gmc_v8_0.c 46 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. */
  23. #include <linux/firmware.h>
  24. #include <drm/drmP.h>
  25. #include "amdgpu.h"
  26. #include "gmc_v8_0.h"
  27. #include "amdgpu_ucode.h"
  28. #include "gmc/gmc_8_1_d.h"
  29. #include "gmc/gmc_8_1_sh_mask.h"
  30. #include "bif/bif_5_0_d.h"
  31. #include "bif/bif_5_0_sh_mask.h"
  32. #include "oss/oss_3_0_d.h"
  33. #include "oss/oss_3_0_sh_mask.h"
  34. #include "vid.h"
  35. #include "vi.h"
  36. #include "amdgpu_atombios.h"
  37. static void gmc_v8_0_set_gart_funcs(struct amdgpu_device *adev);
  38. static void gmc_v8_0_set_irq_funcs(struct amdgpu_device *adev);
  39. static int gmc_v8_0_wait_for_idle(void *handle);
  40. MODULE_FIRMWARE("amdgpu/tonga_mc.bin");
  41. MODULE_FIRMWARE("amdgpu/polaris11_mc.bin");
  42. MODULE_FIRMWARE("amdgpu/polaris10_mc.bin");
  43. MODULE_FIRMWARE("amdgpu/polaris12_mc.bin");
  44. static const u32 golden_settings_tonga_a11[] =
  45. {
  46. mmMC_ARB_WTM_GRPWT_RD, 0x00000003, 0x00000000,
  47. mmMC_HUB_RDREQ_DMIF_LIMIT, 0x0000007f, 0x00000028,
  48. mmMC_HUB_WDP_UMC, 0x00007fb6, 0x00000991,
  49. mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  50. mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  51. mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  52. mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  53. };
  54. static const u32 tonga_mgcg_cgcg_init[] =
  55. {
  56. mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
  57. };
  58. static const u32 golden_settings_fiji_a10[] =
  59. {
  60. mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  61. mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  62. mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  63. mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  64. };
  65. static const u32 fiji_mgcg_cgcg_init[] =
  66. {
  67. mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
  68. };
  69. static const u32 golden_settings_polaris11_a11[] =
  70. {
  71. mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  72. mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  73. mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  74. mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff
  75. };
  76. static const u32 golden_settings_polaris10_a11[] =
  77. {
  78. mmMC_ARB_WTM_GRPWT_RD, 0x00000003, 0x00000000,
  79. mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  80. mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  81. mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  82. mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff
  83. };
  84. static const u32 cz_mgcg_cgcg_init[] =
  85. {
  86. mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
  87. };
  88. static const u32 stoney_mgcg_cgcg_init[] =
  89. {
  90. mmATC_MISC_CG, 0xffffffff, 0x000c0200,
  91. mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
  92. };
  93. static const u32 golden_settings_stoney_common[] =
  94. {
  95. mmMC_HUB_RDREQ_UVD, MC_HUB_RDREQ_UVD__PRESCALE_MASK, 0x00000004,
  96. mmMC_RD_GRP_OTH, MC_RD_GRP_OTH__UVD_MASK, 0x00600000
  97. };
  98. static void gmc_v8_0_init_golden_registers(struct amdgpu_device *adev)
  99. {
  100. switch (adev->asic_type) {
  101. case CHIP_FIJI:
  102. amdgpu_program_register_sequence(adev,
  103. fiji_mgcg_cgcg_init,
  104. (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init));
  105. amdgpu_program_register_sequence(adev,
  106. golden_settings_fiji_a10,
  107. (const u32)ARRAY_SIZE(golden_settings_fiji_a10));
  108. break;
  109. case CHIP_TONGA:
  110. amdgpu_program_register_sequence(adev,
  111. tonga_mgcg_cgcg_init,
  112. (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
  113. amdgpu_program_register_sequence(adev,
  114. golden_settings_tonga_a11,
  115. (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
  116. break;
  117. case CHIP_POLARIS11:
  118. case CHIP_POLARIS12:
  119. amdgpu_program_register_sequence(adev,
  120. golden_settings_polaris11_a11,
  121. (const u32)ARRAY_SIZE(golden_settings_polaris11_a11));
  122. break;
  123. case CHIP_POLARIS10:
  124. amdgpu_program_register_sequence(adev,
  125. golden_settings_polaris10_a11,
  126. (const u32)ARRAY_SIZE(golden_settings_polaris10_a11));
  127. break;
  128. case CHIP_CARRIZO:
  129. amdgpu_program_register_sequence(adev,
  130. cz_mgcg_cgcg_init,
  131. (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
  132. break;
  133. case CHIP_STONEY:
  134. amdgpu_program_register_sequence(adev,
  135. stoney_mgcg_cgcg_init,
  136. (const u32)ARRAY_SIZE(stoney_mgcg_cgcg_init));
  137. amdgpu_program_register_sequence(adev,
  138. golden_settings_stoney_common,
  139. (const u32)ARRAY_SIZE(golden_settings_stoney_common));
  140. break;
  141. default:
  142. break;
  143. }
  144. }
  145. static void gmc_v8_0_mc_stop(struct amdgpu_device *adev)
  146. {
  147. u32 blackout;
  148. gmc_v8_0_wait_for_idle(adev);
  149. blackout = RREG32(mmMC_SHARED_BLACKOUT_CNTL);
  150. if (REG_GET_FIELD(blackout, MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE) != 1) {
  151. /* Block CPU access */
  152. WREG32(mmBIF_FB_EN, 0);
  153. /* blackout the MC */
  154. blackout = REG_SET_FIELD(blackout,
  155. MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE, 1);
  156. WREG32(mmMC_SHARED_BLACKOUT_CNTL, blackout);
  157. }
  158. /* wait for the MC to settle */
  159. udelay(100);
  160. }
  161. static void gmc_v8_0_mc_resume(struct amdgpu_device *adev)
  162. {
  163. u32 tmp;
  164. /* unblackout the MC */
  165. tmp = RREG32(mmMC_SHARED_BLACKOUT_CNTL);
  166. tmp = REG_SET_FIELD(tmp, MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE, 0);
  167. WREG32(mmMC_SHARED_BLACKOUT_CNTL, tmp);
  168. /* allow CPU access */
  169. tmp = REG_SET_FIELD(0, BIF_FB_EN, FB_READ_EN, 1);
  170. tmp = REG_SET_FIELD(tmp, BIF_FB_EN, FB_WRITE_EN, 1);
  171. WREG32(mmBIF_FB_EN, tmp);
  172. }
  173. /**
  174. * gmc_v8_0_init_microcode - load ucode images from disk
  175. *
  176. * @adev: amdgpu_device pointer
  177. *
  178. * Use the firmware interface to load the ucode images into
  179. * the driver (not loaded into hw).
  180. * Returns 0 on success, error on failure.
  181. */
  182. static int gmc_v8_0_init_microcode(struct amdgpu_device *adev)
  183. {
  184. const char *chip_name;
  185. char fw_name[30];
  186. int err;
  187. DRM_DEBUG("\n");
  188. switch (adev->asic_type) {
  189. case CHIP_TONGA:
  190. chip_name = "tonga";
  191. break;
  192. case CHIP_POLARIS11:
  193. chip_name = "polaris11";
  194. break;
  195. case CHIP_POLARIS10:
  196. chip_name = "polaris10";
  197. break;
  198. case CHIP_POLARIS12:
  199. chip_name = "polaris12";
  200. break;
  201. case CHIP_FIJI:
  202. case CHIP_CARRIZO:
  203. case CHIP_STONEY:
  204. return 0;
  205. default: BUG();
  206. }
  207. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_mc.bin", chip_name);
  208. err = request_firmware(&adev->mc.fw, fw_name, adev->dev);
  209. if (err)
  210. goto out;
  211. err = amdgpu_ucode_validate(adev->mc.fw);
  212. out:
  213. if (err) {
  214. pr_err("mc: Failed to load firmware \"%s\"\n", fw_name);
  215. release_firmware(adev->mc.fw);
  216. adev->mc.fw = NULL;
  217. }
  218. return err;
  219. }
  220. /**
  221. * gmc_v8_0_tonga_mc_load_microcode - load tonga MC ucode into the hw
  222. *
  223. * @adev: amdgpu_device pointer
  224. *
  225. * Load the GDDR MC ucode into the hw (CIK).
  226. * Returns 0 on success, error on failure.
  227. */
  228. static int gmc_v8_0_tonga_mc_load_microcode(struct amdgpu_device *adev)
  229. {
  230. const struct mc_firmware_header_v1_0 *hdr;
  231. const __le32 *fw_data = NULL;
  232. const __le32 *io_mc_regs = NULL;
  233. u32 running;
  234. int i, ucode_size, regs_size;
  235. /* Skip MC ucode loading on SR-IOV capable boards.
  236. * vbios does this for us in asic_init in that case.
  237. * Skip MC ucode loading on VF, because hypervisor will do that
  238. * for this adaptor.
  239. */
  240. if (amdgpu_sriov_bios(adev))
  241. return 0;
  242. if (!adev->mc.fw)
  243. return -EINVAL;
  244. hdr = (const struct mc_firmware_header_v1_0 *)adev->mc.fw->data;
  245. amdgpu_ucode_print_mc_hdr(&hdr->header);
  246. adev->mc.fw_version = le32_to_cpu(hdr->header.ucode_version);
  247. regs_size = le32_to_cpu(hdr->io_debug_size_bytes) / (4 * 2);
  248. io_mc_regs = (const __le32 *)
  249. (adev->mc.fw->data + le32_to_cpu(hdr->io_debug_array_offset_bytes));
  250. ucode_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  251. fw_data = (const __le32 *)
  252. (adev->mc.fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  253. running = REG_GET_FIELD(RREG32(mmMC_SEQ_SUP_CNTL), MC_SEQ_SUP_CNTL, RUN);
  254. if (running == 0) {
  255. /* reset the engine and set to writable */
  256. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
  257. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000010);
  258. /* load mc io regs */
  259. for (i = 0; i < regs_size; i++) {
  260. WREG32(mmMC_SEQ_IO_DEBUG_INDEX, le32_to_cpup(io_mc_regs++));
  261. WREG32(mmMC_SEQ_IO_DEBUG_DATA, le32_to_cpup(io_mc_regs++));
  262. }
  263. /* load the MC ucode */
  264. for (i = 0; i < ucode_size; i++)
  265. WREG32(mmMC_SEQ_SUP_PGM, le32_to_cpup(fw_data++));
  266. /* put the engine back into the active state */
  267. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
  268. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000004);
  269. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000001);
  270. /* wait for training to complete */
  271. for (i = 0; i < adev->usec_timeout; i++) {
  272. if (REG_GET_FIELD(RREG32(mmMC_SEQ_TRAIN_WAKEUP_CNTL),
  273. MC_SEQ_TRAIN_WAKEUP_CNTL, TRAIN_DONE_D0))
  274. break;
  275. udelay(1);
  276. }
  277. for (i = 0; i < adev->usec_timeout; i++) {
  278. if (REG_GET_FIELD(RREG32(mmMC_SEQ_TRAIN_WAKEUP_CNTL),
  279. MC_SEQ_TRAIN_WAKEUP_CNTL, TRAIN_DONE_D1))
  280. break;
  281. udelay(1);
  282. }
  283. }
  284. return 0;
  285. }
  286. static int gmc_v8_0_polaris_mc_load_microcode(struct amdgpu_device *adev)
  287. {
  288. const struct mc_firmware_header_v1_0 *hdr;
  289. const __le32 *fw_data = NULL;
  290. const __le32 *io_mc_regs = NULL;
  291. u32 data, vbios_version;
  292. int i, ucode_size, regs_size;
  293. /* Skip MC ucode loading on SR-IOV capable boards.
  294. * vbios does this for us in asic_init in that case.
  295. * Skip MC ucode loading on VF, because hypervisor will do that
  296. * for this adaptor.
  297. */
  298. if (amdgpu_sriov_bios(adev))
  299. return 0;
  300. WREG32(mmMC_SEQ_IO_DEBUG_INDEX, 0x9F);
  301. data = RREG32(mmMC_SEQ_IO_DEBUG_DATA);
  302. vbios_version = data & 0xf;
  303. if (vbios_version == 0)
  304. return 0;
  305. if (!adev->mc.fw)
  306. return -EINVAL;
  307. hdr = (const struct mc_firmware_header_v1_0 *)adev->mc.fw->data;
  308. amdgpu_ucode_print_mc_hdr(&hdr->header);
  309. adev->mc.fw_version = le32_to_cpu(hdr->header.ucode_version);
  310. regs_size = le32_to_cpu(hdr->io_debug_size_bytes) / (4 * 2);
  311. io_mc_regs = (const __le32 *)
  312. (adev->mc.fw->data + le32_to_cpu(hdr->io_debug_array_offset_bytes));
  313. ucode_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  314. fw_data = (const __le32 *)
  315. (adev->mc.fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  316. data = RREG32(mmMC_SEQ_MISC0);
  317. data &= ~(0x40);
  318. WREG32(mmMC_SEQ_MISC0, data);
  319. /* load mc io regs */
  320. for (i = 0; i < regs_size; i++) {
  321. WREG32(mmMC_SEQ_IO_DEBUG_INDEX, le32_to_cpup(io_mc_regs++));
  322. WREG32(mmMC_SEQ_IO_DEBUG_DATA, le32_to_cpup(io_mc_regs++));
  323. }
  324. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
  325. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000010);
  326. /* load the MC ucode */
  327. for (i = 0; i < ucode_size; i++)
  328. WREG32(mmMC_SEQ_SUP_PGM, le32_to_cpup(fw_data++));
  329. /* put the engine back into the active state */
  330. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
  331. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000004);
  332. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000001);
  333. /* wait for training to complete */
  334. for (i = 0; i < adev->usec_timeout; i++) {
  335. data = RREG32(mmMC_SEQ_MISC0);
  336. if (data & 0x80)
  337. break;
  338. udelay(1);
  339. }
  340. return 0;
  341. }
  342. static void gmc_v8_0_vram_gtt_location(struct amdgpu_device *adev,
  343. struct amdgpu_mc *mc)
  344. {
  345. u64 base = 0;
  346. if (!amdgpu_sriov_vf(adev))
  347. base = RREG32(mmMC_VM_FB_LOCATION) & 0xFFFF;
  348. base <<= 24;
  349. if (mc->mc_vram_size > 0xFFC0000000ULL) {
  350. /* leave room for at least 1024M GTT */
  351. dev_warn(adev->dev, "limiting VRAM\n");
  352. mc->real_vram_size = 0xFFC0000000ULL;
  353. mc->mc_vram_size = 0xFFC0000000ULL;
  354. }
  355. amdgpu_vram_location(adev, &adev->mc, base);
  356. amdgpu_gart_location(adev, mc);
  357. }
  358. /**
  359. * gmc_v8_0_mc_program - program the GPU memory controller
  360. *
  361. * @adev: amdgpu_device pointer
  362. *
  363. * Set the location of vram, gart, and AGP in the GPU's
  364. * physical address space (CIK).
  365. */
  366. static void gmc_v8_0_mc_program(struct amdgpu_device *adev)
  367. {
  368. u32 tmp;
  369. int i, j;
  370. /* Initialize HDP */
  371. for (i = 0, j = 0; i < 32; i++, j += 0x6) {
  372. WREG32((0xb05 + j), 0x00000000);
  373. WREG32((0xb06 + j), 0x00000000);
  374. WREG32((0xb07 + j), 0x00000000);
  375. WREG32((0xb08 + j), 0x00000000);
  376. WREG32((0xb09 + j), 0x00000000);
  377. }
  378. WREG32(mmHDP_REG_COHERENCY_FLUSH_CNTL, 0);
  379. if (gmc_v8_0_wait_for_idle((void *)adev)) {
  380. dev_warn(adev->dev, "Wait for MC idle timedout !\n");
  381. }
  382. /* Update configuration */
  383. WREG32(mmMC_VM_SYSTEM_APERTURE_LOW_ADDR,
  384. adev->mc.vram_start >> 12);
  385. WREG32(mmMC_VM_SYSTEM_APERTURE_HIGH_ADDR,
  386. adev->mc.vram_end >> 12);
  387. WREG32(mmMC_VM_SYSTEM_APERTURE_DEFAULT_ADDR,
  388. adev->vram_scratch.gpu_addr >> 12);
  389. if (amdgpu_sriov_vf(adev)) {
  390. tmp = ((adev->mc.vram_end >> 24) & 0xFFFF) << 16;
  391. tmp |= ((adev->mc.vram_start >> 24) & 0xFFFF);
  392. WREG32(mmMC_VM_FB_LOCATION, tmp);
  393. /* XXX double check these! */
  394. WREG32(mmHDP_NONSURFACE_BASE, (adev->mc.vram_start >> 8));
  395. WREG32(mmHDP_NONSURFACE_INFO, (2 << 7) | (1 << 30));
  396. WREG32(mmHDP_NONSURFACE_SIZE, 0x3FFFFFFF);
  397. }
  398. WREG32(mmMC_VM_AGP_BASE, 0);
  399. WREG32(mmMC_VM_AGP_TOP, 0x0FFFFFFF);
  400. WREG32(mmMC_VM_AGP_BOT, 0x0FFFFFFF);
  401. if (gmc_v8_0_wait_for_idle((void *)adev)) {
  402. dev_warn(adev->dev, "Wait for MC idle timedout !\n");
  403. }
  404. WREG32(mmBIF_FB_EN, BIF_FB_EN__FB_READ_EN_MASK | BIF_FB_EN__FB_WRITE_EN_MASK);
  405. tmp = RREG32(mmHDP_MISC_CNTL);
  406. tmp = REG_SET_FIELD(tmp, HDP_MISC_CNTL, FLUSH_INVALIDATE_CACHE, 0);
  407. WREG32(mmHDP_MISC_CNTL, tmp);
  408. tmp = RREG32(mmHDP_HOST_PATH_CNTL);
  409. WREG32(mmHDP_HOST_PATH_CNTL, tmp);
  410. }
  411. /**
  412. * gmc_v8_0_mc_init - initialize the memory controller driver params
  413. *
  414. * @adev: amdgpu_device pointer
  415. *
  416. * Look up the amount of vram, vram width, and decide how to place
  417. * vram and gart within the GPU's physical address space (CIK).
  418. * Returns 0 for success.
  419. */
  420. static int gmc_v8_0_mc_init(struct amdgpu_device *adev)
  421. {
  422. adev->mc.vram_width = amdgpu_atombios_get_vram_width(adev);
  423. if (!adev->mc.vram_width) {
  424. u32 tmp;
  425. int chansize, numchan;
  426. /* Get VRAM informations */
  427. tmp = RREG32(mmMC_ARB_RAMCFG);
  428. if (REG_GET_FIELD(tmp, MC_ARB_RAMCFG, CHANSIZE)) {
  429. chansize = 64;
  430. } else {
  431. chansize = 32;
  432. }
  433. tmp = RREG32(mmMC_SHARED_CHMAP);
  434. switch (REG_GET_FIELD(tmp, MC_SHARED_CHMAP, NOOFCHAN)) {
  435. case 0:
  436. default:
  437. numchan = 1;
  438. break;
  439. case 1:
  440. numchan = 2;
  441. break;
  442. case 2:
  443. numchan = 4;
  444. break;
  445. case 3:
  446. numchan = 8;
  447. break;
  448. case 4:
  449. numchan = 3;
  450. break;
  451. case 5:
  452. numchan = 6;
  453. break;
  454. case 6:
  455. numchan = 10;
  456. break;
  457. case 7:
  458. numchan = 12;
  459. break;
  460. case 8:
  461. numchan = 16;
  462. break;
  463. }
  464. adev->mc.vram_width = numchan * chansize;
  465. }
  466. /* Could aper size report 0 ? */
  467. adev->mc.aper_base = pci_resource_start(adev->pdev, 0);
  468. adev->mc.aper_size = pci_resource_len(adev->pdev, 0);
  469. /* size in MB on si */
  470. adev->mc.mc_vram_size = RREG32(mmCONFIG_MEMSIZE) * 1024ULL * 1024ULL;
  471. adev->mc.real_vram_size = RREG32(mmCONFIG_MEMSIZE) * 1024ULL * 1024ULL;
  472. #ifdef CONFIG_X86_64
  473. if (adev->flags & AMD_IS_APU) {
  474. adev->mc.aper_base = ((u64)RREG32(mmMC_VM_FB_OFFSET)) << 22;
  475. adev->mc.aper_size = adev->mc.real_vram_size;
  476. }
  477. #endif
  478. /* In case the PCI BAR is larger than the actual amount of vram */
  479. adev->mc.visible_vram_size = adev->mc.aper_size;
  480. if (adev->mc.visible_vram_size > adev->mc.real_vram_size)
  481. adev->mc.visible_vram_size = adev->mc.real_vram_size;
  482. amdgpu_gart_set_defaults(adev);
  483. gmc_v8_0_vram_gtt_location(adev, &adev->mc);
  484. return 0;
  485. }
  486. /*
  487. * GART
  488. * VMID 0 is the physical GPU addresses as used by the kernel.
  489. * VMIDs 1-15 are used for userspace clients and are handled
  490. * by the amdgpu vm/hsa code.
  491. */
  492. /**
  493. * gmc_v8_0_gart_flush_gpu_tlb - gart tlb flush callback
  494. *
  495. * @adev: amdgpu_device pointer
  496. * @vmid: vm instance to flush
  497. *
  498. * Flush the TLB for the requested page table (CIK).
  499. */
  500. static void gmc_v8_0_gart_flush_gpu_tlb(struct amdgpu_device *adev,
  501. uint32_t vmid)
  502. {
  503. /* flush hdp cache */
  504. WREG32(mmHDP_MEM_COHERENCY_FLUSH_CNTL, 0);
  505. /* bits 0-15 are the VM contexts0-15 */
  506. WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
  507. }
  508. /**
  509. * gmc_v8_0_gart_set_pte_pde - update the page tables using MMIO
  510. *
  511. * @adev: amdgpu_device pointer
  512. * @cpu_pt_addr: cpu address of the page table
  513. * @gpu_page_idx: entry in the page table to update
  514. * @addr: dst addr to write into pte/pde
  515. * @flags: access flags
  516. *
  517. * Update the page tables using the CPU.
  518. */
  519. static int gmc_v8_0_gart_set_pte_pde(struct amdgpu_device *adev,
  520. void *cpu_pt_addr,
  521. uint32_t gpu_page_idx,
  522. uint64_t addr,
  523. uint64_t flags)
  524. {
  525. void __iomem *ptr = (void *)cpu_pt_addr;
  526. uint64_t value;
  527. /*
  528. * PTE format on VI:
  529. * 63:40 reserved
  530. * 39:12 4k physical page base address
  531. * 11:7 fragment
  532. * 6 write
  533. * 5 read
  534. * 4 exe
  535. * 3 reserved
  536. * 2 snooped
  537. * 1 system
  538. * 0 valid
  539. *
  540. * PDE format on VI:
  541. * 63:59 block fragment size
  542. * 58:40 reserved
  543. * 39:1 physical base address of PTE
  544. * bits 5:1 must be 0.
  545. * 0 valid
  546. */
  547. value = addr & 0x000000FFFFFFF000ULL;
  548. value |= flags;
  549. writeq(value, ptr + (gpu_page_idx * 8));
  550. return 0;
  551. }
  552. static uint64_t gmc_v8_0_get_vm_pte_flags(struct amdgpu_device *adev,
  553. uint32_t flags)
  554. {
  555. uint64_t pte_flag = 0;
  556. if (flags & AMDGPU_VM_PAGE_EXECUTABLE)
  557. pte_flag |= AMDGPU_PTE_EXECUTABLE;
  558. if (flags & AMDGPU_VM_PAGE_READABLE)
  559. pte_flag |= AMDGPU_PTE_READABLE;
  560. if (flags & AMDGPU_VM_PAGE_WRITEABLE)
  561. pte_flag |= AMDGPU_PTE_WRITEABLE;
  562. if (flags & AMDGPU_VM_PAGE_PRT)
  563. pte_flag |= AMDGPU_PTE_PRT;
  564. return pte_flag;
  565. }
  566. static uint64_t gmc_v8_0_get_vm_pde(struct amdgpu_device *adev, uint64_t addr)
  567. {
  568. BUG_ON(addr & 0xFFFFFF0000000FFFULL);
  569. return addr;
  570. }
  571. /**
  572. * gmc_v8_0_set_fault_enable_default - update VM fault handling
  573. *
  574. * @adev: amdgpu_device pointer
  575. * @value: true redirects VM faults to the default page
  576. */
  577. static void gmc_v8_0_set_fault_enable_default(struct amdgpu_device *adev,
  578. bool value)
  579. {
  580. u32 tmp;
  581. tmp = RREG32(mmVM_CONTEXT1_CNTL);
  582. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  583. RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  584. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  585. DUMMY_PAGE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  586. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  587. PDE0_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  588. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  589. VALID_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  590. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  591. READ_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  592. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  593. WRITE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  594. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  595. EXECUTE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  596. WREG32(mmVM_CONTEXT1_CNTL, tmp);
  597. }
  598. /**
  599. * gmc_v8_0_set_prt - set PRT VM fault
  600. *
  601. * @adev: amdgpu_device pointer
  602. * @enable: enable/disable VM fault handling for PRT
  603. */
  604. static void gmc_v8_0_set_prt(struct amdgpu_device *adev, bool enable)
  605. {
  606. u32 tmp;
  607. if (enable && !adev->mc.prt_warning) {
  608. dev_warn(adev->dev, "Disabling VM faults because of PRT request!\n");
  609. adev->mc.prt_warning = true;
  610. }
  611. tmp = RREG32(mmVM_PRT_CNTL);
  612. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  613. CB_DISABLE_READ_FAULT_ON_UNMAPPED_ACCESS, enable);
  614. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  615. CB_DISABLE_WRITE_FAULT_ON_UNMAPPED_ACCESS, enable);
  616. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  617. TC_DISABLE_READ_FAULT_ON_UNMAPPED_ACCESS, enable);
  618. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  619. TC_DISABLE_WRITE_FAULT_ON_UNMAPPED_ACCESS, enable);
  620. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  621. L2_CACHE_STORE_INVALID_ENTRIES, enable);
  622. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  623. L1_TLB_STORE_INVALID_ENTRIES, enable);
  624. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  625. MASK_PDE0_FAULT, enable);
  626. WREG32(mmVM_PRT_CNTL, tmp);
  627. if (enable) {
  628. uint32_t low = AMDGPU_VA_RESERVED_SIZE >> AMDGPU_GPU_PAGE_SHIFT;
  629. uint32_t high = adev->vm_manager.max_pfn;
  630. WREG32(mmVM_PRT_APERTURE0_LOW_ADDR, low);
  631. WREG32(mmVM_PRT_APERTURE1_LOW_ADDR, low);
  632. WREG32(mmVM_PRT_APERTURE2_LOW_ADDR, low);
  633. WREG32(mmVM_PRT_APERTURE3_LOW_ADDR, low);
  634. WREG32(mmVM_PRT_APERTURE0_HIGH_ADDR, high);
  635. WREG32(mmVM_PRT_APERTURE1_HIGH_ADDR, high);
  636. WREG32(mmVM_PRT_APERTURE2_HIGH_ADDR, high);
  637. WREG32(mmVM_PRT_APERTURE3_HIGH_ADDR, high);
  638. } else {
  639. WREG32(mmVM_PRT_APERTURE0_LOW_ADDR, 0xfffffff);
  640. WREG32(mmVM_PRT_APERTURE1_LOW_ADDR, 0xfffffff);
  641. WREG32(mmVM_PRT_APERTURE2_LOW_ADDR, 0xfffffff);
  642. WREG32(mmVM_PRT_APERTURE3_LOW_ADDR, 0xfffffff);
  643. WREG32(mmVM_PRT_APERTURE0_HIGH_ADDR, 0x0);
  644. WREG32(mmVM_PRT_APERTURE1_HIGH_ADDR, 0x0);
  645. WREG32(mmVM_PRT_APERTURE2_HIGH_ADDR, 0x0);
  646. WREG32(mmVM_PRT_APERTURE3_HIGH_ADDR, 0x0);
  647. }
  648. }
  649. /**
  650. * gmc_v8_0_gart_enable - gart enable
  651. *
  652. * @adev: amdgpu_device pointer
  653. *
  654. * This sets up the TLBs, programs the page tables for VMID0,
  655. * sets up the hw for VMIDs 1-15 which are allocated on
  656. * demand, and sets up the global locations for the LDS, GDS,
  657. * and GPUVM for FSA64 clients (CIK).
  658. * Returns 0 for success, errors for failure.
  659. */
  660. static int gmc_v8_0_gart_enable(struct amdgpu_device *adev)
  661. {
  662. int r, i;
  663. u32 tmp;
  664. if (adev->gart.robj == NULL) {
  665. dev_err(adev->dev, "No VRAM object for PCIE GART.\n");
  666. return -EINVAL;
  667. }
  668. r = amdgpu_gart_table_vram_pin(adev);
  669. if (r)
  670. return r;
  671. /* Setup TLB control */
  672. tmp = RREG32(mmMC_VM_MX_L1_TLB_CNTL);
  673. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_TLB, 1);
  674. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_FRAGMENT_PROCESSING, 1);
  675. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, SYSTEM_ACCESS_MODE, 3);
  676. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_ADVANCED_DRIVER_MODEL, 1);
  677. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, SYSTEM_APERTURE_UNMAPPED_ACCESS, 0);
  678. WREG32(mmMC_VM_MX_L1_TLB_CNTL, tmp);
  679. /* Setup L2 cache */
  680. tmp = RREG32(mmVM_L2_CNTL);
  681. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_CACHE, 1);
  682. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_FRAGMENT_PROCESSING, 1);
  683. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE, 1);
  684. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_PDE0_CACHE_LRU_UPDATE_BY_WRITE, 1);
  685. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, EFFECTIVE_L2_QUEUE_SIZE, 7);
  686. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, CONTEXT1_IDENTITY_ACCESS_MODE, 1);
  687. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_DEFAULT_PAGE_OUT_TO_SYSTEM_MEMORY, 1);
  688. WREG32(mmVM_L2_CNTL, tmp);
  689. tmp = RREG32(mmVM_L2_CNTL2);
  690. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL2, INVALIDATE_ALL_L1_TLBS, 1);
  691. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL2, INVALIDATE_L2_CACHE, 1);
  692. WREG32(mmVM_L2_CNTL2, tmp);
  693. tmp = RREG32(mmVM_L2_CNTL3);
  694. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, L2_CACHE_BIGK_ASSOCIATIVITY, 1);
  695. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, BANK_SELECT, 4);
  696. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, L2_CACHE_BIGK_FRAGMENT_SIZE, 4);
  697. WREG32(mmVM_L2_CNTL3, tmp);
  698. /* XXX: set to enable PTE/PDE in system memory */
  699. tmp = RREG32(mmVM_L2_CNTL4);
  700. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_PHYSICAL, 0);
  701. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_SHARED, 0);
  702. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_SNOOP, 0);
  703. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_PHYSICAL, 0);
  704. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_SHARED, 0);
  705. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_SNOOP, 0);
  706. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_PHYSICAL, 0);
  707. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_SHARED, 0);
  708. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_SNOOP, 0);
  709. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_PHYSICAL, 0);
  710. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_SHARED, 0);
  711. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_SNOOP, 0);
  712. WREG32(mmVM_L2_CNTL4, tmp);
  713. /* setup context0 */
  714. WREG32(mmVM_CONTEXT0_PAGE_TABLE_START_ADDR, adev->mc.gart_start >> 12);
  715. WREG32(mmVM_CONTEXT0_PAGE_TABLE_END_ADDR, adev->mc.gart_end >> 12);
  716. WREG32(mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR, adev->gart.table_addr >> 12);
  717. WREG32(mmVM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR,
  718. (u32)(adev->dummy_page.addr >> 12));
  719. WREG32(mmVM_CONTEXT0_CNTL2, 0);
  720. tmp = RREG32(mmVM_CONTEXT0_CNTL);
  721. tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, ENABLE_CONTEXT, 1);
  722. tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, PAGE_TABLE_DEPTH, 0);
  723. tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  724. WREG32(mmVM_CONTEXT0_CNTL, tmp);
  725. WREG32(mmVM_L2_CONTEXT1_IDENTITY_APERTURE_LOW_ADDR, 0);
  726. WREG32(mmVM_L2_CONTEXT1_IDENTITY_APERTURE_HIGH_ADDR, 0);
  727. WREG32(mmVM_L2_CONTEXT_IDENTITY_PHYSICAL_OFFSET, 0);
  728. /* empty context1-15 */
  729. /* FIXME start with 4G, once using 2 level pt switch to full
  730. * vm size space
  731. */
  732. /* set vm size, must be a multiple of 4 */
  733. WREG32(mmVM_CONTEXT1_PAGE_TABLE_START_ADDR, 0);
  734. WREG32(mmVM_CONTEXT1_PAGE_TABLE_END_ADDR, adev->vm_manager.max_pfn - 1);
  735. for (i = 1; i < 16; i++) {
  736. if (i < 8)
  737. WREG32(mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + i,
  738. adev->gart.table_addr >> 12);
  739. else
  740. WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + i - 8,
  741. adev->gart.table_addr >> 12);
  742. }
  743. /* enable context1-15 */
  744. WREG32(mmVM_CONTEXT1_PROTECTION_FAULT_DEFAULT_ADDR,
  745. (u32)(adev->dummy_page.addr >> 12));
  746. WREG32(mmVM_CONTEXT1_CNTL2, 4);
  747. tmp = RREG32(mmVM_CONTEXT1_CNTL);
  748. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, ENABLE_CONTEXT, 1);
  749. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PAGE_TABLE_DEPTH, 1);
  750. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  751. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, DUMMY_PAGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  752. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PDE0_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  753. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, VALID_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  754. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, READ_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  755. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, WRITE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  756. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, EXECUTE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  757. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PAGE_TABLE_BLOCK_SIZE,
  758. adev->vm_manager.block_size - 9);
  759. WREG32(mmVM_CONTEXT1_CNTL, tmp);
  760. if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_ALWAYS)
  761. gmc_v8_0_set_fault_enable_default(adev, false);
  762. else
  763. gmc_v8_0_set_fault_enable_default(adev, true);
  764. gmc_v8_0_gart_flush_gpu_tlb(adev, 0);
  765. DRM_INFO("PCIE GART of %uM enabled (table at 0x%016llX).\n",
  766. (unsigned)(adev->mc.gart_size >> 20),
  767. (unsigned long long)adev->gart.table_addr);
  768. adev->gart.ready = true;
  769. return 0;
  770. }
  771. static int gmc_v8_0_gart_init(struct amdgpu_device *adev)
  772. {
  773. int r;
  774. if (adev->gart.robj) {
  775. WARN(1, "R600 PCIE GART already initialized\n");
  776. return 0;
  777. }
  778. /* Initialize common gart structure */
  779. r = amdgpu_gart_init(adev);
  780. if (r)
  781. return r;
  782. adev->gart.table_size = adev->gart.num_gpu_pages * 8;
  783. adev->gart.gart_pte_flags = AMDGPU_PTE_EXECUTABLE;
  784. return amdgpu_gart_table_vram_alloc(adev);
  785. }
  786. /**
  787. * gmc_v8_0_gart_disable - gart disable
  788. *
  789. * @adev: amdgpu_device pointer
  790. *
  791. * This disables all VM page table (CIK).
  792. */
  793. static void gmc_v8_0_gart_disable(struct amdgpu_device *adev)
  794. {
  795. u32 tmp;
  796. /* Disable all tables */
  797. WREG32(mmVM_CONTEXT0_CNTL, 0);
  798. WREG32(mmVM_CONTEXT1_CNTL, 0);
  799. /* Setup TLB control */
  800. tmp = RREG32(mmMC_VM_MX_L1_TLB_CNTL);
  801. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_TLB, 0);
  802. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_FRAGMENT_PROCESSING, 0);
  803. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_ADVANCED_DRIVER_MODEL, 0);
  804. WREG32(mmMC_VM_MX_L1_TLB_CNTL, tmp);
  805. /* Setup L2 cache */
  806. tmp = RREG32(mmVM_L2_CNTL);
  807. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_CACHE, 0);
  808. WREG32(mmVM_L2_CNTL, tmp);
  809. WREG32(mmVM_L2_CNTL2, 0);
  810. amdgpu_gart_table_vram_unpin(adev);
  811. }
  812. /**
  813. * gmc_v8_0_gart_fini - vm fini callback
  814. *
  815. * @adev: amdgpu_device pointer
  816. *
  817. * Tears down the driver GART/VM setup (CIK).
  818. */
  819. static void gmc_v8_0_gart_fini(struct amdgpu_device *adev)
  820. {
  821. amdgpu_gart_table_vram_free(adev);
  822. amdgpu_gart_fini(adev);
  823. }
  824. /**
  825. * gmc_v8_0_vm_decode_fault - print human readable fault info
  826. *
  827. * @adev: amdgpu_device pointer
  828. * @status: VM_CONTEXT1_PROTECTION_FAULT_STATUS register value
  829. * @addr: VM_CONTEXT1_PROTECTION_FAULT_ADDR register value
  830. *
  831. * Print human readable fault information (CIK).
  832. */
  833. static void gmc_v8_0_vm_decode_fault(struct amdgpu_device *adev,
  834. u32 status, u32 addr, u32 mc_client)
  835. {
  836. u32 mc_id;
  837. u32 vmid = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, VMID);
  838. u32 protections = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS,
  839. PROTECTIONS);
  840. char block[5] = { mc_client >> 24, (mc_client >> 16) & 0xff,
  841. (mc_client >> 8) & 0xff, mc_client & 0xff, 0 };
  842. mc_id = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS,
  843. MEMORY_CLIENT_ID);
  844. dev_err(adev->dev, "VM fault (0x%02x, vmid %d) at page %u, %s from '%s' (0x%08x) (%d)\n",
  845. protections, vmid, addr,
  846. REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS,
  847. MEMORY_CLIENT_RW) ?
  848. "write" : "read", block, mc_client, mc_id);
  849. }
  850. static int gmc_v8_0_convert_vram_type(int mc_seq_vram_type)
  851. {
  852. switch (mc_seq_vram_type) {
  853. case MC_SEQ_MISC0__MT__GDDR1:
  854. return AMDGPU_VRAM_TYPE_GDDR1;
  855. case MC_SEQ_MISC0__MT__DDR2:
  856. return AMDGPU_VRAM_TYPE_DDR2;
  857. case MC_SEQ_MISC0__MT__GDDR3:
  858. return AMDGPU_VRAM_TYPE_GDDR3;
  859. case MC_SEQ_MISC0__MT__GDDR4:
  860. return AMDGPU_VRAM_TYPE_GDDR4;
  861. case MC_SEQ_MISC0__MT__GDDR5:
  862. return AMDGPU_VRAM_TYPE_GDDR5;
  863. case MC_SEQ_MISC0__MT__HBM:
  864. return AMDGPU_VRAM_TYPE_HBM;
  865. case MC_SEQ_MISC0__MT__DDR3:
  866. return AMDGPU_VRAM_TYPE_DDR3;
  867. default:
  868. return AMDGPU_VRAM_TYPE_UNKNOWN;
  869. }
  870. }
  871. static int gmc_v8_0_early_init(void *handle)
  872. {
  873. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  874. gmc_v8_0_set_gart_funcs(adev);
  875. gmc_v8_0_set_irq_funcs(adev);
  876. adev->mc.shared_aperture_start = 0x2000000000000000ULL;
  877. adev->mc.shared_aperture_end =
  878. adev->mc.shared_aperture_start + (4ULL << 30) - 1;
  879. adev->mc.private_aperture_start =
  880. adev->mc.shared_aperture_end + 1;
  881. adev->mc.private_aperture_end =
  882. adev->mc.private_aperture_start + (4ULL << 30) - 1;
  883. return 0;
  884. }
  885. static int gmc_v8_0_late_init(void *handle)
  886. {
  887. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  888. if (amdgpu_vm_fault_stop != AMDGPU_VM_FAULT_STOP_ALWAYS)
  889. return amdgpu_irq_get(adev, &adev->mc.vm_fault, 0);
  890. else
  891. return 0;
  892. }
  893. #define mmMC_SEQ_MISC0_FIJI 0xA71
  894. static int gmc_v8_0_sw_init(void *handle)
  895. {
  896. int r;
  897. int dma_bits;
  898. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  899. if (adev->flags & AMD_IS_APU) {
  900. adev->mc.vram_type = AMDGPU_VRAM_TYPE_UNKNOWN;
  901. } else {
  902. u32 tmp;
  903. if (adev->asic_type == CHIP_FIJI)
  904. tmp = RREG32(mmMC_SEQ_MISC0_FIJI);
  905. else
  906. tmp = RREG32(mmMC_SEQ_MISC0);
  907. tmp &= MC_SEQ_MISC0__MT__MASK;
  908. adev->mc.vram_type = gmc_v8_0_convert_vram_type(tmp);
  909. }
  910. r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 146, &adev->mc.vm_fault);
  911. if (r)
  912. return r;
  913. r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 147, &adev->mc.vm_fault);
  914. if (r)
  915. return r;
  916. /* Adjust VM size here.
  917. * Currently set to 4GB ((1 << 20) 4k pages).
  918. * Max GPUVM size for cayman and SI is 40 bits.
  919. */
  920. amdgpu_vm_adjust_size(adev, 64);
  921. adev->vm_manager.max_pfn = adev->vm_manager.vm_size << 18;
  922. /* Set the internal MC address mask
  923. * This is the max address of the GPU's
  924. * internal address space.
  925. */
  926. adev->mc.mc_mask = 0xffffffffffULL; /* 40 bit MC */
  927. adev->mc.stolen_size = 256 * 1024;
  928. /* set DMA mask + need_dma32 flags.
  929. * PCIE - can handle 40-bits.
  930. * IGP - can handle 40-bits
  931. * PCI - dma32 for legacy pci gart, 40 bits on newer asics
  932. */
  933. adev->need_dma32 = false;
  934. dma_bits = adev->need_dma32 ? 32 : 40;
  935. r = pci_set_dma_mask(adev->pdev, DMA_BIT_MASK(dma_bits));
  936. if (r) {
  937. adev->need_dma32 = true;
  938. dma_bits = 32;
  939. pr_warn("amdgpu: No suitable DMA available\n");
  940. }
  941. r = pci_set_consistent_dma_mask(adev->pdev, DMA_BIT_MASK(dma_bits));
  942. if (r) {
  943. pci_set_consistent_dma_mask(adev->pdev, DMA_BIT_MASK(32));
  944. pr_warn("amdgpu: No coherent DMA available\n");
  945. }
  946. r = gmc_v8_0_init_microcode(adev);
  947. if (r) {
  948. DRM_ERROR("Failed to load mc firmware!\n");
  949. return r;
  950. }
  951. r = gmc_v8_0_mc_init(adev);
  952. if (r)
  953. return r;
  954. /* Memory manager */
  955. r = amdgpu_bo_init(adev);
  956. if (r)
  957. return r;
  958. r = gmc_v8_0_gart_init(adev);
  959. if (r)
  960. return r;
  961. /*
  962. * number of VMs
  963. * VMID 0 is reserved for System
  964. * amdgpu graphics/compute will use VMIDs 1-7
  965. * amdkfd will use VMIDs 8-15
  966. */
  967. adev->vm_manager.id_mgr[0].num_ids = AMDGPU_NUM_OF_VMIDS;
  968. adev->vm_manager.num_level = 1;
  969. amdgpu_vm_manager_init(adev);
  970. /* base offset of vram pages */
  971. if (adev->flags & AMD_IS_APU) {
  972. u64 tmp = RREG32(mmMC_VM_FB_OFFSET);
  973. tmp <<= 22;
  974. adev->vm_manager.vram_base_offset = tmp;
  975. } else {
  976. adev->vm_manager.vram_base_offset = 0;
  977. }
  978. return 0;
  979. }
  980. static int gmc_v8_0_sw_fini(void *handle)
  981. {
  982. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  983. amdgpu_vm_manager_fini(adev);
  984. gmc_v8_0_gart_fini(adev);
  985. amdgpu_gem_force_release(adev);
  986. amdgpu_bo_fini(adev);
  987. return 0;
  988. }
  989. static int gmc_v8_0_hw_init(void *handle)
  990. {
  991. int r;
  992. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  993. gmc_v8_0_init_golden_registers(adev);
  994. gmc_v8_0_mc_program(adev);
  995. if (adev->asic_type == CHIP_TONGA) {
  996. r = gmc_v8_0_tonga_mc_load_microcode(adev);
  997. if (r) {
  998. DRM_ERROR("Failed to load MC firmware!\n");
  999. return r;
  1000. }
  1001. } else if (adev->asic_type == CHIP_POLARIS11 ||
  1002. adev->asic_type == CHIP_POLARIS10 ||
  1003. adev->asic_type == CHIP_POLARIS12) {
  1004. r = gmc_v8_0_polaris_mc_load_microcode(adev);
  1005. if (r) {
  1006. DRM_ERROR("Failed to load MC firmware!\n");
  1007. return r;
  1008. }
  1009. }
  1010. r = gmc_v8_0_gart_enable(adev);
  1011. if (r)
  1012. return r;
  1013. return r;
  1014. }
  1015. static int gmc_v8_0_hw_fini(void *handle)
  1016. {
  1017. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1018. amdgpu_irq_put(adev, &adev->mc.vm_fault, 0);
  1019. gmc_v8_0_gart_disable(adev);
  1020. return 0;
  1021. }
  1022. static int gmc_v8_0_suspend(void *handle)
  1023. {
  1024. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1025. gmc_v8_0_hw_fini(adev);
  1026. return 0;
  1027. }
  1028. static int gmc_v8_0_resume(void *handle)
  1029. {
  1030. int r;
  1031. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1032. r = gmc_v8_0_hw_init(adev);
  1033. if (r)
  1034. return r;
  1035. amdgpu_vm_reset_all_ids(adev);
  1036. return 0;
  1037. }
  1038. static bool gmc_v8_0_is_idle(void *handle)
  1039. {
  1040. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1041. u32 tmp = RREG32(mmSRBM_STATUS);
  1042. if (tmp & (SRBM_STATUS__MCB_BUSY_MASK | SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK |
  1043. SRBM_STATUS__MCC_BUSY_MASK | SRBM_STATUS__MCD_BUSY_MASK | SRBM_STATUS__VMC_BUSY_MASK))
  1044. return false;
  1045. return true;
  1046. }
  1047. static int gmc_v8_0_wait_for_idle(void *handle)
  1048. {
  1049. unsigned i;
  1050. u32 tmp;
  1051. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1052. for (i = 0; i < adev->usec_timeout; i++) {
  1053. /* read MC_STATUS */
  1054. tmp = RREG32(mmSRBM_STATUS) & (SRBM_STATUS__MCB_BUSY_MASK |
  1055. SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK |
  1056. SRBM_STATUS__MCC_BUSY_MASK |
  1057. SRBM_STATUS__MCD_BUSY_MASK |
  1058. SRBM_STATUS__VMC_BUSY_MASK |
  1059. SRBM_STATUS__VMC1_BUSY_MASK);
  1060. if (!tmp)
  1061. return 0;
  1062. udelay(1);
  1063. }
  1064. return -ETIMEDOUT;
  1065. }
  1066. static bool gmc_v8_0_check_soft_reset(void *handle)
  1067. {
  1068. u32 srbm_soft_reset = 0;
  1069. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1070. u32 tmp = RREG32(mmSRBM_STATUS);
  1071. if (tmp & SRBM_STATUS__VMC_BUSY_MASK)
  1072. srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset,
  1073. SRBM_SOFT_RESET, SOFT_RESET_VMC, 1);
  1074. if (tmp & (SRBM_STATUS__MCB_BUSY_MASK | SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK |
  1075. SRBM_STATUS__MCC_BUSY_MASK | SRBM_STATUS__MCD_BUSY_MASK)) {
  1076. if (!(adev->flags & AMD_IS_APU))
  1077. srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset,
  1078. SRBM_SOFT_RESET, SOFT_RESET_MC, 1);
  1079. }
  1080. if (srbm_soft_reset) {
  1081. adev->mc.srbm_soft_reset = srbm_soft_reset;
  1082. return true;
  1083. } else {
  1084. adev->mc.srbm_soft_reset = 0;
  1085. return false;
  1086. }
  1087. }
  1088. static int gmc_v8_0_pre_soft_reset(void *handle)
  1089. {
  1090. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1091. if (!adev->mc.srbm_soft_reset)
  1092. return 0;
  1093. gmc_v8_0_mc_stop(adev);
  1094. if (gmc_v8_0_wait_for_idle(adev)) {
  1095. dev_warn(adev->dev, "Wait for GMC idle timed out !\n");
  1096. }
  1097. return 0;
  1098. }
  1099. static int gmc_v8_0_soft_reset(void *handle)
  1100. {
  1101. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1102. u32 srbm_soft_reset;
  1103. if (!adev->mc.srbm_soft_reset)
  1104. return 0;
  1105. srbm_soft_reset = adev->mc.srbm_soft_reset;
  1106. if (srbm_soft_reset) {
  1107. u32 tmp;
  1108. tmp = RREG32(mmSRBM_SOFT_RESET);
  1109. tmp |= srbm_soft_reset;
  1110. dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
  1111. WREG32(mmSRBM_SOFT_RESET, tmp);
  1112. tmp = RREG32(mmSRBM_SOFT_RESET);
  1113. udelay(50);
  1114. tmp &= ~srbm_soft_reset;
  1115. WREG32(mmSRBM_SOFT_RESET, tmp);
  1116. tmp = RREG32(mmSRBM_SOFT_RESET);
  1117. /* Wait a little for things to settle down */
  1118. udelay(50);
  1119. }
  1120. return 0;
  1121. }
  1122. static int gmc_v8_0_post_soft_reset(void *handle)
  1123. {
  1124. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1125. if (!adev->mc.srbm_soft_reset)
  1126. return 0;
  1127. gmc_v8_0_mc_resume(adev);
  1128. return 0;
  1129. }
  1130. static int gmc_v8_0_vm_fault_interrupt_state(struct amdgpu_device *adev,
  1131. struct amdgpu_irq_src *src,
  1132. unsigned type,
  1133. enum amdgpu_interrupt_state state)
  1134. {
  1135. u32 tmp;
  1136. u32 bits = (VM_CONTEXT1_CNTL__RANGE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1137. VM_CONTEXT1_CNTL__DUMMY_PAGE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1138. VM_CONTEXT1_CNTL__PDE0_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1139. VM_CONTEXT1_CNTL__VALID_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1140. VM_CONTEXT1_CNTL__READ_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1141. VM_CONTEXT1_CNTL__WRITE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1142. VM_CONTEXT1_CNTL__EXECUTE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK);
  1143. switch (state) {
  1144. case AMDGPU_IRQ_STATE_DISABLE:
  1145. /* system context */
  1146. tmp = RREG32(mmVM_CONTEXT0_CNTL);
  1147. tmp &= ~bits;
  1148. WREG32(mmVM_CONTEXT0_CNTL, tmp);
  1149. /* VMs */
  1150. tmp = RREG32(mmVM_CONTEXT1_CNTL);
  1151. tmp &= ~bits;
  1152. WREG32(mmVM_CONTEXT1_CNTL, tmp);
  1153. break;
  1154. case AMDGPU_IRQ_STATE_ENABLE:
  1155. /* system context */
  1156. tmp = RREG32(mmVM_CONTEXT0_CNTL);
  1157. tmp |= bits;
  1158. WREG32(mmVM_CONTEXT0_CNTL, tmp);
  1159. /* VMs */
  1160. tmp = RREG32(mmVM_CONTEXT1_CNTL);
  1161. tmp |= bits;
  1162. WREG32(mmVM_CONTEXT1_CNTL, tmp);
  1163. break;
  1164. default:
  1165. break;
  1166. }
  1167. return 0;
  1168. }
  1169. static int gmc_v8_0_process_interrupt(struct amdgpu_device *adev,
  1170. struct amdgpu_irq_src *source,
  1171. struct amdgpu_iv_entry *entry)
  1172. {
  1173. u32 addr, status, mc_client;
  1174. if (amdgpu_sriov_vf(adev)) {
  1175. dev_err(adev->dev, "GPU fault detected: %d 0x%08x\n",
  1176. entry->src_id, entry->src_data[0]);
  1177. dev_err(adev->dev, " Can't decode VM fault info here on SRIOV VF\n");
  1178. return 0;
  1179. }
  1180. addr = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_ADDR);
  1181. status = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_STATUS);
  1182. mc_client = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_MCCLIENT);
  1183. /* reset addr and status */
  1184. WREG32_P(mmVM_CONTEXT1_CNTL2, 1, ~1);
  1185. if (!addr && !status)
  1186. return 0;
  1187. if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_FIRST)
  1188. gmc_v8_0_set_fault_enable_default(adev, false);
  1189. if (printk_ratelimit()) {
  1190. dev_err(adev->dev, "GPU fault detected: %d 0x%08x\n",
  1191. entry->src_id, entry->src_data[0]);
  1192. dev_err(adev->dev, " VM_CONTEXT1_PROTECTION_FAULT_ADDR 0x%08X\n",
  1193. addr);
  1194. dev_err(adev->dev, " VM_CONTEXT1_PROTECTION_FAULT_STATUS 0x%08X\n",
  1195. status);
  1196. gmc_v8_0_vm_decode_fault(adev, status, addr, mc_client);
  1197. }
  1198. return 0;
  1199. }
  1200. static void fiji_update_mc_medium_grain_clock_gating(struct amdgpu_device *adev,
  1201. bool enable)
  1202. {
  1203. uint32_t data;
  1204. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_MC_MGCG)) {
  1205. data = RREG32(mmMC_HUB_MISC_HUB_CG);
  1206. data |= MC_HUB_MISC_HUB_CG__ENABLE_MASK;
  1207. WREG32(mmMC_HUB_MISC_HUB_CG, data);
  1208. data = RREG32(mmMC_HUB_MISC_SIP_CG);
  1209. data |= MC_HUB_MISC_SIP_CG__ENABLE_MASK;
  1210. WREG32(mmMC_HUB_MISC_SIP_CG, data);
  1211. data = RREG32(mmMC_HUB_MISC_VM_CG);
  1212. data |= MC_HUB_MISC_VM_CG__ENABLE_MASK;
  1213. WREG32(mmMC_HUB_MISC_VM_CG, data);
  1214. data = RREG32(mmMC_XPB_CLK_GAT);
  1215. data |= MC_XPB_CLK_GAT__ENABLE_MASK;
  1216. WREG32(mmMC_XPB_CLK_GAT, data);
  1217. data = RREG32(mmATC_MISC_CG);
  1218. data |= ATC_MISC_CG__ENABLE_MASK;
  1219. WREG32(mmATC_MISC_CG, data);
  1220. data = RREG32(mmMC_CITF_MISC_WR_CG);
  1221. data |= MC_CITF_MISC_WR_CG__ENABLE_MASK;
  1222. WREG32(mmMC_CITF_MISC_WR_CG, data);
  1223. data = RREG32(mmMC_CITF_MISC_RD_CG);
  1224. data |= MC_CITF_MISC_RD_CG__ENABLE_MASK;
  1225. WREG32(mmMC_CITF_MISC_RD_CG, data);
  1226. data = RREG32(mmMC_CITF_MISC_VM_CG);
  1227. data |= MC_CITF_MISC_VM_CG__ENABLE_MASK;
  1228. WREG32(mmMC_CITF_MISC_VM_CG, data);
  1229. data = RREG32(mmVM_L2_CG);
  1230. data |= VM_L2_CG__ENABLE_MASK;
  1231. WREG32(mmVM_L2_CG, data);
  1232. } else {
  1233. data = RREG32(mmMC_HUB_MISC_HUB_CG);
  1234. data &= ~MC_HUB_MISC_HUB_CG__ENABLE_MASK;
  1235. WREG32(mmMC_HUB_MISC_HUB_CG, data);
  1236. data = RREG32(mmMC_HUB_MISC_SIP_CG);
  1237. data &= ~MC_HUB_MISC_SIP_CG__ENABLE_MASK;
  1238. WREG32(mmMC_HUB_MISC_SIP_CG, data);
  1239. data = RREG32(mmMC_HUB_MISC_VM_CG);
  1240. data &= ~MC_HUB_MISC_VM_CG__ENABLE_MASK;
  1241. WREG32(mmMC_HUB_MISC_VM_CG, data);
  1242. data = RREG32(mmMC_XPB_CLK_GAT);
  1243. data &= ~MC_XPB_CLK_GAT__ENABLE_MASK;
  1244. WREG32(mmMC_XPB_CLK_GAT, data);
  1245. data = RREG32(mmATC_MISC_CG);
  1246. data &= ~ATC_MISC_CG__ENABLE_MASK;
  1247. WREG32(mmATC_MISC_CG, data);
  1248. data = RREG32(mmMC_CITF_MISC_WR_CG);
  1249. data &= ~MC_CITF_MISC_WR_CG__ENABLE_MASK;
  1250. WREG32(mmMC_CITF_MISC_WR_CG, data);
  1251. data = RREG32(mmMC_CITF_MISC_RD_CG);
  1252. data &= ~MC_CITF_MISC_RD_CG__ENABLE_MASK;
  1253. WREG32(mmMC_CITF_MISC_RD_CG, data);
  1254. data = RREG32(mmMC_CITF_MISC_VM_CG);
  1255. data &= ~MC_CITF_MISC_VM_CG__ENABLE_MASK;
  1256. WREG32(mmMC_CITF_MISC_VM_CG, data);
  1257. data = RREG32(mmVM_L2_CG);
  1258. data &= ~VM_L2_CG__ENABLE_MASK;
  1259. WREG32(mmVM_L2_CG, data);
  1260. }
  1261. }
  1262. static void fiji_update_mc_light_sleep(struct amdgpu_device *adev,
  1263. bool enable)
  1264. {
  1265. uint32_t data;
  1266. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_MC_LS)) {
  1267. data = RREG32(mmMC_HUB_MISC_HUB_CG);
  1268. data |= MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK;
  1269. WREG32(mmMC_HUB_MISC_HUB_CG, data);
  1270. data = RREG32(mmMC_HUB_MISC_SIP_CG);
  1271. data |= MC_HUB_MISC_SIP_CG__MEM_LS_ENABLE_MASK;
  1272. WREG32(mmMC_HUB_MISC_SIP_CG, data);
  1273. data = RREG32(mmMC_HUB_MISC_VM_CG);
  1274. data |= MC_HUB_MISC_VM_CG__MEM_LS_ENABLE_MASK;
  1275. WREG32(mmMC_HUB_MISC_VM_CG, data);
  1276. data = RREG32(mmMC_XPB_CLK_GAT);
  1277. data |= MC_XPB_CLK_GAT__MEM_LS_ENABLE_MASK;
  1278. WREG32(mmMC_XPB_CLK_GAT, data);
  1279. data = RREG32(mmATC_MISC_CG);
  1280. data |= ATC_MISC_CG__MEM_LS_ENABLE_MASK;
  1281. WREG32(mmATC_MISC_CG, data);
  1282. data = RREG32(mmMC_CITF_MISC_WR_CG);
  1283. data |= MC_CITF_MISC_WR_CG__MEM_LS_ENABLE_MASK;
  1284. WREG32(mmMC_CITF_MISC_WR_CG, data);
  1285. data = RREG32(mmMC_CITF_MISC_RD_CG);
  1286. data |= MC_CITF_MISC_RD_CG__MEM_LS_ENABLE_MASK;
  1287. WREG32(mmMC_CITF_MISC_RD_CG, data);
  1288. data = RREG32(mmMC_CITF_MISC_VM_CG);
  1289. data |= MC_CITF_MISC_VM_CG__MEM_LS_ENABLE_MASK;
  1290. WREG32(mmMC_CITF_MISC_VM_CG, data);
  1291. data = RREG32(mmVM_L2_CG);
  1292. data |= VM_L2_CG__MEM_LS_ENABLE_MASK;
  1293. WREG32(mmVM_L2_CG, data);
  1294. } else {
  1295. data = RREG32(mmMC_HUB_MISC_HUB_CG);
  1296. data &= ~MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK;
  1297. WREG32(mmMC_HUB_MISC_HUB_CG, data);
  1298. data = RREG32(mmMC_HUB_MISC_SIP_CG);
  1299. data &= ~MC_HUB_MISC_SIP_CG__MEM_LS_ENABLE_MASK;
  1300. WREG32(mmMC_HUB_MISC_SIP_CG, data);
  1301. data = RREG32(mmMC_HUB_MISC_VM_CG);
  1302. data &= ~MC_HUB_MISC_VM_CG__MEM_LS_ENABLE_MASK;
  1303. WREG32(mmMC_HUB_MISC_VM_CG, data);
  1304. data = RREG32(mmMC_XPB_CLK_GAT);
  1305. data &= ~MC_XPB_CLK_GAT__MEM_LS_ENABLE_MASK;
  1306. WREG32(mmMC_XPB_CLK_GAT, data);
  1307. data = RREG32(mmATC_MISC_CG);
  1308. data &= ~ATC_MISC_CG__MEM_LS_ENABLE_MASK;
  1309. WREG32(mmATC_MISC_CG, data);
  1310. data = RREG32(mmMC_CITF_MISC_WR_CG);
  1311. data &= ~MC_CITF_MISC_WR_CG__MEM_LS_ENABLE_MASK;
  1312. WREG32(mmMC_CITF_MISC_WR_CG, data);
  1313. data = RREG32(mmMC_CITF_MISC_RD_CG);
  1314. data &= ~MC_CITF_MISC_RD_CG__MEM_LS_ENABLE_MASK;
  1315. WREG32(mmMC_CITF_MISC_RD_CG, data);
  1316. data = RREG32(mmMC_CITF_MISC_VM_CG);
  1317. data &= ~MC_CITF_MISC_VM_CG__MEM_LS_ENABLE_MASK;
  1318. WREG32(mmMC_CITF_MISC_VM_CG, data);
  1319. data = RREG32(mmVM_L2_CG);
  1320. data &= ~VM_L2_CG__MEM_LS_ENABLE_MASK;
  1321. WREG32(mmVM_L2_CG, data);
  1322. }
  1323. }
  1324. static int gmc_v8_0_set_clockgating_state(void *handle,
  1325. enum amd_clockgating_state state)
  1326. {
  1327. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1328. if (amdgpu_sriov_vf(adev))
  1329. return 0;
  1330. switch (adev->asic_type) {
  1331. case CHIP_FIJI:
  1332. fiji_update_mc_medium_grain_clock_gating(adev,
  1333. state == AMD_CG_STATE_GATE);
  1334. fiji_update_mc_light_sleep(adev,
  1335. state == AMD_CG_STATE_GATE);
  1336. break;
  1337. default:
  1338. break;
  1339. }
  1340. return 0;
  1341. }
  1342. static int gmc_v8_0_set_powergating_state(void *handle,
  1343. enum amd_powergating_state state)
  1344. {
  1345. return 0;
  1346. }
  1347. static void gmc_v8_0_get_clockgating_state(void *handle, u32 *flags)
  1348. {
  1349. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1350. int data;
  1351. if (amdgpu_sriov_vf(adev))
  1352. *flags = 0;
  1353. /* AMD_CG_SUPPORT_MC_MGCG */
  1354. data = RREG32(mmMC_HUB_MISC_HUB_CG);
  1355. if (data & MC_HUB_MISC_HUB_CG__ENABLE_MASK)
  1356. *flags |= AMD_CG_SUPPORT_MC_MGCG;
  1357. /* AMD_CG_SUPPORT_MC_LS */
  1358. if (data & MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK)
  1359. *flags |= AMD_CG_SUPPORT_MC_LS;
  1360. }
  1361. static const struct amd_ip_funcs gmc_v8_0_ip_funcs = {
  1362. .name = "gmc_v8_0",
  1363. .early_init = gmc_v8_0_early_init,
  1364. .late_init = gmc_v8_0_late_init,
  1365. .sw_init = gmc_v8_0_sw_init,
  1366. .sw_fini = gmc_v8_0_sw_fini,
  1367. .hw_init = gmc_v8_0_hw_init,
  1368. .hw_fini = gmc_v8_0_hw_fini,
  1369. .suspend = gmc_v8_0_suspend,
  1370. .resume = gmc_v8_0_resume,
  1371. .is_idle = gmc_v8_0_is_idle,
  1372. .wait_for_idle = gmc_v8_0_wait_for_idle,
  1373. .check_soft_reset = gmc_v8_0_check_soft_reset,
  1374. .pre_soft_reset = gmc_v8_0_pre_soft_reset,
  1375. .soft_reset = gmc_v8_0_soft_reset,
  1376. .post_soft_reset = gmc_v8_0_post_soft_reset,
  1377. .set_clockgating_state = gmc_v8_0_set_clockgating_state,
  1378. .set_powergating_state = gmc_v8_0_set_powergating_state,
  1379. .get_clockgating_state = gmc_v8_0_get_clockgating_state,
  1380. };
  1381. static const struct amdgpu_gart_funcs gmc_v8_0_gart_funcs = {
  1382. .flush_gpu_tlb = gmc_v8_0_gart_flush_gpu_tlb,
  1383. .set_pte_pde = gmc_v8_0_gart_set_pte_pde,
  1384. .set_prt = gmc_v8_0_set_prt,
  1385. .get_vm_pte_flags = gmc_v8_0_get_vm_pte_flags,
  1386. .get_vm_pde = gmc_v8_0_get_vm_pde
  1387. };
  1388. static const struct amdgpu_irq_src_funcs gmc_v8_0_irq_funcs = {
  1389. .set = gmc_v8_0_vm_fault_interrupt_state,
  1390. .process = gmc_v8_0_process_interrupt,
  1391. };
  1392. static void gmc_v8_0_set_gart_funcs(struct amdgpu_device *adev)
  1393. {
  1394. if (adev->gart.gart_funcs == NULL)
  1395. adev->gart.gart_funcs = &gmc_v8_0_gart_funcs;
  1396. }
  1397. static void gmc_v8_0_set_irq_funcs(struct amdgpu_device *adev)
  1398. {
  1399. adev->mc.vm_fault.num_types = 1;
  1400. adev->mc.vm_fault.funcs = &gmc_v8_0_irq_funcs;
  1401. }
  1402. const struct amdgpu_ip_block_version gmc_v8_0_ip_block =
  1403. {
  1404. .type = AMD_IP_BLOCK_TYPE_GMC,
  1405. .major = 8,
  1406. .minor = 0,
  1407. .rev = 0,
  1408. .funcs = &gmc_v8_0_ip_funcs,
  1409. };
  1410. const struct amdgpu_ip_block_version gmc_v8_1_ip_block =
  1411. {
  1412. .type = AMD_IP_BLOCK_TYPE_GMC,
  1413. .major = 8,
  1414. .minor = 1,
  1415. .rev = 0,
  1416. .funcs = &gmc_v8_0_ip_funcs,
  1417. };
  1418. const struct amdgpu_ip_block_version gmc_v8_5_ip_block =
  1419. {
  1420. .type = AMD_IP_BLOCK_TYPE_GMC,
  1421. .major = 8,
  1422. .minor = 5,
  1423. .rev = 0,
  1424. .funcs = &gmc_v8_0_ip_funcs,
  1425. };