intel.c 30 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034
  1. // SPDX-License-Identifier: GPL-2.0
  2. #include <linux/kernel.h>
  3. #include <linux/string.h>
  4. #include <linux/bitops.h>
  5. #include <linux/smp.h>
  6. #include <linux/sched.h>
  7. #include <linux/sched/clock.h>
  8. #include <linux/thread_info.h>
  9. #include <linux/init.h>
  10. #include <linux/uaccess.h>
  11. #include <asm/cpufeature.h>
  12. #include <asm/pgtable.h>
  13. #include <asm/msr.h>
  14. #include <asm/bugs.h>
  15. #include <asm/cpu.h>
  16. #include <asm/intel-family.h>
  17. #include <asm/microcode_intel.h>
  18. #include <asm/hwcap2.h>
  19. #include <asm/elf.h>
  20. #ifdef CONFIG_X86_64
  21. #include <linux/topology.h>
  22. #endif
  23. #include "cpu.h"
  24. #ifdef CONFIG_X86_LOCAL_APIC
  25. #include <asm/mpspec.h>
  26. #include <asm/apic.h>
  27. #endif
  28. /*
  29. * Just in case our CPU detection goes bad, or you have a weird system,
  30. * allow a way to override the automatic disabling of MPX.
  31. */
  32. static int forcempx;
  33. static int __init forcempx_setup(char *__unused)
  34. {
  35. forcempx = 1;
  36. return 1;
  37. }
  38. __setup("intel-skd-046-workaround=disable", forcempx_setup);
  39. void check_mpx_erratum(struct cpuinfo_x86 *c)
  40. {
  41. if (forcempx)
  42. return;
  43. /*
  44. * Turn off the MPX feature on CPUs where SMEP is not
  45. * available or disabled.
  46. *
  47. * Works around Intel Erratum SKD046: "Branch Instructions
  48. * May Initialize MPX Bound Registers Incorrectly".
  49. *
  50. * This might falsely disable MPX on systems without
  51. * SMEP, like Atom processors without SMEP. But there
  52. * is no such hardware known at the moment.
  53. */
  54. if (cpu_has(c, X86_FEATURE_MPX) && !cpu_has(c, X86_FEATURE_SMEP)) {
  55. setup_clear_cpu_cap(X86_FEATURE_MPX);
  56. pr_warn("x86/mpx: Disabling MPX since SMEP not present\n");
  57. }
  58. }
  59. static bool ring3mwait_disabled __read_mostly;
  60. static int __init ring3mwait_disable(char *__unused)
  61. {
  62. ring3mwait_disabled = true;
  63. return 0;
  64. }
  65. __setup("ring3mwait=disable", ring3mwait_disable);
  66. static void probe_xeon_phi_r3mwait(struct cpuinfo_x86 *c)
  67. {
  68. /*
  69. * Ring 3 MONITOR/MWAIT feature cannot be detected without
  70. * cpu model and family comparison.
  71. */
  72. if (c->x86 != 6)
  73. return;
  74. switch (c->x86_model) {
  75. case INTEL_FAM6_XEON_PHI_KNL:
  76. case INTEL_FAM6_XEON_PHI_KNM:
  77. break;
  78. default:
  79. return;
  80. }
  81. if (ring3mwait_disabled)
  82. return;
  83. set_cpu_cap(c, X86_FEATURE_RING3MWAIT);
  84. this_cpu_or(msr_misc_features_shadow,
  85. 1UL << MSR_MISC_FEATURES_ENABLES_RING3MWAIT_BIT);
  86. if (c == &boot_cpu_data)
  87. ELF_HWCAP2 |= HWCAP2_RING3MWAIT;
  88. }
  89. /*
  90. * Early microcode releases for the Spectre v2 mitigation were broken.
  91. * Information taken from;
  92. * - https://newsroom.intel.com/wp-content/uploads/sites/11/2018/03/microcode-update-guidance.pdf
  93. * - https://kb.vmware.com/s/article/52345
  94. * - Microcode revisions observed in the wild
  95. * - Release note from 20180108 microcode release
  96. */
  97. struct sku_microcode {
  98. u8 model;
  99. u8 stepping;
  100. u32 microcode;
  101. };
  102. static const struct sku_microcode spectre_bad_microcodes[] = {
  103. { INTEL_FAM6_KABYLAKE_DESKTOP, 0x0B, 0x80 },
  104. { INTEL_FAM6_KABYLAKE_DESKTOP, 0x0A, 0x80 },
  105. { INTEL_FAM6_KABYLAKE_DESKTOP, 0x09, 0x80 },
  106. { INTEL_FAM6_KABYLAKE_MOBILE, 0x0A, 0x80 },
  107. { INTEL_FAM6_KABYLAKE_MOBILE, 0x09, 0x80 },
  108. { INTEL_FAM6_SKYLAKE_X, 0x03, 0x0100013e },
  109. { INTEL_FAM6_SKYLAKE_X, 0x04, 0x0200003c },
  110. { INTEL_FAM6_BROADWELL_CORE, 0x04, 0x28 },
  111. { INTEL_FAM6_BROADWELL_GT3E, 0x01, 0x1b },
  112. { INTEL_FAM6_BROADWELL_XEON_D, 0x02, 0x14 },
  113. { INTEL_FAM6_BROADWELL_XEON_D, 0x03, 0x07000011 },
  114. { INTEL_FAM6_BROADWELL_X, 0x01, 0x0b000025 },
  115. { INTEL_FAM6_HASWELL_ULT, 0x01, 0x21 },
  116. { INTEL_FAM6_HASWELL_GT3E, 0x01, 0x18 },
  117. { INTEL_FAM6_HASWELL_CORE, 0x03, 0x23 },
  118. { INTEL_FAM6_HASWELL_X, 0x02, 0x3b },
  119. { INTEL_FAM6_HASWELL_X, 0x04, 0x10 },
  120. { INTEL_FAM6_IVYBRIDGE_X, 0x04, 0x42a },
  121. /* Observed in the wild */
  122. { INTEL_FAM6_SANDYBRIDGE_X, 0x06, 0x61b },
  123. { INTEL_FAM6_SANDYBRIDGE_X, 0x07, 0x712 },
  124. };
  125. static bool bad_spectre_microcode(struct cpuinfo_x86 *c)
  126. {
  127. int i;
  128. /*
  129. * We know that the hypervisor lie to us on the microcode version so
  130. * we may as well hope that it is running the correct version.
  131. */
  132. if (cpu_has(c, X86_FEATURE_HYPERVISOR))
  133. return false;
  134. for (i = 0; i < ARRAY_SIZE(spectre_bad_microcodes); i++) {
  135. if (c->x86_model == spectre_bad_microcodes[i].model &&
  136. c->x86_stepping == spectre_bad_microcodes[i].stepping)
  137. return (c->microcode <= spectre_bad_microcodes[i].microcode);
  138. }
  139. return false;
  140. }
  141. static void early_init_intel(struct cpuinfo_x86 *c)
  142. {
  143. u64 misc_enable;
  144. /* Unmask CPUID levels if masked: */
  145. if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
  146. if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
  147. MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) {
  148. c->cpuid_level = cpuid_eax(0);
  149. get_cpu_cap(c);
  150. }
  151. }
  152. if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
  153. (c->x86 == 0x6 && c->x86_model >= 0x0e))
  154. set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
  155. if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64))
  156. c->microcode = intel_get_microcode_revision();
  157. /* Now if any of them are set, check the blacklist and clear the lot */
  158. if ((cpu_has(c, X86_FEATURE_SPEC_CTRL) ||
  159. cpu_has(c, X86_FEATURE_INTEL_STIBP) ||
  160. cpu_has(c, X86_FEATURE_IBRS) || cpu_has(c, X86_FEATURE_IBPB) ||
  161. cpu_has(c, X86_FEATURE_STIBP)) && bad_spectre_microcode(c)) {
  162. pr_warn("Intel Spectre v2 broken microcode detected; disabling Speculation Control\n");
  163. setup_clear_cpu_cap(X86_FEATURE_IBRS);
  164. setup_clear_cpu_cap(X86_FEATURE_IBPB);
  165. setup_clear_cpu_cap(X86_FEATURE_STIBP);
  166. setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL);
  167. setup_clear_cpu_cap(X86_FEATURE_INTEL_STIBP);
  168. }
  169. /*
  170. * Atom erratum AAE44/AAF40/AAG38/AAH41:
  171. *
  172. * A race condition between speculative fetches and invalidating
  173. * a large page. This is worked around in microcode, but we
  174. * need the microcode to have already been loaded... so if it is
  175. * not, recommend a BIOS update and disable large pages.
  176. */
  177. if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_stepping <= 2 &&
  178. c->microcode < 0x20e) {
  179. pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n");
  180. clear_cpu_cap(c, X86_FEATURE_PSE);
  181. }
  182. #ifdef CONFIG_X86_64
  183. set_cpu_cap(c, X86_FEATURE_SYSENTER32);
  184. #else
  185. /* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
  186. if (c->x86 == 15 && c->x86_cache_alignment == 64)
  187. c->x86_cache_alignment = 128;
  188. #endif
  189. /* CPUID workaround for 0F33/0F34 CPU */
  190. if (c->x86 == 0xF && c->x86_model == 0x3
  191. && (c->x86_stepping == 0x3 || c->x86_stepping == 0x4))
  192. c->x86_phys_bits = 36;
  193. /*
  194. * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
  195. * with P/T states and does not stop in deep C-states.
  196. *
  197. * It is also reliable across cores and sockets. (but not across
  198. * cabinets - we turn it off in that case explicitly.)
  199. */
  200. if (c->x86_power & (1 << 8)) {
  201. set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
  202. set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
  203. }
  204. /* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
  205. if (c->x86 == 6) {
  206. switch (c->x86_model) {
  207. case 0x27: /* Penwell */
  208. case 0x35: /* Cloverview */
  209. case 0x4a: /* Merrifield */
  210. set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
  211. break;
  212. default:
  213. break;
  214. }
  215. }
  216. /*
  217. * There is a known erratum on Pentium III and Core Solo
  218. * and Core Duo CPUs.
  219. * " Page with PAT set to WC while associated MTRR is UC
  220. * may consolidate to UC "
  221. * Because of this erratum, it is better to stick with
  222. * setting WC in MTRR rather than using PAT on these CPUs.
  223. *
  224. * Enable PAT WC only on P4, Core 2 or later CPUs.
  225. */
  226. if (c->x86 == 6 && c->x86_model < 15)
  227. clear_cpu_cap(c, X86_FEATURE_PAT);
  228. /*
  229. * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
  230. * clear the fast string and enhanced fast string CPU capabilities.
  231. */
  232. if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
  233. rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
  234. if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
  235. pr_info("Disabled fast string operations\n");
  236. setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
  237. setup_clear_cpu_cap(X86_FEATURE_ERMS);
  238. }
  239. }
  240. /*
  241. * Intel Quark Core DevMan_001.pdf section 6.4.11
  242. * "The operating system also is required to invalidate (i.e., flush)
  243. * the TLB when any changes are made to any of the page table entries.
  244. * The operating system must reload CR3 to cause the TLB to be flushed"
  245. *
  246. * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h
  247. * should be false so that __flush_tlb_all() causes CR3 insted of CR4.PGE
  248. * to be modified.
  249. */
  250. if (c->x86 == 5 && c->x86_model == 9) {
  251. pr_info("Disabling PGE capability bit\n");
  252. setup_clear_cpu_cap(X86_FEATURE_PGE);
  253. }
  254. if (c->cpuid_level >= 0x00000001) {
  255. u32 eax, ebx, ecx, edx;
  256. cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
  257. /*
  258. * If HTT (EDX[28]) is set EBX[16:23] contain the number of
  259. * apicids which are reserved per package. Store the resulting
  260. * shift value for the package management code.
  261. */
  262. if (edx & (1U << 28))
  263. c->x86_coreid_bits = get_count_order((ebx >> 16) & 0xff);
  264. }
  265. check_mpx_erratum(c);
  266. }
  267. #ifdef CONFIG_X86_32
  268. /*
  269. * Early probe support logic for ppro memory erratum #50
  270. *
  271. * This is called before we do cpu ident work
  272. */
  273. int ppro_with_ram_bug(void)
  274. {
  275. /* Uses data from early_cpu_detect now */
  276. if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
  277. boot_cpu_data.x86 == 6 &&
  278. boot_cpu_data.x86_model == 1 &&
  279. boot_cpu_data.x86_stepping < 8) {
  280. pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n");
  281. return 1;
  282. }
  283. return 0;
  284. }
  285. static void intel_smp_check(struct cpuinfo_x86 *c)
  286. {
  287. /* calling is from identify_secondary_cpu() ? */
  288. if (!c->cpu_index)
  289. return;
  290. /*
  291. * Mask B, Pentium, but not Pentium MMX
  292. */
  293. if (c->x86 == 5 &&
  294. c->x86_stepping >= 1 && c->x86_stepping <= 4 &&
  295. c->x86_model <= 3) {
  296. /*
  297. * Remember we have B step Pentia with bugs
  298. */
  299. WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
  300. "with B stepping processors.\n");
  301. }
  302. }
  303. static int forcepae;
  304. static int __init forcepae_setup(char *__unused)
  305. {
  306. forcepae = 1;
  307. return 1;
  308. }
  309. __setup("forcepae", forcepae_setup);
  310. static void intel_workarounds(struct cpuinfo_x86 *c)
  311. {
  312. #ifdef CONFIG_X86_F00F_BUG
  313. /*
  314. * All models of Pentium and Pentium with MMX technology CPUs
  315. * have the F0 0F bug, which lets nonprivileged users lock up the
  316. * system. Announce that the fault handler will be checking for it.
  317. * The Quark is also family 5, but does not have the same bug.
  318. */
  319. clear_cpu_bug(c, X86_BUG_F00F);
  320. if (c->x86 == 5 && c->x86_model < 9) {
  321. static int f00f_workaround_enabled;
  322. set_cpu_bug(c, X86_BUG_F00F);
  323. if (!f00f_workaround_enabled) {
  324. pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n");
  325. f00f_workaround_enabled = 1;
  326. }
  327. }
  328. #endif
  329. /*
  330. * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
  331. * model 3 mask 3
  332. */
  333. if ((c->x86<<8 | c->x86_model<<4 | c->x86_stepping) < 0x633)
  334. clear_cpu_cap(c, X86_FEATURE_SEP);
  335. /*
  336. * PAE CPUID issue: many Pentium M report no PAE but may have a
  337. * functionally usable PAE implementation.
  338. * Forcefully enable PAE if kernel parameter "forcepae" is present.
  339. */
  340. if (forcepae) {
  341. pr_warn("PAE forced!\n");
  342. set_cpu_cap(c, X86_FEATURE_PAE);
  343. add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
  344. }
  345. /*
  346. * P4 Xeon erratum 037 workaround.
  347. * Hardware prefetcher may cause stale data to be loaded into the cache.
  348. */
  349. if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_stepping == 1)) {
  350. if (msr_set_bit(MSR_IA32_MISC_ENABLE,
  351. MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) {
  352. pr_info("CPU: C0 stepping P4 Xeon detected.\n");
  353. pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n");
  354. }
  355. }
  356. /*
  357. * See if we have a good local APIC by checking for buggy Pentia,
  358. * i.e. all B steppings and the C2 stepping of P54C when using their
  359. * integrated APIC (see 11AP erratum in "Pentium Processor
  360. * Specification Update").
  361. */
  362. if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
  363. (c->x86_stepping < 0x6 || c->x86_stepping == 0xb))
  364. set_cpu_bug(c, X86_BUG_11AP);
  365. #ifdef CONFIG_X86_INTEL_USERCOPY
  366. /*
  367. * Set up the preferred alignment for movsl bulk memory moves
  368. */
  369. switch (c->x86) {
  370. case 4: /* 486: untested */
  371. break;
  372. case 5: /* Old Pentia: untested */
  373. break;
  374. case 6: /* PII/PIII only like movsl with 8-byte alignment */
  375. movsl_mask.mask = 7;
  376. break;
  377. case 15: /* P4 is OK down to 8-byte alignment */
  378. movsl_mask.mask = 7;
  379. break;
  380. }
  381. #endif
  382. intel_smp_check(c);
  383. }
  384. #else
  385. static void intel_workarounds(struct cpuinfo_x86 *c)
  386. {
  387. }
  388. #endif
  389. static void srat_detect_node(struct cpuinfo_x86 *c)
  390. {
  391. #ifdef CONFIG_NUMA
  392. unsigned node;
  393. int cpu = smp_processor_id();
  394. /* Don't do the funky fallback heuristics the AMD version employs
  395. for now. */
  396. node = numa_cpu_node(cpu);
  397. if (node == NUMA_NO_NODE || !node_online(node)) {
  398. /* reuse the value from init_cpu_to_node() */
  399. node = cpu_to_node(cpu);
  400. }
  401. numa_set_node(cpu, node);
  402. #endif
  403. }
  404. /*
  405. * find out the number of processor cores on the die
  406. */
  407. static int intel_num_cpu_cores(struct cpuinfo_x86 *c)
  408. {
  409. unsigned int eax, ebx, ecx, edx;
  410. if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
  411. return 1;
  412. /* Intel has a non-standard dependency on %ecx for this CPUID level. */
  413. cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
  414. if (eax & 0x1f)
  415. return (eax >> 26) + 1;
  416. else
  417. return 1;
  418. }
  419. static void detect_vmx_virtcap(struct cpuinfo_x86 *c)
  420. {
  421. /* Intel VMX MSR indicated features */
  422. #define X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW 0x00200000
  423. #define X86_VMX_FEATURE_PROC_CTLS_VNMI 0x00400000
  424. #define X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS 0x80000000
  425. #define X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC 0x00000001
  426. #define X86_VMX_FEATURE_PROC_CTLS2_EPT 0x00000002
  427. #define X86_VMX_FEATURE_PROC_CTLS2_VPID 0x00000020
  428. u32 vmx_msr_low, vmx_msr_high, msr_ctl, msr_ctl2;
  429. clear_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
  430. clear_cpu_cap(c, X86_FEATURE_VNMI);
  431. clear_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
  432. clear_cpu_cap(c, X86_FEATURE_EPT);
  433. clear_cpu_cap(c, X86_FEATURE_VPID);
  434. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, vmx_msr_low, vmx_msr_high);
  435. msr_ctl = vmx_msr_high | vmx_msr_low;
  436. if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW)
  437. set_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
  438. if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_VNMI)
  439. set_cpu_cap(c, X86_FEATURE_VNMI);
  440. if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS) {
  441. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
  442. vmx_msr_low, vmx_msr_high);
  443. msr_ctl2 = vmx_msr_high | vmx_msr_low;
  444. if ((msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC) &&
  445. (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW))
  446. set_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
  447. if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_EPT)
  448. set_cpu_cap(c, X86_FEATURE_EPT);
  449. if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VPID)
  450. set_cpu_cap(c, X86_FEATURE_VPID);
  451. }
  452. }
  453. #define MSR_IA32_TME_ACTIVATE 0x982
  454. /* Helpers to access TME_ACTIVATE MSR */
  455. #define TME_ACTIVATE_LOCKED(x) (x & 0x1)
  456. #define TME_ACTIVATE_ENABLED(x) (x & 0x2)
  457. #define TME_ACTIVATE_POLICY(x) ((x >> 4) & 0xf) /* Bits 7:4 */
  458. #define TME_ACTIVATE_POLICY_AES_XTS_128 0
  459. #define TME_ACTIVATE_KEYID_BITS(x) ((x >> 32) & 0xf) /* Bits 35:32 */
  460. #define TME_ACTIVATE_CRYPTO_ALGS(x) ((x >> 48) & 0xffff) /* Bits 63:48 */
  461. #define TME_ACTIVATE_CRYPTO_AES_XTS_128 1
  462. /* Values for mktme_status (SW only construct) */
  463. #define MKTME_ENABLED 0
  464. #define MKTME_DISABLED 1
  465. #define MKTME_UNINITIALIZED 2
  466. static int mktme_status = MKTME_UNINITIALIZED;
  467. static void detect_tme(struct cpuinfo_x86 *c)
  468. {
  469. u64 tme_activate, tme_policy, tme_crypto_algs;
  470. int keyid_bits = 0, nr_keyids = 0;
  471. static u64 tme_activate_cpu0 = 0;
  472. rdmsrl(MSR_IA32_TME_ACTIVATE, tme_activate);
  473. if (mktme_status != MKTME_UNINITIALIZED) {
  474. if (tme_activate != tme_activate_cpu0) {
  475. /* Broken BIOS? */
  476. pr_err_once("x86/tme: configuration is inconsistent between CPUs\n");
  477. pr_err_once("x86/tme: MKTME is not usable\n");
  478. mktme_status = MKTME_DISABLED;
  479. /* Proceed. We may need to exclude bits from x86_phys_bits. */
  480. }
  481. } else {
  482. tme_activate_cpu0 = tme_activate;
  483. }
  484. if (!TME_ACTIVATE_LOCKED(tme_activate) || !TME_ACTIVATE_ENABLED(tme_activate)) {
  485. pr_info_once("x86/tme: not enabled by BIOS\n");
  486. mktme_status = MKTME_DISABLED;
  487. return;
  488. }
  489. if (mktme_status != MKTME_UNINITIALIZED)
  490. goto detect_keyid_bits;
  491. pr_info("x86/tme: enabled by BIOS\n");
  492. tme_policy = TME_ACTIVATE_POLICY(tme_activate);
  493. if (tme_policy != TME_ACTIVATE_POLICY_AES_XTS_128)
  494. pr_warn("x86/tme: Unknown policy is active: %#llx\n", tme_policy);
  495. tme_crypto_algs = TME_ACTIVATE_CRYPTO_ALGS(tme_activate);
  496. if (!(tme_crypto_algs & TME_ACTIVATE_CRYPTO_AES_XTS_128)) {
  497. pr_err("x86/mktme: No known encryption algorithm is supported: %#llx\n",
  498. tme_crypto_algs);
  499. mktme_status = MKTME_DISABLED;
  500. }
  501. detect_keyid_bits:
  502. keyid_bits = TME_ACTIVATE_KEYID_BITS(tme_activate);
  503. nr_keyids = (1UL << keyid_bits) - 1;
  504. if (nr_keyids) {
  505. pr_info_once("x86/mktme: enabled by BIOS\n");
  506. pr_info_once("x86/mktme: %d KeyIDs available\n", nr_keyids);
  507. } else {
  508. pr_info_once("x86/mktme: disabled by BIOS\n");
  509. }
  510. if (mktme_status == MKTME_UNINITIALIZED) {
  511. /* MKTME is usable */
  512. mktme_status = MKTME_ENABLED;
  513. }
  514. /*
  515. * KeyID bits effectively lower the number of physical address
  516. * bits. Update cpuinfo_x86::x86_phys_bits accordingly.
  517. */
  518. c->x86_phys_bits -= keyid_bits;
  519. }
  520. static void init_intel_energy_perf(struct cpuinfo_x86 *c)
  521. {
  522. u64 epb;
  523. /*
  524. * Initialize MSR_IA32_ENERGY_PERF_BIAS if not already initialized.
  525. * (x86_energy_perf_policy(8) is available to change it at run-time.)
  526. */
  527. if (!cpu_has(c, X86_FEATURE_EPB))
  528. return;
  529. rdmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
  530. if ((epb & 0xF) != ENERGY_PERF_BIAS_PERFORMANCE)
  531. return;
  532. pr_warn_once("ENERGY_PERF_BIAS: Set to 'normal', was 'performance'\n");
  533. pr_warn_once("ENERGY_PERF_BIAS: View and update with x86_energy_perf_policy(8)\n");
  534. epb = (epb & ~0xF) | ENERGY_PERF_BIAS_NORMAL;
  535. wrmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
  536. }
  537. static void intel_bsp_resume(struct cpuinfo_x86 *c)
  538. {
  539. /*
  540. * MSR_IA32_ENERGY_PERF_BIAS is lost across suspend/resume,
  541. * so reinitialize it properly like during bootup:
  542. */
  543. init_intel_energy_perf(c);
  544. }
  545. static void init_cpuid_fault(struct cpuinfo_x86 *c)
  546. {
  547. u64 msr;
  548. if (!rdmsrl_safe(MSR_PLATFORM_INFO, &msr)) {
  549. if (msr & MSR_PLATFORM_INFO_CPUID_FAULT)
  550. set_cpu_cap(c, X86_FEATURE_CPUID_FAULT);
  551. }
  552. }
  553. static void init_intel_misc_features(struct cpuinfo_x86 *c)
  554. {
  555. u64 msr;
  556. if (rdmsrl_safe(MSR_MISC_FEATURES_ENABLES, &msr))
  557. return;
  558. /* Clear all MISC features */
  559. this_cpu_write(msr_misc_features_shadow, 0);
  560. /* Check features and update capabilities and shadow control bits */
  561. init_cpuid_fault(c);
  562. probe_xeon_phi_r3mwait(c);
  563. msr = this_cpu_read(msr_misc_features_shadow);
  564. wrmsrl(MSR_MISC_FEATURES_ENABLES, msr);
  565. }
  566. static void init_intel(struct cpuinfo_x86 *c)
  567. {
  568. unsigned int l2 = 0;
  569. early_init_intel(c);
  570. intel_workarounds(c);
  571. /*
  572. * Detect the extended topology information if available. This
  573. * will reinitialise the initial_apicid which will be used
  574. * in init_intel_cacheinfo()
  575. */
  576. detect_extended_topology(c);
  577. if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
  578. /*
  579. * let's use the legacy cpuid vector 0x1 and 0x4 for topology
  580. * detection.
  581. */
  582. c->x86_max_cores = intel_num_cpu_cores(c);
  583. #ifdef CONFIG_X86_32
  584. detect_ht(c);
  585. #endif
  586. }
  587. l2 = init_intel_cacheinfo(c);
  588. /* Detect legacy cache sizes if init_intel_cacheinfo did not */
  589. if (l2 == 0) {
  590. cpu_detect_cache_sizes(c);
  591. l2 = c->x86_cache_size;
  592. }
  593. if (c->cpuid_level > 9) {
  594. unsigned eax = cpuid_eax(10);
  595. /* Check for version and the number of counters */
  596. if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
  597. set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
  598. }
  599. if (cpu_has(c, X86_FEATURE_XMM2))
  600. set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
  601. if (boot_cpu_has(X86_FEATURE_DS)) {
  602. unsigned int l1;
  603. rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
  604. if (!(l1 & (1<<11)))
  605. set_cpu_cap(c, X86_FEATURE_BTS);
  606. if (!(l1 & (1<<12)))
  607. set_cpu_cap(c, X86_FEATURE_PEBS);
  608. }
  609. if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_CLFLUSH) &&
  610. (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
  611. set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
  612. if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_MWAIT) &&
  613. ((c->x86_model == INTEL_FAM6_ATOM_GOLDMONT)))
  614. set_cpu_bug(c, X86_BUG_MONITOR);
  615. #ifdef CONFIG_X86_64
  616. if (c->x86 == 15)
  617. c->x86_cache_alignment = c->x86_clflush_size * 2;
  618. if (c->x86 == 6)
  619. set_cpu_cap(c, X86_FEATURE_REP_GOOD);
  620. #else
  621. /*
  622. * Names for the Pentium II/Celeron processors
  623. * detectable only by also checking the cache size.
  624. * Dixon is NOT a Celeron.
  625. */
  626. if (c->x86 == 6) {
  627. char *p = NULL;
  628. switch (c->x86_model) {
  629. case 5:
  630. if (l2 == 0)
  631. p = "Celeron (Covington)";
  632. else if (l2 == 256)
  633. p = "Mobile Pentium II (Dixon)";
  634. break;
  635. case 6:
  636. if (l2 == 128)
  637. p = "Celeron (Mendocino)";
  638. else if (c->x86_stepping == 0 || c->x86_stepping == 5)
  639. p = "Celeron-A";
  640. break;
  641. case 8:
  642. if (l2 == 128)
  643. p = "Celeron (Coppermine)";
  644. break;
  645. }
  646. if (p)
  647. strcpy(c->x86_model_id, p);
  648. }
  649. if (c->x86 == 15)
  650. set_cpu_cap(c, X86_FEATURE_P4);
  651. if (c->x86 == 6)
  652. set_cpu_cap(c, X86_FEATURE_P3);
  653. #endif
  654. /* Work around errata */
  655. srat_detect_node(c);
  656. if (cpu_has(c, X86_FEATURE_VMX))
  657. detect_vmx_virtcap(c);
  658. if (cpu_has(c, X86_FEATURE_TME))
  659. detect_tme(c);
  660. init_intel_energy_perf(c);
  661. init_intel_misc_features(c);
  662. }
  663. #ifdef CONFIG_X86_32
  664. static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
  665. {
  666. /*
  667. * Intel PIII Tualatin. This comes in two flavours.
  668. * One has 256kb of cache, the other 512. We have no way
  669. * to determine which, so we use a boottime override
  670. * for the 512kb model, and assume 256 otherwise.
  671. */
  672. if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
  673. size = 256;
  674. /*
  675. * Intel Quark SoC X1000 contains a 4-way set associative
  676. * 16K cache with a 16 byte cache line and 256 lines per tag
  677. */
  678. if ((c->x86 == 5) && (c->x86_model == 9))
  679. size = 16;
  680. return size;
  681. }
  682. #endif
  683. #define TLB_INST_4K 0x01
  684. #define TLB_INST_4M 0x02
  685. #define TLB_INST_2M_4M 0x03
  686. #define TLB_INST_ALL 0x05
  687. #define TLB_INST_1G 0x06
  688. #define TLB_DATA_4K 0x11
  689. #define TLB_DATA_4M 0x12
  690. #define TLB_DATA_2M_4M 0x13
  691. #define TLB_DATA_4K_4M 0x14
  692. #define TLB_DATA_1G 0x16
  693. #define TLB_DATA0_4K 0x21
  694. #define TLB_DATA0_4M 0x22
  695. #define TLB_DATA0_2M_4M 0x23
  696. #define STLB_4K 0x41
  697. #define STLB_4K_2M 0x42
  698. static const struct _tlb_table intel_tlb_table[] = {
  699. { 0x01, TLB_INST_4K, 32, " TLB_INST 4 KByte pages, 4-way set associative" },
  700. { 0x02, TLB_INST_4M, 2, " TLB_INST 4 MByte pages, full associative" },
  701. { 0x03, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way set associative" },
  702. { 0x04, TLB_DATA_4M, 8, " TLB_DATA 4 MByte pages, 4-way set associative" },
  703. { 0x05, TLB_DATA_4M, 32, " TLB_DATA 4 MByte pages, 4-way set associative" },
  704. { 0x0b, TLB_INST_4M, 4, " TLB_INST 4 MByte pages, 4-way set associative" },
  705. { 0x4f, TLB_INST_4K, 32, " TLB_INST 4 KByte pages */" },
  706. { 0x50, TLB_INST_ALL, 64, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
  707. { 0x51, TLB_INST_ALL, 128, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
  708. { 0x52, TLB_INST_ALL, 256, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
  709. { 0x55, TLB_INST_2M_4M, 7, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
  710. { 0x56, TLB_DATA0_4M, 16, " TLB_DATA0 4 MByte pages, 4-way set associative" },
  711. { 0x57, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, 4-way associative" },
  712. { 0x59, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, fully associative" },
  713. { 0x5a, TLB_DATA0_2M_4M, 32, " TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
  714. { 0x5b, TLB_DATA_4K_4M, 64, " TLB_DATA 4 KByte and 4 MByte pages" },
  715. { 0x5c, TLB_DATA_4K_4M, 128, " TLB_DATA 4 KByte and 4 MByte pages" },
  716. { 0x5d, TLB_DATA_4K_4M, 256, " TLB_DATA 4 KByte and 4 MByte pages" },
  717. { 0x61, TLB_INST_4K, 48, " TLB_INST 4 KByte pages, full associative" },
  718. { 0x63, TLB_DATA_1G, 4, " TLB_DATA 1 GByte pages, 4-way set associative" },
  719. { 0x6b, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 8-way associative" },
  720. { 0x6c, TLB_DATA_2M_4M, 128, " TLB_DATA 2 MByte or 4 MByte pages, 8-way associative" },
  721. { 0x6d, TLB_DATA_1G, 16, " TLB_DATA 1 GByte pages, fully associative" },
  722. { 0x76, TLB_INST_2M_4M, 8, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
  723. { 0xb0, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 4-way set associative" },
  724. { 0xb1, TLB_INST_2M_4M, 4, " TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
  725. { 0xb2, TLB_INST_4K, 64, " TLB_INST 4KByte pages, 4-way set associative" },
  726. { 0xb3, TLB_DATA_4K, 128, " TLB_DATA 4 KByte pages, 4-way set associative" },
  727. { 0xb4, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 4-way associative" },
  728. { 0xb5, TLB_INST_4K, 64, " TLB_INST 4 KByte pages, 8-way set associative" },
  729. { 0xb6, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 8-way set associative" },
  730. { 0xba, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way associative" },
  731. { 0xc0, TLB_DATA_4K_4M, 8, " TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
  732. { 0xc1, STLB_4K_2M, 1024, " STLB 4 KByte and 2 MByte pages, 8-way associative" },
  733. { 0xc2, TLB_DATA_2M_4M, 16, " DTLB 2 MByte/4MByte pages, 4-way associative" },
  734. { 0xca, STLB_4K, 512, " STLB 4 KByte pages, 4-way associative" },
  735. { 0x00, 0, 0 }
  736. };
  737. static void intel_tlb_lookup(const unsigned char desc)
  738. {
  739. unsigned char k;
  740. if (desc == 0)
  741. return;
  742. /* look up this descriptor in the table */
  743. for (k = 0; intel_tlb_table[k].descriptor != desc && \
  744. intel_tlb_table[k].descriptor != 0; k++)
  745. ;
  746. if (intel_tlb_table[k].tlb_type == 0)
  747. return;
  748. switch (intel_tlb_table[k].tlb_type) {
  749. case STLB_4K:
  750. if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
  751. tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
  752. if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
  753. tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
  754. break;
  755. case STLB_4K_2M:
  756. if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
  757. tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
  758. if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
  759. tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
  760. if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
  761. tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
  762. if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
  763. tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
  764. if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
  765. tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
  766. if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
  767. tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
  768. break;
  769. case TLB_INST_ALL:
  770. if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
  771. tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
  772. if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
  773. tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
  774. if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
  775. tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
  776. break;
  777. case TLB_INST_4K:
  778. if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
  779. tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
  780. break;
  781. case TLB_INST_4M:
  782. if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
  783. tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
  784. break;
  785. case TLB_INST_2M_4M:
  786. if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
  787. tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
  788. if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
  789. tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
  790. break;
  791. case TLB_DATA_4K:
  792. case TLB_DATA0_4K:
  793. if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
  794. tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
  795. break;
  796. case TLB_DATA_4M:
  797. case TLB_DATA0_4M:
  798. if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
  799. tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
  800. break;
  801. case TLB_DATA_2M_4M:
  802. case TLB_DATA0_2M_4M:
  803. if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
  804. tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
  805. if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
  806. tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
  807. break;
  808. case TLB_DATA_4K_4M:
  809. if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
  810. tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
  811. if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
  812. tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
  813. break;
  814. case TLB_DATA_1G:
  815. if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
  816. tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
  817. break;
  818. }
  819. }
  820. static void intel_detect_tlb(struct cpuinfo_x86 *c)
  821. {
  822. int i, j, n;
  823. unsigned int regs[4];
  824. unsigned char *desc = (unsigned char *)regs;
  825. if (c->cpuid_level < 2)
  826. return;
  827. /* Number of times to iterate */
  828. n = cpuid_eax(2) & 0xFF;
  829. for (i = 0 ; i < n ; i++) {
  830. cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
  831. /* If bit 31 is set, this is an unknown format */
  832. for (j = 0 ; j < 3 ; j++)
  833. if (regs[j] & (1 << 31))
  834. regs[j] = 0;
  835. /* Byte 0 is level count, not a descriptor */
  836. for (j = 1 ; j < 16 ; j++)
  837. intel_tlb_lookup(desc[j]);
  838. }
  839. }
  840. static const struct cpu_dev intel_cpu_dev = {
  841. .c_vendor = "Intel",
  842. .c_ident = { "GenuineIntel" },
  843. #ifdef CONFIG_X86_32
  844. .legacy_models = {
  845. { .family = 4, .model_names =
  846. {
  847. [0] = "486 DX-25/33",
  848. [1] = "486 DX-50",
  849. [2] = "486 SX",
  850. [3] = "486 DX/2",
  851. [4] = "486 SL",
  852. [5] = "486 SX/2",
  853. [7] = "486 DX/2-WB",
  854. [8] = "486 DX/4",
  855. [9] = "486 DX/4-WB"
  856. }
  857. },
  858. { .family = 5, .model_names =
  859. {
  860. [0] = "Pentium 60/66 A-step",
  861. [1] = "Pentium 60/66",
  862. [2] = "Pentium 75 - 200",
  863. [3] = "OverDrive PODP5V83",
  864. [4] = "Pentium MMX",
  865. [7] = "Mobile Pentium 75 - 200",
  866. [8] = "Mobile Pentium MMX",
  867. [9] = "Quark SoC X1000",
  868. }
  869. },
  870. { .family = 6, .model_names =
  871. {
  872. [0] = "Pentium Pro A-step",
  873. [1] = "Pentium Pro",
  874. [3] = "Pentium II (Klamath)",
  875. [4] = "Pentium II (Deschutes)",
  876. [5] = "Pentium II (Deschutes)",
  877. [6] = "Mobile Pentium II",
  878. [7] = "Pentium III (Katmai)",
  879. [8] = "Pentium III (Coppermine)",
  880. [10] = "Pentium III (Cascades)",
  881. [11] = "Pentium III (Tualatin)",
  882. }
  883. },
  884. { .family = 15, .model_names =
  885. {
  886. [0] = "Pentium 4 (Unknown)",
  887. [1] = "Pentium 4 (Willamette)",
  888. [2] = "Pentium 4 (Northwood)",
  889. [4] = "Pentium 4 (Foster)",
  890. [5] = "Pentium 4 (Foster)",
  891. }
  892. },
  893. },
  894. .legacy_cache_size = intel_size_cache,
  895. #endif
  896. .c_detect_tlb = intel_detect_tlb,
  897. .c_early_init = early_init_intel,
  898. .c_init = init_intel,
  899. .c_bsp_resume = intel_bsp_resume,
  900. .c_x86_vendor = X86_VENDOR_INTEL,
  901. };
  902. cpu_dev_register(intel_cpu_dev);