vmalloc.c 68 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688
  1. /*
  2. * linux/mm/vmalloc.c
  3. *
  4. * Copyright (C) 1993 Linus Torvalds
  5. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  6. * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
  7. * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
  8. * Numa awareness, Christoph Lameter, SGI, June 2005
  9. */
  10. #include <linux/vmalloc.h>
  11. #include <linux/mm.h>
  12. #include <linux/module.h>
  13. #include <linux/highmem.h>
  14. #include <linux/sched.h>
  15. #include <linux/slab.h>
  16. #include <linux/spinlock.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/proc_fs.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/debugobjects.h>
  21. #include <linux/kallsyms.h>
  22. #include <linux/list.h>
  23. #include <linux/rbtree.h>
  24. #include <linux/radix-tree.h>
  25. #include <linux/rcupdate.h>
  26. #include <linux/pfn.h>
  27. #include <linux/kmemleak.h>
  28. #include <linux/atomic.h>
  29. #include <linux/compiler.h>
  30. #include <linux/llist.h>
  31. #include <linux/bitops.h>
  32. #include <asm/uaccess.h>
  33. #include <asm/tlbflush.h>
  34. #include <asm/shmparam.h>
  35. #include "internal.h"
  36. struct vfree_deferred {
  37. struct llist_head list;
  38. struct work_struct wq;
  39. };
  40. static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
  41. static void __vunmap(const void *, int);
  42. static void free_work(struct work_struct *w)
  43. {
  44. struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
  45. struct llist_node *llnode = llist_del_all(&p->list);
  46. while (llnode) {
  47. void *p = llnode;
  48. llnode = llist_next(llnode);
  49. __vunmap(p, 1);
  50. }
  51. }
  52. /*** Page table manipulation functions ***/
  53. static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  54. {
  55. pte_t *pte;
  56. pte = pte_offset_kernel(pmd, addr);
  57. do {
  58. pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  59. WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  60. } while (pte++, addr += PAGE_SIZE, addr != end);
  61. }
  62. static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
  63. {
  64. pmd_t *pmd;
  65. unsigned long next;
  66. pmd = pmd_offset(pud, addr);
  67. do {
  68. next = pmd_addr_end(addr, end);
  69. if (pmd_clear_huge(pmd))
  70. continue;
  71. if (pmd_none_or_clear_bad(pmd))
  72. continue;
  73. vunmap_pte_range(pmd, addr, next);
  74. } while (pmd++, addr = next, addr != end);
  75. }
  76. static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
  77. {
  78. pud_t *pud;
  79. unsigned long next;
  80. pud = pud_offset(pgd, addr);
  81. do {
  82. next = pud_addr_end(addr, end);
  83. if (pud_clear_huge(pud))
  84. continue;
  85. if (pud_none_or_clear_bad(pud))
  86. continue;
  87. vunmap_pmd_range(pud, addr, next);
  88. } while (pud++, addr = next, addr != end);
  89. }
  90. static void vunmap_page_range(unsigned long addr, unsigned long end)
  91. {
  92. pgd_t *pgd;
  93. unsigned long next;
  94. BUG_ON(addr >= end);
  95. pgd = pgd_offset_k(addr);
  96. do {
  97. next = pgd_addr_end(addr, end);
  98. if (pgd_none_or_clear_bad(pgd))
  99. continue;
  100. vunmap_pud_range(pgd, addr, next);
  101. } while (pgd++, addr = next, addr != end);
  102. }
  103. static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
  104. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  105. {
  106. pte_t *pte;
  107. /*
  108. * nr is a running index into the array which helps higher level
  109. * callers keep track of where we're up to.
  110. */
  111. pte = pte_alloc_kernel(pmd, addr);
  112. if (!pte)
  113. return -ENOMEM;
  114. do {
  115. struct page *page = pages[*nr];
  116. if (WARN_ON(!pte_none(*pte)))
  117. return -EBUSY;
  118. if (WARN_ON(!page))
  119. return -ENOMEM;
  120. set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
  121. (*nr)++;
  122. } while (pte++, addr += PAGE_SIZE, addr != end);
  123. return 0;
  124. }
  125. static int vmap_pmd_range(pud_t *pud, unsigned long addr,
  126. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  127. {
  128. pmd_t *pmd;
  129. unsigned long next;
  130. pmd = pmd_alloc(&init_mm, pud, addr);
  131. if (!pmd)
  132. return -ENOMEM;
  133. do {
  134. next = pmd_addr_end(addr, end);
  135. if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
  136. return -ENOMEM;
  137. } while (pmd++, addr = next, addr != end);
  138. return 0;
  139. }
  140. static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
  141. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  142. {
  143. pud_t *pud;
  144. unsigned long next;
  145. pud = pud_alloc(&init_mm, pgd, addr);
  146. if (!pud)
  147. return -ENOMEM;
  148. do {
  149. next = pud_addr_end(addr, end);
  150. if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
  151. return -ENOMEM;
  152. } while (pud++, addr = next, addr != end);
  153. return 0;
  154. }
  155. /*
  156. * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
  157. * will have pfns corresponding to the "pages" array.
  158. *
  159. * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
  160. */
  161. static int vmap_page_range_noflush(unsigned long start, unsigned long end,
  162. pgprot_t prot, struct page **pages)
  163. {
  164. pgd_t *pgd;
  165. unsigned long next;
  166. unsigned long addr = start;
  167. int err = 0;
  168. int nr = 0;
  169. BUG_ON(addr >= end);
  170. pgd = pgd_offset_k(addr);
  171. do {
  172. next = pgd_addr_end(addr, end);
  173. err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
  174. if (err)
  175. return err;
  176. } while (pgd++, addr = next, addr != end);
  177. return nr;
  178. }
  179. static int vmap_page_range(unsigned long start, unsigned long end,
  180. pgprot_t prot, struct page **pages)
  181. {
  182. int ret;
  183. ret = vmap_page_range_noflush(start, end, prot, pages);
  184. flush_cache_vmap(start, end);
  185. return ret;
  186. }
  187. int is_vmalloc_or_module_addr(const void *x)
  188. {
  189. /*
  190. * ARM, x86-64 and sparc64 put modules in a special place,
  191. * and fall back on vmalloc() if that fails. Others
  192. * just put it in the vmalloc space.
  193. */
  194. #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
  195. unsigned long addr = (unsigned long)x;
  196. if (addr >= MODULES_VADDR && addr < MODULES_END)
  197. return 1;
  198. #endif
  199. return is_vmalloc_addr(x);
  200. }
  201. /*
  202. * Walk a vmap address to the struct page it maps.
  203. */
  204. struct page *vmalloc_to_page(const void *vmalloc_addr)
  205. {
  206. unsigned long addr = (unsigned long) vmalloc_addr;
  207. struct page *page = NULL;
  208. pgd_t *pgd = pgd_offset_k(addr);
  209. /*
  210. * XXX we might need to change this if we add VIRTUAL_BUG_ON for
  211. * architectures that do not vmalloc module space
  212. */
  213. VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
  214. if (!pgd_none(*pgd)) {
  215. pud_t *pud = pud_offset(pgd, addr);
  216. if (!pud_none(*pud)) {
  217. pmd_t *pmd = pmd_offset(pud, addr);
  218. if (!pmd_none(*pmd)) {
  219. pte_t *ptep, pte;
  220. ptep = pte_offset_map(pmd, addr);
  221. pte = *ptep;
  222. if (pte_present(pte))
  223. page = pte_page(pte);
  224. pte_unmap(ptep);
  225. }
  226. }
  227. }
  228. return page;
  229. }
  230. EXPORT_SYMBOL(vmalloc_to_page);
  231. /*
  232. * Map a vmalloc()-space virtual address to the physical page frame number.
  233. */
  234. unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
  235. {
  236. return page_to_pfn(vmalloc_to_page(vmalloc_addr));
  237. }
  238. EXPORT_SYMBOL(vmalloc_to_pfn);
  239. /*** Global kva allocator ***/
  240. #define VM_LAZY_FREE 0x01
  241. #define VM_LAZY_FREEING 0x02
  242. #define VM_VM_AREA 0x04
  243. static DEFINE_SPINLOCK(vmap_area_lock);
  244. /* Export for kexec only */
  245. LIST_HEAD(vmap_area_list);
  246. static struct rb_root vmap_area_root = RB_ROOT;
  247. /* The vmap cache globals are protected by vmap_area_lock */
  248. static struct rb_node *free_vmap_cache;
  249. static unsigned long cached_hole_size;
  250. static unsigned long cached_vstart;
  251. static unsigned long cached_align;
  252. static unsigned long vmap_area_pcpu_hole;
  253. static struct vmap_area *__find_vmap_area(unsigned long addr)
  254. {
  255. struct rb_node *n = vmap_area_root.rb_node;
  256. while (n) {
  257. struct vmap_area *va;
  258. va = rb_entry(n, struct vmap_area, rb_node);
  259. if (addr < va->va_start)
  260. n = n->rb_left;
  261. else if (addr >= va->va_end)
  262. n = n->rb_right;
  263. else
  264. return va;
  265. }
  266. return NULL;
  267. }
  268. static void __insert_vmap_area(struct vmap_area *va)
  269. {
  270. struct rb_node **p = &vmap_area_root.rb_node;
  271. struct rb_node *parent = NULL;
  272. struct rb_node *tmp;
  273. while (*p) {
  274. struct vmap_area *tmp_va;
  275. parent = *p;
  276. tmp_va = rb_entry(parent, struct vmap_area, rb_node);
  277. if (va->va_start < tmp_va->va_end)
  278. p = &(*p)->rb_left;
  279. else if (va->va_end > tmp_va->va_start)
  280. p = &(*p)->rb_right;
  281. else
  282. BUG();
  283. }
  284. rb_link_node(&va->rb_node, parent, p);
  285. rb_insert_color(&va->rb_node, &vmap_area_root);
  286. /* address-sort this list */
  287. tmp = rb_prev(&va->rb_node);
  288. if (tmp) {
  289. struct vmap_area *prev;
  290. prev = rb_entry(tmp, struct vmap_area, rb_node);
  291. list_add_rcu(&va->list, &prev->list);
  292. } else
  293. list_add_rcu(&va->list, &vmap_area_list);
  294. }
  295. static void purge_vmap_area_lazy(void);
  296. /*
  297. * Allocate a region of KVA of the specified size and alignment, within the
  298. * vstart and vend.
  299. */
  300. static struct vmap_area *alloc_vmap_area(unsigned long size,
  301. unsigned long align,
  302. unsigned long vstart, unsigned long vend,
  303. int node, gfp_t gfp_mask)
  304. {
  305. struct vmap_area *va;
  306. struct rb_node *n;
  307. unsigned long addr;
  308. int purged = 0;
  309. struct vmap_area *first;
  310. BUG_ON(!size);
  311. BUG_ON(offset_in_page(size));
  312. BUG_ON(!is_power_of_2(align));
  313. va = kmalloc_node(sizeof(struct vmap_area),
  314. gfp_mask & GFP_RECLAIM_MASK, node);
  315. if (unlikely(!va))
  316. return ERR_PTR(-ENOMEM);
  317. /*
  318. * Only scan the relevant parts containing pointers to other objects
  319. * to avoid false negatives.
  320. */
  321. kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
  322. retry:
  323. spin_lock(&vmap_area_lock);
  324. /*
  325. * Invalidate cache if we have more permissive parameters.
  326. * cached_hole_size notes the largest hole noticed _below_
  327. * the vmap_area cached in free_vmap_cache: if size fits
  328. * into that hole, we want to scan from vstart to reuse
  329. * the hole instead of allocating above free_vmap_cache.
  330. * Note that __free_vmap_area may update free_vmap_cache
  331. * without updating cached_hole_size or cached_align.
  332. */
  333. if (!free_vmap_cache ||
  334. size < cached_hole_size ||
  335. vstart < cached_vstart ||
  336. align < cached_align) {
  337. nocache:
  338. cached_hole_size = 0;
  339. free_vmap_cache = NULL;
  340. }
  341. /* record if we encounter less permissive parameters */
  342. cached_vstart = vstart;
  343. cached_align = align;
  344. /* find starting point for our search */
  345. if (free_vmap_cache) {
  346. first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
  347. addr = ALIGN(first->va_end, align);
  348. if (addr < vstart)
  349. goto nocache;
  350. if (addr + size < addr)
  351. goto overflow;
  352. } else {
  353. addr = ALIGN(vstart, align);
  354. if (addr + size < addr)
  355. goto overflow;
  356. n = vmap_area_root.rb_node;
  357. first = NULL;
  358. while (n) {
  359. struct vmap_area *tmp;
  360. tmp = rb_entry(n, struct vmap_area, rb_node);
  361. if (tmp->va_end >= addr) {
  362. first = tmp;
  363. if (tmp->va_start <= addr)
  364. break;
  365. n = n->rb_left;
  366. } else
  367. n = n->rb_right;
  368. }
  369. if (!first)
  370. goto found;
  371. }
  372. /* from the starting point, walk areas until a suitable hole is found */
  373. while (addr + size > first->va_start && addr + size <= vend) {
  374. if (addr + cached_hole_size < first->va_start)
  375. cached_hole_size = first->va_start - addr;
  376. addr = ALIGN(first->va_end, align);
  377. if (addr + size < addr)
  378. goto overflow;
  379. if (list_is_last(&first->list, &vmap_area_list))
  380. goto found;
  381. first = list_next_entry(first, list);
  382. }
  383. found:
  384. if (addr + size > vend)
  385. goto overflow;
  386. va->va_start = addr;
  387. va->va_end = addr + size;
  388. va->flags = 0;
  389. __insert_vmap_area(va);
  390. free_vmap_cache = &va->rb_node;
  391. spin_unlock(&vmap_area_lock);
  392. BUG_ON(!IS_ALIGNED(va->va_start, align));
  393. BUG_ON(va->va_start < vstart);
  394. BUG_ON(va->va_end > vend);
  395. return va;
  396. overflow:
  397. spin_unlock(&vmap_area_lock);
  398. if (!purged) {
  399. purge_vmap_area_lazy();
  400. purged = 1;
  401. goto retry;
  402. }
  403. if (printk_ratelimit())
  404. pr_warn("vmap allocation for size %lu failed: "
  405. "use vmalloc=<size> to increase size.\n", size);
  406. kfree(va);
  407. return ERR_PTR(-EBUSY);
  408. }
  409. static void __free_vmap_area(struct vmap_area *va)
  410. {
  411. BUG_ON(RB_EMPTY_NODE(&va->rb_node));
  412. if (free_vmap_cache) {
  413. if (va->va_end < cached_vstart) {
  414. free_vmap_cache = NULL;
  415. } else {
  416. struct vmap_area *cache;
  417. cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
  418. if (va->va_start <= cache->va_start) {
  419. free_vmap_cache = rb_prev(&va->rb_node);
  420. /*
  421. * We don't try to update cached_hole_size or
  422. * cached_align, but it won't go very wrong.
  423. */
  424. }
  425. }
  426. }
  427. rb_erase(&va->rb_node, &vmap_area_root);
  428. RB_CLEAR_NODE(&va->rb_node);
  429. list_del_rcu(&va->list);
  430. /*
  431. * Track the highest possible candidate for pcpu area
  432. * allocation. Areas outside of vmalloc area can be returned
  433. * here too, consider only end addresses which fall inside
  434. * vmalloc area proper.
  435. */
  436. if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
  437. vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
  438. kfree_rcu(va, rcu_head);
  439. }
  440. /*
  441. * Free a region of KVA allocated by alloc_vmap_area
  442. */
  443. static void free_vmap_area(struct vmap_area *va)
  444. {
  445. spin_lock(&vmap_area_lock);
  446. __free_vmap_area(va);
  447. spin_unlock(&vmap_area_lock);
  448. }
  449. /*
  450. * Clear the pagetable entries of a given vmap_area
  451. */
  452. static void unmap_vmap_area(struct vmap_area *va)
  453. {
  454. vunmap_page_range(va->va_start, va->va_end);
  455. }
  456. static void vmap_debug_free_range(unsigned long start, unsigned long end)
  457. {
  458. /*
  459. * Unmap page tables and force a TLB flush immediately if
  460. * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
  461. * bugs similarly to those in linear kernel virtual address
  462. * space after a page has been freed.
  463. *
  464. * All the lazy freeing logic is still retained, in order to
  465. * minimise intrusiveness of this debugging feature.
  466. *
  467. * This is going to be *slow* (linear kernel virtual address
  468. * debugging doesn't do a broadcast TLB flush so it is a lot
  469. * faster).
  470. */
  471. #ifdef CONFIG_DEBUG_PAGEALLOC
  472. vunmap_page_range(start, end);
  473. flush_tlb_kernel_range(start, end);
  474. #endif
  475. }
  476. /*
  477. * lazy_max_pages is the maximum amount of virtual address space we gather up
  478. * before attempting to purge with a TLB flush.
  479. *
  480. * There is a tradeoff here: a larger number will cover more kernel page tables
  481. * and take slightly longer to purge, but it will linearly reduce the number of
  482. * global TLB flushes that must be performed. It would seem natural to scale
  483. * this number up linearly with the number of CPUs (because vmapping activity
  484. * could also scale linearly with the number of CPUs), however it is likely
  485. * that in practice, workloads might be constrained in other ways that mean
  486. * vmap activity will not scale linearly with CPUs. Also, I want to be
  487. * conservative and not introduce a big latency on huge systems, so go with
  488. * a less aggressive log scale. It will still be an improvement over the old
  489. * code, and it will be simple to change the scale factor if we find that it
  490. * becomes a problem on bigger systems.
  491. */
  492. static unsigned long lazy_max_pages(void)
  493. {
  494. unsigned int log;
  495. log = fls(num_online_cpus());
  496. return log * (32UL * 1024 * 1024 / PAGE_SIZE);
  497. }
  498. static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
  499. /* for per-CPU blocks */
  500. static void purge_fragmented_blocks_allcpus(void);
  501. /*
  502. * called before a call to iounmap() if the caller wants vm_area_struct's
  503. * immediately freed.
  504. */
  505. void set_iounmap_nonlazy(void)
  506. {
  507. atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
  508. }
  509. /*
  510. * Purges all lazily-freed vmap areas.
  511. *
  512. * If sync is 0 then don't purge if there is already a purge in progress.
  513. * If force_flush is 1, then flush kernel TLBs between *start and *end even
  514. * if we found no lazy vmap areas to unmap (callers can use this to optimise
  515. * their own TLB flushing).
  516. * Returns with *start = min(*start, lowest purged address)
  517. * *end = max(*end, highest purged address)
  518. */
  519. static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
  520. int sync, int force_flush)
  521. {
  522. static DEFINE_SPINLOCK(purge_lock);
  523. LIST_HEAD(valist);
  524. struct vmap_area *va;
  525. struct vmap_area *n_va;
  526. int nr = 0;
  527. /*
  528. * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
  529. * should not expect such behaviour. This just simplifies locking for
  530. * the case that isn't actually used at the moment anyway.
  531. */
  532. if (!sync && !force_flush) {
  533. if (!spin_trylock(&purge_lock))
  534. return;
  535. } else
  536. spin_lock(&purge_lock);
  537. if (sync)
  538. purge_fragmented_blocks_allcpus();
  539. rcu_read_lock();
  540. list_for_each_entry_rcu(va, &vmap_area_list, list) {
  541. if (va->flags & VM_LAZY_FREE) {
  542. if (va->va_start < *start)
  543. *start = va->va_start;
  544. if (va->va_end > *end)
  545. *end = va->va_end;
  546. nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
  547. list_add_tail(&va->purge_list, &valist);
  548. va->flags |= VM_LAZY_FREEING;
  549. va->flags &= ~VM_LAZY_FREE;
  550. }
  551. }
  552. rcu_read_unlock();
  553. if (nr)
  554. atomic_sub(nr, &vmap_lazy_nr);
  555. if (nr || force_flush)
  556. flush_tlb_kernel_range(*start, *end);
  557. if (nr) {
  558. spin_lock(&vmap_area_lock);
  559. list_for_each_entry_safe(va, n_va, &valist, purge_list)
  560. __free_vmap_area(va);
  561. spin_unlock(&vmap_area_lock);
  562. }
  563. spin_unlock(&purge_lock);
  564. }
  565. /*
  566. * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
  567. * is already purging.
  568. */
  569. static void try_purge_vmap_area_lazy(void)
  570. {
  571. unsigned long start = ULONG_MAX, end = 0;
  572. __purge_vmap_area_lazy(&start, &end, 0, 0);
  573. }
  574. /*
  575. * Kick off a purge of the outstanding lazy areas.
  576. */
  577. static void purge_vmap_area_lazy(void)
  578. {
  579. unsigned long start = ULONG_MAX, end = 0;
  580. __purge_vmap_area_lazy(&start, &end, 1, 0);
  581. }
  582. /*
  583. * Free a vmap area, caller ensuring that the area has been unmapped
  584. * and flush_cache_vunmap had been called for the correct range
  585. * previously.
  586. */
  587. static void free_vmap_area_noflush(struct vmap_area *va)
  588. {
  589. va->flags |= VM_LAZY_FREE;
  590. atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
  591. if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
  592. try_purge_vmap_area_lazy();
  593. }
  594. /*
  595. * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
  596. * called for the correct range previously.
  597. */
  598. static void free_unmap_vmap_area_noflush(struct vmap_area *va)
  599. {
  600. unmap_vmap_area(va);
  601. free_vmap_area_noflush(va);
  602. }
  603. /*
  604. * Free and unmap a vmap area
  605. */
  606. static void free_unmap_vmap_area(struct vmap_area *va)
  607. {
  608. flush_cache_vunmap(va->va_start, va->va_end);
  609. free_unmap_vmap_area_noflush(va);
  610. }
  611. static struct vmap_area *find_vmap_area(unsigned long addr)
  612. {
  613. struct vmap_area *va;
  614. spin_lock(&vmap_area_lock);
  615. va = __find_vmap_area(addr);
  616. spin_unlock(&vmap_area_lock);
  617. return va;
  618. }
  619. static void free_unmap_vmap_area_addr(unsigned long addr)
  620. {
  621. struct vmap_area *va;
  622. va = find_vmap_area(addr);
  623. BUG_ON(!va);
  624. free_unmap_vmap_area(va);
  625. }
  626. /*** Per cpu kva allocator ***/
  627. /*
  628. * vmap space is limited especially on 32 bit architectures. Ensure there is
  629. * room for at least 16 percpu vmap blocks per CPU.
  630. */
  631. /*
  632. * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
  633. * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
  634. * instead (we just need a rough idea)
  635. */
  636. #if BITS_PER_LONG == 32
  637. #define VMALLOC_SPACE (128UL*1024*1024)
  638. #else
  639. #define VMALLOC_SPACE (128UL*1024*1024*1024)
  640. #endif
  641. #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
  642. #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
  643. #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
  644. #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
  645. #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
  646. #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
  647. #define VMAP_BBMAP_BITS \
  648. VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
  649. VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
  650. VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
  651. #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
  652. static bool vmap_initialized __read_mostly = false;
  653. struct vmap_block_queue {
  654. spinlock_t lock;
  655. struct list_head free;
  656. };
  657. struct vmap_block {
  658. spinlock_t lock;
  659. struct vmap_area *va;
  660. unsigned long free, dirty;
  661. unsigned long dirty_min, dirty_max; /*< dirty range */
  662. struct list_head free_list;
  663. struct rcu_head rcu_head;
  664. struct list_head purge;
  665. };
  666. /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
  667. static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
  668. /*
  669. * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
  670. * in the free path. Could get rid of this if we change the API to return a
  671. * "cookie" from alloc, to be passed to free. But no big deal yet.
  672. */
  673. static DEFINE_SPINLOCK(vmap_block_tree_lock);
  674. static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
  675. /*
  676. * We should probably have a fallback mechanism to allocate virtual memory
  677. * out of partially filled vmap blocks. However vmap block sizing should be
  678. * fairly reasonable according to the vmalloc size, so it shouldn't be a
  679. * big problem.
  680. */
  681. static unsigned long addr_to_vb_idx(unsigned long addr)
  682. {
  683. addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
  684. addr /= VMAP_BLOCK_SIZE;
  685. return addr;
  686. }
  687. static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
  688. {
  689. unsigned long addr;
  690. addr = va_start + (pages_off << PAGE_SHIFT);
  691. BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
  692. return (void *)addr;
  693. }
  694. /**
  695. * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
  696. * block. Of course pages number can't exceed VMAP_BBMAP_BITS
  697. * @order: how many 2^order pages should be occupied in newly allocated block
  698. * @gfp_mask: flags for the page level allocator
  699. *
  700. * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
  701. */
  702. static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
  703. {
  704. struct vmap_block_queue *vbq;
  705. struct vmap_block *vb;
  706. struct vmap_area *va;
  707. unsigned long vb_idx;
  708. int node, err;
  709. void *vaddr;
  710. node = numa_node_id();
  711. vb = kmalloc_node(sizeof(struct vmap_block),
  712. gfp_mask & GFP_RECLAIM_MASK, node);
  713. if (unlikely(!vb))
  714. return ERR_PTR(-ENOMEM);
  715. va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
  716. VMALLOC_START, VMALLOC_END,
  717. node, gfp_mask);
  718. if (IS_ERR(va)) {
  719. kfree(vb);
  720. return ERR_CAST(va);
  721. }
  722. err = radix_tree_preload(gfp_mask);
  723. if (unlikely(err)) {
  724. kfree(vb);
  725. free_vmap_area(va);
  726. return ERR_PTR(err);
  727. }
  728. vaddr = vmap_block_vaddr(va->va_start, 0);
  729. spin_lock_init(&vb->lock);
  730. vb->va = va;
  731. /* At least something should be left free */
  732. BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
  733. vb->free = VMAP_BBMAP_BITS - (1UL << order);
  734. vb->dirty = 0;
  735. vb->dirty_min = VMAP_BBMAP_BITS;
  736. vb->dirty_max = 0;
  737. INIT_LIST_HEAD(&vb->free_list);
  738. vb_idx = addr_to_vb_idx(va->va_start);
  739. spin_lock(&vmap_block_tree_lock);
  740. err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
  741. spin_unlock(&vmap_block_tree_lock);
  742. BUG_ON(err);
  743. radix_tree_preload_end();
  744. vbq = &get_cpu_var(vmap_block_queue);
  745. spin_lock(&vbq->lock);
  746. list_add_tail_rcu(&vb->free_list, &vbq->free);
  747. spin_unlock(&vbq->lock);
  748. put_cpu_var(vmap_block_queue);
  749. return vaddr;
  750. }
  751. static void free_vmap_block(struct vmap_block *vb)
  752. {
  753. struct vmap_block *tmp;
  754. unsigned long vb_idx;
  755. vb_idx = addr_to_vb_idx(vb->va->va_start);
  756. spin_lock(&vmap_block_tree_lock);
  757. tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
  758. spin_unlock(&vmap_block_tree_lock);
  759. BUG_ON(tmp != vb);
  760. free_vmap_area_noflush(vb->va);
  761. kfree_rcu(vb, rcu_head);
  762. }
  763. static void purge_fragmented_blocks(int cpu)
  764. {
  765. LIST_HEAD(purge);
  766. struct vmap_block *vb;
  767. struct vmap_block *n_vb;
  768. struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
  769. rcu_read_lock();
  770. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  771. if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
  772. continue;
  773. spin_lock(&vb->lock);
  774. if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
  775. vb->free = 0; /* prevent further allocs after releasing lock */
  776. vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
  777. vb->dirty_min = 0;
  778. vb->dirty_max = VMAP_BBMAP_BITS;
  779. spin_lock(&vbq->lock);
  780. list_del_rcu(&vb->free_list);
  781. spin_unlock(&vbq->lock);
  782. spin_unlock(&vb->lock);
  783. list_add_tail(&vb->purge, &purge);
  784. } else
  785. spin_unlock(&vb->lock);
  786. }
  787. rcu_read_unlock();
  788. list_for_each_entry_safe(vb, n_vb, &purge, purge) {
  789. list_del(&vb->purge);
  790. free_vmap_block(vb);
  791. }
  792. }
  793. static void purge_fragmented_blocks_allcpus(void)
  794. {
  795. int cpu;
  796. for_each_possible_cpu(cpu)
  797. purge_fragmented_blocks(cpu);
  798. }
  799. static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
  800. {
  801. struct vmap_block_queue *vbq;
  802. struct vmap_block *vb;
  803. void *vaddr = NULL;
  804. unsigned int order;
  805. BUG_ON(offset_in_page(size));
  806. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  807. if (WARN_ON(size == 0)) {
  808. /*
  809. * Allocating 0 bytes isn't what caller wants since
  810. * get_order(0) returns funny result. Just warn and terminate
  811. * early.
  812. */
  813. return NULL;
  814. }
  815. order = get_order(size);
  816. rcu_read_lock();
  817. vbq = &get_cpu_var(vmap_block_queue);
  818. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  819. unsigned long pages_off;
  820. spin_lock(&vb->lock);
  821. if (vb->free < (1UL << order)) {
  822. spin_unlock(&vb->lock);
  823. continue;
  824. }
  825. pages_off = VMAP_BBMAP_BITS - vb->free;
  826. vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
  827. vb->free -= 1UL << order;
  828. if (vb->free == 0) {
  829. spin_lock(&vbq->lock);
  830. list_del_rcu(&vb->free_list);
  831. spin_unlock(&vbq->lock);
  832. }
  833. spin_unlock(&vb->lock);
  834. break;
  835. }
  836. put_cpu_var(vmap_block_queue);
  837. rcu_read_unlock();
  838. /* Allocate new block if nothing was found */
  839. if (!vaddr)
  840. vaddr = new_vmap_block(order, gfp_mask);
  841. return vaddr;
  842. }
  843. static void vb_free(const void *addr, unsigned long size)
  844. {
  845. unsigned long offset;
  846. unsigned long vb_idx;
  847. unsigned int order;
  848. struct vmap_block *vb;
  849. BUG_ON(offset_in_page(size));
  850. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  851. flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
  852. order = get_order(size);
  853. offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
  854. offset >>= PAGE_SHIFT;
  855. vb_idx = addr_to_vb_idx((unsigned long)addr);
  856. rcu_read_lock();
  857. vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
  858. rcu_read_unlock();
  859. BUG_ON(!vb);
  860. vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
  861. spin_lock(&vb->lock);
  862. /* Expand dirty range */
  863. vb->dirty_min = min(vb->dirty_min, offset);
  864. vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
  865. vb->dirty += 1UL << order;
  866. if (vb->dirty == VMAP_BBMAP_BITS) {
  867. BUG_ON(vb->free);
  868. spin_unlock(&vb->lock);
  869. free_vmap_block(vb);
  870. } else
  871. spin_unlock(&vb->lock);
  872. }
  873. /**
  874. * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
  875. *
  876. * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
  877. * to amortize TLB flushing overheads. What this means is that any page you
  878. * have now, may, in a former life, have been mapped into kernel virtual
  879. * address by the vmap layer and so there might be some CPUs with TLB entries
  880. * still referencing that page (additional to the regular 1:1 kernel mapping).
  881. *
  882. * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
  883. * be sure that none of the pages we have control over will have any aliases
  884. * from the vmap layer.
  885. */
  886. void vm_unmap_aliases(void)
  887. {
  888. unsigned long start = ULONG_MAX, end = 0;
  889. int cpu;
  890. int flush = 0;
  891. if (unlikely(!vmap_initialized))
  892. return;
  893. for_each_possible_cpu(cpu) {
  894. struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
  895. struct vmap_block *vb;
  896. rcu_read_lock();
  897. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  898. spin_lock(&vb->lock);
  899. if (vb->dirty) {
  900. unsigned long va_start = vb->va->va_start;
  901. unsigned long s, e;
  902. s = va_start + (vb->dirty_min << PAGE_SHIFT);
  903. e = va_start + (vb->dirty_max << PAGE_SHIFT);
  904. start = min(s, start);
  905. end = max(e, end);
  906. flush = 1;
  907. }
  908. spin_unlock(&vb->lock);
  909. }
  910. rcu_read_unlock();
  911. }
  912. __purge_vmap_area_lazy(&start, &end, 1, flush);
  913. }
  914. EXPORT_SYMBOL_GPL(vm_unmap_aliases);
  915. /**
  916. * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
  917. * @mem: the pointer returned by vm_map_ram
  918. * @count: the count passed to that vm_map_ram call (cannot unmap partial)
  919. */
  920. void vm_unmap_ram(const void *mem, unsigned int count)
  921. {
  922. unsigned long size = count << PAGE_SHIFT;
  923. unsigned long addr = (unsigned long)mem;
  924. BUG_ON(!addr);
  925. BUG_ON(addr < VMALLOC_START);
  926. BUG_ON(addr > VMALLOC_END);
  927. BUG_ON(!IS_ALIGNED(addr, PAGE_SIZE));
  928. debug_check_no_locks_freed(mem, size);
  929. vmap_debug_free_range(addr, addr+size);
  930. if (likely(count <= VMAP_MAX_ALLOC))
  931. vb_free(mem, size);
  932. else
  933. free_unmap_vmap_area_addr(addr);
  934. }
  935. EXPORT_SYMBOL(vm_unmap_ram);
  936. /**
  937. * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
  938. * @pages: an array of pointers to the pages to be mapped
  939. * @count: number of pages
  940. * @node: prefer to allocate data structures on this node
  941. * @prot: memory protection to use. PAGE_KERNEL for regular RAM
  942. *
  943. * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
  944. * faster than vmap so it's good. But if you mix long-life and short-life
  945. * objects with vm_map_ram(), it could consume lots of address space through
  946. * fragmentation (especially on a 32bit machine). You could see failures in
  947. * the end. Please use this function for short-lived objects.
  948. *
  949. * Returns: a pointer to the address that has been mapped, or %NULL on failure
  950. */
  951. void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
  952. {
  953. unsigned long size = count << PAGE_SHIFT;
  954. unsigned long addr;
  955. void *mem;
  956. if (likely(count <= VMAP_MAX_ALLOC)) {
  957. mem = vb_alloc(size, GFP_KERNEL);
  958. if (IS_ERR(mem))
  959. return NULL;
  960. addr = (unsigned long)mem;
  961. } else {
  962. struct vmap_area *va;
  963. va = alloc_vmap_area(size, PAGE_SIZE,
  964. VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
  965. if (IS_ERR(va))
  966. return NULL;
  967. addr = va->va_start;
  968. mem = (void *)addr;
  969. }
  970. if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
  971. vm_unmap_ram(mem, count);
  972. return NULL;
  973. }
  974. return mem;
  975. }
  976. EXPORT_SYMBOL(vm_map_ram);
  977. static struct vm_struct *vmlist __initdata;
  978. /**
  979. * vm_area_add_early - add vmap area early during boot
  980. * @vm: vm_struct to add
  981. *
  982. * This function is used to add fixed kernel vm area to vmlist before
  983. * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
  984. * should contain proper values and the other fields should be zero.
  985. *
  986. * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
  987. */
  988. void __init vm_area_add_early(struct vm_struct *vm)
  989. {
  990. struct vm_struct *tmp, **p;
  991. BUG_ON(vmap_initialized);
  992. for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
  993. if (tmp->addr >= vm->addr) {
  994. BUG_ON(tmp->addr < vm->addr + vm->size);
  995. break;
  996. } else
  997. BUG_ON(tmp->addr + tmp->size > vm->addr);
  998. }
  999. vm->next = *p;
  1000. *p = vm;
  1001. }
  1002. /**
  1003. * vm_area_register_early - register vmap area early during boot
  1004. * @vm: vm_struct to register
  1005. * @align: requested alignment
  1006. *
  1007. * This function is used to register kernel vm area before
  1008. * vmalloc_init() is called. @vm->size and @vm->flags should contain
  1009. * proper values on entry and other fields should be zero. On return,
  1010. * vm->addr contains the allocated address.
  1011. *
  1012. * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
  1013. */
  1014. void __init vm_area_register_early(struct vm_struct *vm, size_t align)
  1015. {
  1016. static size_t vm_init_off __initdata;
  1017. unsigned long addr;
  1018. addr = ALIGN(VMALLOC_START + vm_init_off, align);
  1019. vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
  1020. vm->addr = (void *)addr;
  1021. vm_area_add_early(vm);
  1022. }
  1023. void __init vmalloc_init(void)
  1024. {
  1025. struct vmap_area *va;
  1026. struct vm_struct *tmp;
  1027. int i;
  1028. for_each_possible_cpu(i) {
  1029. struct vmap_block_queue *vbq;
  1030. struct vfree_deferred *p;
  1031. vbq = &per_cpu(vmap_block_queue, i);
  1032. spin_lock_init(&vbq->lock);
  1033. INIT_LIST_HEAD(&vbq->free);
  1034. p = &per_cpu(vfree_deferred, i);
  1035. init_llist_head(&p->list);
  1036. INIT_WORK(&p->wq, free_work);
  1037. }
  1038. /* Import existing vmlist entries. */
  1039. for (tmp = vmlist; tmp; tmp = tmp->next) {
  1040. va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
  1041. va->flags = VM_VM_AREA;
  1042. va->va_start = (unsigned long)tmp->addr;
  1043. va->va_end = va->va_start + tmp->size;
  1044. va->vm = tmp;
  1045. __insert_vmap_area(va);
  1046. }
  1047. vmap_area_pcpu_hole = VMALLOC_END;
  1048. vmap_initialized = true;
  1049. }
  1050. /**
  1051. * map_kernel_range_noflush - map kernel VM area with the specified pages
  1052. * @addr: start of the VM area to map
  1053. * @size: size of the VM area to map
  1054. * @prot: page protection flags to use
  1055. * @pages: pages to map
  1056. *
  1057. * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
  1058. * specify should have been allocated using get_vm_area() and its
  1059. * friends.
  1060. *
  1061. * NOTE:
  1062. * This function does NOT do any cache flushing. The caller is
  1063. * responsible for calling flush_cache_vmap() on to-be-mapped areas
  1064. * before calling this function.
  1065. *
  1066. * RETURNS:
  1067. * The number of pages mapped on success, -errno on failure.
  1068. */
  1069. int map_kernel_range_noflush(unsigned long addr, unsigned long size,
  1070. pgprot_t prot, struct page **pages)
  1071. {
  1072. return vmap_page_range_noflush(addr, addr + size, prot, pages);
  1073. }
  1074. /**
  1075. * unmap_kernel_range_noflush - unmap kernel VM area
  1076. * @addr: start of the VM area to unmap
  1077. * @size: size of the VM area to unmap
  1078. *
  1079. * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
  1080. * specify should have been allocated using get_vm_area() and its
  1081. * friends.
  1082. *
  1083. * NOTE:
  1084. * This function does NOT do any cache flushing. The caller is
  1085. * responsible for calling flush_cache_vunmap() on to-be-mapped areas
  1086. * before calling this function and flush_tlb_kernel_range() after.
  1087. */
  1088. void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
  1089. {
  1090. vunmap_page_range(addr, addr + size);
  1091. }
  1092. EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
  1093. /**
  1094. * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
  1095. * @addr: start of the VM area to unmap
  1096. * @size: size of the VM area to unmap
  1097. *
  1098. * Similar to unmap_kernel_range_noflush() but flushes vcache before
  1099. * the unmapping and tlb after.
  1100. */
  1101. void unmap_kernel_range(unsigned long addr, unsigned long size)
  1102. {
  1103. unsigned long end = addr + size;
  1104. flush_cache_vunmap(addr, end);
  1105. vunmap_page_range(addr, end);
  1106. flush_tlb_kernel_range(addr, end);
  1107. }
  1108. EXPORT_SYMBOL_GPL(unmap_kernel_range);
  1109. int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
  1110. {
  1111. unsigned long addr = (unsigned long)area->addr;
  1112. unsigned long end = addr + get_vm_area_size(area);
  1113. int err;
  1114. err = vmap_page_range(addr, end, prot, pages);
  1115. return err > 0 ? 0 : err;
  1116. }
  1117. EXPORT_SYMBOL_GPL(map_vm_area);
  1118. static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
  1119. unsigned long flags, const void *caller)
  1120. {
  1121. spin_lock(&vmap_area_lock);
  1122. vm->flags = flags;
  1123. vm->addr = (void *)va->va_start;
  1124. vm->size = va->va_end - va->va_start;
  1125. vm->caller = caller;
  1126. va->vm = vm;
  1127. va->flags |= VM_VM_AREA;
  1128. spin_unlock(&vmap_area_lock);
  1129. }
  1130. static void clear_vm_uninitialized_flag(struct vm_struct *vm)
  1131. {
  1132. /*
  1133. * Before removing VM_UNINITIALIZED,
  1134. * we should make sure that vm has proper values.
  1135. * Pair with smp_rmb() in show_numa_info().
  1136. */
  1137. smp_wmb();
  1138. vm->flags &= ~VM_UNINITIALIZED;
  1139. }
  1140. static struct vm_struct *__get_vm_area_node(unsigned long size,
  1141. unsigned long align, unsigned long flags, unsigned long start,
  1142. unsigned long end, int node, gfp_t gfp_mask, const void *caller)
  1143. {
  1144. struct vmap_area *va;
  1145. struct vm_struct *area;
  1146. BUG_ON(in_interrupt());
  1147. if (flags & VM_IOREMAP)
  1148. align = 1ul << clamp_t(int, fls_long(size),
  1149. PAGE_SHIFT, IOREMAP_MAX_ORDER);
  1150. size = PAGE_ALIGN(size);
  1151. if (unlikely(!size))
  1152. return NULL;
  1153. area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
  1154. if (unlikely(!area))
  1155. return NULL;
  1156. if (!(flags & VM_NO_GUARD))
  1157. size += PAGE_SIZE;
  1158. va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
  1159. if (IS_ERR(va)) {
  1160. kfree(area);
  1161. return NULL;
  1162. }
  1163. setup_vmalloc_vm(area, va, flags, caller);
  1164. return area;
  1165. }
  1166. struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
  1167. unsigned long start, unsigned long end)
  1168. {
  1169. return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
  1170. GFP_KERNEL, __builtin_return_address(0));
  1171. }
  1172. EXPORT_SYMBOL_GPL(__get_vm_area);
  1173. struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
  1174. unsigned long start, unsigned long end,
  1175. const void *caller)
  1176. {
  1177. return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
  1178. GFP_KERNEL, caller);
  1179. }
  1180. /**
  1181. * get_vm_area - reserve a contiguous kernel virtual area
  1182. * @size: size of the area
  1183. * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
  1184. *
  1185. * Search an area of @size in the kernel virtual mapping area,
  1186. * and reserved it for out purposes. Returns the area descriptor
  1187. * on success or %NULL on failure.
  1188. */
  1189. struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
  1190. {
  1191. return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
  1192. NUMA_NO_NODE, GFP_KERNEL,
  1193. __builtin_return_address(0));
  1194. }
  1195. struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
  1196. const void *caller)
  1197. {
  1198. return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
  1199. NUMA_NO_NODE, GFP_KERNEL, caller);
  1200. }
  1201. /**
  1202. * find_vm_area - find a continuous kernel virtual area
  1203. * @addr: base address
  1204. *
  1205. * Search for the kernel VM area starting at @addr, and return it.
  1206. * It is up to the caller to do all required locking to keep the returned
  1207. * pointer valid.
  1208. */
  1209. struct vm_struct *find_vm_area(const void *addr)
  1210. {
  1211. struct vmap_area *va;
  1212. va = find_vmap_area((unsigned long)addr);
  1213. if (va && va->flags & VM_VM_AREA)
  1214. return va->vm;
  1215. return NULL;
  1216. }
  1217. /**
  1218. * remove_vm_area - find and remove a continuous kernel virtual area
  1219. * @addr: base address
  1220. *
  1221. * Search for the kernel VM area starting at @addr, and remove it.
  1222. * This function returns the found VM area, but using it is NOT safe
  1223. * on SMP machines, except for its size or flags.
  1224. */
  1225. struct vm_struct *remove_vm_area(const void *addr)
  1226. {
  1227. struct vmap_area *va;
  1228. va = find_vmap_area((unsigned long)addr);
  1229. if (va && va->flags & VM_VM_AREA) {
  1230. struct vm_struct *vm = va->vm;
  1231. spin_lock(&vmap_area_lock);
  1232. va->vm = NULL;
  1233. va->flags &= ~VM_VM_AREA;
  1234. spin_unlock(&vmap_area_lock);
  1235. vmap_debug_free_range(va->va_start, va->va_end);
  1236. kasan_free_shadow(vm);
  1237. free_unmap_vmap_area(va);
  1238. return vm;
  1239. }
  1240. return NULL;
  1241. }
  1242. static void __vunmap(const void *addr, int deallocate_pages)
  1243. {
  1244. struct vm_struct *area;
  1245. if (!addr)
  1246. return;
  1247. if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
  1248. addr))
  1249. return;
  1250. area = remove_vm_area(addr);
  1251. if (unlikely(!area)) {
  1252. WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
  1253. addr);
  1254. return;
  1255. }
  1256. debug_check_no_locks_freed(addr, get_vm_area_size(area));
  1257. debug_check_no_obj_freed(addr, get_vm_area_size(area));
  1258. if (deallocate_pages) {
  1259. int i;
  1260. for (i = 0; i < area->nr_pages; i++) {
  1261. struct page *page = area->pages[i];
  1262. BUG_ON(!page);
  1263. __free_kmem_pages(page, 0);
  1264. }
  1265. kvfree(area->pages);
  1266. }
  1267. kfree(area);
  1268. return;
  1269. }
  1270. /**
  1271. * vfree - release memory allocated by vmalloc()
  1272. * @addr: memory base address
  1273. *
  1274. * Free the virtually continuous memory area starting at @addr, as
  1275. * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
  1276. * NULL, no operation is performed.
  1277. *
  1278. * Must not be called in NMI context (strictly speaking, only if we don't
  1279. * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
  1280. * conventions for vfree() arch-depenedent would be a really bad idea)
  1281. *
  1282. * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
  1283. */
  1284. void vfree(const void *addr)
  1285. {
  1286. BUG_ON(in_nmi());
  1287. kmemleak_free(addr);
  1288. if (!addr)
  1289. return;
  1290. if (unlikely(in_interrupt())) {
  1291. struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred);
  1292. if (llist_add((struct llist_node *)addr, &p->list))
  1293. schedule_work(&p->wq);
  1294. } else
  1295. __vunmap(addr, 1);
  1296. }
  1297. EXPORT_SYMBOL(vfree);
  1298. /**
  1299. * vunmap - release virtual mapping obtained by vmap()
  1300. * @addr: memory base address
  1301. *
  1302. * Free the virtually contiguous memory area starting at @addr,
  1303. * which was created from the page array passed to vmap().
  1304. *
  1305. * Must not be called in interrupt context.
  1306. */
  1307. void vunmap(const void *addr)
  1308. {
  1309. BUG_ON(in_interrupt());
  1310. might_sleep();
  1311. if (addr)
  1312. __vunmap(addr, 0);
  1313. }
  1314. EXPORT_SYMBOL(vunmap);
  1315. /**
  1316. * vmap - map an array of pages into virtually contiguous space
  1317. * @pages: array of page pointers
  1318. * @count: number of pages to map
  1319. * @flags: vm_area->flags
  1320. * @prot: page protection for the mapping
  1321. *
  1322. * Maps @count pages from @pages into contiguous kernel virtual
  1323. * space.
  1324. */
  1325. void *vmap(struct page **pages, unsigned int count,
  1326. unsigned long flags, pgprot_t prot)
  1327. {
  1328. struct vm_struct *area;
  1329. might_sleep();
  1330. if (count > totalram_pages)
  1331. return NULL;
  1332. area = get_vm_area_caller((count << PAGE_SHIFT), flags,
  1333. __builtin_return_address(0));
  1334. if (!area)
  1335. return NULL;
  1336. if (map_vm_area(area, prot, pages)) {
  1337. vunmap(area->addr);
  1338. return NULL;
  1339. }
  1340. return area->addr;
  1341. }
  1342. EXPORT_SYMBOL(vmap);
  1343. static void *__vmalloc_node(unsigned long size, unsigned long align,
  1344. gfp_t gfp_mask, pgprot_t prot,
  1345. int node, const void *caller);
  1346. static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
  1347. pgprot_t prot, int node)
  1348. {
  1349. const int order = 0;
  1350. struct page **pages;
  1351. unsigned int nr_pages, array_size, i;
  1352. const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
  1353. const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
  1354. nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
  1355. array_size = (nr_pages * sizeof(struct page *));
  1356. area->nr_pages = nr_pages;
  1357. /* Please note that the recursion is strictly bounded. */
  1358. if (array_size > PAGE_SIZE) {
  1359. pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
  1360. PAGE_KERNEL, node, area->caller);
  1361. } else {
  1362. pages = kmalloc_node(array_size, nested_gfp, node);
  1363. }
  1364. area->pages = pages;
  1365. if (!area->pages) {
  1366. remove_vm_area(area->addr);
  1367. kfree(area);
  1368. return NULL;
  1369. }
  1370. for (i = 0; i < area->nr_pages; i++) {
  1371. struct page *page;
  1372. if (node == NUMA_NO_NODE)
  1373. page = alloc_kmem_pages(alloc_mask, order);
  1374. else
  1375. page = alloc_kmem_pages_node(node, alloc_mask, order);
  1376. if (unlikely(!page)) {
  1377. /* Successfully allocated i pages, free them in __vunmap() */
  1378. area->nr_pages = i;
  1379. goto fail;
  1380. }
  1381. area->pages[i] = page;
  1382. if (gfpflags_allow_blocking(gfp_mask))
  1383. cond_resched();
  1384. }
  1385. if (map_vm_area(area, prot, pages))
  1386. goto fail;
  1387. return area->addr;
  1388. fail:
  1389. warn_alloc_failed(gfp_mask, order,
  1390. "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
  1391. (area->nr_pages*PAGE_SIZE), area->size);
  1392. vfree(area->addr);
  1393. return NULL;
  1394. }
  1395. /**
  1396. * __vmalloc_node_range - allocate virtually contiguous memory
  1397. * @size: allocation size
  1398. * @align: desired alignment
  1399. * @start: vm area range start
  1400. * @end: vm area range end
  1401. * @gfp_mask: flags for the page level allocator
  1402. * @prot: protection mask for the allocated pages
  1403. * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
  1404. * @node: node to use for allocation or NUMA_NO_NODE
  1405. * @caller: caller's return address
  1406. *
  1407. * Allocate enough pages to cover @size from the page level
  1408. * allocator with @gfp_mask flags. Map them into contiguous
  1409. * kernel virtual space, using a pagetable protection of @prot.
  1410. */
  1411. void *__vmalloc_node_range(unsigned long size, unsigned long align,
  1412. unsigned long start, unsigned long end, gfp_t gfp_mask,
  1413. pgprot_t prot, unsigned long vm_flags, int node,
  1414. const void *caller)
  1415. {
  1416. struct vm_struct *area;
  1417. void *addr;
  1418. unsigned long real_size = size;
  1419. size = PAGE_ALIGN(size);
  1420. if (!size || (size >> PAGE_SHIFT) > totalram_pages)
  1421. goto fail;
  1422. area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
  1423. vm_flags, start, end, node, gfp_mask, caller);
  1424. if (!area)
  1425. goto fail;
  1426. addr = __vmalloc_area_node(area, gfp_mask, prot, node);
  1427. if (!addr)
  1428. return NULL;
  1429. /*
  1430. * In this function, newly allocated vm_struct has VM_UNINITIALIZED
  1431. * flag. It means that vm_struct is not fully initialized.
  1432. * Now, it is fully initialized, so remove this flag here.
  1433. */
  1434. clear_vm_uninitialized_flag(area);
  1435. /*
  1436. * A ref_count = 2 is needed because vm_struct allocated in
  1437. * __get_vm_area_node() contains a reference to the virtual address of
  1438. * the vmalloc'ed block.
  1439. */
  1440. kmemleak_alloc(addr, real_size, 2, gfp_mask);
  1441. return addr;
  1442. fail:
  1443. warn_alloc_failed(gfp_mask, 0,
  1444. "vmalloc: allocation failure: %lu bytes\n",
  1445. real_size);
  1446. return NULL;
  1447. }
  1448. /**
  1449. * __vmalloc_node - allocate virtually contiguous memory
  1450. * @size: allocation size
  1451. * @align: desired alignment
  1452. * @gfp_mask: flags for the page level allocator
  1453. * @prot: protection mask for the allocated pages
  1454. * @node: node to use for allocation or NUMA_NO_NODE
  1455. * @caller: caller's return address
  1456. *
  1457. * Allocate enough pages to cover @size from the page level
  1458. * allocator with @gfp_mask flags. Map them into contiguous
  1459. * kernel virtual space, using a pagetable protection of @prot.
  1460. */
  1461. static void *__vmalloc_node(unsigned long size, unsigned long align,
  1462. gfp_t gfp_mask, pgprot_t prot,
  1463. int node, const void *caller)
  1464. {
  1465. return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
  1466. gfp_mask, prot, 0, node, caller);
  1467. }
  1468. void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
  1469. {
  1470. return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
  1471. __builtin_return_address(0));
  1472. }
  1473. EXPORT_SYMBOL(__vmalloc);
  1474. static inline void *__vmalloc_node_flags(unsigned long size,
  1475. int node, gfp_t flags)
  1476. {
  1477. return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
  1478. node, __builtin_return_address(0));
  1479. }
  1480. /**
  1481. * vmalloc - allocate virtually contiguous memory
  1482. * @size: allocation size
  1483. * Allocate enough pages to cover @size from the page level
  1484. * allocator and map them into contiguous kernel virtual space.
  1485. *
  1486. * For tight control over page level allocator and protection flags
  1487. * use __vmalloc() instead.
  1488. */
  1489. void *vmalloc(unsigned long size)
  1490. {
  1491. return __vmalloc_node_flags(size, NUMA_NO_NODE,
  1492. GFP_KERNEL | __GFP_HIGHMEM);
  1493. }
  1494. EXPORT_SYMBOL(vmalloc);
  1495. /**
  1496. * vzalloc - allocate virtually contiguous memory with zero fill
  1497. * @size: allocation size
  1498. * Allocate enough pages to cover @size from the page level
  1499. * allocator and map them into contiguous kernel virtual space.
  1500. * The memory allocated is set to zero.
  1501. *
  1502. * For tight control over page level allocator and protection flags
  1503. * use __vmalloc() instead.
  1504. */
  1505. void *vzalloc(unsigned long size)
  1506. {
  1507. return __vmalloc_node_flags(size, NUMA_NO_NODE,
  1508. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
  1509. }
  1510. EXPORT_SYMBOL(vzalloc);
  1511. /**
  1512. * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
  1513. * @size: allocation size
  1514. *
  1515. * The resulting memory area is zeroed so it can be mapped to userspace
  1516. * without leaking data.
  1517. */
  1518. void *vmalloc_user(unsigned long size)
  1519. {
  1520. struct vm_struct *area;
  1521. void *ret;
  1522. ret = __vmalloc_node(size, SHMLBA,
  1523. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
  1524. PAGE_KERNEL, NUMA_NO_NODE,
  1525. __builtin_return_address(0));
  1526. if (ret) {
  1527. area = find_vm_area(ret);
  1528. area->flags |= VM_USERMAP;
  1529. }
  1530. return ret;
  1531. }
  1532. EXPORT_SYMBOL(vmalloc_user);
  1533. /**
  1534. * vmalloc_node - allocate memory on a specific node
  1535. * @size: allocation size
  1536. * @node: numa node
  1537. *
  1538. * Allocate enough pages to cover @size from the page level
  1539. * allocator and map them into contiguous kernel virtual space.
  1540. *
  1541. * For tight control over page level allocator and protection flags
  1542. * use __vmalloc() instead.
  1543. */
  1544. void *vmalloc_node(unsigned long size, int node)
  1545. {
  1546. return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
  1547. node, __builtin_return_address(0));
  1548. }
  1549. EXPORT_SYMBOL(vmalloc_node);
  1550. /**
  1551. * vzalloc_node - allocate memory on a specific node with zero fill
  1552. * @size: allocation size
  1553. * @node: numa node
  1554. *
  1555. * Allocate enough pages to cover @size from the page level
  1556. * allocator and map them into contiguous kernel virtual space.
  1557. * The memory allocated is set to zero.
  1558. *
  1559. * For tight control over page level allocator and protection flags
  1560. * use __vmalloc_node() instead.
  1561. */
  1562. void *vzalloc_node(unsigned long size, int node)
  1563. {
  1564. return __vmalloc_node_flags(size, node,
  1565. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
  1566. }
  1567. EXPORT_SYMBOL(vzalloc_node);
  1568. #ifndef PAGE_KERNEL_EXEC
  1569. # define PAGE_KERNEL_EXEC PAGE_KERNEL
  1570. #endif
  1571. /**
  1572. * vmalloc_exec - allocate virtually contiguous, executable memory
  1573. * @size: allocation size
  1574. *
  1575. * Kernel-internal function to allocate enough pages to cover @size
  1576. * the page level allocator and map them into contiguous and
  1577. * executable kernel virtual space.
  1578. *
  1579. * For tight control over page level allocator and protection flags
  1580. * use __vmalloc() instead.
  1581. */
  1582. void *vmalloc_exec(unsigned long size)
  1583. {
  1584. return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
  1585. NUMA_NO_NODE, __builtin_return_address(0));
  1586. }
  1587. #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
  1588. #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
  1589. #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
  1590. #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
  1591. #else
  1592. #define GFP_VMALLOC32 GFP_KERNEL
  1593. #endif
  1594. /**
  1595. * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
  1596. * @size: allocation size
  1597. *
  1598. * Allocate enough 32bit PA addressable pages to cover @size from the
  1599. * page level allocator and map them into contiguous kernel virtual space.
  1600. */
  1601. void *vmalloc_32(unsigned long size)
  1602. {
  1603. return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
  1604. NUMA_NO_NODE, __builtin_return_address(0));
  1605. }
  1606. EXPORT_SYMBOL(vmalloc_32);
  1607. /**
  1608. * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
  1609. * @size: allocation size
  1610. *
  1611. * The resulting memory area is 32bit addressable and zeroed so it can be
  1612. * mapped to userspace without leaking data.
  1613. */
  1614. void *vmalloc_32_user(unsigned long size)
  1615. {
  1616. struct vm_struct *area;
  1617. void *ret;
  1618. ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
  1619. NUMA_NO_NODE, __builtin_return_address(0));
  1620. if (ret) {
  1621. area = find_vm_area(ret);
  1622. area->flags |= VM_USERMAP;
  1623. }
  1624. return ret;
  1625. }
  1626. EXPORT_SYMBOL(vmalloc_32_user);
  1627. /*
  1628. * small helper routine , copy contents to buf from addr.
  1629. * If the page is not present, fill zero.
  1630. */
  1631. static int aligned_vread(char *buf, char *addr, unsigned long count)
  1632. {
  1633. struct page *p;
  1634. int copied = 0;
  1635. while (count) {
  1636. unsigned long offset, length;
  1637. offset = offset_in_page(addr);
  1638. length = PAGE_SIZE - offset;
  1639. if (length > count)
  1640. length = count;
  1641. p = vmalloc_to_page(addr);
  1642. /*
  1643. * To do safe access to this _mapped_ area, we need
  1644. * lock. But adding lock here means that we need to add
  1645. * overhead of vmalloc()/vfree() calles for this _debug_
  1646. * interface, rarely used. Instead of that, we'll use
  1647. * kmap() and get small overhead in this access function.
  1648. */
  1649. if (p) {
  1650. /*
  1651. * we can expect USER0 is not used (see vread/vwrite's
  1652. * function description)
  1653. */
  1654. void *map = kmap_atomic(p);
  1655. memcpy(buf, map + offset, length);
  1656. kunmap_atomic(map);
  1657. } else
  1658. memset(buf, 0, length);
  1659. addr += length;
  1660. buf += length;
  1661. copied += length;
  1662. count -= length;
  1663. }
  1664. return copied;
  1665. }
  1666. static int aligned_vwrite(char *buf, char *addr, unsigned long count)
  1667. {
  1668. struct page *p;
  1669. int copied = 0;
  1670. while (count) {
  1671. unsigned long offset, length;
  1672. offset = offset_in_page(addr);
  1673. length = PAGE_SIZE - offset;
  1674. if (length > count)
  1675. length = count;
  1676. p = vmalloc_to_page(addr);
  1677. /*
  1678. * To do safe access to this _mapped_ area, we need
  1679. * lock. But adding lock here means that we need to add
  1680. * overhead of vmalloc()/vfree() calles for this _debug_
  1681. * interface, rarely used. Instead of that, we'll use
  1682. * kmap() and get small overhead in this access function.
  1683. */
  1684. if (p) {
  1685. /*
  1686. * we can expect USER0 is not used (see vread/vwrite's
  1687. * function description)
  1688. */
  1689. void *map = kmap_atomic(p);
  1690. memcpy(map + offset, buf, length);
  1691. kunmap_atomic(map);
  1692. }
  1693. addr += length;
  1694. buf += length;
  1695. copied += length;
  1696. count -= length;
  1697. }
  1698. return copied;
  1699. }
  1700. /**
  1701. * vread() - read vmalloc area in a safe way.
  1702. * @buf: buffer for reading data
  1703. * @addr: vm address.
  1704. * @count: number of bytes to be read.
  1705. *
  1706. * Returns # of bytes which addr and buf should be increased.
  1707. * (same number to @count). Returns 0 if [addr...addr+count) doesn't
  1708. * includes any intersect with alive vmalloc area.
  1709. *
  1710. * This function checks that addr is a valid vmalloc'ed area, and
  1711. * copy data from that area to a given buffer. If the given memory range
  1712. * of [addr...addr+count) includes some valid address, data is copied to
  1713. * proper area of @buf. If there are memory holes, they'll be zero-filled.
  1714. * IOREMAP area is treated as memory hole and no copy is done.
  1715. *
  1716. * If [addr...addr+count) doesn't includes any intersects with alive
  1717. * vm_struct area, returns 0. @buf should be kernel's buffer.
  1718. *
  1719. * Note: In usual ops, vread() is never necessary because the caller
  1720. * should know vmalloc() area is valid and can use memcpy().
  1721. * This is for routines which have to access vmalloc area without
  1722. * any informaion, as /dev/kmem.
  1723. *
  1724. */
  1725. long vread(char *buf, char *addr, unsigned long count)
  1726. {
  1727. struct vmap_area *va;
  1728. struct vm_struct *vm;
  1729. char *vaddr, *buf_start = buf;
  1730. unsigned long buflen = count;
  1731. unsigned long n;
  1732. /* Don't allow overflow */
  1733. if ((unsigned long) addr + count < count)
  1734. count = -(unsigned long) addr;
  1735. spin_lock(&vmap_area_lock);
  1736. list_for_each_entry(va, &vmap_area_list, list) {
  1737. if (!count)
  1738. break;
  1739. if (!(va->flags & VM_VM_AREA))
  1740. continue;
  1741. vm = va->vm;
  1742. vaddr = (char *) vm->addr;
  1743. if (addr >= vaddr + get_vm_area_size(vm))
  1744. continue;
  1745. while (addr < vaddr) {
  1746. if (count == 0)
  1747. goto finished;
  1748. *buf = '\0';
  1749. buf++;
  1750. addr++;
  1751. count--;
  1752. }
  1753. n = vaddr + get_vm_area_size(vm) - addr;
  1754. if (n > count)
  1755. n = count;
  1756. if (!(vm->flags & VM_IOREMAP))
  1757. aligned_vread(buf, addr, n);
  1758. else /* IOREMAP area is treated as memory hole */
  1759. memset(buf, 0, n);
  1760. buf += n;
  1761. addr += n;
  1762. count -= n;
  1763. }
  1764. finished:
  1765. spin_unlock(&vmap_area_lock);
  1766. if (buf == buf_start)
  1767. return 0;
  1768. /* zero-fill memory holes */
  1769. if (buf != buf_start + buflen)
  1770. memset(buf, 0, buflen - (buf - buf_start));
  1771. return buflen;
  1772. }
  1773. /**
  1774. * vwrite() - write vmalloc area in a safe way.
  1775. * @buf: buffer for source data
  1776. * @addr: vm address.
  1777. * @count: number of bytes to be read.
  1778. *
  1779. * Returns # of bytes which addr and buf should be incresed.
  1780. * (same number to @count).
  1781. * If [addr...addr+count) doesn't includes any intersect with valid
  1782. * vmalloc area, returns 0.
  1783. *
  1784. * This function checks that addr is a valid vmalloc'ed area, and
  1785. * copy data from a buffer to the given addr. If specified range of
  1786. * [addr...addr+count) includes some valid address, data is copied from
  1787. * proper area of @buf. If there are memory holes, no copy to hole.
  1788. * IOREMAP area is treated as memory hole and no copy is done.
  1789. *
  1790. * If [addr...addr+count) doesn't includes any intersects with alive
  1791. * vm_struct area, returns 0. @buf should be kernel's buffer.
  1792. *
  1793. * Note: In usual ops, vwrite() is never necessary because the caller
  1794. * should know vmalloc() area is valid and can use memcpy().
  1795. * This is for routines which have to access vmalloc area without
  1796. * any informaion, as /dev/kmem.
  1797. */
  1798. long vwrite(char *buf, char *addr, unsigned long count)
  1799. {
  1800. struct vmap_area *va;
  1801. struct vm_struct *vm;
  1802. char *vaddr;
  1803. unsigned long n, buflen;
  1804. int copied = 0;
  1805. /* Don't allow overflow */
  1806. if ((unsigned long) addr + count < count)
  1807. count = -(unsigned long) addr;
  1808. buflen = count;
  1809. spin_lock(&vmap_area_lock);
  1810. list_for_each_entry(va, &vmap_area_list, list) {
  1811. if (!count)
  1812. break;
  1813. if (!(va->flags & VM_VM_AREA))
  1814. continue;
  1815. vm = va->vm;
  1816. vaddr = (char *) vm->addr;
  1817. if (addr >= vaddr + get_vm_area_size(vm))
  1818. continue;
  1819. while (addr < vaddr) {
  1820. if (count == 0)
  1821. goto finished;
  1822. buf++;
  1823. addr++;
  1824. count--;
  1825. }
  1826. n = vaddr + get_vm_area_size(vm) - addr;
  1827. if (n > count)
  1828. n = count;
  1829. if (!(vm->flags & VM_IOREMAP)) {
  1830. aligned_vwrite(buf, addr, n);
  1831. copied++;
  1832. }
  1833. buf += n;
  1834. addr += n;
  1835. count -= n;
  1836. }
  1837. finished:
  1838. spin_unlock(&vmap_area_lock);
  1839. if (!copied)
  1840. return 0;
  1841. return buflen;
  1842. }
  1843. /**
  1844. * remap_vmalloc_range_partial - map vmalloc pages to userspace
  1845. * @vma: vma to cover
  1846. * @uaddr: target user address to start at
  1847. * @kaddr: virtual address of vmalloc kernel memory
  1848. * @size: size of map area
  1849. *
  1850. * Returns: 0 for success, -Exxx on failure
  1851. *
  1852. * This function checks that @kaddr is a valid vmalloc'ed area,
  1853. * and that it is big enough to cover the range starting at
  1854. * @uaddr in @vma. Will return failure if that criteria isn't
  1855. * met.
  1856. *
  1857. * Similar to remap_pfn_range() (see mm/memory.c)
  1858. */
  1859. int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
  1860. void *kaddr, unsigned long size)
  1861. {
  1862. struct vm_struct *area;
  1863. size = PAGE_ALIGN(size);
  1864. if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
  1865. return -EINVAL;
  1866. area = find_vm_area(kaddr);
  1867. if (!area)
  1868. return -EINVAL;
  1869. if (!(area->flags & VM_USERMAP))
  1870. return -EINVAL;
  1871. if (kaddr + size > area->addr + area->size)
  1872. return -EINVAL;
  1873. do {
  1874. struct page *page = vmalloc_to_page(kaddr);
  1875. int ret;
  1876. ret = vm_insert_page(vma, uaddr, page);
  1877. if (ret)
  1878. return ret;
  1879. uaddr += PAGE_SIZE;
  1880. kaddr += PAGE_SIZE;
  1881. size -= PAGE_SIZE;
  1882. } while (size > 0);
  1883. vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
  1884. return 0;
  1885. }
  1886. EXPORT_SYMBOL(remap_vmalloc_range_partial);
  1887. /**
  1888. * remap_vmalloc_range - map vmalloc pages to userspace
  1889. * @vma: vma to cover (map full range of vma)
  1890. * @addr: vmalloc memory
  1891. * @pgoff: number of pages into addr before first page to map
  1892. *
  1893. * Returns: 0 for success, -Exxx on failure
  1894. *
  1895. * This function checks that addr is a valid vmalloc'ed area, and
  1896. * that it is big enough to cover the vma. Will return failure if
  1897. * that criteria isn't met.
  1898. *
  1899. * Similar to remap_pfn_range() (see mm/memory.c)
  1900. */
  1901. int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
  1902. unsigned long pgoff)
  1903. {
  1904. return remap_vmalloc_range_partial(vma, vma->vm_start,
  1905. addr + (pgoff << PAGE_SHIFT),
  1906. vma->vm_end - vma->vm_start);
  1907. }
  1908. EXPORT_SYMBOL(remap_vmalloc_range);
  1909. /*
  1910. * Implement a stub for vmalloc_sync_all() if the architecture chose not to
  1911. * have one.
  1912. */
  1913. void __weak vmalloc_sync_all(void)
  1914. {
  1915. }
  1916. static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
  1917. {
  1918. pte_t ***p = data;
  1919. if (p) {
  1920. *(*p) = pte;
  1921. (*p)++;
  1922. }
  1923. return 0;
  1924. }
  1925. /**
  1926. * alloc_vm_area - allocate a range of kernel address space
  1927. * @size: size of the area
  1928. * @ptes: returns the PTEs for the address space
  1929. *
  1930. * Returns: NULL on failure, vm_struct on success
  1931. *
  1932. * This function reserves a range of kernel address space, and
  1933. * allocates pagetables to map that range. No actual mappings
  1934. * are created.
  1935. *
  1936. * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
  1937. * allocated for the VM area are returned.
  1938. */
  1939. struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
  1940. {
  1941. struct vm_struct *area;
  1942. area = get_vm_area_caller(size, VM_IOREMAP,
  1943. __builtin_return_address(0));
  1944. if (area == NULL)
  1945. return NULL;
  1946. /*
  1947. * This ensures that page tables are constructed for this region
  1948. * of kernel virtual address space and mapped into init_mm.
  1949. */
  1950. if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
  1951. size, f, ptes ? &ptes : NULL)) {
  1952. free_vm_area(area);
  1953. return NULL;
  1954. }
  1955. return area;
  1956. }
  1957. EXPORT_SYMBOL_GPL(alloc_vm_area);
  1958. void free_vm_area(struct vm_struct *area)
  1959. {
  1960. struct vm_struct *ret;
  1961. ret = remove_vm_area(area->addr);
  1962. BUG_ON(ret != area);
  1963. kfree(area);
  1964. }
  1965. EXPORT_SYMBOL_GPL(free_vm_area);
  1966. #ifdef CONFIG_SMP
  1967. static struct vmap_area *node_to_va(struct rb_node *n)
  1968. {
  1969. return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
  1970. }
  1971. /**
  1972. * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
  1973. * @end: target address
  1974. * @pnext: out arg for the next vmap_area
  1975. * @pprev: out arg for the previous vmap_area
  1976. *
  1977. * Returns: %true if either or both of next and prev are found,
  1978. * %false if no vmap_area exists
  1979. *
  1980. * Find vmap_areas end addresses of which enclose @end. ie. if not
  1981. * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
  1982. */
  1983. static bool pvm_find_next_prev(unsigned long end,
  1984. struct vmap_area **pnext,
  1985. struct vmap_area **pprev)
  1986. {
  1987. struct rb_node *n = vmap_area_root.rb_node;
  1988. struct vmap_area *va = NULL;
  1989. while (n) {
  1990. va = rb_entry(n, struct vmap_area, rb_node);
  1991. if (end < va->va_end)
  1992. n = n->rb_left;
  1993. else if (end > va->va_end)
  1994. n = n->rb_right;
  1995. else
  1996. break;
  1997. }
  1998. if (!va)
  1999. return false;
  2000. if (va->va_end > end) {
  2001. *pnext = va;
  2002. *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
  2003. } else {
  2004. *pprev = va;
  2005. *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
  2006. }
  2007. return true;
  2008. }
  2009. /**
  2010. * pvm_determine_end - find the highest aligned address between two vmap_areas
  2011. * @pnext: in/out arg for the next vmap_area
  2012. * @pprev: in/out arg for the previous vmap_area
  2013. * @align: alignment
  2014. *
  2015. * Returns: determined end address
  2016. *
  2017. * Find the highest aligned address between *@pnext and *@pprev below
  2018. * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
  2019. * down address is between the end addresses of the two vmap_areas.
  2020. *
  2021. * Please note that the address returned by this function may fall
  2022. * inside *@pnext vmap_area. The caller is responsible for checking
  2023. * that.
  2024. */
  2025. static unsigned long pvm_determine_end(struct vmap_area **pnext,
  2026. struct vmap_area **pprev,
  2027. unsigned long align)
  2028. {
  2029. const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
  2030. unsigned long addr;
  2031. if (*pnext)
  2032. addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
  2033. else
  2034. addr = vmalloc_end;
  2035. while (*pprev && (*pprev)->va_end > addr) {
  2036. *pnext = *pprev;
  2037. *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
  2038. }
  2039. return addr;
  2040. }
  2041. /**
  2042. * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
  2043. * @offsets: array containing offset of each area
  2044. * @sizes: array containing size of each area
  2045. * @nr_vms: the number of areas to allocate
  2046. * @align: alignment, all entries in @offsets and @sizes must be aligned to this
  2047. *
  2048. * Returns: kmalloc'd vm_struct pointer array pointing to allocated
  2049. * vm_structs on success, %NULL on failure
  2050. *
  2051. * Percpu allocator wants to use congruent vm areas so that it can
  2052. * maintain the offsets among percpu areas. This function allocates
  2053. * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
  2054. * be scattered pretty far, distance between two areas easily going up
  2055. * to gigabytes. To avoid interacting with regular vmallocs, these
  2056. * areas are allocated from top.
  2057. *
  2058. * Despite its complicated look, this allocator is rather simple. It
  2059. * does everything top-down and scans areas from the end looking for
  2060. * matching slot. While scanning, if any of the areas overlaps with
  2061. * existing vmap_area, the base address is pulled down to fit the
  2062. * area. Scanning is repeated till all the areas fit and then all
  2063. * necessary data structres are inserted and the result is returned.
  2064. */
  2065. struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
  2066. const size_t *sizes, int nr_vms,
  2067. size_t align)
  2068. {
  2069. const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
  2070. const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
  2071. struct vmap_area **vas, *prev, *next;
  2072. struct vm_struct **vms;
  2073. int area, area2, last_area, term_area;
  2074. unsigned long base, start, end, last_end;
  2075. bool purged = false;
  2076. /* verify parameters and allocate data structures */
  2077. BUG_ON(offset_in_page(align) || !is_power_of_2(align));
  2078. for (last_area = 0, area = 0; area < nr_vms; area++) {
  2079. start = offsets[area];
  2080. end = start + sizes[area];
  2081. /* is everything aligned properly? */
  2082. BUG_ON(!IS_ALIGNED(offsets[area], align));
  2083. BUG_ON(!IS_ALIGNED(sizes[area], align));
  2084. /* detect the area with the highest address */
  2085. if (start > offsets[last_area])
  2086. last_area = area;
  2087. for (area2 = 0; area2 < nr_vms; area2++) {
  2088. unsigned long start2 = offsets[area2];
  2089. unsigned long end2 = start2 + sizes[area2];
  2090. if (area2 == area)
  2091. continue;
  2092. BUG_ON(start2 >= start && start2 < end);
  2093. BUG_ON(end2 <= end && end2 > start);
  2094. }
  2095. }
  2096. last_end = offsets[last_area] + sizes[last_area];
  2097. if (vmalloc_end - vmalloc_start < last_end) {
  2098. WARN_ON(true);
  2099. return NULL;
  2100. }
  2101. vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
  2102. vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
  2103. if (!vas || !vms)
  2104. goto err_free2;
  2105. for (area = 0; area < nr_vms; area++) {
  2106. vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
  2107. vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
  2108. if (!vas[area] || !vms[area])
  2109. goto err_free;
  2110. }
  2111. retry:
  2112. spin_lock(&vmap_area_lock);
  2113. /* start scanning - we scan from the top, begin with the last area */
  2114. area = term_area = last_area;
  2115. start = offsets[area];
  2116. end = start + sizes[area];
  2117. if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
  2118. base = vmalloc_end - last_end;
  2119. goto found;
  2120. }
  2121. base = pvm_determine_end(&next, &prev, align) - end;
  2122. while (true) {
  2123. BUG_ON(next && next->va_end <= base + end);
  2124. BUG_ON(prev && prev->va_end > base + end);
  2125. /*
  2126. * base might have underflowed, add last_end before
  2127. * comparing.
  2128. */
  2129. if (base + last_end < vmalloc_start + last_end) {
  2130. spin_unlock(&vmap_area_lock);
  2131. if (!purged) {
  2132. purge_vmap_area_lazy();
  2133. purged = true;
  2134. goto retry;
  2135. }
  2136. goto err_free;
  2137. }
  2138. /*
  2139. * If next overlaps, move base downwards so that it's
  2140. * right below next and then recheck.
  2141. */
  2142. if (next && next->va_start < base + end) {
  2143. base = pvm_determine_end(&next, &prev, align) - end;
  2144. term_area = area;
  2145. continue;
  2146. }
  2147. /*
  2148. * If prev overlaps, shift down next and prev and move
  2149. * base so that it's right below new next and then
  2150. * recheck.
  2151. */
  2152. if (prev && prev->va_end > base + start) {
  2153. next = prev;
  2154. prev = node_to_va(rb_prev(&next->rb_node));
  2155. base = pvm_determine_end(&next, &prev, align) - end;
  2156. term_area = area;
  2157. continue;
  2158. }
  2159. /*
  2160. * This area fits, move on to the previous one. If
  2161. * the previous one is the terminal one, we're done.
  2162. */
  2163. area = (area + nr_vms - 1) % nr_vms;
  2164. if (area == term_area)
  2165. break;
  2166. start = offsets[area];
  2167. end = start + sizes[area];
  2168. pvm_find_next_prev(base + end, &next, &prev);
  2169. }
  2170. found:
  2171. /* we've found a fitting base, insert all va's */
  2172. for (area = 0; area < nr_vms; area++) {
  2173. struct vmap_area *va = vas[area];
  2174. va->va_start = base + offsets[area];
  2175. va->va_end = va->va_start + sizes[area];
  2176. __insert_vmap_area(va);
  2177. }
  2178. vmap_area_pcpu_hole = base + offsets[last_area];
  2179. spin_unlock(&vmap_area_lock);
  2180. /* insert all vm's */
  2181. for (area = 0; area < nr_vms; area++)
  2182. setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
  2183. pcpu_get_vm_areas);
  2184. kfree(vas);
  2185. return vms;
  2186. err_free:
  2187. for (area = 0; area < nr_vms; area++) {
  2188. kfree(vas[area]);
  2189. kfree(vms[area]);
  2190. }
  2191. err_free2:
  2192. kfree(vas);
  2193. kfree(vms);
  2194. return NULL;
  2195. }
  2196. /**
  2197. * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
  2198. * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
  2199. * @nr_vms: the number of allocated areas
  2200. *
  2201. * Free vm_structs and the array allocated by pcpu_get_vm_areas().
  2202. */
  2203. void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
  2204. {
  2205. int i;
  2206. for (i = 0; i < nr_vms; i++)
  2207. free_vm_area(vms[i]);
  2208. kfree(vms);
  2209. }
  2210. #endif /* CONFIG_SMP */
  2211. #ifdef CONFIG_PROC_FS
  2212. static void *s_start(struct seq_file *m, loff_t *pos)
  2213. __acquires(&vmap_area_lock)
  2214. {
  2215. loff_t n = *pos;
  2216. struct vmap_area *va;
  2217. spin_lock(&vmap_area_lock);
  2218. va = list_first_entry(&vmap_area_list, typeof(*va), list);
  2219. while (n > 0 && &va->list != &vmap_area_list) {
  2220. n--;
  2221. va = list_next_entry(va, list);
  2222. }
  2223. if (!n && &va->list != &vmap_area_list)
  2224. return va;
  2225. return NULL;
  2226. }
  2227. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  2228. {
  2229. struct vmap_area *va = p, *next;
  2230. ++*pos;
  2231. next = list_next_entry(va, list);
  2232. if (&next->list != &vmap_area_list)
  2233. return next;
  2234. return NULL;
  2235. }
  2236. static void s_stop(struct seq_file *m, void *p)
  2237. __releases(&vmap_area_lock)
  2238. {
  2239. spin_unlock(&vmap_area_lock);
  2240. }
  2241. static void show_numa_info(struct seq_file *m, struct vm_struct *v)
  2242. {
  2243. if (IS_ENABLED(CONFIG_NUMA)) {
  2244. unsigned int nr, *counters = m->private;
  2245. if (!counters)
  2246. return;
  2247. if (v->flags & VM_UNINITIALIZED)
  2248. return;
  2249. /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
  2250. smp_rmb();
  2251. memset(counters, 0, nr_node_ids * sizeof(unsigned int));
  2252. for (nr = 0; nr < v->nr_pages; nr++)
  2253. counters[page_to_nid(v->pages[nr])]++;
  2254. for_each_node_state(nr, N_HIGH_MEMORY)
  2255. if (counters[nr])
  2256. seq_printf(m, " N%u=%u", nr, counters[nr]);
  2257. }
  2258. }
  2259. static int s_show(struct seq_file *m, void *p)
  2260. {
  2261. struct vmap_area *va = p;
  2262. struct vm_struct *v;
  2263. /*
  2264. * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
  2265. * behalf of vmap area is being tear down or vm_map_ram allocation.
  2266. */
  2267. if (!(va->flags & VM_VM_AREA))
  2268. return 0;
  2269. v = va->vm;
  2270. seq_printf(m, "0x%pK-0x%pK %7ld",
  2271. v->addr, v->addr + v->size, v->size);
  2272. if (v->caller)
  2273. seq_printf(m, " %pS", v->caller);
  2274. if (v->nr_pages)
  2275. seq_printf(m, " pages=%d", v->nr_pages);
  2276. if (v->phys_addr)
  2277. seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
  2278. if (v->flags & VM_IOREMAP)
  2279. seq_puts(m, " ioremap");
  2280. if (v->flags & VM_ALLOC)
  2281. seq_puts(m, " vmalloc");
  2282. if (v->flags & VM_MAP)
  2283. seq_puts(m, " vmap");
  2284. if (v->flags & VM_USERMAP)
  2285. seq_puts(m, " user");
  2286. if (is_vmalloc_addr(v->pages))
  2287. seq_puts(m, " vpages");
  2288. show_numa_info(m, v);
  2289. seq_putc(m, '\n');
  2290. return 0;
  2291. }
  2292. static const struct seq_operations vmalloc_op = {
  2293. .start = s_start,
  2294. .next = s_next,
  2295. .stop = s_stop,
  2296. .show = s_show,
  2297. };
  2298. static int vmalloc_open(struct inode *inode, struct file *file)
  2299. {
  2300. if (IS_ENABLED(CONFIG_NUMA))
  2301. return seq_open_private(file, &vmalloc_op,
  2302. nr_node_ids * sizeof(unsigned int));
  2303. else
  2304. return seq_open(file, &vmalloc_op);
  2305. }
  2306. static const struct file_operations proc_vmalloc_operations = {
  2307. .open = vmalloc_open,
  2308. .read = seq_read,
  2309. .llseek = seq_lseek,
  2310. .release = seq_release_private,
  2311. };
  2312. static int __init proc_vmalloc_init(void)
  2313. {
  2314. proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
  2315. return 0;
  2316. }
  2317. module_init(proc_vmalloc_init);
  2318. #endif