fault.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552
  1. /*
  2. * PowerPC version
  3. * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  4. *
  5. * Derived from "arch/i386/mm/fault.c"
  6. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  7. *
  8. * Modified by Cort Dougan and Paul Mackerras.
  9. *
  10. * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
  11. *
  12. * This program is free software; you can redistribute it and/or
  13. * modify it under the terms of the GNU General Public License
  14. * as published by the Free Software Foundation; either version
  15. * 2 of the License, or (at your option) any later version.
  16. */
  17. #include <linux/signal.h>
  18. #include <linux/sched.h>
  19. #include <linux/kernel.h>
  20. #include <linux/errno.h>
  21. #include <linux/string.h>
  22. #include <linux/types.h>
  23. #include <linux/ptrace.h>
  24. #include <linux/mman.h>
  25. #include <linux/mm.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/highmem.h>
  28. #include <linux/extable.h>
  29. #include <linux/kprobes.h>
  30. #include <linux/kdebug.h>
  31. #include <linux/perf_event.h>
  32. #include <linux/ratelimit.h>
  33. #include <linux/context_tracking.h>
  34. #include <linux/hugetlb.h>
  35. #include <linux/uaccess.h>
  36. #include <asm/firmware.h>
  37. #include <asm/page.h>
  38. #include <asm/pgtable.h>
  39. #include <asm/mmu.h>
  40. #include <asm/mmu_context.h>
  41. #include <asm/tlbflush.h>
  42. #include <asm/siginfo.h>
  43. #include <asm/debug.h>
  44. #include "icswx.h"
  45. #ifdef CONFIG_KPROBES
  46. static inline int notify_page_fault(struct pt_regs *regs)
  47. {
  48. int ret = 0;
  49. /* kprobe_running() needs smp_processor_id() */
  50. if (!user_mode(regs)) {
  51. preempt_disable();
  52. if (kprobe_running() && kprobe_fault_handler(regs, 11))
  53. ret = 1;
  54. preempt_enable();
  55. }
  56. return ret;
  57. }
  58. #else
  59. static inline int notify_page_fault(struct pt_regs *regs)
  60. {
  61. return 0;
  62. }
  63. #endif
  64. /*
  65. * Check whether the instruction at regs->nip is a store using
  66. * an update addressing form which will update r1.
  67. */
  68. static int store_updates_sp(struct pt_regs *regs)
  69. {
  70. unsigned int inst;
  71. if (get_user(inst, (unsigned int __user *)regs->nip))
  72. return 0;
  73. /* check for 1 in the rA field */
  74. if (((inst >> 16) & 0x1f) != 1)
  75. return 0;
  76. /* check major opcode */
  77. switch (inst >> 26) {
  78. case 37: /* stwu */
  79. case 39: /* stbu */
  80. case 45: /* sthu */
  81. case 53: /* stfsu */
  82. case 55: /* stfdu */
  83. return 1;
  84. case 62: /* std or stdu */
  85. return (inst & 3) == 1;
  86. case 31:
  87. /* check minor opcode */
  88. switch ((inst >> 1) & 0x3ff) {
  89. case 181: /* stdux */
  90. case 183: /* stwux */
  91. case 247: /* stbux */
  92. case 439: /* sthux */
  93. case 695: /* stfsux */
  94. case 759: /* stfdux */
  95. return 1;
  96. }
  97. }
  98. return 0;
  99. }
  100. /*
  101. * do_page_fault error handling helpers
  102. */
  103. #define MM_FAULT_RETURN 0
  104. #define MM_FAULT_CONTINUE -1
  105. #define MM_FAULT_ERR(sig) (sig)
  106. static int do_sigbus(struct pt_regs *regs, unsigned long address,
  107. unsigned int fault)
  108. {
  109. siginfo_t info;
  110. unsigned int lsb = 0;
  111. up_read(&current->mm->mmap_sem);
  112. if (!user_mode(regs))
  113. return MM_FAULT_ERR(SIGBUS);
  114. current->thread.trap_nr = BUS_ADRERR;
  115. info.si_signo = SIGBUS;
  116. info.si_errno = 0;
  117. info.si_code = BUS_ADRERR;
  118. info.si_addr = (void __user *)address;
  119. #ifdef CONFIG_MEMORY_FAILURE
  120. if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
  121. pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
  122. current->comm, current->pid, address);
  123. info.si_code = BUS_MCEERR_AR;
  124. }
  125. if (fault & VM_FAULT_HWPOISON_LARGE)
  126. lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
  127. if (fault & VM_FAULT_HWPOISON)
  128. lsb = PAGE_SHIFT;
  129. #endif
  130. info.si_addr_lsb = lsb;
  131. force_sig_info(SIGBUS, &info, current);
  132. return MM_FAULT_RETURN;
  133. }
  134. static int mm_fault_error(struct pt_regs *regs, unsigned long addr, int fault)
  135. {
  136. /*
  137. * Pagefault was interrupted by SIGKILL. We have no reason to
  138. * continue the pagefault.
  139. */
  140. if (fatal_signal_pending(current)) {
  141. /*
  142. * If we have retry set, the mmap semaphore will have
  143. * alrady been released in __lock_page_or_retry(). Else
  144. * we release it now.
  145. */
  146. if (!(fault & VM_FAULT_RETRY))
  147. up_read(&current->mm->mmap_sem);
  148. /* Coming from kernel, we need to deal with uaccess fixups */
  149. if (user_mode(regs))
  150. return MM_FAULT_RETURN;
  151. return MM_FAULT_ERR(SIGKILL);
  152. }
  153. /* No fault: be happy */
  154. if (!(fault & VM_FAULT_ERROR))
  155. return MM_FAULT_CONTINUE;
  156. /* Out of memory */
  157. if (fault & VM_FAULT_OOM) {
  158. up_read(&current->mm->mmap_sem);
  159. /*
  160. * We ran out of memory, or some other thing happened to us that
  161. * made us unable to handle the page fault gracefully.
  162. */
  163. if (!user_mode(regs))
  164. return MM_FAULT_ERR(SIGKILL);
  165. pagefault_out_of_memory();
  166. return MM_FAULT_RETURN;
  167. }
  168. if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE))
  169. return do_sigbus(regs, addr, fault);
  170. /* We don't understand the fault code, this is fatal */
  171. BUG();
  172. return MM_FAULT_CONTINUE;
  173. }
  174. /*
  175. * For 600- and 800-family processors, the error_code parameter is DSISR
  176. * for a data fault, SRR1 for an instruction fault. For 400-family processors
  177. * the error_code parameter is ESR for a data fault, 0 for an instruction
  178. * fault.
  179. * For 64-bit processors, the error_code parameter is
  180. * - DSISR for a non-SLB data access fault,
  181. * - SRR1 & 0x08000000 for a non-SLB instruction access fault
  182. * - 0 any SLB fault.
  183. *
  184. * The return value is 0 if the fault was handled, or the signal
  185. * number if this is a kernel fault that can't be handled here.
  186. */
  187. int do_page_fault(struct pt_regs *regs, unsigned long address,
  188. unsigned long error_code)
  189. {
  190. enum ctx_state prev_state = exception_enter();
  191. struct vm_area_struct * vma;
  192. struct mm_struct *mm = current->mm;
  193. unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
  194. int code = SEGV_MAPERR;
  195. int is_write = 0;
  196. int trap = TRAP(regs);
  197. int is_exec = trap == 0x400;
  198. int fault;
  199. int rc = 0, store_update_sp = 0;
  200. #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
  201. /*
  202. * Fortunately the bit assignments in SRR1 for an instruction
  203. * fault and DSISR for a data fault are mostly the same for the
  204. * bits we are interested in. But there are some bits which
  205. * indicate errors in DSISR but can validly be set in SRR1.
  206. */
  207. if (trap == 0x400)
  208. error_code &= 0x48200000;
  209. else
  210. is_write = error_code & DSISR_ISSTORE;
  211. #else
  212. is_write = error_code & ESR_DST;
  213. #endif /* CONFIG_4xx || CONFIG_BOOKE */
  214. #ifdef CONFIG_PPC_ICSWX
  215. /*
  216. * we need to do this early because this "data storage
  217. * interrupt" does not update the DAR/DEAR so we don't want to
  218. * look at it
  219. */
  220. if (error_code & ICSWX_DSI_UCT) {
  221. rc = acop_handle_fault(regs, address, error_code);
  222. if (rc)
  223. goto bail;
  224. }
  225. #endif /* CONFIG_PPC_ICSWX */
  226. if (notify_page_fault(regs))
  227. goto bail;
  228. if (unlikely(debugger_fault_handler(regs)))
  229. goto bail;
  230. /*
  231. * The kernel should never take an execute fault nor should it
  232. * take a page fault to a kernel address.
  233. */
  234. if (!user_mode(regs) && (is_exec || (address >= TASK_SIZE))) {
  235. rc = SIGSEGV;
  236. goto bail;
  237. }
  238. #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE) || \
  239. defined(CONFIG_PPC_BOOK3S_64))
  240. if (error_code & DSISR_DABRMATCH) {
  241. /* breakpoint match */
  242. do_break(regs, address, error_code);
  243. goto bail;
  244. }
  245. #endif
  246. /* We restore the interrupt state now */
  247. if (!arch_irq_disabled_regs(regs))
  248. local_irq_enable();
  249. if (faulthandler_disabled() || mm == NULL) {
  250. if (!user_mode(regs)) {
  251. rc = SIGSEGV;
  252. goto bail;
  253. }
  254. /* faulthandler_disabled() in user mode is really bad,
  255. as is current->mm == NULL. */
  256. printk(KERN_EMERG "Page fault in user mode with "
  257. "faulthandler_disabled() = %d mm = %p\n",
  258. faulthandler_disabled(), mm);
  259. printk(KERN_EMERG "NIP = %lx MSR = %lx\n",
  260. regs->nip, regs->msr);
  261. die("Weird page fault", regs, SIGSEGV);
  262. }
  263. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
  264. /*
  265. * We want to do this outside mmap_sem, because reading code around nip
  266. * can result in fault, which will cause a deadlock when called with
  267. * mmap_sem held
  268. */
  269. if (user_mode(regs))
  270. store_update_sp = store_updates_sp(regs);
  271. if (user_mode(regs))
  272. flags |= FAULT_FLAG_USER;
  273. /* When running in the kernel we expect faults to occur only to
  274. * addresses in user space. All other faults represent errors in the
  275. * kernel and should generate an OOPS. Unfortunately, in the case of an
  276. * erroneous fault occurring in a code path which already holds mmap_sem
  277. * we will deadlock attempting to validate the fault against the
  278. * address space. Luckily the kernel only validly references user
  279. * space from well defined areas of code, which are listed in the
  280. * exceptions table.
  281. *
  282. * As the vast majority of faults will be valid we will only perform
  283. * the source reference check when there is a possibility of a deadlock.
  284. * Attempt to lock the address space, if we cannot we then validate the
  285. * source. If this is invalid we can skip the address space check,
  286. * thus avoiding the deadlock.
  287. */
  288. if (!down_read_trylock(&mm->mmap_sem)) {
  289. if (!user_mode(regs) && !search_exception_tables(regs->nip))
  290. goto bad_area_nosemaphore;
  291. retry:
  292. down_read(&mm->mmap_sem);
  293. } else {
  294. /*
  295. * The above down_read_trylock() might have succeeded in
  296. * which case we'll have missed the might_sleep() from
  297. * down_read():
  298. */
  299. might_sleep();
  300. }
  301. vma = find_vma(mm, address);
  302. if (!vma)
  303. goto bad_area;
  304. if (vma->vm_start <= address)
  305. goto good_area;
  306. if (!(vma->vm_flags & VM_GROWSDOWN))
  307. goto bad_area;
  308. /*
  309. * N.B. The POWER/Open ABI allows programs to access up to
  310. * 288 bytes below the stack pointer.
  311. * The kernel signal delivery code writes up to about 1.5kB
  312. * below the stack pointer (r1) before decrementing it.
  313. * The exec code can write slightly over 640kB to the stack
  314. * before setting the user r1. Thus we allow the stack to
  315. * expand to 1MB without further checks.
  316. */
  317. if (address + 0x100000 < vma->vm_end) {
  318. /* get user regs even if this fault is in kernel mode */
  319. struct pt_regs *uregs = current->thread.regs;
  320. if (uregs == NULL)
  321. goto bad_area;
  322. /*
  323. * A user-mode access to an address a long way below
  324. * the stack pointer is only valid if the instruction
  325. * is one which would update the stack pointer to the
  326. * address accessed if the instruction completed,
  327. * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
  328. * (or the byte, halfword, float or double forms).
  329. *
  330. * If we don't check this then any write to the area
  331. * between the last mapped region and the stack will
  332. * expand the stack rather than segfaulting.
  333. */
  334. if (address + 2048 < uregs->gpr[1] && !store_update_sp)
  335. goto bad_area;
  336. }
  337. if (expand_stack(vma, address))
  338. goto bad_area;
  339. good_area:
  340. code = SEGV_ACCERR;
  341. #if defined(CONFIG_6xx)
  342. if (error_code & 0x95700000)
  343. /* an error such as lwarx to I/O controller space,
  344. address matching DABR, eciwx, etc. */
  345. goto bad_area;
  346. #endif /* CONFIG_6xx */
  347. #if defined(CONFIG_8xx)
  348. /* The MPC8xx seems to always set 0x80000000, which is
  349. * "undefined". Of those that can be set, this is the only
  350. * one which seems bad.
  351. */
  352. if (error_code & 0x10000000)
  353. /* Guarded storage error. */
  354. goto bad_area;
  355. #endif /* CONFIG_8xx */
  356. if (is_exec) {
  357. /*
  358. * Allow execution from readable areas if the MMU does not
  359. * provide separate controls over reading and executing.
  360. *
  361. * Note: That code used to not be enabled for 4xx/BookE.
  362. * It is now as I/D cache coherency for these is done at
  363. * set_pte_at() time and I see no reason why the test
  364. * below wouldn't be valid on those processors. This -may-
  365. * break programs compiled with a really old ABI though.
  366. */
  367. if (!(vma->vm_flags & VM_EXEC) &&
  368. (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
  369. !(vma->vm_flags & (VM_READ | VM_WRITE))))
  370. goto bad_area;
  371. #ifdef CONFIG_PPC_STD_MMU
  372. /*
  373. * protfault should only happen due to us
  374. * mapping a region readonly temporarily. PROT_NONE
  375. * is also covered by the VMA check above.
  376. */
  377. WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
  378. #endif /* CONFIG_PPC_STD_MMU */
  379. /* a write */
  380. } else if (is_write) {
  381. if (!(vma->vm_flags & VM_WRITE))
  382. goto bad_area;
  383. flags |= FAULT_FLAG_WRITE;
  384. /* a read */
  385. } else {
  386. if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
  387. goto bad_area;
  388. WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
  389. }
  390. /*
  391. * If for any reason at all we couldn't handle the fault,
  392. * make sure we exit gracefully rather than endlessly redo
  393. * the fault.
  394. */
  395. fault = handle_mm_fault(vma, address, flags);
  396. if (unlikely(fault & (VM_FAULT_RETRY|VM_FAULT_ERROR))) {
  397. if (fault & VM_FAULT_SIGSEGV)
  398. goto bad_area;
  399. rc = mm_fault_error(regs, address, fault);
  400. if (rc >= MM_FAULT_RETURN)
  401. goto bail;
  402. else
  403. rc = 0;
  404. }
  405. /*
  406. * Major/minor page fault accounting is only done on the
  407. * initial attempt. If we go through a retry, it is extremely
  408. * likely that the page will be found in page cache at that point.
  409. */
  410. if (flags & FAULT_FLAG_ALLOW_RETRY) {
  411. if (fault & VM_FAULT_MAJOR) {
  412. current->maj_flt++;
  413. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
  414. regs, address);
  415. #ifdef CONFIG_PPC_SMLPAR
  416. if (firmware_has_feature(FW_FEATURE_CMO)) {
  417. u32 page_ins;
  418. preempt_disable();
  419. page_ins = be32_to_cpu(get_lppaca()->page_ins);
  420. page_ins += 1 << PAGE_FACTOR;
  421. get_lppaca()->page_ins = cpu_to_be32(page_ins);
  422. preempt_enable();
  423. }
  424. #endif /* CONFIG_PPC_SMLPAR */
  425. } else {
  426. current->min_flt++;
  427. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
  428. regs, address);
  429. }
  430. if (fault & VM_FAULT_RETRY) {
  431. /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
  432. * of starvation. */
  433. flags &= ~FAULT_FLAG_ALLOW_RETRY;
  434. flags |= FAULT_FLAG_TRIED;
  435. goto retry;
  436. }
  437. }
  438. up_read(&mm->mmap_sem);
  439. goto bail;
  440. bad_area:
  441. up_read(&mm->mmap_sem);
  442. bad_area_nosemaphore:
  443. /* User mode accesses cause a SIGSEGV */
  444. if (user_mode(regs)) {
  445. _exception(SIGSEGV, regs, code, address);
  446. goto bail;
  447. }
  448. if (is_exec && (error_code & DSISR_PROTFAULT))
  449. printk_ratelimited(KERN_CRIT "kernel tried to execute NX-protected"
  450. " page (%lx) - exploit attempt? (uid: %d)\n",
  451. address, from_kuid(&init_user_ns, current_uid()));
  452. rc = SIGSEGV;
  453. bail:
  454. exception_exit(prev_state);
  455. return rc;
  456. }
  457. NOKPROBE_SYMBOL(do_page_fault);
  458. /*
  459. * bad_page_fault is called when we have a bad access from the kernel.
  460. * It is called from the DSI and ISI handlers in head.S and from some
  461. * of the procedures in traps.c.
  462. */
  463. void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
  464. {
  465. const struct exception_table_entry *entry;
  466. /* Are we prepared to handle this fault? */
  467. if ((entry = search_exception_tables(regs->nip)) != NULL) {
  468. regs->nip = extable_fixup(entry);
  469. return;
  470. }
  471. /* kernel has accessed a bad area */
  472. switch (regs->trap) {
  473. case 0x300:
  474. case 0x380:
  475. printk(KERN_ALERT "Unable to handle kernel paging request for "
  476. "data at address 0x%08lx\n", regs->dar);
  477. break;
  478. case 0x400:
  479. case 0x480:
  480. printk(KERN_ALERT "Unable to handle kernel paging request for "
  481. "instruction fetch\n");
  482. break;
  483. case 0x600:
  484. printk(KERN_ALERT "Unable to handle kernel paging request for "
  485. "unaligned access at address 0x%08lx\n", regs->dar);
  486. break;
  487. default:
  488. printk(KERN_ALERT "Unable to handle kernel paging request for "
  489. "unknown fault\n");
  490. break;
  491. }
  492. printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
  493. regs->nip);
  494. if (task_stack_end_corrupted(current))
  495. printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
  496. die("Kernel access of bad area", regs, sig);
  497. }