gmc_v8_0.c 46 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. */
  23. #include <linux/firmware.h>
  24. #include <drm/drmP.h>
  25. #include "amdgpu.h"
  26. #include "gmc_v8_0.h"
  27. #include "amdgpu_ucode.h"
  28. #include "gmc/gmc_8_1_d.h"
  29. #include "gmc/gmc_8_1_sh_mask.h"
  30. #include "bif/bif_5_0_d.h"
  31. #include "bif/bif_5_0_sh_mask.h"
  32. #include "oss/oss_3_0_d.h"
  33. #include "oss/oss_3_0_sh_mask.h"
  34. #include "vid.h"
  35. #include "vi.h"
  36. #include "amdgpu_atombios.h"
  37. static void gmc_v8_0_set_gart_funcs(struct amdgpu_device *adev);
  38. static void gmc_v8_0_set_irq_funcs(struct amdgpu_device *adev);
  39. static int gmc_v8_0_wait_for_idle(void *handle);
  40. MODULE_FIRMWARE("amdgpu/tonga_mc.bin");
  41. MODULE_FIRMWARE("amdgpu/polaris11_mc.bin");
  42. MODULE_FIRMWARE("amdgpu/polaris10_mc.bin");
  43. MODULE_FIRMWARE("amdgpu/polaris12_mc.bin");
  44. static const u32 golden_settings_tonga_a11[] =
  45. {
  46. mmMC_ARB_WTM_GRPWT_RD, 0x00000003, 0x00000000,
  47. mmMC_HUB_RDREQ_DMIF_LIMIT, 0x0000007f, 0x00000028,
  48. mmMC_HUB_WDP_UMC, 0x00007fb6, 0x00000991,
  49. mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  50. mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  51. mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  52. mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  53. };
  54. static const u32 tonga_mgcg_cgcg_init[] =
  55. {
  56. mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
  57. };
  58. static const u32 golden_settings_fiji_a10[] =
  59. {
  60. mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  61. mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  62. mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  63. mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  64. };
  65. static const u32 fiji_mgcg_cgcg_init[] =
  66. {
  67. mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
  68. };
  69. static const u32 golden_settings_polaris11_a11[] =
  70. {
  71. mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  72. mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  73. mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  74. mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff
  75. };
  76. static const u32 golden_settings_polaris10_a11[] =
  77. {
  78. mmMC_ARB_WTM_GRPWT_RD, 0x00000003, 0x00000000,
  79. mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  80. mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  81. mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  82. mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff
  83. };
  84. static const u32 cz_mgcg_cgcg_init[] =
  85. {
  86. mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
  87. };
  88. static const u32 stoney_mgcg_cgcg_init[] =
  89. {
  90. mmATC_MISC_CG, 0xffffffff, 0x000c0200,
  91. mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
  92. };
  93. static const u32 golden_settings_stoney_common[] =
  94. {
  95. mmMC_HUB_RDREQ_UVD, MC_HUB_RDREQ_UVD__PRESCALE_MASK, 0x00000004,
  96. mmMC_RD_GRP_OTH, MC_RD_GRP_OTH__UVD_MASK, 0x00600000
  97. };
  98. static void gmc_v8_0_init_golden_registers(struct amdgpu_device *adev)
  99. {
  100. switch (adev->asic_type) {
  101. case CHIP_FIJI:
  102. amdgpu_program_register_sequence(adev,
  103. fiji_mgcg_cgcg_init,
  104. (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init));
  105. amdgpu_program_register_sequence(adev,
  106. golden_settings_fiji_a10,
  107. (const u32)ARRAY_SIZE(golden_settings_fiji_a10));
  108. break;
  109. case CHIP_TONGA:
  110. amdgpu_program_register_sequence(adev,
  111. tonga_mgcg_cgcg_init,
  112. (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
  113. amdgpu_program_register_sequence(adev,
  114. golden_settings_tonga_a11,
  115. (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
  116. break;
  117. case CHIP_POLARIS11:
  118. case CHIP_POLARIS12:
  119. amdgpu_program_register_sequence(adev,
  120. golden_settings_polaris11_a11,
  121. (const u32)ARRAY_SIZE(golden_settings_polaris11_a11));
  122. break;
  123. case CHIP_POLARIS10:
  124. amdgpu_program_register_sequence(adev,
  125. golden_settings_polaris10_a11,
  126. (const u32)ARRAY_SIZE(golden_settings_polaris10_a11));
  127. break;
  128. case CHIP_CARRIZO:
  129. amdgpu_program_register_sequence(adev,
  130. cz_mgcg_cgcg_init,
  131. (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
  132. break;
  133. case CHIP_STONEY:
  134. amdgpu_program_register_sequence(adev,
  135. stoney_mgcg_cgcg_init,
  136. (const u32)ARRAY_SIZE(stoney_mgcg_cgcg_init));
  137. amdgpu_program_register_sequence(adev,
  138. golden_settings_stoney_common,
  139. (const u32)ARRAY_SIZE(golden_settings_stoney_common));
  140. break;
  141. default:
  142. break;
  143. }
  144. }
  145. static void gmc_v8_0_mc_stop(struct amdgpu_device *adev)
  146. {
  147. u32 blackout;
  148. gmc_v8_0_wait_for_idle(adev);
  149. blackout = RREG32(mmMC_SHARED_BLACKOUT_CNTL);
  150. if (REG_GET_FIELD(blackout, MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE) != 1) {
  151. /* Block CPU access */
  152. WREG32(mmBIF_FB_EN, 0);
  153. /* blackout the MC */
  154. blackout = REG_SET_FIELD(blackout,
  155. MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE, 1);
  156. WREG32(mmMC_SHARED_BLACKOUT_CNTL, blackout);
  157. }
  158. /* wait for the MC to settle */
  159. udelay(100);
  160. }
  161. static void gmc_v8_0_mc_resume(struct amdgpu_device *adev)
  162. {
  163. u32 tmp;
  164. /* unblackout the MC */
  165. tmp = RREG32(mmMC_SHARED_BLACKOUT_CNTL);
  166. tmp = REG_SET_FIELD(tmp, MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE, 0);
  167. WREG32(mmMC_SHARED_BLACKOUT_CNTL, tmp);
  168. /* allow CPU access */
  169. tmp = REG_SET_FIELD(0, BIF_FB_EN, FB_READ_EN, 1);
  170. tmp = REG_SET_FIELD(tmp, BIF_FB_EN, FB_WRITE_EN, 1);
  171. WREG32(mmBIF_FB_EN, tmp);
  172. }
  173. /**
  174. * gmc_v8_0_init_microcode - load ucode images from disk
  175. *
  176. * @adev: amdgpu_device pointer
  177. *
  178. * Use the firmware interface to load the ucode images into
  179. * the driver (not loaded into hw).
  180. * Returns 0 on success, error on failure.
  181. */
  182. static int gmc_v8_0_init_microcode(struct amdgpu_device *adev)
  183. {
  184. const char *chip_name;
  185. char fw_name[30];
  186. int err;
  187. DRM_DEBUG("\n");
  188. switch (adev->asic_type) {
  189. case CHIP_TONGA:
  190. chip_name = "tonga";
  191. break;
  192. case CHIP_POLARIS11:
  193. chip_name = "polaris11";
  194. break;
  195. case CHIP_POLARIS10:
  196. chip_name = "polaris10";
  197. break;
  198. case CHIP_POLARIS12:
  199. chip_name = "polaris12";
  200. break;
  201. case CHIP_FIJI:
  202. case CHIP_CARRIZO:
  203. case CHIP_STONEY:
  204. return 0;
  205. default: BUG();
  206. }
  207. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_mc.bin", chip_name);
  208. err = request_firmware(&adev->mc.fw, fw_name, adev->dev);
  209. if (err)
  210. goto out;
  211. err = amdgpu_ucode_validate(adev->mc.fw);
  212. out:
  213. if (err) {
  214. pr_err("mc: Failed to load firmware \"%s\"\n", fw_name);
  215. release_firmware(adev->mc.fw);
  216. adev->mc.fw = NULL;
  217. }
  218. return err;
  219. }
  220. /**
  221. * gmc_v8_0_tonga_mc_load_microcode - load tonga MC ucode into the hw
  222. *
  223. * @adev: amdgpu_device pointer
  224. *
  225. * Load the GDDR MC ucode into the hw (CIK).
  226. * Returns 0 on success, error on failure.
  227. */
  228. static int gmc_v8_0_tonga_mc_load_microcode(struct amdgpu_device *adev)
  229. {
  230. const struct mc_firmware_header_v1_0 *hdr;
  231. const __le32 *fw_data = NULL;
  232. const __le32 *io_mc_regs = NULL;
  233. u32 running;
  234. int i, ucode_size, regs_size;
  235. /* Skip MC ucode loading on SR-IOV capable boards.
  236. * vbios does this for us in asic_init in that case.
  237. * Skip MC ucode loading on VF, because hypervisor will do that
  238. * for this adaptor.
  239. */
  240. if (amdgpu_sriov_bios(adev))
  241. return 0;
  242. if (!adev->mc.fw)
  243. return -EINVAL;
  244. hdr = (const struct mc_firmware_header_v1_0 *)adev->mc.fw->data;
  245. amdgpu_ucode_print_mc_hdr(&hdr->header);
  246. adev->mc.fw_version = le32_to_cpu(hdr->header.ucode_version);
  247. regs_size = le32_to_cpu(hdr->io_debug_size_bytes) / (4 * 2);
  248. io_mc_regs = (const __le32 *)
  249. (adev->mc.fw->data + le32_to_cpu(hdr->io_debug_array_offset_bytes));
  250. ucode_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  251. fw_data = (const __le32 *)
  252. (adev->mc.fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  253. running = REG_GET_FIELD(RREG32(mmMC_SEQ_SUP_CNTL), MC_SEQ_SUP_CNTL, RUN);
  254. if (running == 0) {
  255. /* reset the engine and set to writable */
  256. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
  257. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000010);
  258. /* load mc io regs */
  259. for (i = 0; i < regs_size; i++) {
  260. WREG32(mmMC_SEQ_IO_DEBUG_INDEX, le32_to_cpup(io_mc_regs++));
  261. WREG32(mmMC_SEQ_IO_DEBUG_DATA, le32_to_cpup(io_mc_regs++));
  262. }
  263. /* load the MC ucode */
  264. for (i = 0; i < ucode_size; i++)
  265. WREG32(mmMC_SEQ_SUP_PGM, le32_to_cpup(fw_data++));
  266. /* put the engine back into the active state */
  267. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
  268. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000004);
  269. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000001);
  270. /* wait for training to complete */
  271. for (i = 0; i < adev->usec_timeout; i++) {
  272. if (REG_GET_FIELD(RREG32(mmMC_SEQ_TRAIN_WAKEUP_CNTL),
  273. MC_SEQ_TRAIN_WAKEUP_CNTL, TRAIN_DONE_D0))
  274. break;
  275. udelay(1);
  276. }
  277. for (i = 0; i < adev->usec_timeout; i++) {
  278. if (REG_GET_FIELD(RREG32(mmMC_SEQ_TRAIN_WAKEUP_CNTL),
  279. MC_SEQ_TRAIN_WAKEUP_CNTL, TRAIN_DONE_D1))
  280. break;
  281. udelay(1);
  282. }
  283. }
  284. return 0;
  285. }
  286. static int gmc_v8_0_polaris_mc_load_microcode(struct amdgpu_device *adev)
  287. {
  288. const struct mc_firmware_header_v1_0 *hdr;
  289. const __le32 *fw_data = NULL;
  290. const __le32 *io_mc_regs = NULL;
  291. u32 data, vbios_version;
  292. int i, ucode_size, regs_size;
  293. /* Skip MC ucode loading on SR-IOV capable boards.
  294. * vbios does this for us in asic_init in that case.
  295. * Skip MC ucode loading on VF, because hypervisor will do that
  296. * for this adaptor.
  297. */
  298. if (amdgpu_sriov_bios(adev))
  299. return 0;
  300. WREG32(mmMC_SEQ_IO_DEBUG_INDEX, 0x9F);
  301. data = RREG32(mmMC_SEQ_IO_DEBUG_DATA);
  302. vbios_version = data & 0xf;
  303. if (vbios_version == 0)
  304. return 0;
  305. if (!adev->mc.fw)
  306. return -EINVAL;
  307. hdr = (const struct mc_firmware_header_v1_0 *)adev->mc.fw->data;
  308. amdgpu_ucode_print_mc_hdr(&hdr->header);
  309. adev->mc.fw_version = le32_to_cpu(hdr->header.ucode_version);
  310. regs_size = le32_to_cpu(hdr->io_debug_size_bytes) / (4 * 2);
  311. io_mc_regs = (const __le32 *)
  312. (adev->mc.fw->data + le32_to_cpu(hdr->io_debug_array_offset_bytes));
  313. ucode_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  314. fw_data = (const __le32 *)
  315. (adev->mc.fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  316. data = RREG32(mmMC_SEQ_MISC0);
  317. data &= ~(0x40);
  318. WREG32(mmMC_SEQ_MISC0, data);
  319. /* load mc io regs */
  320. for (i = 0; i < regs_size; i++) {
  321. WREG32(mmMC_SEQ_IO_DEBUG_INDEX, le32_to_cpup(io_mc_regs++));
  322. WREG32(mmMC_SEQ_IO_DEBUG_DATA, le32_to_cpup(io_mc_regs++));
  323. }
  324. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
  325. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000010);
  326. /* load the MC ucode */
  327. for (i = 0; i < ucode_size; i++)
  328. WREG32(mmMC_SEQ_SUP_PGM, le32_to_cpup(fw_data++));
  329. /* put the engine back into the active state */
  330. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
  331. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000004);
  332. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000001);
  333. /* wait for training to complete */
  334. for (i = 0; i < adev->usec_timeout; i++) {
  335. data = RREG32(mmMC_SEQ_MISC0);
  336. if (data & 0x80)
  337. break;
  338. udelay(1);
  339. }
  340. return 0;
  341. }
  342. static void gmc_v8_0_vram_gtt_location(struct amdgpu_device *adev,
  343. struct amdgpu_mc *mc)
  344. {
  345. u64 base = RREG32(mmMC_VM_FB_LOCATION) & 0xFFFF;
  346. base <<= 24;
  347. if (mc->mc_vram_size > 0xFFC0000000ULL) {
  348. /* leave room for at least 1024M GTT */
  349. dev_warn(adev->dev, "limiting VRAM\n");
  350. mc->real_vram_size = 0xFFC0000000ULL;
  351. mc->mc_vram_size = 0xFFC0000000ULL;
  352. }
  353. amdgpu_vram_location(adev, &adev->mc, base);
  354. adev->mc.gtt_base_align = 0;
  355. amdgpu_gtt_location(adev, mc);
  356. }
  357. /**
  358. * gmc_v8_0_mc_program - program the GPU memory controller
  359. *
  360. * @adev: amdgpu_device pointer
  361. *
  362. * Set the location of vram, gart, and AGP in the GPU's
  363. * physical address space (CIK).
  364. */
  365. static void gmc_v8_0_mc_program(struct amdgpu_device *adev)
  366. {
  367. u32 tmp;
  368. int i, j;
  369. /* Initialize HDP */
  370. for (i = 0, j = 0; i < 32; i++, j += 0x6) {
  371. WREG32((0xb05 + j), 0x00000000);
  372. WREG32((0xb06 + j), 0x00000000);
  373. WREG32((0xb07 + j), 0x00000000);
  374. WREG32((0xb08 + j), 0x00000000);
  375. WREG32((0xb09 + j), 0x00000000);
  376. }
  377. WREG32(mmHDP_REG_COHERENCY_FLUSH_CNTL, 0);
  378. if (gmc_v8_0_wait_for_idle((void *)adev)) {
  379. dev_warn(adev->dev, "Wait for MC idle timedout !\n");
  380. }
  381. /* Update configuration */
  382. WREG32(mmMC_VM_SYSTEM_APERTURE_LOW_ADDR,
  383. adev->mc.vram_start >> 12);
  384. WREG32(mmMC_VM_SYSTEM_APERTURE_HIGH_ADDR,
  385. adev->mc.vram_end >> 12);
  386. WREG32(mmMC_VM_SYSTEM_APERTURE_DEFAULT_ADDR,
  387. adev->vram_scratch.gpu_addr >> 12);
  388. WREG32(mmMC_VM_AGP_BASE, 0);
  389. WREG32(mmMC_VM_AGP_TOP, 0x0FFFFFFF);
  390. WREG32(mmMC_VM_AGP_BOT, 0x0FFFFFFF);
  391. if (gmc_v8_0_wait_for_idle((void *)adev)) {
  392. dev_warn(adev->dev, "Wait for MC idle timedout !\n");
  393. }
  394. WREG32(mmBIF_FB_EN, BIF_FB_EN__FB_READ_EN_MASK | BIF_FB_EN__FB_WRITE_EN_MASK);
  395. tmp = RREG32(mmHDP_MISC_CNTL);
  396. tmp = REG_SET_FIELD(tmp, HDP_MISC_CNTL, FLUSH_INVALIDATE_CACHE, 0);
  397. WREG32(mmHDP_MISC_CNTL, tmp);
  398. tmp = RREG32(mmHDP_HOST_PATH_CNTL);
  399. WREG32(mmHDP_HOST_PATH_CNTL, tmp);
  400. }
  401. /**
  402. * gmc_v8_0_mc_init - initialize the memory controller driver params
  403. *
  404. * @adev: amdgpu_device pointer
  405. *
  406. * Look up the amount of vram, vram width, and decide how to place
  407. * vram and gart within the GPU's physical address space (CIK).
  408. * Returns 0 for success.
  409. */
  410. static int gmc_v8_0_mc_init(struct amdgpu_device *adev)
  411. {
  412. adev->mc.vram_width = amdgpu_atombios_get_vram_width(adev);
  413. if (!adev->mc.vram_width) {
  414. u32 tmp;
  415. int chansize, numchan;
  416. /* Get VRAM informations */
  417. tmp = RREG32(mmMC_ARB_RAMCFG);
  418. if (REG_GET_FIELD(tmp, MC_ARB_RAMCFG, CHANSIZE)) {
  419. chansize = 64;
  420. } else {
  421. chansize = 32;
  422. }
  423. tmp = RREG32(mmMC_SHARED_CHMAP);
  424. switch (REG_GET_FIELD(tmp, MC_SHARED_CHMAP, NOOFCHAN)) {
  425. case 0:
  426. default:
  427. numchan = 1;
  428. break;
  429. case 1:
  430. numchan = 2;
  431. break;
  432. case 2:
  433. numchan = 4;
  434. break;
  435. case 3:
  436. numchan = 8;
  437. break;
  438. case 4:
  439. numchan = 3;
  440. break;
  441. case 5:
  442. numchan = 6;
  443. break;
  444. case 6:
  445. numchan = 10;
  446. break;
  447. case 7:
  448. numchan = 12;
  449. break;
  450. case 8:
  451. numchan = 16;
  452. break;
  453. }
  454. adev->mc.vram_width = numchan * chansize;
  455. }
  456. /* Could aper size report 0 ? */
  457. adev->mc.aper_base = pci_resource_start(adev->pdev, 0);
  458. adev->mc.aper_size = pci_resource_len(adev->pdev, 0);
  459. /* size in MB on si */
  460. adev->mc.mc_vram_size = RREG32(mmCONFIG_MEMSIZE) * 1024ULL * 1024ULL;
  461. adev->mc.real_vram_size = RREG32(mmCONFIG_MEMSIZE) * 1024ULL * 1024ULL;
  462. #ifdef CONFIG_X86_64
  463. if (adev->flags & AMD_IS_APU) {
  464. adev->mc.aper_base = ((u64)RREG32(mmMC_VM_FB_OFFSET)) << 22;
  465. adev->mc.aper_size = adev->mc.real_vram_size;
  466. }
  467. #endif
  468. /* In case the PCI BAR is larger than the actual amount of vram */
  469. adev->mc.visible_vram_size = adev->mc.aper_size;
  470. if (adev->mc.visible_vram_size > adev->mc.real_vram_size)
  471. adev->mc.visible_vram_size = adev->mc.real_vram_size;
  472. amdgpu_gart_set_defaults(adev);
  473. gmc_v8_0_vram_gtt_location(adev, &adev->mc);
  474. return 0;
  475. }
  476. /*
  477. * GART
  478. * VMID 0 is the physical GPU addresses as used by the kernel.
  479. * VMIDs 1-15 are used for userspace clients and are handled
  480. * by the amdgpu vm/hsa code.
  481. */
  482. /**
  483. * gmc_v8_0_gart_flush_gpu_tlb - gart tlb flush callback
  484. *
  485. * @adev: amdgpu_device pointer
  486. * @vmid: vm instance to flush
  487. *
  488. * Flush the TLB for the requested page table (CIK).
  489. */
  490. static void gmc_v8_0_gart_flush_gpu_tlb(struct amdgpu_device *adev,
  491. uint32_t vmid)
  492. {
  493. /* flush hdp cache */
  494. WREG32(mmHDP_MEM_COHERENCY_FLUSH_CNTL, 0);
  495. /* bits 0-15 are the VM contexts0-15 */
  496. WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
  497. }
  498. /**
  499. * gmc_v8_0_gart_set_pte_pde - update the page tables using MMIO
  500. *
  501. * @adev: amdgpu_device pointer
  502. * @cpu_pt_addr: cpu address of the page table
  503. * @gpu_page_idx: entry in the page table to update
  504. * @addr: dst addr to write into pte/pde
  505. * @flags: access flags
  506. *
  507. * Update the page tables using the CPU.
  508. */
  509. static int gmc_v8_0_gart_set_pte_pde(struct amdgpu_device *adev,
  510. void *cpu_pt_addr,
  511. uint32_t gpu_page_idx,
  512. uint64_t addr,
  513. uint64_t flags)
  514. {
  515. void __iomem *ptr = (void *)cpu_pt_addr;
  516. uint64_t value;
  517. /*
  518. * PTE format on VI:
  519. * 63:40 reserved
  520. * 39:12 4k physical page base address
  521. * 11:7 fragment
  522. * 6 write
  523. * 5 read
  524. * 4 exe
  525. * 3 reserved
  526. * 2 snooped
  527. * 1 system
  528. * 0 valid
  529. *
  530. * PDE format on VI:
  531. * 63:59 block fragment size
  532. * 58:40 reserved
  533. * 39:1 physical base address of PTE
  534. * bits 5:1 must be 0.
  535. * 0 valid
  536. */
  537. value = addr & 0x000000FFFFFFF000ULL;
  538. value |= flags;
  539. writeq(value, ptr + (gpu_page_idx * 8));
  540. return 0;
  541. }
  542. static uint64_t gmc_v8_0_get_vm_pte_flags(struct amdgpu_device *adev,
  543. uint32_t flags)
  544. {
  545. uint64_t pte_flag = 0;
  546. if (flags & AMDGPU_VM_PAGE_EXECUTABLE)
  547. pte_flag |= AMDGPU_PTE_EXECUTABLE;
  548. if (flags & AMDGPU_VM_PAGE_READABLE)
  549. pte_flag |= AMDGPU_PTE_READABLE;
  550. if (flags & AMDGPU_VM_PAGE_WRITEABLE)
  551. pte_flag |= AMDGPU_PTE_WRITEABLE;
  552. if (flags & AMDGPU_VM_PAGE_PRT)
  553. pte_flag |= AMDGPU_PTE_PRT;
  554. return pte_flag;
  555. }
  556. static uint64_t gmc_v8_0_get_vm_pde(struct amdgpu_device *adev, uint64_t addr)
  557. {
  558. BUG_ON(addr & 0xFFFFFF0000000FFFULL);
  559. return addr;
  560. }
  561. /**
  562. * gmc_v8_0_set_fault_enable_default - update VM fault handling
  563. *
  564. * @adev: amdgpu_device pointer
  565. * @value: true redirects VM faults to the default page
  566. */
  567. static void gmc_v8_0_set_fault_enable_default(struct amdgpu_device *adev,
  568. bool value)
  569. {
  570. u32 tmp;
  571. tmp = RREG32(mmVM_CONTEXT1_CNTL);
  572. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  573. RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  574. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  575. DUMMY_PAGE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  576. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  577. PDE0_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  578. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  579. VALID_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  580. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  581. READ_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  582. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  583. WRITE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  584. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  585. EXECUTE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  586. WREG32(mmVM_CONTEXT1_CNTL, tmp);
  587. }
  588. /**
  589. * gmc_v8_0_set_prt - set PRT VM fault
  590. *
  591. * @adev: amdgpu_device pointer
  592. * @enable: enable/disable VM fault handling for PRT
  593. */
  594. static void gmc_v8_0_set_prt(struct amdgpu_device *adev, bool enable)
  595. {
  596. u32 tmp;
  597. if (enable && !adev->mc.prt_warning) {
  598. dev_warn(adev->dev, "Disabling VM faults because of PRT request!\n");
  599. adev->mc.prt_warning = true;
  600. }
  601. tmp = RREG32(mmVM_PRT_CNTL);
  602. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  603. CB_DISABLE_READ_FAULT_ON_UNMAPPED_ACCESS, enable);
  604. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  605. CB_DISABLE_WRITE_FAULT_ON_UNMAPPED_ACCESS, enable);
  606. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  607. TC_DISABLE_READ_FAULT_ON_UNMAPPED_ACCESS, enable);
  608. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  609. TC_DISABLE_WRITE_FAULT_ON_UNMAPPED_ACCESS, enable);
  610. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  611. L2_CACHE_STORE_INVALID_ENTRIES, enable);
  612. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  613. L1_TLB_STORE_INVALID_ENTRIES, enable);
  614. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  615. MASK_PDE0_FAULT, enable);
  616. WREG32(mmVM_PRT_CNTL, tmp);
  617. if (enable) {
  618. uint32_t low = AMDGPU_VA_RESERVED_SIZE >> AMDGPU_GPU_PAGE_SHIFT;
  619. uint32_t high = adev->vm_manager.max_pfn;
  620. WREG32(mmVM_PRT_APERTURE0_LOW_ADDR, low);
  621. WREG32(mmVM_PRT_APERTURE1_LOW_ADDR, low);
  622. WREG32(mmVM_PRT_APERTURE2_LOW_ADDR, low);
  623. WREG32(mmVM_PRT_APERTURE3_LOW_ADDR, low);
  624. WREG32(mmVM_PRT_APERTURE0_HIGH_ADDR, high);
  625. WREG32(mmVM_PRT_APERTURE1_HIGH_ADDR, high);
  626. WREG32(mmVM_PRT_APERTURE2_HIGH_ADDR, high);
  627. WREG32(mmVM_PRT_APERTURE3_HIGH_ADDR, high);
  628. } else {
  629. WREG32(mmVM_PRT_APERTURE0_LOW_ADDR, 0xfffffff);
  630. WREG32(mmVM_PRT_APERTURE1_LOW_ADDR, 0xfffffff);
  631. WREG32(mmVM_PRT_APERTURE2_LOW_ADDR, 0xfffffff);
  632. WREG32(mmVM_PRT_APERTURE3_LOW_ADDR, 0xfffffff);
  633. WREG32(mmVM_PRT_APERTURE0_HIGH_ADDR, 0x0);
  634. WREG32(mmVM_PRT_APERTURE1_HIGH_ADDR, 0x0);
  635. WREG32(mmVM_PRT_APERTURE2_HIGH_ADDR, 0x0);
  636. WREG32(mmVM_PRT_APERTURE3_HIGH_ADDR, 0x0);
  637. }
  638. }
  639. /**
  640. * gmc_v8_0_gart_enable - gart enable
  641. *
  642. * @adev: amdgpu_device pointer
  643. *
  644. * This sets up the TLBs, programs the page tables for VMID0,
  645. * sets up the hw for VMIDs 1-15 which are allocated on
  646. * demand, and sets up the global locations for the LDS, GDS,
  647. * and GPUVM for FSA64 clients (CIK).
  648. * Returns 0 for success, errors for failure.
  649. */
  650. static int gmc_v8_0_gart_enable(struct amdgpu_device *adev)
  651. {
  652. int r, i;
  653. u32 tmp;
  654. if (adev->gart.robj == NULL) {
  655. dev_err(adev->dev, "No VRAM object for PCIE GART.\n");
  656. return -EINVAL;
  657. }
  658. r = amdgpu_gart_table_vram_pin(adev);
  659. if (r)
  660. return r;
  661. /* Setup TLB control */
  662. tmp = RREG32(mmMC_VM_MX_L1_TLB_CNTL);
  663. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_TLB, 1);
  664. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_FRAGMENT_PROCESSING, 1);
  665. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, SYSTEM_ACCESS_MODE, 3);
  666. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_ADVANCED_DRIVER_MODEL, 1);
  667. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, SYSTEM_APERTURE_UNMAPPED_ACCESS, 0);
  668. WREG32(mmMC_VM_MX_L1_TLB_CNTL, tmp);
  669. /* Setup L2 cache */
  670. tmp = RREG32(mmVM_L2_CNTL);
  671. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_CACHE, 1);
  672. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_FRAGMENT_PROCESSING, 1);
  673. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE, 1);
  674. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_PDE0_CACHE_LRU_UPDATE_BY_WRITE, 1);
  675. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, EFFECTIVE_L2_QUEUE_SIZE, 7);
  676. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, CONTEXT1_IDENTITY_ACCESS_MODE, 1);
  677. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_DEFAULT_PAGE_OUT_TO_SYSTEM_MEMORY, 1);
  678. WREG32(mmVM_L2_CNTL, tmp);
  679. tmp = RREG32(mmVM_L2_CNTL2);
  680. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL2, INVALIDATE_ALL_L1_TLBS, 1);
  681. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL2, INVALIDATE_L2_CACHE, 1);
  682. WREG32(mmVM_L2_CNTL2, tmp);
  683. tmp = RREG32(mmVM_L2_CNTL3);
  684. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, L2_CACHE_BIGK_ASSOCIATIVITY, 1);
  685. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, BANK_SELECT, 4);
  686. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, L2_CACHE_BIGK_FRAGMENT_SIZE, 4);
  687. WREG32(mmVM_L2_CNTL3, tmp);
  688. /* XXX: set to enable PTE/PDE in system memory */
  689. tmp = RREG32(mmVM_L2_CNTL4);
  690. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_PHYSICAL, 0);
  691. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_SHARED, 0);
  692. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_SNOOP, 0);
  693. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_PHYSICAL, 0);
  694. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_SHARED, 0);
  695. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_SNOOP, 0);
  696. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_PHYSICAL, 0);
  697. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_SHARED, 0);
  698. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_SNOOP, 0);
  699. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_PHYSICAL, 0);
  700. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_SHARED, 0);
  701. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_SNOOP, 0);
  702. WREG32(mmVM_L2_CNTL4, tmp);
  703. /* setup context0 */
  704. WREG32(mmVM_CONTEXT0_PAGE_TABLE_START_ADDR, adev->mc.gtt_start >> 12);
  705. WREG32(mmVM_CONTEXT0_PAGE_TABLE_END_ADDR, adev->mc.gtt_end >> 12);
  706. WREG32(mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR, adev->gart.table_addr >> 12);
  707. WREG32(mmVM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR,
  708. (u32)(adev->dummy_page.addr >> 12));
  709. WREG32(mmVM_CONTEXT0_CNTL2, 0);
  710. tmp = RREG32(mmVM_CONTEXT0_CNTL);
  711. tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, ENABLE_CONTEXT, 1);
  712. tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, PAGE_TABLE_DEPTH, 0);
  713. tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  714. WREG32(mmVM_CONTEXT0_CNTL, tmp);
  715. WREG32(mmVM_L2_CONTEXT1_IDENTITY_APERTURE_LOW_ADDR, 0);
  716. WREG32(mmVM_L2_CONTEXT1_IDENTITY_APERTURE_HIGH_ADDR, 0);
  717. WREG32(mmVM_L2_CONTEXT_IDENTITY_PHYSICAL_OFFSET, 0);
  718. /* empty context1-15 */
  719. /* FIXME start with 4G, once using 2 level pt switch to full
  720. * vm size space
  721. */
  722. /* set vm size, must be a multiple of 4 */
  723. WREG32(mmVM_CONTEXT1_PAGE_TABLE_START_ADDR, 0);
  724. WREG32(mmVM_CONTEXT1_PAGE_TABLE_END_ADDR, adev->vm_manager.max_pfn - 1);
  725. for (i = 1; i < 16; i++) {
  726. if (i < 8)
  727. WREG32(mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + i,
  728. adev->gart.table_addr >> 12);
  729. else
  730. WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + i - 8,
  731. adev->gart.table_addr >> 12);
  732. }
  733. /* enable context1-15 */
  734. WREG32(mmVM_CONTEXT1_PROTECTION_FAULT_DEFAULT_ADDR,
  735. (u32)(adev->dummy_page.addr >> 12));
  736. WREG32(mmVM_CONTEXT1_CNTL2, 4);
  737. tmp = RREG32(mmVM_CONTEXT1_CNTL);
  738. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, ENABLE_CONTEXT, 1);
  739. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PAGE_TABLE_DEPTH, 1);
  740. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  741. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, DUMMY_PAGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  742. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PDE0_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  743. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, VALID_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  744. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, READ_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  745. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, WRITE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  746. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, EXECUTE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  747. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PAGE_TABLE_BLOCK_SIZE,
  748. adev->vm_manager.block_size - 9);
  749. WREG32(mmVM_CONTEXT1_CNTL, tmp);
  750. if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_ALWAYS)
  751. gmc_v8_0_set_fault_enable_default(adev, false);
  752. else
  753. gmc_v8_0_set_fault_enable_default(adev, true);
  754. gmc_v8_0_gart_flush_gpu_tlb(adev, 0);
  755. DRM_INFO("PCIE GART of %uM enabled (table at 0x%016llX).\n",
  756. (unsigned)(adev->mc.gtt_size >> 20),
  757. (unsigned long long)adev->gart.table_addr);
  758. adev->gart.ready = true;
  759. return 0;
  760. }
  761. static int gmc_v8_0_gart_init(struct amdgpu_device *adev)
  762. {
  763. int r;
  764. if (adev->gart.robj) {
  765. WARN(1, "R600 PCIE GART already initialized\n");
  766. return 0;
  767. }
  768. /* Initialize common gart structure */
  769. r = amdgpu_gart_init(adev);
  770. if (r)
  771. return r;
  772. adev->gart.table_size = adev->gart.num_gpu_pages * 8;
  773. adev->gart.gart_pte_flags = AMDGPU_PTE_EXECUTABLE;
  774. return amdgpu_gart_table_vram_alloc(adev);
  775. }
  776. /**
  777. * gmc_v8_0_gart_disable - gart disable
  778. *
  779. * @adev: amdgpu_device pointer
  780. *
  781. * This disables all VM page table (CIK).
  782. */
  783. static void gmc_v8_0_gart_disable(struct amdgpu_device *adev)
  784. {
  785. u32 tmp;
  786. /* Disable all tables */
  787. WREG32(mmVM_CONTEXT0_CNTL, 0);
  788. WREG32(mmVM_CONTEXT1_CNTL, 0);
  789. /* Setup TLB control */
  790. tmp = RREG32(mmMC_VM_MX_L1_TLB_CNTL);
  791. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_TLB, 0);
  792. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_FRAGMENT_PROCESSING, 0);
  793. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_ADVANCED_DRIVER_MODEL, 0);
  794. WREG32(mmMC_VM_MX_L1_TLB_CNTL, tmp);
  795. /* Setup L2 cache */
  796. tmp = RREG32(mmVM_L2_CNTL);
  797. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_CACHE, 0);
  798. WREG32(mmVM_L2_CNTL, tmp);
  799. WREG32(mmVM_L2_CNTL2, 0);
  800. amdgpu_gart_table_vram_unpin(adev);
  801. }
  802. /**
  803. * gmc_v8_0_gart_fini - vm fini callback
  804. *
  805. * @adev: amdgpu_device pointer
  806. *
  807. * Tears down the driver GART/VM setup (CIK).
  808. */
  809. static void gmc_v8_0_gart_fini(struct amdgpu_device *adev)
  810. {
  811. amdgpu_gart_table_vram_free(adev);
  812. amdgpu_gart_fini(adev);
  813. }
  814. /**
  815. * gmc_v8_0_vm_decode_fault - print human readable fault info
  816. *
  817. * @adev: amdgpu_device pointer
  818. * @status: VM_CONTEXT1_PROTECTION_FAULT_STATUS register value
  819. * @addr: VM_CONTEXT1_PROTECTION_FAULT_ADDR register value
  820. *
  821. * Print human readable fault information (CIK).
  822. */
  823. static void gmc_v8_0_vm_decode_fault(struct amdgpu_device *adev,
  824. u32 status, u32 addr, u32 mc_client)
  825. {
  826. u32 mc_id;
  827. u32 vmid = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, VMID);
  828. u32 protections = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS,
  829. PROTECTIONS);
  830. char block[5] = { mc_client >> 24, (mc_client >> 16) & 0xff,
  831. (mc_client >> 8) & 0xff, mc_client & 0xff, 0 };
  832. mc_id = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS,
  833. MEMORY_CLIENT_ID);
  834. dev_err(adev->dev, "VM fault (0x%02x, vmid %d) at page %u, %s from '%s' (0x%08x) (%d)\n",
  835. protections, vmid, addr,
  836. REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS,
  837. MEMORY_CLIENT_RW) ?
  838. "write" : "read", block, mc_client, mc_id);
  839. }
  840. static int gmc_v8_0_convert_vram_type(int mc_seq_vram_type)
  841. {
  842. switch (mc_seq_vram_type) {
  843. case MC_SEQ_MISC0__MT__GDDR1:
  844. return AMDGPU_VRAM_TYPE_GDDR1;
  845. case MC_SEQ_MISC0__MT__DDR2:
  846. return AMDGPU_VRAM_TYPE_DDR2;
  847. case MC_SEQ_MISC0__MT__GDDR3:
  848. return AMDGPU_VRAM_TYPE_GDDR3;
  849. case MC_SEQ_MISC0__MT__GDDR4:
  850. return AMDGPU_VRAM_TYPE_GDDR4;
  851. case MC_SEQ_MISC0__MT__GDDR5:
  852. return AMDGPU_VRAM_TYPE_GDDR5;
  853. case MC_SEQ_MISC0__MT__HBM:
  854. return AMDGPU_VRAM_TYPE_HBM;
  855. case MC_SEQ_MISC0__MT__DDR3:
  856. return AMDGPU_VRAM_TYPE_DDR3;
  857. default:
  858. return AMDGPU_VRAM_TYPE_UNKNOWN;
  859. }
  860. }
  861. static int gmc_v8_0_early_init(void *handle)
  862. {
  863. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  864. gmc_v8_0_set_gart_funcs(adev);
  865. gmc_v8_0_set_irq_funcs(adev);
  866. adev->mc.shared_aperture_start = 0x2000000000000000ULL;
  867. adev->mc.shared_aperture_end =
  868. adev->mc.shared_aperture_start + (4ULL << 30) - 1;
  869. adev->mc.private_aperture_start =
  870. adev->mc.shared_aperture_end + 1;
  871. adev->mc.private_aperture_end =
  872. adev->mc.private_aperture_start + (4ULL << 30) - 1;
  873. return 0;
  874. }
  875. static int gmc_v8_0_late_init(void *handle)
  876. {
  877. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  878. if (amdgpu_vm_fault_stop != AMDGPU_VM_FAULT_STOP_ALWAYS)
  879. return amdgpu_irq_get(adev, &adev->mc.vm_fault, 0);
  880. else
  881. return 0;
  882. }
  883. #define mmMC_SEQ_MISC0_FIJI 0xA71
  884. static int gmc_v8_0_sw_init(void *handle)
  885. {
  886. int r;
  887. int dma_bits;
  888. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  889. if (adev->flags & AMD_IS_APU) {
  890. adev->mc.vram_type = AMDGPU_VRAM_TYPE_UNKNOWN;
  891. } else {
  892. u32 tmp;
  893. if (adev->asic_type == CHIP_FIJI)
  894. tmp = RREG32(mmMC_SEQ_MISC0_FIJI);
  895. else
  896. tmp = RREG32(mmMC_SEQ_MISC0);
  897. tmp &= MC_SEQ_MISC0__MT__MASK;
  898. adev->mc.vram_type = gmc_v8_0_convert_vram_type(tmp);
  899. }
  900. r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 146, &adev->mc.vm_fault);
  901. if (r)
  902. return r;
  903. r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 147, &adev->mc.vm_fault);
  904. if (r)
  905. return r;
  906. /* Adjust VM size here.
  907. * Currently set to 4GB ((1 << 20) 4k pages).
  908. * Max GPUVM size for cayman and SI is 40 bits.
  909. */
  910. amdgpu_vm_adjust_size(adev, 64);
  911. adev->vm_manager.max_pfn = adev->vm_manager.vm_size << 18;
  912. /* Set the internal MC address mask
  913. * This is the max address of the GPU's
  914. * internal address space.
  915. */
  916. adev->mc.mc_mask = 0xffffffffffULL; /* 40 bit MC */
  917. adev->mc.stolen_size = 256 * 1024;
  918. /* set DMA mask + need_dma32 flags.
  919. * PCIE - can handle 40-bits.
  920. * IGP - can handle 40-bits
  921. * PCI - dma32 for legacy pci gart, 40 bits on newer asics
  922. */
  923. adev->need_dma32 = false;
  924. dma_bits = adev->need_dma32 ? 32 : 40;
  925. r = pci_set_dma_mask(adev->pdev, DMA_BIT_MASK(dma_bits));
  926. if (r) {
  927. adev->need_dma32 = true;
  928. dma_bits = 32;
  929. pr_warn("amdgpu: No suitable DMA available\n");
  930. }
  931. r = pci_set_consistent_dma_mask(adev->pdev, DMA_BIT_MASK(dma_bits));
  932. if (r) {
  933. pci_set_consistent_dma_mask(adev->pdev, DMA_BIT_MASK(32));
  934. pr_warn("amdgpu: No coherent DMA available\n");
  935. }
  936. r = gmc_v8_0_init_microcode(adev);
  937. if (r) {
  938. DRM_ERROR("Failed to load mc firmware!\n");
  939. return r;
  940. }
  941. r = gmc_v8_0_mc_init(adev);
  942. if (r)
  943. return r;
  944. /* Memory manager */
  945. r = amdgpu_bo_init(adev);
  946. if (r)
  947. return r;
  948. r = gmc_v8_0_gart_init(adev);
  949. if (r)
  950. return r;
  951. /*
  952. * number of VMs
  953. * VMID 0 is reserved for System
  954. * amdgpu graphics/compute will use VMIDs 1-7
  955. * amdkfd will use VMIDs 8-15
  956. */
  957. adev->vm_manager.id_mgr[0].num_ids = AMDGPU_NUM_OF_VMIDS;
  958. adev->vm_manager.num_level = 1;
  959. amdgpu_vm_manager_init(adev);
  960. /* base offset of vram pages */
  961. if (adev->flags & AMD_IS_APU) {
  962. u64 tmp = RREG32(mmMC_VM_FB_OFFSET);
  963. tmp <<= 22;
  964. adev->vm_manager.vram_base_offset = tmp;
  965. } else {
  966. adev->vm_manager.vram_base_offset = 0;
  967. }
  968. return 0;
  969. }
  970. static int gmc_v8_0_sw_fini(void *handle)
  971. {
  972. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  973. amdgpu_vm_manager_fini(adev);
  974. gmc_v8_0_gart_fini(adev);
  975. amdgpu_gem_force_release(adev);
  976. amdgpu_bo_fini(adev);
  977. return 0;
  978. }
  979. static int gmc_v8_0_hw_init(void *handle)
  980. {
  981. int r;
  982. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  983. gmc_v8_0_init_golden_registers(adev);
  984. gmc_v8_0_mc_program(adev);
  985. if (adev->asic_type == CHIP_TONGA) {
  986. r = gmc_v8_0_tonga_mc_load_microcode(adev);
  987. if (r) {
  988. DRM_ERROR("Failed to load MC firmware!\n");
  989. return r;
  990. }
  991. } else if (adev->asic_type == CHIP_POLARIS11 ||
  992. adev->asic_type == CHIP_POLARIS10 ||
  993. adev->asic_type == CHIP_POLARIS12) {
  994. r = gmc_v8_0_polaris_mc_load_microcode(adev);
  995. if (r) {
  996. DRM_ERROR("Failed to load MC firmware!\n");
  997. return r;
  998. }
  999. }
  1000. r = gmc_v8_0_gart_enable(adev);
  1001. if (r)
  1002. return r;
  1003. return r;
  1004. }
  1005. static int gmc_v8_0_hw_fini(void *handle)
  1006. {
  1007. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1008. amdgpu_irq_put(adev, &adev->mc.vm_fault, 0);
  1009. gmc_v8_0_gart_disable(adev);
  1010. return 0;
  1011. }
  1012. static int gmc_v8_0_suspend(void *handle)
  1013. {
  1014. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1015. gmc_v8_0_hw_fini(adev);
  1016. return 0;
  1017. }
  1018. static int gmc_v8_0_resume(void *handle)
  1019. {
  1020. int r;
  1021. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1022. r = gmc_v8_0_hw_init(adev);
  1023. if (r)
  1024. return r;
  1025. amdgpu_vm_reset_all_ids(adev);
  1026. return 0;
  1027. }
  1028. static bool gmc_v8_0_is_idle(void *handle)
  1029. {
  1030. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1031. u32 tmp = RREG32(mmSRBM_STATUS);
  1032. if (tmp & (SRBM_STATUS__MCB_BUSY_MASK | SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK |
  1033. SRBM_STATUS__MCC_BUSY_MASK | SRBM_STATUS__MCD_BUSY_MASK | SRBM_STATUS__VMC_BUSY_MASK))
  1034. return false;
  1035. return true;
  1036. }
  1037. static int gmc_v8_0_wait_for_idle(void *handle)
  1038. {
  1039. unsigned i;
  1040. u32 tmp;
  1041. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1042. for (i = 0; i < adev->usec_timeout; i++) {
  1043. /* read MC_STATUS */
  1044. tmp = RREG32(mmSRBM_STATUS) & (SRBM_STATUS__MCB_BUSY_MASK |
  1045. SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK |
  1046. SRBM_STATUS__MCC_BUSY_MASK |
  1047. SRBM_STATUS__MCD_BUSY_MASK |
  1048. SRBM_STATUS__VMC_BUSY_MASK |
  1049. SRBM_STATUS__VMC1_BUSY_MASK);
  1050. if (!tmp)
  1051. return 0;
  1052. udelay(1);
  1053. }
  1054. return -ETIMEDOUT;
  1055. }
  1056. static bool gmc_v8_0_check_soft_reset(void *handle)
  1057. {
  1058. u32 srbm_soft_reset = 0;
  1059. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1060. u32 tmp = RREG32(mmSRBM_STATUS);
  1061. if (tmp & SRBM_STATUS__VMC_BUSY_MASK)
  1062. srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset,
  1063. SRBM_SOFT_RESET, SOFT_RESET_VMC, 1);
  1064. if (tmp & (SRBM_STATUS__MCB_BUSY_MASK | SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK |
  1065. SRBM_STATUS__MCC_BUSY_MASK | SRBM_STATUS__MCD_BUSY_MASK)) {
  1066. if (!(adev->flags & AMD_IS_APU))
  1067. srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset,
  1068. SRBM_SOFT_RESET, SOFT_RESET_MC, 1);
  1069. }
  1070. if (srbm_soft_reset) {
  1071. adev->mc.srbm_soft_reset = srbm_soft_reset;
  1072. return true;
  1073. } else {
  1074. adev->mc.srbm_soft_reset = 0;
  1075. return false;
  1076. }
  1077. }
  1078. static int gmc_v8_0_pre_soft_reset(void *handle)
  1079. {
  1080. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1081. if (!adev->mc.srbm_soft_reset)
  1082. return 0;
  1083. gmc_v8_0_mc_stop(adev);
  1084. if (gmc_v8_0_wait_for_idle(adev)) {
  1085. dev_warn(adev->dev, "Wait for GMC idle timed out !\n");
  1086. }
  1087. return 0;
  1088. }
  1089. static int gmc_v8_0_soft_reset(void *handle)
  1090. {
  1091. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1092. u32 srbm_soft_reset;
  1093. if (!adev->mc.srbm_soft_reset)
  1094. return 0;
  1095. srbm_soft_reset = adev->mc.srbm_soft_reset;
  1096. if (srbm_soft_reset) {
  1097. u32 tmp;
  1098. tmp = RREG32(mmSRBM_SOFT_RESET);
  1099. tmp |= srbm_soft_reset;
  1100. dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
  1101. WREG32(mmSRBM_SOFT_RESET, tmp);
  1102. tmp = RREG32(mmSRBM_SOFT_RESET);
  1103. udelay(50);
  1104. tmp &= ~srbm_soft_reset;
  1105. WREG32(mmSRBM_SOFT_RESET, tmp);
  1106. tmp = RREG32(mmSRBM_SOFT_RESET);
  1107. /* Wait a little for things to settle down */
  1108. udelay(50);
  1109. }
  1110. return 0;
  1111. }
  1112. static int gmc_v8_0_post_soft_reset(void *handle)
  1113. {
  1114. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1115. if (!adev->mc.srbm_soft_reset)
  1116. return 0;
  1117. gmc_v8_0_mc_resume(adev);
  1118. return 0;
  1119. }
  1120. static int gmc_v8_0_vm_fault_interrupt_state(struct amdgpu_device *adev,
  1121. struct amdgpu_irq_src *src,
  1122. unsigned type,
  1123. enum amdgpu_interrupt_state state)
  1124. {
  1125. u32 tmp;
  1126. u32 bits = (VM_CONTEXT1_CNTL__RANGE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1127. VM_CONTEXT1_CNTL__DUMMY_PAGE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1128. VM_CONTEXT1_CNTL__PDE0_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1129. VM_CONTEXT1_CNTL__VALID_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1130. VM_CONTEXT1_CNTL__READ_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1131. VM_CONTEXT1_CNTL__WRITE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1132. VM_CONTEXT1_CNTL__EXECUTE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK);
  1133. switch (state) {
  1134. case AMDGPU_IRQ_STATE_DISABLE:
  1135. /* system context */
  1136. tmp = RREG32(mmVM_CONTEXT0_CNTL);
  1137. tmp &= ~bits;
  1138. WREG32(mmVM_CONTEXT0_CNTL, tmp);
  1139. /* VMs */
  1140. tmp = RREG32(mmVM_CONTEXT1_CNTL);
  1141. tmp &= ~bits;
  1142. WREG32(mmVM_CONTEXT1_CNTL, tmp);
  1143. break;
  1144. case AMDGPU_IRQ_STATE_ENABLE:
  1145. /* system context */
  1146. tmp = RREG32(mmVM_CONTEXT0_CNTL);
  1147. tmp |= bits;
  1148. WREG32(mmVM_CONTEXT0_CNTL, tmp);
  1149. /* VMs */
  1150. tmp = RREG32(mmVM_CONTEXT1_CNTL);
  1151. tmp |= bits;
  1152. WREG32(mmVM_CONTEXT1_CNTL, tmp);
  1153. break;
  1154. default:
  1155. break;
  1156. }
  1157. return 0;
  1158. }
  1159. static int gmc_v8_0_process_interrupt(struct amdgpu_device *adev,
  1160. struct amdgpu_irq_src *source,
  1161. struct amdgpu_iv_entry *entry)
  1162. {
  1163. u32 addr, status, mc_client;
  1164. if (amdgpu_sriov_vf(adev)) {
  1165. dev_err(adev->dev, "GPU fault detected: %d 0x%08x\n",
  1166. entry->src_id, entry->src_data[0]);
  1167. dev_err(adev->dev, " Can't decode VM fault info here on SRIOV VF\n");
  1168. return 0;
  1169. }
  1170. addr = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_ADDR);
  1171. status = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_STATUS);
  1172. mc_client = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_MCCLIENT);
  1173. /* reset addr and status */
  1174. WREG32_P(mmVM_CONTEXT1_CNTL2, 1, ~1);
  1175. if (!addr && !status)
  1176. return 0;
  1177. if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_FIRST)
  1178. gmc_v8_0_set_fault_enable_default(adev, false);
  1179. if (printk_ratelimit()) {
  1180. dev_err(adev->dev, "GPU fault detected: %d 0x%08x\n",
  1181. entry->src_id, entry->src_data[0]);
  1182. dev_err(adev->dev, " VM_CONTEXT1_PROTECTION_FAULT_ADDR 0x%08X\n",
  1183. addr);
  1184. dev_err(adev->dev, " VM_CONTEXT1_PROTECTION_FAULT_STATUS 0x%08X\n",
  1185. status);
  1186. gmc_v8_0_vm_decode_fault(adev, status, addr, mc_client);
  1187. }
  1188. return 0;
  1189. }
  1190. static void fiji_update_mc_medium_grain_clock_gating(struct amdgpu_device *adev,
  1191. bool enable)
  1192. {
  1193. uint32_t data;
  1194. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_MC_MGCG)) {
  1195. data = RREG32(mmMC_HUB_MISC_HUB_CG);
  1196. data |= MC_HUB_MISC_HUB_CG__ENABLE_MASK;
  1197. WREG32(mmMC_HUB_MISC_HUB_CG, data);
  1198. data = RREG32(mmMC_HUB_MISC_SIP_CG);
  1199. data |= MC_HUB_MISC_SIP_CG__ENABLE_MASK;
  1200. WREG32(mmMC_HUB_MISC_SIP_CG, data);
  1201. data = RREG32(mmMC_HUB_MISC_VM_CG);
  1202. data |= MC_HUB_MISC_VM_CG__ENABLE_MASK;
  1203. WREG32(mmMC_HUB_MISC_VM_CG, data);
  1204. data = RREG32(mmMC_XPB_CLK_GAT);
  1205. data |= MC_XPB_CLK_GAT__ENABLE_MASK;
  1206. WREG32(mmMC_XPB_CLK_GAT, data);
  1207. data = RREG32(mmATC_MISC_CG);
  1208. data |= ATC_MISC_CG__ENABLE_MASK;
  1209. WREG32(mmATC_MISC_CG, data);
  1210. data = RREG32(mmMC_CITF_MISC_WR_CG);
  1211. data |= MC_CITF_MISC_WR_CG__ENABLE_MASK;
  1212. WREG32(mmMC_CITF_MISC_WR_CG, data);
  1213. data = RREG32(mmMC_CITF_MISC_RD_CG);
  1214. data |= MC_CITF_MISC_RD_CG__ENABLE_MASK;
  1215. WREG32(mmMC_CITF_MISC_RD_CG, data);
  1216. data = RREG32(mmMC_CITF_MISC_VM_CG);
  1217. data |= MC_CITF_MISC_VM_CG__ENABLE_MASK;
  1218. WREG32(mmMC_CITF_MISC_VM_CG, data);
  1219. data = RREG32(mmVM_L2_CG);
  1220. data |= VM_L2_CG__ENABLE_MASK;
  1221. WREG32(mmVM_L2_CG, data);
  1222. } else {
  1223. data = RREG32(mmMC_HUB_MISC_HUB_CG);
  1224. data &= ~MC_HUB_MISC_HUB_CG__ENABLE_MASK;
  1225. WREG32(mmMC_HUB_MISC_HUB_CG, data);
  1226. data = RREG32(mmMC_HUB_MISC_SIP_CG);
  1227. data &= ~MC_HUB_MISC_SIP_CG__ENABLE_MASK;
  1228. WREG32(mmMC_HUB_MISC_SIP_CG, data);
  1229. data = RREG32(mmMC_HUB_MISC_VM_CG);
  1230. data &= ~MC_HUB_MISC_VM_CG__ENABLE_MASK;
  1231. WREG32(mmMC_HUB_MISC_VM_CG, data);
  1232. data = RREG32(mmMC_XPB_CLK_GAT);
  1233. data &= ~MC_XPB_CLK_GAT__ENABLE_MASK;
  1234. WREG32(mmMC_XPB_CLK_GAT, data);
  1235. data = RREG32(mmATC_MISC_CG);
  1236. data &= ~ATC_MISC_CG__ENABLE_MASK;
  1237. WREG32(mmATC_MISC_CG, data);
  1238. data = RREG32(mmMC_CITF_MISC_WR_CG);
  1239. data &= ~MC_CITF_MISC_WR_CG__ENABLE_MASK;
  1240. WREG32(mmMC_CITF_MISC_WR_CG, data);
  1241. data = RREG32(mmMC_CITF_MISC_RD_CG);
  1242. data &= ~MC_CITF_MISC_RD_CG__ENABLE_MASK;
  1243. WREG32(mmMC_CITF_MISC_RD_CG, data);
  1244. data = RREG32(mmMC_CITF_MISC_VM_CG);
  1245. data &= ~MC_CITF_MISC_VM_CG__ENABLE_MASK;
  1246. WREG32(mmMC_CITF_MISC_VM_CG, data);
  1247. data = RREG32(mmVM_L2_CG);
  1248. data &= ~VM_L2_CG__ENABLE_MASK;
  1249. WREG32(mmVM_L2_CG, data);
  1250. }
  1251. }
  1252. static void fiji_update_mc_light_sleep(struct amdgpu_device *adev,
  1253. bool enable)
  1254. {
  1255. uint32_t data;
  1256. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_MC_LS)) {
  1257. data = RREG32(mmMC_HUB_MISC_HUB_CG);
  1258. data |= MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK;
  1259. WREG32(mmMC_HUB_MISC_HUB_CG, data);
  1260. data = RREG32(mmMC_HUB_MISC_SIP_CG);
  1261. data |= MC_HUB_MISC_SIP_CG__MEM_LS_ENABLE_MASK;
  1262. WREG32(mmMC_HUB_MISC_SIP_CG, data);
  1263. data = RREG32(mmMC_HUB_MISC_VM_CG);
  1264. data |= MC_HUB_MISC_VM_CG__MEM_LS_ENABLE_MASK;
  1265. WREG32(mmMC_HUB_MISC_VM_CG, data);
  1266. data = RREG32(mmMC_XPB_CLK_GAT);
  1267. data |= MC_XPB_CLK_GAT__MEM_LS_ENABLE_MASK;
  1268. WREG32(mmMC_XPB_CLK_GAT, data);
  1269. data = RREG32(mmATC_MISC_CG);
  1270. data |= ATC_MISC_CG__MEM_LS_ENABLE_MASK;
  1271. WREG32(mmATC_MISC_CG, data);
  1272. data = RREG32(mmMC_CITF_MISC_WR_CG);
  1273. data |= MC_CITF_MISC_WR_CG__MEM_LS_ENABLE_MASK;
  1274. WREG32(mmMC_CITF_MISC_WR_CG, data);
  1275. data = RREG32(mmMC_CITF_MISC_RD_CG);
  1276. data |= MC_CITF_MISC_RD_CG__MEM_LS_ENABLE_MASK;
  1277. WREG32(mmMC_CITF_MISC_RD_CG, data);
  1278. data = RREG32(mmMC_CITF_MISC_VM_CG);
  1279. data |= MC_CITF_MISC_VM_CG__MEM_LS_ENABLE_MASK;
  1280. WREG32(mmMC_CITF_MISC_VM_CG, data);
  1281. data = RREG32(mmVM_L2_CG);
  1282. data |= VM_L2_CG__MEM_LS_ENABLE_MASK;
  1283. WREG32(mmVM_L2_CG, data);
  1284. } else {
  1285. data = RREG32(mmMC_HUB_MISC_HUB_CG);
  1286. data &= ~MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK;
  1287. WREG32(mmMC_HUB_MISC_HUB_CG, data);
  1288. data = RREG32(mmMC_HUB_MISC_SIP_CG);
  1289. data &= ~MC_HUB_MISC_SIP_CG__MEM_LS_ENABLE_MASK;
  1290. WREG32(mmMC_HUB_MISC_SIP_CG, data);
  1291. data = RREG32(mmMC_HUB_MISC_VM_CG);
  1292. data &= ~MC_HUB_MISC_VM_CG__MEM_LS_ENABLE_MASK;
  1293. WREG32(mmMC_HUB_MISC_VM_CG, data);
  1294. data = RREG32(mmMC_XPB_CLK_GAT);
  1295. data &= ~MC_XPB_CLK_GAT__MEM_LS_ENABLE_MASK;
  1296. WREG32(mmMC_XPB_CLK_GAT, data);
  1297. data = RREG32(mmATC_MISC_CG);
  1298. data &= ~ATC_MISC_CG__MEM_LS_ENABLE_MASK;
  1299. WREG32(mmATC_MISC_CG, data);
  1300. data = RREG32(mmMC_CITF_MISC_WR_CG);
  1301. data &= ~MC_CITF_MISC_WR_CG__MEM_LS_ENABLE_MASK;
  1302. WREG32(mmMC_CITF_MISC_WR_CG, data);
  1303. data = RREG32(mmMC_CITF_MISC_RD_CG);
  1304. data &= ~MC_CITF_MISC_RD_CG__MEM_LS_ENABLE_MASK;
  1305. WREG32(mmMC_CITF_MISC_RD_CG, data);
  1306. data = RREG32(mmMC_CITF_MISC_VM_CG);
  1307. data &= ~MC_CITF_MISC_VM_CG__MEM_LS_ENABLE_MASK;
  1308. WREG32(mmMC_CITF_MISC_VM_CG, data);
  1309. data = RREG32(mmVM_L2_CG);
  1310. data &= ~VM_L2_CG__MEM_LS_ENABLE_MASK;
  1311. WREG32(mmVM_L2_CG, data);
  1312. }
  1313. }
  1314. static int gmc_v8_0_set_clockgating_state(void *handle,
  1315. enum amd_clockgating_state state)
  1316. {
  1317. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1318. if (amdgpu_sriov_vf(adev))
  1319. return 0;
  1320. switch (adev->asic_type) {
  1321. case CHIP_FIJI:
  1322. fiji_update_mc_medium_grain_clock_gating(adev,
  1323. state == AMD_CG_STATE_GATE);
  1324. fiji_update_mc_light_sleep(adev,
  1325. state == AMD_CG_STATE_GATE);
  1326. break;
  1327. default:
  1328. break;
  1329. }
  1330. return 0;
  1331. }
  1332. static int gmc_v8_0_set_powergating_state(void *handle,
  1333. enum amd_powergating_state state)
  1334. {
  1335. return 0;
  1336. }
  1337. static void gmc_v8_0_get_clockgating_state(void *handle, u32 *flags)
  1338. {
  1339. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1340. int data;
  1341. if (amdgpu_sriov_vf(adev))
  1342. *flags = 0;
  1343. /* AMD_CG_SUPPORT_MC_MGCG */
  1344. data = RREG32(mmMC_HUB_MISC_HUB_CG);
  1345. if (data & MC_HUB_MISC_HUB_CG__ENABLE_MASK)
  1346. *flags |= AMD_CG_SUPPORT_MC_MGCG;
  1347. /* AMD_CG_SUPPORT_MC_LS */
  1348. if (data & MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK)
  1349. *flags |= AMD_CG_SUPPORT_MC_LS;
  1350. }
  1351. static const struct amd_ip_funcs gmc_v8_0_ip_funcs = {
  1352. .name = "gmc_v8_0",
  1353. .early_init = gmc_v8_0_early_init,
  1354. .late_init = gmc_v8_0_late_init,
  1355. .sw_init = gmc_v8_0_sw_init,
  1356. .sw_fini = gmc_v8_0_sw_fini,
  1357. .hw_init = gmc_v8_0_hw_init,
  1358. .hw_fini = gmc_v8_0_hw_fini,
  1359. .suspend = gmc_v8_0_suspend,
  1360. .resume = gmc_v8_0_resume,
  1361. .is_idle = gmc_v8_0_is_idle,
  1362. .wait_for_idle = gmc_v8_0_wait_for_idle,
  1363. .check_soft_reset = gmc_v8_0_check_soft_reset,
  1364. .pre_soft_reset = gmc_v8_0_pre_soft_reset,
  1365. .soft_reset = gmc_v8_0_soft_reset,
  1366. .post_soft_reset = gmc_v8_0_post_soft_reset,
  1367. .set_clockgating_state = gmc_v8_0_set_clockgating_state,
  1368. .set_powergating_state = gmc_v8_0_set_powergating_state,
  1369. .get_clockgating_state = gmc_v8_0_get_clockgating_state,
  1370. };
  1371. static const struct amdgpu_gart_funcs gmc_v8_0_gart_funcs = {
  1372. .flush_gpu_tlb = gmc_v8_0_gart_flush_gpu_tlb,
  1373. .set_pte_pde = gmc_v8_0_gart_set_pte_pde,
  1374. .set_prt = gmc_v8_0_set_prt,
  1375. .get_vm_pte_flags = gmc_v8_0_get_vm_pte_flags,
  1376. .get_vm_pde = gmc_v8_0_get_vm_pde
  1377. };
  1378. static const struct amdgpu_irq_src_funcs gmc_v8_0_irq_funcs = {
  1379. .set = gmc_v8_0_vm_fault_interrupt_state,
  1380. .process = gmc_v8_0_process_interrupt,
  1381. };
  1382. static void gmc_v8_0_set_gart_funcs(struct amdgpu_device *adev)
  1383. {
  1384. if (adev->gart.gart_funcs == NULL)
  1385. adev->gart.gart_funcs = &gmc_v8_0_gart_funcs;
  1386. }
  1387. static void gmc_v8_0_set_irq_funcs(struct amdgpu_device *adev)
  1388. {
  1389. adev->mc.vm_fault.num_types = 1;
  1390. adev->mc.vm_fault.funcs = &gmc_v8_0_irq_funcs;
  1391. }
  1392. const struct amdgpu_ip_block_version gmc_v8_0_ip_block =
  1393. {
  1394. .type = AMD_IP_BLOCK_TYPE_GMC,
  1395. .major = 8,
  1396. .minor = 0,
  1397. .rev = 0,
  1398. .funcs = &gmc_v8_0_ip_funcs,
  1399. };
  1400. const struct amdgpu_ip_block_version gmc_v8_1_ip_block =
  1401. {
  1402. .type = AMD_IP_BLOCK_TYPE_GMC,
  1403. .major = 8,
  1404. .minor = 1,
  1405. .rev = 0,
  1406. .funcs = &gmc_v8_0_ip_funcs,
  1407. };
  1408. const struct amdgpu_ip_block_version gmc_v8_5_ip_block =
  1409. {
  1410. .type = AMD_IP_BLOCK_TYPE_GMC,
  1411. .major = 8,
  1412. .minor = 5,
  1413. .rev = 0,
  1414. .funcs = &gmc_v8_0_ip_funcs,
  1415. };