file.c 90 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (C) 2007 Oracle. All rights reserved.
  4. */
  5. #include <linux/fs.h>
  6. #include <linux/pagemap.h>
  7. #include <linux/highmem.h>
  8. #include <linux/time.h>
  9. #include <linux/init.h>
  10. #include <linux/string.h>
  11. #include <linux/backing-dev.h>
  12. #include <linux/mpage.h>
  13. #include <linux/falloc.h>
  14. #include <linux/swap.h>
  15. #include <linux/writeback.h>
  16. #include <linux/compat.h>
  17. #include <linux/slab.h>
  18. #include <linux/btrfs.h>
  19. #include <linux/uio.h>
  20. #include <linux/iversion.h>
  21. #include "ctree.h"
  22. #include "disk-io.h"
  23. #include "transaction.h"
  24. #include "btrfs_inode.h"
  25. #include "print-tree.h"
  26. #include "tree-log.h"
  27. #include "locking.h"
  28. #include "volumes.h"
  29. #include "qgroup.h"
  30. #include "compression.h"
  31. static struct kmem_cache *btrfs_inode_defrag_cachep;
  32. /*
  33. * when auto defrag is enabled we
  34. * queue up these defrag structs to remember which
  35. * inodes need defragging passes
  36. */
  37. struct inode_defrag {
  38. struct rb_node rb_node;
  39. /* objectid */
  40. u64 ino;
  41. /*
  42. * transid where the defrag was added, we search for
  43. * extents newer than this
  44. */
  45. u64 transid;
  46. /* root objectid */
  47. u64 root;
  48. /* last offset we were able to defrag */
  49. u64 last_offset;
  50. /* if we've wrapped around back to zero once already */
  51. int cycled;
  52. };
  53. static int __compare_inode_defrag(struct inode_defrag *defrag1,
  54. struct inode_defrag *defrag2)
  55. {
  56. if (defrag1->root > defrag2->root)
  57. return 1;
  58. else if (defrag1->root < defrag2->root)
  59. return -1;
  60. else if (defrag1->ino > defrag2->ino)
  61. return 1;
  62. else if (defrag1->ino < defrag2->ino)
  63. return -1;
  64. else
  65. return 0;
  66. }
  67. /* pop a record for an inode into the defrag tree. The lock
  68. * must be held already
  69. *
  70. * If you're inserting a record for an older transid than an
  71. * existing record, the transid already in the tree is lowered
  72. *
  73. * If an existing record is found the defrag item you
  74. * pass in is freed
  75. */
  76. static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
  77. struct inode_defrag *defrag)
  78. {
  79. struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
  80. struct inode_defrag *entry;
  81. struct rb_node **p;
  82. struct rb_node *parent = NULL;
  83. int ret;
  84. p = &fs_info->defrag_inodes.rb_node;
  85. while (*p) {
  86. parent = *p;
  87. entry = rb_entry(parent, struct inode_defrag, rb_node);
  88. ret = __compare_inode_defrag(defrag, entry);
  89. if (ret < 0)
  90. p = &parent->rb_left;
  91. else if (ret > 0)
  92. p = &parent->rb_right;
  93. else {
  94. /* if we're reinserting an entry for
  95. * an old defrag run, make sure to
  96. * lower the transid of our existing record
  97. */
  98. if (defrag->transid < entry->transid)
  99. entry->transid = defrag->transid;
  100. if (defrag->last_offset > entry->last_offset)
  101. entry->last_offset = defrag->last_offset;
  102. return -EEXIST;
  103. }
  104. }
  105. set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
  106. rb_link_node(&defrag->rb_node, parent, p);
  107. rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
  108. return 0;
  109. }
  110. static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
  111. {
  112. if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
  113. return 0;
  114. if (btrfs_fs_closing(fs_info))
  115. return 0;
  116. return 1;
  117. }
  118. /*
  119. * insert a defrag record for this inode if auto defrag is
  120. * enabled
  121. */
  122. int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
  123. struct btrfs_inode *inode)
  124. {
  125. struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
  126. struct btrfs_root *root = inode->root;
  127. struct inode_defrag *defrag;
  128. u64 transid;
  129. int ret;
  130. if (!__need_auto_defrag(fs_info))
  131. return 0;
  132. if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
  133. return 0;
  134. if (trans)
  135. transid = trans->transid;
  136. else
  137. transid = inode->root->last_trans;
  138. defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
  139. if (!defrag)
  140. return -ENOMEM;
  141. defrag->ino = btrfs_ino(inode);
  142. defrag->transid = transid;
  143. defrag->root = root->root_key.objectid;
  144. spin_lock(&fs_info->defrag_inodes_lock);
  145. if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
  146. /*
  147. * If we set IN_DEFRAG flag and evict the inode from memory,
  148. * and then re-read this inode, this new inode doesn't have
  149. * IN_DEFRAG flag. At the case, we may find the existed defrag.
  150. */
  151. ret = __btrfs_add_inode_defrag(inode, defrag);
  152. if (ret)
  153. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  154. } else {
  155. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  156. }
  157. spin_unlock(&fs_info->defrag_inodes_lock);
  158. return 0;
  159. }
  160. /*
  161. * Requeue the defrag object. If there is a defrag object that points to
  162. * the same inode in the tree, we will merge them together (by
  163. * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
  164. */
  165. static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
  166. struct inode_defrag *defrag)
  167. {
  168. struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
  169. int ret;
  170. if (!__need_auto_defrag(fs_info))
  171. goto out;
  172. /*
  173. * Here we don't check the IN_DEFRAG flag, because we need merge
  174. * them together.
  175. */
  176. spin_lock(&fs_info->defrag_inodes_lock);
  177. ret = __btrfs_add_inode_defrag(inode, defrag);
  178. spin_unlock(&fs_info->defrag_inodes_lock);
  179. if (ret)
  180. goto out;
  181. return;
  182. out:
  183. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  184. }
  185. /*
  186. * pick the defragable inode that we want, if it doesn't exist, we will get
  187. * the next one.
  188. */
  189. static struct inode_defrag *
  190. btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
  191. {
  192. struct inode_defrag *entry = NULL;
  193. struct inode_defrag tmp;
  194. struct rb_node *p;
  195. struct rb_node *parent = NULL;
  196. int ret;
  197. tmp.ino = ino;
  198. tmp.root = root;
  199. spin_lock(&fs_info->defrag_inodes_lock);
  200. p = fs_info->defrag_inodes.rb_node;
  201. while (p) {
  202. parent = p;
  203. entry = rb_entry(parent, struct inode_defrag, rb_node);
  204. ret = __compare_inode_defrag(&tmp, entry);
  205. if (ret < 0)
  206. p = parent->rb_left;
  207. else if (ret > 0)
  208. p = parent->rb_right;
  209. else
  210. goto out;
  211. }
  212. if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
  213. parent = rb_next(parent);
  214. if (parent)
  215. entry = rb_entry(parent, struct inode_defrag, rb_node);
  216. else
  217. entry = NULL;
  218. }
  219. out:
  220. if (entry)
  221. rb_erase(parent, &fs_info->defrag_inodes);
  222. spin_unlock(&fs_info->defrag_inodes_lock);
  223. return entry;
  224. }
  225. void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
  226. {
  227. struct inode_defrag *defrag;
  228. struct rb_node *node;
  229. spin_lock(&fs_info->defrag_inodes_lock);
  230. node = rb_first(&fs_info->defrag_inodes);
  231. while (node) {
  232. rb_erase(node, &fs_info->defrag_inodes);
  233. defrag = rb_entry(node, struct inode_defrag, rb_node);
  234. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  235. cond_resched_lock(&fs_info->defrag_inodes_lock);
  236. node = rb_first(&fs_info->defrag_inodes);
  237. }
  238. spin_unlock(&fs_info->defrag_inodes_lock);
  239. }
  240. #define BTRFS_DEFRAG_BATCH 1024
  241. static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
  242. struct inode_defrag *defrag)
  243. {
  244. struct btrfs_root *inode_root;
  245. struct inode *inode;
  246. struct btrfs_key key;
  247. struct btrfs_ioctl_defrag_range_args range;
  248. int num_defrag;
  249. int index;
  250. int ret;
  251. /* get the inode */
  252. key.objectid = defrag->root;
  253. key.type = BTRFS_ROOT_ITEM_KEY;
  254. key.offset = (u64)-1;
  255. index = srcu_read_lock(&fs_info->subvol_srcu);
  256. inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
  257. if (IS_ERR(inode_root)) {
  258. ret = PTR_ERR(inode_root);
  259. goto cleanup;
  260. }
  261. key.objectid = defrag->ino;
  262. key.type = BTRFS_INODE_ITEM_KEY;
  263. key.offset = 0;
  264. inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
  265. if (IS_ERR(inode)) {
  266. ret = PTR_ERR(inode);
  267. goto cleanup;
  268. }
  269. srcu_read_unlock(&fs_info->subvol_srcu, index);
  270. /* do a chunk of defrag */
  271. clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
  272. memset(&range, 0, sizeof(range));
  273. range.len = (u64)-1;
  274. range.start = defrag->last_offset;
  275. sb_start_write(fs_info->sb);
  276. num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
  277. BTRFS_DEFRAG_BATCH);
  278. sb_end_write(fs_info->sb);
  279. /*
  280. * if we filled the whole defrag batch, there
  281. * must be more work to do. Queue this defrag
  282. * again
  283. */
  284. if (num_defrag == BTRFS_DEFRAG_BATCH) {
  285. defrag->last_offset = range.start;
  286. btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
  287. } else if (defrag->last_offset && !defrag->cycled) {
  288. /*
  289. * we didn't fill our defrag batch, but
  290. * we didn't start at zero. Make sure we loop
  291. * around to the start of the file.
  292. */
  293. defrag->last_offset = 0;
  294. defrag->cycled = 1;
  295. btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
  296. } else {
  297. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  298. }
  299. iput(inode);
  300. return 0;
  301. cleanup:
  302. srcu_read_unlock(&fs_info->subvol_srcu, index);
  303. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  304. return ret;
  305. }
  306. /*
  307. * run through the list of inodes in the FS that need
  308. * defragging
  309. */
  310. int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
  311. {
  312. struct inode_defrag *defrag;
  313. u64 first_ino = 0;
  314. u64 root_objectid = 0;
  315. atomic_inc(&fs_info->defrag_running);
  316. while (1) {
  317. /* Pause the auto defragger. */
  318. if (test_bit(BTRFS_FS_STATE_REMOUNTING,
  319. &fs_info->fs_state))
  320. break;
  321. if (!__need_auto_defrag(fs_info))
  322. break;
  323. /* find an inode to defrag */
  324. defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
  325. first_ino);
  326. if (!defrag) {
  327. if (root_objectid || first_ino) {
  328. root_objectid = 0;
  329. first_ino = 0;
  330. continue;
  331. } else {
  332. break;
  333. }
  334. }
  335. first_ino = defrag->ino + 1;
  336. root_objectid = defrag->root;
  337. __btrfs_run_defrag_inode(fs_info, defrag);
  338. }
  339. atomic_dec(&fs_info->defrag_running);
  340. /*
  341. * during unmount, we use the transaction_wait queue to
  342. * wait for the defragger to stop
  343. */
  344. wake_up(&fs_info->transaction_wait);
  345. return 0;
  346. }
  347. /* simple helper to fault in pages and copy. This should go away
  348. * and be replaced with calls into generic code.
  349. */
  350. static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
  351. struct page **prepared_pages,
  352. struct iov_iter *i)
  353. {
  354. size_t copied = 0;
  355. size_t total_copied = 0;
  356. int pg = 0;
  357. int offset = pos & (PAGE_SIZE - 1);
  358. while (write_bytes > 0) {
  359. size_t count = min_t(size_t,
  360. PAGE_SIZE - offset, write_bytes);
  361. struct page *page = prepared_pages[pg];
  362. /*
  363. * Copy data from userspace to the current page
  364. */
  365. copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
  366. /* Flush processor's dcache for this page */
  367. flush_dcache_page(page);
  368. /*
  369. * if we get a partial write, we can end up with
  370. * partially up to date pages. These add
  371. * a lot of complexity, so make sure they don't
  372. * happen by forcing this copy to be retried.
  373. *
  374. * The rest of the btrfs_file_write code will fall
  375. * back to page at a time copies after we return 0.
  376. */
  377. if (!PageUptodate(page) && copied < count)
  378. copied = 0;
  379. iov_iter_advance(i, copied);
  380. write_bytes -= copied;
  381. total_copied += copied;
  382. /* Return to btrfs_file_write_iter to fault page */
  383. if (unlikely(copied == 0))
  384. break;
  385. if (copied < PAGE_SIZE - offset) {
  386. offset += copied;
  387. } else {
  388. pg++;
  389. offset = 0;
  390. }
  391. }
  392. return total_copied;
  393. }
  394. /*
  395. * unlocks pages after btrfs_file_write is done with them
  396. */
  397. static void btrfs_drop_pages(struct page **pages, size_t num_pages)
  398. {
  399. size_t i;
  400. for (i = 0; i < num_pages; i++) {
  401. /* page checked is some magic around finding pages that
  402. * have been modified without going through btrfs_set_page_dirty
  403. * clear it here. There should be no need to mark the pages
  404. * accessed as prepare_pages should have marked them accessed
  405. * in prepare_pages via find_or_create_page()
  406. */
  407. ClearPageChecked(pages[i]);
  408. unlock_page(pages[i]);
  409. put_page(pages[i]);
  410. }
  411. }
  412. static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
  413. const u64 start,
  414. const u64 len,
  415. struct extent_state **cached_state)
  416. {
  417. u64 search_start = start;
  418. const u64 end = start + len - 1;
  419. while (search_start < end) {
  420. const u64 search_len = end - search_start + 1;
  421. struct extent_map *em;
  422. u64 em_len;
  423. int ret = 0;
  424. em = btrfs_get_extent(inode, NULL, 0, search_start,
  425. search_len, 0);
  426. if (IS_ERR(em))
  427. return PTR_ERR(em);
  428. if (em->block_start != EXTENT_MAP_HOLE)
  429. goto next;
  430. em_len = em->len;
  431. if (em->start < search_start)
  432. em_len -= search_start - em->start;
  433. if (em_len > search_len)
  434. em_len = search_len;
  435. ret = set_extent_bit(&inode->io_tree, search_start,
  436. search_start + em_len - 1,
  437. EXTENT_DELALLOC_NEW,
  438. NULL, cached_state, GFP_NOFS);
  439. next:
  440. search_start = extent_map_end(em);
  441. free_extent_map(em);
  442. if (ret)
  443. return ret;
  444. }
  445. return 0;
  446. }
  447. /*
  448. * after copy_from_user, pages need to be dirtied and we need to make
  449. * sure holes are created between the current EOF and the start of
  450. * any next extents (if required).
  451. *
  452. * this also makes the decision about creating an inline extent vs
  453. * doing real data extents, marking pages dirty and delalloc as required.
  454. */
  455. int btrfs_dirty_pages(struct inode *inode, struct page **pages,
  456. size_t num_pages, loff_t pos, size_t write_bytes,
  457. struct extent_state **cached)
  458. {
  459. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  460. int err = 0;
  461. int i;
  462. u64 num_bytes;
  463. u64 start_pos;
  464. u64 end_of_last_block;
  465. u64 end_pos = pos + write_bytes;
  466. loff_t isize = i_size_read(inode);
  467. unsigned int extra_bits = 0;
  468. start_pos = pos & ~((u64) fs_info->sectorsize - 1);
  469. num_bytes = round_up(write_bytes + pos - start_pos,
  470. fs_info->sectorsize);
  471. end_of_last_block = start_pos + num_bytes - 1;
  472. if (!btrfs_is_free_space_inode(BTRFS_I(inode))) {
  473. if (start_pos >= isize &&
  474. !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) {
  475. /*
  476. * There can't be any extents following eof in this case
  477. * so just set the delalloc new bit for the range
  478. * directly.
  479. */
  480. extra_bits |= EXTENT_DELALLOC_NEW;
  481. } else {
  482. err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode),
  483. start_pos,
  484. num_bytes, cached);
  485. if (err)
  486. return err;
  487. }
  488. }
  489. err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
  490. extra_bits, cached, 0);
  491. if (err)
  492. return err;
  493. for (i = 0; i < num_pages; i++) {
  494. struct page *p = pages[i];
  495. SetPageUptodate(p);
  496. ClearPageChecked(p);
  497. set_page_dirty(p);
  498. }
  499. /*
  500. * we've only changed i_size in ram, and we haven't updated
  501. * the disk i_size. There is no need to log the inode
  502. * at this time.
  503. */
  504. if (end_pos > isize)
  505. i_size_write(inode, end_pos);
  506. return 0;
  507. }
  508. /*
  509. * this drops all the extents in the cache that intersect the range
  510. * [start, end]. Existing extents are split as required.
  511. */
  512. void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
  513. int skip_pinned)
  514. {
  515. struct extent_map *em;
  516. struct extent_map *split = NULL;
  517. struct extent_map *split2 = NULL;
  518. struct extent_map_tree *em_tree = &inode->extent_tree;
  519. u64 len = end - start + 1;
  520. u64 gen;
  521. int ret;
  522. int testend = 1;
  523. unsigned long flags;
  524. int compressed = 0;
  525. bool modified;
  526. WARN_ON(end < start);
  527. if (end == (u64)-1) {
  528. len = (u64)-1;
  529. testend = 0;
  530. }
  531. while (1) {
  532. int no_splits = 0;
  533. modified = false;
  534. if (!split)
  535. split = alloc_extent_map();
  536. if (!split2)
  537. split2 = alloc_extent_map();
  538. if (!split || !split2)
  539. no_splits = 1;
  540. write_lock(&em_tree->lock);
  541. em = lookup_extent_mapping(em_tree, start, len);
  542. if (!em) {
  543. write_unlock(&em_tree->lock);
  544. break;
  545. }
  546. flags = em->flags;
  547. gen = em->generation;
  548. if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
  549. if (testend && em->start + em->len >= start + len) {
  550. free_extent_map(em);
  551. write_unlock(&em_tree->lock);
  552. break;
  553. }
  554. start = em->start + em->len;
  555. if (testend)
  556. len = start + len - (em->start + em->len);
  557. free_extent_map(em);
  558. write_unlock(&em_tree->lock);
  559. continue;
  560. }
  561. compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
  562. clear_bit(EXTENT_FLAG_PINNED, &em->flags);
  563. clear_bit(EXTENT_FLAG_LOGGING, &flags);
  564. modified = !list_empty(&em->list);
  565. if (no_splits)
  566. goto next;
  567. if (em->start < start) {
  568. split->start = em->start;
  569. split->len = start - em->start;
  570. if (em->block_start < EXTENT_MAP_LAST_BYTE) {
  571. split->orig_start = em->orig_start;
  572. split->block_start = em->block_start;
  573. if (compressed)
  574. split->block_len = em->block_len;
  575. else
  576. split->block_len = split->len;
  577. split->orig_block_len = max(split->block_len,
  578. em->orig_block_len);
  579. split->ram_bytes = em->ram_bytes;
  580. } else {
  581. split->orig_start = split->start;
  582. split->block_len = 0;
  583. split->block_start = em->block_start;
  584. split->orig_block_len = 0;
  585. split->ram_bytes = split->len;
  586. }
  587. split->generation = gen;
  588. split->bdev = em->bdev;
  589. split->flags = flags;
  590. split->compress_type = em->compress_type;
  591. replace_extent_mapping(em_tree, em, split, modified);
  592. free_extent_map(split);
  593. split = split2;
  594. split2 = NULL;
  595. }
  596. if (testend && em->start + em->len > start + len) {
  597. u64 diff = start + len - em->start;
  598. split->start = start + len;
  599. split->len = em->start + em->len - (start + len);
  600. split->bdev = em->bdev;
  601. split->flags = flags;
  602. split->compress_type = em->compress_type;
  603. split->generation = gen;
  604. if (em->block_start < EXTENT_MAP_LAST_BYTE) {
  605. split->orig_block_len = max(em->block_len,
  606. em->orig_block_len);
  607. split->ram_bytes = em->ram_bytes;
  608. if (compressed) {
  609. split->block_len = em->block_len;
  610. split->block_start = em->block_start;
  611. split->orig_start = em->orig_start;
  612. } else {
  613. split->block_len = split->len;
  614. split->block_start = em->block_start
  615. + diff;
  616. split->orig_start = em->orig_start;
  617. }
  618. } else {
  619. split->ram_bytes = split->len;
  620. split->orig_start = split->start;
  621. split->block_len = 0;
  622. split->block_start = em->block_start;
  623. split->orig_block_len = 0;
  624. }
  625. if (extent_map_in_tree(em)) {
  626. replace_extent_mapping(em_tree, em, split,
  627. modified);
  628. } else {
  629. ret = add_extent_mapping(em_tree, split,
  630. modified);
  631. ASSERT(ret == 0); /* Logic error */
  632. }
  633. free_extent_map(split);
  634. split = NULL;
  635. }
  636. next:
  637. if (extent_map_in_tree(em))
  638. remove_extent_mapping(em_tree, em);
  639. write_unlock(&em_tree->lock);
  640. /* once for us */
  641. free_extent_map(em);
  642. /* once for the tree*/
  643. free_extent_map(em);
  644. }
  645. if (split)
  646. free_extent_map(split);
  647. if (split2)
  648. free_extent_map(split2);
  649. }
  650. /*
  651. * this is very complex, but the basic idea is to drop all extents
  652. * in the range start - end. hint_block is filled in with a block number
  653. * that would be a good hint to the block allocator for this file.
  654. *
  655. * If an extent intersects the range but is not entirely inside the range
  656. * it is either truncated or split. Anything entirely inside the range
  657. * is deleted from the tree.
  658. */
  659. int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
  660. struct btrfs_root *root, struct inode *inode,
  661. struct btrfs_path *path, u64 start, u64 end,
  662. u64 *drop_end, int drop_cache,
  663. int replace_extent,
  664. u32 extent_item_size,
  665. int *key_inserted)
  666. {
  667. struct btrfs_fs_info *fs_info = root->fs_info;
  668. struct extent_buffer *leaf;
  669. struct btrfs_file_extent_item *fi;
  670. struct btrfs_key key;
  671. struct btrfs_key new_key;
  672. u64 ino = btrfs_ino(BTRFS_I(inode));
  673. u64 search_start = start;
  674. u64 disk_bytenr = 0;
  675. u64 num_bytes = 0;
  676. u64 extent_offset = 0;
  677. u64 extent_end = 0;
  678. u64 last_end = start;
  679. int del_nr = 0;
  680. int del_slot = 0;
  681. int extent_type;
  682. int recow;
  683. int ret;
  684. int modify_tree = -1;
  685. int update_refs;
  686. int found = 0;
  687. int leafs_visited = 0;
  688. if (drop_cache)
  689. btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0);
  690. if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
  691. modify_tree = 0;
  692. update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
  693. root == fs_info->tree_root);
  694. while (1) {
  695. recow = 0;
  696. ret = btrfs_lookup_file_extent(trans, root, path, ino,
  697. search_start, modify_tree);
  698. if (ret < 0)
  699. break;
  700. if (ret > 0 && path->slots[0] > 0 && search_start == start) {
  701. leaf = path->nodes[0];
  702. btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
  703. if (key.objectid == ino &&
  704. key.type == BTRFS_EXTENT_DATA_KEY)
  705. path->slots[0]--;
  706. }
  707. ret = 0;
  708. leafs_visited++;
  709. next_slot:
  710. leaf = path->nodes[0];
  711. if (path->slots[0] >= btrfs_header_nritems(leaf)) {
  712. BUG_ON(del_nr > 0);
  713. ret = btrfs_next_leaf(root, path);
  714. if (ret < 0)
  715. break;
  716. if (ret > 0) {
  717. ret = 0;
  718. break;
  719. }
  720. leafs_visited++;
  721. leaf = path->nodes[0];
  722. recow = 1;
  723. }
  724. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  725. if (key.objectid > ino)
  726. break;
  727. if (WARN_ON_ONCE(key.objectid < ino) ||
  728. key.type < BTRFS_EXTENT_DATA_KEY) {
  729. ASSERT(del_nr == 0);
  730. path->slots[0]++;
  731. goto next_slot;
  732. }
  733. if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
  734. break;
  735. fi = btrfs_item_ptr(leaf, path->slots[0],
  736. struct btrfs_file_extent_item);
  737. extent_type = btrfs_file_extent_type(leaf, fi);
  738. if (extent_type == BTRFS_FILE_EXTENT_REG ||
  739. extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
  740. disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  741. num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
  742. extent_offset = btrfs_file_extent_offset(leaf, fi);
  743. extent_end = key.offset +
  744. btrfs_file_extent_num_bytes(leaf, fi);
  745. } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
  746. extent_end = key.offset +
  747. btrfs_file_extent_inline_len(leaf,
  748. path->slots[0], fi);
  749. } else {
  750. /* can't happen */
  751. BUG();
  752. }
  753. /*
  754. * Don't skip extent items representing 0 byte lengths. They
  755. * used to be created (bug) if while punching holes we hit
  756. * -ENOSPC condition. So if we find one here, just ensure we
  757. * delete it, otherwise we would insert a new file extent item
  758. * with the same key (offset) as that 0 bytes length file
  759. * extent item in the call to setup_items_for_insert() later
  760. * in this function.
  761. */
  762. if (extent_end == key.offset && extent_end >= search_start) {
  763. last_end = extent_end;
  764. goto delete_extent_item;
  765. }
  766. if (extent_end <= search_start) {
  767. path->slots[0]++;
  768. goto next_slot;
  769. }
  770. found = 1;
  771. search_start = max(key.offset, start);
  772. if (recow || !modify_tree) {
  773. modify_tree = -1;
  774. btrfs_release_path(path);
  775. continue;
  776. }
  777. /*
  778. * | - range to drop - |
  779. * | -------- extent -------- |
  780. */
  781. if (start > key.offset && end < extent_end) {
  782. BUG_ON(del_nr > 0);
  783. if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
  784. ret = -EOPNOTSUPP;
  785. break;
  786. }
  787. memcpy(&new_key, &key, sizeof(new_key));
  788. new_key.offset = start;
  789. ret = btrfs_duplicate_item(trans, root, path,
  790. &new_key);
  791. if (ret == -EAGAIN) {
  792. btrfs_release_path(path);
  793. continue;
  794. }
  795. if (ret < 0)
  796. break;
  797. leaf = path->nodes[0];
  798. fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
  799. struct btrfs_file_extent_item);
  800. btrfs_set_file_extent_num_bytes(leaf, fi,
  801. start - key.offset);
  802. fi = btrfs_item_ptr(leaf, path->slots[0],
  803. struct btrfs_file_extent_item);
  804. extent_offset += start - key.offset;
  805. btrfs_set_file_extent_offset(leaf, fi, extent_offset);
  806. btrfs_set_file_extent_num_bytes(leaf, fi,
  807. extent_end - start);
  808. btrfs_mark_buffer_dirty(leaf);
  809. if (update_refs && disk_bytenr > 0) {
  810. ret = btrfs_inc_extent_ref(trans, root,
  811. disk_bytenr, num_bytes, 0,
  812. root->root_key.objectid,
  813. new_key.objectid,
  814. start - extent_offset);
  815. BUG_ON(ret); /* -ENOMEM */
  816. }
  817. key.offset = start;
  818. }
  819. /*
  820. * From here on out we will have actually dropped something, so
  821. * last_end can be updated.
  822. */
  823. last_end = extent_end;
  824. /*
  825. * | ---- range to drop ----- |
  826. * | -------- extent -------- |
  827. */
  828. if (start <= key.offset && end < extent_end) {
  829. if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
  830. ret = -EOPNOTSUPP;
  831. break;
  832. }
  833. memcpy(&new_key, &key, sizeof(new_key));
  834. new_key.offset = end;
  835. btrfs_set_item_key_safe(fs_info, path, &new_key);
  836. extent_offset += end - key.offset;
  837. btrfs_set_file_extent_offset(leaf, fi, extent_offset);
  838. btrfs_set_file_extent_num_bytes(leaf, fi,
  839. extent_end - end);
  840. btrfs_mark_buffer_dirty(leaf);
  841. if (update_refs && disk_bytenr > 0)
  842. inode_sub_bytes(inode, end - key.offset);
  843. break;
  844. }
  845. search_start = extent_end;
  846. /*
  847. * | ---- range to drop ----- |
  848. * | -------- extent -------- |
  849. */
  850. if (start > key.offset && end >= extent_end) {
  851. BUG_ON(del_nr > 0);
  852. if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
  853. ret = -EOPNOTSUPP;
  854. break;
  855. }
  856. btrfs_set_file_extent_num_bytes(leaf, fi,
  857. start - key.offset);
  858. btrfs_mark_buffer_dirty(leaf);
  859. if (update_refs && disk_bytenr > 0)
  860. inode_sub_bytes(inode, extent_end - start);
  861. if (end == extent_end)
  862. break;
  863. path->slots[0]++;
  864. goto next_slot;
  865. }
  866. /*
  867. * | ---- range to drop ----- |
  868. * | ------ extent ------ |
  869. */
  870. if (start <= key.offset && end >= extent_end) {
  871. delete_extent_item:
  872. if (del_nr == 0) {
  873. del_slot = path->slots[0];
  874. del_nr = 1;
  875. } else {
  876. BUG_ON(del_slot + del_nr != path->slots[0]);
  877. del_nr++;
  878. }
  879. if (update_refs &&
  880. extent_type == BTRFS_FILE_EXTENT_INLINE) {
  881. inode_sub_bytes(inode,
  882. extent_end - key.offset);
  883. extent_end = ALIGN(extent_end,
  884. fs_info->sectorsize);
  885. } else if (update_refs && disk_bytenr > 0) {
  886. ret = btrfs_free_extent(trans, root,
  887. disk_bytenr, num_bytes, 0,
  888. root->root_key.objectid,
  889. key.objectid, key.offset -
  890. extent_offset);
  891. BUG_ON(ret); /* -ENOMEM */
  892. inode_sub_bytes(inode,
  893. extent_end - key.offset);
  894. }
  895. if (end == extent_end)
  896. break;
  897. if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
  898. path->slots[0]++;
  899. goto next_slot;
  900. }
  901. ret = btrfs_del_items(trans, root, path, del_slot,
  902. del_nr);
  903. if (ret) {
  904. btrfs_abort_transaction(trans, ret);
  905. break;
  906. }
  907. del_nr = 0;
  908. del_slot = 0;
  909. btrfs_release_path(path);
  910. continue;
  911. }
  912. BUG_ON(1);
  913. }
  914. if (!ret && del_nr > 0) {
  915. /*
  916. * Set path->slots[0] to first slot, so that after the delete
  917. * if items are move off from our leaf to its immediate left or
  918. * right neighbor leafs, we end up with a correct and adjusted
  919. * path->slots[0] for our insertion (if replace_extent != 0).
  920. */
  921. path->slots[0] = del_slot;
  922. ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
  923. if (ret)
  924. btrfs_abort_transaction(trans, ret);
  925. }
  926. leaf = path->nodes[0];
  927. /*
  928. * If btrfs_del_items() was called, it might have deleted a leaf, in
  929. * which case it unlocked our path, so check path->locks[0] matches a
  930. * write lock.
  931. */
  932. if (!ret && replace_extent && leafs_visited == 1 &&
  933. (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
  934. path->locks[0] == BTRFS_WRITE_LOCK) &&
  935. btrfs_leaf_free_space(fs_info, leaf) >=
  936. sizeof(struct btrfs_item) + extent_item_size) {
  937. key.objectid = ino;
  938. key.type = BTRFS_EXTENT_DATA_KEY;
  939. key.offset = start;
  940. if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
  941. struct btrfs_key slot_key;
  942. btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
  943. if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
  944. path->slots[0]++;
  945. }
  946. setup_items_for_insert(root, path, &key,
  947. &extent_item_size,
  948. extent_item_size,
  949. sizeof(struct btrfs_item) +
  950. extent_item_size, 1);
  951. *key_inserted = 1;
  952. }
  953. if (!replace_extent || !(*key_inserted))
  954. btrfs_release_path(path);
  955. if (drop_end)
  956. *drop_end = found ? min(end, last_end) : end;
  957. return ret;
  958. }
  959. int btrfs_drop_extents(struct btrfs_trans_handle *trans,
  960. struct btrfs_root *root, struct inode *inode, u64 start,
  961. u64 end, int drop_cache)
  962. {
  963. struct btrfs_path *path;
  964. int ret;
  965. path = btrfs_alloc_path();
  966. if (!path)
  967. return -ENOMEM;
  968. ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
  969. drop_cache, 0, 0, NULL);
  970. btrfs_free_path(path);
  971. return ret;
  972. }
  973. static int extent_mergeable(struct extent_buffer *leaf, int slot,
  974. u64 objectid, u64 bytenr, u64 orig_offset,
  975. u64 *start, u64 *end)
  976. {
  977. struct btrfs_file_extent_item *fi;
  978. struct btrfs_key key;
  979. u64 extent_end;
  980. if (slot < 0 || slot >= btrfs_header_nritems(leaf))
  981. return 0;
  982. btrfs_item_key_to_cpu(leaf, &key, slot);
  983. if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
  984. return 0;
  985. fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
  986. if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
  987. btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
  988. btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
  989. btrfs_file_extent_compression(leaf, fi) ||
  990. btrfs_file_extent_encryption(leaf, fi) ||
  991. btrfs_file_extent_other_encoding(leaf, fi))
  992. return 0;
  993. extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
  994. if ((*start && *start != key.offset) || (*end && *end != extent_end))
  995. return 0;
  996. *start = key.offset;
  997. *end = extent_end;
  998. return 1;
  999. }
  1000. /*
  1001. * Mark extent in the range start - end as written.
  1002. *
  1003. * This changes extent type from 'pre-allocated' to 'regular'. If only
  1004. * part of extent is marked as written, the extent will be split into
  1005. * two or three.
  1006. */
  1007. int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
  1008. struct btrfs_inode *inode, u64 start, u64 end)
  1009. {
  1010. struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
  1011. struct btrfs_root *root = inode->root;
  1012. struct extent_buffer *leaf;
  1013. struct btrfs_path *path;
  1014. struct btrfs_file_extent_item *fi;
  1015. struct btrfs_key key;
  1016. struct btrfs_key new_key;
  1017. u64 bytenr;
  1018. u64 num_bytes;
  1019. u64 extent_end;
  1020. u64 orig_offset;
  1021. u64 other_start;
  1022. u64 other_end;
  1023. u64 split;
  1024. int del_nr = 0;
  1025. int del_slot = 0;
  1026. int recow;
  1027. int ret;
  1028. u64 ino = btrfs_ino(inode);
  1029. path = btrfs_alloc_path();
  1030. if (!path)
  1031. return -ENOMEM;
  1032. again:
  1033. recow = 0;
  1034. split = start;
  1035. key.objectid = ino;
  1036. key.type = BTRFS_EXTENT_DATA_KEY;
  1037. key.offset = split;
  1038. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  1039. if (ret < 0)
  1040. goto out;
  1041. if (ret > 0 && path->slots[0] > 0)
  1042. path->slots[0]--;
  1043. leaf = path->nodes[0];
  1044. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  1045. if (key.objectid != ino ||
  1046. key.type != BTRFS_EXTENT_DATA_KEY) {
  1047. ret = -EINVAL;
  1048. btrfs_abort_transaction(trans, ret);
  1049. goto out;
  1050. }
  1051. fi = btrfs_item_ptr(leaf, path->slots[0],
  1052. struct btrfs_file_extent_item);
  1053. if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
  1054. ret = -EINVAL;
  1055. btrfs_abort_transaction(trans, ret);
  1056. goto out;
  1057. }
  1058. extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
  1059. if (key.offset > start || extent_end < end) {
  1060. ret = -EINVAL;
  1061. btrfs_abort_transaction(trans, ret);
  1062. goto out;
  1063. }
  1064. bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  1065. num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
  1066. orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
  1067. memcpy(&new_key, &key, sizeof(new_key));
  1068. if (start == key.offset && end < extent_end) {
  1069. other_start = 0;
  1070. other_end = start;
  1071. if (extent_mergeable(leaf, path->slots[0] - 1,
  1072. ino, bytenr, orig_offset,
  1073. &other_start, &other_end)) {
  1074. new_key.offset = end;
  1075. btrfs_set_item_key_safe(fs_info, path, &new_key);
  1076. fi = btrfs_item_ptr(leaf, path->slots[0],
  1077. struct btrfs_file_extent_item);
  1078. btrfs_set_file_extent_generation(leaf, fi,
  1079. trans->transid);
  1080. btrfs_set_file_extent_num_bytes(leaf, fi,
  1081. extent_end - end);
  1082. btrfs_set_file_extent_offset(leaf, fi,
  1083. end - orig_offset);
  1084. fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
  1085. struct btrfs_file_extent_item);
  1086. btrfs_set_file_extent_generation(leaf, fi,
  1087. trans->transid);
  1088. btrfs_set_file_extent_num_bytes(leaf, fi,
  1089. end - other_start);
  1090. btrfs_mark_buffer_dirty(leaf);
  1091. goto out;
  1092. }
  1093. }
  1094. if (start > key.offset && end == extent_end) {
  1095. other_start = end;
  1096. other_end = 0;
  1097. if (extent_mergeable(leaf, path->slots[0] + 1,
  1098. ino, bytenr, orig_offset,
  1099. &other_start, &other_end)) {
  1100. fi = btrfs_item_ptr(leaf, path->slots[0],
  1101. struct btrfs_file_extent_item);
  1102. btrfs_set_file_extent_num_bytes(leaf, fi,
  1103. start - key.offset);
  1104. btrfs_set_file_extent_generation(leaf, fi,
  1105. trans->transid);
  1106. path->slots[0]++;
  1107. new_key.offset = start;
  1108. btrfs_set_item_key_safe(fs_info, path, &new_key);
  1109. fi = btrfs_item_ptr(leaf, path->slots[0],
  1110. struct btrfs_file_extent_item);
  1111. btrfs_set_file_extent_generation(leaf, fi,
  1112. trans->transid);
  1113. btrfs_set_file_extent_num_bytes(leaf, fi,
  1114. other_end - start);
  1115. btrfs_set_file_extent_offset(leaf, fi,
  1116. start - orig_offset);
  1117. btrfs_mark_buffer_dirty(leaf);
  1118. goto out;
  1119. }
  1120. }
  1121. while (start > key.offset || end < extent_end) {
  1122. if (key.offset == start)
  1123. split = end;
  1124. new_key.offset = split;
  1125. ret = btrfs_duplicate_item(trans, root, path, &new_key);
  1126. if (ret == -EAGAIN) {
  1127. btrfs_release_path(path);
  1128. goto again;
  1129. }
  1130. if (ret < 0) {
  1131. btrfs_abort_transaction(trans, ret);
  1132. goto out;
  1133. }
  1134. leaf = path->nodes[0];
  1135. fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
  1136. struct btrfs_file_extent_item);
  1137. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1138. btrfs_set_file_extent_num_bytes(leaf, fi,
  1139. split - key.offset);
  1140. fi = btrfs_item_ptr(leaf, path->slots[0],
  1141. struct btrfs_file_extent_item);
  1142. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1143. btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
  1144. btrfs_set_file_extent_num_bytes(leaf, fi,
  1145. extent_end - split);
  1146. btrfs_mark_buffer_dirty(leaf);
  1147. ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes,
  1148. 0, root->root_key.objectid,
  1149. ino, orig_offset);
  1150. if (ret) {
  1151. btrfs_abort_transaction(trans, ret);
  1152. goto out;
  1153. }
  1154. if (split == start) {
  1155. key.offset = start;
  1156. } else {
  1157. if (start != key.offset) {
  1158. ret = -EINVAL;
  1159. btrfs_abort_transaction(trans, ret);
  1160. goto out;
  1161. }
  1162. path->slots[0]--;
  1163. extent_end = end;
  1164. }
  1165. recow = 1;
  1166. }
  1167. other_start = end;
  1168. other_end = 0;
  1169. if (extent_mergeable(leaf, path->slots[0] + 1,
  1170. ino, bytenr, orig_offset,
  1171. &other_start, &other_end)) {
  1172. if (recow) {
  1173. btrfs_release_path(path);
  1174. goto again;
  1175. }
  1176. extent_end = other_end;
  1177. del_slot = path->slots[0] + 1;
  1178. del_nr++;
  1179. ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
  1180. 0, root->root_key.objectid,
  1181. ino, orig_offset);
  1182. if (ret) {
  1183. btrfs_abort_transaction(trans, ret);
  1184. goto out;
  1185. }
  1186. }
  1187. other_start = 0;
  1188. other_end = start;
  1189. if (extent_mergeable(leaf, path->slots[0] - 1,
  1190. ino, bytenr, orig_offset,
  1191. &other_start, &other_end)) {
  1192. if (recow) {
  1193. btrfs_release_path(path);
  1194. goto again;
  1195. }
  1196. key.offset = other_start;
  1197. del_slot = path->slots[0];
  1198. del_nr++;
  1199. ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
  1200. 0, root->root_key.objectid,
  1201. ino, orig_offset);
  1202. if (ret) {
  1203. btrfs_abort_transaction(trans, ret);
  1204. goto out;
  1205. }
  1206. }
  1207. if (del_nr == 0) {
  1208. fi = btrfs_item_ptr(leaf, path->slots[0],
  1209. struct btrfs_file_extent_item);
  1210. btrfs_set_file_extent_type(leaf, fi,
  1211. BTRFS_FILE_EXTENT_REG);
  1212. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1213. btrfs_mark_buffer_dirty(leaf);
  1214. } else {
  1215. fi = btrfs_item_ptr(leaf, del_slot - 1,
  1216. struct btrfs_file_extent_item);
  1217. btrfs_set_file_extent_type(leaf, fi,
  1218. BTRFS_FILE_EXTENT_REG);
  1219. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1220. btrfs_set_file_extent_num_bytes(leaf, fi,
  1221. extent_end - key.offset);
  1222. btrfs_mark_buffer_dirty(leaf);
  1223. ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
  1224. if (ret < 0) {
  1225. btrfs_abort_transaction(trans, ret);
  1226. goto out;
  1227. }
  1228. }
  1229. out:
  1230. btrfs_free_path(path);
  1231. return 0;
  1232. }
  1233. /*
  1234. * on error we return an unlocked page and the error value
  1235. * on success we return a locked page and 0
  1236. */
  1237. static int prepare_uptodate_page(struct inode *inode,
  1238. struct page *page, u64 pos,
  1239. bool force_uptodate)
  1240. {
  1241. int ret = 0;
  1242. if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
  1243. !PageUptodate(page)) {
  1244. ret = btrfs_readpage(NULL, page);
  1245. if (ret)
  1246. return ret;
  1247. lock_page(page);
  1248. if (!PageUptodate(page)) {
  1249. unlock_page(page);
  1250. return -EIO;
  1251. }
  1252. if (page->mapping != inode->i_mapping) {
  1253. unlock_page(page);
  1254. return -EAGAIN;
  1255. }
  1256. }
  1257. return 0;
  1258. }
  1259. /*
  1260. * this just gets pages into the page cache and locks them down.
  1261. */
  1262. static noinline int prepare_pages(struct inode *inode, struct page **pages,
  1263. size_t num_pages, loff_t pos,
  1264. size_t write_bytes, bool force_uptodate)
  1265. {
  1266. int i;
  1267. unsigned long index = pos >> PAGE_SHIFT;
  1268. gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
  1269. int err = 0;
  1270. int faili;
  1271. for (i = 0; i < num_pages; i++) {
  1272. again:
  1273. pages[i] = find_or_create_page(inode->i_mapping, index + i,
  1274. mask | __GFP_WRITE);
  1275. if (!pages[i]) {
  1276. faili = i - 1;
  1277. err = -ENOMEM;
  1278. goto fail;
  1279. }
  1280. if (i == 0)
  1281. err = prepare_uptodate_page(inode, pages[i], pos,
  1282. force_uptodate);
  1283. if (!err && i == num_pages - 1)
  1284. err = prepare_uptodate_page(inode, pages[i],
  1285. pos + write_bytes, false);
  1286. if (err) {
  1287. put_page(pages[i]);
  1288. if (err == -EAGAIN) {
  1289. err = 0;
  1290. goto again;
  1291. }
  1292. faili = i - 1;
  1293. goto fail;
  1294. }
  1295. wait_on_page_writeback(pages[i]);
  1296. }
  1297. return 0;
  1298. fail:
  1299. while (faili >= 0) {
  1300. unlock_page(pages[faili]);
  1301. put_page(pages[faili]);
  1302. faili--;
  1303. }
  1304. return err;
  1305. }
  1306. /*
  1307. * This function locks the extent and properly waits for data=ordered extents
  1308. * to finish before allowing the pages to be modified if need.
  1309. *
  1310. * The return value:
  1311. * 1 - the extent is locked
  1312. * 0 - the extent is not locked, and everything is OK
  1313. * -EAGAIN - need re-prepare the pages
  1314. * the other < 0 number - Something wrong happens
  1315. */
  1316. static noinline int
  1317. lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
  1318. size_t num_pages, loff_t pos,
  1319. size_t write_bytes,
  1320. u64 *lockstart, u64 *lockend,
  1321. struct extent_state **cached_state)
  1322. {
  1323. struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
  1324. u64 start_pos;
  1325. u64 last_pos;
  1326. int i;
  1327. int ret = 0;
  1328. start_pos = round_down(pos, fs_info->sectorsize);
  1329. last_pos = start_pos
  1330. + round_up(pos + write_bytes - start_pos,
  1331. fs_info->sectorsize) - 1;
  1332. if (start_pos < inode->vfs_inode.i_size) {
  1333. struct btrfs_ordered_extent *ordered;
  1334. lock_extent_bits(&inode->io_tree, start_pos, last_pos,
  1335. cached_state);
  1336. ordered = btrfs_lookup_ordered_range(inode, start_pos,
  1337. last_pos - start_pos + 1);
  1338. if (ordered &&
  1339. ordered->file_offset + ordered->len > start_pos &&
  1340. ordered->file_offset <= last_pos) {
  1341. unlock_extent_cached(&inode->io_tree, start_pos,
  1342. last_pos, cached_state);
  1343. for (i = 0; i < num_pages; i++) {
  1344. unlock_page(pages[i]);
  1345. put_page(pages[i]);
  1346. }
  1347. btrfs_start_ordered_extent(&inode->vfs_inode,
  1348. ordered, 1);
  1349. btrfs_put_ordered_extent(ordered);
  1350. return -EAGAIN;
  1351. }
  1352. if (ordered)
  1353. btrfs_put_ordered_extent(ordered);
  1354. clear_extent_bit(&inode->io_tree, start_pos, last_pos,
  1355. EXTENT_DIRTY | EXTENT_DELALLOC |
  1356. EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
  1357. 0, 0, cached_state);
  1358. *lockstart = start_pos;
  1359. *lockend = last_pos;
  1360. ret = 1;
  1361. }
  1362. for (i = 0; i < num_pages; i++) {
  1363. if (clear_page_dirty_for_io(pages[i]))
  1364. account_page_redirty(pages[i]);
  1365. set_page_extent_mapped(pages[i]);
  1366. WARN_ON(!PageLocked(pages[i]));
  1367. }
  1368. return ret;
  1369. }
  1370. static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
  1371. size_t *write_bytes)
  1372. {
  1373. struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
  1374. struct btrfs_root *root = inode->root;
  1375. struct btrfs_ordered_extent *ordered;
  1376. u64 lockstart, lockend;
  1377. u64 num_bytes;
  1378. int ret;
  1379. ret = btrfs_start_write_no_snapshotting(root);
  1380. if (!ret)
  1381. return -ENOSPC;
  1382. lockstart = round_down(pos, fs_info->sectorsize);
  1383. lockend = round_up(pos + *write_bytes,
  1384. fs_info->sectorsize) - 1;
  1385. while (1) {
  1386. lock_extent(&inode->io_tree, lockstart, lockend);
  1387. ordered = btrfs_lookup_ordered_range(inode, lockstart,
  1388. lockend - lockstart + 1);
  1389. if (!ordered) {
  1390. break;
  1391. }
  1392. unlock_extent(&inode->io_tree, lockstart, lockend);
  1393. btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
  1394. btrfs_put_ordered_extent(ordered);
  1395. }
  1396. num_bytes = lockend - lockstart + 1;
  1397. ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
  1398. NULL, NULL, NULL);
  1399. if (ret <= 0) {
  1400. ret = 0;
  1401. btrfs_end_write_no_snapshotting(root);
  1402. } else {
  1403. *write_bytes = min_t(size_t, *write_bytes ,
  1404. num_bytes - pos + lockstart);
  1405. }
  1406. unlock_extent(&inode->io_tree, lockstart, lockend);
  1407. return ret;
  1408. }
  1409. static noinline ssize_t __btrfs_buffered_write(struct file *file,
  1410. struct iov_iter *i,
  1411. loff_t pos)
  1412. {
  1413. struct inode *inode = file_inode(file);
  1414. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  1415. struct btrfs_root *root = BTRFS_I(inode)->root;
  1416. struct page **pages = NULL;
  1417. struct extent_state *cached_state = NULL;
  1418. struct extent_changeset *data_reserved = NULL;
  1419. u64 release_bytes = 0;
  1420. u64 lockstart;
  1421. u64 lockend;
  1422. size_t num_written = 0;
  1423. int nrptrs;
  1424. int ret = 0;
  1425. bool only_release_metadata = false;
  1426. bool force_page_uptodate = false;
  1427. nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
  1428. PAGE_SIZE / (sizeof(struct page *)));
  1429. nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
  1430. nrptrs = max(nrptrs, 8);
  1431. pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
  1432. if (!pages)
  1433. return -ENOMEM;
  1434. while (iov_iter_count(i) > 0) {
  1435. size_t offset = pos & (PAGE_SIZE - 1);
  1436. size_t sector_offset;
  1437. size_t write_bytes = min(iov_iter_count(i),
  1438. nrptrs * (size_t)PAGE_SIZE -
  1439. offset);
  1440. size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
  1441. PAGE_SIZE);
  1442. size_t reserve_bytes;
  1443. size_t dirty_pages;
  1444. size_t copied;
  1445. size_t dirty_sectors;
  1446. size_t num_sectors;
  1447. int extents_locked;
  1448. WARN_ON(num_pages > nrptrs);
  1449. /*
  1450. * Fault pages before locking them in prepare_pages
  1451. * to avoid recursive lock
  1452. */
  1453. if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
  1454. ret = -EFAULT;
  1455. break;
  1456. }
  1457. sector_offset = pos & (fs_info->sectorsize - 1);
  1458. reserve_bytes = round_up(write_bytes + sector_offset,
  1459. fs_info->sectorsize);
  1460. extent_changeset_release(data_reserved);
  1461. ret = btrfs_check_data_free_space(inode, &data_reserved, pos,
  1462. write_bytes);
  1463. if (ret < 0) {
  1464. if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
  1465. BTRFS_INODE_PREALLOC)) &&
  1466. check_can_nocow(BTRFS_I(inode), pos,
  1467. &write_bytes) > 0) {
  1468. /*
  1469. * For nodata cow case, no need to reserve
  1470. * data space.
  1471. */
  1472. only_release_metadata = true;
  1473. /*
  1474. * our prealloc extent may be smaller than
  1475. * write_bytes, so scale down.
  1476. */
  1477. num_pages = DIV_ROUND_UP(write_bytes + offset,
  1478. PAGE_SIZE);
  1479. reserve_bytes = round_up(write_bytes +
  1480. sector_offset,
  1481. fs_info->sectorsize);
  1482. } else {
  1483. break;
  1484. }
  1485. }
  1486. WARN_ON(reserve_bytes == 0);
  1487. ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
  1488. reserve_bytes);
  1489. if (ret) {
  1490. if (!only_release_metadata)
  1491. btrfs_free_reserved_data_space(inode,
  1492. data_reserved, pos,
  1493. write_bytes);
  1494. else
  1495. btrfs_end_write_no_snapshotting(root);
  1496. break;
  1497. }
  1498. release_bytes = reserve_bytes;
  1499. again:
  1500. /*
  1501. * This is going to setup the pages array with the number of
  1502. * pages we want, so we don't really need to worry about the
  1503. * contents of pages from loop to loop
  1504. */
  1505. ret = prepare_pages(inode, pages, num_pages,
  1506. pos, write_bytes,
  1507. force_page_uptodate);
  1508. if (ret) {
  1509. btrfs_delalloc_release_extents(BTRFS_I(inode),
  1510. reserve_bytes, true);
  1511. break;
  1512. }
  1513. extents_locked = lock_and_cleanup_extent_if_need(
  1514. BTRFS_I(inode), pages,
  1515. num_pages, pos, write_bytes, &lockstart,
  1516. &lockend, &cached_state);
  1517. if (extents_locked < 0) {
  1518. if (extents_locked == -EAGAIN)
  1519. goto again;
  1520. btrfs_delalloc_release_extents(BTRFS_I(inode),
  1521. reserve_bytes, true);
  1522. ret = extents_locked;
  1523. break;
  1524. }
  1525. copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
  1526. num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
  1527. dirty_sectors = round_up(copied + sector_offset,
  1528. fs_info->sectorsize);
  1529. dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
  1530. /*
  1531. * if we have trouble faulting in the pages, fall
  1532. * back to one page at a time
  1533. */
  1534. if (copied < write_bytes)
  1535. nrptrs = 1;
  1536. if (copied == 0) {
  1537. force_page_uptodate = true;
  1538. dirty_sectors = 0;
  1539. dirty_pages = 0;
  1540. } else {
  1541. force_page_uptodate = false;
  1542. dirty_pages = DIV_ROUND_UP(copied + offset,
  1543. PAGE_SIZE);
  1544. }
  1545. if (num_sectors > dirty_sectors) {
  1546. /* release everything except the sectors we dirtied */
  1547. release_bytes -= dirty_sectors <<
  1548. fs_info->sb->s_blocksize_bits;
  1549. if (only_release_metadata) {
  1550. btrfs_delalloc_release_metadata(BTRFS_I(inode),
  1551. release_bytes, true);
  1552. } else {
  1553. u64 __pos;
  1554. __pos = round_down(pos,
  1555. fs_info->sectorsize) +
  1556. (dirty_pages << PAGE_SHIFT);
  1557. btrfs_delalloc_release_space(inode,
  1558. data_reserved, __pos,
  1559. release_bytes, true);
  1560. }
  1561. }
  1562. release_bytes = round_up(copied + sector_offset,
  1563. fs_info->sectorsize);
  1564. if (copied > 0)
  1565. ret = btrfs_dirty_pages(inode, pages, dirty_pages,
  1566. pos, copied, &cached_state);
  1567. if (extents_locked)
  1568. unlock_extent_cached(&BTRFS_I(inode)->io_tree,
  1569. lockstart, lockend, &cached_state);
  1570. btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes,
  1571. true);
  1572. if (ret) {
  1573. btrfs_drop_pages(pages, num_pages);
  1574. break;
  1575. }
  1576. release_bytes = 0;
  1577. if (only_release_metadata)
  1578. btrfs_end_write_no_snapshotting(root);
  1579. if (only_release_metadata && copied > 0) {
  1580. lockstart = round_down(pos,
  1581. fs_info->sectorsize);
  1582. lockend = round_up(pos + copied,
  1583. fs_info->sectorsize) - 1;
  1584. set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
  1585. lockend, EXTENT_NORESERVE, NULL,
  1586. NULL, GFP_NOFS);
  1587. only_release_metadata = false;
  1588. }
  1589. btrfs_drop_pages(pages, num_pages);
  1590. cond_resched();
  1591. balance_dirty_pages_ratelimited(inode->i_mapping);
  1592. if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
  1593. btrfs_btree_balance_dirty(fs_info);
  1594. pos += copied;
  1595. num_written += copied;
  1596. }
  1597. kfree(pages);
  1598. if (release_bytes) {
  1599. if (only_release_metadata) {
  1600. btrfs_end_write_no_snapshotting(root);
  1601. btrfs_delalloc_release_metadata(BTRFS_I(inode),
  1602. release_bytes, true);
  1603. } else {
  1604. btrfs_delalloc_release_space(inode, data_reserved,
  1605. round_down(pos, fs_info->sectorsize),
  1606. release_bytes, true);
  1607. }
  1608. }
  1609. extent_changeset_free(data_reserved);
  1610. return num_written ? num_written : ret;
  1611. }
  1612. static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
  1613. {
  1614. struct file *file = iocb->ki_filp;
  1615. struct inode *inode = file_inode(file);
  1616. loff_t pos = iocb->ki_pos;
  1617. ssize_t written;
  1618. ssize_t written_buffered;
  1619. loff_t endbyte;
  1620. int err;
  1621. written = generic_file_direct_write(iocb, from);
  1622. if (written < 0 || !iov_iter_count(from))
  1623. return written;
  1624. pos += written;
  1625. written_buffered = __btrfs_buffered_write(file, from, pos);
  1626. if (written_buffered < 0) {
  1627. err = written_buffered;
  1628. goto out;
  1629. }
  1630. /*
  1631. * Ensure all data is persisted. We want the next direct IO read to be
  1632. * able to read what was just written.
  1633. */
  1634. endbyte = pos + written_buffered - 1;
  1635. err = btrfs_fdatawrite_range(inode, pos, endbyte);
  1636. if (err)
  1637. goto out;
  1638. err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
  1639. if (err)
  1640. goto out;
  1641. written += written_buffered;
  1642. iocb->ki_pos = pos + written_buffered;
  1643. invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
  1644. endbyte >> PAGE_SHIFT);
  1645. out:
  1646. return written ? written : err;
  1647. }
  1648. static void update_time_for_write(struct inode *inode)
  1649. {
  1650. struct timespec now;
  1651. if (IS_NOCMTIME(inode))
  1652. return;
  1653. now = current_time(inode);
  1654. if (!timespec_equal(&inode->i_mtime, &now))
  1655. inode->i_mtime = now;
  1656. if (!timespec_equal(&inode->i_ctime, &now))
  1657. inode->i_ctime = now;
  1658. if (IS_I_VERSION(inode))
  1659. inode_inc_iversion(inode);
  1660. }
  1661. static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
  1662. struct iov_iter *from)
  1663. {
  1664. struct file *file = iocb->ki_filp;
  1665. struct inode *inode = file_inode(file);
  1666. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  1667. struct btrfs_root *root = BTRFS_I(inode)->root;
  1668. u64 start_pos;
  1669. u64 end_pos;
  1670. ssize_t num_written = 0;
  1671. bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
  1672. ssize_t err;
  1673. loff_t pos;
  1674. size_t count = iov_iter_count(from);
  1675. loff_t oldsize;
  1676. int clean_page = 0;
  1677. if (!(iocb->ki_flags & IOCB_DIRECT) &&
  1678. (iocb->ki_flags & IOCB_NOWAIT))
  1679. return -EOPNOTSUPP;
  1680. if (!inode_trylock(inode)) {
  1681. if (iocb->ki_flags & IOCB_NOWAIT)
  1682. return -EAGAIN;
  1683. inode_lock(inode);
  1684. }
  1685. err = generic_write_checks(iocb, from);
  1686. if (err <= 0) {
  1687. inode_unlock(inode);
  1688. return err;
  1689. }
  1690. pos = iocb->ki_pos;
  1691. if (iocb->ki_flags & IOCB_NOWAIT) {
  1692. /*
  1693. * We will allocate space in case nodatacow is not set,
  1694. * so bail
  1695. */
  1696. if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
  1697. BTRFS_INODE_PREALLOC)) ||
  1698. check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) {
  1699. inode_unlock(inode);
  1700. return -EAGAIN;
  1701. }
  1702. }
  1703. current->backing_dev_info = inode_to_bdi(inode);
  1704. err = file_remove_privs(file);
  1705. if (err) {
  1706. inode_unlock(inode);
  1707. goto out;
  1708. }
  1709. /*
  1710. * If BTRFS flips readonly due to some impossible error
  1711. * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
  1712. * although we have opened a file as writable, we have
  1713. * to stop this write operation to ensure FS consistency.
  1714. */
  1715. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  1716. inode_unlock(inode);
  1717. err = -EROFS;
  1718. goto out;
  1719. }
  1720. /*
  1721. * We reserve space for updating the inode when we reserve space for the
  1722. * extent we are going to write, so we will enospc out there. We don't
  1723. * need to start yet another transaction to update the inode as we will
  1724. * update the inode when we finish writing whatever data we write.
  1725. */
  1726. update_time_for_write(inode);
  1727. start_pos = round_down(pos, fs_info->sectorsize);
  1728. oldsize = i_size_read(inode);
  1729. if (start_pos > oldsize) {
  1730. /* Expand hole size to cover write data, preventing empty gap */
  1731. end_pos = round_up(pos + count,
  1732. fs_info->sectorsize);
  1733. err = btrfs_cont_expand(inode, oldsize, end_pos);
  1734. if (err) {
  1735. inode_unlock(inode);
  1736. goto out;
  1737. }
  1738. if (start_pos > round_up(oldsize, fs_info->sectorsize))
  1739. clean_page = 1;
  1740. }
  1741. if (sync)
  1742. atomic_inc(&BTRFS_I(inode)->sync_writers);
  1743. if (iocb->ki_flags & IOCB_DIRECT) {
  1744. num_written = __btrfs_direct_write(iocb, from);
  1745. } else {
  1746. num_written = __btrfs_buffered_write(file, from, pos);
  1747. if (num_written > 0)
  1748. iocb->ki_pos = pos + num_written;
  1749. if (clean_page)
  1750. pagecache_isize_extended(inode, oldsize,
  1751. i_size_read(inode));
  1752. }
  1753. inode_unlock(inode);
  1754. /*
  1755. * We also have to set last_sub_trans to the current log transid,
  1756. * otherwise subsequent syncs to a file that's been synced in this
  1757. * transaction will appear to have already occurred.
  1758. */
  1759. spin_lock(&BTRFS_I(inode)->lock);
  1760. BTRFS_I(inode)->last_sub_trans = root->log_transid;
  1761. spin_unlock(&BTRFS_I(inode)->lock);
  1762. if (num_written > 0)
  1763. num_written = generic_write_sync(iocb, num_written);
  1764. if (sync)
  1765. atomic_dec(&BTRFS_I(inode)->sync_writers);
  1766. out:
  1767. current->backing_dev_info = NULL;
  1768. return num_written ? num_written : err;
  1769. }
  1770. int btrfs_release_file(struct inode *inode, struct file *filp)
  1771. {
  1772. struct btrfs_file_private *private = filp->private_data;
  1773. if (private && private->filldir_buf)
  1774. kfree(private->filldir_buf);
  1775. kfree(private);
  1776. filp->private_data = NULL;
  1777. /*
  1778. * ordered_data_close is set by settattr when we are about to truncate
  1779. * a file from a non-zero size to a zero size. This tries to
  1780. * flush down new bytes that may have been written if the
  1781. * application were using truncate to replace a file in place.
  1782. */
  1783. if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
  1784. &BTRFS_I(inode)->runtime_flags))
  1785. filemap_flush(inode->i_mapping);
  1786. return 0;
  1787. }
  1788. static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
  1789. {
  1790. int ret;
  1791. struct blk_plug plug;
  1792. /*
  1793. * This is only called in fsync, which would do synchronous writes, so
  1794. * a plug can merge adjacent IOs as much as possible. Esp. in case of
  1795. * multiple disks using raid profile, a large IO can be split to
  1796. * several segments of stripe length (currently 64K).
  1797. */
  1798. blk_start_plug(&plug);
  1799. atomic_inc(&BTRFS_I(inode)->sync_writers);
  1800. ret = btrfs_fdatawrite_range(inode, start, end);
  1801. atomic_dec(&BTRFS_I(inode)->sync_writers);
  1802. blk_finish_plug(&plug);
  1803. return ret;
  1804. }
  1805. /*
  1806. * fsync call for both files and directories. This logs the inode into
  1807. * the tree log instead of forcing full commits whenever possible.
  1808. *
  1809. * It needs to call filemap_fdatawait so that all ordered extent updates are
  1810. * in the metadata btree are up to date for copying to the log.
  1811. *
  1812. * It drops the inode mutex before doing the tree log commit. This is an
  1813. * important optimization for directories because holding the mutex prevents
  1814. * new operations on the dir while we write to disk.
  1815. */
  1816. int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  1817. {
  1818. struct dentry *dentry = file_dentry(file);
  1819. struct inode *inode = d_inode(dentry);
  1820. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  1821. struct btrfs_root *root = BTRFS_I(inode)->root;
  1822. struct btrfs_trans_handle *trans;
  1823. struct btrfs_log_ctx ctx;
  1824. int ret = 0, err;
  1825. bool full_sync = false;
  1826. u64 len;
  1827. /*
  1828. * The range length can be represented by u64, we have to do the typecasts
  1829. * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
  1830. */
  1831. len = (u64)end - (u64)start + 1;
  1832. trace_btrfs_sync_file(file, datasync);
  1833. btrfs_init_log_ctx(&ctx, inode);
  1834. /*
  1835. * We write the dirty pages in the range and wait until they complete
  1836. * out of the ->i_mutex. If so, we can flush the dirty pages by
  1837. * multi-task, and make the performance up. See
  1838. * btrfs_wait_ordered_range for an explanation of the ASYNC check.
  1839. */
  1840. ret = start_ordered_ops(inode, start, end);
  1841. if (ret)
  1842. goto out;
  1843. inode_lock(inode);
  1844. atomic_inc(&root->log_batch);
  1845. full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1846. &BTRFS_I(inode)->runtime_flags);
  1847. /*
  1848. * We might have have had more pages made dirty after calling
  1849. * start_ordered_ops and before acquiring the inode's i_mutex.
  1850. */
  1851. if (full_sync) {
  1852. /*
  1853. * For a full sync, we need to make sure any ordered operations
  1854. * start and finish before we start logging the inode, so that
  1855. * all extents are persisted and the respective file extent
  1856. * items are in the fs/subvol btree.
  1857. */
  1858. ret = btrfs_wait_ordered_range(inode, start, len);
  1859. } else {
  1860. /*
  1861. * Start any new ordered operations before starting to log the
  1862. * inode. We will wait for them to finish in btrfs_sync_log().
  1863. *
  1864. * Right before acquiring the inode's mutex, we might have new
  1865. * writes dirtying pages, which won't immediately start the
  1866. * respective ordered operations - that is done through the
  1867. * fill_delalloc callbacks invoked from the writepage and
  1868. * writepages address space operations. So make sure we start
  1869. * all ordered operations before starting to log our inode. Not
  1870. * doing this means that while logging the inode, writeback
  1871. * could start and invoke writepage/writepages, which would call
  1872. * the fill_delalloc callbacks (cow_file_range,
  1873. * submit_compressed_extents). These callbacks add first an
  1874. * extent map to the modified list of extents and then create
  1875. * the respective ordered operation, which means in
  1876. * tree-log.c:btrfs_log_inode() we might capture all existing
  1877. * ordered operations (with btrfs_get_logged_extents()) before
  1878. * the fill_delalloc callback adds its ordered operation, and by
  1879. * the time we visit the modified list of extent maps (with
  1880. * btrfs_log_changed_extents()), we see and process the extent
  1881. * map they created. We then use the extent map to construct a
  1882. * file extent item for logging without waiting for the
  1883. * respective ordered operation to finish - this file extent
  1884. * item points to a disk location that might not have yet been
  1885. * written to, containing random data - so after a crash a log
  1886. * replay will make our inode have file extent items that point
  1887. * to disk locations containing invalid data, as we returned
  1888. * success to userspace without waiting for the respective
  1889. * ordered operation to finish, because it wasn't captured by
  1890. * btrfs_get_logged_extents().
  1891. */
  1892. ret = start_ordered_ops(inode, start, end);
  1893. }
  1894. if (ret) {
  1895. inode_unlock(inode);
  1896. goto out;
  1897. }
  1898. atomic_inc(&root->log_batch);
  1899. /*
  1900. * If the last transaction that changed this file was before the current
  1901. * transaction and we have the full sync flag set in our inode, we can
  1902. * bail out now without any syncing.
  1903. *
  1904. * Note that we can't bail out if the full sync flag isn't set. This is
  1905. * because when the full sync flag is set we start all ordered extents
  1906. * and wait for them to fully complete - when they complete they update
  1907. * the inode's last_trans field through:
  1908. *
  1909. * btrfs_finish_ordered_io() ->
  1910. * btrfs_update_inode_fallback() ->
  1911. * btrfs_update_inode() ->
  1912. * btrfs_set_inode_last_trans()
  1913. *
  1914. * So we are sure that last_trans is up to date and can do this check to
  1915. * bail out safely. For the fast path, when the full sync flag is not
  1916. * set in our inode, we can not do it because we start only our ordered
  1917. * extents and don't wait for them to complete (that is when
  1918. * btrfs_finish_ordered_io runs), so here at this point their last_trans
  1919. * value might be less than or equals to fs_info->last_trans_committed,
  1920. * and setting a speculative last_trans for an inode when a buffered
  1921. * write is made (such as fs_info->generation + 1 for example) would not
  1922. * be reliable since after setting the value and before fsync is called
  1923. * any number of transactions can start and commit (transaction kthread
  1924. * commits the current transaction periodically), and a transaction
  1925. * commit does not start nor waits for ordered extents to complete.
  1926. */
  1927. smp_mb();
  1928. if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
  1929. (full_sync && BTRFS_I(inode)->last_trans <=
  1930. fs_info->last_trans_committed) ||
  1931. (!btrfs_have_ordered_extents_in_range(inode, start, len) &&
  1932. BTRFS_I(inode)->last_trans
  1933. <= fs_info->last_trans_committed)) {
  1934. /*
  1935. * We've had everything committed since the last time we were
  1936. * modified so clear this flag in case it was set for whatever
  1937. * reason, it's no longer relevant.
  1938. */
  1939. clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1940. &BTRFS_I(inode)->runtime_flags);
  1941. /*
  1942. * An ordered extent might have started before and completed
  1943. * already with io errors, in which case the inode was not
  1944. * updated and we end up here. So check the inode's mapping
  1945. * for any errors that might have happened since we last
  1946. * checked called fsync.
  1947. */
  1948. ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
  1949. inode_unlock(inode);
  1950. goto out;
  1951. }
  1952. /*
  1953. * We use start here because we will need to wait on the IO to complete
  1954. * in btrfs_sync_log, which could require joining a transaction (for
  1955. * example checking cross references in the nocow path). If we use join
  1956. * here we could get into a situation where we're waiting on IO to
  1957. * happen that is blocked on a transaction trying to commit. With start
  1958. * we inc the extwriter counter, so we wait for all extwriters to exit
  1959. * before we start blocking join'ers. This comment is to keep somebody
  1960. * from thinking they are super smart and changing this to
  1961. * btrfs_join_transaction *cough*Josef*cough*.
  1962. */
  1963. trans = btrfs_start_transaction(root, 0);
  1964. if (IS_ERR(trans)) {
  1965. ret = PTR_ERR(trans);
  1966. inode_unlock(inode);
  1967. goto out;
  1968. }
  1969. trans->sync = true;
  1970. ret = btrfs_log_dentry_safe(trans, dentry, start, end, &ctx);
  1971. if (ret < 0) {
  1972. /* Fallthrough and commit/free transaction. */
  1973. ret = 1;
  1974. }
  1975. /* we've logged all the items and now have a consistent
  1976. * version of the file in the log. It is possible that
  1977. * someone will come in and modify the file, but that's
  1978. * fine because the log is consistent on disk, and we
  1979. * have references to all of the file's extents
  1980. *
  1981. * It is possible that someone will come in and log the
  1982. * file again, but that will end up using the synchronization
  1983. * inside btrfs_sync_log to keep things safe.
  1984. */
  1985. inode_unlock(inode);
  1986. /*
  1987. * If any of the ordered extents had an error, just return it to user
  1988. * space, so that the application knows some writes didn't succeed and
  1989. * can take proper action (retry for e.g.). Blindly committing the
  1990. * transaction in this case, would fool userspace that everything was
  1991. * successful. And we also want to make sure our log doesn't contain
  1992. * file extent items pointing to extents that weren't fully written to -
  1993. * just like in the non fast fsync path, where we check for the ordered
  1994. * operation's error flag before writing to the log tree and return -EIO
  1995. * if any of them had this flag set (btrfs_wait_ordered_range) -
  1996. * therefore we need to check for errors in the ordered operations,
  1997. * which are indicated by ctx.io_err.
  1998. */
  1999. if (ctx.io_err) {
  2000. btrfs_end_transaction(trans);
  2001. ret = ctx.io_err;
  2002. goto out;
  2003. }
  2004. if (ret != BTRFS_NO_LOG_SYNC) {
  2005. if (!ret) {
  2006. ret = btrfs_sync_log(trans, root, &ctx);
  2007. if (!ret) {
  2008. ret = btrfs_end_transaction(trans);
  2009. goto out;
  2010. }
  2011. }
  2012. if (!full_sync) {
  2013. ret = btrfs_wait_ordered_range(inode, start, len);
  2014. if (ret) {
  2015. btrfs_end_transaction(trans);
  2016. goto out;
  2017. }
  2018. }
  2019. ret = btrfs_commit_transaction(trans);
  2020. } else {
  2021. ret = btrfs_end_transaction(trans);
  2022. }
  2023. out:
  2024. ASSERT(list_empty(&ctx.list));
  2025. err = file_check_and_advance_wb_err(file);
  2026. if (!ret)
  2027. ret = err;
  2028. return ret > 0 ? -EIO : ret;
  2029. }
  2030. static const struct vm_operations_struct btrfs_file_vm_ops = {
  2031. .fault = filemap_fault,
  2032. .map_pages = filemap_map_pages,
  2033. .page_mkwrite = btrfs_page_mkwrite,
  2034. };
  2035. static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
  2036. {
  2037. struct address_space *mapping = filp->f_mapping;
  2038. if (!mapping->a_ops->readpage)
  2039. return -ENOEXEC;
  2040. file_accessed(filp);
  2041. vma->vm_ops = &btrfs_file_vm_ops;
  2042. return 0;
  2043. }
  2044. static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
  2045. int slot, u64 start, u64 end)
  2046. {
  2047. struct btrfs_file_extent_item *fi;
  2048. struct btrfs_key key;
  2049. if (slot < 0 || slot >= btrfs_header_nritems(leaf))
  2050. return 0;
  2051. btrfs_item_key_to_cpu(leaf, &key, slot);
  2052. if (key.objectid != btrfs_ino(inode) ||
  2053. key.type != BTRFS_EXTENT_DATA_KEY)
  2054. return 0;
  2055. fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
  2056. if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
  2057. return 0;
  2058. if (btrfs_file_extent_disk_bytenr(leaf, fi))
  2059. return 0;
  2060. if (key.offset == end)
  2061. return 1;
  2062. if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
  2063. return 1;
  2064. return 0;
  2065. }
  2066. static int fill_holes(struct btrfs_trans_handle *trans,
  2067. struct btrfs_inode *inode,
  2068. struct btrfs_path *path, u64 offset, u64 end)
  2069. {
  2070. struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
  2071. struct btrfs_root *root = inode->root;
  2072. struct extent_buffer *leaf;
  2073. struct btrfs_file_extent_item *fi;
  2074. struct extent_map *hole_em;
  2075. struct extent_map_tree *em_tree = &inode->extent_tree;
  2076. struct btrfs_key key;
  2077. int ret;
  2078. if (btrfs_fs_incompat(fs_info, NO_HOLES))
  2079. goto out;
  2080. key.objectid = btrfs_ino(inode);
  2081. key.type = BTRFS_EXTENT_DATA_KEY;
  2082. key.offset = offset;
  2083. ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
  2084. if (ret <= 0) {
  2085. /*
  2086. * We should have dropped this offset, so if we find it then
  2087. * something has gone horribly wrong.
  2088. */
  2089. if (ret == 0)
  2090. ret = -EINVAL;
  2091. return ret;
  2092. }
  2093. leaf = path->nodes[0];
  2094. if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
  2095. u64 num_bytes;
  2096. path->slots[0]--;
  2097. fi = btrfs_item_ptr(leaf, path->slots[0],
  2098. struct btrfs_file_extent_item);
  2099. num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
  2100. end - offset;
  2101. btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
  2102. btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
  2103. btrfs_set_file_extent_offset(leaf, fi, 0);
  2104. btrfs_mark_buffer_dirty(leaf);
  2105. goto out;
  2106. }
  2107. if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
  2108. u64 num_bytes;
  2109. key.offset = offset;
  2110. btrfs_set_item_key_safe(fs_info, path, &key);
  2111. fi = btrfs_item_ptr(leaf, path->slots[0],
  2112. struct btrfs_file_extent_item);
  2113. num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
  2114. offset;
  2115. btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
  2116. btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
  2117. btrfs_set_file_extent_offset(leaf, fi, 0);
  2118. btrfs_mark_buffer_dirty(leaf);
  2119. goto out;
  2120. }
  2121. btrfs_release_path(path);
  2122. ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
  2123. offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
  2124. if (ret)
  2125. return ret;
  2126. out:
  2127. btrfs_release_path(path);
  2128. hole_em = alloc_extent_map();
  2129. if (!hole_em) {
  2130. btrfs_drop_extent_cache(inode, offset, end - 1, 0);
  2131. set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
  2132. } else {
  2133. hole_em->start = offset;
  2134. hole_em->len = end - offset;
  2135. hole_em->ram_bytes = hole_em->len;
  2136. hole_em->orig_start = offset;
  2137. hole_em->block_start = EXTENT_MAP_HOLE;
  2138. hole_em->block_len = 0;
  2139. hole_em->orig_block_len = 0;
  2140. hole_em->bdev = fs_info->fs_devices->latest_bdev;
  2141. hole_em->compress_type = BTRFS_COMPRESS_NONE;
  2142. hole_em->generation = trans->transid;
  2143. do {
  2144. btrfs_drop_extent_cache(inode, offset, end - 1, 0);
  2145. write_lock(&em_tree->lock);
  2146. ret = add_extent_mapping(em_tree, hole_em, 1);
  2147. write_unlock(&em_tree->lock);
  2148. } while (ret == -EEXIST);
  2149. free_extent_map(hole_em);
  2150. if (ret)
  2151. set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  2152. &inode->runtime_flags);
  2153. }
  2154. return 0;
  2155. }
  2156. /*
  2157. * Find a hole extent on given inode and change start/len to the end of hole
  2158. * extent.(hole/vacuum extent whose em->start <= start &&
  2159. * em->start + em->len > start)
  2160. * When a hole extent is found, return 1 and modify start/len.
  2161. */
  2162. static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
  2163. {
  2164. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  2165. struct extent_map *em;
  2166. int ret = 0;
  2167. em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
  2168. round_down(*start, fs_info->sectorsize),
  2169. round_up(*len, fs_info->sectorsize), 0);
  2170. if (IS_ERR(em))
  2171. return PTR_ERR(em);
  2172. /* Hole or vacuum extent(only exists in no-hole mode) */
  2173. if (em->block_start == EXTENT_MAP_HOLE) {
  2174. ret = 1;
  2175. *len = em->start + em->len > *start + *len ?
  2176. 0 : *start + *len - em->start - em->len;
  2177. *start = em->start + em->len;
  2178. }
  2179. free_extent_map(em);
  2180. return ret;
  2181. }
  2182. static int btrfs_punch_hole_lock_range(struct inode *inode,
  2183. const u64 lockstart,
  2184. const u64 lockend,
  2185. struct extent_state **cached_state)
  2186. {
  2187. while (1) {
  2188. struct btrfs_ordered_extent *ordered;
  2189. int ret;
  2190. truncate_pagecache_range(inode, lockstart, lockend);
  2191. lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  2192. cached_state);
  2193. ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
  2194. /*
  2195. * We need to make sure we have no ordered extents in this range
  2196. * and nobody raced in and read a page in this range, if we did
  2197. * we need to try again.
  2198. */
  2199. if ((!ordered ||
  2200. (ordered->file_offset + ordered->len <= lockstart ||
  2201. ordered->file_offset > lockend)) &&
  2202. !filemap_range_has_page(inode->i_mapping,
  2203. lockstart, lockend)) {
  2204. if (ordered)
  2205. btrfs_put_ordered_extent(ordered);
  2206. break;
  2207. }
  2208. if (ordered)
  2209. btrfs_put_ordered_extent(ordered);
  2210. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
  2211. lockend, cached_state);
  2212. ret = btrfs_wait_ordered_range(inode, lockstart,
  2213. lockend - lockstart + 1);
  2214. if (ret)
  2215. return ret;
  2216. }
  2217. return 0;
  2218. }
  2219. static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
  2220. {
  2221. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  2222. struct btrfs_root *root = BTRFS_I(inode)->root;
  2223. struct extent_state *cached_state = NULL;
  2224. struct btrfs_path *path;
  2225. struct btrfs_block_rsv *rsv;
  2226. struct btrfs_trans_handle *trans;
  2227. u64 lockstart;
  2228. u64 lockend;
  2229. u64 tail_start;
  2230. u64 tail_len;
  2231. u64 orig_start = offset;
  2232. u64 cur_offset;
  2233. u64 min_size = btrfs_calc_trans_metadata_size(fs_info, 1);
  2234. u64 drop_end;
  2235. int ret = 0;
  2236. int err = 0;
  2237. unsigned int rsv_count;
  2238. bool same_block;
  2239. bool no_holes = btrfs_fs_incompat(fs_info, NO_HOLES);
  2240. u64 ino_size;
  2241. bool truncated_block = false;
  2242. bool updated_inode = false;
  2243. ret = btrfs_wait_ordered_range(inode, offset, len);
  2244. if (ret)
  2245. return ret;
  2246. inode_lock(inode);
  2247. ino_size = round_up(inode->i_size, fs_info->sectorsize);
  2248. ret = find_first_non_hole(inode, &offset, &len);
  2249. if (ret < 0)
  2250. goto out_only_mutex;
  2251. if (ret && !len) {
  2252. /* Already in a large hole */
  2253. ret = 0;
  2254. goto out_only_mutex;
  2255. }
  2256. lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
  2257. lockend = round_down(offset + len,
  2258. btrfs_inode_sectorsize(inode)) - 1;
  2259. same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
  2260. == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
  2261. /*
  2262. * We needn't truncate any block which is beyond the end of the file
  2263. * because we are sure there is no data there.
  2264. */
  2265. /*
  2266. * Only do this if we are in the same block and we aren't doing the
  2267. * entire block.
  2268. */
  2269. if (same_block && len < fs_info->sectorsize) {
  2270. if (offset < ino_size) {
  2271. truncated_block = true;
  2272. ret = btrfs_truncate_block(inode, offset, len, 0);
  2273. } else {
  2274. ret = 0;
  2275. }
  2276. goto out_only_mutex;
  2277. }
  2278. /* zero back part of the first block */
  2279. if (offset < ino_size) {
  2280. truncated_block = true;
  2281. ret = btrfs_truncate_block(inode, offset, 0, 0);
  2282. if (ret) {
  2283. inode_unlock(inode);
  2284. return ret;
  2285. }
  2286. }
  2287. /* Check the aligned pages after the first unaligned page,
  2288. * if offset != orig_start, which means the first unaligned page
  2289. * including several following pages are already in holes,
  2290. * the extra check can be skipped */
  2291. if (offset == orig_start) {
  2292. /* after truncate page, check hole again */
  2293. len = offset + len - lockstart;
  2294. offset = lockstart;
  2295. ret = find_first_non_hole(inode, &offset, &len);
  2296. if (ret < 0)
  2297. goto out_only_mutex;
  2298. if (ret && !len) {
  2299. ret = 0;
  2300. goto out_only_mutex;
  2301. }
  2302. lockstart = offset;
  2303. }
  2304. /* Check the tail unaligned part is in a hole */
  2305. tail_start = lockend + 1;
  2306. tail_len = offset + len - tail_start;
  2307. if (tail_len) {
  2308. ret = find_first_non_hole(inode, &tail_start, &tail_len);
  2309. if (unlikely(ret < 0))
  2310. goto out_only_mutex;
  2311. if (!ret) {
  2312. /* zero the front end of the last page */
  2313. if (tail_start + tail_len < ino_size) {
  2314. truncated_block = true;
  2315. ret = btrfs_truncate_block(inode,
  2316. tail_start + tail_len,
  2317. 0, 1);
  2318. if (ret)
  2319. goto out_only_mutex;
  2320. }
  2321. }
  2322. }
  2323. if (lockend < lockstart) {
  2324. ret = 0;
  2325. goto out_only_mutex;
  2326. }
  2327. ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
  2328. &cached_state);
  2329. if (ret) {
  2330. inode_unlock(inode);
  2331. goto out_only_mutex;
  2332. }
  2333. path = btrfs_alloc_path();
  2334. if (!path) {
  2335. ret = -ENOMEM;
  2336. goto out;
  2337. }
  2338. rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
  2339. if (!rsv) {
  2340. ret = -ENOMEM;
  2341. goto out_free;
  2342. }
  2343. rsv->size = btrfs_calc_trans_metadata_size(fs_info, 1);
  2344. rsv->failfast = 1;
  2345. /*
  2346. * 1 - update the inode
  2347. * 1 - removing the extents in the range
  2348. * 1 - adding the hole extent if no_holes isn't set
  2349. */
  2350. rsv_count = no_holes ? 2 : 3;
  2351. trans = btrfs_start_transaction(root, rsv_count);
  2352. if (IS_ERR(trans)) {
  2353. err = PTR_ERR(trans);
  2354. goto out_free;
  2355. }
  2356. ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
  2357. min_size, 0);
  2358. BUG_ON(ret);
  2359. trans->block_rsv = rsv;
  2360. cur_offset = lockstart;
  2361. len = lockend - cur_offset;
  2362. while (cur_offset < lockend) {
  2363. ret = __btrfs_drop_extents(trans, root, inode, path,
  2364. cur_offset, lockend + 1,
  2365. &drop_end, 1, 0, 0, NULL);
  2366. if (ret != -ENOSPC)
  2367. break;
  2368. trans->block_rsv = &fs_info->trans_block_rsv;
  2369. if (cur_offset < drop_end && cur_offset < ino_size) {
  2370. ret = fill_holes(trans, BTRFS_I(inode), path,
  2371. cur_offset, drop_end);
  2372. if (ret) {
  2373. /*
  2374. * If we failed then we didn't insert our hole
  2375. * entries for the area we dropped, so now the
  2376. * fs is corrupted, so we must abort the
  2377. * transaction.
  2378. */
  2379. btrfs_abort_transaction(trans, ret);
  2380. err = ret;
  2381. break;
  2382. }
  2383. }
  2384. cur_offset = drop_end;
  2385. ret = btrfs_update_inode(trans, root, inode);
  2386. if (ret) {
  2387. err = ret;
  2388. break;
  2389. }
  2390. btrfs_end_transaction(trans);
  2391. btrfs_btree_balance_dirty(fs_info);
  2392. trans = btrfs_start_transaction(root, rsv_count);
  2393. if (IS_ERR(trans)) {
  2394. ret = PTR_ERR(trans);
  2395. trans = NULL;
  2396. break;
  2397. }
  2398. ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
  2399. rsv, min_size, 0);
  2400. BUG_ON(ret); /* shouldn't happen */
  2401. trans->block_rsv = rsv;
  2402. ret = find_first_non_hole(inode, &cur_offset, &len);
  2403. if (unlikely(ret < 0))
  2404. break;
  2405. if (ret && !len) {
  2406. ret = 0;
  2407. break;
  2408. }
  2409. }
  2410. if (ret) {
  2411. err = ret;
  2412. goto out_trans;
  2413. }
  2414. trans->block_rsv = &fs_info->trans_block_rsv;
  2415. /*
  2416. * If we are using the NO_HOLES feature we might have had already an
  2417. * hole that overlaps a part of the region [lockstart, lockend] and
  2418. * ends at (or beyond) lockend. Since we have no file extent items to
  2419. * represent holes, drop_end can be less than lockend and so we must
  2420. * make sure we have an extent map representing the existing hole (the
  2421. * call to __btrfs_drop_extents() might have dropped the existing extent
  2422. * map representing the existing hole), otherwise the fast fsync path
  2423. * will not record the existence of the hole region
  2424. * [existing_hole_start, lockend].
  2425. */
  2426. if (drop_end <= lockend)
  2427. drop_end = lockend + 1;
  2428. /*
  2429. * Don't insert file hole extent item if it's for a range beyond eof
  2430. * (because it's useless) or if it represents a 0 bytes range (when
  2431. * cur_offset == drop_end).
  2432. */
  2433. if (cur_offset < ino_size && cur_offset < drop_end) {
  2434. ret = fill_holes(trans, BTRFS_I(inode), path,
  2435. cur_offset, drop_end);
  2436. if (ret) {
  2437. /* Same comment as above. */
  2438. btrfs_abort_transaction(trans, ret);
  2439. err = ret;
  2440. goto out_trans;
  2441. }
  2442. }
  2443. out_trans:
  2444. if (!trans)
  2445. goto out_free;
  2446. inode_inc_iversion(inode);
  2447. inode->i_mtime = inode->i_ctime = current_time(inode);
  2448. trans->block_rsv = &fs_info->trans_block_rsv;
  2449. ret = btrfs_update_inode(trans, root, inode);
  2450. updated_inode = true;
  2451. btrfs_end_transaction(trans);
  2452. btrfs_btree_balance_dirty(fs_info);
  2453. out_free:
  2454. btrfs_free_path(path);
  2455. btrfs_free_block_rsv(fs_info, rsv);
  2456. out:
  2457. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  2458. &cached_state);
  2459. out_only_mutex:
  2460. if (!updated_inode && truncated_block && !ret && !err) {
  2461. /*
  2462. * If we only end up zeroing part of a page, we still need to
  2463. * update the inode item, so that all the time fields are
  2464. * updated as well as the necessary btrfs inode in memory fields
  2465. * for detecting, at fsync time, if the inode isn't yet in the
  2466. * log tree or it's there but not up to date.
  2467. */
  2468. trans = btrfs_start_transaction(root, 1);
  2469. if (IS_ERR(trans)) {
  2470. err = PTR_ERR(trans);
  2471. } else {
  2472. err = btrfs_update_inode(trans, root, inode);
  2473. ret = btrfs_end_transaction(trans);
  2474. }
  2475. }
  2476. inode_unlock(inode);
  2477. if (ret && !err)
  2478. err = ret;
  2479. return err;
  2480. }
  2481. /* Helper structure to record which range is already reserved */
  2482. struct falloc_range {
  2483. struct list_head list;
  2484. u64 start;
  2485. u64 len;
  2486. };
  2487. /*
  2488. * Helper function to add falloc range
  2489. *
  2490. * Caller should have locked the larger range of extent containing
  2491. * [start, len)
  2492. */
  2493. static int add_falloc_range(struct list_head *head, u64 start, u64 len)
  2494. {
  2495. struct falloc_range *prev = NULL;
  2496. struct falloc_range *range = NULL;
  2497. if (list_empty(head))
  2498. goto insert;
  2499. /*
  2500. * As fallocate iterate by bytenr order, we only need to check
  2501. * the last range.
  2502. */
  2503. prev = list_entry(head->prev, struct falloc_range, list);
  2504. if (prev->start + prev->len == start) {
  2505. prev->len += len;
  2506. return 0;
  2507. }
  2508. insert:
  2509. range = kmalloc(sizeof(*range), GFP_KERNEL);
  2510. if (!range)
  2511. return -ENOMEM;
  2512. range->start = start;
  2513. range->len = len;
  2514. list_add_tail(&range->list, head);
  2515. return 0;
  2516. }
  2517. static int btrfs_fallocate_update_isize(struct inode *inode,
  2518. const u64 end,
  2519. const int mode)
  2520. {
  2521. struct btrfs_trans_handle *trans;
  2522. struct btrfs_root *root = BTRFS_I(inode)->root;
  2523. int ret;
  2524. int ret2;
  2525. if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
  2526. return 0;
  2527. trans = btrfs_start_transaction(root, 1);
  2528. if (IS_ERR(trans))
  2529. return PTR_ERR(trans);
  2530. inode->i_ctime = current_time(inode);
  2531. i_size_write(inode, end);
  2532. btrfs_ordered_update_i_size(inode, end, NULL);
  2533. ret = btrfs_update_inode(trans, root, inode);
  2534. ret2 = btrfs_end_transaction(trans);
  2535. return ret ? ret : ret2;
  2536. }
  2537. enum {
  2538. RANGE_BOUNDARY_WRITTEN_EXTENT = 0,
  2539. RANGE_BOUNDARY_PREALLOC_EXTENT = 1,
  2540. RANGE_BOUNDARY_HOLE = 2,
  2541. };
  2542. static int btrfs_zero_range_check_range_boundary(struct inode *inode,
  2543. u64 offset)
  2544. {
  2545. const u64 sectorsize = btrfs_inode_sectorsize(inode);
  2546. struct extent_map *em;
  2547. int ret;
  2548. offset = round_down(offset, sectorsize);
  2549. em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize, 0);
  2550. if (IS_ERR(em))
  2551. return PTR_ERR(em);
  2552. if (em->block_start == EXTENT_MAP_HOLE)
  2553. ret = RANGE_BOUNDARY_HOLE;
  2554. else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
  2555. ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
  2556. else
  2557. ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
  2558. free_extent_map(em);
  2559. return ret;
  2560. }
  2561. static int btrfs_zero_range(struct inode *inode,
  2562. loff_t offset,
  2563. loff_t len,
  2564. const int mode)
  2565. {
  2566. struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
  2567. struct extent_map *em;
  2568. struct extent_changeset *data_reserved = NULL;
  2569. int ret;
  2570. u64 alloc_hint = 0;
  2571. const u64 sectorsize = btrfs_inode_sectorsize(inode);
  2572. u64 alloc_start = round_down(offset, sectorsize);
  2573. u64 alloc_end = round_up(offset + len, sectorsize);
  2574. u64 bytes_to_reserve = 0;
  2575. bool space_reserved = false;
  2576. inode_dio_wait(inode);
  2577. em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
  2578. alloc_start, alloc_end - alloc_start, 0);
  2579. if (IS_ERR(em)) {
  2580. ret = PTR_ERR(em);
  2581. goto out;
  2582. }
  2583. /*
  2584. * Avoid hole punching and extent allocation for some cases. More cases
  2585. * could be considered, but these are unlikely common and we keep things
  2586. * as simple as possible for now. Also, intentionally, if the target
  2587. * range contains one or more prealloc extents together with regular
  2588. * extents and holes, we drop all the existing extents and allocate a
  2589. * new prealloc extent, so that we get a larger contiguous disk extent.
  2590. */
  2591. if (em->start <= alloc_start &&
  2592. test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
  2593. const u64 em_end = em->start + em->len;
  2594. if (em_end >= offset + len) {
  2595. /*
  2596. * The whole range is already a prealloc extent,
  2597. * do nothing except updating the inode's i_size if
  2598. * needed.
  2599. */
  2600. free_extent_map(em);
  2601. ret = btrfs_fallocate_update_isize(inode, offset + len,
  2602. mode);
  2603. goto out;
  2604. }
  2605. /*
  2606. * Part of the range is already a prealloc extent, so operate
  2607. * only on the remaining part of the range.
  2608. */
  2609. alloc_start = em_end;
  2610. ASSERT(IS_ALIGNED(alloc_start, sectorsize));
  2611. len = offset + len - alloc_start;
  2612. offset = alloc_start;
  2613. alloc_hint = em->block_start + em->len;
  2614. }
  2615. free_extent_map(em);
  2616. if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
  2617. BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
  2618. em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
  2619. alloc_start, sectorsize, 0);
  2620. if (IS_ERR(em)) {
  2621. ret = PTR_ERR(em);
  2622. goto out;
  2623. }
  2624. if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
  2625. free_extent_map(em);
  2626. ret = btrfs_fallocate_update_isize(inode, offset + len,
  2627. mode);
  2628. goto out;
  2629. }
  2630. if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
  2631. free_extent_map(em);
  2632. ret = btrfs_truncate_block(inode, offset, len, 0);
  2633. if (!ret)
  2634. ret = btrfs_fallocate_update_isize(inode,
  2635. offset + len,
  2636. mode);
  2637. return ret;
  2638. }
  2639. free_extent_map(em);
  2640. alloc_start = round_down(offset, sectorsize);
  2641. alloc_end = alloc_start + sectorsize;
  2642. goto reserve_space;
  2643. }
  2644. alloc_start = round_up(offset, sectorsize);
  2645. alloc_end = round_down(offset + len, sectorsize);
  2646. /*
  2647. * For unaligned ranges, check the pages at the boundaries, they might
  2648. * map to an extent, in which case we need to partially zero them, or
  2649. * they might map to a hole, in which case we need our allocation range
  2650. * to cover them.
  2651. */
  2652. if (!IS_ALIGNED(offset, sectorsize)) {
  2653. ret = btrfs_zero_range_check_range_boundary(inode, offset);
  2654. if (ret < 0)
  2655. goto out;
  2656. if (ret == RANGE_BOUNDARY_HOLE) {
  2657. alloc_start = round_down(offset, sectorsize);
  2658. ret = 0;
  2659. } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
  2660. ret = btrfs_truncate_block(inode, offset, 0, 0);
  2661. if (ret)
  2662. goto out;
  2663. } else {
  2664. ret = 0;
  2665. }
  2666. }
  2667. if (!IS_ALIGNED(offset + len, sectorsize)) {
  2668. ret = btrfs_zero_range_check_range_boundary(inode,
  2669. offset + len);
  2670. if (ret < 0)
  2671. goto out;
  2672. if (ret == RANGE_BOUNDARY_HOLE) {
  2673. alloc_end = round_up(offset + len, sectorsize);
  2674. ret = 0;
  2675. } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
  2676. ret = btrfs_truncate_block(inode, offset + len, 0, 1);
  2677. if (ret)
  2678. goto out;
  2679. } else {
  2680. ret = 0;
  2681. }
  2682. }
  2683. reserve_space:
  2684. if (alloc_start < alloc_end) {
  2685. struct extent_state *cached_state = NULL;
  2686. const u64 lockstart = alloc_start;
  2687. const u64 lockend = alloc_end - 1;
  2688. bytes_to_reserve = alloc_end - alloc_start;
  2689. ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
  2690. bytes_to_reserve);
  2691. if (ret < 0)
  2692. goto out;
  2693. space_reserved = true;
  2694. ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
  2695. alloc_start, bytes_to_reserve);
  2696. if (ret)
  2697. goto out;
  2698. ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
  2699. &cached_state);
  2700. if (ret)
  2701. goto out;
  2702. ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
  2703. alloc_end - alloc_start,
  2704. i_blocksize(inode),
  2705. offset + len, &alloc_hint);
  2706. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
  2707. lockend, &cached_state);
  2708. /* btrfs_prealloc_file_range releases reserved space on error */
  2709. if (ret) {
  2710. space_reserved = false;
  2711. goto out;
  2712. }
  2713. }
  2714. ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
  2715. out:
  2716. if (ret && space_reserved)
  2717. btrfs_free_reserved_data_space(inode, data_reserved,
  2718. alloc_start, bytes_to_reserve);
  2719. extent_changeset_free(data_reserved);
  2720. return ret;
  2721. }
  2722. static long btrfs_fallocate(struct file *file, int mode,
  2723. loff_t offset, loff_t len)
  2724. {
  2725. struct inode *inode = file_inode(file);
  2726. struct extent_state *cached_state = NULL;
  2727. struct extent_changeset *data_reserved = NULL;
  2728. struct falloc_range *range;
  2729. struct falloc_range *tmp;
  2730. struct list_head reserve_list;
  2731. u64 cur_offset;
  2732. u64 last_byte;
  2733. u64 alloc_start;
  2734. u64 alloc_end;
  2735. u64 alloc_hint = 0;
  2736. u64 locked_end;
  2737. u64 actual_end = 0;
  2738. struct extent_map *em;
  2739. int blocksize = btrfs_inode_sectorsize(inode);
  2740. int ret;
  2741. alloc_start = round_down(offset, blocksize);
  2742. alloc_end = round_up(offset + len, blocksize);
  2743. cur_offset = alloc_start;
  2744. /* Make sure we aren't being give some crap mode */
  2745. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
  2746. FALLOC_FL_ZERO_RANGE))
  2747. return -EOPNOTSUPP;
  2748. if (mode & FALLOC_FL_PUNCH_HOLE)
  2749. return btrfs_punch_hole(inode, offset, len);
  2750. /*
  2751. * Only trigger disk allocation, don't trigger qgroup reserve
  2752. *
  2753. * For qgroup space, it will be checked later.
  2754. */
  2755. if (!(mode & FALLOC_FL_ZERO_RANGE)) {
  2756. ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
  2757. alloc_end - alloc_start);
  2758. if (ret < 0)
  2759. return ret;
  2760. }
  2761. inode_lock(inode);
  2762. if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
  2763. ret = inode_newsize_ok(inode, offset + len);
  2764. if (ret)
  2765. goto out;
  2766. }
  2767. /*
  2768. * TODO: Move these two operations after we have checked
  2769. * accurate reserved space, or fallocate can still fail but
  2770. * with page truncated or size expanded.
  2771. *
  2772. * But that's a minor problem and won't do much harm BTW.
  2773. */
  2774. if (alloc_start > inode->i_size) {
  2775. ret = btrfs_cont_expand(inode, i_size_read(inode),
  2776. alloc_start);
  2777. if (ret)
  2778. goto out;
  2779. } else if (offset + len > inode->i_size) {
  2780. /*
  2781. * If we are fallocating from the end of the file onward we
  2782. * need to zero out the end of the block if i_size lands in the
  2783. * middle of a block.
  2784. */
  2785. ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
  2786. if (ret)
  2787. goto out;
  2788. }
  2789. /*
  2790. * wait for ordered IO before we have any locks. We'll loop again
  2791. * below with the locks held.
  2792. */
  2793. ret = btrfs_wait_ordered_range(inode, alloc_start,
  2794. alloc_end - alloc_start);
  2795. if (ret)
  2796. goto out;
  2797. if (mode & FALLOC_FL_ZERO_RANGE) {
  2798. ret = btrfs_zero_range(inode, offset, len, mode);
  2799. inode_unlock(inode);
  2800. return ret;
  2801. }
  2802. locked_end = alloc_end - 1;
  2803. while (1) {
  2804. struct btrfs_ordered_extent *ordered;
  2805. /* the extent lock is ordered inside the running
  2806. * transaction
  2807. */
  2808. lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
  2809. locked_end, &cached_state);
  2810. ordered = btrfs_lookup_first_ordered_extent(inode, locked_end);
  2811. if (ordered &&
  2812. ordered->file_offset + ordered->len > alloc_start &&
  2813. ordered->file_offset < alloc_end) {
  2814. btrfs_put_ordered_extent(ordered);
  2815. unlock_extent_cached(&BTRFS_I(inode)->io_tree,
  2816. alloc_start, locked_end,
  2817. &cached_state);
  2818. /*
  2819. * we can't wait on the range with the transaction
  2820. * running or with the extent lock held
  2821. */
  2822. ret = btrfs_wait_ordered_range(inode, alloc_start,
  2823. alloc_end - alloc_start);
  2824. if (ret)
  2825. goto out;
  2826. } else {
  2827. if (ordered)
  2828. btrfs_put_ordered_extent(ordered);
  2829. break;
  2830. }
  2831. }
  2832. /* First, check if we exceed the qgroup limit */
  2833. INIT_LIST_HEAD(&reserve_list);
  2834. while (cur_offset < alloc_end) {
  2835. em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
  2836. alloc_end - cur_offset, 0);
  2837. if (IS_ERR(em)) {
  2838. ret = PTR_ERR(em);
  2839. break;
  2840. }
  2841. last_byte = min(extent_map_end(em), alloc_end);
  2842. actual_end = min_t(u64, extent_map_end(em), offset + len);
  2843. last_byte = ALIGN(last_byte, blocksize);
  2844. if (em->block_start == EXTENT_MAP_HOLE ||
  2845. (cur_offset >= inode->i_size &&
  2846. !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
  2847. ret = add_falloc_range(&reserve_list, cur_offset,
  2848. last_byte - cur_offset);
  2849. if (ret < 0) {
  2850. free_extent_map(em);
  2851. break;
  2852. }
  2853. ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
  2854. cur_offset, last_byte - cur_offset);
  2855. if (ret < 0) {
  2856. free_extent_map(em);
  2857. break;
  2858. }
  2859. } else {
  2860. /*
  2861. * Do not need to reserve unwritten extent for this
  2862. * range, free reserved data space first, otherwise
  2863. * it'll result in false ENOSPC error.
  2864. */
  2865. btrfs_free_reserved_data_space(inode, data_reserved,
  2866. cur_offset, last_byte - cur_offset);
  2867. }
  2868. free_extent_map(em);
  2869. cur_offset = last_byte;
  2870. }
  2871. /*
  2872. * If ret is still 0, means we're OK to fallocate.
  2873. * Or just cleanup the list and exit.
  2874. */
  2875. list_for_each_entry_safe(range, tmp, &reserve_list, list) {
  2876. if (!ret)
  2877. ret = btrfs_prealloc_file_range(inode, mode,
  2878. range->start,
  2879. range->len, i_blocksize(inode),
  2880. offset + len, &alloc_hint);
  2881. else
  2882. btrfs_free_reserved_data_space(inode,
  2883. data_reserved, range->start,
  2884. range->len);
  2885. list_del(&range->list);
  2886. kfree(range);
  2887. }
  2888. if (ret < 0)
  2889. goto out_unlock;
  2890. /*
  2891. * We didn't need to allocate any more space, but we still extended the
  2892. * size of the file so we need to update i_size and the inode item.
  2893. */
  2894. ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
  2895. out_unlock:
  2896. unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
  2897. &cached_state);
  2898. out:
  2899. inode_unlock(inode);
  2900. /* Let go of our reservation. */
  2901. if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
  2902. btrfs_free_reserved_data_space(inode, data_reserved,
  2903. alloc_start, alloc_end - cur_offset);
  2904. extent_changeset_free(data_reserved);
  2905. return ret;
  2906. }
  2907. static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
  2908. {
  2909. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  2910. struct extent_map *em = NULL;
  2911. struct extent_state *cached_state = NULL;
  2912. u64 lockstart;
  2913. u64 lockend;
  2914. u64 start;
  2915. u64 len;
  2916. int ret = 0;
  2917. if (inode->i_size == 0)
  2918. return -ENXIO;
  2919. /*
  2920. * *offset can be negative, in this case we start finding DATA/HOLE from
  2921. * the very start of the file.
  2922. */
  2923. start = max_t(loff_t, 0, *offset);
  2924. lockstart = round_down(start, fs_info->sectorsize);
  2925. lockend = round_up(i_size_read(inode),
  2926. fs_info->sectorsize);
  2927. if (lockend <= lockstart)
  2928. lockend = lockstart + fs_info->sectorsize;
  2929. lockend--;
  2930. len = lockend - lockstart + 1;
  2931. lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  2932. &cached_state);
  2933. while (start < inode->i_size) {
  2934. em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0,
  2935. start, len, 0);
  2936. if (IS_ERR(em)) {
  2937. ret = PTR_ERR(em);
  2938. em = NULL;
  2939. break;
  2940. }
  2941. if (whence == SEEK_HOLE &&
  2942. (em->block_start == EXTENT_MAP_HOLE ||
  2943. test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
  2944. break;
  2945. else if (whence == SEEK_DATA &&
  2946. (em->block_start != EXTENT_MAP_HOLE &&
  2947. !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
  2948. break;
  2949. start = em->start + em->len;
  2950. free_extent_map(em);
  2951. em = NULL;
  2952. cond_resched();
  2953. }
  2954. free_extent_map(em);
  2955. if (!ret) {
  2956. if (whence == SEEK_DATA && start >= inode->i_size)
  2957. ret = -ENXIO;
  2958. else
  2959. *offset = min_t(loff_t, start, inode->i_size);
  2960. }
  2961. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  2962. &cached_state);
  2963. return ret;
  2964. }
  2965. static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
  2966. {
  2967. struct inode *inode = file->f_mapping->host;
  2968. int ret;
  2969. inode_lock(inode);
  2970. switch (whence) {
  2971. case SEEK_END:
  2972. case SEEK_CUR:
  2973. offset = generic_file_llseek(file, offset, whence);
  2974. goto out;
  2975. case SEEK_DATA:
  2976. case SEEK_HOLE:
  2977. if (offset >= i_size_read(inode)) {
  2978. inode_unlock(inode);
  2979. return -ENXIO;
  2980. }
  2981. ret = find_desired_extent(inode, &offset, whence);
  2982. if (ret) {
  2983. inode_unlock(inode);
  2984. return ret;
  2985. }
  2986. }
  2987. offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
  2988. out:
  2989. inode_unlock(inode);
  2990. return offset;
  2991. }
  2992. static int btrfs_file_open(struct inode *inode, struct file *filp)
  2993. {
  2994. filp->f_mode |= FMODE_NOWAIT;
  2995. return generic_file_open(inode, filp);
  2996. }
  2997. const struct file_operations btrfs_file_operations = {
  2998. .llseek = btrfs_file_llseek,
  2999. .read_iter = generic_file_read_iter,
  3000. .splice_read = generic_file_splice_read,
  3001. .write_iter = btrfs_file_write_iter,
  3002. .mmap = btrfs_file_mmap,
  3003. .open = btrfs_file_open,
  3004. .release = btrfs_release_file,
  3005. .fsync = btrfs_sync_file,
  3006. .fallocate = btrfs_fallocate,
  3007. .unlocked_ioctl = btrfs_ioctl,
  3008. #ifdef CONFIG_COMPAT
  3009. .compat_ioctl = btrfs_compat_ioctl,
  3010. #endif
  3011. .clone_file_range = btrfs_clone_file_range,
  3012. .dedupe_file_range = btrfs_dedupe_file_range,
  3013. };
  3014. void __cold btrfs_auto_defrag_exit(void)
  3015. {
  3016. kmem_cache_destroy(btrfs_inode_defrag_cachep);
  3017. }
  3018. int __init btrfs_auto_defrag_init(void)
  3019. {
  3020. btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
  3021. sizeof(struct inode_defrag), 0,
  3022. SLAB_MEM_SPREAD,
  3023. NULL);
  3024. if (!btrfs_inode_defrag_cachep)
  3025. return -ENOMEM;
  3026. return 0;
  3027. }
  3028. int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
  3029. {
  3030. int ret;
  3031. /*
  3032. * So with compression we will find and lock a dirty page and clear the
  3033. * first one as dirty, setup an async extent, and immediately return
  3034. * with the entire range locked but with nobody actually marked with
  3035. * writeback. So we can't just filemap_write_and_wait_range() and
  3036. * expect it to work since it will just kick off a thread to do the
  3037. * actual work. So we need to call filemap_fdatawrite_range _again_
  3038. * since it will wait on the page lock, which won't be unlocked until
  3039. * after the pages have been marked as writeback and so we're good to go
  3040. * from there. We have to do this otherwise we'll miss the ordered
  3041. * extents and that results in badness. Please Josef, do not think you
  3042. * know better and pull this out at some point in the future, it is
  3043. * right and you are wrong.
  3044. */
  3045. ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
  3046. if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
  3047. &BTRFS_I(inode)->runtime_flags))
  3048. ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
  3049. return ret;
  3050. }