disk-io.c 123 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (C) 2007 Oracle. All rights reserved.
  4. */
  5. #include <linux/fs.h>
  6. #include <linux/blkdev.h>
  7. #include <linux/scatterlist.h>
  8. #include <linux/swap.h>
  9. #include <linux/radix-tree.h>
  10. #include <linux/writeback.h>
  11. #include <linux/buffer_head.h>
  12. #include <linux/workqueue.h>
  13. #include <linux/kthread.h>
  14. #include <linux/slab.h>
  15. #include <linux/migrate.h>
  16. #include <linux/ratelimit.h>
  17. #include <linux/uuid.h>
  18. #include <linux/semaphore.h>
  19. #include <linux/error-injection.h>
  20. #include <linux/crc32c.h>
  21. #include <asm/unaligned.h>
  22. #include "ctree.h"
  23. #include "disk-io.h"
  24. #include "transaction.h"
  25. #include "btrfs_inode.h"
  26. #include "volumes.h"
  27. #include "print-tree.h"
  28. #include "locking.h"
  29. #include "tree-log.h"
  30. #include "free-space-cache.h"
  31. #include "free-space-tree.h"
  32. #include "inode-map.h"
  33. #include "check-integrity.h"
  34. #include "rcu-string.h"
  35. #include "dev-replace.h"
  36. #include "raid56.h"
  37. #include "sysfs.h"
  38. #include "qgroup.h"
  39. #include "compression.h"
  40. #include "tree-checker.h"
  41. #include "ref-verify.h"
  42. #ifdef CONFIG_X86
  43. #include <asm/cpufeature.h>
  44. #endif
  45. #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
  46. BTRFS_HEADER_FLAG_RELOC |\
  47. BTRFS_SUPER_FLAG_ERROR |\
  48. BTRFS_SUPER_FLAG_SEEDING |\
  49. BTRFS_SUPER_FLAG_METADUMP |\
  50. BTRFS_SUPER_FLAG_METADUMP_V2)
  51. static const struct extent_io_ops btree_extent_io_ops;
  52. static void end_workqueue_fn(struct btrfs_work *work);
  53. static void free_fs_root(struct btrfs_root *root);
  54. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info);
  55. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  56. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  57. struct btrfs_fs_info *fs_info);
  58. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  59. static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
  60. struct extent_io_tree *dirty_pages,
  61. int mark);
  62. static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
  63. struct extent_io_tree *pinned_extents);
  64. static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
  65. static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
  66. /*
  67. * btrfs_end_io_wq structs are used to do processing in task context when an IO
  68. * is complete. This is used during reads to verify checksums, and it is used
  69. * by writes to insert metadata for new file extents after IO is complete.
  70. */
  71. struct btrfs_end_io_wq {
  72. struct bio *bio;
  73. bio_end_io_t *end_io;
  74. void *private;
  75. struct btrfs_fs_info *info;
  76. blk_status_t status;
  77. enum btrfs_wq_endio_type metadata;
  78. struct btrfs_work work;
  79. };
  80. static struct kmem_cache *btrfs_end_io_wq_cache;
  81. int __init btrfs_end_io_wq_init(void)
  82. {
  83. btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
  84. sizeof(struct btrfs_end_io_wq),
  85. 0,
  86. SLAB_MEM_SPREAD,
  87. NULL);
  88. if (!btrfs_end_io_wq_cache)
  89. return -ENOMEM;
  90. return 0;
  91. }
  92. void __cold btrfs_end_io_wq_exit(void)
  93. {
  94. kmem_cache_destroy(btrfs_end_io_wq_cache);
  95. }
  96. /*
  97. * async submit bios are used to offload expensive checksumming
  98. * onto the worker threads. They checksum file and metadata bios
  99. * just before they are sent down the IO stack.
  100. */
  101. struct async_submit_bio {
  102. void *private_data;
  103. struct btrfs_fs_info *fs_info;
  104. struct bio *bio;
  105. extent_submit_bio_start_t *submit_bio_start;
  106. extent_submit_bio_done_t *submit_bio_done;
  107. int mirror_num;
  108. unsigned long bio_flags;
  109. /*
  110. * bio_offset is optional, can be used if the pages in the bio
  111. * can't tell us where in the file the bio should go
  112. */
  113. u64 bio_offset;
  114. struct btrfs_work work;
  115. blk_status_t status;
  116. };
  117. /*
  118. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  119. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  120. * the level the eb occupies in the tree.
  121. *
  122. * Different roots are used for different purposes and may nest inside each
  123. * other and they require separate keysets. As lockdep keys should be
  124. * static, assign keysets according to the purpose of the root as indicated
  125. * by btrfs_root->objectid. This ensures that all special purpose roots
  126. * have separate keysets.
  127. *
  128. * Lock-nesting across peer nodes is always done with the immediate parent
  129. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  130. * subclass to avoid triggering lockdep warning in such cases.
  131. *
  132. * The key is set by the readpage_end_io_hook after the buffer has passed
  133. * csum validation but before the pages are unlocked. It is also set by
  134. * btrfs_init_new_buffer on freshly allocated blocks.
  135. *
  136. * We also add a check to make sure the highest level of the tree is the
  137. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  138. * needs update as well.
  139. */
  140. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  141. # if BTRFS_MAX_LEVEL != 8
  142. # error
  143. # endif
  144. static struct btrfs_lockdep_keyset {
  145. u64 id; /* root objectid */
  146. const char *name_stem; /* lock name stem */
  147. char names[BTRFS_MAX_LEVEL + 1][20];
  148. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  149. } btrfs_lockdep_keysets[] = {
  150. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  151. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  152. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  153. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  154. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  155. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  156. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  157. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  158. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  159. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  160. { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
  161. { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
  162. { .id = 0, .name_stem = "tree" },
  163. };
  164. void __init btrfs_init_lockdep(void)
  165. {
  166. int i, j;
  167. /* initialize lockdep class names */
  168. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  169. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  170. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  171. snprintf(ks->names[j], sizeof(ks->names[j]),
  172. "btrfs-%s-%02d", ks->name_stem, j);
  173. }
  174. }
  175. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  176. int level)
  177. {
  178. struct btrfs_lockdep_keyset *ks;
  179. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  180. /* find the matching keyset, id 0 is the default entry */
  181. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  182. if (ks->id == objectid)
  183. break;
  184. lockdep_set_class_and_name(&eb->lock,
  185. &ks->keys[level], ks->names[level]);
  186. }
  187. #endif
  188. /*
  189. * extents on the btree inode are pretty simple, there's one extent
  190. * that covers the entire device
  191. */
  192. struct extent_map *btree_get_extent(struct btrfs_inode *inode,
  193. struct page *page, size_t pg_offset, u64 start, u64 len,
  194. int create)
  195. {
  196. struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
  197. struct extent_map_tree *em_tree = &inode->extent_tree;
  198. struct extent_map *em;
  199. int ret;
  200. read_lock(&em_tree->lock);
  201. em = lookup_extent_mapping(em_tree, start, len);
  202. if (em) {
  203. em->bdev = fs_info->fs_devices->latest_bdev;
  204. read_unlock(&em_tree->lock);
  205. goto out;
  206. }
  207. read_unlock(&em_tree->lock);
  208. em = alloc_extent_map();
  209. if (!em) {
  210. em = ERR_PTR(-ENOMEM);
  211. goto out;
  212. }
  213. em->start = 0;
  214. em->len = (u64)-1;
  215. em->block_len = (u64)-1;
  216. em->block_start = 0;
  217. em->bdev = fs_info->fs_devices->latest_bdev;
  218. write_lock(&em_tree->lock);
  219. ret = add_extent_mapping(em_tree, em, 0);
  220. if (ret == -EEXIST) {
  221. free_extent_map(em);
  222. em = lookup_extent_mapping(em_tree, start, len);
  223. if (!em)
  224. em = ERR_PTR(-EIO);
  225. } else if (ret) {
  226. free_extent_map(em);
  227. em = ERR_PTR(ret);
  228. }
  229. write_unlock(&em_tree->lock);
  230. out:
  231. return em;
  232. }
  233. u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
  234. {
  235. return crc32c(seed, data, len);
  236. }
  237. void btrfs_csum_final(u32 crc, u8 *result)
  238. {
  239. put_unaligned_le32(~crc, result);
  240. }
  241. /*
  242. * compute the csum for a btree block, and either verify it or write it
  243. * into the csum field of the block.
  244. */
  245. static int csum_tree_block(struct btrfs_fs_info *fs_info,
  246. struct extent_buffer *buf,
  247. int verify)
  248. {
  249. u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
  250. char result[BTRFS_CSUM_SIZE];
  251. unsigned long len;
  252. unsigned long cur_len;
  253. unsigned long offset = BTRFS_CSUM_SIZE;
  254. char *kaddr;
  255. unsigned long map_start;
  256. unsigned long map_len;
  257. int err;
  258. u32 crc = ~(u32)0;
  259. len = buf->len - offset;
  260. while (len > 0) {
  261. err = map_private_extent_buffer(buf, offset, 32,
  262. &kaddr, &map_start, &map_len);
  263. if (err)
  264. return err;
  265. cur_len = min(len, map_len - (offset - map_start));
  266. crc = btrfs_csum_data(kaddr + offset - map_start,
  267. crc, cur_len);
  268. len -= cur_len;
  269. offset += cur_len;
  270. }
  271. memset(result, 0, BTRFS_CSUM_SIZE);
  272. btrfs_csum_final(crc, result);
  273. if (verify) {
  274. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  275. u32 val;
  276. u32 found = 0;
  277. memcpy(&found, result, csum_size);
  278. read_extent_buffer(buf, &val, 0, csum_size);
  279. btrfs_warn_rl(fs_info,
  280. "%s checksum verify failed on %llu wanted %X found %X level %d",
  281. fs_info->sb->s_id, buf->start,
  282. val, found, btrfs_header_level(buf));
  283. return -EUCLEAN;
  284. }
  285. } else {
  286. write_extent_buffer(buf, result, 0, csum_size);
  287. }
  288. return 0;
  289. }
  290. /*
  291. * we can't consider a given block up to date unless the transid of the
  292. * block matches the transid in the parent node's pointer. This is how we
  293. * detect blocks that either didn't get written at all or got written
  294. * in the wrong place.
  295. */
  296. static int verify_parent_transid(struct extent_io_tree *io_tree,
  297. struct extent_buffer *eb, u64 parent_transid,
  298. int atomic)
  299. {
  300. struct extent_state *cached_state = NULL;
  301. int ret;
  302. bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
  303. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  304. return 0;
  305. if (atomic)
  306. return -EAGAIN;
  307. if (need_lock) {
  308. btrfs_tree_read_lock(eb);
  309. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  310. }
  311. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  312. &cached_state);
  313. if (extent_buffer_uptodate(eb) &&
  314. btrfs_header_generation(eb) == parent_transid) {
  315. ret = 0;
  316. goto out;
  317. }
  318. btrfs_err_rl(eb->fs_info,
  319. "parent transid verify failed on %llu wanted %llu found %llu",
  320. eb->start,
  321. parent_transid, btrfs_header_generation(eb));
  322. ret = 1;
  323. /*
  324. * Things reading via commit roots that don't have normal protection,
  325. * like send, can have a really old block in cache that may point at a
  326. * block that has been freed and re-allocated. So don't clear uptodate
  327. * if we find an eb that is under IO (dirty/writeback) because we could
  328. * end up reading in the stale data and then writing it back out and
  329. * making everybody very sad.
  330. */
  331. if (!extent_buffer_under_io(eb))
  332. clear_extent_buffer_uptodate(eb);
  333. out:
  334. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  335. &cached_state);
  336. if (need_lock)
  337. btrfs_tree_read_unlock_blocking(eb);
  338. return ret;
  339. }
  340. /*
  341. * Return 0 if the superblock checksum type matches the checksum value of that
  342. * algorithm. Pass the raw disk superblock data.
  343. */
  344. static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
  345. char *raw_disk_sb)
  346. {
  347. struct btrfs_super_block *disk_sb =
  348. (struct btrfs_super_block *)raw_disk_sb;
  349. u16 csum_type = btrfs_super_csum_type(disk_sb);
  350. int ret = 0;
  351. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  352. u32 crc = ~(u32)0;
  353. char result[sizeof(crc)];
  354. /*
  355. * The super_block structure does not span the whole
  356. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  357. * is filled with zeros and is included in the checksum.
  358. */
  359. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  360. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  361. btrfs_csum_final(crc, result);
  362. if (memcmp(raw_disk_sb, result, sizeof(result)))
  363. ret = 1;
  364. }
  365. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  366. btrfs_err(fs_info, "unsupported checksum algorithm %u",
  367. csum_type);
  368. ret = 1;
  369. }
  370. return ret;
  371. }
  372. static int verify_level_key(struct btrfs_fs_info *fs_info,
  373. struct extent_buffer *eb, int level,
  374. struct btrfs_key *first_key)
  375. {
  376. int found_level;
  377. struct btrfs_key found_key;
  378. int ret;
  379. found_level = btrfs_header_level(eb);
  380. if (found_level != level) {
  381. #ifdef CONFIG_BTRFS_DEBUG
  382. WARN_ON(1);
  383. btrfs_err(fs_info,
  384. "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
  385. eb->start, level, found_level);
  386. #endif
  387. return -EIO;
  388. }
  389. if (!first_key)
  390. return 0;
  391. /*
  392. * For live tree block (new tree blocks in current transaction),
  393. * we need proper lock context to avoid race, which is impossible here.
  394. * So we only checks tree blocks which is read from disk, whose
  395. * generation <= fs_info->last_trans_committed.
  396. */
  397. if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
  398. return 0;
  399. if (found_level)
  400. btrfs_node_key_to_cpu(eb, &found_key, 0);
  401. else
  402. btrfs_item_key_to_cpu(eb, &found_key, 0);
  403. ret = btrfs_comp_cpu_keys(first_key, &found_key);
  404. #ifdef CONFIG_BTRFS_DEBUG
  405. if (ret) {
  406. WARN_ON(1);
  407. btrfs_err(fs_info,
  408. "tree first key mismatch detected, bytenr=%llu key expected=(%llu, %u, %llu) has=(%llu, %u, %llu)",
  409. eb->start, first_key->objectid, first_key->type,
  410. first_key->offset, found_key.objectid,
  411. found_key.type, found_key.offset);
  412. }
  413. #endif
  414. return ret;
  415. }
  416. /*
  417. * helper to read a given tree block, doing retries as required when
  418. * the checksums don't match and we have alternate mirrors to try.
  419. *
  420. * @parent_transid: expected transid, skip check if 0
  421. * @level: expected level, mandatory check
  422. * @first_key: expected key of first slot, skip check if NULL
  423. */
  424. static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
  425. struct extent_buffer *eb,
  426. u64 parent_transid, int level,
  427. struct btrfs_key *first_key)
  428. {
  429. struct extent_io_tree *io_tree;
  430. int failed = 0;
  431. int ret;
  432. int num_copies = 0;
  433. int mirror_num = 0;
  434. int failed_mirror = 0;
  435. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  436. io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
  437. while (1) {
  438. ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
  439. mirror_num);
  440. if (!ret) {
  441. if (verify_parent_transid(io_tree, eb,
  442. parent_transid, 0))
  443. ret = -EIO;
  444. else if (verify_level_key(fs_info, eb, level,
  445. first_key))
  446. ret = -EUCLEAN;
  447. else
  448. break;
  449. }
  450. /*
  451. * This buffer's crc is fine, but its contents are corrupted, so
  452. * there is no reason to read the other copies, they won't be
  453. * any less wrong.
  454. */
  455. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags) ||
  456. ret == -EUCLEAN)
  457. break;
  458. num_copies = btrfs_num_copies(fs_info,
  459. eb->start, eb->len);
  460. if (num_copies == 1)
  461. break;
  462. if (!failed_mirror) {
  463. failed = 1;
  464. failed_mirror = eb->read_mirror;
  465. }
  466. mirror_num++;
  467. if (mirror_num == failed_mirror)
  468. mirror_num++;
  469. if (mirror_num > num_copies)
  470. break;
  471. }
  472. if (failed && !ret && failed_mirror)
  473. repair_eb_io_failure(fs_info, eb, failed_mirror);
  474. return ret;
  475. }
  476. /*
  477. * checksum a dirty tree block before IO. This has extra checks to make sure
  478. * we only fill in the checksum field in the first page of a multi-page block
  479. */
  480. static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
  481. {
  482. u64 start = page_offset(page);
  483. u64 found_start;
  484. struct extent_buffer *eb;
  485. eb = (struct extent_buffer *)page->private;
  486. if (page != eb->pages[0])
  487. return 0;
  488. found_start = btrfs_header_bytenr(eb);
  489. /*
  490. * Please do not consolidate these warnings into a single if.
  491. * It is useful to know what went wrong.
  492. */
  493. if (WARN_ON(found_start != start))
  494. return -EUCLEAN;
  495. if (WARN_ON(!PageUptodate(page)))
  496. return -EUCLEAN;
  497. ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
  498. btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
  499. return csum_tree_block(fs_info, eb, 0);
  500. }
  501. static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
  502. struct extent_buffer *eb)
  503. {
  504. struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
  505. u8 fsid[BTRFS_FSID_SIZE];
  506. int ret = 1;
  507. read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
  508. while (fs_devices) {
  509. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  510. ret = 0;
  511. break;
  512. }
  513. fs_devices = fs_devices->seed;
  514. }
  515. return ret;
  516. }
  517. static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
  518. u64 phy_offset, struct page *page,
  519. u64 start, u64 end, int mirror)
  520. {
  521. u64 found_start;
  522. int found_level;
  523. struct extent_buffer *eb;
  524. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  525. struct btrfs_fs_info *fs_info = root->fs_info;
  526. int ret = 0;
  527. int reads_done;
  528. if (!page->private)
  529. goto out;
  530. eb = (struct extent_buffer *)page->private;
  531. /* the pending IO might have been the only thing that kept this buffer
  532. * in memory. Make sure we have a ref for all this other checks
  533. */
  534. extent_buffer_get(eb);
  535. reads_done = atomic_dec_and_test(&eb->io_pages);
  536. if (!reads_done)
  537. goto err;
  538. eb->read_mirror = mirror;
  539. if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
  540. ret = -EIO;
  541. goto err;
  542. }
  543. found_start = btrfs_header_bytenr(eb);
  544. if (found_start != eb->start) {
  545. btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
  546. found_start, eb->start);
  547. ret = -EIO;
  548. goto err;
  549. }
  550. if (check_tree_block_fsid(fs_info, eb)) {
  551. btrfs_err_rl(fs_info, "bad fsid on block %llu",
  552. eb->start);
  553. ret = -EIO;
  554. goto err;
  555. }
  556. found_level = btrfs_header_level(eb);
  557. if (found_level >= BTRFS_MAX_LEVEL) {
  558. btrfs_err(fs_info, "bad tree block level %d",
  559. (int)btrfs_header_level(eb));
  560. ret = -EIO;
  561. goto err;
  562. }
  563. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  564. eb, found_level);
  565. ret = csum_tree_block(fs_info, eb, 1);
  566. if (ret)
  567. goto err;
  568. /*
  569. * If this is a leaf block and it is corrupt, set the corrupt bit so
  570. * that we don't try and read the other copies of this block, just
  571. * return -EIO.
  572. */
  573. if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) {
  574. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  575. ret = -EIO;
  576. }
  577. if (found_level > 0 && btrfs_check_node(fs_info, eb))
  578. ret = -EIO;
  579. if (!ret)
  580. set_extent_buffer_uptodate(eb);
  581. err:
  582. if (reads_done &&
  583. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  584. btree_readahead_hook(eb, ret);
  585. if (ret) {
  586. /*
  587. * our io error hook is going to dec the io pages
  588. * again, we have to make sure it has something
  589. * to decrement
  590. */
  591. atomic_inc(&eb->io_pages);
  592. clear_extent_buffer_uptodate(eb);
  593. }
  594. free_extent_buffer(eb);
  595. out:
  596. return ret;
  597. }
  598. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  599. {
  600. struct extent_buffer *eb;
  601. eb = (struct extent_buffer *)page->private;
  602. set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
  603. eb->read_mirror = failed_mirror;
  604. atomic_dec(&eb->io_pages);
  605. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  606. btree_readahead_hook(eb, -EIO);
  607. return -EIO; /* we fixed nothing */
  608. }
  609. static void end_workqueue_bio(struct bio *bio)
  610. {
  611. struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
  612. struct btrfs_fs_info *fs_info;
  613. struct btrfs_workqueue *wq;
  614. btrfs_work_func_t func;
  615. fs_info = end_io_wq->info;
  616. end_io_wq->status = bio->bi_status;
  617. if (bio_op(bio) == REQ_OP_WRITE) {
  618. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
  619. wq = fs_info->endio_meta_write_workers;
  620. func = btrfs_endio_meta_write_helper;
  621. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
  622. wq = fs_info->endio_freespace_worker;
  623. func = btrfs_freespace_write_helper;
  624. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  625. wq = fs_info->endio_raid56_workers;
  626. func = btrfs_endio_raid56_helper;
  627. } else {
  628. wq = fs_info->endio_write_workers;
  629. func = btrfs_endio_write_helper;
  630. }
  631. } else {
  632. if (unlikely(end_io_wq->metadata ==
  633. BTRFS_WQ_ENDIO_DIO_REPAIR)) {
  634. wq = fs_info->endio_repair_workers;
  635. func = btrfs_endio_repair_helper;
  636. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  637. wq = fs_info->endio_raid56_workers;
  638. func = btrfs_endio_raid56_helper;
  639. } else if (end_io_wq->metadata) {
  640. wq = fs_info->endio_meta_workers;
  641. func = btrfs_endio_meta_helper;
  642. } else {
  643. wq = fs_info->endio_workers;
  644. func = btrfs_endio_helper;
  645. }
  646. }
  647. btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
  648. btrfs_queue_work(wq, &end_io_wq->work);
  649. }
  650. blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  651. enum btrfs_wq_endio_type metadata)
  652. {
  653. struct btrfs_end_io_wq *end_io_wq;
  654. end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
  655. if (!end_io_wq)
  656. return BLK_STS_RESOURCE;
  657. end_io_wq->private = bio->bi_private;
  658. end_io_wq->end_io = bio->bi_end_io;
  659. end_io_wq->info = info;
  660. end_io_wq->status = 0;
  661. end_io_wq->bio = bio;
  662. end_io_wq->metadata = metadata;
  663. bio->bi_private = end_io_wq;
  664. bio->bi_end_io = end_workqueue_bio;
  665. return 0;
  666. }
  667. static void run_one_async_start(struct btrfs_work *work)
  668. {
  669. struct async_submit_bio *async;
  670. blk_status_t ret;
  671. async = container_of(work, struct async_submit_bio, work);
  672. ret = async->submit_bio_start(async->private_data, async->bio,
  673. async->bio_offset);
  674. if (ret)
  675. async->status = ret;
  676. }
  677. static void run_one_async_done(struct btrfs_work *work)
  678. {
  679. struct async_submit_bio *async;
  680. async = container_of(work, struct async_submit_bio, work);
  681. /* If an error occurred we just want to clean up the bio and move on */
  682. if (async->status) {
  683. async->bio->bi_status = async->status;
  684. bio_endio(async->bio);
  685. return;
  686. }
  687. async->submit_bio_done(async->private_data, async->bio, async->mirror_num);
  688. }
  689. static void run_one_async_free(struct btrfs_work *work)
  690. {
  691. struct async_submit_bio *async;
  692. async = container_of(work, struct async_submit_bio, work);
  693. kfree(async);
  694. }
  695. blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
  696. int mirror_num, unsigned long bio_flags,
  697. u64 bio_offset, void *private_data,
  698. extent_submit_bio_start_t *submit_bio_start,
  699. extent_submit_bio_done_t *submit_bio_done)
  700. {
  701. struct async_submit_bio *async;
  702. async = kmalloc(sizeof(*async), GFP_NOFS);
  703. if (!async)
  704. return BLK_STS_RESOURCE;
  705. async->private_data = private_data;
  706. async->fs_info = fs_info;
  707. async->bio = bio;
  708. async->mirror_num = mirror_num;
  709. async->submit_bio_start = submit_bio_start;
  710. async->submit_bio_done = submit_bio_done;
  711. btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
  712. run_one_async_done, run_one_async_free);
  713. async->bio_flags = bio_flags;
  714. async->bio_offset = bio_offset;
  715. async->status = 0;
  716. if (op_is_sync(bio->bi_opf))
  717. btrfs_set_work_high_priority(&async->work);
  718. btrfs_queue_work(fs_info->workers, &async->work);
  719. return 0;
  720. }
  721. static blk_status_t btree_csum_one_bio(struct bio *bio)
  722. {
  723. struct bio_vec *bvec;
  724. struct btrfs_root *root;
  725. int i, ret = 0;
  726. ASSERT(!bio_flagged(bio, BIO_CLONED));
  727. bio_for_each_segment_all(bvec, bio, i) {
  728. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  729. ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
  730. if (ret)
  731. break;
  732. }
  733. return errno_to_blk_status(ret);
  734. }
  735. static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
  736. u64 bio_offset)
  737. {
  738. /*
  739. * when we're called for a write, we're already in the async
  740. * submission context. Just jump into btrfs_map_bio
  741. */
  742. return btree_csum_one_bio(bio);
  743. }
  744. static blk_status_t btree_submit_bio_done(void *private_data, struct bio *bio,
  745. int mirror_num)
  746. {
  747. struct inode *inode = private_data;
  748. blk_status_t ret;
  749. /*
  750. * when we're called for a write, we're already in the async
  751. * submission context. Just jump into btrfs_map_bio
  752. */
  753. ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
  754. if (ret) {
  755. bio->bi_status = ret;
  756. bio_endio(bio);
  757. }
  758. return ret;
  759. }
  760. static int check_async_write(struct btrfs_inode *bi)
  761. {
  762. if (atomic_read(&bi->sync_writers))
  763. return 0;
  764. #ifdef CONFIG_X86
  765. if (static_cpu_has(X86_FEATURE_XMM4_2))
  766. return 0;
  767. #endif
  768. return 1;
  769. }
  770. static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
  771. int mirror_num, unsigned long bio_flags,
  772. u64 bio_offset)
  773. {
  774. struct inode *inode = private_data;
  775. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  776. int async = check_async_write(BTRFS_I(inode));
  777. blk_status_t ret;
  778. if (bio_op(bio) != REQ_OP_WRITE) {
  779. /*
  780. * called for a read, do the setup so that checksum validation
  781. * can happen in the async kernel threads
  782. */
  783. ret = btrfs_bio_wq_end_io(fs_info, bio,
  784. BTRFS_WQ_ENDIO_METADATA);
  785. if (ret)
  786. goto out_w_error;
  787. ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
  788. } else if (!async) {
  789. ret = btree_csum_one_bio(bio);
  790. if (ret)
  791. goto out_w_error;
  792. ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
  793. } else {
  794. /*
  795. * kthread helpers are used to submit writes so that
  796. * checksumming can happen in parallel across all CPUs
  797. */
  798. ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
  799. bio_offset, private_data,
  800. btree_submit_bio_start,
  801. btree_submit_bio_done);
  802. }
  803. if (ret)
  804. goto out_w_error;
  805. return 0;
  806. out_w_error:
  807. bio->bi_status = ret;
  808. bio_endio(bio);
  809. return ret;
  810. }
  811. #ifdef CONFIG_MIGRATION
  812. static int btree_migratepage(struct address_space *mapping,
  813. struct page *newpage, struct page *page,
  814. enum migrate_mode mode)
  815. {
  816. /*
  817. * we can't safely write a btree page from here,
  818. * we haven't done the locking hook
  819. */
  820. if (PageDirty(page))
  821. return -EAGAIN;
  822. /*
  823. * Buffers may be managed in a filesystem specific way.
  824. * We must have no buffers or drop them.
  825. */
  826. if (page_has_private(page) &&
  827. !try_to_release_page(page, GFP_KERNEL))
  828. return -EAGAIN;
  829. return migrate_page(mapping, newpage, page, mode);
  830. }
  831. #endif
  832. static int btree_writepages(struct address_space *mapping,
  833. struct writeback_control *wbc)
  834. {
  835. struct btrfs_fs_info *fs_info;
  836. int ret;
  837. if (wbc->sync_mode == WB_SYNC_NONE) {
  838. if (wbc->for_kupdate)
  839. return 0;
  840. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  841. /* this is a bit racy, but that's ok */
  842. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  843. BTRFS_DIRTY_METADATA_THRESH);
  844. if (ret < 0)
  845. return 0;
  846. }
  847. return btree_write_cache_pages(mapping, wbc);
  848. }
  849. static int btree_readpage(struct file *file, struct page *page)
  850. {
  851. struct extent_io_tree *tree;
  852. tree = &BTRFS_I(page->mapping->host)->io_tree;
  853. return extent_read_full_page(tree, page, btree_get_extent, 0);
  854. }
  855. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  856. {
  857. if (PageWriteback(page) || PageDirty(page))
  858. return 0;
  859. return try_release_extent_buffer(page);
  860. }
  861. static void btree_invalidatepage(struct page *page, unsigned int offset,
  862. unsigned int length)
  863. {
  864. struct extent_io_tree *tree;
  865. tree = &BTRFS_I(page->mapping->host)->io_tree;
  866. extent_invalidatepage(tree, page, offset);
  867. btree_releasepage(page, GFP_NOFS);
  868. if (PagePrivate(page)) {
  869. btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
  870. "page private not zero on page %llu",
  871. (unsigned long long)page_offset(page));
  872. ClearPagePrivate(page);
  873. set_page_private(page, 0);
  874. put_page(page);
  875. }
  876. }
  877. static int btree_set_page_dirty(struct page *page)
  878. {
  879. #ifdef DEBUG
  880. struct extent_buffer *eb;
  881. BUG_ON(!PagePrivate(page));
  882. eb = (struct extent_buffer *)page->private;
  883. BUG_ON(!eb);
  884. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  885. BUG_ON(!atomic_read(&eb->refs));
  886. btrfs_assert_tree_locked(eb);
  887. #endif
  888. return __set_page_dirty_nobuffers(page);
  889. }
  890. static const struct address_space_operations btree_aops = {
  891. .readpage = btree_readpage,
  892. .writepages = btree_writepages,
  893. .releasepage = btree_releasepage,
  894. .invalidatepage = btree_invalidatepage,
  895. #ifdef CONFIG_MIGRATION
  896. .migratepage = btree_migratepage,
  897. #endif
  898. .set_page_dirty = btree_set_page_dirty,
  899. };
  900. void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
  901. {
  902. struct extent_buffer *buf = NULL;
  903. struct inode *btree_inode = fs_info->btree_inode;
  904. buf = btrfs_find_create_tree_block(fs_info, bytenr);
  905. if (IS_ERR(buf))
  906. return;
  907. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  908. buf, WAIT_NONE, 0);
  909. free_extent_buffer(buf);
  910. }
  911. int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
  912. int mirror_num, struct extent_buffer **eb)
  913. {
  914. struct extent_buffer *buf = NULL;
  915. struct inode *btree_inode = fs_info->btree_inode;
  916. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  917. int ret;
  918. buf = btrfs_find_create_tree_block(fs_info, bytenr);
  919. if (IS_ERR(buf))
  920. return 0;
  921. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  922. ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
  923. mirror_num);
  924. if (ret) {
  925. free_extent_buffer(buf);
  926. return ret;
  927. }
  928. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  929. free_extent_buffer(buf);
  930. return -EIO;
  931. } else if (extent_buffer_uptodate(buf)) {
  932. *eb = buf;
  933. } else {
  934. free_extent_buffer(buf);
  935. }
  936. return 0;
  937. }
  938. struct extent_buffer *btrfs_find_create_tree_block(
  939. struct btrfs_fs_info *fs_info,
  940. u64 bytenr)
  941. {
  942. if (btrfs_is_testing(fs_info))
  943. return alloc_test_extent_buffer(fs_info, bytenr);
  944. return alloc_extent_buffer(fs_info, bytenr);
  945. }
  946. int btrfs_write_tree_block(struct extent_buffer *buf)
  947. {
  948. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  949. buf->start + buf->len - 1);
  950. }
  951. void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  952. {
  953. filemap_fdatawait_range(buf->pages[0]->mapping,
  954. buf->start, buf->start + buf->len - 1);
  955. }
  956. /*
  957. * Read tree block at logical address @bytenr and do variant basic but critical
  958. * verification.
  959. *
  960. * @parent_transid: expected transid of this tree block, skip check if 0
  961. * @level: expected level, mandatory check
  962. * @first_key: expected key in slot 0, skip check if NULL
  963. */
  964. struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
  965. u64 parent_transid, int level,
  966. struct btrfs_key *first_key)
  967. {
  968. struct extent_buffer *buf = NULL;
  969. int ret;
  970. buf = btrfs_find_create_tree_block(fs_info, bytenr);
  971. if (IS_ERR(buf))
  972. return buf;
  973. ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
  974. level, first_key);
  975. if (ret) {
  976. free_extent_buffer(buf);
  977. return ERR_PTR(ret);
  978. }
  979. return buf;
  980. }
  981. void clean_tree_block(struct btrfs_fs_info *fs_info,
  982. struct extent_buffer *buf)
  983. {
  984. if (btrfs_header_generation(buf) ==
  985. fs_info->running_transaction->transid) {
  986. btrfs_assert_tree_locked(buf);
  987. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  988. percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
  989. -buf->len,
  990. fs_info->dirty_metadata_batch);
  991. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  992. btrfs_set_lock_blocking(buf);
  993. clear_extent_buffer_dirty(buf);
  994. }
  995. }
  996. }
  997. static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
  998. {
  999. struct btrfs_subvolume_writers *writers;
  1000. int ret;
  1001. writers = kmalloc(sizeof(*writers), GFP_NOFS);
  1002. if (!writers)
  1003. return ERR_PTR(-ENOMEM);
  1004. ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
  1005. if (ret < 0) {
  1006. kfree(writers);
  1007. return ERR_PTR(ret);
  1008. }
  1009. init_waitqueue_head(&writers->wait);
  1010. return writers;
  1011. }
  1012. static void
  1013. btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
  1014. {
  1015. percpu_counter_destroy(&writers->counter);
  1016. kfree(writers);
  1017. }
  1018. static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
  1019. u64 objectid)
  1020. {
  1021. bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
  1022. root->node = NULL;
  1023. root->commit_root = NULL;
  1024. root->state = 0;
  1025. root->orphan_cleanup_state = 0;
  1026. root->objectid = objectid;
  1027. root->last_trans = 0;
  1028. root->highest_objectid = 0;
  1029. root->nr_delalloc_inodes = 0;
  1030. root->nr_ordered_extents = 0;
  1031. root->name = NULL;
  1032. root->inode_tree = RB_ROOT;
  1033. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1034. root->block_rsv = NULL;
  1035. root->orphan_block_rsv = NULL;
  1036. INIT_LIST_HEAD(&root->dirty_list);
  1037. INIT_LIST_HEAD(&root->root_list);
  1038. INIT_LIST_HEAD(&root->delalloc_inodes);
  1039. INIT_LIST_HEAD(&root->delalloc_root);
  1040. INIT_LIST_HEAD(&root->ordered_extents);
  1041. INIT_LIST_HEAD(&root->ordered_root);
  1042. INIT_LIST_HEAD(&root->logged_list[0]);
  1043. INIT_LIST_HEAD(&root->logged_list[1]);
  1044. spin_lock_init(&root->orphan_lock);
  1045. spin_lock_init(&root->inode_lock);
  1046. spin_lock_init(&root->delalloc_lock);
  1047. spin_lock_init(&root->ordered_extent_lock);
  1048. spin_lock_init(&root->accounting_lock);
  1049. spin_lock_init(&root->log_extents_lock[0]);
  1050. spin_lock_init(&root->log_extents_lock[1]);
  1051. spin_lock_init(&root->qgroup_meta_rsv_lock);
  1052. mutex_init(&root->objectid_mutex);
  1053. mutex_init(&root->log_mutex);
  1054. mutex_init(&root->ordered_extent_mutex);
  1055. mutex_init(&root->delalloc_mutex);
  1056. init_waitqueue_head(&root->log_writer_wait);
  1057. init_waitqueue_head(&root->log_commit_wait[0]);
  1058. init_waitqueue_head(&root->log_commit_wait[1]);
  1059. INIT_LIST_HEAD(&root->log_ctxs[0]);
  1060. INIT_LIST_HEAD(&root->log_ctxs[1]);
  1061. atomic_set(&root->log_commit[0], 0);
  1062. atomic_set(&root->log_commit[1], 0);
  1063. atomic_set(&root->log_writers, 0);
  1064. atomic_set(&root->log_batch, 0);
  1065. atomic_set(&root->orphan_inodes, 0);
  1066. refcount_set(&root->refs, 1);
  1067. atomic_set(&root->will_be_snapshotted, 0);
  1068. root->log_transid = 0;
  1069. root->log_transid_committed = -1;
  1070. root->last_log_commit = 0;
  1071. if (!dummy)
  1072. extent_io_tree_init(&root->dirty_log_pages, NULL);
  1073. memset(&root->root_key, 0, sizeof(root->root_key));
  1074. memset(&root->root_item, 0, sizeof(root->root_item));
  1075. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1076. if (!dummy)
  1077. root->defrag_trans_start = fs_info->generation;
  1078. else
  1079. root->defrag_trans_start = 0;
  1080. root->root_key.objectid = objectid;
  1081. root->anon_dev = 0;
  1082. spin_lock_init(&root->root_item_lock);
  1083. }
  1084. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
  1085. gfp_t flags)
  1086. {
  1087. struct btrfs_root *root = kzalloc(sizeof(*root), flags);
  1088. if (root)
  1089. root->fs_info = fs_info;
  1090. return root;
  1091. }
  1092. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  1093. /* Should only be used by the testing infrastructure */
  1094. struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
  1095. {
  1096. struct btrfs_root *root;
  1097. if (!fs_info)
  1098. return ERR_PTR(-EINVAL);
  1099. root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  1100. if (!root)
  1101. return ERR_PTR(-ENOMEM);
  1102. /* We don't use the stripesize in selftest, set it as sectorsize */
  1103. __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1104. root->alloc_bytenr = 0;
  1105. return root;
  1106. }
  1107. #endif
  1108. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1109. struct btrfs_fs_info *fs_info,
  1110. u64 objectid)
  1111. {
  1112. struct extent_buffer *leaf;
  1113. struct btrfs_root *tree_root = fs_info->tree_root;
  1114. struct btrfs_root *root;
  1115. struct btrfs_key key;
  1116. int ret = 0;
  1117. uuid_le uuid = NULL_UUID_LE;
  1118. root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  1119. if (!root)
  1120. return ERR_PTR(-ENOMEM);
  1121. __setup_root(root, fs_info, objectid);
  1122. root->root_key.objectid = objectid;
  1123. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1124. root->root_key.offset = 0;
  1125. leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
  1126. if (IS_ERR(leaf)) {
  1127. ret = PTR_ERR(leaf);
  1128. leaf = NULL;
  1129. goto fail;
  1130. }
  1131. memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
  1132. btrfs_set_header_bytenr(leaf, leaf->start);
  1133. btrfs_set_header_generation(leaf, trans->transid);
  1134. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1135. btrfs_set_header_owner(leaf, objectid);
  1136. root->node = leaf;
  1137. write_extent_buffer_fsid(leaf, fs_info->fsid);
  1138. write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
  1139. btrfs_mark_buffer_dirty(leaf);
  1140. root->commit_root = btrfs_root_node(root);
  1141. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  1142. root->root_item.flags = 0;
  1143. root->root_item.byte_limit = 0;
  1144. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1145. btrfs_set_root_generation(&root->root_item, trans->transid);
  1146. btrfs_set_root_level(&root->root_item, 0);
  1147. btrfs_set_root_refs(&root->root_item, 1);
  1148. btrfs_set_root_used(&root->root_item, leaf->len);
  1149. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1150. btrfs_set_root_dirid(&root->root_item, 0);
  1151. if (is_fstree(objectid))
  1152. uuid_le_gen(&uuid);
  1153. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1154. root->root_item.drop_level = 0;
  1155. key.objectid = objectid;
  1156. key.type = BTRFS_ROOT_ITEM_KEY;
  1157. key.offset = 0;
  1158. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1159. if (ret)
  1160. goto fail;
  1161. btrfs_tree_unlock(leaf);
  1162. return root;
  1163. fail:
  1164. if (leaf) {
  1165. btrfs_tree_unlock(leaf);
  1166. free_extent_buffer(root->commit_root);
  1167. free_extent_buffer(leaf);
  1168. }
  1169. kfree(root);
  1170. return ERR_PTR(ret);
  1171. }
  1172. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1173. struct btrfs_fs_info *fs_info)
  1174. {
  1175. struct btrfs_root *root;
  1176. struct extent_buffer *leaf;
  1177. root = btrfs_alloc_root(fs_info, GFP_NOFS);
  1178. if (!root)
  1179. return ERR_PTR(-ENOMEM);
  1180. __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1181. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1182. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1183. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1184. /*
  1185. * DON'T set REF_COWS for log trees
  1186. *
  1187. * log trees do not get reference counted because they go away
  1188. * before a real commit is actually done. They do store pointers
  1189. * to file data extents, and those reference counts still get
  1190. * updated (along with back refs to the log tree).
  1191. */
  1192. leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
  1193. NULL, 0, 0, 0);
  1194. if (IS_ERR(leaf)) {
  1195. kfree(root);
  1196. return ERR_CAST(leaf);
  1197. }
  1198. memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
  1199. btrfs_set_header_bytenr(leaf, leaf->start);
  1200. btrfs_set_header_generation(leaf, trans->transid);
  1201. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1202. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1203. root->node = leaf;
  1204. write_extent_buffer_fsid(root->node, fs_info->fsid);
  1205. btrfs_mark_buffer_dirty(root->node);
  1206. btrfs_tree_unlock(root->node);
  1207. return root;
  1208. }
  1209. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1210. struct btrfs_fs_info *fs_info)
  1211. {
  1212. struct btrfs_root *log_root;
  1213. log_root = alloc_log_tree(trans, fs_info);
  1214. if (IS_ERR(log_root))
  1215. return PTR_ERR(log_root);
  1216. WARN_ON(fs_info->log_root_tree);
  1217. fs_info->log_root_tree = log_root;
  1218. return 0;
  1219. }
  1220. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1221. struct btrfs_root *root)
  1222. {
  1223. struct btrfs_fs_info *fs_info = root->fs_info;
  1224. struct btrfs_root *log_root;
  1225. struct btrfs_inode_item *inode_item;
  1226. log_root = alloc_log_tree(trans, fs_info);
  1227. if (IS_ERR(log_root))
  1228. return PTR_ERR(log_root);
  1229. log_root->last_trans = trans->transid;
  1230. log_root->root_key.offset = root->root_key.objectid;
  1231. inode_item = &log_root->root_item.inode;
  1232. btrfs_set_stack_inode_generation(inode_item, 1);
  1233. btrfs_set_stack_inode_size(inode_item, 3);
  1234. btrfs_set_stack_inode_nlink(inode_item, 1);
  1235. btrfs_set_stack_inode_nbytes(inode_item,
  1236. fs_info->nodesize);
  1237. btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
  1238. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1239. WARN_ON(root->log_root);
  1240. root->log_root = log_root;
  1241. root->log_transid = 0;
  1242. root->log_transid_committed = -1;
  1243. root->last_log_commit = 0;
  1244. return 0;
  1245. }
  1246. static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
  1247. struct btrfs_key *key)
  1248. {
  1249. struct btrfs_root *root;
  1250. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1251. struct btrfs_path *path;
  1252. u64 generation;
  1253. int ret;
  1254. int level;
  1255. path = btrfs_alloc_path();
  1256. if (!path)
  1257. return ERR_PTR(-ENOMEM);
  1258. root = btrfs_alloc_root(fs_info, GFP_NOFS);
  1259. if (!root) {
  1260. ret = -ENOMEM;
  1261. goto alloc_fail;
  1262. }
  1263. __setup_root(root, fs_info, key->objectid);
  1264. ret = btrfs_find_root(tree_root, key, path,
  1265. &root->root_item, &root->root_key);
  1266. if (ret) {
  1267. if (ret > 0)
  1268. ret = -ENOENT;
  1269. goto find_fail;
  1270. }
  1271. generation = btrfs_root_generation(&root->root_item);
  1272. level = btrfs_root_level(&root->root_item);
  1273. root->node = read_tree_block(fs_info,
  1274. btrfs_root_bytenr(&root->root_item),
  1275. generation, level, NULL);
  1276. if (IS_ERR(root->node)) {
  1277. ret = PTR_ERR(root->node);
  1278. goto find_fail;
  1279. } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
  1280. ret = -EIO;
  1281. free_extent_buffer(root->node);
  1282. goto find_fail;
  1283. }
  1284. root->commit_root = btrfs_root_node(root);
  1285. out:
  1286. btrfs_free_path(path);
  1287. return root;
  1288. find_fail:
  1289. kfree(root);
  1290. alloc_fail:
  1291. root = ERR_PTR(ret);
  1292. goto out;
  1293. }
  1294. struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
  1295. struct btrfs_key *location)
  1296. {
  1297. struct btrfs_root *root;
  1298. root = btrfs_read_tree_root(tree_root, location);
  1299. if (IS_ERR(root))
  1300. return root;
  1301. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  1302. set_bit(BTRFS_ROOT_REF_COWS, &root->state);
  1303. btrfs_check_and_init_root_item(&root->root_item);
  1304. }
  1305. return root;
  1306. }
  1307. int btrfs_init_fs_root(struct btrfs_root *root)
  1308. {
  1309. int ret;
  1310. struct btrfs_subvolume_writers *writers;
  1311. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1312. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1313. GFP_NOFS);
  1314. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1315. ret = -ENOMEM;
  1316. goto fail;
  1317. }
  1318. writers = btrfs_alloc_subvolume_writers();
  1319. if (IS_ERR(writers)) {
  1320. ret = PTR_ERR(writers);
  1321. goto fail;
  1322. }
  1323. root->subv_writers = writers;
  1324. btrfs_init_free_ino_ctl(root);
  1325. spin_lock_init(&root->ino_cache_lock);
  1326. init_waitqueue_head(&root->ino_cache_wait);
  1327. ret = get_anon_bdev(&root->anon_dev);
  1328. if (ret)
  1329. goto fail;
  1330. mutex_lock(&root->objectid_mutex);
  1331. ret = btrfs_find_highest_objectid(root,
  1332. &root->highest_objectid);
  1333. if (ret) {
  1334. mutex_unlock(&root->objectid_mutex);
  1335. goto fail;
  1336. }
  1337. ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
  1338. mutex_unlock(&root->objectid_mutex);
  1339. return 0;
  1340. fail:
  1341. /* the caller is responsible to call free_fs_root */
  1342. return ret;
  1343. }
  1344. struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1345. u64 root_id)
  1346. {
  1347. struct btrfs_root *root;
  1348. spin_lock(&fs_info->fs_roots_radix_lock);
  1349. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1350. (unsigned long)root_id);
  1351. spin_unlock(&fs_info->fs_roots_radix_lock);
  1352. return root;
  1353. }
  1354. int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
  1355. struct btrfs_root *root)
  1356. {
  1357. int ret;
  1358. ret = radix_tree_preload(GFP_NOFS);
  1359. if (ret)
  1360. return ret;
  1361. spin_lock(&fs_info->fs_roots_radix_lock);
  1362. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1363. (unsigned long)root->root_key.objectid,
  1364. root);
  1365. if (ret == 0)
  1366. set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
  1367. spin_unlock(&fs_info->fs_roots_radix_lock);
  1368. radix_tree_preload_end();
  1369. return ret;
  1370. }
  1371. struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
  1372. struct btrfs_key *location,
  1373. bool check_ref)
  1374. {
  1375. struct btrfs_root *root;
  1376. struct btrfs_path *path;
  1377. struct btrfs_key key;
  1378. int ret;
  1379. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1380. return fs_info->tree_root;
  1381. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1382. return fs_info->extent_root;
  1383. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1384. return fs_info->chunk_root;
  1385. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1386. return fs_info->dev_root;
  1387. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1388. return fs_info->csum_root;
  1389. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1390. return fs_info->quota_root ? fs_info->quota_root :
  1391. ERR_PTR(-ENOENT);
  1392. if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
  1393. return fs_info->uuid_root ? fs_info->uuid_root :
  1394. ERR_PTR(-ENOENT);
  1395. if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
  1396. return fs_info->free_space_root ? fs_info->free_space_root :
  1397. ERR_PTR(-ENOENT);
  1398. again:
  1399. root = btrfs_lookup_fs_root(fs_info, location->objectid);
  1400. if (root) {
  1401. if (check_ref && btrfs_root_refs(&root->root_item) == 0)
  1402. return ERR_PTR(-ENOENT);
  1403. return root;
  1404. }
  1405. root = btrfs_read_fs_root(fs_info->tree_root, location);
  1406. if (IS_ERR(root))
  1407. return root;
  1408. if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
  1409. ret = -ENOENT;
  1410. goto fail;
  1411. }
  1412. ret = btrfs_init_fs_root(root);
  1413. if (ret)
  1414. goto fail;
  1415. path = btrfs_alloc_path();
  1416. if (!path) {
  1417. ret = -ENOMEM;
  1418. goto fail;
  1419. }
  1420. key.objectid = BTRFS_ORPHAN_OBJECTID;
  1421. key.type = BTRFS_ORPHAN_ITEM_KEY;
  1422. key.offset = location->objectid;
  1423. ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
  1424. btrfs_free_path(path);
  1425. if (ret < 0)
  1426. goto fail;
  1427. if (ret == 0)
  1428. set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
  1429. ret = btrfs_insert_fs_root(fs_info, root);
  1430. if (ret) {
  1431. if (ret == -EEXIST) {
  1432. free_fs_root(root);
  1433. goto again;
  1434. }
  1435. goto fail;
  1436. }
  1437. return root;
  1438. fail:
  1439. free_fs_root(root);
  1440. return ERR_PTR(ret);
  1441. }
  1442. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1443. {
  1444. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1445. int ret = 0;
  1446. struct btrfs_device *device;
  1447. struct backing_dev_info *bdi;
  1448. rcu_read_lock();
  1449. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1450. if (!device->bdev)
  1451. continue;
  1452. bdi = device->bdev->bd_bdi;
  1453. if (bdi_congested(bdi, bdi_bits)) {
  1454. ret = 1;
  1455. break;
  1456. }
  1457. }
  1458. rcu_read_unlock();
  1459. return ret;
  1460. }
  1461. /*
  1462. * called by the kthread helper functions to finally call the bio end_io
  1463. * functions. This is where read checksum verification actually happens
  1464. */
  1465. static void end_workqueue_fn(struct btrfs_work *work)
  1466. {
  1467. struct bio *bio;
  1468. struct btrfs_end_io_wq *end_io_wq;
  1469. end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
  1470. bio = end_io_wq->bio;
  1471. bio->bi_status = end_io_wq->status;
  1472. bio->bi_private = end_io_wq->private;
  1473. bio->bi_end_io = end_io_wq->end_io;
  1474. kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
  1475. bio_endio(bio);
  1476. }
  1477. static int cleaner_kthread(void *arg)
  1478. {
  1479. struct btrfs_root *root = arg;
  1480. struct btrfs_fs_info *fs_info = root->fs_info;
  1481. int again;
  1482. struct btrfs_trans_handle *trans;
  1483. do {
  1484. again = 0;
  1485. /* Make the cleaner go to sleep early. */
  1486. if (btrfs_need_cleaner_sleep(fs_info))
  1487. goto sleep;
  1488. /*
  1489. * Do not do anything if we might cause open_ctree() to block
  1490. * before we have finished mounting the filesystem.
  1491. */
  1492. if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
  1493. goto sleep;
  1494. if (!mutex_trylock(&fs_info->cleaner_mutex))
  1495. goto sleep;
  1496. /*
  1497. * Avoid the problem that we change the status of the fs
  1498. * during the above check and trylock.
  1499. */
  1500. if (btrfs_need_cleaner_sleep(fs_info)) {
  1501. mutex_unlock(&fs_info->cleaner_mutex);
  1502. goto sleep;
  1503. }
  1504. mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
  1505. btrfs_run_delayed_iputs(fs_info);
  1506. mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
  1507. again = btrfs_clean_one_deleted_snapshot(root);
  1508. mutex_unlock(&fs_info->cleaner_mutex);
  1509. /*
  1510. * The defragger has dealt with the R/O remount and umount,
  1511. * needn't do anything special here.
  1512. */
  1513. btrfs_run_defrag_inodes(fs_info);
  1514. /*
  1515. * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
  1516. * with relocation (btrfs_relocate_chunk) and relocation
  1517. * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
  1518. * after acquiring fs_info->delete_unused_bgs_mutex. So we
  1519. * can't hold, nor need to, fs_info->cleaner_mutex when deleting
  1520. * unused block groups.
  1521. */
  1522. btrfs_delete_unused_bgs(fs_info);
  1523. sleep:
  1524. if (!again) {
  1525. set_current_state(TASK_INTERRUPTIBLE);
  1526. if (!kthread_should_stop())
  1527. schedule();
  1528. __set_current_state(TASK_RUNNING);
  1529. }
  1530. } while (!kthread_should_stop());
  1531. /*
  1532. * Transaction kthread is stopped before us and wakes us up.
  1533. * However we might have started a new transaction and COWed some
  1534. * tree blocks when deleting unused block groups for example. So
  1535. * make sure we commit the transaction we started to have a clean
  1536. * shutdown when evicting the btree inode - if it has dirty pages
  1537. * when we do the final iput() on it, eviction will trigger a
  1538. * writeback for it which will fail with null pointer dereferences
  1539. * since work queues and other resources were already released and
  1540. * destroyed by the time the iput/eviction/writeback is made.
  1541. */
  1542. trans = btrfs_attach_transaction(root);
  1543. if (IS_ERR(trans)) {
  1544. if (PTR_ERR(trans) != -ENOENT)
  1545. btrfs_err(fs_info,
  1546. "cleaner transaction attach returned %ld",
  1547. PTR_ERR(trans));
  1548. } else {
  1549. int ret;
  1550. ret = btrfs_commit_transaction(trans);
  1551. if (ret)
  1552. btrfs_err(fs_info,
  1553. "cleaner open transaction commit returned %d",
  1554. ret);
  1555. }
  1556. return 0;
  1557. }
  1558. static int transaction_kthread(void *arg)
  1559. {
  1560. struct btrfs_root *root = arg;
  1561. struct btrfs_fs_info *fs_info = root->fs_info;
  1562. struct btrfs_trans_handle *trans;
  1563. struct btrfs_transaction *cur;
  1564. u64 transid;
  1565. unsigned long now;
  1566. unsigned long delay;
  1567. bool cannot_commit;
  1568. do {
  1569. cannot_commit = false;
  1570. delay = HZ * fs_info->commit_interval;
  1571. mutex_lock(&fs_info->transaction_kthread_mutex);
  1572. spin_lock(&fs_info->trans_lock);
  1573. cur = fs_info->running_transaction;
  1574. if (!cur) {
  1575. spin_unlock(&fs_info->trans_lock);
  1576. goto sleep;
  1577. }
  1578. now = get_seconds();
  1579. if (cur->state < TRANS_STATE_BLOCKED &&
  1580. !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
  1581. (now < cur->start_time ||
  1582. now - cur->start_time < fs_info->commit_interval)) {
  1583. spin_unlock(&fs_info->trans_lock);
  1584. delay = HZ * 5;
  1585. goto sleep;
  1586. }
  1587. transid = cur->transid;
  1588. spin_unlock(&fs_info->trans_lock);
  1589. /* If the file system is aborted, this will always fail. */
  1590. trans = btrfs_attach_transaction(root);
  1591. if (IS_ERR(trans)) {
  1592. if (PTR_ERR(trans) != -ENOENT)
  1593. cannot_commit = true;
  1594. goto sleep;
  1595. }
  1596. if (transid == trans->transid) {
  1597. btrfs_commit_transaction(trans);
  1598. } else {
  1599. btrfs_end_transaction(trans);
  1600. }
  1601. sleep:
  1602. wake_up_process(fs_info->cleaner_kthread);
  1603. mutex_unlock(&fs_info->transaction_kthread_mutex);
  1604. if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
  1605. &fs_info->fs_state)))
  1606. btrfs_cleanup_transaction(fs_info);
  1607. if (!kthread_should_stop() &&
  1608. (!btrfs_transaction_blocked(fs_info) ||
  1609. cannot_commit))
  1610. schedule_timeout_interruptible(delay);
  1611. } while (!kthread_should_stop());
  1612. return 0;
  1613. }
  1614. /*
  1615. * this will find the highest generation in the array of
  1616. * root backups. The index of the highest array is returned,
  1617. * or -1 if we can't find anything.
  1618. *
  1619. * We check to make sure the array is valid by comparing the
  1620. * generation of the latest root in the array with the generation
  1621. * in the super block. If they don't match we pitch it.
  1622. */
  1623. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1624. {
  1625. u64 cur;
  1626. int newest_index = -1;
  1627. struct btrfs_root_backup *root_backup;
  1628. int i;
  1629. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1630. root_backup = info->super_copy->super_roots + i;
  1631. cur = btrfs_backup_tree_root_gen(root_backup);
  1632. if (cur == newest_gen)
  1633. newest_index = i;
  1634. }
  1635. /* check to see if we actually wrapped around */
  1636. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1637. root_backup = info->super_copy->super_roots;
  1638. cur = btrfs_backup_tree_root_gen(root_backup);
  1639. if (cur == newest_gen)
  1640. newest_index = 0;
  1641. }
  1642. return newest_index;
  1643. }
  1644. /*
  1645. * find the oldest backup so we know where to store new entries
  1646. * in the backup array. This will set the backup_root_index
  1647. * field in the fs_info struct
  1648. */
  1649. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1650. u64 newest_gen)
  1651. {
  1652. int newest_index = -1;
  1653. newest_index = find_newest_super_backup(info, newest_gen);
  1654. /* if there was garbage in there, just move along */
  1655. if (newest_index == -1) {
  1656. info->backup_root_index = 0;
  1657. } else {
  1658. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1659. }
  1660. }
  1661. /*
  1662. * copy all the root pointers into the super backup array.
  1663. * this will bump the backup pointer by one when it is
  1664. * done
  1665. */
  1666. static void backup_super_roots(struct btrfs_fs_info *info)
  1667. {
  1668. int next_backup;
  1669. struct btrfs_root_backup *root_backup;
  1670. int last_backup;
  1671. next_backup = info->backup_root_index;
  1672. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1673. BTRFS_NUM_BACKUP_ROOTS;
  1674. /*
  1675. * just overwrite the last backup if we're at the same generation
  1676. * this happens only at umount
  1677. */
  1678. root_backup = info->super_for_commit->super_roots + last_backup;
  1679. if (btrfs_backup_tree_root_gen(root_backup) ==
  1680. btrfs_header_generation(info->tree_root->node))
  1681. next_backup = last_backup;
  1682. root_backup = info->super_for_commit->super_roots + next_backup;
  1683. /*
  1684. * make sure all of our padding and empty slots get zero filled
  1685. * regardless of which ones we use today
  1686. */
  1687. memset(root_backup, 0, sizeof(*root_backup));
  1688. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1689. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1690. btrfs_set_backup_tree_root_gen(root_backup,
  1691. btrfs_header_generation(info->tree_root->node));
  1692. btrfs_set_backup_tree_root_level(root_backup,
  1693. btrfs_header_level(info->tree_root->node));
  1694. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1695. btrfs_set_backup_chunk_root_gen(root_backup,
  1696. btrfs_header_generation(info->chunk_root->node));
  1697. btrfs_set_backup_chunk_root_level(root_backup,
  1698. btrfs_header_level(info->chunk_root->node));
  1699. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1700. btrfs_set_backup_extent_root_gen(root_backup,
  1701. btrfs_header_generation(info->extent_root->node));
  1702. btrfs_set_backup_extent_root_level(root_backup,
  1703. btrfs_header_level(info->extent_root->node));
  1704. /*
  1705. * we might commit during log recovery, which happens before we set
  1706. * the fs_root. Make sure it is valid before we fill it in.
  1707. */
  1708. if (info->fs_root && info->fs_root->node) {
  1709. btrfs_set_backup_fs_root(root_backup,
  1710. info->fs_root->node->start);
  1711. btrfs_set_backup_fs_root_gen(root_backup,
  1712. btrfs_header_generation(info->fs_root->node));
  1713. btrfs_set_backup_fs_root_level(root_backup,
  1714. btrfs_header_level(info->fs_root->node));
  1715. }
  1716. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1717. btrfs_set_backup_dev_root_gen(root_backup,
  1718. btrfs_header_generation(info->dev_root->node));
  1719. btrfs_set_backup_dev_root_level(root_backup,
  1720. btrfs_header_level(info->dev_root->node));
  1721. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1722. btrfs_set_backup_csum_root_gen(root_backup,
  1723. btrfs_header_generation(info->csum_root->node));
  1724. btrfs_set_backup_csum_root_level(root_backup,
  1725. btrfs_header_level(info->csum_root->node));
  1726. btrfs_set_backup_total_bytes(root_backup,
  1727. btrfs_super_total_bytes(info->super_copy));
  1728. btrfs_set_backup_bytes_used(root_backup,
  1729. btrfs_super_bytes_used(info->super_copy));
  1730. btrfs_set_backup_num_devices(root_backup,
  1731. btrfs_super_num_devices(info->super_copy));
  1732. /*
  1733. * if we don't copy this out to the super_copy, it won't get remembered
  1734. * for the next commit
  1735. */
  1736. memcpy(&info->super_copy->super_roots,
  1737. &info->super_for_commit->super_roots,
  1738. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1739. }
  1740. /*
  1741. * this copies info out of the root backup array and back into
  1742. * the in-memory super block. It is meant to help iterate through
  1743. * the array, so you send it the number of backups you've already
  1744. * tried and the last backup index you used.
  1745. *
  1746. * this returns -1 when it has tried all the backups
  1747. */
  1748. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1749. struct btrfs_super_block *super,
  1750. int *num_backups_tried, int *backup_index)
  1751. {
  1752. struct btrfs_root_backup *root_backup;
  1753. int newest = *backup_index;
  1754. if (*num_backups_tried == 0) {
  1755. u64 gen = btrfs_super_generation(super);
  1756. newest = find_newest_super_backup(info, gen);
  1757. if (newest == -1)
  1758. return -1;
  1759. *backup_index = newest;
  1760. *num_backups_tried = 1;
  1761. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1762. /* we've tried all the backups, all done */
  1763. return -1;
  1764. } else {
  1765. /* jump to the next oldest backup */
  1766. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1767. BTRFS_NUM_BACKUP_ROOTS;
  1768. *backup_index = newest;
  1769. *num_backups_tried += 1;
  1770. }
  1771. root_backup = super->super_roots + newest;
  1772. btrfs_set_super_generation(super,
  1773. btrfs_backup_tree_root_gen(root_backup));
  1774. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1775. btrfs_set_super_root_level(super,
  1776. btrfs_backup_tree_root_level(root_backup));
  1777. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1778. /*
  1779. * fixme: the total bytes and num_devices need to match or we should
  1780. * need a fsck
  1781. */
  1782. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1783. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1784. return 0;
  1785. }
  1786. /* helper to cleanup workers */
  1787. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1788. {
  1789. btrfs_destroy_workqueue(fs_info->fixup_workers);
  1790. btrfs_destroy_workqueue(fs_info->delalloc_workers);
  1791. btrfs_destroy_workqueue(fs_info->workers);
  1792. btrfs_destroy_workqueue(fs_info->endio_workers);
  1793. btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
  1794. btrfs_destroy_workqueue(fs_info->endio_repair_workers);
  1795. btrfs_destroy_workqueue(fs_info->rmw_workers);
  1796. btrfs_destroy_workqueue(fs_info->endio_write_workers);
  1797. btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
  1798. btrfs_destroy_workqueue(fs_info->submit_workers);
  1799. btrfs_destroy_workqueue(fs_info->delayed_workers);
  1800. btrfs_destroy_workqueue(fs_info->caching_workers);
  1801. btrfs_destroy_workqueue(fs_info->readahead_workers);
  1802. btrfs_destroy_workqueue(fs_info->flush_workers);
  1803. btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
  1804. btrfs_destroy_workqueue(fs_info->extent_workers);
  1805. /*
  1806. * Now that all other work queues are destroyed, we can safely destroy
  1807. * the queues used for metadata I/O, since tasks from those other work
  1808. * queues can do metadata I/O operations.
  1809. */
  1810. btrfs_destroy_workqueue(fs_info->endio_meta_workers);
  1811. btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
  1812. }
  1813. static void free_root_extent_buffers(struct btrfs_root *root)
  1814. {
  1815. if (root) {
  1816. free_extent_buffer(root->node);
  1817. free_extent_buffer(root->commit_root);
  1818. root->node = NULL;
  1819. root->commit_root = NULL;
  1820. }
  1821. }
  1822. /* helper to cleanup tree roots */
  1823. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1824. {
  1825. free_root_extent_buffers(info->tree_root);
  1826. free_root_extent_buffers(info->dev_root);
  1827. free_root_extent_buffers(info->extent_root);
  1828. free_root_extent_buffers(info->csum_root);
  1829. free_root_extent_buffers(info->quota_root);
  1830. free_root_extent_buffers(info->uuid_root);
  1831. if (chunk_root)
  1832. free_root_extent_buffers(info->chunk_root);
  1833. free_root_extent_buffers(info->free_space_root);
  1834. }
  1835. void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
  1836. {
  1837. int ret;
  1838. struct btrfs_root *gang[8];
  1839. int i;
  1840. while (!list_empty(&fs_info->dead_roots)) {
  1841. gang[0] = list_entry(fs_info->dead_roots.next,
  1842. struct btrfs_root, root_list);
  1843. list_del(&gang[0]->root_list);
  1844. if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
  1845. btrfs_drop_and_free_fs_root(fs_info, gang[0]);
  1846. } else {
  1847. free_extent_buffer(gang[0]->node);
  1848. free_extent_buffer(gang[0]->commit_root);
  1849. btrfs_put_fs_root(gang[0]);
  1850. }
  1851. }
  1852. while (1) {
  1853. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1854. (void **)gang, 0,
  1855. ARRAY_SIZE(gang));
  1856. if (!ret)
  1857. break;
  1858. for (i = 0; i < ret; i++)
  1859. btrfs_drop_and_free_fs_root(fs_info, gang[i]);
  1860. }
  1861. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  1862. btrfs_free_log_root_tree(NULL, fs_info);
  1863. btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
  1864. }
  1865. }
  1866. static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
  1867. {
  1868. mutex_init(&fs_info->scrub_lock);
  1869. atomic_set(&fs_info->scrubs_running, 0);
  1870. atomic_set(&fs_info->scrub_pause_req, 0);
  1871. atomic_set(&fs_info->scrubs_paused, 0);
  1872. atomic_set(&fs_info->scrub_cancel_req, 0);
  1873. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1874. fs_info->scrub_workers_refcnt = 0;
  1875. }
  1876. static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
  1877. {
  1878. spin_lock_init(&fs_info->balance_lock);
  1879. mutex_init(&fs_info->balance_mutex);
  1880. atomic_set(&fs_info->balance_running, 0);
  1881. atomic_set(&fs_info->balance_pause_req, 0);
  1882. atomic_set(&fs_info->balance_cancel_req, 0);
  1883. fs_info->balance_ctl = NULL;
  1884. init_waitqueue_head(&fs_info->balance_wait_q);
  1885. }
  1886. static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
  1887. {
  1888. struct inode *inode = fs_info->btree_inode;
  1889. inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1890. set_nlink(inode, 1);
  1891. /*
  1892. * we set the i_size on the btree inode to the max possible int.
  1893. * the real end of the address space is determined by all of
  1894. * the devices in the system
  1895. */
  1896. inode->i_size = OFFSET_MAX;
  1897. inode->i_mapping->a_ops = &btree_aops;
  1898. RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
  1899. extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
  1900. BTRFS_I(inode)->io_tree.track_uptodate = 0;
  1901. extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
  1902. BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
  1903. BTRFS_I(inode)->root = fs_info->tree_root;
  1904. memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
  1905. set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
  1906. btrfs_insert_inode_hash(inode);
  1907. }
  1908. static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
  1909. {
  1910. fs_info->dev_replace.lock_owner = 0;
  1911. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  1912. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  1913. rwlock_init(&fs_info->dev_replace.lock);
  1914. atomic_set(&fs_info->dev_replace.read_locks, 0);
  1915. atomic_set(&fs_info->dev_replace.blocking_readers, 0);
  1916. init_waitqueue_head(&fs_info->replace_wait);
  1917. init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
  1918. }
  1919. static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
  1920. {
  1921. spin_lock_init(&fs_info->qgroup_lock);
  1922. mutex_init(&fs_info->qgroup_ioctl_lock);
  1923. fs_info->qgroup_tree = RB_ROOT;
  1924. fs_info->qgroup_op_tree = RB_ROOT;
  1925. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  1926. fs_info->qgroup_seq = 1;
  1927. fs_info->qgroup_ulist = NULL;
  1928. fs_info->qgroup_rescan_running = false;
  1929. mutex_init(&fs_info->qgroup_rescan_lock);
  1930. }
  1931. static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
  1932. struct btrfs_fs_devices *fs_devices)
  1933. {
  1934. u32 max_active = fs_info->thread_pool_size;
  1935. unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
  1936. fs_info->workers =
  1937. btrfs_alloc_workqueue(fs_info, "worker",
  1938. flags | WQ_HIGHPRI, max_active, 16);
  1939. fs_info->delalloc_workers =
  1940. btrfs_alloc_workqueue(fs_info, "delalloc",
  1941. flags, max_active, 2);
  1942. fs_info->flush_workers =
  1943. btrfs_alloc_workqueue(fs_info, "flush_delalloc",
  1944. flags, max_active, 0);
  1945. fs_info->caching_workers =
  1946. btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
  1947. /*
  1948. * a higher idle thresh on the submit workers makes it much more
  1949. * likely that bios will be send down in a sane order to the
  1950. * devices
  1951. */
  1952. fs_info->submit_workers =
  1953. btrfs_alloc_workqueue(fs_info, "submit", flags,
  1954. min_t(u64, fs_devices->num_devices,
  1955. max_active), 64);
  1956. fs_info->fixup_workers =
  1957. btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
  1958. /*
  1959. * endios are largely parallel and should have a very
  1960. * low idle thresh
  1961. */
  1962. fs_info->endio_workers =
  1963. btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
  1964. fs_info->endio_meta_workers =
  1965. btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
  1966. max_active, 4);
  1967. fs_info->endio_meta_write_workers =
  1968. btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
  1969. max_active, 2);
  1970. fs_info->endio_raid56_workers =
  1971. btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
  1972. max_active, 4);
  1973. fs_info->endio_repair_workers =
  1974. btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
  1975. fs_info->rmw_workers =
  1976. btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
  1977. fs_info->endio_write_workers =
  1978. btrfs_alloc_workqueue(fs_info, "endio-write", flags,
  1979. max_active, 2);
  1980. fs_info->endio_freespace_worker =
  1981. btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
  1982. max_active, 0);
  1983. fs_info->delayed_workers =
  1984. btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
  1985. max_active, 0);
  1986. fs_info->readahead_workers =
  1987. btrfs_alloc_workqueue(fs_info, "readahead", flags,
  1988. max_active, 2);
  1989. fs_info->qgroup_rescan_workers =
  1990. btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
  1991. fs_info->extent_workers =
  1992. btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
  1993. min_t(u64, fs_devices->num_devices,
  1994. max_active), 8);
  1995. if (!(fs_info->workers && fs_info->delalloc_workers &&
  1996. fs_info->submit_workers && fs_info->flush_workers &&
  1997. fs_info->endio_workers && fs_info->endio_meta_workers &&
  1998. fs_info->endio_meta_write_workers &&
  1999. fs_info->endio_repair_workers &&
  2000. fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
  2001. fs_info->endio_freespace_worker && fs_info->rmw_workers &&
  2002. fs_info->caching_workers && fs_info->readahead_workers &&
  2003. fs_info->fixup_workers && fs_info->delayed_workers &&
  2004. fs_info->extent_workers &&
  2005. fs_info->qgroup_rescan_workers)) {
  2006. return -ENOMEM;
  2007. }
  2008. return 0;
  2009. }
  2010. static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
  2011. struct btrfs_fs_devices *fs_devices)
  2012. {
  2013. int ret;
  2014. struct btrfs_root *log_tree_root;
  2015. struct btrfs_super_block *disk_super = fs_info->super_copy;
  2016. u64 bytenr = btrfs_super_log_root(disk_super);
  2017. int level = btrfs_super_log_root_level(disk_super);
  2018. if (fs_devices->rw_devices == 0) {
  2019. btrfs_warn(fs_info, "log replay required on RO media");
  2020. return -EIO;
  2021. }
  2022. log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2023. if (!log_tree_root)
  2024. return -ENOMEM;
  2025. __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2026. log_tree_root->node = read_tree_block(fs_info, bytenr,
  2027. fs_info->generation + 1,
  2028. level, NULL);
  2029. if (IS_ERR(log_tree_root->node)) {
  2030. btrfs_warn(fs_info, "failed to read log tree");
  2031. ret = PTR_ERR(log_tree_root->node);
  2032. kfree(log_tree_root);
  2033. return ret;
  2034. } else if (!extent_buffer_uptodate(log_tree_root->node)) {
  2035. btrfs_err(fs_info, "failed to read log tree");
  2036. free_extent_buffer(log_tree_root->node);
  2037. kfree(log_tree_root);
  2038. return -EIO;
  2039. }
  2040. /* returns with log_tree_root freed on success */
  2041. ret = btrfs_recover_log_trees(log_tree_root);
  2042. if (ret) {
  2043. btrfs_handle_fs_error(fs_info, ret,
  2044. "Failed to recover log tree");
  2045. free_extent_buffer(log_tree_root->node);
  2046. kfree(log_tree_root);
  2047. return ret;
  2048. }
  2049. if (sb_rdonly(fs_info->sb)) {
  2050. ret = btrfs_commit_super(fs_info);
  2051. if (ret)
  2052. return ret;
  2053. }
  2054. return 0;
  2055. }
  2056. static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
  2057. {
  2058. struct btrfs_root *tree_root = fs_info->tree_root;
  2059. struct btrfs_root *root;
  2060. struct btrfs_key location;
  2061. int ret;
  2062. BUG_ON(!fs_info->tree_root);
  2063. location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
  2064. location.type = BTRFS_ROOT_ITEM_KEY;
  2065. location.offset = 0;
  2066. root = btrfs_read_tree_root(tree_root, &location);
  2067. if (IS_ERR(root)) {
  2068. ret = PTR_ERR(root);
  2069. goto out;
  2070. }
  2071. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2072. fs_info->extent_root = root;
  2073. location.objectid = BTRFS_DEV_TREE_OBJECTID;
  2074. root = btrfs_read_tree_root(tree_root, &location);
  2075. if (IS_ERR(root)) {
  2076. ret = PTR_ERR(root);
  2077. goto out;
  2078. }
  2079. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2080. fs_info->dev_root = root;
  2081. btrfs_init_devices_late(fs_info);
  2082. location.objectid = BTRFS_CSUM_TREE_OBJECTID;
  2083. root = btrfs_read_tree_root(tree_root, &location);
  2084. if (IS_ERR(root)) {
  2085. ret = PTR_ERR(root);
  2086. goto out;
  2087. }
  2088. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2089. fs_info->csum_root = root;
  2090. location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
  2091. root = btrfs_read_tree_root(tree_root, &location);
  2092. if (!IS_ERR(root)) {
  2093. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2094. set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
  2095. fs_info->quota_root = root;
  2096. }
  2097. location.objectid = BTRFS_UUID_TREE_OBJECTID;
  2098. root = btrfs_read_tree_root(tree_root, &location);
  2099. if (IS_ERR(root)) {
  2100. ret = PTR_ERR(root);
  2101. if (ret != -ENOENT)
  2102. goto out;
  2103. } else {
  2104. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2105. fs_info->uuid_root = root;
  2106. }
  2107. if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2108. location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
  2109. root = btrfs_read_tree_root(tree_root, &location);
  2110. if (IS_ERR(root)) {
  2111. ret = PTR_ERR(root);
  2112. goto out;
  2113. }
  2114. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2115. fs_info->free_space_root = root;
  2116. }
  2117. return 0;
  2118. out:
  2119. btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
  2120. location.objectid, ret);
  2121. return ret;
  2122. }
  2123. int open_ctree(struct super_block *sb,
  2124. struct btrfs_fs_devices *fs_devices,
  2125. char *options)
  2126. {
  2127. u32 sectorsize;
  2128. u32 nodesize;
  2129. u32 stripesize;
  2130. u64 generation;
  2131. u64 features;
  2132. struct btrfs_key location;
  2133. struct buffer_head *bh;
  2134. struct btrfs_super_block *disk_super;
  2135. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  2136. struct btrfs_root *tree_root;
  2137. struct btrfs_root *chunk_root;
  2138. int ret;
  2139. int err = -EINVAL;
  2140. int num_backups_tried = 0;
  2141. int backup_index = 0;
  2142. int clear_free_space_tree = 0;
  2143. int level;
  2144. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2145. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2146. if (!tree_root || !chunk_root) {
  2147. err = -ENOMEM;
  2148. goto fail;
  2149. }
  2150. ret = init_srcu_struct(&fs_info->subvol_srcu);
  2151. if (ret) {
  2152. err = ret;
  2153. goto fail;
  2154. }
  2155. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
  2156. if (ret) {
  2157. err = ret;
  2158. goto fail_srcu;
  2159. }
  2160. fs_info->dirty_metadata_batch = PAGE_SIZE *
  2161. (1 + ilog2(nr_cpu_ids));
  2162. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
  2163. if (ret) {
  2164. err = ret;
  2165. goto fail_dirty_metadata_bytes;
  2166. }
  2167. ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
  2168. if (ret) {
  2169. err = ret;
  2170. goto fail_delalloc_bytes;
  2171. }
  2172. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  2173. INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
  2174. INIT_LIST_HEAD(&fs_info->trans_list);
  2175. INIT_LIST_HEAD(&fs_info->dead_roots);
  2176. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  2177. INIT_LIST_HEAD(&fs_info->delalloc_roots);
  2178. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  2179. INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
  2180. spin_lock_init(&fs_info->pending_raid_kobjs_lock);
  2181. spin_lock_init(&fs_info->delalloc_root_lock);
  2182. spin_lock_init(&fs_info->trans_lock);
  2183. spin_lock_init(&fs_info->fs_roots_radix_lock);
  2184. spin_lock_init(&fs_info->delayed_iput_lock);
  2185. spin_lock_init(&fs_info->defrag_inodes_lock);
  2186. spin_lock_init(&fs_info->tree_mod_seq_lock);
  2187. spin_lock_init(&fs_info->super_lock);
  2188. spin_lock_init(&fs_info->qgroup_op_lock);
  2189. spin_lock_init(&fs_info->buffer_lock);
  2190. spin_lock_init(&fs_info->unused_bgs_lock);
  2191. rwlock_init(&fs_info->tree_mod_log_lock);
  2192. mutex_init(&fs_info->unused_bg_unpin_mutex);
  2193. mutex_init(&fs_info->delete_unused_bgs_mutex);
  2194. mutex_init(&fs_info->reloc_mutex);
  2195. mutex_init(&fs_info->delalloc_root_mutex);
  2196. mutex_init(&fs_info->cleaner_delayed_iput_mutex);
  2197. seqlock_init(&fs_info->profiles_lock);
  2198. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  2199. INIT_LIST_HEAD(&fs_info->space_info);
  2200. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  2201. INIT_LIST_HEAD(&fs_info->unused_bgs);
  2202. btrfs_mapping_init(&fs_info->mapping_tree);
  2203. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  2204. BTRFS_BLOCK_RSV_GLOBAL);
  2205. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  2206. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  2207. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  2208. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  2209. BTRFS_BLOCK_RSV_DELOPS);
  2210. atomic_set(&fs_info->async_delalloc_pages, 0);
  2211. atomic_set(&fs_info->defrag_running, 0);
  2212. atomic_set(&fs_info->qgroup_op_seq, 0);
  2213. atomic_set(&fs_info->reada_works_cnt, 0);
  2214. atomic64_set(&fs_info->tree_mod_seq, 0);
  2215. fs_info->sb = sb;
  2216. fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
  2217. fs_info->metadata_ratio = 0;
  2218. fs_info->defrag_inodes = RB_ROOT;
  2219. atomic64_set(&fs_info->free_chunk_space, 0);
  2220. fs_info->tree_mod_log = RB_ROOT;
  2221. fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
  2222. fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
  2223. /* readahead state */
  2224. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
  2225. spin_lock_init(&fs_info->reada_lock);
  2226. btrfs_init_ref_verify(fs_info);
  2227. fs_info->thread_pool_size = min_t(unsigned long,
  2228. num_online_cpus() + 2, 8);
  2229. INIT_LIST_HEAD(&fs_info->ordered_roots);
  2230. spin_lock_init(&fs_info->ordered_root_lock);
  2231. fs_info->btree_inode = new_inode(sb);
  2232. if (!fs_info->btree_inode) {
  2233. err = -ENOMEM;
  2234. goto fail_bio_counter;
  2235. }
  2236. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  2237. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  2238. GFP_KERNEL);
  2239. if (!fs_info->delayed_root) {
  2240. err = -ENOMEM;
  2241. goto fail_iput;
  2242. }
  2243. btrfs_init_delayed_root(fs_info->delayed_root);
  2244. btrfs_init_scrub(fs_info);
  2245. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2246. fs_info->check_integrity_print_mask = 0;
  2247. #endif
  2248. btrfs_init_balance(fs_info);
  2249. btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
  2250. sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
  2251. sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
  2252. btrfs_init_btree_inode(fs_info);
  2253. spin_lock_init(&fs_info->block_group_cache_lock);
  2254. fs_info->block_group_cache_tree = RB_ROOT;
  2255. fs_info->first_logical_byte = (u64)-1;
  2256. extent_io_tree_init(&fs_info->freed_extents[0], NULL);
  2257. extent_io_tree_init(&fs_info->freed_extents[1], NULL);
  2258. fs_info->pinned_extents = &fs_info->freed_extents[0];
  2259. set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
  2260. mutex_init(&fs_info->ordered_operations_mutex);
  2261. mutex_init(&fs_info->tree_log_mutex);
  2262. mutex_init(&fs_info->chunk_mutex);
  2263. mutex_init(&fs_info->transaction_kthread_mutex);
  2264. mutex_init(&fs_info->cleaner_mutex);
  2265. mutex_init(&fs_info->volume_mutex);
  2266. mutex_init(&fs_info->ro_block_group_mutex);
  2267. init_rwsem(&fs_info->commit_root_sem);
  2268. init_rwsem(&fs_info->cleanup_work_sem);
  2269. init_rwsem(&fs_info->subvol_sem);
  2270. sema_init(&fs_info->uuid_tree_rescan_sem, 1);
  2271. btrfs_init_dev_replace_locks(fs_info);
  2272. btrfs_init_qgroup(fs_info);
  2273. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  2274. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  2275. init_waitqueue_head(&fs_info->transaction_throttle);
  2276. init_waitqueue_head(&fs_info->transaction_wait);
  2277. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2278. init_waitqueue_head(&fs_info->async_submit_wait);
  2279. INIT_LIST_HEAD(&fs_info->pinned_chunks);
  2280. /* Usable values until the real ones are cached from the superblock */
  2281. fs_info->nodesize = 4096;
  2282. fs_info->sectorsize = 4096;
  2283. fs_info->stripesize = 4096;
  2284. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2285. if (ret) {
  2286. err = ret;
  2287. goto fail_alloc;
  2288. }
  2289. __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2290. invalidate_bdev(fs_devices->latest_bdev);
  2291. /*
  2292. * Read super block and check the signature bytes only
  2293. */
  2294. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2295. if (IS_ERR(bh)) {
  2296. err = PTR_ERR(bh);
  2297. goto fail_alloc;
  2298. }
  2299. /*
  2300. * We want to check superblock checksum, the type is stored inside.
  2301. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2302. */
  2303. if (btrfs_check_super_csum(fs_info, bh->b_data)) {
  2304. btrfs_err(fs_info, "superblock checksum mismatch");
  2305. err = -EINVAL;
  2306. brelse(bh);
  2307. goto fail_alloc;
  2308. }
  2309. /*
  2310. * super_copy is zeroed at allocation time and we never touch the
  2311. * following bytes up to INFO_SIZE, the checksum is calculated from
  2312. * the whole block of INFO_SIZE
  2313. */
  2314. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2315. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2316. sizeof(*fs_info->super_for_commit));
  2317. brelse(bh);
  2318. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2319. ret = btrfs_check_super_valid(fs_info);
  2320. if (ret) {
  2321. btrfs_err(fs_info, "superblock contains fatal errors");
  2322. err = -EINVAL;
  2323. goto fail_alloc;
  2324. }
  2325. disk_super = fs_info->super_copy;
  2326. if (!btrfs_super_root(disk_super))
  2327. goto fail_alloc;
  2328. /* check FS state, whether FS is broken. */
  2329. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2330. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2331. /*
  2332. * run through our array of backup supers and setup
  2333. * our ring pointer to the oldest one
  2334. */
  2335. generation = btrfs_super_generation(disk_super);
  2336. find_oldest_super_backup(fs_info, generation);
  2337. /*
  2338. * In the long term, we'll store the compression type in the super
  2339. * block, and it'll be used for per file compression control.
  2340. */
  2341. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2342. ret = btrfs_parse_options(fs_info, options, sb->s_flags);
  2343. if (ret) {
  2344. err = ret;
  2345. goto fail_alloc;
  2346. }
  2347. features = btrfs_super_incompat_flags(disk_super) &
  2348. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2349. if (features) {
  2350. btrfs_err(fs_info,
  2351. "cannot mount because of unsupported optional features (%llx)",
  2352. features);
  2353. err = -EINVAL;
  2354. goto fail_alloc;
  2355. }
  2356. features = btrfs_super_incompat_flags(disk_super);
  2357. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2358. if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2359. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2360. else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
  2361. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
  2362. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2363. btrfs_info(fs_info, "has skinny extents");
  2364. /*
  2365. * flag our filesystem as having big metadata blocks if
  2366. * they are bigger than the page size
  2367. */
  2368. if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
  2369. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2370. btrfs_info(fs_info,
  2371. "flagging fs with big metadata feature");
  2372. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2373. }
  2374. nodesize = btrfs_super_nodesize(disk_super);
  2375. sectorsize = btrfs_super_sectorsize(disk_super);
  2376. stripesize = sectorsize;
  2377. fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
  2378. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2379. /* Cache block sizes */
  2380. fs_info->nodesize = nodesize;
  2381. fs_info->sectorsize = sectorsize;
  2382. fs_info->stripesize = stripesize;
  2383. /*
  2384. * mixed block groups end up with duplicate but slightly offset
  2385. * extent buffers for the same range. It leads to corruptions
  2386. */
  2387. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2388. (sectorsize != nodesize)) {
  2389. btrfs_err(fs_info,
  2390. "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
  2391. nodesize, sectorsize);
  2392. goto fail_alloc;
  2393. }
  2394. /*
  2395. * Needn't use the lock because there is no other task which will
  2396. * update the flag.
  2397. */
  2398. btrfs_set_super_incompat_flags(disk_super, features);
  2399. features = btrfs_super_compat_ro_flags(disk_super) &
  2400. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2401. if (!sb_rdonly(sb) && features) {
  2402. btrfs_err(fs_info,
  2403. "cannot mount read-write because of unsupported optional features (%llx)",
  2404. features);
  2405. err = -EINVAL;
  2406. goto fail_alloc;
  2407. }
  2408. ret = btrfs_init_workqueues(fs_info, fs_devices);
  2409. if (ret) {
  2410. err = ret;
  2411. goto fail_sb_buffer;
  2412. }
  2413. sb->s_bdi->congested_fn = btrfs_congested_fn;
  2414. sb->s_bdi->congested_data = fs_info;
  2415. sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
  2416. sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
  2417. sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
  2418. sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
  2419. sb->s_blocksize = sectorsize;
  2420. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2421. memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE);
  2422. mutex_lock(&fs_info->chunk_mutex);
  2423. ret = btrfs_read_sys_array(fs_info);
  2424. mutex_unlock(&fs_info->chunk_mutex);
  2425. if (ret) {
  2426. btrfs_err(fs_info, "failed to read the system array: %d", ret);
  2427. goto fail_sb_buffer;
  2428. }
  2429. generation = btrfs_super_chunk_root_generation(disk_super);
  2430. level = btrfs_super_chunk_root_level(disk_super);
  2431. __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2432. chunk_root->node = read_tree_block(fs_info,
  2433. btrfs_super_chunk_root(disk_super),
  2434. generation, level, NULL);
  2435. if (IS_ERR(chunk_root->node) ||
  2436. !extent_buffer_uptodate(chunk_root->node)) {
  2437. btrfs_err(fs_info, "failed to read chunk root");
  2438. if (!IS_ERR(chunk_root->node))
  2439. free_extent_buffer(chunk_root->node);
  2440. chunk_root->node = NULL;
  2441. goto fail_tree_roots;
  2442. }
  2443. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2444. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2445. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2446. btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
  2447. ret = btrfs_read_chunk_tree(fs_info);
  2448. if (ret) {
  2449. btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
  2450. goto fail_tree_roots;
  2451. }
  2452. /*
  2453. * Keep the devid that is marked to be the target device for the
  2454. * device replace procedure
  2455. */
  2456. btrfs_free_extra_devids(fs_devices, 0);
  2457. if (!fs_devices->latest_bdev) {
  2458. btrfs_err(fs_info, "failed to read devices");
  2459. goto fail_tree_roots;
  2460. }
  2461. retry_root_backup:
  2462. generation = btrfs_super_generation(disk_super);
  2463. level = btrfs_super_root_level(disk_super);
  2464. tree_root->node = read_tree_block(fs_info,
  2465. btrfs_super_root(disk_super),
  2466. generation, level, NULL);
  2467. if (IS_ERR(tree_root->node) ||
  2468. !extent_buffer_uptodate(tree_root->node)) {
  2469. btrfs_warn(fs_info, "failed to read tree root");
  2470. if (!IS_ERR(tree_root->node))
  2471. free_extent_buffer(tree_root->node);
  2472. tree_root->node = NULL;
  2473. goto recovery_tree_root;
  2474. }
  2475. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2476. tree_root->commit_root = btrfs_root_node(tree_root);
  2477. btrfs_set_root_refs(&tree_root->root_item, 1);
  2478. mutex_lock(&tree_root->objectid_mutex);
  2479. ret = btrfs_find_highest_objectid(tree_root,
  2480. &tree_root->highest_objectid);
  2481. if (ret) {
  2482. mutex_unlock(&tree_root->objectid_mutex);
  2483. goto recovery_tree_root;
  2484. }
  2485. ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
  2486. mutex_unlock(&tree_root->objectid_mutex);
  2487. ret = btrfs_read_roots(fs_info);
  2488. if (ret)
  2489. goto recovery_tree_root;
  2490. fs_info->generation = generation;
  2491. fs_info->last_trans_committed = generation;
  2492. ret = btrfs_recover_balance(fs_info);
  2493. if (ret) {
  2494. btrfs_err(fs_info, "failed to recover balance: %d", ret);
  2495. goto fail_block_groups;
  2496. }
  2497. ret = btrfs_init_dev_stats(fs_info);
  2498. if (ret) {
  2499. btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
  2500. goto fail_block_groups;
  2501. }
  2502. ret = btrfs_init_dev_replace(fs_info);
  2503. if (ret) {
  2504. btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
  2505. goto fail_block_groups;
  2506. }
  2507. btrfs_free_extra_devids(fs_devices, 1);
  2508. ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
  2509. if (ret) {
  2510. btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
  2511. ret);
  2512. goto fail_block_groups;
  2513. }
  2514. ret = btrfs_sysfs_add_device(fs_devices);
  2515. if (ret) {
  2516. btrfs_err(fs_info, "failed to init sysfs device interface: %d",
  2517. ret);
  2518. goto fail_fsdev_sysfs;
  2519. }
  2520. ret = btrfs_sysfs_add_mounted(fs_info);
  2521. if (ret) {
  2522. btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
  2523. goto fail_fsdev_sysfs;
  2524. }
  2525. ret = btrfs_init_space_info(fs_info);
  2526. if (ret) {
  2527. btrfs_err(fs_info, "failed to initialize space info: %d", ret);
  2528. goto fail_sysfs;
  2529. }
  2530. ret = btrfs_read_block_groups(fs_info);
  2531. if (ret) {
  2532. btrfs_err(fs_info, "failed to read block groups: %d", ret);
  2533. goto fail_sysfs;
  2534. }
  2535. if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
  2536. btrfs_warn(fs_info,
  2537. "writeable mount is not allowed due to too many missing devices");
  2538. goto fail_sysfs;
  2539. }
  2540. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2541. "btrfs-cleaner");
  2542. if (IS_ERR(fs_info->cleaner_kthread))
  2543. goto fail_sysfs;
  2544. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2545. tree_root,
  2546. "btrfs-transaction");
  2547. if (IS_ERR(fs_info->transaction_kthread))
  2548. goto fail_cleaner;
  2549. if (!btrfs_test_opt(fs_info, NOSSD) &&
  2550. !fs_info->fs_devices->rotating) {
  2551. btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
  2552. }
  2553. /*
  2554. * Mount does not set all options immediately, we can do it now and do
  2555. * not have to wait for transaction commit
  2556. */
  2557. btrfs_apply_pending_changes(fs_info);
  2558. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2559. if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
  2560. ret = btrfsic_mount(fs_info, fs_devices,
  2561. btrfs_test_opt(fs_info,
  2562. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2563. 1 : 0,
  2564. fs_info->check_integrity_print_mask);
  2565. if (ret)
  2566. btrfs_warn(fs_info,
  2567. "failed to initialize integrity check module: %d",
  2568. ret);
  2569. }
  2570. #endif
  2571. ret = btrfs_read_qgroup_config(fs_info);
  2572. if (ret)
  2573. goto fail_trans_kthread;
  2574. if (btrfs_build_ref_tree(fs_info))
  2575. btrfs_err(fs_info, "couldn't build ref tree");
  2576. /* do not make disk changes in broken FS or nologreplay is given */
  2577. if (btrfs_super_log_root(disk_super) != 0 &&
  2578. !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
  2579. ret = btrfs_replay_log(fs_info, fs_devices);
  2580. if (ret) {
  2581. err = ret;
  2582. goto fail_qgroup;
  2583. }
  2584. }
  2585. ret = btrfs_find_orphan_roots(fs_info);
  2586. if (ret)
  2587. goto fail_qgroup;
  2588. if (!sb_rdonly(sb)) {
  2589. ret = btrfs_cleanup_fs_roots(fs_info);
  2590. if (ret)
  2591. goto fail_qgroup;
  2592. mutex_lock(&fs_info->cleaner_mutex);
  2593. ret = btrfs_recover_relocation(tree_root);
  2594. mutex_unlock(&fs_info->cleaner_mutex);
  2595. if (ret < 0) {
  2596. btrfs_warn(fs_info, "failed to recover relocation: %d",
  2597. ret);
  2598. err = -EINVAL;
  2599. goto fail_qgroup;
  2600. }
  2601. }
  2602. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2603. location.type = BTRFS_ROOT_ITEM_KEY;
  2604. location.offset = 0;
  2605. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2606. if (IS_ERR(fs_info->fs_root)) {
  2607. err = PTR_ERR(fs_info->fs_root);
  2608. btrfs_warn(fs_info, "failed to read fs tree: %d", err);
  2609. goto fail_qgroup;
  2610. }
  2611. if (sb_rdonly(sb))
  2612. return 0;
  2613. if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
  2614. btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2615. clear_free_space_tree = 1;
  2616. } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
  2617. !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
  2618. btrfs_warn(fs_info, "free space tree is invalid");
  2619. clear_free_space_tree = 1;
  2620. }
  2621. if (clear_free_space_tree) {
  2622. btrfs_info(fs_info, "clearing free space tree");
  2623. ret = btrfs_clear_free_space_tree(fs_info);
  2624. if (ret) {
  2625. btrfs_warn(fs_info,
  2626. "failed to clear free space tree: %d", ret);
  2627. close_ctree(fs_info);
  2628. return ret;
  2629. }
  2630. }
  2631. if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
  2632. !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2633. btrfs_info(fs_info, "creating free space tree");
  2634. ret = btrfs_create_free_space_tree(fs_info);
  2635. if (ret) {
  2636. btrfs_warn(fs_info,
  2637. "failed to create free space tree: %d", ret);
  2638. close_ctree(fs_info);
  2639. return ret;
  2640. }
  2641. }
  2642. down_read(&fs_info->cleanup_work_sem);
  2643. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2644. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2645. up_read(&fs_info->cleanup_work_sem);
  2646. close_ctree(fs_info);
  2647. return ret;
  2648. }
  2649. up_read(&fs_info->cleanup_work_sem);
  2650. ret = btrfs_resume_balance_async(fs_info);
  2651. if (ret) {
  2652. btrfs_warn(fs_info, "failed to resume balance: %d", ret);
  2653. close_ctree(fs_info);
  2654. return ret;
  2655. }
  2656. ret = btrfs_resume_dev_replace_async(fs_info);
  2657. if (ret) {
  2658. btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
  2659. close_ctree(fs_info);
  2660. return ret;
  2661. }
  2662. btrfs_qgroup_rescan_resume(fs_info);
  2663. if (!fs_info->uuid_root) {
  2664. btrfs_info(fs_info, "creating UUID tree");
  2665. ret = btrfs_create_uuid_tree(fs_info);
  2666. if (ret) {
  2667. btrfs_warn(fs_info,
  2668. "failed to create the UUID tree: %d", ret);
  2669. close_ctree(fs_info);
  2670. return ret;
  2671. }
  2672. } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
  2673. fs_info->generation !=
  2674. btrfs_super_uuid_tree_generation(disk_super)) {
  2675. btrfs_info(fs_info, "checking UUID tree");
  2676. ret = btrfs_check_uuid_tree(fs_info);
  2677. if (ret) {
  2678. btrfs_warn(fs_info,
  2679. "failed to check the UUID tree: %d", ret);
  2680. close_ctree(fs_info);
  2681. return ret;
  2682. }
  2683. } else {
  2684. set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
  2685. }
  2686. set_bit(BTRFS_FS_OPEN, &fs_info->flags);
  2687. /*
  2688. * backuproot only affect mount behavior, and if open_ctree succeeded,
  2689. * no need to keep the flag
  2690. */
  2691. btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
  2692. return 0;
  2693. fail_qgroup:
  2694. btrfs_free_qgroup_config(fs_info);
  2695. fail_trans_kthread:
  2696. kthread_stop(fs_info->transaction_kthread);
  2697. btrfs_cleanup_transaction(fs_info);
  2698. btrfs_free_fs_roots(fs_info);
  2699. fail_cleaner:
  2700. kthread_stop(fs_info->cleaner_kthread);
  2701. /*
  2702. * make sure we're done with the btree inode before we stop our
  2703. * kthreads
  2704. */
  2705. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2706. fail_sysfs:
  2707. btrfs_sysfs_remove_mounted(fs_info);
  2708. fail_fsdev_sysfs:
  2709. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  2710. fail_block_groups:
  2711. btrfs_put_block_group_cache(fs_info);
  2712. fail_tree_roots:
  2713. free_root_pointers(fs_info, 1);
  2714. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2715. fail_sb_buffer:
  2716. btrfs_stop_all_workers(fs_info);
  2717. btrfs_free_block_groups(fs_info);
  2718. fail_alloc:
  2719. fail_iput:
  2720. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2721. iput(fs_info->btree_inode);
  2722. fail_bio_counter:
  2723. percpu_counter_destroy(&fs_info->bio_counter);
  2724. fail_delalloc_bytes:
  2725. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2726. fail_dirty_metadata_bytes:
  2727. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2728. fail_srcu:
  2729. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2730. fail:
  2731. btrfs_free_stripe_hash_table(fs_info);
  2732. btrfs_close_devices(fs_info->fs_devices);
  2733. return err;
  2734. recovery_tree_root:
  2735. if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
  2736. goto fail_tree_roots;
  2737. free_root_pointers(fs_info, 0);
  2738. /* don't use the log in recovery mode, it won't be valid */
  2739. btrfs_set_super_log_root(disk_super, 0);
  2740. /* we can't trust the free space cache either */
  2741. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2742. ret = next_root_backup(fs_info, fs_info->super_copy,
  2743. &num_backups_tried, &backup_index);
  2744. if (ret == -1)
  2745. goto fail_block_groups;
  2746. goto retry_root_backup;
  2747. }
  2748. ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
  2749. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2750. {
  2751. if (uptodate) {
  2752. set_buffer_uptodate(bh);
  2753. } else {
  2754. struct btrfs_device *device = (struct btrfs_device *)
  2755. bh->b_private;
  2756. btrfs_warn_rl_in_rcu(device->fs_info,
  2757. "lost page write due to IO error on %s",
  2758. rcu_str_deref(device->name));
  2759. /* note, we don't set_buffer_write_io_error because we have
  2760. * our own ways of dealing with the IO errors
  2761. */
  2762. clear_buffer_uptodate(bh);
  2763. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2764. }
  2765. unlock_buffer(bh);
  2766. put_bh(bh);
  2767. }
  2768. int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
  2769. struct buffer_head **bh_ret)
  2770. {
  2771. struct buffer_head *bh;
  2772. struct btrfs_super_block *super;
  2773. u64 bytenr;
  2774. bytenr = btrfs_sb_offset(copy_num);
  2775. if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
  2776. return -EINVAL;
  2777. bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
  2778. /*
  2779. * If we fail to read from the underlying devices, as of now
  2780. * the best option we have is to mark it EIO.
  2781. */
  2782. if (!bh)
  2783. return -EIO;
  2784. super = (struct btrfs_super_block *)bh->b_data;
  2785. if (btrfs_super_bytenr(super) != bytenr ||
  2786. btrfs_super_magic(super) != BTRFS_MAGIC) {
  2787. brelse(bh);
  2788. return -EINVAL;
  2789. }
  2790. *bh_ret = bh;
  2791. return 0;
  2792. }
  2793. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2794. {
  2795. struct buffer_head *bh;
  2796. struct buffer_head *latest = NULL;
  2797. struct btrfs_super_block *super;
  2798. int i;
  2799. u64 transid = 0;
  2800. int ret = -EINVAL;
  2801. /* we would like to check all the supers, but that would make
  2802. * a btrfs mount succeed after a mkfs from a different FS.
  2803. * So, we need to add a special mount option to scan for
  2804. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2805. */
  2806. for (i = 0; i < 1; i++) {
  2807. ret = btrfs_read_dev_one_super(bdev, i, &bh);
  2808. if (ret)
  2809. continue;
  2810. super = (struct btrfs_super_block *)bh->b_data;
  2811. if (!latest || btrfs_super_generation(super) > transid) {
  2812. brelse(latest);
  2813. latest = bh;
  2814. transid = btrfs_super_generation(super);
  2815. } else {
  2816. brelse(bh);
  2817. }
  2818. }
  2819. if (!latest)
  2820. return ERR_PTR(ret);
  2821. return latest;
  2822. }
  2823. /*
  2824. * Write superblock @sb to the @device. Do not wait for completion, all the
  2825. * buffer heads we write are pinned.
  2826. *
  2827. * Write @max_mirrors copies of the superblock, where 0 means default that fit
  2828. * the expected device size at commit time. Note that max_mirrors must be
  2829. * same for write and wait phases.
  2830. *
  2831. * Return number of errors when buffer head is not found or submission fails.
  2832. */
  2833. static int write_dev_supers(struct btrfs_device *device,
  2834. struct btrfs_super_block *sb, int max_mirrors)
  2835. {
  2836. struct buffer_head *bh;
  2837. int i;
  2838. int ret;
  2839. int errors = 0;
  2840. u32 crc;
  2841. u64 bytenr;
  2842. int op_flags;
  2843. if (max_mirrors == 0)
  2844. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2845. for (i = 0; i < max_mirrors; i++) {
  2846. bytenr = btrfs_sb_offset(i);
  2847. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2848. device->commit_total_bytes)
  2849. break;
  2850. btrfs_set_super_bytenr(sb, bytenr);
  2851. crc = ~(u32)0;
  2852. crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
  2853. BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  2854. btrfs_csum_final(crc, sb->csum);
  2855. /* One reference for us, and we leave it for the caller */
  2856. bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
  2857. BTRFS_SUPER_INFO_SIZE);
  2858. if (!bh) {
  2859. btrfs_err(device->fs_info,
  2860. "couldn't get super buffer head for bytenr %llu",
  2861. bytenr);
  2862. errors++;
  2863. continue;
  2864. }
  2865. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2866. /* one reference for submit_bh */
  2867. get_bh(bh);
  2868. set_buffer_uptodate(bh);
  2869. lock_buffer(bh);
  2870. bh->b_end_io = btrfs_end_buffer_write_sync;
  2871. bh->b_private = device;
  2872. /*
  2873. * we fua the first super. The others we allow
  2874. * to go down lazy.
  2875. */
  2876. op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
  2877. if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
  2878. op_flags |= REQ_FUA;
  2879. ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
  2880. if (ret)
  2881. errors++;
  2882. }
  2883. return errors < i ? 0 : -1;
  2884. }
  2885. /*
  2886. * Wait for write completion of superblocks done by write_dev_supers,
  2887. * @max_mirrors same for write and wait phases.
  2888. *
  2889. * Return number of errors when buffer head is not found or not marked up to
  2890. * date.
  2891. */
  2892. static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
  2893. {
  2894. struct buffer_head *bh;
  2895. int i;
  2896. int errors = 0;
  2897. bool primary_failed = false;
  2898. u64 bytenr;
  2899. if (max_mirrors == 0)
  2900. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2901. for (i = 0; i < max_mirrors; i++) {
  2902. bytenr = btrfs_sb_offset(i);
  2903. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2904. device->commit_total_bytes)
  2905. break;
  2906. bh = __find_get_block(device->bdev,
  2907. bytenr / BTRFS_BDEV_BLOCKSIZE,
  2908. BTRFS_SUPER_INFO_SIZE);
  2909. if (!bh) {
  2910. errors++;
  2911. if (i == 0)
  2912. primary_failed = true;
  2913. continue;
  2914. }
  2915. wait_on_buffer(bh);
  2916. if (!buffer_uptodate(bh)) {
  2917. errors++;
  2918. if (i == 0)
  2919. primary_failed = true;
  2920. }
  2921. /* drop our reference */
  2922. brelse(bh);
  2923. /* drop the reference from the writing run */
  2924. brelse(bh);
  2925. }
  2926. /* log error, force error return */
  2927. if (primary_failed) {
  2928. btrfs_err(device->fs_info, "error writing primary super block to device %llu",
  2929. device->devid);
  2930. return -1;
  2931. }
  2932. return errors < i ? 0 : -1;
  2933. }
  2934. /*
  2935. * endio for the write_dev_flush, this will wake anyone waiting
  2936. * for the barrier when it is done
  2937. */
  2938. static void btrfs_end_empty_barrier(struct bio *bio)
  2939. {
  2940. complete(bio->bi_private);
  2941. }
  2942. /*
  2943. * Submit a flush request to the device if it supports it. Error handling is
  2944. * done in the waiting counterpart.
  2945. */
  2946. static void write_dev_flush(struct btrfs_device *device)
  2947. {
  2948. struct request_queue *q = bdev_get_queue(device->bdev);
  2949. struct bio *bio = device->flush_bio;
  2950. if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
  2951. return;
  2952. bio_reset(bio);
  2953. bio->bi_end_io = btrfs_end_empty_barrier;
  2954. bio_set_dev(bio, device->bdev);
  2955. bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
  2956. init_completion(&device->flush_wait);
  2957. bio->bi_private = &device->flush_wait;
  2958. btrfsic_submit_bio(bio);
  2959. set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
  2960. }
  2961. /*
  2962. * If the flush bio has been submitted by write_dev_flush, wait for it.
  2963. */
  2964. static blk_status_t wait_dev_flush(struct btrfs_device *device)
  2965. {
  2966. struct bio *bio = device->flush_bio;
  2967. if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
  2968. return BLK_STS_OK;
  2969. clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
  2970. wait_for_completion_io(&device->flush_wait);
  2971. return bio->bi_status;
  2972. }
  2973. static int check_barrier_error(struct btrfs_fs_info *fs_info)
  2974. {
  2975. if (!btrfs_check_rw_degradable(fs_info, NULL))
  2976. return -EIO;
  2977. return 0;
  2978. }
  2979. /*
  2980. * send an empty flush down to each device in parallel,
  2981. * then wait for them
  2982. */
  2983. static int barrier_all_devices(struct btrfs_fs_info *info)
  2984. {
  2985. struct list_head *head;
  2986. struct btrfs_device *dev;
  2987. int errors_wait = 0;
  2988. blk_status_t ret;
  2989. lockdep_assert_held(&info->fs_devices->device_list_mutex);
  2990. /* send down all the barriers */
  2991. head = &info->fs_devices->devices;
  2992. list_for_each_entry(dev, head, dev_list) {
  2993. if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
  2994. continue;
  2995. if (!dev->bdev)
  2996. continue;
  2997. if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
  2998. !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
  2999. continue;
  3000. write_dev_flush(dev);
  3001. dev->last_flush_error = BLK_STS_OK;
  3002. }
  3003. /* wait for all the barriers */
  3004. list_for_each_entry(dev, head, dev_list) {
  3005. if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
  3006. continue;
  3007. if (!dev->bdev) {
  3008. errors_wait++;
  3009. continue;
  3010. }
  3011. if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
  3012. !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
  3013. continue;
  3014. ret = wait_dev_flush(dev);
  3015. if (ret) {
  3016. dev->last_flush_error = ret;
  3017. btrfs_dev_stat_inc_and_print(dev,
  3018. BTRFS_DEV_STAT_FLUSH_ERRS);
  3019. errors_wait++;
  3020. }
  3021. }
  3022. if (errors_wait) {
  3023. /*
  3024. * At some point we need the status of all disks
  3025. * to arrive at the volume status. So error checking
  3026. * is being pushed to a separate loop.
  3027. */
  3028. return check_barrier_error(info);
  3029. }
  3030. return 0;
  3031. }
  3032. int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
  3033. {
  3034. int raid_type;
  3035. int min_tolerated = INT_MAX;
  3036. if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
  3037. (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
  3038. min_tolerated = min(min_tolerated,
  3039. btrfs_raid_array[BTRFS_RAID_SINGLE].
  3040. tolerated_failures);
  3041. for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
  3042. if (raid_type == BTRFS_RAID_SINGLE)
  3043. continue;
  3044. if (!(flags & btrfs_raid_group[raid_type]))
  3045. continue;
  3046. min_tolerated = min(min_tolerated,
  3047. btrfs_raid_array[raid_type].
  3048. tolerated_failures);
  3049. }
  3050. if (min_tolerated == INT_MAX) {
  3051. pr_warn("BTRFS: unknown raid flag: %llu", flags);
  3052. min_tolerated = 0;
  3053. }
  3054. return min_tolerated;
  3055. }
  3056. int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
  3057. {
  3058. struct list_head *head;
  3059. struct btrfs_device *dev;
  3060. struct btrfs_super_block *sb;
  3061. struct btrfs_dev_item *dev_item;
  3062. int ret;
  3063. int do_barriers;
  3064. int max_errors;
  3065. int total_errors = 0;
  3066. u64 flags;
  3067. do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
  3068. /*
  3069. * max_mirrors == 0 indicates we're from commit_transaction,
  3070. * not from fsync where the tree roots in fs_info have not
  3071. * been consistent on disk.
  3072. */
  3073. if (max_mirrors == 0)
  3074. backup_super_roots(fs_info);
  3075. sb = fs_info->super_for_commit;
  3076. dev_item = &sb->dev_item;
  3077. mutex_lock(&fs_info->fs_devices->device_list_mutex);
  3078. head = &fs_info->fs_devices->devices;
  3079. max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
  3080. if (do_barriers) {
  3081. ret = barrier_all_devices(fs_info);
  3082. if (ret) {
  3083. mutex_unlock(
  3084. &fs_info->fs_devices->device_list_mutex);
  3085. btrfs_handle_fs_error(fs_info, ret,
  3086. "errors while submitting device barriers.");
  3087. return ret;
  3088. }
  3089. }
  3090. list_for_each_entry(dev, head, dev_list) {
  3091. if (!dev->bdev) {
  3092. total_errors++;
  3093. continue;
  3094. }
  3095. if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
  3096. !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
  3097. continue;
  3098. btrfs_set_stack_device_generation(dev_item, 0);
  3099. btrfs_set_stack_device_type(dev_item, dev->type);
  3100. btrfs_set_stack_device_id(dev_item, dev->devid);
  3101. btrfs_set_stack_device_total_bytes(dev_item,
  3102. dev->commit_total_bytes);
  3103. btrfs_set_stack_device_bytes_used(dev_item,
  3104. dev->commit_bytes_used);
  3105. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  3106. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  3107. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  3108. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  3109. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE);
  3110. flags = btrfs_super_flags(sb);
  3111. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  3112. ret = write_dev_supers(dev, sb, max_mirrors);
  3113. if (ret)
  3114. total_errors++;
  3115. }
  3116. if (total_errors > max_errors) {
  3117. btrfs_err(fs_info, "%d errors while writing supers",
  3118. total_errors);
  3119. mutex_unlock(&fs_info->fs_devices->device_list_mutex);
  3120. /* FUA is masked off if unsupported and can't be the reason */
  3121. btrfs_handle_fs_error(fs_info, -EIO,
  3122. "%d errors while writing supers",
  3123. total_errors);
  3124. return -EIO;
  3125. }
  3126. total_errors = 0;
  3127. list_for_each_entry(dev, head, dev_list) {
  3128. if (!dev->bdev)
  3129. continue;
  3130. if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
  3131. !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
  3132. continue;
  3133. ret = wait_dev_supers(dev, max_mirrors);
  3134. if (ret)
  3135. total_errors++;
  3136. }
  3137. mutex_unlock(&fs_info->fs_devices->device_list_mutex);
  3138. if (total_errors > max_errors) {
  3139. btrfs_handle_fs_error(fs_info, -EIO,
  3140. "%d errors while writing supers",
  3141. total_errors);
  3142. return -EIO;
  3143. }
  3144. return 0;
  3145. }
  3146. /* Drop a fs root from the radix tree and free it. */
  3147. void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
  3148. struct btrfs_root *root)
  3149. {
  3150. spin_lock(&fs_info->fs_roots_radix_lock);
  3151. radix_tree_delete(&fs_info->fs_roots_radix,
  3152. (unsigned long)root->root_key.objectid);
  3153. spin_unlock(&fs_info->fs_roots_radix_lock);
  3154. if (btrfs_root_refs(&root->root_item) == 0)
  3155. synchronize_srcu(&fs_info->subvol_srcu);
  3156. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  3157. btrfs_free_log(NULL, root);
  3158. if (root->reloc_root) {
  3159. free_extent_buffer(root->reloc_root->node);
  3160. free_extent_buffer(root->reloc_root->commit_root);
  3161. btrfs_put_fs_root(root->reloc_root);
  3162. root->reloc_root = NULL;
  3163. }
  3164. }
  3165. if (root->free_ino_pinned)
  3166. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  3167. if (root->free_ino_ctl)
  3168. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  3169. free_fs_root(root);
  3170. }
  3171. static void free_fs_root(struct btrfs_root *root)
  3172. {
  3173. iput(root->ino_cache_inode);
  3174. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  3175. btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
  3176. root->orphan_block_rsv = NULL;
  3177. if (root->anon_dev)
  3178. free_anon_bdev(root->anon_dev);
  3179. if (root->subv_writers)
  3180. btrfs_free_subvolume_writers(root->subv_writers);
  3181. free_extent_buffer(root->node);
  3182. free_extent_buffer(root->commit_root);
  3183. kfree(root->free_ino_ctl);
  3184. kfree(root->free_ino_pinned);
  3185. kfree(root->name);
  3186. btrfs_put_fs_root(root);
  3187. }
  3188. void btrfs_free_fs_root(struct btrfs_root *root)
  3189. {
  3190. free_fs_root(root);
  3191. }
  3192. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  3193. {
  3194. u64 root_objectid = 0;
  3195. struct btrfs_root *gang[8];
  3196. int i = 0;
  3197. int err = 0;
  3198. unsigned int ret = 0;
  3199. int index;
  3200. while (1) {
  3201. index = srcu_read_lock(&fs_info->subvol_srcu);
  3202. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  3203. (void **)gang, root_objectid,
  3204. ARRAY_SIZE(gang));
  3205. if (!ret) {
  3206. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3207. break;
  3208. }
  3209. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  3210. for (i = 0; i < ret; i++) {
  3211. /* Avoid to grab roots in dead_roots */
  3212. if (btrfs_root_refs(&gang[i]->root_item) == 0) {
  3213. gang[i] = NULL;
  3214. continue;
  3215. }
  3216. /* grab all the search result for later use */
  3217. gang[i] = btrfs_grab_fs_root(gang[i]);
  3218. }
  3219. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3220. for (i = 0; i < ret; i++) {
  3221. if (!gang[i])
  3222. continue;
  3223. root_objectid = gang[i]->root_key.objectid;
  3224. err = btrfs_orphan_cleanup(gang[i]);
  3225. if (err)
  3226. break;
  3227. btrfs_put_fs_root(gang[i]);
  3228. }
  3229. root_objectid++;
  3230. }
  3231. /* release the uncleaned roots due to error */
  3232. for (; i < ret; i++) {
  3233. if (gang[i])
  3234. btrfs_put_fs_root(gang[i]);
  3235. }
  3236. return err;
  3237. }
  3238. int btrfs_commit_super(struct btrfs_fs_info *fs_info)
  3239. {
  3240. struct btrfs_root *root = fs_info->tree_root;
  3241. struct btrfs_trans_handle *trans;
  3242. mutex_lock(&fs_info->cleaner_mutex);
  3243. btrfs_run_delayed_iputs(fs_info);
  3244. mutex_unlock(&fs_info->cleaner_mutex);
  3245. wake_up_process(fs_info->cleaner_kthread);
  3246. /* wait until ongoing cleanup work done */
  3247. down_write(&fs_info->cleanup_work_sem);
  3248. up_write(&fs_info->cleanup_work_sem);
  3249. trans = btrfs_join_transaction(root);
  3250. if (IS_ERR(trans))
  3251. return PTR_ERR(trans);
  3252. return btrfs_commit_transaction(trans);
  3253. }
  3254. void close_ctree(struct btrfs_fs_info *fs_info)
  3255. {
  3256. struct btrfs_root *root = fs_info->tree_root;
  3257. int ret;
  3258. set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
  3259. /* wait for the qgroup rescan worker to stop */
  3260. btrfs_qgroup_wait_for_completion(fs_info, false);
  3261. /* wait for the uuid_scan task to finish */
  3262. down(&fs_info->uuid_tree_rescan_sem);
  3263. /* avoid complains from lockdep et al., set sem back to initial state */
  3264. up(&fs_info->uuid_tree_rescan_sem);
  3265. /* pause restriper - we want to resume on mount */
  3266. btrfs_pause_balance(fs_info);
  3267. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3268. btrfs_scrub_cancel(fs_info);
  3269. /* wait for any defraggers to finish */
  3270. wait_event(fs_info->transaction_wait,
  3271. (atomic_read(&fs_info->defrag_running) == 0));
  3272. /* clear out the rbtree of defraggable inodes */
  3273. btrfs_cleanup_defrag_inodes(fs_info);
  3274. cancel_work_sync(&fs_info->async_reclaim_work);
  3275. if (!sb_rdonly(fs_info->sb)) {
  3276. /*
  3277. * If the cleaner thread is stopped and there are
  3278. * block groups queued for removal, the deletion will be
  3279. * skipped when we quit the cleaner thread.
  3280. */
  3281. btrfs_delete_unused_bgs(fs_info);
  3282. ret = btrfs_commit_super(fs_info);
  3283. if (ret)
  3284. btrfs_err(fs_info, "commit super ret %d", ret);
  3285. }
  3286. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
  3287. test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
  3288. btrfs_error_commit_super(fs_info);
  3289. kthread_stop(fs_info->transaction_kthread);
  3290. kthread_stop(fs_info->cleaner_kthread);
  3291. set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
  3292. btrfs_free_qgroup_config(fs_info);
  3293. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3294. btrfs_info(fs_info, "at unmount delalloc count %lld",
  3295. percpu_counter_sum(&fs_info->delalloc_bytes));
  3296. }
  3297. btrfs_sysfs_remove_mounted(fs_info);
  3298. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  3299. btrfs_free_fs_roots(fs_info);
  3300. btrfs_put_block_group_cache(fs_info);
  3301. /*
  3302. * we must make sure there is not any read request to
  3303. * submit after we stopping all workers.
  3304. */
  3305. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  3306. btrfs_stop_all_workers(fs_info);
  3307. btrfs_free_block_groups(fs_info);
  3308. clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
  3309. free_root_pointers(fs_info, 1);
  3310. iput(fs_info->btree_inode);
  3311. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3312. if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
  3313. btrfsic_unmount(fs_info->fs_devices);
  3314. #endif
  3315. btrfs_close_devices(fs_info->fs_devices);
  3316. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3317. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3318. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3319. percpu_counter_destroy(&fs_info->bio_counter);
  3320. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3321. btrfs_free_stripe_hash_table(fs_info);
  3322. btrfs_free_ref_cache(fs_info);
  3323. __btrfs_free_block_rsv(root->orphan_block_rsv);
  3324. root->orphan_block_rsv = NULL;
  3325. while (!list_empty(&fs_info->pinned_chunks)) {
  3326. struct extent_map *em;
  3327. em = list_first_entry(&fs_info->pinned_chunks,
  3328. struct extent_map, list);
  3329. list_del_init(&em->list);
  3330. free_extent_map(em);
  3331. }
  3332. }
  3333. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3334. int atomic)
  3335. {
  3336. int ret;
  3337. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3338. ret = extent_buffer_uptodate(buf);
  3339. if (!ret)
  3340. return ret;
  3341. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3342. parent_transid, atomic);
  3343. if (ret == -EAGAIN)
  3344. return ret;
  3345. return !ret;
  3346. }
  3347. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3348. {
  3349. struct btrfs_fs_info *fs_info;
  3350. struct btrfs_root *root;
  3351. u64 transid = btrfs_header_generation(buf);
  3352. int was_dirty;
  3353. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  3354. /*
  3355. * This is a fast path so only do this check if we have sanity tests
  3356. * enabled. Normal people shouldn't be marking dummy buffers as dirty
  3357. * outside of the sanity tests.
  3358. */
  3359. if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
  3360. return;
  3361. #endif
  3362. root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3363. fs_info = root->fs_info;
  3364. btrfs_assert_tree_locked(buf);
  3365. if (transid != fs_info->generation)
  3366. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
  3367. buf->start, transid, fs_info->generation);
  3368. was_dirty = set_extent_buffer_dirty(buf);
  3369. if (!was_dirty)
  3370. percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
  3371. buf->len,
  3372. fs_info->dirty_metadata_batch);
  3373. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3374. /*
  3375. * Since btrfs_mark_buffer_dirty() can be called with item pointer set
  3376. * but item data not updated.
  3377. * So here we should only check item pointers, not item data.
  3378. */
  3379. if (btrfs_header_level(buf) == 0 &&
  3380. btrfs_check_leaf_relaxed(fs_info, buf)) {
  3381. btrfs_print_leaf(buf);
  3382. ASSERT(0);
  3383. }
  3384. #endif
  3385. }
  3386. static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
  3387. int flush_delayed)
  3388. {
  3389. /*
  3390. * looks as though older kernels can get into trouble with
  3391. * this code, they end up stuck in balance_dirty_pages forever
  3392. */
  3393. int ret;
  3394. if (current->flags & PF_MEMALLOC)
  3395. return;
  3396. if (flush_delayed)
  3397. btrfs_balance_delayed_items(fs_info);
  3398. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  3399. BTRFS_DIRTY_METADATA_THRESH);
  3400. if (ret > 0) {
  3401. balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
  3402. }
  3403. }
  3404. void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
  3405. {
  3406. __btrfs_btree_balance_dirty(fs_info, 1);
  3407. }
  3408. void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
  3409. {
  3410. __btrfs_btree_balance_dirty(fs_info, 0);
  3411. }
  3412. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
  3413. struct btrfs_key *first_key)
  3414. {
  3415. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3416. struct btrfs_fs_info *fs_info = root->fs_info;
  3417. return btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
  3418. level, first_key);
  3419. }
  3420. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info)
  3421. {
  3422. struct btrfs_super_block *sb = fs_info->super_copy;
  3423. u64 nodesize = btrfs_super_nodesize(sb);
  3424. u64 sectorsize = btrfs_super_sectorsize(sb);
  3425. int ret = 0;
  3426. if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
  3427. btrfs_err(fs_info, "no valid FS found");
  3428. ret = -EINVAL;
  3429. }
  3430. if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
  3431. btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
  3432. btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
  3433. ret = -EINVAL;
  3434. }
  3435. if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3436. btrfs_err(fs_info, "tree_root level too big: %d >= %d",
  3437. btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
  3438. ret = -EINVAL;
  3439. }
  3440. if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3441. btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
  3442. btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
  3443. ret = -EINVAL;
  3444. }
  3445. if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3446. btrfs_err(fs_info, "log_root level too big: %d >= %d",
  3447. btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
  3448. ret = -EINVAL;
  3449. }
  3450. /*
  3451. * Check sectorsize and nodesize first, other check will need it.
  3452. * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
  3453. */
  3454. if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
  3455. sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
  3456. btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
  3457. ret = -EINVAL;
  3458. }
  3459. /* Only PAGE SIZE is supported yet */
  3460. if (sectorsize != PAGE_SIZE) {
  3461. btrfs_err(fs_info,
  3462. "sectorsize %llu not supported yet, only support %lu",
  3463. sectorsize, PAGE_SIZE);
  3464. ret = -EINVAL;
  3465. }
  3466. if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
  3467. nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
  3468. btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
  3469. ret = -EINVAL;
  3470. }
  3471. if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
  3472. btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
  3473. le32_to_cpu(sb->__unused_leafsize), nodesize);
  3474. ret = -EINVAL;
  3475. }
  3476. /* Root alignment check */
  3477. if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
  3478. btrfs_warn(fs_info, "tree_root block unaligned: %llu",
  3479. btrfs_super_root(sb));
  3480. ret = -EINVAL;
  3481. }
  3482. if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
  3483. btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
  3484. btrfs_super_chunk_root(sb));
  3485. ret = -EINVAL;
  3486. }
  3487. if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
  3488. btrfs_warn(fs_info, "log_root block unaligned: %llu",
  3489. btrfs_super_log_root(sb));
  3490. ret = -EINVAL;
  3491. }
  3492. if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) {
  3493. btrfs_err(fs_info,
  3494. "dev_item UUID does not match fsid: %pU != %pU",
  3495. fs_info->fsid, sb->dev_item.fsid);
  3496. ret = -EINVAL;
  3497. }
  3498. /*
  3499. * Hint to catch really bogus numbers, bitflips or so, more exact checks are
  3500. * done later
  3501. */
  3502. if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
  3503. btrfs_err(fs_info, "bytes_used is too small %llu",
  3504. btrfs_super_bytes_used(sb));
  3505. ret = -EINVAL;
  3506. }
  3507. if (!is_power_of_2(btrfs_super_stripesize(sb))) {
  3508. btrfs_err(fs_info, "invalid stripesize %u",
  3509. btrfs_super_stripesize(sb));
  3510. ret = -EINVAL;
  3511. }
  3512. if (btrfs_super_num_devices(sb) > (1UL << 31))
  3513. btrfs_warn(fs_info, "suspicious number of devices: %llu",
  3514. btrfs_super_num_devices(sb));
  3515. if (btrfs_super_num_devices(sb) == 0) {
  3516. btrfs_err(fs_info, "number of devices is 0");
  3517. ret = -EINVAL;
  3518. }
  3519. if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
  3520. btrfs_err(fs_info, "super offset mismatch %llu != %u",
  3521. btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
  3522. ret = -EINVAL;
  3523. }
  3524. /*
  3525. * Obvious sys_chunk_array corruptions, it must hold at least one key
  3526. * and one chunk
  3527. */
  3528. if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
  3529. btrfs_err(fs_info, "system chunk array too big %u > %u",
  3530. btrfs_super_sys_array_size(sb),
  3531. BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
  3532. ret = -EINVAL;
  3533. }
  3534. if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
  3535. + sizeof(struct btrfs_chunk)) {
  3536. btrfs_err(fs_info, "system chunk array too small %u < %zu",
  3537. btrfs_super_sys_array_size(sb),
  3538. sizeof(struct btrfs_disk_key)
  3539. + sizeof(struct btrfs_chunk));
  3540. ret = -EINVAL;
  3541. }
  3542. /*
  3543. * The generation is a global counter, we'll trust it more than the others
  3544. * but it's still possible that it's the one that's wrong.
  3545. */
  3546. if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
  3547. btrfs_warn(fs_info,
  3548. "suspicious: generation < chunk_root_generation: %llu < %llu",
  3549. btrfs_super_generation(sb),
  3550. btrfs_super_chunk_root_generation(sb));
  3551. if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
  3552. && btrfs_super_cache_generation(sb) != (u64)-1)
  3553. btrfs_warn(fs_info,
  3554. "suspicious: generation < cache_generation: %llu < %llu",
  3555. btrfs_super_generation(sb),
  3556. btrfs_super_cache_generation(sb));
  3557. return ret;
  3558. }
  3559. static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
  3560. {
  3561. mutex_lock(&fs_info->cleaner_mutex);
  3562. btrfs_run_delayed_iputs(fs_info);
  3563. mutex_unlock(&fs_info->cleaner_mutex);
  3564. down_write(&fs_info->cleanup_work_sem);
  3565. up_write(&fs_info->cleanup_work_sem);
  3566. /* cleanup FS via transaction */
  3567. btrfs_cleanup_transaction(fs_info);
  3568. }
  3569. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3570. {
  3571. struct btrfs_ordered_extent *ordered;
  3572. spin_lock(&root->ordered_extent_lock);
  3573. /*
  3574. * This will just short circuit the ordered completion stuff which will
  3575. * make sure the ordered extent gets properly cleaned up.
  3576. */
  3577. list_for_each_entry(ordered, &root->ordered_extents,
  3578. root_extent_list)
  3579. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3580. spin_unlock(&root->ordered_extent_lock);
  3581. }
  3582. static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
  3583. {
  3584. struct btrfs_root *root;
  3585. struct list_head splice;
  3586. INIT_LIST_HEAD(&splice);
  3587. spin_lock(&fs_info->ordered_root_lock);
  3588. list_splice_init(&fs_info->ordered_roots, &splice);
  3589. while (!list_empty(&splice)) {
  3590. root = list_first_entry(&splice, struct btrfs_root,
  3591. ordered_root);
  3592. list_move_tail(&root->ordered_root,
  3593. &fs_info->ordered_roots);
  3594. spin_unlock(&fs_info->ordered_root_lock);
  3595. btrfs_destroy_ordered_extents(root);
  3596. cond_resched();
  3597. spin_lock(&fs_info->ordered_root_lock);
  3598. }
  3599. spin_unlock(&fs_info->ordered_root_lock);
  3600. }
  3601. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3602. struct btrfs_fs_info *fs_info)
  3603. {
  3604. struct rb_node *node;
  3605. struct btrfs_delayed_ref_root *delayed_refs;
  3606. struct btrfs_delayed_ref_node *ref;
  3607. int ret = 0;
  3608. delayed_refs = &trans->delayed_refs;
  3609. spin_lock(&delayed_refs->lock);
  3610. if (atomic_read(&delayed_refs->num_entries) == 0) {
  3611. spin_unlock(&delayed_refs->lock);
  3612. btrfs_info(fs_info, "delayed_refs has NO entry");
  3613. return ret;
  3614. }
  3615. while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
  3616. struct btrfs_delayed_ref_head *head;
  3617. struct rb_node *n;
  3618. bool pin_bytes = false;
  3619. head = rb_entry(node, struct btrfs_delayed_ref_head,
  3620. href_node);
  3621. if (!mutex_trylock(&head->mutex)) {
  3622. refcount_inc(&head->refs);
  3623. spin_unlock(&delayed_refs->lock);
  3624. mutex_lock(&head->mutex);
  3625. mutex_unlock(&head->mutex);
  3626. btrfs_put_delayed_ref_head(head);
  3627. spin_lock(&delayed_refs->lock);
  3628. continue;
  3629. }
  3630. spin_lock(&head->lock);
  3631. while ((n = rb_first(&head->ref_tree)) != NULL) {
  3632. ref = rb_entry(n, struct btrfs_delayed_ref_node,
  3633. ref_node);
  3634. ref->in_tree = 0;
  3635. rb_erase(&ref->ref_node, &head->ref_tree);
  3636. RB_CLEAR_NODE(&ref->ref_node);
  3637. if (!list_empty(&ref->add_list))
  3638. list_del(&ref->add_list);
  3639. atomic_dec(&delayed_refs->num_entries);
  3640. btrfs_put_delayed_ref(ref);
  3641. }
  3642. if (head->must_insert_reserved)
  3643. pin_bytes = true;
  3644. btrfs_free_delayed_extent_op(head->extent_op);
  3645. delayed_refs->num_heads--;
  3646. if (head->processing == 0)
  3647. delayed_refs->num_heads_ready--;
  3648. atomic_dec(&delayed_refs->num_entries);
  3649. rb_erase(&head->href_node, &delayed_refs->href_root);
  3650. RB_CLEAR_NODE(&head->href_node);
  3651. spin_unlock(&head->lock);
  3652. spin_unlock(&delayed_refs->lock);
  3653. mutex_unlock(&head->mutex);
  3654. if (pin_bytes)
  3655. btrfs_pin_extent(fs_info, head->bytenr,
  3656. head->num_bytes, 1);
  3657. btrfs_put_delayed_ref_head(head);
  3658. cond_resched();
  3659. spin_lock(&delayed_refs->lock);
  3660. }
  3661. spin_unlock(&delayed_refs->lock);
  3662. return ret;
  3663. }
  3664. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3665. {
  3666. struct btrfs_inode *btrfs_inode;
  3667. struct list_head splice;
  3668. INIT_LIST_HEAD(&splice);
  3669. spin_lock(&root->delalloc_lock);
  3670. list_splice_init(&root->delalloc_inodes, &splice);
  3671. while (!list_empty(&splice)) {
  3672. btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
  3673. delalloc_inodes);
  3674. list_del_init(&btrfs_inode->delalloc_inodes);
  3675. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3676. &btrfs_inode->runtime_flags);
  3677. spin_unlock(&root->delalloc_lock);
  3678. btrfs_invalidate_inodes(btrfs_inode->root);
  3679. spin_lock(&root->delalloc_lock);
  3680. }
  3681. spin_unlock(&root->delalloc_lock);
  3682. }
  3683. static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
  3684. {
  3685. struct btrfs_root *root;
  3686. struct list_head splice;
  3687. INIT_LIST_HEAD(&splice);
  3688. spin_lock(&fs_info->delalloc_root_lock);
  3689. list_splice_init(&fs_info->delalloc_roots, &splice);
  3690. while (!list_empty(&splice)) {
  3691. root = list_first_entry(&splice, struct btrfs_root,
  3692. delalloc_root);
  3693. list_del_init(&root->delalloc_root);
  3694. root = btrfs_grab_fs_root(root);
  3695. BUG_ON(!root);
  3696. spin_unlock(&fs_info->delalloc_root_lock);
  3697. btrfs_destroy_delalloc_inodes(root);
  3698. btrfs_put_fs_root(root);
  3699. spin_lock(&fs_info->delalloc_root_lock);
  3700. }
  3701. spin_unlock(&fs_info->delalloc_root_lock);
  3702. }
  3703. static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
  3704. struct extent_io_tree *dirty_pages,
  3705. int mark)
  3706. {
  3707. int ret;
  3708. struct extent_buffer *eb;
  3709. u64 start = 0;
  3710. u64 end;
  3711. while (1) {
  3712. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3713. mark, NULL);
  3714. if (ret)
  3715. break;
  3716. clear_extent_bits(dirty_pages, start, end, mark);
  3717. while (start <= end) {
  3718. eb = find_extent_buffer(fs_info, start);
  3719. start += fs_info->nodesize;
  3720. if (!eb)
  3721. continue;
  3722. wait_on_extent_buffer_writeback(eb);
  3723. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3724. &eb->bflags))
  3725. clear_extent_buffer_dirty(eb);
  3726. free_extent_buffer_stale(eb);
  3727. }
  3728. }
  3729. return ret;
  3730. }
  3731. static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
  3732. struct extent_io_tree *pinned_extents)
  3733. {
  3734. struct extent_io_tree *unpin;
  3735. u64 start;
  3736. u64 end;
  3737. int ret;
  3738. bool loop = true;
  3739. unpin = pinned_extents;
  3740. again:
  3741. while (1) {
  3742. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3743. EXTENT_DIRTY, NULL);
  3744. if (ret)
  3745. break;
  3746. clear_extent_dirty(unpin, start, end);
  3747. btrfs_error_unpin_extent_range(fs_info, start, end);
  3748. cond_resched();
  3749. }
  3750. if (loop) {
  3751. if (unpin == &fs_info->freed_extents[0])
  3752. unpin = &fs_info->freed_extents[1];
  3753. else
  3754. unpin = &fs_info->freed_extents[0];
  3755. loop = false;
  3756. goto again;
  3757. }
  3758. return 0;
  3759. }
  3760. static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
  3761. {
  3762. struct inode *inode;
  3763. inode = cache->io_ctl.inode;
  3764. if (inode) {
  3765. invalidate_inode_pages2(inode->i_mapping);
  3766. BTRFS_I(inode)->generation = 0;
  3767. cache->io_ctl.inode = NULL;
  3768. iput(inode);
  3769. }
  3770. btrfs_put_block_group(cache);
  3771. }
  3772. void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
  3773. struct btrfs_fs_info *fs_info)
  3774. {
  3775. struct btrfs_block_group_cache *cache;
  3776. spin_lock(&cur_trans->dirty_bgs_lock);
  3777. while (!list_empty(&cur_trans->dirty_bgs)) {
  3778. cache = list_first_entry(&cur_trans->dirty_bgs,
  3779. struct btrfs_block_group_cache,
  3780. dirty_list);
  3781. if (!list_empty(&cache->io_list)) {
  3782. spin_unlock(&cur_trans->dirty_bgs_lock);
  3783. list_del_init(&cache->io_list);
  3784. btrfs_cleanup_bg_io(cache);
  3785. spin_lock(&cur_trans->dirty_bgs_lock);
  3786. }
  3787. list_del_init(&cache->dirty_list);
  3788. spin_lock(&cache->lock);
  3789. cache->disk_cache_state = BTRFS_DC_ERROR;
  3790. spin_unlock(&cache->lock);
  3791. spin_unlock(&cur_trans->dirty_bgs_lock);
  3792. btrfs_put_block_group(cache);
  3793. spin_lock(&cur_trans->dirty_bgs_lock);
  3794. }
  3795. spin_unlock(&cur_trans->dirty_bgs_lock);
  3796. /*
  3797. * Refer to the definition of io_bgs member for details why it's safe
  3798. * to use it without any locking
  3799. */
  3800. while (!list_empty(&cur_trans->io_bgs)) {
  3801. cache = list_first_entry(&cur_trans->io_bgs,
  3802. struct btrfs_block_group_cache,
  3803. io_list);
  3804. list_del_init(&cache->io_list);
  3805. spin_lock(&cache->lock);
  3806. cache->disk_cache_state = BTRFS_DC_ERROR;
  3807. spin_unlock(&cache->lock);
  3808. btrfs_cleanup_bg_io(cache);
  3809. }
  3810. }
  3811. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3812. struct btrfs_fs_info *fs_info)
  3813. {
  3814. btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
  3815. ASSERT(list_empty(&cur_trans->dirty_bgs));
  3816. ASSERT(list_empty(&cur_trans->io_bgs));
  3817. btrfs_destroy_delayed_refs(cur_trans, fs_info);
  3818. cur_trans->state = TRANS_STATE_COMMIT_START;
  3819. wake_up(&fs_info->transaction_blocked_wait);
  3820. cur_trans->state = TRANS_STATE_UNBLOCKED;
  3821. wake_up(&fs_info->transaction_wait);
  3822. btrfs_destroy_delayed_inodes(fs_info);
  3823. btrfs_assert_delayed_root_empty(fs_info);
  3824. btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
  3825. EXTENT_DIRTY);
  3826. btrfs_destroy_pinned_extent(fs_info,
  3827. fs_info->pinned_extents);
  3828. cur_trans->state =TRANS_STATE_COMPLETED;
  3829. wake_up(&cur_trans->commit_wait);
  3830. }
  3831. static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
  3832. {
  3833. struct btrfs_transaction *t;
  3834. mutex_lock(&fs_info->transaction_kthread_mutex);
  3835. spin_lock(&fs_info->trans_lock);
  3836. while (!list_empty(&fs_info->trans_list)) {
  3837. t = list_first_entry(&fs_info->trans_list,
  3838. struct btrfs_transaction, list);
  3839. if (t->state >= TRANS_STATE_COMMIT_START) {
  3840. refcount_inc(&t->use_count);
  3841. spin_unlock(&fs_info->trans_lock);
  3842. btrfs_wait_for_commit(fs_info, t->transid);
  3843. btrfs_put_transaction(t);
  3844. spin_lock(&fs_info->trans_lock);
  3845. continue;
  3846. }
  3847. if (t == fs_info->running_transaction) {
  3848. t->state = TRANS_STATE_COMMIT_DOING;
  3849. spin_unlock(&fs_info->trans_lock);
  3850. /*
  3851. * We wait for 0 num_writers since we don't hold a trans
  3852. * handle open currently for this transaction.
  3853. */
  3854. wait_event(t->writer_wait,
  3855. atomic_read(&t->num_writers) == 0);
  3856. } else {
  3857. spin_unlock(&fs_info->trans_lock);
  3858. }
  3859. btrfs_cleanup_one_transaction(t, fs_info);
  3860. spin_lock(&fs_info->trans_lock);
  3861. if (t == fs_info->running_transaction)
  3862. fs_info->running_transaction = NULL;
  3863. list_del_init(&t->list);
  3864. spin_unlock(&fs_info->trans_lock);
  3865. btrfs_put_transaction(t);
  3866. trace_btrfs_transaction_commit(fs_info->tree_root);
  3867. spin_lock(&fs_info->trans_lock);
  3868. }
  3869. spin_unlock(&fs_info->trans_lock);
  3870. btrfs_destroy_all_ordered_extents(fs_info);
  3871. btrfs_destroy_delayed_inodes(fs_info);
  3872. btrfs_assert_delayed_root_empty(fs_info);
  3873. btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
  3874. btrfs_destroy_all_delalloc_inodes(fs_info);
  3875. mutex_unlock(&fs_info->transaction_kthread_mutex);
  3876. return 0;
  3877. }
  3878. static struct btrfs_fs_info *btree_fs_info(void *private_data)
  3879. {
  3880. struct inode *inode = private_data;
  3881. return btrfs_sb(inode->i_sb);
  3882. }
  3883. static const struct extent_io_ops btree_extent_io_ops = {
  3884. /* mandatory callbacks */
  3885. .submit_bio_hook = btree_submit_bio_hook,
  3886. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3887. /* note we're sharing with inode.c for the merge bio hook */
  3888. .merge_bio_hook = btrfs_merge_bio_hook,
  3889. .readpage_io_failed_hook = btree_io_failed_hook,
  3890. .set_range_writeback = btrfs_set_range_writeback,
  3891. .tree_fs_info = btree_fs_info,
  3892. /* optional callbacks */
  3893. };