. #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU)
  195. /*
  196. * Switch to run-time mode once RCU has fully initialized.
  197. */
  198. static int __init rcu_set_runtime_mode(void)
  199. {
  200. rcu_test_sync_prims();
  201. rcu_scheduler_active = RCU_SCHEDULER_RUNNING;
  202. rcu_test_sync_prims();
  203. return 0;
  204. }
  205. core_initcall(rcu_set_runtime_mode);
  206. #endif /* #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU) */
  207. #ifdef CONFIG_PREEMPT_RCU
  208. /*
  209. * Preemptible RCU implementation for rcu_read_lock().
  210. * Just increment ->rcu_read_lock_nesting, shared state will be updated
  211. * if we block.
  212. */
  213. void __rcu_read_lock(void)
  214. {
  215. current->rcu_read_lock_nesting++;
  216. barrier(); /* critical section after entry code. */
  217. }
  218. EXPORT_SYMBOL_GPL(__rcu_read_lock);
  219. /*
  220. * Preemptible RCU implementation for rcu_read_unlock().
  221. * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
  222. * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
  223. * invoke rcu_read_unlock_special() to clean up after a context switch
  224. * in an RCU read-side critical section and other special cases.
  225. */
  226. void __rcu_read_unlock(void)
  227. {
  228. struct task_struct *t = current;
  229. if (t->rcu_read_lock_nesting != 1) {
  230. --t->rcu_read_lock_nesting;
  231. } else {
  232. barrier(); /* critical section before exit code. */
  233. t->rcu_read_lock_nesting = INT_MIN;
  234. barrier(); /* assign before ->rcu_read_unlock_special load */
  235. if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
  236. rcu_read_unlock_special(t);
  237. barrier(); /* ->rcu_read_unlock_special load before assign */
  238. t->rcu_read_lock_nesting = 0;
  239. }
  240. #ifdef CONFIG_PROVE_LOCKING
  241. {
  242. int rrln = READ_ONCE(t->rcu_read_lock_nesting);
  243. WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
  244. }
  245. #endif /* #ifdef CONFIG_PROVE_LOCKING */
  246. }
  247. EXPORT_SYMBOL_GPL(__rcu_read_unlock);
  248. #endif /* #ifdef CONFIG_PREEMPT_RCU */
  249. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  250. static struct lock_class_key rcu_lock_key;
  251. struct lockdep_map rcu_lock_map =
  252. STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
  253. EXPORT_SYMBOL_GPL(rcu_lock_map);
  254. static struct lock_class_key rcu_bh_lock_key;
  255. struct lockdep_map rcu_bh_lock_map =
  256. STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
  257. EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
  258. static struct lock_class_key rcu_sched_lock_key;
  259. struct lockdep_map rcu_sched_lock_map =
  260. STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
  261. EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
  262. static struct lock_class_key rcu_callback_key;
  263. struct lockdep_map rcu_callback_map =
  264. STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
  265. EXPORT_SYMBOL_GPL(rcu_callback_map);
  266. int notrace debug_lockdep_rcu_enabled(void)
  267. {
  268. return rcu_scheduler_active != RCU_SCHEDULER_INACTIVE && debug_locks &&
  269. current->lockdep_recursion == 0;
  270. }
  271. EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
  272. /**
  273. * rcu_read_lock_held() - might we be in RCU read-side critical section?
  274. *
  275. * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
  276. * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC,
  277. * this assumes we are in an RCU read-side critical section unless it can
  278. * prove otherwise. This is useful for debug checks in functions that
  279. * require that they be called within an RCU read-side critical section.
  280. *
  281. * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
  282. * and while lockdep is disabled.
  283. *
  284. * Note that rcu_read_lock() and the matching rcu_read_unlock() must
  285. * occur in the same context, for example, it is illegal to invoke
  286. * rcu_read_unlock() in process context if the matching rcu_read_lock()
  287. * was invoked from within an irq handler.
  288. *
  289. * Note that rcu_read_lock() is disallowed if the CPU is either idle or
  290. * offline from an RCU perspective, so check for those as well.
  291. */
  292. int rcu_read_lock_held(void)
  293. {
  294. if (!debug_lockdep_rcu_enabled())
  295. return 1;
  296. if (!rcu_is_watching())
  297. return 0;
  298. if (!rcu_lockdep_current_cpu_online())
  299. return 0;
  300. return lock_is_held(&rcu_lock_map);
  301. }
  302. EXPORT_SYMBOL_GPL(rcu_read_lock_held);
  303. /**
  304. * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
  305. *
  306. * Check for bottom half being disabled, which covers both the
  307. * CONFIG_PROVE_RCU and not cases. Note that if someone uses
  308. * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
  309. * will show the situation. This is useful for debug checks in functions
  310. * that require that they be called within an RCU read-side critical
  311. * section.
  312. *
  313. * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
  314. *
  315. * Note that rcu_read_lock() is disallowed if the CPU is either idle or
  316. * offline from an RCU perspective, so check for those as well.
  317. */
  318. int rcu_read_lock_bh_held(void)
  319. {
  320. if (!debug_lockdep_rcu_enabled())
  321. return 1;
  322. if (!rcu_is_watching())
  323. return 0;
  324. if (!rcu_lockdep_current_cpu_online())
  325. return 0;
  326. return in_softirq() || irqs_disabled();
  327. }
  328. EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
  329. #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
  330. /**
  331. * wakeme_after_rcu() - Callback function to awaken a task after grace period
  332. * @head: Pointer to rcu_head member within rcu_synchronize structure
  333. *
  334. * Awaken the corresponding task now that a grace period has elapsed.
  335. */
  336. void wakeme_after_rcu(struct rcu_head *head)
  337. {
  338. struct rcu_synchronize *rcu;
  339. rcu = container_of(head, struct rcu_synchronize, head);
  340. complete(&rcu->completion);
  341. }
  342. EXPORT_SYMBOL_GPL(wakeme_after_rcu);
  343. void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
  344. struct rcu_synchronize *rs_array)
  345. {
  346. int i;
  347. /* Initialize and register callbacks for each flavor specified. */
  348. for (i = 0; i < n; i++) {
  349. if (checktiny &&
  350. (crcu_array[i] == call_rcu ||
  351. crcu_array[i] == call_rcu_bh)) {
  352. might_sleep();
  353. continue;
  354. }
  355. init_rcu_head_on_stack(&rs_array[i].head);
  356. init_completion(&rs_array[i].completion);
  357. (crcu_array[i])(&rs_array[i].head, wakeme_after_rcu);
  358. }
  359. /* Wait for all callbacks to be invoked. */
  360. for (i = 0; i < n; i++) {
  361. if (checktiny &&
  362. (crcu_array[i] == call_rcu ||
  363. crcu_array[i] == call_rcu_bh))
  364. continue;
  365. wait_for_completion(&rs_array[i].completion);
  366. destroy_rcu_head_on_stack(&rs_array[i].head);
  367. }
  368. }
  369. EXPORT_SYMBOL_GPL(__wait_rcu_gp);
  370. #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
  371. void init_rcu_head(struct rcu_head *head)
  372. {
  373. debug_object_init(head, &rcuhead_debug_descr);
  374. }
  375. void destroy_rcu_head(struct rcu_head *head)
  376. {
  377. debug_object_free(head, &rcuhead_debug_descr);
  378. }
  379. static bool rcuhead_is_static_object(void *addr)
  380. {
  381. return true;
  382. }
  383. /**
  384. * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
  385. * @head: pointer to rcu_head structure to be initialized
  386. *
  387. * This function informs debugobjects of a new rcu_head structure that
  388. * has been allocated as an auto variable on the stack. This function
  389. * is not required for rcu_head structures that are statically defined or
  390. * that are dynamically allocated on the heap. This function has no
  391. * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
  392. */
  393. void init_rcu_head_on_stack(struct rcu_head *head)
  394. {
  395. debug_object_init_on_stack(head, &rcuhead_debug_descr);
  396. }
  397. EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
  398. /**
  399. * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
  400. * @head: pointer to rcu_head structure to be initialized
  401. *
  402. * This function informs debugobjects that an on-stack rcu_head structure
  403. * is about to go out of scope. As with init_rcu_head_on_stack(), this
  404. * function is not required for rcu_head structures that are statically
  405. * defined or that are dynamically allocated on the heap. Also as with
  406. * init_rcu_head_on_stack(), this function has no effect for
  407. * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
  408. */
  409. void destroy_rcu_head_on_stack(struct rcu_head *head)
  410. {
  411. debug_object_free(head, &rcuhead_debug_descr);
  412. }
  413. EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
  414. struct debug_obj_descr rcuhead_debug_descr = {
  415. .name = "rcu_head",
  416. .is_static_object = rcuhead_is_static_object,
  417. };
  418. EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
  419. #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
  420. #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
  421. void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
  422. unsigned long secs,
  423. unsigned long c_old, unsigned long c)
  424. {
  425. trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
  426. }
  427. EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
  428. #else
  429. #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
  430. do { } while (0)
  431. #endif
  432. #ifdef CONFIG_RCU_STALL_COMMON
  433. #ifdef CONFIG_PROVE_RCU
  434. #define RCU_STALL_DELAY_DELTA (5 * HZ)
  435. #else
  436. #define RCU_STALL_DELAY_DELTA 0
  437. #endif
  438. int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
  439. static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
  440. module_param(rcu_cpu_stall_suppress, int, 0644);
  441. module_param(rcu_cpu_stall_timeout, int, 0644);
  442. int rcu_jiffies_till_stall_check(void)
  443. {
  444. int till_stall_check = READ_ONCE(rcu_cpu_stall_timeout);
  445. /*
  446. * Limit check must be consistent with the Kconfig limits
  447. * for CONFIG_RCU_CPU_STALL_TIMEOUT.
  448. */
  449. if (till_stall_check < 3) {
  450. WRITE_ONCE(rcu_cpu_stall_timeout, 3);
  451. till_stall_check = 3;
  452. } else if (till_stall_check > 300) {
  453. WRITE_ONCE(rcu_cpu_stall_timeout, 300);
  454. till_stall_check = 300;
  455. }
  456. return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
  457. }
  458. void rcu_sysrq_start(void)
  459. {
  460. if (!rcu_cpu_stall_suppress)
  461. rcu_cpu_stall_suppress = 2;
  462. }
  463. void rcu_sysrq_end(void)
  464. {
  465. if (rcu_cpu_stall_suppress == 2)
  466. rcu_cpu_stall_suppress = 0;
  467. }
  468. static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
  469. {
  470. rcu_cpu_stall_suppress = 1;
  471. return NOTIFY_DONE;
  472. }
  473. static struct notifier_block rcu_panic_block = {
  474. .notifier_call = rcu_panic,
  475. };
  476. static int __init check_cpu_stall_init(void)
  477. {
  478. atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
  479. return 0;
  480. }
  481. early_initcall(check_cpu_stall_init);
  482. #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
  483. #ifdef CONFIG_TASKS_RCU
  484. /*
  485. * Simple variant of RCU whose quiescent states are voluntary context switch,
  486. * user-space execution, and idle. As such, grace periods can take one good
  487. * long time. There are no read-side primitives similar to rcu_read_lock()
  488. * and rcu_read_unlock() because this implementation is intended to get
  489. * the system into a safe state for some of the manipulations involved in
  490. * tracing and the like. Finally, this implementation does not support
  491. * high call_rcu_tasks() rates from multiple CPUs. If this is required,
  492. * per-CPU callback lists will be needed.
  493. */
  494. /* Global list of callbacks and associated lock. */
  495. static struct rcu_head *rcu_tasks_cbs_head;
  496. static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
  497. static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
  498. static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
  499. /* Track exiting tasks in order to allow them to be waited for. */
  500. DEFINE_SRCU(tasks_rcu_exit_srcu);
  501. /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */
  502. static int rcu_task_stall_timeout __read_mostly = HZ * 60 * 10;
  503. module_param(rcu_task_stall_timeout, int, 0644);
  504. static void rcu_spawn_tasks_kthread(void);
  505. static struct task_struct *rcu_tasks_kthread_ptr;
  506. /*
  507. * Post an RCU-tasks callback. First call must be from process context
  508. * after the scheduler if fully operational.
  509. */
  510. void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
  511. {
  512. unsigned long flags;
  513. bool needwake;
  514. bool havetask = READ_ONCE(rcu_tasks_kthread_ptr);
  515. rhp->next = NULL;
  516. rhp->func = func;
  517. raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
  518. needwake = !rcu_tasks_cbs_head;
  519. *rcu_tasks_cbs_tail = rhp;
  520. rcu_tasks_cbs_tail = &rhp->next;
  521. raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
  522. /* We can't create the thread unless interrupts are enabled. */
  523. if ((needwake && havetask) ||
  524. (!havetask && !irqs_disabled_flags(flags))) {
  525. rcu_spawn_tasks_kthread();
  526. wake_up(&rcu_tasks_cbs_wq);
  527. }
  528. }
  529. EXPORT_SYMBOL_GPL(call_rcu_tasks);
  530. /**
  531. * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
  532. *
  533. * Control will return to the caller some time after a full rcu-tasks
  534. * grace period has elapsed, in other words after all currently
  535. * executing rcu-tasks read-side critical sections have elapsed. These
  536. * read-side critical sections are delimited by calls to schedule(),
  537. * cond_resched_rcu_qs(), idle execution, userspace execution, calls
  538. * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
  539. *
  540. * This is a very specialized primitive, intended only for a few uses in
  541. * tracing and other situations requiring manipulation of function
  542. * preambles and profiling hooks. The synchronize_rcu_tasks() function
  543. * is not (yet) intended for heavy use from multiple CPUs.
  544. *
  545. * Note that this guarantee implies further memory-ordering guarantees.
  546. * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
  547. * each CPU is guaranteed to have executed a full memory barrier since the
  548. * end of its last RCU-tasks read-side critical section whose beginning
  549. * preceded the call to synchronize_rcu_tasks(). In addition, each CPU
  550. * having an RCU-tasks read-side critical section that extends beyond
  551. * the return from synchronize_rcu_tasks() is guaranteed to have executed
  552. * a full memory barrier after the beginning of synchronize_rcu_tasks()
  553. * and before the beginning of that RCU-tasks read-side critical section.
  554. * Note that these guarantees include CPUs that are offline, idle, or
  555. * executing in user mode, as well as CPUs that are executing in the kernel.
  556. *
  557. * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
  558. * to its caller on CPU B, then both CPU A and CPU B are guaranteed
  559. * to have executed a full memory barrier during the execution of
  560. * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
  561. * (but again only if the system has more than one CPU).
  562. */
  563. void synchronize_rcu_tasks(void)
  564. {
  565. /* Complain if the scheduler has not started. */
  566. RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
  567. "synchronize_rcu_tasks called too soon");
  568. /* Wait for the grace period. */
  569. wait_rcu_gp(call_rcu_tasks);
  570. }
  571. EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
  572. /**
  573. * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
  574. *
  575. * Although the current implementation is guaranteed to wait, it is not
  576. * obligated to, for example, if there are no pending callbacks.
  577. */
  578. void rcu_barrier_tasks(void)
  579. {
  580. /* There is only one callback queue, so this is easy. ;-) */
  581. synchronize_rcu_tasks();
  582. }
  583. EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
  584. /* See if tasks are still holding out, complain if so. */
  585. static void check_holdout_task(struct task_struct *t,
  586. bool needreport, bool *firstreport)
  587. {
  588. int cpu;
  589. if (!READ_ONCE(t->rcu_tasks_holdout) ||
  590. t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
  591. !READ_ONCE(t->on_rq) ||
  592. (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
  593. !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
  594. WRITE_ONCE(t->rcu_tasks_holdout, false);
  595. list_del_init(&t->rcu_tasks_holdout_list);
  596. put_task_struct(t);
  597. return;
  598. }
  599. rcu_request_urgent_qs_task(t);
  600. if (!needreport)
  601. return;
  602. if (*firstreport) {
  603. pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
  604. *firstreport = false;
  605. }
  606. cpu = task_cpu(t);
  607. pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
  608. t, ".I"[is_idle_task(t)],
  609. "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
  610. t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
  611. t->rcu_tasks_idle_cpu, cpu);
  612. sched_show_task(t);
  613. }
  614. /* RCU-tasks kthread that detects grace periods and invokes callbacks. */
  615. static int __noreturn rcu_tasks_kthread(void *arg)
  616. {
  617. unsigned long flags;
  618. struct task_struct *g, *t;
  619. unsigned long lastreport;
  620. struct rcu_head *list;
  621. struct rcu_head *next;
  622. LIST_HEAD(rcu_tasks_holdouts);
  623. /* Run on housekeeping CPUs by default. Sysadm can move if desired. */
  624. housekeeping_affine(current);
  625. /*
  626. * Each pass through the following loop makes one check for
  627. * newly arrived callbacks, and, if there are some, waits for
  628. * one RCU-tasks grace period and then invokes the callbacks.
  629. * This loop is terminated by the system going down. ;-)
  630. */
  631. for (;;) {
  632. /* Pick up any new callbacks. */
  633. raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
  634. list = rcu_tasks_cbs_head;
  635. rcu_tasks_cbs_head = NULL;
  636. rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
  637. raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
  638. /* If there were none, wait a bit and start over. */
  639. if (!list) {
  640. wait_event_interruptible(rcu_tasks_cbs_wq,
  641. rcu_tasks_cbs_head);
  642. if (!rcu_tasks_cbs_head) {
  643. WARN_ON(signal_pending(current));
  644. schedule_timeout_interruptible(HZ/10);
  645. }
  646. continue;
  647. }
  648. /*
  649. * Wait for all pre-existing t->on_rq and t->nvcsw
  650. * transitions to complete. Invoking synchronize_sched()
  651. * suffices because all these transitions occur with
  652. * interrupts disabled. Without this synchronize_sched(),
  653. * a read-side critical section that started before the
  654. * grace period might be incorrectly seen as having started
  655. * after the grace period.
  656. *
  657. * This synchronize_sched() also dispenses with the
  658. * need for a memory barrier on the first store to
  659. * ->rcu_tasks_holdout, as it forces the store to happen
  660. * after the beginning of the grace period.
  661. */
  662. synchronize_sched();
  663. /*
  664. * There were callbacks, so we need to wait for an
  665. * RCU-tasks grace period. Start off by scanning
  666. * the task list for tasks that are not already
  667. * voluntarily blocked. Mark these tasks and make
  668. * a list of them in rcu_tasks_holdouts.
  669. */
  670. rcu_read_lock();
  671. for_each_process_thread(g, t) {
  672. if (t != current && READ_ONCE(t->on_rq) &&
  673. !is_idle_task(t)) {
  674. get_task_struct(t);
  675. t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
  676. WRITE_ONCE(t->rcu_tasks_holdout, true);
  677. list_add(&t->rcu_tasks_holdout_list,
  678. &rcu_tasks_holdouts);
  679. }
  680. }
  681. rcu_read_unlock();
  682. /*
  683. * Wait for tasks that are in the process of exiting.
  684. * This does only part of the job, ensuring that all
  685. * tasks that were previously exiting reach the point
  686. * where they have disabled preemption, allowing the
  687. * later synchronize_sched() to finish the job.
  688. */
  689. synchronize_srcu(&tasks_rcu_exit_srcu);
  690. /*
  691. * Each pass through the following loop scans the list
  692. * of holdout tasks, removing any that are no longer
  693. * holdouts. When the list is empty, we are done.
  694. */
  695. lastreport = jiffies;
  696. while (!list_empty(&rcu_tasks_holdouts)) {
  697. bool firstreport;
  698. bool needreport;
  699. int rtst;
  700. struct task_struct *t1;
  701. schedule_timeout_interruptible(HZ);
  702. rtst = READ_ONCE(rcu_task_stall_timeout);
  703. needreport = rtst > 0 &&
  704. time_after(jiffies, lastreport + rtst);
  705. if (needreport)
  706. lastreport = jiffies;
  707. firstreport = true;
  708. WARN_ON(signal_pending(current));
  709. list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
  710. rcu_tasks_holdout_list) {
  711. check_holdout_task(t, needreport, &firstreport);
  712. cond_resched();
  713. }
  714. }
  715. /*
  716. * Because ->on_rq and ->nvcsw are not guaranteed
  717. * to have a full memory barriers prior to them in the
  718. * schedule() path, memory reordering on other CPUs could
  719. * cause their RCU-tasks read-side critical sections to
  720. * extend past the end of the grace period. However,
  721. * because these ->nvcsw updates are carried out with
  722. * interrupts disabled, we can use synchronize_sched()
  723. * to force the needed ordering on all such CPUs.
  724. *
  725. * This synchronize_sched() also confines all
  726. * ->rcu_tasks_holdout accesses to be within the grace
  727. * period, avoiding the need for memory barriers for
  728. * ->rcu_tasks_holdout accesses.
  729. *
  730. * In addition, this synchronize_sched() waits for exiting
  731. * tasks to complete their final preempt_disable() region
  732. * of execution, cleaning up after the synchronize_srcu()
  733. * above.
  734. */
  735. synchronize_sched();
  736. /* Invoke the callbacks. */
  737. while (list) {
  738. next = list->next;
  739. local_bh_disable();
  740. list->func(list);
  741. local_bh_enable();
  742. list = next;
  743. cond_resched();
  744. }
  745. schedule_timeout_uninterruptible(HZ/10);
  746. }
  747. }
  748. /* Spawn rcu_tasks_kthread() at first call to call_rcu_tasks(). */
  749. static void rcu_spawn_tasks_kthread(void)
  750. {
  751. static DEFINE_MUTEX(rcu_tasks_kthread_mutex);
  752. struct task_struct *t;
  753. if (READ_ONCE(rcu_tasks_kthread_ptr)) {
  754. smp_mb(); /* Ensure caller sees full kthread. */
  755. return;
  756. }
  757. mutex_lock(&rcu_tasks_kthread_mutex);
  758. if (rcu_tasks_kthread_ptr) {
  759. mutex_unlock(&rcu_tasks_kthread_mutex);
  760. return;
  761. }
  762. t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
  763. BUG_ON(IS_ERR(t));
  764. smp_mb(); /* Ensure others see full kthread. */
  765. WRITE_ONCE(rcu_tasks_kthread_ptr, t);
  766. mutex_unlock(&rcu_tasks_kthread_mutex);
  767. }
  768. #endif /* #ifdef CONFIG_TASKS_RCU */
  769. #ifdef CONFIG_PROVE_RCU
  770. /*
  771. * Early boot self test parameters, one for each flavor
  772. */
  773. static bool rcu_self_test;
  774. static bool rcu_self_test_bh;
  775. static bool rcu_self_test_sched;
  776. module_param(rcu_self_test, bool, 0444);
  777. module_param(rcu_self_test_bh, bool, 0444);
  778. module_param(rcu_self_test_sched, bool, 0444);
  779. static int rcu_self_test_counter;
  780. static void test_callback(struct rcu_head *r)
  781. {
  782. rcu_self_test_counter++;
  783. pr_info("RCU test callback executed %d\n", rcu_self_test_counter);
  784. }
  785. static void early_boot_test_call_rcu(void)
  786. {
  787. static struct rcu_head head;
  788. call_rcu(&head, test_callback);
  789. }
  790. static void early_boot_test_call_rcu_bh(void)
  791. {
  792. static struct rcu_head head;
  793. call_rcu_bh(&head, test_callback);
  794. }
  795. static void early_boot_test_call_rcu_sched(void)
  796. {
  797. static struct rcu_head head;
  798. call_rcu_sched(&head, test_callback);
  799. }
  800. void rcu_early_boot_tests(void)
  801. {
  802. pr_info("Running RCU self tests\n");
  803. if (rcu_self_test)
  804. early_boot_test_call_rcu();
  805. if (rcu_self_test_bh)
  806. early_boot_test_call_rcu_bh();
  807. if (rcu_self_test_sched)
  808. early_boot_test_call_rcu_sched();
  809. rcu_test_sync_prims();
  810. }
  811. static int rcu_verify_early_boot_tests(void)
  812. {
  813. int ret = 0;
  814. int early_boot_test_counter = 0;
  815. if (rcu_self_test) {
  816. early_boot_test_counter++;
  817. rcu_barrier();
  818. }
  819. if (rcu_self_test_bh) {
  820. early_boot_test_counter++;
  821. rcu_barrier_bh();
  822. }
  823. if (rcu_self_test_sched) {
  824. early_boot_test_counter++;
  825. rcu_barrier_sched();
  826. }
  827. if (rcu_self_test_counter != early_boot_test_counter) {
  828. WARN_ON(1);
  829. ret = -1;
  830. }
  831. return ret;
  832. }
  833. late_initcall(rcu_verify_early_boot_tests);
  834. #else
  835. void rcu_early_boot_tests(void) {}
  836. #endif /* CONFIG_PROVE_RCU */