futex.c 90 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332
  1. /*
  2. * Fast Userspace Mutexes (which I call "Futexes!").
  3. * (C) Rusty Russell, IBM 2002
  4. *
  5. * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
  6. * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
  7. *
  8. * Removed page pinning, fix privately mapped COW pages and other cleanups
  9. * (C) Copyright 2003, 2004 Jamie Lokier
  10. *
  11. * Robust futex support started by Ingo Molnar
  12. * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
  13. * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
  14. *
  15. * PI-futex support started by Ingo Molnar and Thomas Gleixner
  16. * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  17. * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  18. *
  19. * PRIVATE futexes by Eric Dumazet
  20. * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
  21. *
  22. * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
  23. * Copyright (C) IBM Corporation, 2009
  24. * Thanks to Thomas Gleixner for conceptual design and careful reviews.
  25. *
  26. * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  27. * enough at me, Linus for the original (flawed) idea, Matthew
  28. * Kirkwood for proof-of-concept implementation.
  29. *
  30. * "The futexes are also cursed."
  31. * "But they come in a choice of three flavours!"
  32. *
  33. * This program is free software; you can redistribute it and/or modify
  34. * it under the terms of the GNU General Public License as published by
  35. * the Free Software Foundation; either version 2 of the License, or
  36. * (at your option) any later version.
  37. *
  38. * This program is distributed in the hope that it will be useful,
  39. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  40. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  41. * GNU General Public License for more details.
  42. *
  43. * You should have received a copy of the GNU General Public License
  44. * along with this program; if not, write to the Free Software
  45. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  46. */
  47. #include <linux/slab.h>
  48. #include <linux/poll.h>
  49. #include <linux/fs.h>
  50. #include <linux/file.h>
  51. #include <linux/jhash.h>
  52. #include <linux/init.h>
  53. #include <linux/futex.h>
  54. #include <linux/mount.h>
  55. #include <linux/pagemap.h>
  56. #include <linux/syscalls.h>
  57. #include <linux/signal.h>
  58. #include <linux/export.h>
  59. #include <linux/magic.h>
  60. #include <linux/pid.h>
  61. #include <linux/nsproxy.h>
  62. #include <linux/ptrace.h>
  63. #include <linux/sched/rt.h>
  64. #include <linux/sched/wake_q.h>
  65. #include <linux/sched/mm.h>
  66. #include <linux/hugetlb.h>
  67. #include <linux/freezer.h>
  68. #include <linux/bootmem.h>
  69. #include <linux/fault-inject.h>
  70. #include <asm/futex.h>
  71. #include "locking/rtmutex_common.h"
  72. /*
  73. * READ this before attempting to hack on futexes!
  74. *
  75. * Basic futex operation and ordering guarantees
  76. * =============================================
  77. *
  78. * The waiter reads the futex value in user space and calls
  79. * futex_wait(). This function computes the hash bucket and acquires
  80. * the hash bucket lock. After that it reads the futex user space value
  81. * again and verifies that the data has not changed. If it has not changed
  82. * it enqueues itself into the hash bucket, releases the hash bucket lock
  83. * and schedules.
  84. *
  85. * The waker side modifies the user space value of the futex and calls
  86. * futex_wake(). This function computes the hash bucket and acquires the
  87. * hash bucket lock. Then it looks for waiters on that futex in the hash
  88. * bucket and wakes them.
  89. *
  90. * In futex wake up scenarios where no tasks are blocked on a futex, taking
  91. * the hb spinlock can be avoided and simply return. In order for this
  92. * optimization to work, ordering guarantees must exist so that the waiter
  93. * being added to the list is acknowledged when the list is concurrently being
  94. * checked by the waker, avoiding scenarios like the following:
  95. *
  96. * CPU 0 CPU 1
  97. * val = *futex;
  98. * sys_futex(WAIT, futex, val);
  99. * futex_wait(futex, val);
  100. * uval = *futex;
  101. * *futex = newval;
  102. * sys_futex(WAKE, futex);
  103. * futex_wake(futex);
  104. * if (queue_empty())
  105. * return;
  106. * if (uval == val)
  107. * lock(hash_bucket(futex));
  108. * queue();
  109. * unlock(hash_bucket(futex));
  110. * schedule();
  111. *
  112. * This would cause the waiter on CPU 0 to wait forever because it
  113. * missed the transition of the user space value from val to newval
  114. * and the waker did not find the waiter in the hash bucket queue.
  115. *
  116. * The correct serialization ensures that a waiter either observes
  117. * the changed user space value before blocking or is woken by a
  118. * concurrent waker:
  119. *
  120. * CPU 0 CPU 1
  121. * val = *futex;
  122. * sys_futex(WAIT, futex, val);
  123. * futex_wait(futex, val);
  124. *
  125. * waiters++; (a)
  126. * smp_mb(); (A) <-- paired with -.
  127. * |
  128. * lock(hash_bucket(futex)); |
  129. * |
  130. * uval = *futex; |
  131. * | *futex = newval;
  132. * | sys_futex(WAKE, futex);
  133. * | futex_wake(futex);
  134. * |
  135. * `--------> smp_mb(); (B)
  136. * if (uval == val)
  137. * queue();
  138. * unlock(hash_bucket(futex));
  139. * schedule(); if (waiters)
  140. * lock(hash_bucket(futex));
  141. * else wake_waiters(futex);
  142. * waiters--; (b) unlock(hash_bucket(futex));
  143. *
  144. * Where (A) orders the waiters increment and the futex value read through
  145. * atomic operations (see hb_waiters_inc) and where (B) orders the write
  146. * to futex and the waiters read -- this is done by the barriers for both
  147. * shared and private futexes in get_futex_key_refs().
  148. *
  149. * This yields the following case (where X:=waiters, Y:=futex):
  150. *
  151. * X = Y = 0
  152. *
  153. * w[X]=1 w[Y]=1
  154. * MB MB
  155. * r[Y]=y r[X]=x
  156. *
  157. * Which guarantees that x==0 && y==0 is impossible; which translates back into
  158. * the guarantee that we cannot both miss the futex variable change and the
  159. * enqueue.
  160. *
  161. * Note that a new waiter is accounted for in (a) even when it is possible that
  162. * the wait call can return error, in which case we backtrack from it in (b).
  163. * Refer to the comment in queue_lock().
  164. *
  165. * Similarly, in order to account for waiters being requeued on another
  166. * address we always increment the waiters for the destination bucket before
  167. * acquiring the lock. It then decrements them again after releasing it -
  168. * the code that actually moves the futex(es) between hash buckets (requeue_futex)
  169. * will do the additional required waiter count housekeeping. This is done for
  170. * double_lock_hb() and double_unlock_hb(), respectively.
  171. */
  172. #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
  173. int __read_mostly futex_cmpxchg_enabled;
  174. #endif
  175. /*
  176. * Futex flags used to encode options to functions and preserve them across
  177. * restarts.
  178. */
  179. #ifdef CONFIG_MMU
  180. # define FLAGS_SHARED 0x01
  181. #else
  182. /*
  183. * NOMMU does not have per process address space. Let the compiler optimize
  184. * code away.
  185. */
  186. # define FLAGS_SHARED 0x00
  187. #endif
  188. #define FLAGS_CLOCKRT 0x02
  189. #define FLAGS_HAS_TIMEOUT 0x04
  190. /*
  191. * Priority Inheritance state:
  192. */
  193. struct futex_pi_state {
  194. /*
  195. * list of 'owned' pi_state instances - these have to be
  196. * cleaned up in do_exit() if the task exits prematurely:
  197. */
  198. struct list_head list;
  199. /*
  200. * The PI object:
  201. */
  202. struct rt_mutex pi_mutex;
  203. struct task_struct *owner;
  204. atomic_t refcount;
  205. union futex_key key;
  206. };
  207. /**
  208. * struct futex_q - The hashed futex queue entry, one per waiting task
  209. * @list: priority-sorted list of tasks waiting on this futex
  210. * @task: the task waiting on the futex
  211. * @lock_ptr: the hash bucket lock
  212. * @key: the key the futex is hashed on
  213. * @pi_state: optional priority inheritance state
  214. * @rt_waiter: rt_waiter storage for use with requeue_pi
  215. * @requeue_pi_key: the requeue_pi target futex key
  216. * @bitset: bitset for the optional bitmasked wakeup
  217. *
  218. * We use this hashed waitqueue, instead of a normal wait_queue_t, so
  219. * we can wake only the relevant ones (hashed queues may be shared).
  220. *
  221. * A futex_q has a woken state, just like tasks have TASK_RUNNING.
  222. * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
  223. * The order of wakeup is always to make the first condition true, then
  224. * the second.
  225. *
  226. * PI futexes are typically woken before they are removed from the hash list via
  227. * the rt_mutex code. See unqueue_me_pi().
  228. */
  229. struct futex_q {
  230. struct plist_node list;
  231. struct task_struct *task;
  232. spinlock_t *lock_ptr;
  233. union futex_key key;
  234. struct futex_pi_state *pi_state;
  235. struct rt_mutex_waiter *rt_waiter;
  236. union futex_key *requeue_pi_key;
  237. u32 bitset;
  238. };
  239. static const struct futex_q futex_q_init = {
  240. /* list gets initialized in queue_me()*/
  241. .key = FUTEX_KEY_INIT,
  242. .bitset = FUTEX_BITSET_MATCH_ANY
  243. };
  244. /*
  245. * Hash buckets are shared by all the futex_keys that hash to the same
  246. * location. Each key may have multiple futex_q structures, one for each task
  247. * waiting on a futex.
  248. */
  249. struct futex_hash_bucket {
  250. atomic_t waiters;
  251. spinlock_t lock;
  252. struct plist_head chain;
  253. } ____cacheline_aligned_in_smp;
  254. /*
  255. * The base of the bucket array and its size are always used together
  256. * (after initialization only in hash_futex()), so ensure that they
  257. * reside in the same cacheline.
  258. */
  259. static struct {
  260. struct futex_hash_bucket *queues;
  261. unsigned long hashsize;
  262. } __futex_data __read_mostly __aligned(2*sizeof(long));
  263. #define futex_queues (__futex_data.queues)
  264. #define futex_hashsize (__futex_data.hashsize)
  265. /*
  266. * Fault injections for futexes.
  267. */
  268. #ifdef CONFIG_FAIL_FUTEX
  269. static struct {
  270. struct fault_attr attr;
  271. bool ignore_private;
  272. } fail_futex = {
  273. .attr = FAULT_ATTR_INITIALIZER,
  274. .ignore_private = false,
  275. };
  276. static int __init setup_fail_futex(char *str)
  277. {
  278. return setup_fault_attr(&fail_futex.attr, str);
  279. }
  280. __setup("fail_futex=", setup_fail_futex);
  281. static bool should_fail_futex(bool fshared)
  282. {
  283. if (fail_futex.ignore_private && !fshared)
  284. return false;
  285. return should_fail(&fail_futex.attr, 1);
  286. }
  287. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  288. static int __init fail_futex_debugfs(void)
  289. {
  290. umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  291. struct dentry *dir;
  292. dir = fault_create_debugfs_attr("fail_futex", NULL,
  293. &fail_futex.attr);
  294. if (IS_ERR(dir))
  295. return PTR_ERR(dir);
  296. if (!debugfs_create_bool("ignore-private", mode, dir,
  297. &fail_futex.ignore_private)) {
  298. debugfs_remove_recursive(dir);
  299. return -ENOMEM;
  300. }
  301. return 0;
  302. }
  303. late_initcall(fail_futex_debugfs);
  304. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  305. #else
  306. static inline bool should_fail_futex(bool fshared)
  307. {
  308. return false;
  309. }
  310. #endif /* CONFIG_FAIL_FUTEX */
  311. static inline void futex_get_mm(union futex_key *key)
  312. {
  313. mmgrab(key->private.mm);
  314. /*
  315. * Ensure futex_get_mm() implies a full barrier such that
  316. * get_futex_key() implies a full barrier. This is relied upon
  317. * as smp_mb(); (B), see the ordering comment above.
  318. */
  319. smp_mb__after_atomic();
  320. }
  321. /*
  322. * Reflects a new waiter being added to the waitqueue.
  323. */
  324. static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
  325. {
  326. #ifdef CONFIG_SMP
  327. atomic_inc(&hb->waiters);
  328. /*
  329. * Full barrier (A), see the ordering comment above.
  330. */
  331. smp_mb__after_atomic();
  332. #endif
  333. }
  334. /*
  335. * Reflects a waiter being removed from the waitqueue by wakeup
  336. * paths.
  337. */
  338. static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
  339. {
  340. #ifdef CONFIG_SMP
  341. atomic_dec(&hb->waiters);
  342. #endif
  343. }
  344. static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
  345. {
  346. #ifdef CONFIG_SMP
  347. return atomic_read(&hb->waiters);
  348. #else
  349. return 1;
  350. #endif
  351. }
  352. /**
  353. * hash_futex - Return the hash bucket in the global hash
  354. * @key: Pointer to the futex key for which the hash is calculated
  355. *
  356. * We hash on the keys returned from get_futex_key (see below) and return the
  357. * corresponding hash bucket in the global hash.
  358. */
  359. static struct futex_hash_bucket *hash_futex(union futex_key *key)
  360. {
  361. u32 hash = jhash2((u32*)&key->both.word,
  362. (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
  363. key->both.offset);
  364. return &futex_queues[hash & (futex_hashsize - 1)];
  365. }
  366. /**
  367. * match_futex - Check whether two futex keys are equal
  368. * @key1: Pointer to key1
  369. * @key2: Pointer to key2
  370. *
  371. * Return 1 if two futex_keys are equal, 0 otherwise.
  372. */
  373. static inline int match_futex(union futex_key *key1, union futex_key *key2)
  374. {
  375. return (key1 && key2
  376. && key1->both.word == key2->both.word
  377. && key1->both.ptr == key2->both.ptr
  378. && key1->both.offset == key2->both.offset);
  379. }
  380. /*
  381. * Take a reference to the resource addressed by a key.
  382. * Can be called while holding spinlocks.
  383. *
  384. */
  385. static void get_futex_key_refs(union futex_key *key)
  386. {
  387. if (!key->both.ptr)
  388. return;
  389. /*
  390. * On MMU less systems futexes are always "private" as there is no per
  391. * process address space. We need the smp wmb nevertheless - yes,
  392. * arch/blackfin has MMU less SMP ...
  393. */
  394. if (!IS_ENABLED(CONFIG_MMU)) {
  395. smp_mb(); /* explicit smp_mb(); (B) */
  396. return;
  397. }
  398. switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
  399. case FUT_OFF_INODE:
  400. ihold(key->shared.inode); /* implies smp_mb(); (B) */
  401. break;
  402. case FUT_OFF_MMSHARED:
  403. futex_get_mm(key); /* implies smp_mb(); (B) */
  404. break;
  405. default:
  406. /*
  407. * Private futexes do not hold reference on an inode or
  408. * mm, therefore the only purpose of calling get_futex_key_refs
  409. * is because we need the barrier for the lockless waiter check.
  410. */
  411. smp_mb(); /* explicit smp_mb(); (B) */
  412. }
  413. }
  414. /*
  415. * Drop a reference to the resource addressed by a key.
  416. * The hash bucket spinlock must not be held. This is
  417. * a no-op for private futexes, see comment in the get
  418. * counterpart.
  419. */
  420. static void drop_futex_key_refs(union futex_key *key)
  421. {
  422. if (!key->both.ptr) {
  423. /* If we're here then we tried to put a key we failed to get */
  424. WARN_ON_ONCE(1);
  425. return;
  426. }
  427. if (!IS_ENABLED(CONFIG_MMU))
  428. return;
  429. switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
  430. case FUT_OFF_INODE:
  431. iput(key->shared.inode);
  432. break;
  433. case FUT_OFF_MMSHARED:
  434. mmdrop(key->private.mm);
  435. break;
  436. }
  437. }
  438. /**
  439. * get_futex_key() - Get parameters which are the keys for a futex
  440. * @uaddr: virtual address of the futex
  441. * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
  442. * @key: address where result is stored.
  443. * @rw: mapping needs to be read/write (values: VERIFY_READ,
  444. * VERIFY_WRITE)
  445. *
  446. * Return: a negative error code or 0
  447. *
  448. * The key words are stored in *key on success.
  449. *
  450. * For shared mappings, it's (page->index, file_inode(vma->vm_file),
  451. * offset_within_page). For private mappings, it's (uaddr, current->mm).
  452. * We can usually work out the index without swapping in the page.
  453. *
  454. * lock_page() might sleep, the caller should not hold a spinlock.
  455. */
  456. static int
  457. get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
  458. {
  459. unsigned long address = (unsigned long)uaddr;
  460. struct mm_struct *mm = current->mm;
  461. struct page *page, *tail;
  462. struct address_space *mapping;
  463. int err, ro = 0;
  464. /*
  465. * The futex address must be "naturally" aligned.
  466. */
  467. key->both.offset = address % PAGE_SIZE;
  468. if (unlikely((address % sizeof(u32)) != 0))
  469. return -EINVAL;
  470. address -= key->both.offset;
  471. if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
  472. return -EFAULT;
  473. if (unlikely(should_fail_futex(fshared)))
  474. return -EFAULT;
  475. /*
  476. * PROCESS_PRIVATE futexes are fast.
  477. * As the mm cannot disappear under us and the 'key' only needs
  478. * virtual address, we dont even have to find the underlying vma.
  479. * Note : We do have to check 'uaddr' is a valid user address,
  480. * but access_ok() should be faster than find_vma()
  481. */
  482. if (!fshared) {
  483. key->private.mm = mm;
  484. key->private.address = address;
  485. get_futex_key_refs(key); /* implies smp_mb(); (B) */
  486. return 0;
  487. }
  488. again:
  489. /* Ignore any VERIFY_READ mapping (futex common case) */
  490. if (unlikely(should_fail_futex(fshared)))
  491. return -EFAULT;
  492. err = get_user_pages_fast(address, 1, 1, &page);
  493. /*
  494. * If write access is not required (eg. FUTEX_WAIT), try
  495. * and get read-only access.
  496. */
  497. if (err == -EFAULT && rw == VERIFY_READ) {
  498. err = get_user_pages_fast(address, 1, 0, &page);
  499. ro = 1;
  500. }
  501. if (err < 0)
  502. return err;
  503. else
  504. err = 0;
  505. /*
  506. * The treatment of mapping from this point on is critical. The page
  507. * lock protects many things but in this context the page lock
  508. * stabilizes mapping, prevents inode freeing in the shared
  509. * file-backed region case and guards against movement to swap cache.
  510. *
  511. * Strictly speaking the page lock is not needed in all cases being
  512. * considered here and page lock forces unnecessarily serialization
  513. * From this point on, mapping will be re-verified if necessary and
  514. * page lock will be acquired only if it is unavoidable
  515. *
  516. * Mapping checks require the head page for any compound page so the
  517. * head page and mapping is looked up now. For anonymous pages, it
  518. * does not matter if the page splits in the future as the key is
  519. * based on the address. For filesystem-backed pages, the tail is
  520. * required as the index of the page determines the key. For
  521. * base pages, there is no tail page and tail == page.
  522. */
  523. tail = page;
  524. page = compound_head(page);
  525. mapping = READ_ONCE(page->mapping);
  526. /*
  527. * If page->mapping is NULL, then it cannot be a PageAnon
  528. * page; but it might be the ZERO_PAGE or in the gate area or
  529. * in a special mapping (all cases which we are happy to fail);
  530. * or it may have been a good file page when get_user_pages_fast
  531. * found it, but truncated or holepunched or subjected to
  532. * invalidate_complete_page2 before we got the page lock (also
  533. * cases which we are happy to fail). And we hold a reference,
  534. * so refcount care in invalidate_complete_page's remove_mapping
  535. * prevents drop_caches from setting mapping to NULL beneath us.
  536. *
  537. * The case we do have to guard against is when memory pressure made
  538. * shmem_writepage move it from filecache to swapcache beneath us:
  539. * an unlikely race, but we do need to retry for page->mapping.
  540. */
  541. if (unlikely(!mapping)) {
  542. int shmem_swizzled;
  543. /*
  544. * Page lock is required to identify which special case above
  545. * applies. If this is really a shmem page then the page lock
  546. * will prevent unexpected transitions.
  547. */
  548. lock_page(page);
  549. shmem_swizzled = PageSwapCache(page) || page->mapping;
  550. unlock_page(page);
  551. put_page(page);
  552. if (shmem_swizzled)
  553. goto again;
  554. return -EFAULT;
  555. }
  556. /*
  557. * Private mappings are handled in a simple way.
  558. *
  559. * If the futex key is stored on an anonymous page, then the associated
  560. * object is the mm which is implicitly pinned by the calling process.
  561. *
  562. * NOTE: When userspace waits on a MAP_SHARED mapping, even if
  563. * it's a read-only handle, it's expected that futexes attach to
  564. * the object not the particular process.
  565. */
  566. if (PageAnon(page)) {
  567. /*
  568. * A RO anonymous page will never change and thus doesn't make
  569. * sense for futex operations.
  570. */
  571. if (unlikely(should_fail_futex(fshared)) || ro) {
  572. err = -EFAULT;
  573. goto out;
  574. }
  575. key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
  576. key->private.mm = mm;
  577. key->private.address = address;
  578. get_futex_key_refs(key); /* implies smp_mb(); (B) */
  579. } else {
  580. struct inode *inode;
  581. /*
  582. * The associated futex object in this case is the inode and
  583. * the page->mapping must be traversed. Ordinarily this should
  584. * be stabilised under page lock but it's not strictly
  585. * necessary in this case as we just want to pin the inode, not
  586. * update the radix tree or anything like that.
  587. *
  588. * The RCU read lock is taken as the inode is finally freed
  589. * under RCU. If the mapping still matches expectations then the
  590. * mapping->host can be safely accessed as being a valid inode.
  591. */
  592. rcu_read_lock();
  593. if (READ_ONCE(page->mapping) != mapping) {
  594. rcu_read_unlock();
  595. put_page(page);
  596. goto again;
  597. }
  598. inode = READ_ONCE(mapping->host);
  599. if (!inode) {
  600. rcu_read_unlock();
  601. put_page(page);
  602. goto again;
  603. }
  604. /*
  605. * Take a reference unless it is about to be freed. Previously
  606. * this reference was taken by ihold under the page lock
  607. * pinning the inode in place so i_lock was unnecessary. The
  608. * only way for this check to fail is if the inode was
  609. * truncated in parallel so warn for now if this happens.
  610. *
  611. * We are not calling into get_futex_key_refs() in file-backed
  612. * cases, therefore a successful atomic_inc return below will
  613. * guarantee that get_futex_key() will still imply smp_mb(); (B).
  614. */
  615. if (WARN_ON_ONCE(!atomic_inc_not_zero(&inode->i_count))) {
  616. rcu_read_unlock();
  617. put_page(page);
  618. goto again;
  619. }
  620. /* Should be impossible but lets be paranoid for now */
  621. if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
  622. err = -EFAULT;
  623. rcu_read_unlock();
  624. iput(inode);
  625. goto out;
  626. }
  627. key->both.offset |= FUT_OFF_INODE; /* inode-based key */
  628. key->shared.inode = inode;
  629. key->shared.pgoff = basepage_index(tail);
  630. rcu_read_unlock();
  631. }
  632. out:
  633. put_page(page);
  634. return err;
  635. }
  636. static inline void put_futex_key(union futex_key *key)
  637. {
  638. drop_futex_key_refs(key);
  639. }
  640. /**
  641. * fault_in_user_writeable() - Fault in user address and verify RW access
  642. * @uaddr: pointer to faulting user space address
  643. *
  644. * Slow path to fixup the fault we just took in the atomic write
  645. * access to @uaddr.
  646. *
  647. * We have no generic implementation of a non-destructive write to the
  648. * user address. We know that we faulted in the atomic pagefault
  649. * disabled section so we can as well avoid the #PF overhead by
  650. * calling get_user_pages() right away.
  651. */
  652. static int fault_in_user_writeable(u32 __user *uaddr)
  653. {
  654. struct mm_struct *mm = current->mm;
  655. int ret;
  656. down_read(&mm->mmap_sem);
  657. ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
  658. FAULT_FLAG_WRITE, NULL);
  659. up_read(&mm->mmap_sem);
  660. return ret < 0 ? ret : 0;
  661. }
  662. /**
  663. * futex_top_waiter() - Return the highest priority waiter on a futex
  664. * @hb: the hash bucket the futex_q's reside in
  665. * @key: the futex key (to distinguish it from other futex futex_q's)
  666. *
  667. * Must be called with the hb lock held.
  668. */
  669. static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
  670. union futex_key *key)
  671. {
  672. struct futex_q *this;
  673. plist_for_each_entry(this, &hb->chain, list) {
  674. if (match_futex(&this->key, key))
  675. return this;
  676. }
  677. return NULL;
  678. }
  679. static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
  680. u32 uval, u32 newval)
  681. {
  682. int ret;
  683. pagefault_disable();
  684. ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
  685. pagefault_enable();
  686. return ret;
  687. }
  688. static int get_futex_value_locked(u32 *dest, u32 __user *from)
  689. {
  690. int ret;
  691. pagefault_disable();
  692. ret = __get_user(*dest, from);
  693. pagefault_enable();
  694. return ret ? -EFAULT : 0;
  695. }
  696. /*
  697. * PI code:
  698. */
  699. static int refill_pi_state_cache(void)
  700. {
  701. struct futex_pi_state *pi_state;
  702. if (likely(current->pi_state_cache))
  703. return 0;
  704. pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
  705. if (!pi_state)
  706. return -ENOMEM;
  707. INIT_LIST_HEAD(&pi_state->list);
  708. /* pi_mutex gets initialized later */
  709. pi_state->owner = NULL;
  710. atomic_set(&pi_state->refcount, 1);
  711. pi_state->key = FUTEX_KEY_INIT;
  712. current->pi_state_cache = pi_state;
  713. return 0;
  714. }
  715. static struct futex_pi_state * alloc_pi_state(void)
  716. {
  717. struct futex_pi_state *pi_state = current->pi_state_cache;
  718. WARN_ON(!pi_state);
  719. current->pi_state_cache = NULL;
  720. return pi_state;
  721. }
  722. /*
  723. * Drops a reference to the pi_state object and frees or caches it
  724. * when the last reference is gone.
  725. *
  726. * Must be called with the hb lock held.
  727. */
  728. static void put_pi_state(struct futex_pi_state *pi_state)
  729. {
  730. if (!pi_state)
  731. return;
  732. if (!atomic_dec_and_test(&pi_state->refcount))
  733. return;
  734. /*
  735. * If pi_state->owner is NULL, the owner is most probably dying
  736. * and has cleaned up the pi_state already
  737. */
  738. if (pi_state->owner) {
  739. raw_spin_lock_irq(&pi_state->owner->pi_lock);
  740. list_del_init(&pi_state->list);
  741. raw_spin_unlock_irq(&pi_state->owner->pi_lock);
  742. rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
  743. }
  744. if (current->pi_state_cache)
  745. kfree(pi_state);
  746. else {
  747. /*
  748. * pi_state->list is already empty.
  749. * clear pi_state->owner.
  750. * refcount is at 0 - put it back to 1.
  751. */
  752. pi_state->owner = NULL;
  753. atomic_set(&pi_state->refcount, 1);
  754. current->pi_state_cache = pi_state;
  755. }
  756. }
  757. /*
  758. * Look up the task based on what TID userspace gave us.
  759. * We dont trust it.
  760. */
  761. static struct task_struct * futex_find_get_task(pid_t pid)
  762. {
  763. struct task_struct *p;
  764. rcu_read_lock();
  765. p = find_task_by_vpid(pid);
  766. if (p)
  767. get_task_struct(p);
  768. rcu_read_unlock();
  769. return p;
  770. }
  771. /*
  772. * This task is holding PI mutexes at exit time => bad.
  773. * Kernel cleans up PI-state, but userspace is likely hosed.
  774. * (Robust-futex cleanup is separate and might save the day for userspace.)
  775. */
  776. void exit_pi_state_list(struct task_struct *curr)
  777. {
  778. struct list_head *next, *head = &curr->pi_state_list;
  779. struct futex_pi_state *pi_state;
  780. struct futex_hash_bucket *hb;
  781. union futex_key key = FUTEX_KEY_INIT;
  782. if (!futex_cmpxchg_enabled)
  783. return;
  784. /*
  785. * We are a ZOMBIE and nobody can enqueue itself on
  786. * pi_state_list anymore, but we have to be careful
  787. * versus waiters unqueueing themselves:
  788. */
  789. raw_spin_lock_irq(&curr->pi_lock);
  790. while (!list_empty(head)) {
  791. next = head->next;
  792. pi_state = list_entry(next, struct futex_pi_state, list);
  793. key = pi_state->key;
  794. hb = hash_futex(&key);
  795. raw_spin_unlock_irq(&curr->pi_lock);
  796. spin_lock(&hb->lock);
  797. raw_spin_lock_irq(&curr->pi_lock);
  798. /*
  799. * We dropped the pi-lock, so re-check whether this
  800. * task still owns the PI-state:
  801. */
  802. if (head->next != next) {
  803. spin_unlock(&hb->lock);
  804. continue;
  805. }
  806. WARN_ON(pi_state->owner != curr);
  807. WARN_ON(list_empty(&pi_state->list));
  808. list_del_init(&pi_state->list);
  809. pi_state->owner = NULL;
  810. raw_spin_unlock_irq(&curr->pi_lock);
  811. rt_mutex_unlock(&pi_state->pi_mutex);
  812. spin_unlock(&hb->lock);
  813. raw_spin_lock_irq(&curr->pi_lock);
  814. }
  815. raw_spin_unlock_irq(&curr->pi_lock);
  816. }
  817. /*
  818. * We need to check the following states:
  819. *
  820. * Waiter | pi_state | pi->owner | uTID | uODIED | ?
  821. *
  822. * [1] NULL | --- | --- | 0 | 0/1 | Valid
  823. * [2] NULL | --- | --- | >0 | 0/1 | Valid
  824. *
  825. * [3] Found | NULL | -- | Any | 0/1 | Invalid
  826. *
  827. * [4] Found | Found | NULL | 0 | 1 | Valid
  828. * [5] Found | Found | NULL | >0 | 1 | Invalid
  829. *
  830. * [6] Found | Found | task | 0 | 1 | Valid
  831. *
  832. * [7] Found | Found | NULL | Any | 0 | Invalid
  833. *
  834. * [8] Found | Found | task | ==taskTID | 0/1 | Valid
  835. * [9] Found | Found | task | 0 | 0 | Invalid
  836. * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
  837. *
  838. * [1] Indicates that the kernel can acquire the futex atomically. We
  839. * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
  840. *
  841. * [2] Valid, if TID does not belong to a kernel thread. If no matching
  842. * thread is found then it indicates that the owner TID has died.
  843. *
  844. * [3] Invalid. The waiter is queued on a non PI futex
  845. *
  846. * [4] Valid state after exit_robust_list(), which sets the user space
  847. * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
  848. *
  849. * [5] The user space value got manipulated between exit_robust_list()
  850. * and exit_pi_state_list()
  851. *
  852. * [6] Valid state after exit_pi_state_list() which sets the new owner in
  853. * the pi_state but cannot access the user space value.
  854. *
  855. * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
  856. *
  857. * [8] Owner and user space value match
  858. *
  859. * [9] There is no transient state which sets the user space TID to 0
  860. * except exit_robust_list(), but this is indicated by the
  861. * FUTEX_OWNER_DIED bit. See [4]
  862. *
  863. * [10] There is no transient state which leaves owner and user space
  864. * TID out of sync.
  865. */
  866. /*
  867. * Validate that the existing waiter has a pi_state and sanity check
  868. * the pi_state against the user space value. If correct, attach to
  869. * it.
  870. */
  871. static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
  872. struct futex_pi_state **ps)
  873. {
  874. pid_t pid = uval & FUTEX_TID_MASK;
  875. /*
  876. * Userspace might have messed up non-PI and PI futexes [3]
  877. */
  878. if (unlikely(!pi_state))
  879. return -EINVAL;
  880. WARN_ON(!atomic_read(&pi_state->refcount));
  881. /*
  882. * Handle the owner died case:
  883. */
  884. if (uval & FUTEX_OWNER_DIED) {
  885. /*
  886. * exit_pi_state_list sets owner to NULL and wakes the
  887. * topmost waiter. The task which acquires the
  888. * pi_state->rt_mutex will fixup owner.
  889. */
  890. if (!pi_state->owner) {
  891. /*
  892. * No pi state owner, but the user space TID
  893. * is not 0. Inconsistent state. [5]
  894. */
  895. if (pid)
  896. return -EINVAL;
  897. /*
  898. * Take a ref on the state and return success. [4]
  899. */
  900. goto out_state;
  901. }
  902. /*
  903. * If TID is 0, then either the dying owner has not
  904. * yet executed exit_pi_state_list() or some waiter
  905. * acquired the rtmutex in the pi state, but did not
  906. * yet fixup the TID in user space.
  907. *
  908. * Take a ref on the state and return success. [6]
  909. */
  910. if (!pid)
  911. goto out_state;
  912. } else {
  913. /*
  914. * If the owner died bit is not set, then the pi_state
  915. * must have an owner. [7]
  916. */
  917. if (!pi_state->owner)
  918. return -EINVAL;
  919. }
  920. /*
  921. * Bail out if user space manipulated the futex value. If pi
  922. * state exists then the owner TID must be the same as the
  923. * user space TID. [9/10]
  924. */
  925. if (pid != task_pid_vnr(pi_state->owner))
  926. return -EINVAL;
  927. out_state:
  928. atomic_inc(&pi_state->refcount);
  929. *ps = pi_state;
  930. return 0;
  931. }
  932. /*
  933. * Lookup the task for the TID provided from user space and attach to
  934. * it after doing proper sanity checks.
  935. */
  936. static int attach_to_pi_owner(u32 uval, union futex_key *key,
  937. struct futex_pi_state **ps)
  938. {
  939. pid_t pid = uval & FUTEX_TID_MASK;
  940. struct futex_pi_state *pi_state;
  941. struct task_struct *p;
  942. /*
  943. * We are the first waiter - try to look up the real owner and attach
  944. * the new pi_state to it, but bail out when TID = 0 [1]
  945. */
  946. if (!pid)
  947. return -ESRCH;
  948. p = futex_find_get_task(pid);
  949. if (!p)
  950. return -ESRCH;
  951. if (unlikely(p->flags & PF_KTHREAD)) {
  952. put_task_struct(p);
  953. return -EPERM;
  954. }
  955. /*
  956. * We need to look at the task state flags to figure out,
  957. * whether the task is exiting. To protect against the do_exit
  958. * change of the task flags, we do this protected by
  959. * p->pi_lock:
  960. */
  961. raw_spin_lock_irq(&p->pi_lock);
  962. if (unlikely(p->flags & PF_EXITING)) {
  963. /*
  964. * The task is on the way out. When PF_EXITPIDONE is
  965. * set, we know that the task has finished the
  966. * cleanup:
  967. */
  968. int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
  969. raw_spin_unlock_irq(&p->pi_lock);
  970. put_task_struct(p);
  971. return ret;
  972. }
  973. /*
  974. * No existing pi state. First waiter. [2]
  975. */
  976. pi_state = alloc_pi_state();
  977. /*
  978. * Initialize the pi_mutex in locked state and make @p
  979. * the owner of it:
  980. */
  981. rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
  982. /* Store the key for possible exit cleanups: */
  983. pi_state->key = *key;
  984. WARN_ON(!list_empty(&pi_state->list));
  985. list_add(&pi_state->list, &p->pi_state_list);
  986. pi_state->owner = p;
  987. raw_spin_unlock_irq(&p->pi_lock);
  988. put_task_struct(p);
  989. *ps = pi_state;
  990. return 0;
  991. }
  992. static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
  993. union futex_key *key, struct futex_pi_state **ps)
  994. {
  995. struct futex_q *match = futex_top_waiter(hb, key);
  996. /*
  997. * If there is a waiter on that futex, validate it and
  998. * attach to the pi_state when the validation succeeds.
  999. */
  1000. if (match)
  1001. return attach_to_pi_state(uval, match->pi_state, ps);
  1002. /*
  1003. * We are the first waiter - try to look up the owner based on
  1004. * @uval and attach to it.
  1005. */
  1006. return attach_to_pi_owner(uval, key, ps);
  1007. }
  1008. static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
  1009. {
  1010. u32 uninitialized_var(curval);
  1011. if (unlikely(should_fail_futex(true)))
  1012. return -EFAULT;
  1013. if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
  1014. return -EFAULT;
  1015. /*If user space value changed, let the caller retry */
  1016. return curval != uval ? -EAGAIN : 0;
  1017. }
  1018. /**
  1019. * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
  1020. * @uaddr: the pi futex user address
  1021. * @hb: the pi futex hash bucket
  1022. * @key: the futex key associated with uaddr and hb
  1023. * @ps: the pi_state pointer where we store the result of the
  1024. * lookup
  1025. * @task: the task to perform the atomic lock work for. This will
  1026. * be "current" except in the case of requeue pi.
  1027. * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
  1028. *
  1029. * Return:
  1030. * 0 - ready to wait;
  1031. * 1 - acquired the lock;
  1032. * <0 - error
  1033. *
  1034. * The hb->lock and futex_key refs shall be held by the caller.
  1035. */
  1036. static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
  1037. union futex_key *key,
  1038. struct futex_pi_state **ps,
  1039. struct task_struct *task, int set_waiters)
  1040. {
  1041. u32 uval, newval, vpid = task_pid_vnr(task);
  1042. struct futex_q *match;
  1043. int ret;
  1044. /*
  1045. * Read the user space value first so we can validate a few
  1046. * things before proceeding further.
  1047. */
  1048. if (get_futex_value_locked(&uval, uaddr))
  1049. return -EFAULT;
  1050. if (unlikely(should_fail_futex(true)))
  1051. return -EFAULT;
  1052. /*
  1053. * Detect deadlocks.
  1054. */
  1055. if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
  1056. return -EDEADLK;
  1057. if ((unlikely(should_fail_futex(true))))
  1058. return -EDEADLK;
  1059. /*
  1060. * Lookup existing state first. If it exists, try to attach to
  1061. * its pi_state.
  1062. */
  1063. match = futex_top_waiter(hb, key);
  1064. if (match)
  1065. return attach_to_pi_state(uval, match->pi_state, ps);
  1066. /*
  1067. * No waiter and user TID is 0. We are here because the
  1068. * waiters or the owner died bit is set or called from
  1069. * requeue_cmp_pi or for whatever reason something took the
  1070. * syscall.
  1071. */
  1072. if (!(uval & FUTEX_TID_MASK)) {
  1073. /*
  1074. * We take over the futex. No other waiters and the user space
  1075. * TID is 0. We preserve the owner died bit.
  1076. */
  1077. newval = uval & FUTEX_OWNER_DIED;
  1078. newval |= vpid;
  1079. /* The futex requeue_pi code can enforce the waiters bit */
  1080. if (set_waiters)
  1081. newval |= FUTEX_WAITERS;
  1082. ret = lock_pi_update_atomic(uaddr, uval, newval);
  1083. /* If the take over worked, return 1 */
  1084. return ret < 0 ? ret : 1;
  1085. }
  1086. /*
  1087. * First waiter. Set the waiters bit before attaching ourself to
  1088. * the owner. If owner tries to unlock, it will be forced into
  1089. * the kernel and blocked on hb->lock.
  1090. */
  1091. newval = uval | FUTEX_WAITERS;
  1092. ret = lock_pi_update_atomic(uaddr, uval, newval);
  1093. if (ret)
  1094. return ret;
  1095. /*
  1096. * If the update of the user space value succeeded, we try to
  1097. * attach to the owner. If that fails, no harm done, we only
  1098. * set the FUTEX_WAITERS bit in the user space variable.
  1099. */
  1100. return attach_to_pi_owner(uval, key, ps);
  1101. }
  1102. /**
  1103. * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
  1104. * @q: The futex_q to unqueue
  1105. *
  1106. * The q->lock_ptr must not be NULL and must be held by the caller.
  1107. */
  1108. static void __unqueue_futex(struct futex_q *q)
  1109. {
  1110. struct futex_hash_bucket *hb;
  1111. if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
  1112. || WARN_ON(plist_node_empty(&q->list)))
  1113. return;
  1114. hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
  1115. plist_del(&q->list, &hb->chain);
  1116. hb_waiters_dec(hb);
  1117. }
  1118. /*
  1119. * The hash bucket lock must be held when this is called.
  1120. * Afterwards, the futex_q must not be accessed. Callers
  1121. * must ensure to later call wake_up_q() for the actual
  1122. * wakeups to occur.
  1123. */
  1124. static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
  1125. {
  1126. struct task_struct *p = q->task;
  1127. if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
  1128. return;
  1129. /*
  1130. * Queue the task for later wakeup for after we've released
  1131. * the hb->lock. wake_q_add() grabs reference to p.
  1132. */
  1133. wake_q_add(wake_q, p);
  1134. __unqueue_futex(q);
  1135. /*
  1136. * The waiting task can free the futex_q as soon as
  1137. * q->lock_ptr = NULL is written, without taking any locks. A
  1138. * memory barrier is required here to prevent the following
  1139. * store to lock_ptr from getting ahead of the plist_del.
  1140. */
  1141. smp_wmb();
  1142. q->lock_ptr = NULL;
  1143. }
  1144. static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this,
  1145. struct futex_hash_bucket *hb)
  1146. {
  1147. struct task_struct *new_owner;
  1148. struct futex_pi_state *pi_state = this->pi_state;
  1149. u32 uninitialized_var(curval), newval;
  1150. DEFINE_WAKE_Q(wake_q);
  1151. bool deboost;
  1152. int ret = 0;
  1153. if (!pi_state)
  1154. return -EINVAL;
  1155. /*
  1156. * If current does not own the pi_state then the futex is
  1157. * inconsistent and user space fiddled with the futex value.
  1158. */
  1159. if (pi_state->owner != current)
  1160. return -EINVAL;
  1161. raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
  1162. new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
  1163. /*
  1164. * It is possible that the next waiter (the one that brought
  1165. * this owner to the kernel) timed out and is no longer
  1166. * waiting on the lock.
  1167. */
  1168. if (!new_owner)
  1169. new_owner = this->task;
  1170. /*
  1171. * We pass it to the next owner. The WAITERS bit is always
  1172. * kept enabled while there is PI state around. We cleanup the
  1173. * owner died bit, because we are the owner.
  1174. */
  1175. newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
  1176. if (unlikely(should_fail_futex(true)))
  1177. ret = -EFAULT;
  1178. if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
  1179. ret = -EFAULT;
  1180. } else if (curval != uval) {
  1181. /*
  1182. * If a unconditional UNLOCK_PI operation (user space did not
  1183. * try the TID->0 transition) raced with a waiter setting the
  1184. * FUTEX_WAITERS flag between get_user() and locking the hash
  1185. * bucket lock, retry the operation.
  1186. */
  1187. if ((FUTEX_TID_MASK & curval) == uval)
  1188. ret = -EAGAIN;
  1189. else
  1190. ret = -EINVAL;
  1191. }
  1192. if (ret) {
  1193. raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
  1194. return ret;
  1195. }
  1196. raw_spin_lock(&pi_state->owner->pi_lock);
  1197. WARN_ON(list_empty(&pi_state->list));
  1198. list_del_init(&pi_state->list);
  1199. raw_spin_unlock(&pi_state->owner->pi_lock);
  1200. raw_spin_lock(&new_owner->pi_lock);
  1201. WARN_ON(!list_empty(&pi_state->list));
  1202. list_add(&pi_state->list, &new_owner->pi_state_list);
  1203. pi_state->owner = new_owner;
  1204. raw_spin_unlock(&new_owner->pi_lock);
  1205. raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
  1206. deboost = rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
  1207. /*
  1208. * First unlock HB so the waiter does not spin on it once he got woken
  1209. * up. Second wake up the waiter before the priority is adjusted. If we
  1210. * deboost first (and lose our higher priority), then the task might get
  1211. * scheduled away before the wake up can take place.
  1212. */
  1213. spin_unlock(&hb->lock);
  1214. wake_up_q(&wake_q);
  1215. if (deboost)
  1216. rt_mutex_adjust_prio(current);
  1217. return 0;
  1218. }
  1219. /*
  1220. * Express the locking dependencies for lockdep:
  1221. */
  1222. static inline void
  1223. double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
  1224. {
  1225. if (hb1 <= hb2) {
  1226. spin_lock(&hb1->lock);
  1227. if (hb1 < hb2)
  1228. spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
  1229. } else { /* hb1 > hb2 */
  1230. spin_lock(&hb2->lock);
  1231. spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
  1232. }
  1233. }
  1234. static inline void
  1235. double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
  1236. {
  1237. spin_unlock(&hb1->lock);
  1238. if (hb1 != hb2)
  1239. spin_unlock(&hb2->lock);
  1240. }
  1241. /*
  1242. * Wake up waiters matching bitset queued on this futex (uaddr).
  1243. */
  1244. static int
  1245. futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
  1246. {
  1247. struct futex_hash_bucket *hb;
  1248. struct futex_q *this, *next;
  1249. union futex_key key = FUTEX_KEY_INIT;
  1250. int ret;
  1251. DEFINE_WAKE_Q(wake_q);
  1252. if (!bitset)
  1253. return -EINVAL;
  1254. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
  1255. if (unlikely(ret != 0))
  1256. goto out;
  1257. hb = hash_futex(&key);
  1258. /* Make sure we really have tasks to wakeup */
  1259. if (!hb_waiters_pending(hb))
  1260. goto out_put_key;
  1261. spin_lock(&hb->lock);
  1262. plist_for_each_entry_safe(this, next, &hb->chain, list) {
  1263. if (match_futex (&this->key, &key)) {
  1264. if (this->pi_state || this->rt_waiter) {
  1265. ret = -EINVAL;
  1266. break;
  1267. }
  1268. /* Check if one of the bits is set in both bitsets */
  1269. if (!(this->bitset & bitset))
  1270. continue;
  1271. mark_wake_futex(&wake_q, this);
  1272. if (++ret >= nr_wake)
  1273. break;
  1274. }
  1275. }
  1276. spin_unlock(&hb->lock);
  1277. wake_up_q(&wake_q);
  1278. out_put_key:
  1279. put_futex_key(&key);
  1280. out:
  1281. return ret;
  1282. }
  1283. /*
  1284. * Wake up all waiters hashed on the physical page that is mapped
  1285. * to this virtual address:
  1286. */
  1287. static int
  1288. futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
  1289. int nr_wake, int nr_wake2, int op)
  1290. {
  1291. union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
  1292. struct futex_hash_bucket *hb1, *hb2;
  1293. struct futex_q *this, *next;
  1294. int ret, op_ret;
  1295. DEFINE_WAKE_Q(wake_q);
  1296. retry:
  1297. ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
  1298. if (unlikely(ret != 0))
  1299. goto out;
  1300. ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
  1301. if (unlikely(ret != 0))
  1302. goto out_put_key1;
  1303. hb1 = hash_futex(&key1);
  1304. hb2 = hash_futex(&key2);
  1305. retry_private:
  1306. double_lock_hb(hb1, hb2);
  1307. op_ret = futex_atomic_op_inuser(op, uaddr2);
  1308. if (unlikely(op_ret < 0)) {
  1309. double_unlock_hb(hb1, hb2);
  1310. #ifndef CONFIG_MMU
  1311. /*
  1312. * we don't get EFAULT from MMU faults if we don't have an MMU,
  1313. * but we might get them from range checking
  1314. */
  1315. ret = op_ret;
  1316. goto out_put_keys;
  1317. #endif
  1318. if (unlikely(op_ret != -EFAULT)) {
  1319. ret = op_ret;
  1320. goto out_put_keys;
  1321. }
  1322. ret = fault_in_user_writeable(uaddr2);
  1323. if (ret)
  1324. goto out_put_keys;
  1325. if (!(flags & FLAGS_SHARED))
  1326. goto retry_private;
  1327. put_futex_key(&key2);
  1328. put_futex_key(&key1);
  1329. goto retry;
  1330. }
  1331. plist_for_each_entry_safe(this, next, &hb1->chain, list) {
  1332. if (match_futex (&this->key, &key1)) {
  1333. if (this->pi_state || this->rt_waiter) {
  1334. ret = -EINVAL;
  1335. goto out_unlock;
  1336. }
  1337. mark_wake_futex(&wake_q, this);
  1338. if (++ret >= nr_wake)
  1339. break;
  1340. }
  1341. }
  1342. if (op_ret > 0) {
  1343. op_ret = 0;
  1344. plist_for_each_entry_safe(this, next, &hb2->chain, list) {
  1345. if (match_futex (&this->key, &key2)) {
  1346. if (this->pi_state || this->rt_waiter) {
  1347. ret = -EINVAL;
  1348. goto out_unlock;
  1349. }
  1350. mark_wake_futex(&wake_q, this);
  1351. if (++op_ret >= nr_wake2)
  1352. break;
  1353. }
  1354. }
  1355. ret += op_ret;
  1356. }
  1357. out_unlock:
  1358. double_unlock_hb(hb1, hb2);
  1359. wake_up_q(&wake_q);
  1360. out_put_keys:
  1361. put_futex_key(&key2);
  1362. out_put_key1:
  1363. put_futex_key(&key1);
  1364. out:
  1365. return ret;
  1366. }
  1367. /**
  1368. * requeue_futex() - Requeue a futex_q from one hb to another
  1369. * @q: the futex_q to requeue
  1370. * @hb1: the source hash_bucket
  1371. * @hb2: the target hash_bucket
  1372. * @key2: the new key for the requeued futex_q
  1373. */
  1374. static inline
  1375. void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
  1376. struct futex_hash_bucket *hb2, union futex_key *key2)
  1377. {
  1378. /*
  1379. * If key1 and key2 hash to the same bucket, no need to
  1380. * requeue.
  1381. */
  1382. if (likely(&hb1->chain != &hb2->chain)) {
  1383. plist_del(&q->list, &hb1->chain);
  1384. hb_waiters_dec(hb1);
  1385. hb_waiters_inc(hb2);
  1386. plist_add(&q->list, &hb2->chain);
  1387. q->lock_ptr = &hb2->lock;
  1388. }
  1389. get_futex_key_refs(key2);
  1390. q->key = *key2;
  1391. }
  1392. /**
  1393. * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
  1394. * @q: the futex_q
  1395. * @key: the key of the requeue target futex
  1396. * @hb: the hash_bucket of the requeue target futex
  1397. *
  1398. * During futex_requeue, with requeue_pi=1, it is possible to acquire the
  1399. * target futex if it is uncontended or via a lock steal. Set the futex_q key
  1400. * to the requeue target futex so the waiter can detect the wakeup on the right
  1401. * futex, but remove it from the hb and NULL the rt_waiter so it can detect
  1402. * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
  1403. * to protect access to the pi_state to fixup the owner later. Must be called
  1404. * with both q->lock_ptr and hb->lock held.
  1405. */
  1406. static inline
  1407. void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
  1408. struct futex_hash_bucket *hb)
  1409. {
  1410. get_futex_key_refs(key);
  1411. q->key = *key;
  1412. __unqueue_futex(q);
  1413. WARN_ON(!q->rt_waiter);
  1414. q->rt_waiter = NULL;
  1415. q->lock_ptr = &hb->lock;
  1416. wake_up_state(q->task, TASK_NORMAL);
  1417. }
  1418. /**
  1419. * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
  1420. * @pifutex: the user address of the to futex
  1421. * @hb1: the from futex hash bucket, must be locked by the caller
  1422. * @hb2: the to futex hash bucket, must be locked by the caller
  1423. * @key1: the from futex key
  1424. * @key2: the to futex key
  1425. * @ps: address to store the pi_state pointer
  1426. * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
  1427. *
  1428. * Try and get the lock on behalf of the top waiter if we can do it atomically.
  1429. * Wake the top waiter if we succeed. If the caller specified set_waiters,
  1430. * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
  1431. * hb1 and hb2 must be held by the caller.
  1432. *
  1433. * Return:
  1434. * 0 - failed to acquire the lock atomically;
  1435. * >0 - acquired the lock, return value is vpid of the top_waiter
  1436. * <0 - error
  1437. */
  1438. static int futex_proxy_trylock_atomic(u32 __user *pifutex,
  1439. struct futex_hash_bucket *hb1,
  1440. struct futex_hash_bucket *hb2,
  1441. union futex_key *key1, union futex_key *key2,
  1442. struct futex_pi_state **ps, int set_waiters)
  1443. {
  1444. struct futex_q *top_waiter = NULL;
  1445. u32 curval;
  1446. int ret, vpid;
  1447. if (get_futex_value_locked(&curval, pifutex))
  1448. return -EFAULT;
  1449. if (unlikely(should_fail_futex(true)))
  1450. return -EFAULT;
  1451. /*
  1452. * Find the top_waiter and determine if there are additional waiters.
  1453. * If the caller intends to requeue more than 1 waiter to pifutex,
  1454. * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
  1455. * as we have means to handle the possible fault. If not, don't set
  1456. * the bit unecessarily as it will force the subsequent unlock to enter
  1457. * the kernel.
  1458. */
  1459. top_waiter = futex_top_waiter(hb1, key1);
  1460. /* There are no waiters, nothing for us to do. */
  1461. if (!top_waiter)
  1462. return 0;
  1463. /* Ensure we requeue to the expected futex. */
  1464. if (!match_futex(top_waiter->requeue_pi_key, key2))
  1465. return -EINVAL;
  1466. /*
  1467. * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
  1468. * the contended case or if set_waiters is 1. The pi_state is returned
  1469. * in ps in contended cases.
  1470. */
  1471. vpid = task_pid_vnr(top_waiter->task);
  1472. ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
  1473. set_waiters);
  1474. if (ret == 1) {
  1475. requeue_pi_wake_futex(top_waiter, key2, hb2);
  1476. return vpid;
  1477. }
  1478. return ret;
  1479. }
  1480. /**
  1481. * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
  1482. * @uaddr1: source futex user address
  1483. * @flags: futex flags (FLAGS_SHARED, etc.)
  1484. * @uaddr2: target futex user address
  1485. * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
  1486. * @nr_requeue: number of waiters to requeue (0-INT_MAX)
  1487. * @cmpval: @uaddr1 expected value (or %NULL)
  1488. * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
  1489. * pi futex (pi to pi requeue is not supported)
  1490. *
  1491. * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
  1492. * uaddr2 atomically on behalf of the top waiter.
  1493. *
  1494. * Return:
  1495. * >=0 - on success, the number of tasks requeued or woken;
  1496. * <0 - on error
  1497. */
  1498. static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
  1499. u32 __user *uaddr2, int nr_wake, int nr_requeue,
  1500. u32 *cmpval, int requeue_pi)
  1501. {
  1502. union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
  1503. int drop_count = 0, task_count = 0, ret;
  1504. struct futex_pi_state *pi_state = NULL;
  1505. struct futex_hash_bucket *hb1, *hb2;
  1506. struct futex_q *this, *next;
  1507. DEFINE_WAKE_Q(wake_q);
  1508. if (requeue_pi) {
  1509. /*
  1510. * Requeue PI only works on two distinct uaddrs. This
  1511. * check is only valid for private futexes. See below.
  1512. */
  1513. if (uaddr1 == uaddr2)
  1514. return -EINVAL;
  1515. /*
  1516. * requeue_pi requires a pi_state, try to allocate it now
  1517. * without any locks in case it fails.
  1518. */
  1519. if (refill_pi_state_cache())
  1520. return -ENOMEM;
  1521. /*
  1522. * requeue_pi must wake as many tasks as it can, up to nr_wake
  1523. * + nr_requeue, since it acquires the rt_mutex prior to
  1524. * returning to userspace, so as to not leave the rt_mutex with
  1525. * waiters and no owner. However, second and third wake-ups
  1526. * cannot be predicted as they involve race conditions with the
  1527. * first wake and a fault while looking up the pi_state. Both
  1528. * pthread_cond_signal() and pthread_cond_broadcast() should
  1529. * use nr_wake=1.
  1530. */
  1531. if (nr_wake != 1)
  1532. return -EINVAL;
  1533. }
  1534. retry:
  1535. ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
  1536. if (unlikely(ret != 0))
  1537. goto out;
  1538. ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
  1539. requeue_pi ? VERIFY_WRITE : VERIFY_READ);
  1540. if (unlikely(ret != 0))
  1541. goto out_put_key1;
  1542. /*
  1543. * The check above which compares uaddrs is not sufficient for
  1544. * shared futexes. We need to compare the keys:
  1545. */
  1546. if (requeue_pi && match_futex(&key1, &key2)) {
  1547. ret = -EINVAL;
  1548. goto out_put_keys;
  1549. }
  1550. hb1 = hash_futex(&key1);
  1551. hb2 = hash_futex(&key2);
  1552. retry_private:
  1553. hb_waiters_inc(hb2);
  1554. double_lock_hb(hb1, hb2);
  1555. if (likely(cmpval != NULL)) {
  1556. u32 curval;
  1557. ret = get_futex_value_locked(&curval, uaddr1);
  1558. if (unlikely(ret)) {
  1559. double_unlock_hb(hb1, hb2);
  1560. hb_waiters_dec(hb2);
  1561. ret = get_user(curval, uaddr1);
  1562. if (ret)
  1563. goto out_put_keys;
  1564. if (!(flags & FLAGS_SHARED))
  1565. goto retry_private;
  1566. put_futex_key(&key2);
  1567. put_futex_key(&key1);
  1568. goto retry;
  1569. }
  1570. if (curval != *cmpval) {
  1571. ret = -EAGAIN;
  1572. goto out_unlock;
  1573. }
  1574. }
  1575. if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
  1576. /*
  1577. * Attempt to acquire uaddr2 and wake the top waiter. If we
  1578. * intend to requeue waiters, force setting the FUTEX_WAITERS
  1579. * bit. We force this here where we are able to easily handle
  1580. * faults rather in the requeue loop below.
  1581. */
  1582. ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
  1583. &key2, &pi_state, nr_requeue);
  1584. /*
  1585. * At this point the top_waiter has either taken uaddr2 or is
  1586. * waiting on it. If the former, then the pi_state will not
  1587. * exist yet, look it up one more time to ensure we have a
  1588. * reference to it. If the lock was taken, ret contains the
  1589. * vpid of the top waiter task.
  1590. * If the lock was not taken, we have pi_state and an initial
  1591. * refcount on it. In case of an error we have nothing.
  1592. */
  1593. if (ret > 0) {
  1594. WARN_ON(pi_state);
  1595. drop_count++;
  1596. task_count++;
  1597. /*
  1598. * If we acquired the lock, then the user space value
  1599. * of uaddr2 should be vpid. It cannot be changed by
  1600. * the top waiter as it is blocked on hb2 lock if it
  1601. * tries to do so. If something fiddled with it behind
  1602. * our back the pi state lookup might unearth it. So
  1603. * we rather use the known value than rereading and
  1604. * handing potential crap to lookup_pi_state.
  1605. *
  1606. * If that call succeeds then we have pi_state and an
  1607. * initial refcount on it.
  1608. */
  1609. ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
  1610. }
  1611. switch (ret) {
  1612. case 0:
  1613. /* We hold a reference on the pi state. */
  1614. break;
  1615. /* If the above failed, then pi_state is NULL */
  1616. case -EFAULT:
  1617. double_unlock_hb(hb1, hb2);
  1618. hb_waiters_dec(hb2);
  1619. put_futex_key(&key2);
  1620. put_futex_key(&key1);
  1621. ret = fault_in_user_writeable(uaddr2);
  1622. if (!ret)
  1623. goto retry;
  1624. goto out;
  1625. case -EAGAIN:
  1626. /*
  1627. * Two reasons for this:
  1628. * - Owner is exiting and we just wait for the
  1629. * exit to complete.
  1630. * - The user space value changed.
  1631. */
  1632. double_unlock_hb(hb1, hb2);
  1633. hb_waiters_dec(hb2);
  1634. put_futex_key(&key2);
  1635. put_futex_key(&key1);
  1636. cond_resched();
  1637. goto retry;
  1638. default:
  1639. goto out_unlock;
  1640. }
  1641. }
  1642. plist_for_each_entry_safe(this, next, &hb1->chain, list) {
  1643. if (task_count - nr_wake >= nr_requeue)
  1644. break;
  1645. if (!match_futex(&this->key, &key1))
  1646. continue;
  1647. /*
  1648. * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
  1649. * be paired with each other and no other futex ops.
  1650. *
  1651. * We should never be requeueing a futex_q with a pi_state,
  1652. * which is awaiting a futex_unlock_pi().
  1653. */
  1654. if ((requeue_pi && !this->rt_waiter) ||
  1655. (!requeue_pi && this->rt_waiter) ||
  1656. this->pi_state) {
  1657. ret = -EINVAL;
  1658. break;
  1659. }
  1660. /*
  1661. * Wake nr_wake waiters. For requeue_pi, if we acquired the
  1662. * lock, we already woke the top_waiter. If not, it will be
  1663. * woken by futex_unlock_pi().
  1664. */
  1665. if (++task_count <= nr_wake && !requeue_pi) {
  1666. mark_wake_futex(&wake_q, this);
  1667. continue;
  1668. }
  1669. /* Ensure we requeue to the expected futex for requeue_pi. */
  1670. if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
  1671. ret = -EINVAL;
  1672. break;
  1673. }
  1674. /*
  1675. * Requeue nr_requeue waiters and possibly one more in the case
  1676. * of requeue_pi if we couldn't acquire the lock atomically.
  1677. */
  1678. if (requeue_pi) {
  1679. /*
  1680. * Prepare the waiter to take the rt_mutex. Take a
  1681. * refcount on the pi_state and store the pointer in
  1682. * the futex_q object of the waiter.
  1683. */
  1684. atomic_inc(&pi_state->refcount);
  1685. this->pi_state = pi_state;
  1686. ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
  1687. this->rt_waiter,
  1688. this->task);
  1689. if (ret == 1) {
  1690. /*
  1691. * We got the lock. We do neither drop the
  1692. * refcount on pi_state nor clear
  1693. * this->pi_state because the waiter needs the
  1694. * pi_state for cleaning up the user space
  1695. * value. It will drop the refcount after
  1696. * doing so.
  1697. */
  1698. requeue_pi_wake_futex(this, &key2, hb2);
  1699. drop_count++;
  1700. continue;
  1701. } else if (ret) {
  1702. /*
  1703. * rt_mutex_start_proxy_lock() detected a
  1704. * potential deadlock when we tried to queue
  1705. * that waiter. Drop the pi_state reference
  1706. * which we took above and remove the pointer
  1707. * to the state from the waiters futex_q
  1708. * object.
  1709. */
  1710. this->pi_state = NULL;
  1711. put_pi_state(pi_state);
  1712. /*
  1713. * We stop queueing more waiters and let user
  1714. * space deal with the mess.
  1715. */
  1716. break;
  1717. }
  1718. }
  1719. requeue_futex(this, hb1, hb2, &key2);
  1720. drop_count++;
  1721. }
  1722. /*
  1723. * We took an extra initial reference to the pi_state either
  1724. * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
  1725. * need to drop it here again.
  1726. */
  1727. put_pi_state(pi_state);
  1728. out_unlock:
  1729. double_unlock_hb(hb1, hb2);
  1730. wake_up_q(&wake_q);
  1731. hb_waiters_dec(hb2);
  1732. /*
  1733. * drop_futex_key_refs() must be called outside the spinlocks. During
  1734. * the requeue we moved futex_q's from the hash bucket at key1 to the
  1735. * one at key2 and updated their key pointer. We no longer need to
  1736. * hold the references to key1.
  1737. */
  1738. while (--drop_count >= 0)
  1739. drop_futex_key_refs(&key1);
  1740. out_put_keys:
  1741. put_futex_key(&key2);
  1742. out_put_key1:
  1743. put_futex_key(&key1);
  1744. out:
  1745. return ret ? ret : task_count;
  1746. }
  1747. /* The key must be already stored in q->key. */
  1748. static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
  1749. __acquires(&hb->lock)
  1750. {
  1751. struct futex_hash_bucket *hb;
  1752. hb = hash_futex(&q->key);
  1753. /*
  1754. * Increment the counter before taking the lock so that
  1755. * a potential waker won't miss a to-be-slept task that is
  1756. * waiting for the spinlock. This is safe as all queue_lock()
  1757. * users end up calling queue_me(). Similarly, for housekeeping,
  1758. * decrement the counter at queue_unlock() when some error has
  1759. * occurred and we don't end up adding the task to the list.
  1760. */
  1761. hb_waiters_inc(hb);
  1762. q->lock_ptr = &hb->lock;
  1763. spin_lock(&hb->lock); /* implies smp_mb(); (A) */
  1764. return hb;
  1765. }
  1766. static inline void
  1767. queue_unlock(struct futex_hash_bucket *hb)
  1768. __releases(&hb->lock)
  1769. {
  1770. spin_unlock(&hb->lock);
  1771. hb_waiters_dec(hb);
  1772. }
  1773. /**
  1774. * queue_me() - Enqueue the futex_q on the futex_hash_bucket
  1775. * @q: The futex_q to enqueue
  1776. * @hb: The destination hash bucket
  1777. *
  1778. * The hb->lock must be held by the caller, and is released here. A call to
  1779. * queue_me() is typically paired with exactly one call to unqueue_me(). The
  1780. * exceptions involve the PI related operations, which may use unqueue_me_pi()
  1781. * or nothing if the unqueue is done as part of the wake process and the unqueue
  1782. * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
  1783. * an example).
  1784. */
  1785. static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
  1786. __releases(&hb->lock)
  1787. {
  1788. int prio;
  1789. /*
  1790. * The priority used to register this element is
  1791. * - either the real thread-priority for the real-time threads
  1792. * (i.e. threads with a priority lower than MAX_RT_PRIO)
  1793. * - or MAX_RT_PRIO for non-RT threads.
  1794. * Thus, all RT-threads are woken first in priority order, and
  1795. * the others are woken last, in FIFO order.
  1796. */
  1797. prio = min(current->normal_prio, MAX_RT_PRIO);
  1798. plist_node_init(&q->list, prio);
  1799. plist_add(&q->list, &hb->chain);
  1800. q->task = current;
  1801. spin_unlock(&hb->lock);
  1802. }
  1803. /**
  1804. * unqueue_me() - Remove the futex_q from its futex_hash_bucket
  1805. * @q: The futex_q to unqueue
  1806. *
  1807. * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
  1808. * be paired with exactly one earlier call to queue_me().
  1809. *
  1810. * Return:
  1811. * 1 - if the futex_q was still queued (and we removed unqueued it);
  1812. * 0 - if the futex_q was already removed by the waking thread
  1813. */
  1814. static int unqueue_me(struct futex_q *q)
  1815. {
  1816. spinlock_t *lock_ptr;
  1817. int ret = 0;
  1818. /* In the common case we don't take the spinlock, which is nice. */
  1819. retry:
  1820. /*
  1821. * q->lock_ptr can change between this read and the following spin_lock.
  1822. * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
  1823. * optimizing lock_ptr out of the logic below.
  1824. */
  1825. lock_ptr = READ_ONCE(q->lock_ptr);
  1826. if (lock_ptr != NULL) {
  1827. spin_lock(lock_ptr);
  1828. /*
  1829. * q->lock_ptr can change between reading it and
  1830. * spin_lock(), causing us to take the wrong lock. This
  1831. * corrects the race condition.
  1832. *
  1833. * Reasoning goes like this: if we have the wrong lock,
  1834. * q->lock_ptr must have changed (maybe several times)
  1835. * between reading it and the spin_lock(). It can
  1836. * change again after the spin_lock() but only if it was
  1837. * already changed before the spin_lock(). It cannot,
  1838. * however, change back to the original value. Therefore
  1839. * we can detect whether we acquired the correct lock.
  1840. */
  1841. if (unlikely(lock_ptr != q->lock_ptr)) {
  1842. spin_unlock(lock_ptr);
  1843. goto retry;
  1844. }
  1845. __unqueue_futex(q);
  1846. BUG_ON(q->pi_state);
  1847. spin_unlock(lock_ptr);
  1848. ret = 1;
  1849. }
  1850. drop_futex_key_refs(&q->key);
  1851. return ret;
  1852. }
  1853. /*
  1854. * PI futexes can not be requeued and must remove themself from the
  1855. * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
  1856. * and dropped here.
  1857. */
  1858. static void unqueue_me_pi(struct futex_q *q)
  1859. __releases(q->lock_ptr)
  1860. {
  1861. __unqueue_futex(q);
  1862. BUG_ON(!q->pi_state);
  1863. put_pi_state(q->pi_state);
  1864. q->pi_state = NULL;
  1865. spin_unlock(q->lock_ptr);
  1866. }
  1867. /*
  1868. * Fixup the pi_state owner with the new owner.
  1869. *
  1870. * Must be called with hash bucket lock held and mm->sem held for non
  1871. * private futexes.
  1872. */
  1873. static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
  1874. struct task_struct *newowner)
  1875. {
  1876. u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
  1877. struct futex_pi_state *pi_state = q->pi_state;
  1878. struct task_struct *oldowner = pi_state->owner;
  1879. u32 uval, uninitialized_var(curval), newval;
  1880. int ret;
  1881. /* Owner died? */
  1882. if (!pi_state->owner)
  1883. newtid |= FUTEX_OWNER_DIED;
  1884. /*
  1885. * We are here either because we stole the rtmutex from the
  1886. * previous highest priority waiter or we are the highest priority
  1887. * waiter but failed to get the rtmutex the first time.
  1888. * We have to replace the newowner TID in the user space variable.
  1889. * This must be atomic as we have to preserve the owner died bit here.
  1890. *
  1891. * Note: We write the user space value _before_ changing the pi_state
  1892. * because we can fault here. Imagine swapped out pages or a fork
  1893. * that marked all the anonymous memory readonly for cow.
  1894. *
  1895. * Modifying pi_state _before_ the user space value would
  1896. * leave the pi_state in an inconsistent state when we fault
  1897. * here, because we need to drop the hash bucket lock to
  1898. * handle the fault. This might be observed in the PID check
  1899. * in lookup_pi_state.
  1900. */
  1901. retry:
  1902. if (get_futex_value_locked(&uval, uaddr))
  1903. goto handle_fault;
  1904. while (1) {
  1905. newval = (uval & FUTEX_OWNER_DIED) | newtid;
  1906. if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
  1907. goto handle_fault;
  1908. if (curval == uval)
  1909. break;
  1910. uval = curval;
  1911. }
  1912. /*
  1913. * We fixed up user space. Now we need to fix the pi_state
  1914. * itself.
  1915. */
  1916. if (pi_state->owner != NULL) {
  1917. raw_spin_lock_irq(&pi_state->owner->pi_lock);
  1918. WARN_ON(list_empty(&pi_state->list));
  1919. list_del_init(&pi_state->list);
  1920. raw_spin_unlock_irq(&pi_state->owner->pi_lock);
  1921. }
  1922. pi_state->owner = newowner;
  1923. raw_spin_lock_irq(&newowner->pi_lock);
  1924. WARN_ON(!list_empty(&pi_state->list));
  1925. list_add(&pi_state->list, &newowner->pi_state_list);
  1926. raw_spin_unlock_irq(&newowner->pi_lock);
  1927. return 0;
  1928. /*
  1929. * To handle the page fault we need to drop the hash bucket
  1930. * lock here. That gives the other task (either the highest priority
  1931. * waiter itself or the task which stole the rtmutex) the
  1932. * chance to try the fixup of the pi_state. So once we are
  1933. * back from handling the fault we need to check the pi_state
  1934. * after reacquiring the hash bucket lock and before trying to
  1935. * do another fixup. When the fixup has been done already we
  1936. * simply return.
  1937. */
  1938. handle_fault:
  1939. spin_unlock(q->lock_ptr);
  1940. ret = fault_in_user_writeable(uaddr);
  1941. spin_lock(q->lock_ptr);
  1942. /*
  1943. * Check if someone else fixed it for us:
  1944. */
  1945. if (pi_state->owner != oldowner)
  1946. return 0;
  1947. if (ret)
  1948. return ret;
  1949. goto retry;
  1950. }
  1951. static long futex_wait_restart(struct restart_block *restart);
  1952. /**
  1953. * fixup_owner() - Post lock pi_state and corner case management
  1954. * @uaddr: user address of the futex
  1955. * @q: futex_q (contains pi_state and access to the rt_mutex)
  1956. * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
  1957. *
  1958. * After attempting to lock an rt_mutex, this function is called to cleanup
  1959. * the pi_state owner as well as handle race conditions that may allow us to
  1960. * acquire the lock. Must be called with the hb lock held.
  1961. *
  1962. * Return:
  1963. * 1 - success, lock taken;
  1964. * 0 - success, lock not taken;
  1965. * <0 - on error (-EFAULT)
  1966. */
  1967. static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
  1968. {
  1969. struct task_struct *owner;
  1970. int ret = 0;
  1971. if (locked) {
  1972. /*
  1973. * Got the lock. We might not be the anticipated owner if we
  1974. * did a lock-steal - fix up the PI-state in that case:
  1975. */
  1976. if (q->pi_state->owner != current)
  1977. ret = fixup_pi_state_owner(uaddr, q, current);
  1978. goto out;
  1979. }
  1980. /*
  1981. * Catch the rare case, where the lock was released when we were on the
  1982. * way back before we locked the hash bucket.
  1983. */
  1984. if (q->pi_state->owner == current) {
  1985. /*
  1986. * Try to get the rt_mutex now. This might fail as some other
  1987. * task acquired the rt_mutex after we removed ourself from the
  1988. * rt_mutex waiters list.
  1989. */
  1990. if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
  1991. locked = 1;
  1992. goto out;
  1993. }
  1994. /*
  1995. * pi_state is incorrect, some other task did a lock steal and
  1996. * we returned due to timeout or signal without taking the
  1997. * rt_mutex. Too late.
  1998. */
  1999. raw_spin_lock_irq(&q->pi_state->pi_mutex.wait_lock);
  2000. owner = rt_mutex_owner(&q->pi_state->pi_mutex);
  2001. if (!owner)
  2002. owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
  2003. raw_spin_unlock_irq(&q->pi_state->pi_mutex.wait_lock);
  2004. ret = fixup_pi_state_owner(uaddr, q, owner);
  2005. goto out;
  2006. }
  2007. /*
  2008. * Paranoia check. If we did not take the lock, then we should not be
  2009. * the owner of the rt_mutex.
  2010. */
  2011. if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
  2012. printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
  2013. "pi-state %p\n", ret,
  2014. q->pi_state->pi_mutex.owner,
  2015. q->pi_state->owner);
  2016. out:
  2017. return ret ? ret : locked;
  2018. }
  2019. /**
  2020. * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
  2021. * @hb: the futex hash bucket, must be locked by the caller
  2022. * @q: the futex_q to queue up on
  2023. * @timeout: the prepared hrtimer_sleeper, or null for no timeout
  2024. */
  2025. static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
  2026. struct hrtimer_sleeper *timeout)
  2027. {
  2028. /*
  2029. * The task state is guaranteed to be set before another task can
  2030. * wake it. set_current_state() is implemented using smp_store_mb() and
  2031. * queue_me() calls spin_unlock() upon completion, both serializing
  2032. * access to the hash list and forcing another memory barrier.
  2033. */
  2034. set_current_state(TASK_INTERRUPTIBLE);
  2035. queue_me(q, hb);
  2036. /* Arm the timer */
  2037. if (timeout)
  2038. hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
  2039. /*
  2040. * If we have been removed from the hash list, then another task
  2041. * has tried to wake us, and we can skip the call to schedule().
  2042. */
  2043. if (likely(!plist_node_empty(&q->list))) {
  2044. /*
  2045. * If the timer has already expired, current will already be
  2046. * flagged for rescheduling. Only call schedule if there
  2047. * is no timeout, or if it has yet to expire.
  2048. */
  2049. if (!timeout || timeout->task)
  2050. freezable_schedule();
  2051. }
  2052. __set_current_state(TASK_RUNNING);
  2053. }
  2054. /**
  2055. * futex_wait_setup() - Prepare to wait on a futex
  2056. * @uaddr: the futex userspace address
  2057. * @val: the expected value
  2058. * @flags: futex flags (FLAGS_SHARED, etc.)
  2059. * @q: the associated futex_q
  2060. * @hb: storage for hash_bucket pointer to be returned to caller
  2061. *
  2062. * Setup the futex_q and locate the hash_bucket. Get the futex value and
  2063. * compare it with the expected value. Handle atomic faults internally.
  2064. * Return with the hb lock held and a q.key reference on success, and unlocked
  2065. * with no q.key reference on failure.
  2066. *
  2067. * Return:
  2068. * 0 - uaddr contains val and hb has been locked;
  2069. * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
  2070. */
  2071. static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
  2072. struct futex_q *q, struct futex_hash_bucket **hb)
  2073. {
  2074. u32 uval;
  2075. int ret;
  2076. /*
  2077. * Access the page AFTER the hash-bucket is locked.
  2078. * Order is important:
  2079. *
  2080. * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
  2081. * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
  2082. *
  2083. * The basic logical guarantee of a futex is that it blocks ONLY
  2084. * if cond(var) is known to be true at the time of blocking, for
  2085. * any cond. If we locked the hash-bucket after testing *uaddr, that
  2086. * would open a race condition where we could block indefinitely with
  2087. * cond(var) false, which would violate the guarantee.
  2088. *
  2089. * On the other hand, we insert q and release the hash-bucket only
  2090. * after testing *uaddr. This guarantees that futex_wait() will NOT
  2091. * absorb a wakeup if *uaddr does not match the desired values
  2092. * while the syscall executes.
  2093. */
  2094. retry:
  2095. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
  2096. if (unlikely(ret != 0))
  2097. return ret;
  2098. retry_private:
  2099. *hb = queue_lock(q);
  2100. ret = get_futex_value_locked(&uval, uaddr);
  2101. if (ret) {
  2102. queue_unlock(*hb);
  2103. ret = get_user(uval, uaddr);
  2104. if (ret)
  2105. goto out;
  2106. if (!(flags & FLAGS_SHARED))
  2107. goto retry_private;
  2108. put_futex_key(&q->key);
  2109. goto retry;
  2110. }
  2111. if (uval != val) {
  2112. queue_unlock(*hb);
  2113. ret = -EWOULDBLOCK;
  2114. }
  2115. out:
  2116. if (ret)
  2117. put_futex_key(&q->key);
  2118. return ret;
  2119. }
  2120. static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
  2121. ktime_t *abs_time, u32 bitset)
  2122. {
  2123. struct hrtimer_sleeper timeout, *to = NULL;
  2124. struct restart_block *restart;
  2125. struct futex_hash_bucket *hb;
  2126. struct futex_q q = futex_q_init;
  2127. int ret;
  2128. if (!bitset)
  2129. return -EINVAL;
  2130. q.bitset = bitset;
  2131. if (abs_time) {
  2132. to = &timeout;
  2133. hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
  2134. CLOCK_REALTIME : CLOCK_MONOTONIC,
  2135. HRTIMER_MODE_ABS);
  2136. hrtimer_init_sleeper(to, current);
  2137. hrtimer_set_expires_range_ns(&to->timer, *abs_time,
  2138. current->timer_slack_ns);
  2139. }
  2140. retry:
  2141. /*
  2142. * Prepare to wait on uaddr. On success, holds hb lock and increments
  2143. * q.key refs.
  2144. */
  2145. ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
  2146. if (ret)
  2147. goto out;
  2148. /* queue_me and wait for wakeup, timeout, or a signal. */
  2149. futex_wait_queue_me(hb, &q, to);
  2150. /* If we were woken (and unqueued), we succeeded, whatever. */
  2151. ret = 0;
  2152. /* unqueue_me() drops q.key ref */
  2153. if (!unqueue_me(&q))
  2154. goto out;
  2155. ret = -ETIMEDOUT;
  2156. if (to && !to->task)
  2157. goto out;
  2158. /*
  2159. * We expect signal_pending(current), but we might be the
  2160. * victim of a spurious wakeup as well.
  2161. */
  2162. if (!signal_pending(current))
  2163. goto retry;
  2164. ret = -ERESTARTSYS;
  2165. if (!abs_time)
  2166. goto out;
  2167. restart = &current->restart_block;
  2168. restart->fn = futex_wait_restart;
  2169. restart->futex.uaddr = uaddr;
  2170. restart->futex.val = val;
  2171. restart->futex.time = *abs_time;
  2172. restart->futex.bitset = bitset;
  2173. restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
  2174. ret = -ERESTART_RESTARTBLOCK;
  2175. out:
  2176. if (to) {
  2177. hrtimer_cancel(&to->timer);
  2178. destroy_hrtimer_on_stack(&to->timer);
  2179. }
  2180. return ret;
  2181. }
  2182. static long futex_wait_restart(struct restart_block *restart)
  2183. {
  2184. u32 __user *uaddr = restart->futex.uaddr;
  2185. ktime_t t, *tp = NULL;
  2186. if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
  2187. t = restart->futex.time;
  2188. tp = &t;
  2189. }
  2190. restart->fn = do_no_restart_syscall;
  2191. return (long)futex_wait(uaddr, restart->futex.flags,
  2192. restart->futex.val, tp, restart->futex.bitset);
  2193. }
  2194. /*
  2195. * Userspace tried a 0 -> TID atomic transition of the futex value
  2196. * and failed. The kernel side here does the whole locking operation:
  2197. * if there are waiters then it will block as a consequence of relying
  2198. * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
  2199. * a 0 value of the futex too.).
  2200. *
  2201. * Also serves as futex trylock_pi()'ing, and due semantics.
  2202. */
  2203. static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
  2204. ktime_t *time, int trylock)
  2205. {
  2206. struct hrtimer_sleeper timeout, *to = NULL;
  2207. struct futex_hash_bucket *hb;
  2208. struct futex_q q = futex_q_init;
  2209. int res, ret;
  2210. if (refill_pi_state_cache())
  2211. return -ENOMEM;
  2212. if (time) {
  2213. to = &timeout;
  2214. hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
  2215. HRTIMER_MODE_ABS);
  2216. hrtimer_init_sleeper(to, current);
  2217. hrtimer_set_expires(&to->timer, *time);
  2218. }
  2219. retry:
  2220. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
  2221. if (unlikely(ret != 0))
  2222. goto out;
  2223. retry_private:
  2224. hb = queue_lock(&q);
  2225. ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
  2226. if (unlikely(ret)) {
  2227. /*
  2228. * Atomic work succeeded and we got the lock,
  2229. * or failed. Either way, we do _not_ block.
  2230. */
  2231. switch (ret) {
  2232. case 1:
  2233. /* We got the lock. */
  2234. ret = 0;
  2235. goto out_unlock_put_key;
  2236. case -EFAULT:
  2237. goto uaddr_faulted;
  2238. case -EAGAIN:
  2239. /*
  2240. * Two reasons for this:
  2241. * - Task is exiting and we just wait for the
  2242. * exit to complete.
  2243. * - The user space value changed.
  2244. */
  2245. queue_unlock(hb);
  2246. put_futex_key(&q.key);
  2247. cond_resched();
  2248. goto retry;
  2249. default:
  2250. goto out_unlock_put_key;
  2251. }
  2252. }
  2253. /*
  2254. * Only actually queue now that the atomic ops are done:
  2255. */
  2256. queue_me(&q, hb);
  2257. WARN_ON(!q.pi_state);
  2258. /*
  2259. * Block on the PI mutex:
  2260. */
  2261. if (!trylock) {
  2262. ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
  2263. } else {
  2264. ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
  2265. /* Fixup the trylock return value: */
  2266. ret = ret ? 0 : -EWOULDBLOCK;
  2267. }
  2268. spin_lock(q.lock_ptr);
  2269. /*
  2270. * Fixup the pi_state owner and possibly acquire the lock if we
  2271. * haven't already.
  2272. */
  2273. res = fixup_owner(uaddr, &q, !ret);
  2274. /*
  2275. * If fixup_owner() returned an error, proprogate that. If it acquired
  2276. * the lock, clear our -ETIMEDOUT or -EINTR.
  2277. */
  2278. if (res)
  2279. ret = (res < 0) ? res : 0;
  2280. /*
  2281. * If fixup_owner() faulted and was unable to handle the fault, unlock
  2282. * it and return the fault to userspace.
  2283. */
  2284. if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
  2285. rt_mutex_unlock(&q.pi_state->pi_mutex);
  2286. /* Unqueue and drop the lock */
  2287. unqueue_me_pi(&q);
  2288. goto out_put_key;
  2289. out_unlock_put_key:
  2290. queue_unlock(hb);
  2291. out_put_key:
  2292. put_futex_key(&q.key);
  2293. out:
  2294. if (to)
  2295. destroy_hrtimer_on_stack(&to->timer);
  2296. return ret != -EINTR ? ret : -ERESTARTNOINTR;
  2297. uaddr_faulted:
  2298. queue_unlock(hb);
  2299. ret = fault_in_user_writeable(uaddr);
  2300. if (ret)
  2301. goto out_put_key;
  2302. if (!(flags & FLAGS_SHARED))
  2303. goto retry_private;
  2304. put_futex_key(&q.key);
  2305. goto retry;
  2306. }
  2307. /*
  2308. * Userspace attempted a TID -> 0 atomic transition, and failed.
  2309. * This is the in-kernel slowpath: we look up the PI state (if any),
  2310. * and do the rt-mutex unlock.
  2311. */
  2312. static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
  2313. {
  2314. u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
  2315. union futex_key key = FUTEX_KEY_INIT;
  2316. struct futex_hash_bucket *hb;
  2317. struct futex_q *match;
  2318. int ret;
  2319. retry:
  2320. if (get_user(uval, uaddr))
  2321. return -EFAULT;
  2322. /*
  2323. * We release only a lock we actually own:
  2324. */
  2325. if ((uval & FUTEX_TID_MASK) != vpid)
  2326. return -EPERM;
  2327. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
  2328. if (ret)
  2329. return ret;
  2330. hb = hash_futex(&key);
  2331. spin_lock(&hb->lock);
  2332. /*
  2333. * Check waiters first. We do not trust user space values at
  2334. * all and we at least want to know if user space fiddled
  2335. * with the futex value instead of blindly unlocking.
  2336. */
  2337. match = futex_top_waiter(hb, &key);
  2338. if (match) {
  2339. ret = wake_futex_pi(uaddr, uval, match, hb);
  2340. /*
  2341. * In case of success wake_futex_pi dropped the hash
  2342. * bucket lock.
  2343. */
  2344. if (!ret)
  2345. goto out_putkey;
  2346. /*
  2347. * The atomic access to the futex value generated a
  2348. * pagefault, so retry the user-access and the wakeup:
  2349. */
  2350. if (ret == -EFAULT)
  2351. goto pi_faulted;
  2352. /*
  2353. * A unconditional UNLOCK_PI op raced against a waiter
  2354. * setting the FUTEX_WAITERS bit. Try again.
  2355. */
  2356. if (ret == -EAGAIN) {
  2357. spin_unlock(&hb->lock);
  2358. put_futex_key(&key);
  2359. goto retry;
  2360. }
  2361. /*
  2362. * wake_futex_pi has detected invalid state. Tell user
  2363. * space.
  2364. */
  2365. goto out_unlock;
  2366. }
  2367. /*
  2368. * We have no kernel internal state, i.e. no waiters in the
  2369. * kernel. Waiters which are about to queue themselves are stuck
  2370. * on hb->lock. So we can safely ignore them. We do neither
  2371. * preserve the WAITERS bit not the OWNER_DIED one. We are the
  2372. * owner.
  2373. */
  2374. if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
  2375. goto pi_faulted;
  2376. /*
  2377. * If uval has changed, let user space handle it.
  2378. */
  2379. ret = (curval == uval) ? 0 : -EAGAIN;
  2380. out_unlock:
  2381. spin_unlock(&hb->lock);
  2382. out_putkey:
  2383. put_futex_key(&key);
  2384. return ret;
  2385. pi_faulted:
  2386. spin_unlock(&hb->lock);
  2387. put_futex_key(&key);
  2388. ret = fault_in_user_writeable(uaddr);
  2389. if (!ret)
  2390. goto retry;
  2391. return ret;
  2392. }
  2393. /**
  2394. * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
  2395. * @hb: the hash_bucket futex_q was original enqueued on
  2396. * @q: the futex_q woken while waiting to be requeued
  2397. * @key2: the futex_key of the requeue target futex
  2398. * @timeout: the timeout associated with the wait (NULL if none)
  2399. *
  2400. * Detect if the task was woken on the initial futex as opposed to the requeue
  2401. * target futex. If so, determine if it was a timeout or a signal that caused
  2402. * the wakeup and return the appropriate error code to the caller. Must be
  2403. * called with the hb lock held.
  2404. *
  2405. * Return:
  2406. * 0 = no early wakeup detected;
  2407. * <0 = -ETIMEDOUT or -ERESTARTNOINTR
  2408. */
  2409. static inline
  2410. int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
  2411. struct futex_q *q, union futex_key *key2,
  2412. struct hrtimer_sleeper *timeout)
  2413. {
  2414. int ret = 0;
  2415. /*
  2416. * With the hb lock held, we avoid races while we process the wakeup.
  2417. * We only need to hold hb (and not hb2) to ensure atomicity as the
  2418. * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
  2419. * It can't be requeued from uaddr2 to something else since we don't
  2420. * support a PI aware source futex for requeue.
  2421. */
  2422. if (!match_futex(&q->key, key2)) {
  2423. WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
  2424. /*
  2425. * We were woken prior to requeue by a timeout or a signal.
  2426. * Unqueue the futex_q and determine which it was.
  2427. */
  2428. plist_del(&q->list, &hb->chain);
  2429. hb_waiters_dec(hb);
  2430. /* Handle spurious wakeups gracefully */
  2431. ret = -EWOULDBLOCK;
  2432. if (timeout && !timeout->task)
  2433. ret = -ETIMEDOUT;
  2434. else if (signal_pending(current))
  2435. ret = -ERESTARTNOINTR;
  2436. }
  2437. return ret;
  2438. }
  2439. /**
  2440. * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
  2441. * @uaddr: the futex we initially wait on (non-pi)
  2442. * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
  2443. * the same type, no requeueing from private to shared, etc.
  2444. * @val: the expected value of uaddr
  2445. * @abs_time: absolute timeout
  2446. * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
  2447. * @uaddr2: the pi futex we will take prior to returning to user-space
  2448. *
  2449. * The caller will wait on uaddr and will be requeued by futex_requeue() to
  2450. * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
  2451. * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
  2452. * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
  2453. * without one, the pi logic would not know which task to boost/deboost, if
  2454. * there was a need to.
  2455. *
  2456. * We call schedule in futex_wait_queue_me() when we enqueue and return there
  2457. * via the following--
  2458. * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
  2459. * 2) wakeup on uaddr2 after a requeue
  2460. * 3) signal
  2461. * 4) timeout
  2462. *
  2463. * If 3, cleanup and return -ERESTARTNOINTR.
  2464. *
  2465. * If 2, we may then block on trying to take the rt_mutex and return via:
  2466. * 5) successful lock
  2467. * 6) signal
  2468. * 7) timeout
  2469. * 8) other lock acquisition failure
  2470. *
  2471. * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
  2472. *
  2473. * If 4 or 7, we cleanup and return with -ETIMEDOUT.
  2474. *
  2475. * Return:
  2476. * 0 - On success;
  2477. * <0 - On error
  2478. */
  2479. static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
  2480. u32 val, ktime_t *abs_time, u32 bitset,
  2481. u32 __user *uaddr2)
  2482. {
  2483. struct hrtimer_sleeper timeout, *to = NULL;
  2484. struct rt_mutex_waiter rt_waiter;
  2485. struct futex_hash_bucket *hb;
  2486. union futex_key key2 = FUTEX_KEY_INIT;
  2487. struct futex_q q = futex_q_init;
  2488. int res, ret;
  2489. if (uaddr == uaddr2)
  2490. return -EINVAL;
  2491. if (!bitset)
  2492. return -EINVAL;
  2493. if (abs_time) {
  2494. to = &timeout;
  2495. hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
  2496. CLOCK_REALTIME : CLOCK_MONOTONIC,
  2497. HRTIMER_MODE_ABS);
  2498. hrtimer_init_sleeper(to, current);
  2499. hrtimer_set_expires_range_ns(&to->timer, *abs_time,
  2500. current->timer_slack_ns);
  2501. }
  2502. /*
  2503. * The waiter is allocated on our stack, manipulated by the requeue
  2504. * code while we sleep on uaddr.
  2505. */
  2506. debug_rt_mutex_init_waiter(&rt_waiter);
  2507. RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
  2508. RB_CLEAR_NODE(&rt_waiter.tree_entry);
  2509. rt_waiter.task = NULL;
  2510. ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
  2511. if (unlikely(ret != 0))
  2512. goto out;
  2513. q.bitset = bitset;
  2514. q.rt_waiter = &rt_waiter;
  2515. q.requeue_pi_key = &key2;
  2516. /*
  2517. * Prepare to wait on uaddr. On success, increments q.key (key1) ref
  2518. * count.
  2519. */
  2520. ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
  2521. if (ret)
  2522. goto out_key2;
  2523. /*
  2524. * The check above which compares uaddrs is not sufficient for
  2525. * shared futexes. We need to compare the keys:
  2526. */
  2527. if (match_futex(&q.key, &key2)) {
  2528. queue_unlock(hb);
  2529. ret = -EINVAL;
  2530. goto out_put_keys;
  2531. }
  2532. /* Queue the futex_q, drop the hb lock, wait for wakeup. */
  2533. futex_wait_queue_me(hb, &q, to);
  2534. spin_lock(&hb->lock);
  2535. ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
  2536. spin_unlock(&hb->lock);
  2537. if (ret)
  2538. goto out_put_keys;
  2539. /*
  2540. * In order for us to be here, we know our q.key == key2, and since
  2541. * we took the hb->lock above, we also know that futex_requeue() has
  2542. * completed and we no longer have to concern ourselves with a wakeup
  2543. * race with the atomic proxy lock acquisition by the requeue code. The
  2544. * futex_requeue dropped our key1 reference and incremented our key2
  2545. * reference count.
  2546. */
  2547. /* Check if the requeue code acquired the second futex for us. */
  2548. if (!q.rt_waiter) {
  2549. /*
  2550. * Got the lock. We might not be the anticipated owner if we
  2551. * did a lock-steal - fix up the PI-state in that case.
  2552. */
  2553. if (q.pi_state && (q.pi_state->owner != current)) {
  2554. spin_lock(q.lock_ptr);
  2555. ret = fixup_pi_state_owner(uaddr2, &q, current);
  2556. if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current)
  2557. rt_mutex_unlock(&q.pi_state->pi_mutex);
  2558. /*
  2559. * Drop the reference to the pi state which
  2560. * the requeue_pi() code acquired for us.
  2561. */
  2562. put_pi_state(q.pi_state);
  2563. spin_unlock(q.lock_ptr);
  2564. }
  2565. } else {
  2566. struct rt_mutex *pi_mutex;
  2567. /*
  2568. * We have been woken up by futex_unlock_pi(), a timeout, or a
  2569. * signal. futex_unlock_pi() will not destroy the lock_ptr nor
  2570. * the pi_state.
  2571. */
  2572. WARN_ON(!q.pi_state);
  2573. pi_mutex = &q.pi_state->pi_mutex;
  2574. ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
  2575. debug_rt_mutex_free_waiter(&rt_waiter);
  2576. spin_lock(q.lock_ptr);
  2577. /*
  2578. * Fixup the pi_state owner and possibly acquire the lock if we
  2579. * haven't already.
  2580. */
  2581. res = fixup_owner(uaddr2, &q, !ret);
  2582. /*
  2583. * If fixup_owner() returned an error, proprogate that. If it
  2584. * acquired the lock, clear -ETIMEDOUT or -EINTR.
  2585. */
  2586. if (res)
  2587. ret = (res < 0) ? res : 0;
  2588. /*
  2589. * If fixup_pi_state_owner() faulted and was unable to handle
  2590. * the fault, unlock the rt_mutex and return the fault to
  2591. * userspace.
  2592. */
  2593. if (ret && rt_mutex_owner(pi_mutex) == current)
  2594. rt_mutex_unlock(pi_mutex);
  2595. /* Unqueue and drop the lock. */
  2596. unqueue_me_pi(&q);
  2597. }
  2598. if (ret == -EINTR) {
  2599. /*
  2600. * We've already been requeued, but cannot restart by calling
  2601. * futex_lock_pi() directly. We could restart this syscall, but
  2602. * it would detect that the user space "val" changed and return
  2603. * -EWOULDBLOCK. Save the overhead of the restart and return
  2604. * -EWOULDBLOCK directly.
  2605. */
  2606. ret = -EWOULDBLOCK;
  2607. }
  2608. out_put_keys:
  2609. put_futex_key(&q.key);
  2610. out_key2:
  2611. put_futex_key(&key2);
  2612. out:
  2613. if (to) {
  2614. hrtimer_cancel(&to->timer);
  2615. destroy_hrtimer_on_stack(&to->timer);
  2616. }
  2617. return ret;
  2618. }
  2619. /*
  2620. * Support for robust futexes: the kernel cleans up held futexes at
  2621. * thread exit time.
  2622. *
  2623. * Implementation: user-space maintains a per-thread list of locks it
  2624. * is holding. Upon do_exit(), the kernel carefully walks this list,
  2625. * and marks all locks that are owned by this thread with the
  2626. * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
  2627. * always manipulated with the lock held, so the list is private and
  2628. * per-thread. Userspace also maintains a per-thread 'list_op_pending'
  2629. * field, to allow the kernel to clean up if the thread dies after
  2630. * acquiring the lock, but just before it could have added itself to
  2631. * the list. There can only be one such pending lock.
  2632. */
  2633. /**
  2634. * sys_set_robust_list() - Set the robust-futex list head of a task
  2635. * @head: pointer to the list-head
  2636. * @len: length of the list-head, as userspace expects
  2637. */
  2638. SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
  2639. size_t, len)
  2640. {
  2641. if (!futex_cmpxchg_enabled)
  2642. return -ENOSYS;
  2643. /*
  2644. * The kernel knows only one size for now:
  2645. */
  2646. if (unlikely(len != sizeof(*head)))
  2647. return -EINVAL;
  2648. current->robust_list = head;
  2649. return 0;
  2650. }
  2651. /**
  2652. * sys_get_robust_list() - Get the robust-futex list head of a task
  2653. * @pid: pid of the process [zero for current task]
  2654. * @head_ptr: pointer to a list-head pointer, the kernel fills it in
  2655. * @len_ptr: pointer to a length field, the kernel fills in the header size
  2656. */
  2657. SYSCALL_DEFINE3(get_robust_list, int, pid,
  2658. struct robust_list_head __user * __user *, head_ptr,
  2659. size_t __user *, len_ptr)
  2660. {
  2661. struct robust_list_head __user *head;
  2662. unsigned long ret;
  2663. struct task_struct *p;
  2664. if (!futex_cmpxchg_enabled)
  2665. return -ENOSYS;
  2666. rcu_read_lock();
  2667. ret = -ESRCH;
  2668. if (!pid)
  2669. p = current;
  2670. else {
  2671. p = find_task_by_vpid(pid);
  2672. if (!p)
  2673. goto err_unlock;
  2674. }
  2675. ret = -EPERM;
  2676. if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
  2677. goto err_unlock;
  2678. head = p->robust_list;
  2679. rcu_read_unlock();
  2680. if (put_user(sizeof(*head), len_ptr))
  2681. return -EFAULT;
  2682. return put_user(head, head_ptr);
  2683. err_unlock:
  2684. rcu_read_unlock();
  2685. return ret;
  2686. }
  2687. /*
  2688. * Process a futex-list entry, check whether it's owned by the
  2689. * dying task, and do notification if so:
  2690. */
  2691. int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
  2692. {
  2693. u32 uval, uninitialized_var(nval), mval;
  2694. retry:
  2695. if (get_user(uval, uaddr))
  2696. return -1;
  2697. if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
  2698. /*
  2699. * Ok, this dying thread is truly holding a futex
  2700. * of interest. Set the OWNER_DIED bit atomically
  2701. * via cmpxchg, and if the value had FUTEX_WAITERS
  2702. * set, wake up a waiter (if any). (We have to do a
  2703. * futex_wake() even if OWNER_DIED is already set -
  2704. * to handle the rare but possible case of recursive
  2705. * thread-death.) The rest of the cleanup is done in
  2706. * userspace.
  2707. */
  2708. mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
  2709. /*
  2710. * We are not holding a lock here, but we want to have
  2711. * the pagefault_disable/enable() protection because
  2712. * we want to handle the fault gracefully. If the
  2713. * access fails we try to fault in the futex with R/W
  2714. * verification via get_user_pages. get_user() above
  2715. * does not guarantee R/W access. If that fails we
  2716. * give up and leave the futex locked.
  2717. */
  2718. if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
  2719. if (fault_in_user_writeable(uaddr))
  2720. return -1;
  2721. goto retry;
  2722. }
  2723. if (nval != uval)
  2724. goto retry;
  2725. /*
  2726. * Wake robust non-PI futexes here. The wakeup of
  2727. * PI futexes happens in exit_pi_state():
  2728. */
  2729. if (!pi && (uval & FUTEX_WAITERS))
  2730. futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
  2731. }
  2732. return 0;
  2733. }
  2734. /*
  2735. * Fetch a robust-list pointer. Bit 0 signals PI futexes:
  2736. */
  2737. static inline int fetch_robust_entry(struct robust_list __user **entry,
  2738. struct robust_list __user * __user *head,
  2739. unsigned int *pi)
  2740. {
  2741. unsigned long uentry;
  2742. if (get_user(uentry, (unsigned long __user *)head))
  2743. return -EFAULT;
  2744. *entry = (void __user *)(uentry & ~1UL);
  2745. *pi = uentry & 1;
  2746. return 0;
  2747. }
  2748. /*
  2749. * Walk curr->robust_list (very carefully, it's a userspace list!)
  2750. * and mark any locks found there dead, and notify any waiters.
  2751. *
  2752. * We silently return on any sign of list-walking problem.
  2753. */
  2754. void exit_robust_list(struct task_struct *curr)
  2755. {
  2756. struct robust_list_head __user *head = curr->robust_list;
  2757. struct robust_list __user *entry, *next_entry, *pending;
  2758. unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
  2759. unsigned int uninitialized_var(next_pi);
  2760. unsigned long futex_offset;
  2761. int rc;
  2762. if (!futex_cmpxchg_enabled)
  2763. return;
  2764. /*
  2765. * Fetch the list head (which was registered earlier, via
  2766. * sys_set_robust_list()):
  2767. */
  2768. if (fetch_robust_entry(&entry, &head->list.next, &pi))
  2769. return;
  2770. /*
  2771. * Fetch the relative futex offset:
  2772. */
  2773. if (get_user(futex_offset, &head->futex_offset))
  2774. return;
  2775. /*
  2776. * Fetch any possibly pending lock-add first, and handle it
  2777. * if it exists:
  2778. */
  2779. if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
  2780. return;
  2781. next_entry = NULL; /* avoid warning with gcc */
  2782. while (entry != &head->list) {
  2783. /*
  2784. * Fetch the next entry in the list before calling
  2785. * handle_futex_death:
  2786. */
  2787. rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
  2788. /*
  2789. * A pending lock might already be on the list, so
  2790. * don't process it twice:
  2791. */
  2792. if (entry != pending)
  2793. if (handle_futex_death((void __user *)entry + futex_offset,
  2794. curr, pi))
  2795. return;
  2796. if (rc)
  2797. return;
  2798. entry = next_entry;
  2799. pi = next_pi;
  2800. /*
  2801. * Avoid excessively long or circular lists:
  2802. */
  2803. if (!--limit)
  2804. break;
  2805. cond_resched();
  2806. }
  2807. if (pending)
  2808. handle_futex_death((void __user *)pending + futex_offset,
  2809. curr, pip);
  2810. }
  2811. long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
  2812. u32 __user *uaddr2, u32 val2, u32 val3)
  2813. {
  2814. int cmd = op & FUTEX_CMD_MASK;
  2815. unsigned int flags = 0;
  2816. if (!(op & FUTEX_PRIVATE_FLAG))
  2817. flags |= FLAGS_SHARED;
  2818. if (op & FUTEX_CLOCK_REALTIME) {
  2819. flags |= FLAGS_CLOCKRT;
  2820. if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
  2821. cmd != FUTEX_WAIT_REQUEUE_PI)
  2822. return -ENOSYS;
  2823. }
  2824. switch (cmd) {
  2825. case FUTEX_LOCK_PI:
  2826. case FUTEX_UNLOCK_PI:
  2827. case FUTEX_TRYLOCK_PI:
  2828. case FUTEX_WAIT_REQUEUE_PI:
  2829. case FUTEX_CMP_REQUEUE_PI:
  2830. if (!futex_cmpxchg_enabled)
  2831. return -ENOSYS;
  2832. }
  2833. switch (cmd) {
  2834. case FUTEX_WAIT:
  2835. val3 = FUTEX_BITSET_MATCH_ANY;
  2836. case FUTEX_WAIT_BITSET:
  2837. return futex_wait(uaddr, flags, val, timeout, val3);
  2838. case FUTEX_WAKE:
  2839. val3 = FUTEX_BITSET_MATCH_ANY;
  2840. case FUTEX_WAKE_BITSET:
  2841. return futex_wake(uaddr, flags, val, val3);
  2842. case FUTEX_REQUEUE:
  2843. return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
  2844. case FUTEX_CMP_REQUEUE:
  2845. return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
  2846. case FUTEX_WAKE_OP:
  2847. return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
  2848. case FUTEX_LOCK_PI:
  2849. return futex_lock_pi(uaddr, flags, timeout, 0);
  2850. case FUTEX_UNLOCK_PI:
  2851. return futex_unlock_pi(uaddr, flags);
  2852. case FUTEX_TRYLOCK_PI:
  2853. return futex_lock_pi(uaddr, flags, NULL, 1);
  2854. case FUTEX_WAIT_REQUEUE_PI:
  2855. val3 = FUTEX_BITSET_MATCH_ANY;
  2856. return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
  2857. uaddr2);
  2858. case FUTEX_CMP_REQUEUE_PI:
  2859. return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
  2860. }
  2861. return -ENOSYS;
  2862. }
  2863. SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
  2864. struct timespec __user *, utime, u32 __user *, uaddr2,
  2865. u32, val3)
  2866. {
  2867. struct timespec ts;
  2868. ktime_t t, *tp = NULL;
  2869. u32 val2 = 0;
  2870. int cmd = op & FUTEX_CMD_MASK;
  2871. if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
  2872. cmd == FUTEX_WAIT_BITSET ||
  2873. cmd == FUTEX_WAIT_REQUEUE_PI)) {
  2874. if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
  2875. return -EFAULT;
  2876. if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
  2877. return -EFAULT;
  2878. if (!timespec_valid(&ts))
  2879. return -EINVAL;
  2880. t = timespec_to_ktime(ts);
  2881. if (cmd == FUTEX_WAIT)
  2882. t = ktime_add_safe(ktime_get(), t);
  2883. tp = &t;
  2884. }
  2885. /*
  2886. * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
  2887. * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
  2888. */
  2889. if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
  2890. cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
  2891. val2 = (u32) (unsigned long) utime;
  2892. return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
  2893. }
  2894. static void __init futex_detect_cmpxchg(void)
  2895. {
  2896. #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
  2897. u32 curval;
  2898. /*
  2899. * This will fail and we want it. Some arch implementations do
  2900. * runtime detection of the futex_atomic_cmpxchg_inatomic()
  2901. * functionality. We want to know that before we call in any
  2902. * of the complex code paths. Also we want to prevent
  2903. * registration of robust lists in that case. NULL is
  2904. * guaranteed to fault and we get -EFAULT on functional
  2905. * implementation, the non-functional ones will return
  2906. * -ENOSYS.
  2907. */
  2908. if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
  2909. futex_cmpxchg_enabled = 1;
  2910. #endif
  2911. }
  2912. static int __init futex_init(void)
  2913. {
  2914. unsigned int futex_shift;
  2915. unsigned long i;
  2916. #if CONFIG_BASE_SMALL
  2917. futex_hashsize = 16;
  2918. #else
  2919. futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
  2920. #endif
  2921. futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
  2922. futex_hashsize, 0,
  2923. futex_hashsize < 256 ? HASH_SMALL : 0,
  2924. &futex_shift, NULL,
  2925. futex_hashsize, futex_hashsize);
  2926. futex_hashsize = 1UL << futex_shift;
  2927. futex_detect_cmpxchg();
  2928. for (i = 0; i < futex_hashsize; i++) {
  2929. atomic_set(&futex_queues[i].waiters, 0);
  2930. plist_head_init(&futex_queues[i].chain);
  2931. spin_lock_init(&futex_queues[i].lock);
  2932. }
  2933. return 0;
  2934. }
  2935. core_initcall(futex_init);