page_ext.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407
  1. #include <linux/mm.h>
  2. #include <linux/mmzone.h>
  3. #include <linux/bootmem.h>
  4. #include <linux/page_ext.h>
  5. #include <linux/memory.h>
  6. #include <linux/vmalloc.h>
  7. #include <linux/kmemleak.h>
  8. #include <linux/page_owner.h>
  9. #include <linux/page_idle.h>
  10. /*
  11. * struct page extension
  12. *
  13. * This is the feature to manage memory for extended data per page.
  14. *
  15. * Until now, we must modify struct page itself to store extra data per page.
  16. * This requires rebuilding the kernel and it is really time consuming process.
  17. * And, sometimes, rebuild is impossible due to third party module dependency.
  18. * At last, enlarging struct page could cause un-wanted system behaviour change.
  19. *
  20. * This feature is intended to overcome above mentioned problems. This feature
  21. * allocates memory for extended data per page in certain place rather than
  22. * the struct page itself. This memory can be accessed by the accessor
  23. * functions provided by this code. During the boot process, it checks whether
  24. * allocation of huge chunk of memory is needed or not. If not, it avoids
  25. * allocating memory at all. With this advantage, we can include this feature
  26. * into the kernel in default and can avoid rebuild and solve related problems.
  27. *
  28. * To help these things to work well, there are two callbacks for clients. One
  29. * is the need callback which is mandatory if user wants to avoid useless
  30. * memory allocation at boot-time. The other is optional, init callback, which
  31. * is used to do proper initialization after memory is allocated.
  32. *
  33. * The need callback is used to decide whether extended memory allocation is
  34. * needed or not. Sometimes users want to deactivate some features in this
  35. * boot and extra memory would be unneccessary. In this case, to avoid
  36. * allocating huge chunk of memory, each clients represent their need of
  37. * extra memory through the need callback. If one of the need callbacks
  38. * returns true, it means that someone needs extra memory so that
  39. * page extension core should allocates memory for page extension. If
  40. * none of need callbacks return true, memory isn't needed at all in this boot
  41. * and page extension core can skip to allocate memory. As result,
  42. * none of memory is wasted.
  43. *
  44. * The init callback is used to do proper initialization after page extension
  45. * is completely initialized. In sparse memory system, extra memory is
  46. * allocated some time later than memmap is allocated. In other words, lifetime
  47. * of memory for page extension isn't same with memmap for struct page.
  48. * Therefore, clients can't store extra data until page extension is
  49. * initialized, even if pages are allocated and used freely. This could
  50. * cause inadequate state of extra data per page, so, to prevent it, client
  51. * can utilize this callback to initialize the state of it correctly.
  52. */
  53. static struct page_ext_operations *page_ext_ops[] = {
  54. &debug_guardpage_ops,
  55. #ifdef CONFIG_PAGE_POISONING
  56. &page_poisoning_ops,
  57. #endif
  58. #ifdef CONFIG_PAGE_OWNER
  59. &page_owner_ops,
  60. #endif
  61. #if defined(CONFIG_IDLE_PAGE_TRACKING) && !defined(CONFIG_64BIT)
  62. &page_idle_ops,
  63. #endif
  64. };
  65. static unsigned long total_usage;
  66. static bool __init invoke_need_callbacks(void)
  67. {
  68. int i;
  69. int entries = ARRAY_SIZE(page_ext_ops);
  70. for (i = 0; i < entries; i++) {
  71. if (page_ext_ops[i]->need && page_ext_ops[i]->need())
  72. return true;
  73. }
  74. return false;
  75. }
  76. static void __init invoke_init_callbacks(void)
  77. {
  78. int i;
  79. int entries = ARRAY_SIZE(page_ext_ops);
  80. for (i = 0; i < entries; i++) {
  81. if (page_ext_ops[i]->init)
  82. page_ext_ops[i]->init();
  83. }
  84. }
  85. #if !defined(CONFIG_SPARSEMEM)
  86. void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
  87. {
  88. pgdat->node_page_ext = NULL;
  89. }
  90. struct page_ext *lookup_page_ext(struct page *page)
  91. {
  92. unsigned long pfn = page_to_pfn(page);
  93. unsigned long offset;
  94. struct page_ext *base;
  95. base = NODE_DATA(page_to_nid(page))->node_page_ext;
  96. #ifdef CONFIG_DEBUG_VM
  97. /*
  98. * The sanity checks the page allocator does upon freeing a
  99. * page can reach here before the page_ext arrays are
  100. * allocated when feeding a range of pages to the allocator
  101. * for the first time during bootup or memory hotplug.
  102. */
  103. if (unlikely(!base))
  104. return NULL;
  105. #endif
  106. offset = pfn - round_down(node_start_pfn(page_to_nid(page)),
  107. MAX_ORDER_NR_PAGES);
  108. return base + offset;
  109. }
  110. static int __init alloc_node_page_ext(int nid)
  111. {
  112. struct page_ext *base;
  113. unsigned long table_size;
  114. unsigned long nr_pages;
  115. nr_pages = NODE_DATA(nid)->node_spanned_pages;
  116. if (!nr_pages)
  117. return 0;
  118. /*
  119. * Need extra space if node range is not aligned with
  120. * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
  121. * checks buddy's status, range could be out of exact node range.
  122. */
  123. if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
  124. !IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
  125. nr_pages += MAX_ORDER_NR_PAGES;
  126. table_size = sizeof(struct page_ext) * nr_pages;
  127. base = memblock_virt_alloc_try_nid_nopanic(
  128. table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
  129. BOOTMEM_ALLOC_ACCESSIBLE, nid);
  130. if (!base)
  131. return -ENOMEM;
  132. NODE_DATA(nid)->node_page_ext = base;
  133. total_usage += table_size;
  134. return 0;
  135. }
  136. void __init page_ext_init_flatmem(void)
  137. {
  138. int nid, fail;
  139. if (!invoke_need_callbacks())
  140. return;
  141. for_each_online_node(nid) {
  142. fail = alloc_node_page_ext(nid);
  143. if (fail)
  144. goto fail;
  145. }
  146. pr_info("allocated %ld bytes of page_ext\n", total_usage);
  147. invoke_init_callbacks();
  148. return;
  149. fail:
  150. pr_crit("allocation of page_ext failed.\n");
  151. panic("Out of memory");
  152. }
  153. #else /* CONFIG_FLAT_NODE_MEM_MAP */
  154. struct page_ext *lookup_page_ext(struct page *page)
  155. {
  156. unsigned long pfn = page_to_pfn(page);
  157. struct mem_section *section = __pfn_to_section(pfn);
  158. #ifdef CONFIG_DEBUG_VM
  159. /*
  160. * The sanity checks the page allocator does upon freeing a
  161. * page can reach here before the page_ext arrays are
  162. * allocated when feeding a range of pages to the allocator
  163. * for the first time during bootup or memory hotplug.
  164. */
  165. if (!section->page_ext)
  166. return NULL;
  167. #endif
  168. return section->page_ext + pfn;
  169. }
  170. static void *__meminit alloc_page_ext(size_t size, int nid)
  171. {
  172. gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
  173. void *addr = NULL;
  174. addr = alloc_pages_exact_nid(nid, size, flags);
  175. if (addr) {
  176. kmemleak_alloc(addr, size, 1, flags);
  177. return addr;
  178. }
  179. if (node_state(nid, N_HIGH_MEMORY))
  180. addr = vzalloc_node(size, nid);
  181. else
  182. addr = vzalloc(size);
  183. return addr;
  184. }
  185. static int __meminit init_section_page_ext(unsigned long pfn, int nid)
  186. {
  187. struct mem_section *section;
  188. struct page_ext *base;
  189. unsigned long table_size;
  190. section = __pfn_to_section(pfn);
  191. if (section->page_ext)
  192. return 0;
  193. table_size = sizeof(struct page_ext) * PAGES_PER_SECTION;
  194. base = alloc_page_ext(table_size, nid);
  195. /*
  196. * The value stored in section->page_ext is (base - pfn)
  197. * and it does not point to the memory block allocated above,
  198. * causing kmemleak false positives.
  199. */
  200. kmemleak_not_leak(base);
  201. if (!base) {
  202. pr_err("page ext allocation failure\n");
  203. return -ENOMEM;
  204. }
  205. /*
  206. * The passed "pfn" may not be aligned to SECTION. For the calculation
  207. * we need to apply a mask.
  208. */
  209. pfn &= PAGE_SECTION_MASK;
  210. section->page_ext = base - pfn;
  211. total_usage += table_size;
  212. return 0;
  213. }
  214. #ifdef CONFIG_MEMORY_HOTPLUG
  215. static void free_page_ext(void *addr)
  216. {
  217. if (is_vmalloc_addr(addr)) {
  218. vfree(addr);
  219. } else {
  220. struct page *page = virt_to_page(addr);
  221. size_t table_size;
  222. table_size = sizeof(struct page_ext) * PAGES_PER_SECTION;
  223. BUG_ON(PageReserved(page));
  224. free_pages_exact(addr, table_size);
  225. }
  226. }
  227. static void __free_page_ext(unsigned long pfn)
  228. {
  229. struct mem_section *ms;
  230. struct page_ext *base;
  231. ms = __pfn_to_section(pfn);
  232. if (!ms || !ms->page_ext)
  233. return;
  234. base = ms->page_ext + pfn;
  235. free_page_ext(base);
  236. ms->page_ext = NULL;
  237. }
  238. static int __meminit online_page_ext(unsigned long start_pfn,
  239. unsigned long nr_pages,
  240. int nid)
  241. {
  242. unsigned long start, end, pfn;
  243. int fail = 0;
  244. start = SECTION_ALIGN_DOWN(start_pfn);
  245. end = SECTION_ALIGN_UP(start_pfn + nr_pages);
  246. if (nid == -1) {
  247. /*
  248. * In this case, "nid" already exists and contains valid memory.
  249. * "start_pfn" passed to us is a pfn which is an arg for
  250. * online__pages(), and start_pfn should exist.
  251. */
  252. nid = pfn_to_nid(start_pfn);
  253. VM_BUG_ON(!node_state(nid, N_ONLINE));
  254. }
  255. for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) {
  256. if (!pfn_present(pfn))
  257. continue;
  258. fail = init_section_page_ext(pfn, nid);
  259. }
  260. if (!fail)
  261. return 0;
  262. /* rollback */
  263. for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
  264. __free_page_ext(pfn);
  265. return -ENOMEM;
  266. }
  267. static int __meminit offline_page_ext(unsigned long start_pfn,
  268. unsigned long nr_pages, int nid)
  269. {
  270. unsigned long start, end, pfn;
  271. start = SECTION_ALIGN_DOWN(start_pfn);
  272. end = SECTION_ALIGN_UP(start_pfn + nr_pages);
  273. for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
  274. __free_page_ext(pfn);
  275. return 0;
  276. }
  277. static int __meminit page_ext_callback(struct notifier_block *self,
  278. unsigned long action, void *arg)
  279. {
  280. struct memory_notify *mn = arg;
  281. int ret = 0;
  282. switch (action) {
  283. case MEM_GOING_ONLINE:
  284. ret = online_page_ext(mn->start_pfn,
  285. mn->nr_pages, mn->status_change_nid);
  286. break;
  287. case MEM_OFFLINE:
  288. offline_page_ext(mn->start_pfn,
  289. mn->nr_pages, mn->status_change_nid);
  290. break;
  291. case MEM_CANCEL_ONLINE:
  292. offline_page_ext(mn->start_pfn,
  293. mn->nr_pages, mn->status_change_nid);
  294. break;
  295. case MEM_GOING_OFFLINE:
  296. break;
  297. case MEM_ONLINE:
  298. case MEM_CANCEL_OFFLINE:
  299. break;
  300. }
  301. return notifier_from_errno(ret);
  302. }
  303. #endif
  304. void __init page_ext_init(void)
  305. {
  306. unsigned long pfn;
  307. int nid;
  308. if (!invoke_need_callbacks())
  309. return;
  310. for_each_node_state(nid, N_MEMORY) {
  311. unsigned long start_pfn, end_pfn;
  312. start_pfn = node_start_pfn(nid);
  313. end_pfn = node_end_pfn(nid);
  314. /*
  315. * start_pfn and end_pfn may not be aligned to SECTION and the
  316. * page->flags of out of node pages are not initialized. So we
  317. * scan [start_pfn, the biggest section's pfn < end_pfn) here.
  318. */
  319. for (pfn = start_pfn; pfn < end_pfn;
  320. pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
  321. if (!pfn_valid(pfn))
  322. continue;
  323. /*
  324. * Nodes's pfns can be overlapping.
  325. * We know some arch can have a nodes layout such as
  326. * -------------pfn-------------->
  327. * N0 | N1 | N2 | N0 | N1 | N2|....
  328. */
  329. if (pfn_to_nid(pfn) != nid)
  330. continue;
  331. if (init_section_page_ext(pfn, nid))
  332. goto oom;
  333. }
  334. }
  335. hotplug_memory_notifier(page_ext_callback, 0);
  336. pr_info("allocated %ld bytes of page_ext\n", total_usage);
  337. invoke_init_callbacks();
  338. return;
  339. oom:
  340. panic("Out of memory");
  341. }
  342. void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
  343. {
  344. }
  345. #endif