memory-failure.c 49 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774
  1. /*
  2. * Copyright (C) 2008, 2009 Intel Corporation
  3. * Authors: Andi Kleen, Fengguang Wu
  4. *
  5. * This software may be redistributed and/or modified under the terms of
  6. * the GNU General Public License ("GPL") version 2 only as published by the
  7. * Free Software Foundation.
  8. *
  9. * High level machine check handler. Handles pages reported by the
  10. * hardware as being corrupted usually due to a multi-bit ECC memory or cache
  11. * failure.
  12. *
  13. * In addition there is a "soft offline" entry point that allows stop using
  14. * not-yet-corrupted-by-suspicious pages without killing anything.
  15. *
  16. * Handles page cache pages in various states. The tricky part
  17. * here is that we can access any page asynchronously in respect to
  18. * other VM users, because memory failures could happen anytime and
  19. * anywhere. This could violate some of their assumptions. This is why
  20. * this code has to be extremely careful. Generally it tries to use
  21. * normal locking rules, as in get the standard locks, even if that means
  22. * the error handling takes potentially a long time.
  23. *
  24. * It can be very tempting to add handling for obscure cases here.
  25. * In general any code for handling new cases should only be added iff:
  26. * - You know how to test it.
  27. * - You have a test that can be added to mce-test
  28. * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
  29. * - The case actually shows up as a frequent (top 10) page state in
  30. * tools/vm/page-types when running a real workload.
  31. *
  32. * There are several operations here with exponential complexity because
  33. * of unsuitable VM data structures. For example the operation to map back
  34. * from RMAP chains to processes has to walk the complete process list and
  35. * has non linear complexity with the number. But since memory corruptions
  36. * are rare we hope to get away with this. This avoids impacting the core
  37. * VM.
  38. */
  39. #include <linux/kernel.h>
  40. #include <linux/mm.h>
  41. #include <linux/page-flags.h>
  42. #include <linux/kernel-page-flags.h>
  43. #include <linux/sched.h>
  44. #include <linux/ksm.h>
  45. #include <linux/rmap.h>
  46. #include <linux/export.h>
  47. #include <linux/pagemap.h>
  48. #include <linux/swap.h>
  49. #include <linux/backing-dev.h>
  50. #include <linux/migrate.h>
  51. #include <linux/page-isolation.h>
  52. #include <linux/suspend.h>
  53. #include <linux/slab.h>
  54. #include <linux/swapops.h>
  55. #include <linux/hugetlb.h>
  56. #include <linux/memory_hotplug.h>
  57. #include <linux/mm_inline.h>
  58. #include <linux/kfifo.h>
  59. #include <linux/ratelimit.h>
  60. #include "internal.h"
  61. #include "ras/ras_event.h"
  62. int sysctl_memory_failure_early_kill __read_mostly = 0;
  63. int sysctl_memory_failure_recovery __read_mostly = 1;
  64. atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
  65. #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
  66. u32 hwpoison_filter_enable = 0;
  67. u32 hwpoison_filter_dev_major = ~0U;
  68. u32 hwpoison_filter_dev_minor = ~0U;
  69. u64 hwpoison_filter_flags_mask;
  70. u64 hwpoison_filter_flags_value;
  71. EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
  72. EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
  73. EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
  74. EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
  75. EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
  76. static int hwpoison_filter_dev(struct page *p)
  77. {
  78. struct address_space *mapping;
  79. dev_t dev;
  80. if (hwpoison_filter_dev_major == ~0U &&
  81. hwpoison_filter_dev_minor == ~0U)
  82. return 0;
  83. /*
  84. * page_mapping() does not accept slab pages.
  85. */
  86. if (PageSlab(p))
  87. return -EINVAL;
  88. mapping = page_mapping(p);
  89. if (mapping == NULL || mapping->host == NULL)
  90. return -EINVAL;
  91. dev = mapping->host->i_sb->s_dev;
  92. if (hwpoison_filter_dev_major != ~0U &&
  93. hwpoison_filter_dev_major != MAJOR(dev))
  94. return -EINVAL;
  95. if (hwpoison_filter_dev_minor != ~0U &&
  96. hwpoison_filter_dev_minor != MINOR(dev))
  97. return -EINVAL;
  98. return 0;
  99. }
  100. static int hwpoison_filter_flags(struct page *p)
  101. {
  102. if (!hwpoison_filter_flags_mask)
  103. return 0;
  104. if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
  105. hwpoison_filter_flags_value)
  106. return 0;
  107. else
  108. return -EINVAL;
  109. }
  110. /*
  111. * This allows stress tests to limit test scope to a collection of tasks
  112. * by putting them under some memcg. This prevents killing unrelated/important
  113. * processes such as /sbin/init. Note that the target task may share clean
  114. * pages with init (eg. libc text), which is harmless. If the target task
  115. * share _dirty_ pages with another task B, the test scheme must make sure B
  116. * is also included in the memcg. At last, due to race conditions this filter
  117. * can only guarantee that the page either belongs to the memcg tasks, or is
  118. * a freed page.
  119. */
  120. #ifdef CONFIG_MEMCG
  121. u64 hwpoison_filter_memcg;
  122. EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
  123. static int hwpoison_filter_task(struct page *p)
  124. {
  125. if (!hwpoison_filter_memcg)
  126. return 0;
  127. if (page_cgroup_ino(p) != hwpoison_filter_memcg)
  128. return -EINVAL;
  129. return 0;
  130. }
  131. #else
  132. static int hwpoison_filter_task(struct page *p) { return 0; }
  133. #endif
  134. int hwpoison_filter(struct page *p)
  135. {
  136. if (!hwpoison_filter_enable)
  137. return 0;
  138. if (hwpoison_filter_dev(p))
  139. return -EINVAL;
  140. if (hwpoison_filter_flags(p))
  141. return -EINVAL;
  142. if (hwpoison_filter_task(p))
  143. return -EINVAL;
  144. return 0;
  145. }
  146. #else
  147. int hwpoison_filter(struct page *p)
  148. {
  149. return 0;
  150. }
  151. #endif
  152. EXPORT_SYMBOL_GPL(hwpoison_filter);
  153. /*
  154. * Send all the processes who have the page mapped a signal.
  155. * ``action optional'' if they are not immediately affected by the error
  156. * ``action required'' if error happened in current execution context
  157. */
  158. static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
  159. unsigned long pfn, struct page *page, int flags)
  160. {
  161. struct siginfo si;
  162. int ret;
  163. printk(KERN_ERR
  164. "MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
  165. pfn, t->comm, t->pid);
  166. si.si_signo = SIGBUS;
  167. si.si_errno = 0;
  168. si.si_addr = (void *)addr;
  169. #ifdef __ARCH_SI_TRAPNO
  170. si.si_trapno = trapno;
  171. #endif
  172. si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
  173. if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
  174. si.si_code = BUS_MCEERR_AR;
  175. ret = force_sig_info(SIGBUS, &si, current);
  176. } else {
  177. /*
  178. * Don't use force here, it's convenient if the signal
  179. * can be temporarily blocked.
  180. * This could cause a loop when the user sets SIGBUS
  181. * to SIG_IGN, but hopefully no one will do that?
  182. */
  183. si.si_code = BUS_MCEERR_AO;
  184. ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
  185. }
  186. if (ret < 0)
  187. printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
  188. t->comm, t->pid, ret);
  189. return ret;
  190. }
  191. /*
  192. * When a unknown page type is encountered drain as many buffers as possible
  193. * in the hope to turn the page into a LRU or free page, which we can handle.
  194. */
  195. void shake_page(struct page *p, int access)
  196. {
  197. if (!PageSlab(p)) {
  198. lru_add_drain_all();
  199. if (PageLRU(p))
  200. return;
  201. drain_all_pages(page_zone(p));
  202. if (PageLRU(p) || is_free_buddy_page(p))
  203. return;
  204. }
  205. /*
  206. * Only call shrink_node_slabs here (which would also shrink
  207. * other caches) if access is not potentially fatal.
  208. */
  209. if (access)
  210. drop_slab_node(page_to_nid(p));
  211. }
  212. EXPORT_SYMBOL_GPL(shake_page);
  213. /*
  214. * Kill all processes that have a poisoned page mapped and then isolate
  215. * the page.
  216. *
  217. * General strategy:
  218. * Find all processes having the page mapped and kill them.
  219. * But we keep a page reference around so that the page is not
  220. * actually freed yet.
  221. * Then stash the page away
  222. *
  223. * There's no convenient way to get back to mapped processes
  224. * from the VMAs. So do a brute-force search over all
  225. * running processes.
  226. *
  227. * Remember that machine checks are not common (or rather
  228. * if they are common you have other problems), so this shouldn't
  229. * be a performance issue.
  230. *
  231. * Also there are some races possible while we get from the
  232. * error detection to actually handle it.
  233. */
  234. struct to_kill {
  235. struct list_head nd;
  236. struct task_struct *tsk;
  237. unsigned long addr;
  238. char addr_valid;
  239. };
  240. /*
  241. * Failure handling: if we can't find or can't kill a process there's
  242. * not much we can do. We just print a message and ignore otherwise.
  243. */
  244. /*
  245. * Schedule a process for later kill.
  246. * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
  247. * TBD would GFP_NOIO be enough?
  248. */
  249. static void add_to_kill(struct task_struct *tsk, struct page *p,
  250. struct vm_area_struct *vma,
  251. struct list_head *to_kill,
  252. struct to_kill **tkc)
  253. {
  254. struct to_kill *tk;
  255. if (*tkc) {
  256. tk = *tkc;
  257. *tkc = NULL;
  258. } else {
  259. tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
  260. if (!tk) {
  261. printk(KERN_ERR
  262. "MCE: Out of memory while machine check handling\n");
  263. return;
  264. }
  265. }
  266. tk->addr = page_address_in_vma(p, vma);
  267. tk->addr_valid = 1;
  268. /*
  269. * In theory we don't have to kill when the page was
  270. * munmaped. But it could be also a mremap. Since that's
  271. * likely very rare kill anyways just out of paranoia, but use
  272. * a SIGKILL because the error is not contained anymore.
  273. */
  274. if (tk->addr == -EFAULT) {
  275. pr_info("MCE: Unable to find user space address %lx in %s\n",
  276. page_to_pfn(p), tsk->comm);
  277. tk->addr_valid = 0;
  278. }
  279. get_task_struct(tsk);
  280. tk->tsk = tsk;
  281. list_add_tail(&tk->nd, to_kill);
  282. }
  283. /*
  284. * Kill the processes that have been collected earlier.
  285. *
  286. * Only do anything when DOIT is set, otherwise just free the list
  287. * (this is used for clean pages which do not need killing)
  288. * Also when FAIL is set do a force kill because something went
  289. * wrong earlier.
  290. */
  291. static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
  292. int fail, struct page *page, unsigned long pfn,
  293. int flags)
  294. {
  295. struct to_kill *tk, *next;
  296. list_for_each_entry_safe (tk, next, to_kill, nd) {
  297. if (forcekill) {
  298. /*
  299. * In case something went wrong with munmapping
  300. * make sure the process doesn't catch the
  301. * signal and then access the memory. Just kill it.
  302. */
  303. if (fail || tk->addr_valid == 0) {
  304. printk(KERN_ERR
  305. "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
  306. pfn, tk->tsk->comm, tk->tsk->pid);
  307. force_sig(SIGKILL, tk->tsk);
  308. }
  309. /*
  310. * In theory the process could have mapped
  311. * something else on the address in-between. We could
  312. * check for that, but we need to tell the
  313. * process anyways.
  314. */
  315. else if (kill_proc(tk->tsk, tk->addr, trapno,
  316. pfn, page, flags) < 0)
  317. printk(KERN_ERR
  318. "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
  319. pfn, tk->tsk->comm, tk->tsk->pid);
  320. }
  321. put_task_struct(tk->tsk);
  322. kfree(tk);
  323. }
  324. }
  325. /*
  326. * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
  327. * on behalf of the thread group. Return task_struct of the (first found)
  328. * dedicated thread if found, and return NULL otherwise.
  329. *
  330. * We already hold read_lock(&tasklist_lock) in the caller, so we don't
  331. * have to call rcu_read_lock/unlock() in this function.
  332. */
  333. static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
  334. {
  335. struct task_struct *t;
  336. for_each_thread(tsk, t)
  337. if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
  338. return t;
  339. return NULL;
  340. }
  341. /*
  342. * Determine whether a given process is "early kill" process which expects
  343. * to be signaled when some page under the process is hwpoisoned.
  344. * Return task_struct of the dedicated thread (main thread unless explicitly
  345. * specified) if the process is "early kill," and otherwise returns NULL.
  346. */
  347. static struct task_struct *task_early_kill(struct task_struct *tsk,
  348. int force_early)
  349. {
  350. struct task_struct *t;
  351. if (!tsk->mm)
  352. return NULL;
  353. if (force_early)
  354. return tsk;
  355. t = find_early_kill_thread(tsk);
  356. if (t)
  357. return t;
  358. if (sysctl_memory_failure_early_kill)
  359. return tsk;
  360. return NULL;
  361. }
  362. /*
  363. * Collect processes when the error hit an anonymous page.
  364. */
  365. static void collect_procs_anon(struct page *page, struct list_head *to_kill,
  366. struct to_kill **tkc, int force_early)
  367. {
  368. struct vm_area_struct *vma;
  369. struct task_struct *tsk;
  370. struct anon_vma *av;
  371. pgoff_t pgoff;
  372. av = page_lock_anon_vma_read(page);
  373. if (av == NULL) /* Not actually mapped anymore */
  374. return;
  375. pgoff = page_to_pgoff(page);
  376. read_lock(&tasklist_lock);
  377. for_each_process (tsk) {
  378. struct anon_vma_chain *vmac;
  379. struct task_struct *t = task_early_kill(tsk, force_early);
  380. if (!t)
  381. continue;
  382. anon_vma_interval_tree_foreach(vmac, &av->rb_root,
  383. pgoff, pgoff) {
  384. vma = vmac->vma;
  385. if (!page_mapped_in_vma(page, vma))
  386. continue;
  387. if (vma->vm_mm == t->mm)
  388. add_to_kill(t, page, vma, to_kill, tkc);
  389. }
  390. }
  391. read_unlock(&tasklist_lock);
  392. page_unlock_anon_vma_read(av);
  393. }
  394. /*
  395. * Collect processes when the error hit a file mapped page.
  396. */
  397. static void collect_procs_file(struct page *page, struct list_head *to_kill,
  398. struct to_kill **tkc, int force_early)
  399. {
  400. struct vm_area_struct *vma;
  401. struct task_struct *tsk;
  402. struct address_space *mapping = page->mapping;
  403. i_mmap_lock_read(mapping);
  404. read_lock(&tasklist_lock);
  405. for_each_process(tsk) {
  406. pgoff_t pgoff = page_to_pgoff(page);
  407. struct task_struct *t = task_early_kill(tsk, force_early);
  408. if (!t)
  409. continue;
  410. vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
  411. pgoff) {
  412. /*
  413. * Send early kill signal to tasks where a vma covers
  414. * the page but the corrupted page is not necessarily
  415. * mapped it in its pte.
  416. * Assume applications who requested early kill want
  417. * to be informed of all such data corruptions.
  418. */
  419. if (vma->vm_mm == t->mm)
  420. add_to_kill(t, page, vma, to_kill, tkc);
  421. }
  422. }
  423. read_unlock(&tasklist_lock);
  424. i_mmap_unlock_read(mapping);
  425. }
  426. /*
  427. * Collect the processes who have the corrupted page mapped to kill.
  428. * This is done in two steps for locking reasons.
  429. * First preallocate one tokill structure outside the spin locks,
  430. * so that we can kill at least one process reasonably reliable.
  431. */
  432. static void collect_procs(struct page *page, struct list_head *tokill,
  433. int force_early)
  434. {
  435. struct to_kill *tk;
  436. if (!page->mapping)
  437. return;
  438. tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
  439. if (!tk)
  440. return;
  441. if (PageAnon(page))
  442. collect_procs_anon(page, tokill, &tk, force_early);
  443. else
  444. collect_procs_file(page, tokill, &tk, force_early);
  445. kfree(tk);
  446. }
  447. static const char *action_name[] = {
  448. [MF_IGNORED] = "Ignored",
  449. [MF_FAILED] = "Failed",
  450. [MF_DELAYED] = "Delayed",
  451. [MF_RECOVERED] = "Recovered",
  452. };
  453. static const char * const action_page_types[] = {
  454. [MF_MSG_KERNEL] = "reserved kernel page",
  455. [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
  456. [MF_MSG_SLAB] = "kernel slab page",
  457. [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
  458. [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
  459. [MF_MSG_HUGE] = "huge page",
  460. [MF_MSG_FREE_HUGE] = "free huge page",
  461. [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
  462. [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
  463. [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
  464. [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
  465. [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
  466. [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
  467. [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
  468. [MF_MSG_DIRTY_LRU] = "dirty LRU page",
  469. [MF_MSG_CLEAN_LRU] = "clean LRU page",
  470. [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
  471. [MF_MSG_BUDDY] = "free buddy page",
  472. [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
  473. [MF_MSG_UNKNOWN] = "unknown page",
  474. };
  475. /*
  476. * XXX: It is possible that a page is isolated from LRU cache,
  477. * and then kept in swap cache or failed to remove from page cache.
  478. * The page count will stop it from being freed by unpoison.
  479. * Stress tests should be aware of this memory leak problem.
  480. */
  481. static int delete_from_lru_cache(struct page *p)
  482. {
  483. if (!isolate_lru_page(p)) {
  484. /*
  485. * Clear sensible page flags, so that the buddy system won't
  486. * complain when the page is unpoison-and-freed.
  487. */
  488. ClearPageActive(p);
  489. ClearPageUnevictable(p);
  490. /*
  491. * drop the page count elevated by isolate_lru_page()
  492. */
  493. page_cache_release(p);
  494. return 0;
  495. }
  496. return -EIO;
  497. }
  498. /*
  499. * Error hit kernel page.
  500. * Do nothing, try to be lucky and not touch this instead. For a few cases we
  501. * could be more sophisticated.
  502. */
  503. static int me_kernel(struct page *p, unsigned long pfn)
  504. {
  505. return MF_IGNORED;
  506. }
  507. /*
  508. * Page in unknown state. Do nothing.
  509. */
  510. static int me_unknown(struct page *p, unsigned long pfn)
  511. {
  512. printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
  513. return MF_FAILED;
  514. }
  515. /*
  516. * Clean (or cleaned) page cache page.
  517. */
  518. static int me_pagecache_clean(struct page *p, unsigned long pfn)
  519. {
  520. int err;
  521. int ret = MF_FAILED;
  522. struct address_space *mapping;
  523. delete_from_lru_cache(p);
  524. /*
  525. * For anonymous pages we're done the only reference left
  526. * should be the one m_f() holds.
  527. */
  528. if (PageAnon(p))
  529. return MF_RECOVERED;
  530. /*
  531. * Now truncate the page in the page cache. This is really
  532. * more like a "temporary hole punch"
  533. * Don't do this for block devices when someone else
  534. * has a reference, because it could be file system metadata
  535. * and that's not safe to truncate.
  536. */
  537. mapping = page_mapping(p);
  538. if (!mapping) {
  539. /*
  540. * Page has been teared down in the meanwhile
  541. */
  542. return MF_FAILED;
  543. }
  544. /*
  545. * Truncation is a bit tricky. Enable it per file system for now.
  546. *
  547. * Open: to take i_mutex or not for this? Right now we don't.
  548. */
  549. if (mapping->a_ops->error_remove_page) {
  550. err = mapping->a_ops->error_remove_page(mapping, p);
  551. if (err != 0) {
  552. printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
  553. pfn, err);
  554. } else if (page_has_private(p) &&
  555. !try_to_release_page(p, GFP_NOIO)) {
  556. pr_info("MCE %#lx: failed to release buffers\n", pfn);
  557. } else {
  558. ret = MF_RECOVERED;
  559. }
  560. } else {
  561. /*
  562. * If the file system doesn't support it just invalidate
  563. * This fails on dirty or anything with private pages
  564. */
  565. if (invalidate_inode_page(p))
  566. ret = MF_RECOVERED;
  567. else
  568. printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
  569. pfn);
  570. }
  571. return ret;
  572. }
  573. /*
  574. * Dirty pagecache page
  575. * Issues: when the error hit a hole page the error is not properly
  576. * propagated.
  577. */
  578. static int me_pagecache_dirty(struct page *p, unsigned long pfn)
  579. {
  580. struct address_space *mapping = page_mapping(p);
  581. SetPageError(p);
  582. /* TBD: print more information about the file. */
  583. if (mapping) {
  584. /*
  585. * IO error will be reported by write(), fsync(), etc.
  586. * who check the mapping.
  587. * This way the application knows that something went
  588. * wrong with its dirty file data.
  589. *
  590. * There's one open issue:
  591. *
  592. * The EIO will be only reported on the next IO
  593. * operation and then cleared through the IO map.
  594. * Normally Linux has two mechanisms to pass IO error
  595. * first through the AS_EIO flag in the address space
  596. * and then through the PageError flag in the page.
  597. * Since we drop pages on memory failure handling the
  598. * only mechanism open to use is through AS_AIO.
  599. *
  600. * This has the disadvantage that it gets cleared on
  601. * the first operation that returns an error, while
  602. * the PageError bit is more sticky and only cleared
  603. * when the page is reread or dropped. If an
  604. * application assumes it will always get error on
  605. * fsync, but does other operations on the fd before
  606. * and the page is dropped between then the error
  607. * will not be properly reported.
  608. *
  609. * This can already happen even without hwpoisoned
  610. * pages: first on metadata IO errors (which only
  611. * report through AS_EIO) or when the page is dropped
  612. * at the wrong time.
  613. *
  614. * So right now we assume that the application DTRT on
  615. * the first EIO, but we're not worse than other parts
  616. * of the kernel.
  617. */
  618. mapping_set_error(mapping, EIO);
  619. }
  620. return me_pagecache_clean(p, pfn);
  621. }
  622. /*
  623. * Clean and dirty swap cache.
  624. *
  625. * Dirty swap cache page is tricky to handle. The page could live both in page
  626. * cache and swap cache(ie. page is freshly swapped in). So it could be
  627. * referenced concurrently by 2 types of PTEs:
  628. * normal PTEs and swap PTEs. We try to handle them consistently by calling
  629. * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
  630. * and then
  631. * - clear dirty bit to prevent IO
  632. * - remove from LRU
  633. * - but keep in the swap cache, so that when we return to it on
  634. * a later page fault, we know the application is accessing
  635. * corrupted data and shall be killed (we installed simple
  636. * interception code in do_swap_page to catch it).
  637. *
  638. * Clean swap cache pages can be directly isolated. A later page fault will
  639. * bring in the known good data from disk.
  640. */
  641. static int me_swapcache_dirty(struct page *p, unsigned long pfn)
  642. {
  643. ClearPageDirty(p);
  644. /* Trigger EIO in shmem: */
  645. ClearPageUptodate(p);
  646. if (!delete_from_lru_cache(p))
  647. return MF_DELAYED;
  648. else
  649. return MF_FAILED;
  650. }
  651. static int me_swapcache_clean(struct page *p, unsigned long pfn)
  652. {
  653. delete_from_swap_cache(p);
  654. if (!delete_from_lru_cache(p))
  655. return MF_RECOVERED;
  656. else
  657. return MF_FAILED;
  658. }
  659. /*
  660. * Huge pages. Needs work.
  661. * Issues:
  662. * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
  663. * To narrow down kill region to one page, we need to break up pmd.
  664. */
  665. static int me_huge_page(struct page *p, unsigned long pfn)
  666. {
  667. int res = 0;
  668. struct page *hpage = compound_head(p);
  669. if (!PageHuge(hpage))
  670. return MF_DELAYED;
  671. /*
  672. * We can safely recover from error on free or reserved (i.e.
  673. * not in-use) hugepage by dequeuing it from freelist.
  674. * To check whether a hugepage is in-use or not, we can't use
  675. * page->lru because it can be used in other hugepage operations,
  676. * such as __unmap_hugepage_range() and gather_surplus_pages().
  677. * So instead we use page_mapping() and PageAnon().
  678. * We assume that this function is called with page lock held,
  679. * so there is no race between isolation and mapping/unmapping.
  680. */
  681. if (!(page_mapping(hpage) || PageAnon(hpage))) {
  682. res = dequeue_hwpoisoned_huge_page(hpage);
  683. if (!res)
  684. return MF_RECOVERED;
  685. }
  686. return MF_DELAYED;
  687. }
  688. /*
  689. * Various page states we can handle.
  690. *
  691. * A page state is defined by its current page->flags bits.
  692. * The table matches them in order and calls the right handler.
  693. *
  694. * This is quite tricky because we can access page at any time
  695. * in its live cycle, so all accesses have to be extremely careful.
  696. *
  697. * This is not complete. More states could be added.
  698. * For any missing state don't attempt recovery.
  699. */
  700. #define dirty (1UL << PG_dirty)
  701. #define sc (1UL << PG_swapcache)
  702. #define unevict (1UL << PG_unevictable)
  703. #define mlock (1UL << PG_mlocked)
  704. #define writeback (1UL << PG_writeback)
  705. #define lru (1UL << PG_lru)
  706. #define swapbacked (1UL << PG_swapbacked)
  707. #define head (1UL << PG_head)
  708. #define slab (1UL << PG_slab)
  709. #define reserved (1UL << PG_reserved)
  710. static struct page_state {
  711. unsigned long mask;
  712. unsigned long res;
  713. enum mf_action_page_type type;
  714. int (*action)(struct page *p, unsigned long pfn);
  715. } error_states[] = {
  716. { reserved, reserved, MF_MSG_KERNEL, me_kernel },
  717. /*
  718. * free pages are specially detected outside this table:
  719. * PG_buddy pages only make a small fraction of all free pages.
  720. */
  721. /*
  722. * Could in theory check if slab page is free or if we can drop
  723. * currently unused objects without touching them. But just
  724. * treat it as standard kernel for now.
  725. */
  726. { slab, slab, MF_MSG_SLAB, me_kernel },
  727. { head, head, MF_MSG_HUGE, me_huge_page },
  728. { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
  729. { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
  730. { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
  731. { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
  732. { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
  733. { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
  734. { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
  735. { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
  736. /*
  737. * Catchall entry: must be at end.
  738. */
  739. { 0, 0, MF_MSG_UNKNOWN, me_unknown },
  740. };
  741. #undef dirty
  742. #undef sc
  743. #undef unevict
  744. #undef mlock
  745. #undef writeback
  746. #undef lru
  747. #undef swapbacked
  748. #undef head
  749. #undef tail
  750. #undef compound
  751. #undef slab
  752. #undef reserved
  753. /*
  754. * "Dirty/Clean" indication is not 100% accurate due to the possibility of
  755. * setting PG_dirty outside page lock. See also comment above set_page_dirty().
  756. */
  757. static void action_result(unsigned long pfn, enum mf_action_page_type type,
  758. enum mf_result result)
  759. {
  760. trace_memory_failure_event(pfn, type, result);
  761. pr_err("MCE %#lx: recovery action for %s: %s\n",
  762. pfn, action_page_types[type], action_name[result]);
  763. }
  764. static int page_action(struct page_state *ps, struct page *p,
  765. unsigned long pfn)
  766. {
  767. int result;
  768. int count;
  769. result = ps->action(p, pfn);
  770. count = page_count(p) - 1;
  771. if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
  772. count--;
  773. if (count != 0) {
  774. printk(KERN_ERR
  775. "MCE %#lx: %s still referenced by %d users\n",
  776. pfn, action_page_types[ps->type], count);
  777. result = MF_FAILED;
  778. }
  779. action_result(pfn, ps->type, result);
  780. /* Could do more checks here if page looks ok */
  781. /*
  782. * Could adjust zone counters here to correct for the missing page.
  783. */
  784. return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
  785. }
  786. /**
  787. * get_hwpoison_page() - Get refcount for memory error handling:
  788. * @page: raw error page (hit by memory error)
  789. *
  790. * Return: return 0 if failed to grab the refcount, otherwise true (some
  791. * non-zero value.)
  792. */
  793. int get_hwpoison_page(struct page *page)
  794. {
  795. struct page *head = compound_head(page);
  796. if (!PageHuge(head) && PageTransHuge(head)) {
  797. /*
  798. * Non anonymous thp exists only in allocation/free time. We
  799. * can't handle such a case correctly, so let's give it up.
  800. * This should be better than triggering BUG_ON when kernel
  801. * tries to touch the "partially handled" page.
  802. */
  803. if (!PageAnon(head)) {
  804. pr_err("MCE: %#lx: non anonymous thp\n",
  805. page_to_pfn(page));
  806. return 0;
  807. }
  808. }
  809. return get_page_unless_zero(head);
  810. }
  811. EXPORT_SYMBOL_GPL(get_hwpoison_page);
  812. /*
  813. * Do all that is necessary to remove user space mappings. Unmap
  814. * the pages and send SIGBUS to the processes if the data was dirty.
  815. */
  816. static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
  817. int trapno, int flags, struct page **hpagep)
  818. {
  819. enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
  820. struct address_space *mapping;
  821. LIST_HEAD(tokill);
  822. int ret;
  823. int kill = 1, forcekill;
  824. struct page *hpage = *hpagep;
  825. /*
  826. * Here we are interested only in user-mapped pages, so skip any
  827. * other types of pages.
  828. */
  829. if (PageReserved(p) || PageSlab(p))
  830. return SWAP_SUCCESS;
  831. if (!(PageLRU(hpage) || PageHuge(p)))
  832. return SWAP_SUCCESS;
  833. /*
  834. * This check implies we don't kill processes if their pages
  835. * are in the swap cache early. Those are always late kills.
  836. */
  837. if (!page_mapped(hpage))
  838. return SWAP_SUCCESS;
  839. if (PageKsm(p)) {
  840. pr_err("MCE %#lx: can't handle KSM pages.\n", pfn);
  841. return SWAP_FAIL;
  842. }
  843. if (PageSwapCache(p)) {
  844. printk(KERN_ERR
  845. "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
  846. ttu |= TTU_IGNORE_HWPOISON;
  847. }
  848. /*
  849. * Propagate the dirty bit from PTEs to struct page first, because we
  850. * need this to decide if we should kill or just drop the page.
  851. * XXX: the dirty test could be racy: set_page_dirty() may not always
  852. * be called inside page lock (it's recommended but not enforced).
  853. */
  854. mapping = page_mapping(hpage);
  855. if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
  856. mapping_cap_writeback_dirty(mapping)) {
  857. if (page_mkclean(hpage)) {
  858. SetPageDirty(hpage);
  859. } else {
  860. kill = 0;
  861. ttu |= TTU_IGNORE_HWPOISON;
  862. printk(KERN_INFO
  863. "MCE %#lx: corrupted page was clean: dropped without side effects\n",
  864. pfn);
  865. }
  866. }
  867. /*
  868. * First collect all the processes that have the page
  869. * mapped in dirty form. This has to be done before try_to_unmap,
  870. * because ttu takes the rmap data structures down.
  871. *
  872. * Error handling: We ignore errors here because
  873. * there's nothing that can be done.
  874. */
  875. if (kill)
  876. collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
  877. ret = try_to_unmap(hpage, ttu);
  878. if (ret != SWAP_SUCCESS)
  879. printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
  880. pfn, page_mapcount(hpage));
  881. /*
  882. * Now that the dirty bit has been propagated to the
  883. * struct page and all unmaps done we can decide if
  884. * killing is needed or not. Only kill when the page
  885. * was dirty or the process is not restartable,
  886. * otherwise the tokill list is merely
  887. * freed. When there was a problem unmapping earlier
  888. * use a more force-full uncatchable kill to prevent
  889. * any accesses to the poisoned memory.
  890. */
  891. forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
  892. kill_procs(&tokill, forcekill, trapno,
  893. ret != SWAP_SUCCESS, p, pfn, flags);
  894. return ret;
  895. }
  896. static void set_page_hwpoison_huge_page(struct page *hpage)
  897. {
  898. int i;
  899. int nr_pages = 1 << compound_order(hpage);
  900. for (i = 0; i < nr_pages; i++)
  901. SetPageHWPoison(hpage + i);
  902. }
  903. static void clear_page_hwpoison_huge_page(struct page *hpage)
  904. {
  905. int i;
  906. int nr_pages = 1 << compound_order(hpage);
  907. for (i = 0; i < nr_pages; i++)
  908. ClearPageHWPoison(hpage + i);
  909. }
  910. /**
  911. * memory_failure - Handle memory failure of a page.
  912. * @pfn: Page Number of the corrupted page
  913. * @trapno: Trap number reported in the signal to user space.
  914. * @flags: fine tune action taken
  915. *
  916. * This function is called by the low level machine check code
  917. * of an architecture when it detects hardware memory corruption
  918. * of a page. It tries its best to recover, which includes
  919. * dropping pages, killing processes etc.
  920. *
  921. * The function is primarily of use for corruptions that
  922. * happen outside the current execution context (e.g. when
  923. * detected by a background scrubber)
  924. *
  925. * Must run in process context (e.g. a work queue) with interrupts
  926. * enabled and no spinlocks hold.
  927. */
  928. int memory_failure(unsigned long pfn, int trapno, int flags)
  929. {
  930. struct page_state *ps;
  931. struct page *p;
  932. struct page *hpage;
  933. struct page *orig_head;
  934. int res;
  935. unsigned int nr_pages;
  936. unsigned long page_flags;
  937. if (!sysctl_memory_failure_recovery)
  938. panic("Memory failure from trap %d on page %lx", trapno, pfn);
  939. if (!pfn_valid(pfn)) {
  940. printk(KERN_ERR
  941. "MCE %#lx: memory outside kernel control\n",
  942. pfn);
  943. return -ENXIO;
  944. }
  945. p = pfn_to_page(pfn);
  946. orig_head = hpage = compound_head(p);
  947. if (TestSetPageHWPoison(p)) {
  948. printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
  949. return 0;
  950. }
  951. /*
  952. * Currently errors on hugetlbfs pages are measured in hugepage units,
  953. * so nr_pages should be 1 << compound_order. OTOH when errors are on
  954. * transparent hugepages, they are supposed to be split and error
  955. * measurement is done in normal page units. So nr_pages should be one
  956. * in this case.
  957. */
  958. if (PageHuge(p))
  959. nr_pages = 1 << compound_order(hpage);
  960. else /* normal page or thp */
  961. nr_pages = 1;
  962. num_poisoned_pages_add(nr_pages);
  963. /*
  964. * We need/can do nothing about count=0 pages.
  965. * 1) it's a free page, and therefore in safe hand:
  966. * prep_new_page() will be the gate keeper.
  967. * 2) it's a free hugepage, which is also safe:
  968. * an affected hugepage will be dequeued from hugepage freelist,
  969. * so there's no concern about reusing it ever after.
  970. * 3) it's part of a non-compound high order page.
  971. * Implies some kernel user: cannot stop them from
  972. * R/W the page; let's pray that the page has been
  973. * used and will be freed some time later.
  974. * In fact it's dangerous to directly bump up page count from 0,
  975. * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
  976. */
  977. if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
  978. if (is_free_buddy_page(p)) {
  979. action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
  980. return 0;
  981. } else if (PageHuge(hpage)) {
  982. /*
  983. * Check "filter hit" and "race with other subpage."
  984. */
  985. lock_page(hpage);
  986. if (PageHWPoison(hpage)) {
  987. if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
  988. || (p != hpage && TestSetPageHWPoison(hpage))) {
  989. num_poisoned_pages_sub(nr_pages);
  990. unlock_page(hpage);
  991. return 0;
  992. }
  993. }
  994. set_page_hwpoison_huge_page(hpage);
  995. res = dequeue_hwpoisoned_huge_page(hpage);
  996. action_result(pfn, MF_MSG_FREE_HUGE,
  997. res ? MF_IGNORED : MF_DELAYED);
  998. unlock_page(hpage);
  999. return res;
  1000. } else {
  1001. action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
  1002. return -EBUSY;
  1003. }
  1004. }
  1005. if (!PageHuge(p) && PageTransHuge(hpage)) {
  1006. lock_page(hpage);
  1007. if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
  1008. unlock_page(hpage);
  1009. if (!PageAnon(hpage))
  1010. pr_err("MCE: %#lx: non anonymous thp\n", pfn);
  1011. else
  1012. pr_err("MCE: %#lx: thp split failed\n", pfn);
  1013. if (TestClearPageHWPoison(p))
  1014. num_poisoned_pages_sub(nr_pages);
  1015. put_hwpoison_page(p);
  1016. return -EBUSY;
  1017. }
  1018. unlock_page(hpage);
  1019. get_hwpoison_page(p);
  1020. put_hwpoison_page(hpage);
  1021. VM_BUG_ON_PAGE(!page_count(p), p);
  1022. hpage = compound_head(p);
  1023. }
  1024. /*
  1025. * We ignore non-LRU pages for good reasons.
  1026. * - PG_locked is only well defined for LRU pages and a few others
  1027. * - to avoid races with __SetPageLocked()
  1028. * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
  1029. * The check (unnecessarily) ignores LRU pages being isolated and
  1030. * walked by the page reclaim code, however that's not a big loss.
  1031. */
  1032. if (!PageHuge(p)) {
  1033. if (!PageLRU(p))
  1034. shake_page(p, 0);
  1035. if (!PageLRU(p)) {
  1036. /*
  1037. * shake_page could have turned it free.
  1038. */
  1039. if (is_free_buddy_page(p)) {
  1040. if (flags & MF_COUNT_INCREASED)
  1041. action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
  1042. else
  1043. action_result(pfn, MF_MSG_BUDDY_2ND,
  1044. MF_DELAYED);
  1045. return 0;
  1046. }
  1047. }
  1048. }
  1049. lock_page(hpage);
  1050. /*
  1051. * The page could have changed compound pages during the locking.
  1052. * If this happens just bail out.
  1053. */
  1054. if (PageCompound(p) && compound_head(p) != orig_head) {
  1055. action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
  1056. res = -EBUSY;
  1057. goto out;
  1058. }
  1059. /*
  1060. * We use page flags to determine what action should be taken, but
  1061. * the flags can be modified by the error containment action. One
  1062. * example is an mlocked page, where PG_mlocked is cleared by
  1063. * page_remove_rmap() in try_to_unmap_one(). So to determine page status
  1064. * correctly, we save a copy of the page flags at this time.
  1065. */
  1066. page_flags = p->flags;
  1067. /*
  1068. * unpoison always clear PG_hwpoison inside page lock
  1069. */
  1070. if (!PageHWPoison(p)) {
  1071. printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
  1072. num_poisoned_pages_sub(nr_pages);
  1073. unlock_page(hpage);
  1074. put_hwpoison_page(hpage);
  1075. return 0;
  1076. }
  1077. if (hwpoison_filter(p)) {
  1078. if (TestClearPageHWPoison(p))
  1079. num_poisoned_pages_sub(nr_pages);
  1080. unlock_page(hpage);
  1081. put_hwpoison_page(hpage);
  1082. return 0;
  1083. }
  1084. if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
  1085. goto identify_page_state;
  1086. /*
  1087. * For error on the tail page, we should set PG_hwpoison
  1088. * on the head page to show that the hugepage is hwpoisoned
  1089. */
  1090. if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
  1091. action_result(pfn, MF_MSG_POISONED_HUGE, MF_IGNORED);
  1092. unlock_page(hpage);
  1093. put_hwpoison_page(hpage);
  1094. return 0;
  1095. }
  1096. /*
  1097. * Set PG_hwpoison on all pages in an error hugepage,
  1098. * because containment is done in hugepage unit for now.
  1099. * Since we have done TestSetPageHWPoison() for the head page with
  1100. * page lock held, we can safely set PG_hwpoison bits on tail pages.
  1101. */
  1102. if (PageHuge(p))
  1103. set_page_hwpoison_huge_page(hpage);
  1104. /*
  1105. * It's very difficult to mess with pages currently under IO
  1106. * and in many cases impossible, so we just avoid it here.
  1107. */
  1108. wait_on_page_writeback(p);
  1109. /*
  1110. * Now take care of user space mappings.
  1111. * Abort on fail: __delete_from_page_cache() assumes unmapped page.
  1112. *
  1113. * When the raw error page is thp tail page, hpage points to the raw
  1114. * page after thp split.
  1115. */
  1116. if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
  1117. != SWAP_SUCCESS) {
  1118. action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
  1119. res = -EBUSY;
  1120. goto out;
  1121. }
  1122. /*
  1123. * Torn down by someone else?
  1124. */
  1125. if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
  1126. action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
  1127. res = -EBUSY;
  1128. goto out;
  1129. }
  1130. identify_page_state:
  1131. res = -EBUSY;
  1132. /*
  1133. * The first check uses the current page flags which may not have any
  1134. * relevant information. The second check with the saved page flagss is
  1135. * carried out only if the first check can't determine the page status.
  1136. */
  1137. for (ps = error_states;; ps++)
  1138. if ((p->flags & ps->mask) == ps->res)
  1139. break;
  1140. page_flags |= (p->flags & (1UL << PG_dirty));
  1141. if (!ps->mask)
  1142. for (ps = error_states;; ps++)
  1143. if ((page_flags & ps->mask) == ps->res)
  1144. break;
  1145. res = page_action(ps, p, pfn);
  1146. out:
  1147. unlock_page(hpage);
  1148. return res;
  1149. }
  1150. EXPORT_SYMBOL_GPL(memory_failure);
  1151. #define MEMORY_FAILURE_FIFO_ORDER 4
  1152. #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
  1153. struct memory_failure_entry {
  1154. unsigned long pfn;
  1155. int trapno;
  1156. int flags;
  1157. };
  1158. struct memory_failure_cpu {
  1159. DECLARE_KFIFO(fifo, struct memory_failure_entry,
  1160. MEMORY_FAILURE_FIFO_SIZE);
  1161. spinlock_t lock;
  1162. struct work_struct work;
  1163. };
  1164. static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
  1165. /**
  1166. * memory_failure_queue - Schedule handling memory failure of a page.
  1167. * @pfn: Page Number of the corrupted page
  1168. * @trapno: Trap number reported in the signal to user space.
  1169. * @flags: Flags for memory failure handling
  1170. *
  1171. * This function is called by the low level hardware error handler
  1172. * when it detects hardware memory corruption of a page. It schedules
  1173. * the recovering of error page, including dropping pages, killing
  1174. * processes etc.
  1175. *
  1176. * The function is primarily of use for corruptions that
  1177. * happen outside the current execution context (e.g. when
  1178. * detected by a background scrubber)
  1179. *
  1180. * Can run in IRQ context.
  1181. */
  1182. void memory_failure_queue(unsigned long pfn, int trapno, int flags)
  1183. {
  1184. struct memory_failure_cpu *mf_cpu;
  1185. unsigned long proc_flags;
  1186. struct memory_failure_entry entry = {
  1187. .pfn = pfn,
  1188. .trapno = trapno,
  1189. .flags = flags,
  1190. };
  1191. mf_cpu = &get_cpu_var(memory_failure_cpu);
  1192. spin_lock_irqsave(&mf_cpu->lock, proc_flags);
  1193. if (kfifo_put(&mf_cpu->fifo, entry))
  1194. schedule_work_on(smp_processor_id(), &mf_cpu->work);
  1195. else
  1196. pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
  1197. pfn);
  1198. spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
  1199. put_cpu_var(memory_failure_cpu);
  1200. }
  1201. EXPORT_SYMBOL_GPL(memory_failure_queue);
  1202. static void memory_failure_work_func(struct work_struct *work)
  1203. {
  1204. struct memory_failure_cpu *mf_cpu;
  1205. struct memory_failure_entry entry = { 0, };
  1206. unsigned long proc_flags;
  1207. int gotten;
  1208. mf_cpu = this_cpu_ptr(&memory_failure_cpu);
  1209. for (;;) {
  1210. spin_lock_irqsave(&mf_cpu->lock, proc_flags);
  1211. gotten = kfifo_get(&mf_cpu->fifo, &entry);
  1212. spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
  1213. if (!gotten)
  1214. break;
  1215. if (entry.flags & MF_SOFT_OFFLINE)
  1216. soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
  1217. else
  1218. memory_failure(entry.pfn, entry.trapno, entry.flags);
  1219. }
  1220. }
  1221. static int __init memory_failure_init(void)
  1222. {
  1223. struct memory_failure_cpu *mf_cpu;
  1224. int cpu;
  1225. for_each_possible_cpu(cpu) {
  1226. mf_cpu = &per_cpu(memory_failure_cpu, cpu);
  1227. spin_lock_init(&mf_cpu->lock);
  1228. INIT_KFIFO(mf_cpu->fifo);
  1229. INIT_WORK(&mf_cpu->work, memory_failure_work_func);
  1230. }
  1231. return 0;
  1232. }
  1233. core_initcall(memory_failure_init);
  1234. #define unpoison_pr_info(fmt, pfn, rs) \
  1235. ({ \
  1236. if (__ratelimit(rs)) \
  1237. pr_info(fmt, pfn); \
  1238. })
  1239. /**
  1240. * unpoison_memory - Unpoison a previously poisoned page
  1241. * @pfn: Page number of the to be unpoisoned page
  1242. *
  1243. * Software-unpoison a page that has been poisoned by
  1244. * memory_failure() earlier.
  1245. *
  1246. * This is only done on the software-level, so it only works
  1247. * for linux injected failures, not real hardware failures
  1248. *
  1249. * Returns 0 for success, otherwise -errno.
  1250. */
  1251. int unpoison_memory(unsigned long pfn)
  1252. {
  1253. struct page *page;
  1254. struct page *p;
  1255. int freeit = 0;
  1256. unsigned int nr_pages;
  1257. static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
  1258. DEFAULT_RATELIMIT_BURST);
  1259. if (!pfn_valid(pfn))
  1260. return -ENXIO;
  1261. p = pfn_to_page(pfn);
  1262. page = compound_head(p);
  1263. if (!PageHWPoison(p)) {
  1264. unpoison_pr_info("MCE: Page was already unpoisoned %#lx\n",
  1265. pfn, &unpoison_rs);
  1266. return 0;
  1267. }
  1268. if (page_count(page) > 1) {
  1269. unpoison_pr_info("MCE: Someone grabs the hwpoison page %#lx\n",
  1270. pfn, &unpoison_rs);
  1271. return 0;
  1272. }
  1273. if (page_mapped(page)) {
  1274. unpoison_pr_info("MCE: Someone maps the hwpoison page %#lx\n",
  1275. pfn, &unpoison_rs);
  1276. return 0;
  1277. }
  1278. if (page_mapping(page)) {
  1279. unpoison_pr_info("MCE: the hwpoison page has non-NULL mapping %#lx\n",
  1280. pfn, &unpoison_rs);
  1281. return 0;
  1282. }
  1283. /*
  1284. * unpoison_memory() can encounter thp only when the thp is being
  1285. * worked by memory_failure() and the page lock is not held yet.
  1286. * In such case, we yield to memory_failure() and make unpoison fail.
  1287. */
  1288. if (!PageHuge(page) && PageTransHuge(page)) {
  1289. unpoison_pr_info("MCE: Memory failure is now running on %#lx\n",
  1290. pfn, &unpoison_rs);
  1291. return 0;
  1292. }
  1293. nr_pages = 1 << compound_order(page);
  1294. if (!get_hwpoison_page(p)) {
  1295. /*
  1296. * Since HWPoisoned hugepage should have non-zero refcount,
  1297. * race between memory failure and unpoison seems to happen.
  1298. * In such case unpoison fails and memory failure runs
  1299. * to the end.
  1300. */
  1301. if (PageHuge(page)) {
  1302. unpoison_pr_info("MCE: Memory failure is now running on free hugepage %#lx\n",
  1303. pfn, &unpoison_rs);
  1304. return 0;
  1305. }
  1306. if (TestClearPageHWPoison(p))
  1307. num_poisoned_pages_dec();
  1308. unpoison_pr_info("MCE: Software-unpoisoned free page %#lx\n",
  1309. pfn, &unpoison_rs);
  1310. return 0;
  1311. }
  1312. lock_page(page);
  1313. /*
  1314. * This test is racy because PG_hwpoison is set outside of page lock.
  1315. * That's acceptable because that won't trigger kernel panic. Instead,
  1316. * the PG_hwpoison page will be caught and isolated on the entrance to
  1317. * the free buddy page pool.
  1318. */
  1319. if (TestClearPageHWPoison(page)) {
  1320. unpoison_pr_info("MCE: Software-unpoisoned page %#lx\n",
  1321. pfn, &unpoison_rs);
  1322. num_poisoned_pages_sub(nr_pages);
  1323. freeit = 1;
  1324. if (PageHuge(page))
  1325. clear_page_hwpoison_huge_page(page);
  1326. }
  1327. unlock_page(page);
  1328. put_hwpoison_page(page);
  1329. if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
  1330. put_hwpoison_page(page);
  1331. return 0;
  1332. }
  1333. EXPORT_SYMBOL(unpoison_memory);
  1334. static struct page *new_page(struct page *p, unsigned long private, int **x)
  1335. {
  1336. int nid = page_to_nid(p);
  1337. if (PageHuge(p))
  1338. return alloc_huge_page_node(page_hstate(compound_head(p)),
  1339. nid);
  1340. else
  1341. return __alloc_pages_node(nid, GFP_HIGHUSER_MOVABLE, 0);
  1342. }
  1343. /*
  1344. * Safely get reference count of an arbitrary page.
  1345. * Returns 0 for a free page, -EIO for a zero refcount page
  1346. * that is not free, and 1 for any other page type.
  1347. * For 1 the page is returned with increased page count, otherwise not.
  1348. */
  1349. static int __get_any_page(struct page *p, unsigned long pfn, int flags)
  1350. {
  1351. int ret;
  1352. if (flags & MF_COUNT_INCREASED)
  1353. return 1;
  1354. /*
  1355. * When the target page is a free hugepage, just remove it
  1356. * from free hugepage list.
  1357. */
  1358. if (!get_hwpoison_page(p)) {
  1359. if (PageHuge(p)) {
  1360. pr_info("%s: %#lx free huge page\n", __func__, pfn);
  1361. ret = 0;
  1362. } else if (is_free_buddy_page(p)) {
  1363. pr_info("%s: %#lx free buddy page\n", __func__, pfn);
  1364. ret = 0;
  1365. } else {
  1366. pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
  1367. __func__, pfn, p->flags);
  1368. ret = -EIO;
  1369. }
  1370. } else {
  1371. /* Not a free page */
  1372. ret = 1;
  1373. }
  1374. return ret;
  1375. }
  1376. static int get_any_page(struct page *page, unsigned long pfn, int flags)
  1377. {
  1378. int ret = __get_any_page(page, pfn, flags);
  1379. if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
  1380. /*
  1381. * Try to free it.
  1382. */
  1383. put_hwpoison_page(page);
  1384. shake_page(page, 1);
  1385. /*
  1386. * Did it turn free?
  1387. */
  1388. ret = __get_any_page(page, pfn, 0);
  1389. if (ret == 1 && !PageLRU(page)) {
  1390. /* Drop page reference which is from __get_any_page() */
  1391. put_hwpoison_page(page);
  1392. pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
  1393. pfn, page->flags);
  1394. return -EIO;
  1395. }
  1396. }
  1397. return ret;
  1398. }
  1399. static int soft_offline_huge_page(struct page *page, int flags)
  1400. {
  1401. int ret;
  1402. unsigned long pfn = page_to_pfn(page);
  1403. struct page *hpage = compound_head(page);
  1404. LIST_HEAD(pagelist);
  1405. /*
  1406. * This double-check of PageHWPoison is to avoid the race with
  1407. * memory_failure(). See also comment in __soft_offline_page().
  1408. */
  1409. lock_page(hpage);
  1410. if (PageHWPoison(hpage)) {
  1411. unlock_page(hpage);
  1412. put_hwpoison_page(hpage);
  1413. pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
  1414. return -EBUSY;
  1415. }
  1416. unlock_page(hpage);
  1417. ret = isolate_huge_page(hpage, &pagelist);
  1418. /*
  1419. * get_any_page() and isolate_huge_page() takes a refcount each,
  1420. * so need to drop one here.
  1421. */
  1422. put_hwpoison_page(hpage);
  1423. if (!ret) {
  1424. pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
  1425. return -EBUSY;
  1426. }
  1427. ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
  1428. MIGRATE_SYNC, MR_MEMORY_FAILURE);
  1429. if (ret) {
  1430. pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
  1431. pfn, ret, page->flags);
  1432. /*
  1433. * We know that soft_offline_huge_page() tries to migrate
  1434. * only one hugepage pointed to by hpage, so we need not
  1435. * run through the pagelist here.
  1436. */
  1437. putback_active_hugepage(hpage);
  1438. if (ret > 0)
  1439. ret = -EIO;
  1440. } else {
  1441. /* overcommit hugetlb page will be freed to buddy */
  1442. if (PageHuge(page)) {
  1443. set_page_hwpoison_huge_page(hpage);
  1444. dequeue_hwpoisoned_huge_page(hpage);
  1445. num_poisoned_pages_add(1 << compound_order(hpage));
  1446. } else {
  1447. SetPageHWPoison(page);
  1448. num_poisoned_pages_inc();
  1449. }
  1450. }
  1451. return ret;
  1452. }
  1453. static int __soft_offline_page(struct page *page, int flags)
  1454. {
  1455. int ret;
  1456. unsigned long pfn = page_to_pfn(page);
  1457. /*
  1458. * Check PageHWPoison again inside page lock because PageHWPoison
  1459. * is set by memory_failure() outside page lock. Note that
  1460. * memory_failure() also double-checks PageHWPoison inside page lock,
  1461. * so there's no race between soft_offline_page() and memory_failure().
  1462. */
  1463. lock_page(page);
  1464. wait_on_page_writeback(page);
  1465. if (PageHWPoison(page)) {
  1466. unlock_page(page);
  1467. put_hwpoison_page(page);
  1468. pr_info("soft offline: %#lx page already poisoned\n", pfn);
  1469. return -EBUSY;
  1470. }
  1471. /*
  1472. * Try to invalidate first. This should work for
  1473. * non dirty unmapped page cache pages.
  1474. */
  1475. ret = invalidate_inode_page(page);
  1476. unlock_page(page);
  1477. /*
  1478. * RED-PEN would be better to keep it isolated here, but we
  1479. * would need to fix isolation locking first.
  1480. */
  1481. if (ret == 1) {
  1482. put_hwpoison_page(page);
  1483. pr_info("soft_offline: %#lx: invalidated\n", pfn);
  1484. SetPageHWPoison(page);
  1485. num_poisoned_pages_inc();
  1486. return 0;
  1487. }
  1488. /*
  1489. * Simple invalidation didn't work.
  1490. * Try to migrate to a new page instead. migrate.c
  1491. * handles a large number of cases for us.
  1492. */
  1493. ret = isolate_lru_page(page);
  1494. /*
  1495. * Drop page reference which is came from get_any_page()
  1496. * successful isolate_lru_page() already took another one.
  1497. */
  1498. put_hwpoison_page(page);
  1499. if (!ret) {
  1500. LIST_HEAD(pagelist);
  1501. inc_zone_page_state(page, NR_ISOLATED_ANON +
  1502. page_is_file_cache(page));
  1503. list_add(&page->lru, &pagelist);
  1504. ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
  1505. MIGRATE_SYNC, MR_MEMORY_FAILURE);
  1506. if (ret) {
  1507. if (!list_empty(&pagelist)) {
  1508. list_del(&page->lru);
  1509. dec_zone_page_state(page, NR_ISOLATED_ANON +
  1510. page_is_file_cache(page));
  1511. putback_lru_page(page);
  1512. }
  1513. pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
  1514. pfn, ret, page->flags);
  1515. if (ret > 0)
  1516. ret = -EIO;
  1517. }
  1518. } else {
  1519. pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
  1520. pfn, ret, page_count(page), page->flags);
  1521. }
  1522. return ret;
  1523. }
  1524. static int soft_offline_in_use_page(struct page *page, int flags)
  1525. {
  1526. int ret;
  1527. struct page *hpage = compound_head(page);
  1528. if (!PageHuge(page) && PageTransHuge(hpage)) {
  1529. lock_page(hpage);
  1530. if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
  1531. unlock_page(hpage);
  1532. if (!PageAnon(hpage))
  1533. pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
  1534. else
  1535. pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
  1536. put_hwpoison_page(hpage);
  1537. return -EBUSY;
  1538. }
  1539. unlock_page(hpage);
  1540. get_hwpoison_page(page);
  1541. put_hwpoison_page(hpage);
  1542. }
  1543. if (PageHuge(page))
  1544. ret = soft_offline_huge_page(page, flags);
  1545. else
  1546. ret = __soft_offline_page(page, flags);
  1547. return ret;
  1548. }
  1549. static void soft_offline_free_page(struct page *page)
  1550. {
  1551. if (PageHuge(page)) {
  1552. struct page *hpage = compound_head(page);
  1553. set_page_hwpoison_huge_page(hpage);
  1554. if (!dequeue_hwpoisoned_huge_page(hpage))
  1555. num_poisoned_pages_add(1 << compound_order(hpage));
  1556. } else {
  1557. if (!TestSetPageHWPoison(page))
  1558. num_poisoned_pages_inc();
  1559. }
  1560. }
  1561. /**
  1562. * soft_offline_page - Soft offline a page.
  1563. * @page: page to offline
  1564. * @flags: flags. Same as memory_failure().
  1565. *
  1566. * Returns 0 on success, otherwise negated errno.
  1567. *
  1568. * Soft offline a page, by migration or invalidation,
  1569. * without killing anything. This is for the case when
  1570. * a page is not corrupted yet (so it's still valid to access),
  1571. * but has had a number of corrected errors and is better taken
  1572. * out.
  1573. *
  1574. * The actual policy on when to do that is maintained by
  1575. * user space.
  1576. *
  1577. * This should never impact any application or cause data loss,
  1578. * however it might take some time.
  1579. *
  1580. * This is not a 100% solution for all memory, but tries to be
  1581. * ``good enough'' for the majority of memory.
  1582. */
  1583. int soft_offline_page(struct page *page, int flags)
  1584. {
  1585. int ret;
  1586. unsigned long pfn = page_to_pfn(page);
  1587. if (PageHWPoison(page)) {
  1588. pr_info("soft offline: %#lx page already poisoned\n", pfn);
  1589. if (flags & MF_COUNT_INCREASED)
  1590. put_hwpoison_page(page);
  1591. return -EBUSY;
  1592. }
  1593. get_online_mems();
  1594. ret = get_any_page(page, pfn, flags);
  1595. put_online_mems();
  1596. if (ret > 0)
  1597. ret = soft_offline_in_use_page(page, flags);
  1598. else if (ret == 0)
  1599. soft_offline_free_page(page);
  1600. return ret;
  1601. }