core.c 187 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <linux/hrtimer.h>
  67. #include <linux/tick.h>
  68. #include <linux/debugfs.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <linux/binfmts.h>
  74. #include <linux/context_tracking.h>
  75. #include <asm/switch_to.h>
  76. #include <asm/tlb.h>
  77. #include <asm/irq_regs.h>
  78. #include <asm/mutex.h>
  79. #ifdef CONFIG_PARAVIRT
  80. #include <asm/paravirt.h>
  81. #endif
  82. #include "sched.h"
  83. #include "../workqueue_internal.h"
  84. #include "../smpboot.h"
  85. #define CREATE_TRACE_POINTS
  86. #include <trace/events/sched.h>
  87. void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  88. {
  89. unsigned long delta;
  90. ktime_t soft, hard, now;
  91. for (;;) {
  92. if (hrtimer_active(period_timer))
  93. break;
  94. now = hrtimer_cb_get_time(period_timer);
  95. hrtimer_forward(period_timer, now, period);
  96. soft = hrtimer_get_softexpires(period_timer);
  97. hard = hrtimer_get_expires(period_timer);
  98. delta = ktime_to_ns(ktime_sub(hard, soft));
  99. __hrtimer_start_range_ns(period_timer, soft, delta,
  100. HRTIMER_MODE_ABS_PINNED, 0);
  101. }
  102. }
  103. DEFINE_MUTEX(sched_domains_mutex);
  104. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  105. static void update_rq_clock_task(struct rq *rq, s64 delta);
  106. void update_rq_clock(struct rq *rq)
  107. {
  108. s64 delta;
  109. if (rq->skip_clock_update > 0)
  110. return;
  111. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  112. rq->clock += delta;
  113. update_rq_clock_task(rq, delta);
  114. }
  115. /*
  116. * Debugging: various feature bits
  117. */
  118. #define SCHED_FEAT(name, enabled) \
  119. (1UL << __SCHED_FEAT_##name) * enabled |
  120. const_debug unsigned int sysctl_sched_features =
  121. #include "features.h"
  122. 0;
  123. #undef SCHED_FEAT
  124. #ifdef CONFIG_SCHED_DEBUG
  125. #define SCHED_FEAT(name, enabled) \
  126. #name ,
  127. static const char * const sched_feat_names[] = {
  128. #include "features.h"
  129. };
  130. #undef SCHED_FEAT
  131. static int sched_feat_show(struct seq_file *m, void *v)
  132. {
  133. int i;
  134. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  135. if (!(sysctl_sched_features & (1UL << i)))
  136. seq_puts(m, "NO_");
  137. seq_printf(m, "%s ", sched_feat_names[i]);
  138. }
  139. seq_puts(m, "\n");
  140. return 0;
  141. }
  142. #ifdef HAVE_JUMP_LABEL
  143. #define jump_label_key__true STATIC_KEY_INIT_TRUE
  144. #define jump_label_key__false STATIC_KEY_INIT_FALSE
  145. #define SCHED_FEAT(name, enabled) \
  146. jump_label_key__##enabled ,
  147. struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  148. #include "features.h"
  149. };
  150. #undef SCHED_FEAT
  151. static void sched_feat_disable(int i)
  152. {
  153. if (static_key_enabled(&sched_feat_keys[i]))
  154. static_key_slow_dec(&sched_feat_keys[i]);
  155. }
  156. static void sched_feat_enable(int i)
  157. {
  158. if (!static_key_enabled(&sched_feat_keys[i]))
  159. static_key_slow_inc(&sched_feat_keys[i]);
  160. }
  161. #else
  162. static void sched_feat_disable(int i) { };
  163. static void sched_feat_enable(int i) { };
  164. #endif /* HAVE_JUMP_LABEL */
  165. static int sched_feat_set(char *cmp)
  166. {
  167. int i;
  168. int neg = 0;
  169. if (strncmp(cmp, "NO_", 3) == 0) {
  170. neg = 1;
  171. cmp += 3;
  172. }
  173. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  174. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  175. if (neg) {
  176. sysctl_sched_features &= ~(1UL << i);
  177. sched_feat_disable(i);
  178. } else {
  179. sysctl_sched_features |= (1UL << i);
  180. sched_feat_enable(i);
  181. }
  182. break;
  183. }
  184. }
  185. return i;
  186. }
  187. static ssize_t
  188. sched_feat_write(struct file *filp, const char __user *ubuf,
  189. size_t cnt, loff_t *ppos)
  190. {
  191. char buf[64];
  192. char *cmp;
  193. int i;
  194. if (cnt > 63)
  195. cnt = 63;
  196. if (copy_from_user(&buf, ubuf, cnt))
  197. return -EFAULT;
  198. buf[cnt] = 0;
  199. cmp = strstrip(buf);
  200. i = sched_feat_set(cmp);
  201. if (i == __SCHED_FEAT_NR)
  202. return -EINVAL;
  203. *ppos += cnt;
  204. return cnt;
  205. }
  206. static int sched_feat_open(struct inode *inode, struct file *filp)
  207. {
  208. return single_open(filp, sched_feat_show, NULL);
  209. }
  210. static const struct file_operations sched_feat_fops = {
  211. .open = sched_feat_open,
  212. .write = sched_feat_write,
  213. .read = seq_read,
  214. .llseek = seq_lseek,
  215. .release = single_release,
  216. };
  217. static __init int sched_init_debug(void)
  218. {
  219. debugfs_create_file("sched_features", 0644, NULL, NULL,
  220. &sched_feat_fops);
  221. return 0;
  222. }
  223. late_initcall(sched_init_debug);
  224. #endif /* CONFIG_SCHED_DEBUG */
  225. /*
  226. * Number of tasks to iterate in a single balance run.
  227. * Limited because this is done with IRQs disabled.
  228. */
  229. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  230. /*
  231. * period over which we average the RT time consumption, measured
  232. * in ms.
  233. *
  234. * default: 1s
  235. */
  236. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  237. /*
  238. * period over which we measure -rt task cpu usage in us.
  239. * default: 1s
  240. */
  241. unsigned int sysctl_sched_rt_period = 1000000;
  242. __read_mostly int scheduler_running;
  243. /*
  244. * part of the period that we allow rt tasks to run in us.
  245. * default: 0.95s
  246. */
  247. int sysctl_sched_rt_runtime = 950000;
  248. /*
  249. * __task_rq_lock - lock the rq @p resides on.
  250. */
  251. static inline struct rq *__task_rq_lock(struct task_struct *p)
  252. __acquires(rq->lock)
  253. {
  254. struct rq *rq;
  255. lockdep_assert_held(&p->pi_lock);
  256. for (;;) {
  257. rq = task_rq(p);
  258. raw_spin_lock(&rq->lock);
  259. if (likely(rq == task_rq(p)))
  260. return rq;
  261. raw_spin_unlock(&rq->lock);
  262. }
  263. }
  264. /*
  265. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  266. */
  267. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  268. __acquires(p->pi_lock)
  269. __acquires(rq->lock)
  270. {
  271. struct rq *rq;
  272. for (;;) {
  273. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  274. rq = task_rq(p);
  275. raw_spin_lock(&rq->lock);
  276. if (likely(rq == task_rq(p)))
  277. return rq;
  278. raw_spin_unlock(&rq->lock);
  279. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  280. }
  281. }
  282. static void __task_rq_unlock(struct rq *rq)
  283. __releases(rq->lock)
  284. {
  285. raw_spin_unlock(&rq->lock);
  286. }
  287. static inline void
  288. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  289. __releases(rq->lock)
  290. __releases(p->pi_lock)
  291. {
  292. raw_spin_unlock(&rq->lock);
  293. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  294. }
  295. /*
  296. * this_rq_lock - lock this runqueue and disable interrupts.
  297. */
  298. static struct rq *this_rq_lock(void)
  299. __acquires(rq->lock)
  300. {
  301. struct rq *rq;
  302. local_irq_disable();
  303. rq = this_rq();
  304. raw_spin_lock(&rq->lock);
  305. return rq;
  306. }
  307. #ifdef CONFIG_SCHED_HRTICK
  308. /*
  309. * Use HR-timers to deliver accurate preemption points.
  310. */
  311. static void hrtick_clear(struct rq *rq)
  312. {
  313. if (hrtimer_active(&rq->hrtick_timer))
  314. hrtimer_cancel(&rq->hrtick_timer);
  315. }
  316. /*
  317. * High-resolution timer tick.
  318. * Runs from hardirq context with interrupts disabled.
  319. */
  320. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  321. {
  322. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  323. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  324. raw_spin_lock(&rq->lock);
  325. update_rq_clock(rq);
  326. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  327. raw_spin_unlock(&rq->lock);
  328. return HRTIMER_NORESTART;
  329. }
  330. #ifdef CONFIG_SMP
  331. static int __hrtick_restart(struct rq *rq)
  332. {
  333. struct hrtimer *timer = &rq->hrtick_timer;
  334. ktime_t time = hrtimer_get_softexpires(timer);
  335. return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
  336. }
  337. /*
  338. * called from hardirq (IPI) context
  339. */
  340. static void __hrtick_start(void *arg)
  341. {
  342. struct rq *rq = arg;
  343. raw_spin_lock(&rq->lock);
  344. __hrtick_restart(rq);
  345. rq->hrtick_csd_pending = 0;
  346. raw_spin_unlock(&rq->lock);
  347. }
  348. /*
  349. * Called to set the hrtick timer state.
  350. *
  351. * called with rq->lock held and irqs disabled
  352. */
  353. void hrtick_start(struct rq *rq, u64 delay)
  354. {
  355. struct hrtimer *timer = &rq->hrtick_timer;
  356. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  357. hrtimer_set_expires(timer, time);
  358. if (rq == this_rq()) {
  359. __hrtick_restart(rq);
  360. } else if (!rq->hrtick_csd_pending) {
  361. smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
  362. rq->hrtick_csd_pending = 1;
  363. }
  364. }
  365. static int
  366. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  367. {
  368. int cpu = (int)(long)hcpu;
  369. switch (action) {
  370. case CPU_UP_CANCELED:
  371. case CPU_UP_CANCELED_FROZEN:
  372. case CPU_DOWN_PREPARE:
  373. case CPU_DOWN_PREPARE_FROZEN:
  374. case CPU_DEAD:
  375. case CPU_DEAD_FROZEN:
  376. hrtick_clear(cpu_rq(cpu));
  377. return NOTIFY_OK;
  378. }
  379. return NOTIFY_DONE;
  380. }
  381. static __init void init_hrtick(void)
  382. {
  383. hotcpu_notifier(hotplug_hrtick, 0);
  384. }
  385. #else
  386. /*
  387. * Called to set the hrtick timer state.
  388. *
  389. * called with rq->lock held and irqs disabled
  390. */
  391. void hrtick_start(struct rq *rq, u64 delay)
  392. {
  393. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  394. HRTIMER_MODE_REL_PINNED, 0);
  395. }
  396. static inline void init_hrtick(void)
  397. {
  398. }
  399. #endif /* CONFIG_SMP */
  400. static void init_rq_hrtick(struct rq *rq)
  401. {
  402. #ifdef CONFIG_SMP
  403. rq->hrtick_csd_pending = 0;
  404. rq->hrtick_csd.flags = 0;
  405. rq->hrtick_csd.func = __hrtick_start;
  406. rq->hrtick_csd.info = rq;
  407. #endif
  408. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  409. rq->hrtick_timer.function = hrtick;
  410. }
  411. #else /* CONFIG_SCHED_HRTICK */
  412. static inline void hrtick_clear(struct rq *rq)
  413. {
  414. }
  415. static inline void init_rq_hrtick(struct rq *rq)
  416. {
  417. }
  418. static inline void init_hrtick(void)
  419. {
  420. }
  421. #endif /* CONFIG_SCHED_HRTICK */
  422. /*
  423. * resched_task - mark a task 'to be rescheduled now'.
  424. *
  425. * On UP this means the setting of the need_resched flag, on SMP it
  426. * might also involve a cross-CPU call to trigger the scheduler on
  427. * the target CPU.
  428. */
  429. void resched_task(struct task_struct *p)
  430. {
  431. int cpu;
  432. lockdep_assert_held(&task_rq(p)->lock);
  433. if (test_tsk_need_resched(p))
  434. return;
  435. set_tsk_need_resched(p);
  436. cpu = task_cpu(p);
  437. if (cpu == smp_processor_id()) {
  438. set_preempt_need_resched();
  439. return;
  440. }
  441. /* NEED_RESCHED must be visible before we test polling */
  442. smp_mb();
  443. if (!tsk_is_polling(p))
  444. smp_send_reschedule(cpu);
  445. }
  446. void resched_cpu(int cpu)
  447. {
  448. struct rq *rq = cpu_rq(cpu);
  449. unsigned long flags;
  450. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  451. return;
  452. resched_task(cpu_curr(cpu));
  453. raw_spin_unlock_irqrestore(&rq->lock, flags);
  454. }
  455. #ifdef CONFIG_SMP
  456. #ifdef CONFIG_NO_HZ_COMMON
  457. /*
  458. * In the semi idle case, use the nearest busy cpu for migrating timers
  459. * from an idle cpu. This is good for power-savings.
  460. *
  461. * We don't do similar optimization for completely idle system, as
  462. * selecting an idle cpu will add more delays to the timers than intended
  463. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  464. */
  465. int get_nohz_timer_target(void)
  466. {
  467. int cpu = smp_processor_id();
  468. int i;
  469. struct sched_domain *sd;
  470. rcu_read_lock();
  471. for_each_domain(cpu, sd) {
  472. for_each_cpu(i, sched_domain_span(sd)) {
  473. if (!idle_cpu(i)) {
  474. cpu = i;
  475. goto unlock;
  476. }
  477. }
  478. }
  479. unlock:
  480. rcu_read_unlock();
  481. return cpu;
  482. }
  483. /*
  484. * When add_timer_on() enqueues a timer into the timer wheel of an
  485. * idle CPU then this timer might expire before the next timer event
  486. * which is scheduled to wake up that CPU. In case of a completely
  487. * idle system the next event might even be infinite time into the
  488. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  489. * leaves the inner idle loop so the newly added timer is taken into
  490. * account when the CPU goes back to idle and evaluates the timer
  491. * wheel for the next timer event.
  492. */
  493. static void wake_up_idle_cpu(int cpu)
  494. {
  495. struct rq *rq = cpu_rq(cpu);
  496. if (cpu == smp_processor_id())
  497. return;
  498. /*
  499. * This is safe, as this function is called with the timer
  500. * wheel base lock of (cpu) held. When the CPU is on the way
  501. * to idle and has not yet set rq->curr to idle then it will
  502. * be serialized on the timer wheel base lock and take the new
  503. * timer into account automatically.
  504. */
  505. if (rq->curr != rq->idle)
  506. return;
  507. /*
  508. * We can set TIF_RESCHED on the idle task of the other CPU
  509. * lockless. The worst case is that the other CPU runs the
  510. * idle task through an additional NOOP schedule()
  511. */
  512. set_tsk_need_resched(rq->idle);
  513. /* NEED_RESCHED must be visible before we test polling */
  514. smp_mb();
  515. if (!tsk_is_polling(rq->idle))
  516. smp_send_reschedule(cpu);
  517. }
  518. static bool wake_up_full_nohz_cpu(int cpu)
  519. {
  520. if (tick_nohz_full_cpu(cpu)) {
  521. if (cpu != smp_processor_id() ||
  522. tick_nohz_tick_stopped())
  523. smp_send_reschedule(cpu);
  524. return true;
  525. }
  526. return false;
  527. }
  528. void wake_up_nohz_cpu(int cpu)
  529. {
  530. if (!wake_up_full_nohz_cpu(cpu))
  531. wake_up_idle_cpu(cpu);
  532. }
  533. static inline bool got_nohz_idle_kick(void)
  534. {
  535. int cpu = smp_processor_id();
  536. if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
  537. return false;
  538. if (idle_cpu(cpu) && !need_resched())
  539. return true;
  540. /*
  541. * We can't run Idle Load Balance on this CPU for this time so we
  542. * cancel it and clear NOHZ_BALANCE_KICK
  543. */
  544. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  545. return false;
  546. }
  547. #else /* CONFIG_NO_HZ_COMMON */
  548. static inline bool got_nohz_idle_kick(void)
  549. {
  550. return false;
  551. }
  552. #endif /* CONFIG_NO_HZ_COMMON */
  553. #ifdef CONFIG_NO_HZ_FULL
  554. bool sched_can_stop_tick(void)
  555. {
  556. struct rq *rq;
  557. rq = this_rq();
  558. /* Make sure rq->nr_running update is visible after the IPI */
  559. smp_rmb();
  560. /* More than one running task need preemption */
  561. if (rq->nr_running > 1)
  562. return false;
  563. return true;
  564. }
  565. #endif /* CONFIG_NO_HZ_FULL */
  566. void sched_avg_update(struct rq *rq)
  567. {
  568. s64 period = sched_avg_period();
  569. while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
  570. /*
  571. * Inline assembly required to prevent the compiler
  572. * optimising this loop into a divmod call.
  573. * See __iter_div_u64_rem() for another example of this.
  574. */
  575. asm("" : "+rm" (rq->age_stamp));
  576. rq->age_stamp += period;
  577. rq->rt_avg /= 2;
  578. }
  579. }
  580. #endif /* CONFIG_SMP */
  581. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  582. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  583. /*
  584. * Iterate task_group tree rooted at *from, calling @down when first entering a
  585. * node and @up when leaving it for the final time.
  586. *
  587. * Caller must hold rcu_lock or sufficient equivalent.
  588. */
  589. int walk_tg_tree_from(struct task_group *from,
  590. tg_visitor down, tg_visitor up, void *data)
  591. {
  592. struct task_group *parent, *child;
  593. int ret;
  594. parent = from;
  595. down:
  596. ret = (*down)(parent, data);
  597. if (ret)
  598. goto out;
  599. list_for_each_entry_rcu(child, &parent->children, siblings) {
  600. parent = child;
  601. goto down;
  602. up:
  603. continue;
  604. }
  605. ret = (*up)(parent, data);
  606. if (ret || parent == from)
  607. goto out;
  608. child = parent;
  609. parent = parent->parent;
  610. if (parent)
  611. goto up;
  612. out:
  613. return ret;
  614. }
  615. int tg_nop(struct task_group *tg, void *data)
  616. {
  617. return 0;
  618. }
  619. #endif
  620. static void set_load_weight(struct task_struct *p)
  621. {
  622. int prio = p->static_prio - MAX_RT_PRIO;
  623. struct load_weight *load = &p->se.load;
  624. /*
  625. * SCHED_IDLE tasks get minimal weight:
  626. */
  627. if (p->policy == SCHED_IDLE) {
  628. load->weight = scale_load(WEIGHT_IDLEPRIO);
  629. load->inv_weight = WMULT_IDLEPRIO;
  630. return;
  631. }
  632. load->weight = scale_load(prio_to_weight[prio]);
  633. load->inv_weight = prio_to_wmult[prio];
  634. }
  635. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  636. {
  637. update_rq_clock(rq);
  638. sched_info_queued(rq, p);
  639. p->sched_class->enqueue_task(rq, p, flags);
  640. }
  641. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  642. {
  643. update_rq_clock(rq);
  644. sched_info_dequeued(rq, p);
  645. p->sched_class->dequeue_task(rq, p, flags);
  646. }
  647. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  648. {
  649. if (task_contributes_to_load(p))
  650. rq->nr_uninterruptible--;
  651. enqueue_task(rq, p, flags);
  652. }
  653. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  654. {
  655. if (task_contributes_to_load(p))
  656. rq->nr_uninterruptible++;
  657. dequeue_task(rq, p, flags);
  658. }
  659. static void update_rq_clock_task(struct rq *rq, s64 delta)
  660. {
  661. /*
  662. * In theory, the compile should just see 0 here, and optimize out the call
  663. * to sched_rt_avg_update. But I don't trust it...
  664. */
  665. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  666. s64 steal = 0, irq_delta = 0;
  667. #endif
  668. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  669. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  670. /*
  671. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  672. * this case when a previous update_rq_clock() happened inside a
  673. * {soft,}irq region.
  674. *
  675. * When this happens, we stop ->clock_task and only update the
  676. * prev_irq_time stamp to account for the part that fit, so that a next
  677. * update will consume the rest. This ensures ->clock_task is
  678. * monotonic.
  679. *
  680. * It does however cause some slight miss-attribution of {soft,}irq
  681. * time, a more accurate solution would be to update the irq_time using
  682. * the current rq->clock timestamp, except that would require using
  683. * atomic ops.
  684. */
  685. if (irq_delta > delta)
  686. irq_delta = delta;
  687. rq->prev_irq_time += irq_delta;
  688. delta -= irq_delta;
  689. #endif
  690. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  691. if (static_key_false((&paravirt_steal_rq_enabled))) {
  692. u64 st;
  693. steal = paravirt_steal_clock(cpu_of(rq));
  694. steal -= rq->prev_steal_time_rq;
  695. if (unlikely(steal > delta))
  696. steal = delta;
  697. st = steal_ticks(steal);
  698. steal = st * TICK_NSEC;
  699. rq->prev_steal_time_rq += steal;
  700. delta -= steal;
  701. }
  702. #endif
  703. rq->clock_task += delta;
  704. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  705. if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
  706. sched_rt_avg_update(rq, irq_delta + steal);
  707. #endif
  708. }
  709. void sched_set_stop_task(int cpu, struct task_struct *stop)
  710. {
  711. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  712. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  713. if (stop) {
  714. /*
  715. * Make it appear like a SCHED_FIFO task, its something
  716. * userspace knows about and won't get confused about.
  717. *
  718. * Also, it will make PI more or less work without too
  719. * much confusion -- but then, stop work should not
  720. * rely on PI working anyway.
  721. */
  722. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  723. stop->sched_class = &stop_sched_class;
  724. }
  725. cpu_rq(cpu)->stop = stop;
  726. if (old_stop) {
  727. /*
  728. * Reset it back to a normal scheduling class so that
  729. * it can die in pieces.
  730. */
  731. old_stop->sched_class = &rt_sched_class;
  732. }
  733. }
  734. /*
  735. * __normal_prio - return the priority that is based on the static prio
  736. */
  737. static inline int __normal_prio(struct task_struct *p)
  738. {
  739. return p->static_prio;
  740. }
  741. /*
  742. * Calculate the expected normal priority: i.e. priority
  743. * without taking RT-inheritance into account. Might be
  744. * boosted by interactivity modifiers. Changes upon fork,
  745. * setprio syscalls, and whenever the interactivity
  746. * estimator recalculates.
  747. */
  748. static inline int normal_prio(struct task_struct *p)
  749. {
  750. int prio;
  751. if (task_has_dl_policy(p))
  752. prio = MAX_DL_PRIO-1;
  753. else if (task_has_rt_policy(p))
  754. prio = MAX_RT_PRIO-1 - p->rt_priority;
  755. else
  756. prio = __normal_prio(p);
  757. return prio;
  758. }
  759. /*
  760. * Calculate the current priority, i.e. the priority
  761. * taken into account by the scheduler. This value might
  762. * be boosted by RT tasks, or might be boosted by
  763. * interactivity modifiers. Will be RT if the task got
  764. * RT-boosted. If not then it returns p->normal_prio.
  765. */
  766. static int effective_prio(struct task_struct *p)
  767. {
  768. p->normal_prio = normal_prio(p);
  769. /*
  770. * If we are RT tasks or we were boosted to RT priority,
  771. * keep the priority unchanged. Otherwise, update priority
  772. * to the normal priority:
  773. */
  774. if (!rt_prio(p->prio))
  775. return p->normal_prio;
  776. return p->prio;
  777. }
  778. /**
  779. * task_curr - is this task currently executing on a CPU?
  780. * @p: the task in question.
  781. *
  782. * Return: 1 if the task is currently executing. 0 otherwise.
  783. */
  784. inline int task_curr(const struct task_struct *p)
  785. {
  786. return cpu_curr(task_cpu(p)) == p;
  787. }
  788. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  789. const struct sched_class *prev_class,
  790. int oldprio)
  791. {
  792. if (prev_class != p->sched_class) {
  793. if (prev_class->switched_from)
  794. prev_class->switched_from(rq, p);
  795. p->sched_class->switched_to(rq, p);
  796. } else if (oldprio != p->prio || dl_task(p))
  797. p->sched_class->prio_changed(rq, p, oldprio);
  798. }
  799. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  800. {
  801. const struct sched_class *class;
  802. if (p->sched_class == rq->curr->sched_class) {
  803. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  804. } else {
  805. for_each_class(class) {
  806. if (class == rq->curr->sched_class)
  807. break;
  808. if (class == p->sched_class) {
  809. resched_task(rq->curr);
  810. break;
  811. }
  812. }
  813. }
  814. /*
  815. * A queue event has occurred, and we're going to schedule. In
  816. * this case, we can save a useless back to back clock update.
  817. */
  818. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  819. rq->skip_clock_update = 1;
  820. }
  821. #ifdef CONFIG_SMP
  822. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  823. {
  824. #ifdef CONFIG_SCHED_DEBUG
  825. /*
  826. * We should never call set_task_cpu() on a blocked task,
  827. * ttwu() will sort out the placement.
  828. */
  829. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  830. !(task_preempt_count(p) & PREEMPT_ACTIVE));
  831. #ifdef CONFIG_LOCKDEP
  832. /*
  833. * The caller should hold either p->pi_lock or rq->lock, when changing
  834. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  835. *
  836. * sched_move_task() holds both and thus holding either pins the cgroup,
  837. * see task_group().
  838. *
  839. * Furthermore, all task_rq users should acquire both locks, see
  840. * task_rq_lock().
  841. */
  842. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  843. lockdep_is_held(&task_rq(p)->lock)));
  844. #endif
  845. #endif
  846. trace_sched_migrate_task(p, new_cpu);
  847. if (task_cpu(p) != new_cpu) {
  848. if (p->sched_class->migrate_task_rq)
  849. p->sched_class->migrate_task_rq(p, new_cpu);
  850. p->se.nr_migrations++;
  851. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
  852. }
  853. __set_task_cpu(p, new_cpu);
  854. }
  855. static void __migrate_swap_task(struct task_struct *p, int cpu)
  856. {
  857. if (p->on_rq) {
  858. struct rq *src_rq, *dst_rq;
  859. src_rq = task_rq(p);
  860. dst_rq = cpu_rq(cpu);
  861. deactivate_task(src_rq, p, 0);
  862. set_task_cpu(p, cpu);
  863. activate_task(dst_rq, p, 0);
  864. check_preempt_curr(dst_rq, p, 0);
  865. } else {
  866. /*
  867. * Task isn't running anymore; make it appear like we migrated
  868. * it before it went to sleep. This means on wakeup we make the
  869. * previous cpu our targer instead of where it really is.
  870. */
  871. p->wake_cpu = cpu;
  872. }
  873. }
  874. struct migration_swap_arg {
  875. struct task_struct *src_task, *dst_task;
  876. int src_cpu, dst_cpu;
  877. };
  878. static int migrate_swap_stop(void *data)
  879. {
  880. struct migration_swap_arg *arg = data;
  881. struct rq *src_rq, *dst_rq;
  882. int ret = -EAGAIN;
  883. src_rq = cpu_rq(arg->src_cpu);
  884. dst_rq = cpu_rq(arg->dst_cpu);
  885. double_raw_lock(&arg->src_task->pi_lock,
  886. &arg->dst_task->pi_lock);
  887. double_rq_lock(src_rq, dst_rq);
  888. if (task_cpu(arg->dst_task) != arg->dst_cpu)
  889. goto unlock;
  890. if (task_cpu(arg->src_task) != arg->src_cpu)
  891. goto unlock;
  892. if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
  893. goto unlock;
  894. if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
  895. goto unlock;
  896. __migrate_swap_task(arg->src_task, arg->dst_cpu);
  897. __migrate_swap_task(arg->dst_task, arg->src_cpu);
  898. ret = 0;
  899. unlock:
  900. double_rq_unlock(src_rq, dst_rq);
  901. raw_spin_unlock(&arg->dst_task->pi_lock);
  902. raw_spin_unlock(&arg->src_task->pi_lock);
  903. return ret;
  904. }
  905. /*
  906. * Cross migrate two tasks
  907. */
  908. int migrate_swap(struct task_struct *cur, struct task_struct *p)
  909. {
  910. struct migration_swap_arg arg;
  911. int ret = -EINVAL;
  912. arg = (struct migration_swap_arg){
  913. .src_task = cur,
  914. .src_cpu = task_cpu(cur),
  915. .dst_task = p,
  916. .dst_cpu = task_cpu(p),
  917. };
  918. if (arg.src_cpu == arg.dst_cpu)
  919. goto out;
  920. /*
  921. * These three tests are all lockless; this is OK since all of them
  922. * will be re-checked with proper locks held further down the line.
  923. */
  924. if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
  925. goto out;
  926. if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
  927. goto out;
  928. if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
  929. goto out;
  930. trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
  931. ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
  932. out:
  933. return ret;
  934. }
  935. struct migration_arg {
  936. struct task_struct *task;
  937. int dest_cpu;
  938. };
  939. static int migration_cpu_stop(void *data);
  940. /*
  941. * wait_task_inactive - wait for a thread to unschedule.
  942. *
  943. * If @match_state is nonzero, it's the @p->state value just checked and
  944. * not expected to change. If it changes, i.e. @p might have woken up,
  945. * then return zero. When we succeed in waiting for @p to be off its CPU,
  946. * we return a positive number (its total switch count). If a second call
  947. * a short while later returns the same number, the caller can be sure that
  948. * @p has remained unscheduled the whole time.
  949. *
  950. * The caller must ensure that the task *will* unschedule sometime soon,
  951. * else this function might spin for a *long* time. This function can't
  952. * be called with interrupts off, or it may introduce deadlock with
  953. * smp_call_function() if an IPI is sent by the same process we are
  954. * waiting to become inactive.
  955. */
  956. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  957. {
  958. unsigned long flags;
  959. int running, on_rq;
  960. unsigned long ncsw;
  961. struct rq *rq;
  962. for (;;) {
  963. /*
  964. * We do the initial early heuristics without holding
  965. * any task-queue locks at all. We'll only try to get
  966. * the runqueue lock when things look like they will
  967. * work out!
  968. */
  969. rq = task_rq(p);
  970. /*
  971. * If the task is actively running on another CPU
  972. * still, just relax and busy-wait without holding
  973. * any locks.
  974. *
  975. * NOTE! Since we don't hold any locks, it's not
  976. * even sure that "rq" stays as the right runqueue!
  977. * But we don't care, since "task_running()" will
  978. * return false if the runqueue has changed and p
  979. * is actually now running somewhere else!
  980. */
  981. while (task_running(rq, p)) {
  982. if (match_state && unlikely(p->state != match_state))
  983. return 0;
  984. cpu_relax();
  985. }
  986. /*
  987. * Ok, time to look more closely! We need the rq
  988. * lock now, to be *sure*. If we're wrong, we'll
  989. * just go back and repeat.
  990. */
  991. rq = task_rq_lock(p, &flags);
  992. trace_sched_wait_task(p);
  993. running = task_running(rq, p);
  994. on_rq = p->on_rq;
  995. ncsw = 0;
  996. if (!match_state || p->state == match_state)
  997. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  998. task_rq_unlock(rq, p, &flags);
  999. /*
  1000. * If it changed from the expected state, bail out now.
  1001. */
  1002. if (unlikely(!ncsw))
  1003. break;
  1004. /*
  1005. * Was it really running after all now that we
  1006. * checked with the proper locks actually held?
  1007. *
  1008. * Oops. Go back and try again..
  1009. */
  1010. if (unlikely(running)) {
  1011. cpu_relax();
  1012. continue;
  1013. }
  1014. /*
  1015. * It's not enough that it's not actively running,
  1016. * it must be off the runqueue _entirely_, and not
  1017. * preempted!
  1018. *
  1019. * So if it was still runnable (but just not actively
  1020. * running right now), it's preempted, and we should
  1021. * yield - it could be a while.
  1022. */
  1023. if (unlikely(on_rq)) {
  1024. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1025. set_current_state(TASK_UNINTERRUPTIBLE);
  1026. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1027. continue;
  1028. }
  1029. /*
  1030. * Ahh, all good. It wasn't running, and it wasn't
  1031. * runnable, which means that it will never become
  1032. * running in the future either. We're all done!
  1033. */
  1034. break;
  1035. }
  1036. return ncsw;
  1037. }
  1038. /***
  1039. * kick_process - kick a running thread to enter/exit the kernel
  1040. * @p: the to-be-kicked thread
  1041. *
  1042. * Cause a process which is running on another CPU to enter
  1043. * kernel-mode, without any delay. (to get signals handled.)
  1044. *
  1045. * NOTE: this function doesn't have to take the runqueue lock,
  1046. * because all it wants to ensure is that the remote task enters
  1047. * the kernel. If the IPI races and the task has been migrated
  1048. * to another CPU then no harm is done and the purpose has been
  1049. * achieved as well.
  1050. */
  1051. void kick_process(struct task_struct *p)
  1052. {
  1053. int cpu;
  1054. preempt_disable();
  1055. cpu = task_cpu(p);
  1056. if ((cpu != smp_processor_id()) && task_curr(p))
  1057. smp_send_reschedule(cpu);
  1058. preempt_enable();
  1059. }
  1060. EXPORT_SYMBOL_GPL(kick_process);
  1061. #endif /* CONFIG_SMP */
  1062. #ifdef CONFIG_SMP
  1063. /*
  1064. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  1065. */
  1066. static int select_fallback_rq(int cpu, struct task_struct *p)
  1067. {
  1068. int nid = cpu_to_node(cpu);
  1069. const struct cpumask *nodemask = NULL;
  1070. enum { cpuset, possible, fail } state = cpuset;
  1071. int dest_cpu;
  1072. /*
  1073. * If the node that the cpu is on has been offlined, cpu_to_node()
  1074. * will return -1. There is no cpu on the node, and we should
  1075. * select the cpu on the other node.
  1076. */
  1077. if (nid != -1) {
  1078. nodemask = cpumask_of_node(nid);
  1079. /* Look for allowed, online CPU in same node. */
  1080. for_each_cpu(dest_cpu, nodemask) {
  1081. if (!cpu_online(dest_cpu))
  1082. continue;
  1083. if (!cpu_active(dest_cpu))
  1084. continue;
  1085. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  1086. return dest_cpu;
  1087. }
  1088. }
  1089. for (;;) {
  1090. /* Any allowed, online CPU? */
  1091. for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
  1092. if (!cpu_online(dest_cpu))
  1093. continue;
  1094. if (!cpu_active(dest_cpu))
  1095. continue;
  1096. goto out;
  1097. }
  1098. switch (state) {
  1099. case cpuset:
  1100. /* No more Mr. Nice Guy. */
  1101. cpuset_cpus_allowed_fallback(p);
  1102. state = possible;
  1103. break;
  1104. case possible:
  1105. do_set_cpus_allowed(p, cpu_possible_mask);
  1106. state = fail;
  1107. break;
  1108. case fail:
  1109. BUG();
  1110. break;
  1111. }
  1112. }
  1113. out:
  1114. if (state != cpuset) {
  1115. /*
  1116. * Don't tell them about moving exiting tasks or
  1117. * kernel threads (both mm NULL), since they never
  1118. * leave kernel.
  1119. */
  1120. if (p->mm && printk_ratelimit()) {
  1121. printk_sched("process %d (%s) no longer affine to cpu%d\n",
  1122. task_pid_nr(p), p->comm, cpu);
  1123. }
  1124. }
  1125. return dest_cpu;
  1126. }
  1127. /*
  1128. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1129. */
  1130. static inline
  1131. int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
  1132. {
  1133. cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
  1134. /*
  1135. * In order not to call set_task_cpu() on a blocking task we need
  1136. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1137. * cpu.
  1138. *
  1139. * Since this is common to all placement strategies, this lives here.
  1140. *
  1141. * [ this allows ->select_task() to simply return task_cpu(p) and
  1142. * not worry about this generic constraint ]
  1143. */
  1144. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1145. !cpu_online(cpu)))
  1146. cpu = select_fallback_rq(task_cpu(p), p);
  1147. return cpu;
  1148. }
  1149. static void update_avg(u64 *avg, u64 sample)
  1150. {
  1151. s64 diff = sample - *avg;
  1152. *avg += diff >> 3;
  1153. }
  1154. #endif
  1155. static void
  1156. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1157. {
  1158. #ifdef CONFIG_SCHEDSTATS
  1159. struct rq *rq = this_rq();
  1160. #ifdef CONFIG_SMP
  1161. int this_cpu = smp_processor_id();
  1162. if (cpu == this_cpu) {
  1163. schedstat_inc(rq, ttwu_local);
  1164. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1165. } else {
  1166. struct sched_domain *sd;
  1167. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1168. rcu_read_lock();
  1169. for_each_domain(this_cpu, sd) {
  1170. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1171. schedstat_inc(sd, ttwu_wake_remote);
  1172. break;
  1173. }
  1174. }
  1175. rcu_read_unlock();
  1176. }
  1177. if (wake_flags & WF_MIGRATED)
  1178. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1179. #endif /* CONFIG_SMP */
  1180. schedstat_inc(rq, ttwu_count);
  1181. schedstat_inc(p, se.statistics.nr_wakeups);
  1182. if (wake_flags & WF_SYNC)
  1183. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1184. #endif /* CONFIG_SCHEDSTATS */
  1185. }
  1186. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1187. {
  1188. activate_task(rq, p, en_flags);
  1189. p->on_rq = 1;
  1190. /* if a worker is waking up, notify workqueue */
  1191. if (p->flags & PF_WQ_WORKER)
  1192. wq_worker_waking_up(p, cpu_of(rq));
  1193. }
  1194. /*
  1195. * Mark the task runnable and perform wakeup-preemption.
  1196. */
  1197. static void
  1198. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1199. {
  1200. check_preempt_curr(rq, p, wake_flags);
  1201. trace_sched_wakeup(p, true);
  1202. p->state = TASK_RUNNING;
  1203. #ifdef CONFIG_SMP
  1204. if (p->sched_class->task_woken)
  1205. p->sched_class->task_woken(rq, p);
  1206. if (rq->idle_stamp) {
  1207. u64 delta = rq_clock(rq) - rq->idle_stamp;
  1208. u64 max = 2*rq->max_idle_balance_cost;
  1209. update_avg(&rq->avg_idle, delta);
  1210. if (rq->avg_idle > max)
  1211. rq->avg_idle = max;
  1212. rq->idle_stamp = 0;
  1213. }
  1214. #endif
  1215. }
  1216. static void
  1217. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  1218. {
  1219. #ifdef CONFIG_SMP
  1220. if (p->sched_contributes_to_load)
  1221. rq->nr_uninterruptible--;
  1222. #endif
  1223. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  1224. ttwu_do_wakeup(rq, p, wake_flags);
  1225. }
  1226. /*
  1227. * Called in case the task @p isn't fully descheduled from its runqueue,
  1228. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1229. * since all we need to do is flip p->state to TASK_RUNNING, since
  1230. * the task is still ->on_rq.
  1231. */
  1232. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1233. {
  1234. struct rq *rq;
  1235. int ret = 0;
  1236. rq = __task_rq_lock(p);
  1237. if (p->on_rq) {
  1238. /* check_preempt_curr() may use rq clock */
  1239. update_rq_clock(rq);
  1240. ttwu_do_wakeup(rq, p, wake_flags);
  1241. ret = 1;
  1242. }
  1243. __task_rq_unlock(rq);
  1244. return ret;
  1245. }
  1246. #ifdef CONFIG_SMP
  1247. static void sched_ttwu_pending(void)
  1248. {
  1249. struct rq *rq = this_rq();
  1250. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1251. struct task_struct *p;
  1252. raw_spin_lock(&rq->lock);
  1253. while (llist) {
  1254. p = llist_entry(llist, struct task_struct, wake_entry);
  1255. llist = llist_next(llist);
  1256. ttwu_do_activate(rq, p, 0);
  1257. }
  1258. raw_spin_unlock(&rq->lock);
  1259. }
  1260. void scheduler_ipi(void)
  1261. {
  1262. /*
  1263. * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
  1264. * TIF_NEED_RESCHED remotely (for the first time) will also send
  1265. * this IPI.
  1266. */
  1267. preempt_fold_need_resched();
  1268. if (llist_empty(&this_rq()->wake_list)
  1269. && !tick_nohz_full_cpu(smp_processor_id())
  1270. && !got_nohz_idle_kick())
  1271. return;
  1272. /*
  1273. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1274. * traditionally all their work was done from the interrupt return
  1275. * path. Now that we actually do some work, we need to make sure
  1276. * we do call them.
  1277. *
  1278. * Some archs already do call them, luckily irq_enter/exit nest
  1279. * properly.
  1280. *
  1281. * Arguably we should visit all archs and update all handlers,
  1282. * however a fair share of IPIs are still resched only so this would
  1283. * somewhat pessimize the simple resched case.
  1284. */
  1285. irq_enter();
  1286. tick_nohz_full_check();
  1287. sched_ttwu_pending();
  1288. /*
  1289. * Check if someone kicked us for doing the nohz idle load balance.
  1290. */
  1291. if (unlikely(got_nohz_idle_kick())) {
  1292. this_rq()->idle_balance = 1;
  1293. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1294. }
  1295. irq_exit();
  1296. }
  1297. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  1298. {
  1299. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
  1300. smp_send_reschedule(cpu);
  1301. }
  1302. bool cpus_share_cache(int this_cpu, int that_cpu)
  1303. {
  1304. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1305. }
  1306. #endif /* CONFIG_SMP */
  1307. static void ttwu_queue(struct task_struct *p, int cpu)
  1308. {
  1309. struct rq *rq = cpu_rq(cpu);
  1310. #if defined(CONFIG_SMP)
  1311. if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
  1312. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1313. ttwu_queue_remote(p, cpu);
  1314. return;
  1315. }
  1316. #endif
  1317. raw_spin_lock(&rq->lock);
  1318. ttwu_do_activate(rq, p, 0);
  1319. raw_spin_unlock(&rq->lock);
  1320. }
  1321. /**
  1322. * try_to_wake_up - wake up a thread
  1323. * @p: the thread to be awakened
  1324. * @state: the mask of task states that can be woken
  1325. * @wake_flags: wake modifier flags (WF_*)
  1326. *
  1327. * Put it on the run-queue if it's not already there. The "current"
  1328. * thread is always on the run-queue (except when the actual
  1329. * re-schedule is in progress), and as such you're allowed to do
  1330. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1331. * runnable without the overhead of this.
  1332. *
  1333. * Return: %true if @p was woken up, %false if it was already running.
  1334. * or @state didn't match @p's state.
  1335. */
  1336. static int
  1337. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1338. {
  1339. unsigned long flags;
  1340. int cpu, success = 0;
  1341. /*
  1342. * If we are going to wake up a thread waiting for CONDITION we
  1343. * need to ensure that CONDITION=1 done by the caller can not be
  1344. * reordered with p->state check below. This pairs with mb() in
  1345. * set_current_state() the waiting thread does.
  1346. */
  1347. smp_mb__before_spinlock();
  1348. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1349. if (!(p->state & state))
  1350. goto out;
  1351. success = 1; /* we're going to change ->state */
  1352. cpu = task_cpu(p);
  1353. if (p->on_rq && ttwu_remote(p, wake_flags))
  1354. goto stat;
  1355. #ifdef CONFIG_SMP
  1356. /*
  1357. * If the owning (remote) cpu is still in the middle of schedule() with
  1358. * this task as prev, wait until its done referencing the task.
  1359. */
  1360. while (p->on_cpu)
  1361. cpu_relax();
  1362. /*
  1363. * Pairs with the smp_wmb() in finish_lock_switch().
  1364. */
  1365. smp_rmb();
  1366. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1367. p->state = TASK_WAKING;
  1368. if (p->sched_class->task_waking)
  1369. p->sched_class->task_waking(p);
  1370. cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
  1371. if (task_cpu(p) != cpu) {
  1372. wake_flags |= WF_MIGRATED;
  1373. set_task_cpu(p, cpu);
  1374. }
  1375. #endif /* CONFIG_SMP */
  1376. ttwu_queue(p, cpu);
  1377. stat:
  1378. ttwu_stat(p, cpu, wake_flags);
  1379. out:
  1380. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1381. return success;
  1382. }
  1383. /**
  1384. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1385. * @p: the thread to be awakened
  1386. *
  1387. * Put @p on the run-queue if it's not already there. The caller must
  1388. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1389. * the current task.
  1390. */
  1391. static void try_to_wake_up_local(struct task_struct *p)
  1392. {
  1393. struct rq *rq = task_rq(p);
  1394. if (WARN_ON_ONCE(rq != this_rq()) ||
  1395. WARN_ON_ONCE(p == current))
  1396. return;
  1397. lockdep_assert_held(&rq->lock);
  1398. if (!raw_spin_trylock(&p->pi_lock)) {
  1399. raw_spin_unlock(&rq->lock);
  1400. raw_spin_lock(&p->pi_lock);
  1401. raw_spin_lock(&rq->lock);
  1402. }
  1403. if (!(p->state & TASK_NORMAL))
  1404. goto out;
  1405. if (!p->on_rq)
  1406. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1407. ttwu_do_wakeup(rq, p, 0);
  1408. ttwu_stat(p, smp_processor_id(), 0);
  1409. out:
  1410. raw_spin_unlock(&p->pi_lock);
  1411. }
  1412. /**
  1413. * wake_up_process - Wake up a specific process
  1414. * @p: The process to be woken up.
  1415. *
  1416. * Attempt to wake up the nominated process and move it to the set of runnable
  1417. * processes.
  1418. *
  1419. * Return: 1 if the process was woken up, 0 if it was already running.
  1420. *
  1421. * It may be assumed that this function implies a write memory barrier before
  1422. * changing the task state if and only if any tasks are woken up.
  1423. */
  1424. int wake_up_process(struct task_struct *p)
  1425. {
  1426. WARN_ON(task_is_stopped_or_traced(p));
  1427. return try_to_wake_up(p, TASK_NORMAL, 0);
  1428. }
  1429. EXPORT_SYMBOL(wake_up_process);
  1430. int wake_up_state(struct task_struct *p, unsigned int state)
  1431. {
  1432. return try_to_wake_up(p, state, 0);
  1433. }
  1434. /*
  1435. * Perform scheduler related setup for a newly forked process p.
  1436. * p is forked by current.
  1437. *
  1438. * __sched_fork() is basic setup used by init_idle() too:
  1439. */
  1440. static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
  1441. {
  1442. p->on_rq = 0;
  1443. p->se.on_rq = 0;
  1444. p->se.exec_start = 0;
  1445. p->se.sum_exec_runtime = 0;
  1446. p->se.prev_sum_exec_runtime = 0;
  1447. p->se.nr_migrations = 0;
  1448. p->se.vruntime = 0;
  1449. INIT_LIST_HEAD(&p->se.group_node);
  1450. #ifdef CONFIG_SCHEDSTATS
  1451. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1452. #endif
  1453. RB_CLEAR_NODE(&p->dl.rb_node);
  1454. hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1455. p->dl.dl_runtime = p->dl.runtime = 0;
  1456. p->dl.dl_deadline = p->dl.deadline = 0;
  1457. p->dl.dl_period = 0;
  1458. p->dl.flags = 0;
  1459. INIT_LIST_HEAD(&p->rt.run_list);
  1460. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1461. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1462. #endif
  1463. #ifdef CONFIG_NUMA_BALANCING
  1464. if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
  1465. p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
  1466. p->mm->numa_scan_seq = 0;
  1467. }
  1468. if (clone_flags & CLONE_VM)
  1469. p->numa_preferred_nid = current->numa_preferred_nid;
  1470. else
  1471. p->numa_preferred_nid = -1;
  1472. p->node_stamp = 0ULL;
  1473. p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
  1474. p->numa_scan_period = sysctl_numa_balancing_scan_delay;
  1475. p->numa_work.next = &p->numa_work;
  1476. p->numa_faults = NULL;
  1477. p->numa_faults_buffer = NULL;
  1478. INIT_LIST_HEAD(&p->numa_entry);
  1479. p->numa_group = NULL;
  1480. #endif /* CONFIG_NUMA_BALANCING */
  1481. }
  1482. #ifdef CONFIG_NUMA_BALANCING
  1483. #ifdef CONFIG_SCHED_DEBUG
  1484. void set_numabalancing_state(bool enabled)
  1485. {
  1486. if (enabled)
  1487. sched_feat_set("NUMA");
  1488. else
  1489. sched_feat_set("NO_NUMA");
  1490. }
  1491. #else
  1492. __read_mostly bool numabalancing_enabled;
  1493. void set_numabalancing_state(bool enabled)
  1494. {
  1495. numabalancing_enabled = enabled;
  1496. }
  1497. #endif /* CONFIG_SCHED_DEBUG */
  1498. #ifdef CONFIG_PROC_SYSCTL
  1499. int sysctl_numa_balancing(struct ctl_table *table, int write,
  1500. void __user *buffer, size_t *lenp, loff_t *ppos)
  1501. {
  1502. struct ctl_table t;
  1503. int err;
  1504. int state = numabalancing_enabled;
  1505. if (write && !capable(CAP_SYS_ADMIN))
  1506. return -EPERM;
  1507. t = *table;
  1508. t.data = &state;
  1509. err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
  1510. if (err < 0)
  1511. return err;
  1512. if (write)
  1513. set_numabalancing_state(state);
  1514. return err;
  1515. }
  1516. #endif
  1517. #endif
  1518. /*
  1519. * fork()/clone()-time setup:
  1520. */
  1521. int sched_fork(unsigned long clone_flags, struct task_struct *p)
  1522. {
  1523. unsigned long flags;
  1524. int cpu = get_cpu();
  1525. __sched_fork(clone_flags, p);
  1526. /*
  1527. * We mark the process as running here. This guarantees that
  1528. * nobody will actually run it, and a signal or other external
  1529. * event cannot wake it up and insert it on the runqueue either.
  1530. */
  1531. p->state = TASK_RUNNING;
  1532. /*
  1533. * Make sure we do not leak PI boosting priority to the child.
  1534. */
  1535. p->prio = current->normal_prio;
  1536. /*
  1537. * Revert to default priority/policy on fork if requested.
  1538. */
  1539. if (unlikely(p->sched_reset_on_fork)) {
  1540. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  1541. p->policy = SCHED_NORMAL;
  1542. p->static_prio = NICE_TO_PRIO(0);
  1543. p->rt_priority = 0;
  1544. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  1545. p->static_prio = NICE_TO_PRIO(0);
  1546. p->prio = p->normal_prio = __normal_prio(p);
  1547. set_load_weight(p);
  1548. /*
  1549. * We don't need the reset flag anymore after the fork. It has
  1550. * fulfilled its duty:
  1551. */
  1552. p->sched_reset_on_fork = 0;
  1553. }
  1554. if (dl_prio(p->prio)) {
  1555. put_cpu();
  1556. return -EAGAIN;
  1557. } else if (rt_prio(p->prio)) {
  1558. p->sched_class = &rt_sched_class;
  1559. } else {
  1560. p->sched_class = &fair_sched_class;
  1561. }
  1562. if (p->sched_class->task_fork)
  1563. p->sched_class->task_fork(p);
  1564. /*
  1565. * The child is not yet in the pid-hash so no cgroup attach races,
  1566. * and the cgroup is pinned to this child due to cgroup_fork()
  1567. * is ran before sched_fork().
  1568. *
  1569. * Silence PROVE_RCU.
  1570. */
  1571. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1572. set_task_cpu(p, cpu);
  1573. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1574. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1575. if (likely(sched_info_on()))
  1576. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1577. #endif
  1578. #if defined(CONFIG_SMP)
  1579. p->on_cpu = 0;
  1580. #endif
  1581. init_task_preempt_count(p);
  1582. #ifdef CONFIG_SMP
  1583. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  1584. RB_CLEAR_NODE(&p->pushable_dl_tasks);
  1585. #endif
  1586. put_cpu();
  1587. return 0;
  1588. }
  1589. unsigned long to_ratio(u64 period, u64 runtime)
  1590. {
  1591. if (runtime == RUNTIME_INF)
  1592. return 1ULL << 20;
  1593. /*
  1594. * Doing this here saves a lot of checks in all
  1595. * the calling paths, and returning zero seems
  1596. * safe for them anyway.
  1597. */
  1598. if (period == 0)
  1599. return 0;
  1600. return div64_u64(runtime << 20, period);
  1601. }
  1602. #ifdef CONFIG_SMP
  1603. inline struct dl_bw *dl_bw_of(int i)
  1604. {
  1605. return &cpu_rq(i)->rd->dl_bw;
  1606. }
  1607. static inline int dl_bw_cpus(int i)
  1608. {
  1609. struct root_domain *rd = cpu_rq(i)->rd;
  1610. int cpus = 0;
  1611. for_each_cpu_and(i, rd->span, cpu_active_mask)
  1612. cpus++;
  1613. return cpus;
  1614. }
  1615. #else
  1616. inline struct dl_bw *dl_bw_of(int i)
  1617. {
  1618. return &cpu_rq(i)->dl.dl_bw;
  1619. }
  1620. static inline int dl_bw_cpus(int i)
  1621. {
  1622. return 1;
  1623. }
  1624. #endif
  1625. static inline
  1626. void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
  1627. {
  1628. dl_b->total_bw -= tsk_bw;
  1629. }
  1630. static inline
  1631. void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
  1632. {
  1633. dl_b->total_bw += tsk_bw;
  1634. }
  1635. static inline
  1636. bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
  1637. {
  1638. return dl_b->bw != -1 &&
  1639. dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
  1640. }
  1641. /*
  1642. * We must be sure that accepting a new task (or allowing changing the
  1643. * parameters of an existing one) is consistent with the bandwidth
  1644. * constraints. If yes, this function also accordingly updates the currently
  1645. * allocated bandwidth to reflect the new situation.
  1646. *
  1647. * This function is called while holding p's rq->lock.
  1648. */
  1649. static int dl_overflow(struct task_struct *p, int policy,
  1650. const struct sched_attr *attr)
  1651. {
  1652. struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
  1653. u64 period = attr->sched_period;
  1654. u64 runtime = attr->sched_runtime;
  1655. u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
  1656. int cpus, err = -1;
  1657. if (new_bw == p->dl.dl_bw)
  1658. return 0;
  1659. /*
  1660. * Either if a task, enters, leave, or stays -deadline but changes
  1661. * its parameters, we may need to update accordingly the total
  1662. * allocated bandwidth of the container.
  1663. */
  1664. raw_spin_lock(&dl_b->lock);
  1665. cpus = dl_bw_cpus(task_cpu(p));
  1666. if (dl_policy(policy) && !task_has_dl_policy(p) &&
  1667. !__dl_overflow(dl_b, cpus, 0, new_bw)) {
  1668. __dl_add(dl_b, new_bw);
  1669. err = 0;
  1670. } else if (dl_policy(policy) && task_has_dl_policy(p) &&
  1671. !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
  1672. __dl_clear(dl_b, p->dl.dl_bw);
  1673. __dl_add(dl_b, new_bw);
  1674. err = 0;
  1675. } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
  1676. __dl_clear(dl_b, p->dl.dl_bw);
  1677. err = 0;
  1678. }
  1679. raw_spin_unlock(&dl_b->lock);
  1680. return err;
  1681. }
  1682. extern void init_dl_bw(struct dl_bw *dl_b);
  1683. /*
  1684. * wake_up_new_task - wake up a newly created task for the first time.
  1685. *
  1686. * This function will do some initial scheduler statistics housekeeping
  1687. * that must be done for every newly created context, then puts the task
  1688. * on the runqueue and wakes it.
  1689. */
  1690. void wake_up_new_task(struct task_struct *p)
  1691. {
  1692. unsigned long flags;
  1693. struct rq *rq;
  1694. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1695. #ifdef CONFIG_SMP
  1696. /*
  1697. * Fork balancing, do it here and not earlier because:
  1698. * - cpus_allowed can change in the fork path
  1699. * - any previously selected cpu might disappear through hotplug
  1700. */
  1701. set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
  1702. #endif
  1703. /* Initialize new task's runnable average */
  1704. init_task_runnable_average(p);
  1705. rq = __task_rq_lock(p);
  1706. activate_task(rq, p, 0);
  1707. p->on_rq = 1;
  1708. trace_sched_wakeup_new(p, true);
  1709. check_preempt_curr(rq, p, WF_FORK);
  1710. #ifdef CONFIG_SMP
  1711. if (p->sched_class->task_woken)
  1712. p->sched_class->task_woken(rq, p);
  1713. #endif
  1714. task_rq_unlock(rq, p, &flags);
  1715. }
  1716. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1717. /**
  1718. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  1719. * @notifier: notifier struct to register
  1720. */
  1721. void preempt_notifier_register(struct preempt_notifier *notifier)
  1722. {
  1723. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1724. }
  1725. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1726. /**
  1727. * preempt_notifier_unregister - no longer interested in preemption notifications
  1728. * @notifier: notifier struct to unregister
  1729. *
  1730. * This is safe to call from within a preemption notifier.
  1731. */
  1732. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1733. {
  1734. hlist_del(&notifier->link);
  1735. }
  1736. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1737. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1738. {
  1739. struct preempt_notifier *notifier;
  1740. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1741. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1742. }
  1743. static void
  1744. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1745. struct task_struct *next)
  1746. {
  1747. struct preempt_notifier *notifier;
  1748. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1749. notifier->ops->sched_out(notifier, next);
  1750. }
  1751. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  1752. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1753. {
  1754. }
  1755. static void
  1756. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1757. struct task_struct *next)
  1758. {
  1759. }
  1760. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  1761. /**
  1762. * prepare_task_switch - prepare to switch tasks
  1763. * @rq: the runqueue preparing to switch
  1764. * @prev: the current task that is being switched out
  1765. * @next: the task we are going to switch to.
  1766. *
  1767. * This is called with the rq lock held and interrupts off. It must
  1768. * be paired with a subsequent finish_task_switch after the context
  1769. * switch.
  1770. *
  1771. * prepare_task_switch sets up locking and calls architecture specific
  1772. * hooks.
  1773. */
  1774. static inline void
  1775. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1776. struct task_struct *next)
  1777. {
  1778. trace_sched_switch(prev, next);
  1779. sched_info_switch(rq, prev, next);
  1780. perf_event_task_sched_out(prev, next);
  1781. fire_sched_out_preempt_notifiers(prev, next);
  1782. prepare_lock_switch(rq, next);
  1783. prepare_arch_switch(next);
  1784. }
  1785. /**
  1786. * finish_task_switch - clean up after a task-switch
  1787. * @rq: runqueue associated with task-switch
  1788. * @prev: the thread we just switched away from.
  1789. *
  1790. * finish_task_switch must be called after the context switch, paired
  1791. * with a prepare_task_switch call before the context switch.
  1792. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1793. * and do any other architecture-specific cleanup actions.
  1794. *
  1795. * Note that we may have delayed dropping an mm in context_switch(). If
  1796. * so, we finish that here outside of the runqueue lock. (Doing it
  1797. * with the lock held can cause deadlocks; see schedule() for
  1798. * details.)
  1799. */
  1800. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1801. __releases(rq->lock)
  1802. {
  1803. struct mm_struct *mm = rq->prev_mm;
  1804. long prev_state;
  1805. rq->prev_mm = NULL;
  1806. /*
  1807. * A task struct has one reference for the use as "current".
  1808. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1809. * schedule one last time. The schedule call will never return, and
  1810. * the scheduled task must drop that reference.
  1811. * The test for TASK_DEAD must occur while the runqueue locks are
  1812. * still held, otherwise prev could be scheduled on another cpu, die
  1813. * there before we look at prev->state, and then the reference would
  1814. * be dropped twice.
  1815. * Manfred Spraul <manfred@colorfullife.com>
  1816. */
  1817. prev_state = prev->state;
  1818. vtime_task_switch(prev);
  1819. finish_arch_switch(prev);
  1820. perf_event_task_sched_in(prev, current);
  1821. finish_lock_switch(rq, prev);
  1822. finish_arch_post_lock_switch();
  1823. fire_sched_in_preempt_notifiers(current);
  1824. if (mm)
  1825. mmdrop(mm);
  1826. if (unlikely(prev_state == TASK_DEAD)) {
  1827. task_numa_free(prev);
  1828. if (prev->sched_class->task_dead)
  1829. prev->sched_class->task_dead(prev);
  1830. /*
  1831. * Remove function-return probe instances associated with this
  1832. * task and put them back on the free list.
  1833. */
  1834. kprobe_flush_task(prev);
  1835. put_task_struct(prev);
  1836. }
  1837. tick_nohz_task_switch(current);
  1838. }
  1839. #ifdef CONFIG_SMP
  1840. /* assumes rq->lock is held */
  1841. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  1842. {
  1843. if (prev->sched_class->pre_schedule)
  1844. prev->sched_class->pre_schedule(rq, prev);
  1845. }
  1846. /* rq->lock is NOT held, but preemption is disabled */
  1847. static inline void post_schedule(struct rq *rq)
  1848. {
  1849. if (rq->post_schedule) {
  1850. unsigned long flags;
  1851. raw_spin_lock_irqsave(&rq->lock, flags);
  1852. if (rq->curr->sched_class->post_schedule)
  1853. rq->curr->sched_class->post_schedule(rq);
  1854. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1855. rq->post_schedule = 0;
  1856. }
  1857. }
  1858. #else
  1859. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  1860. {
  1861. }
  1862. static inline void post_schedule(struct rq *rq)
  1863. {
  1864. }
  1865. #endif
  1866. /**
  1867. * schedule_tail - first thing a freshly forked thread must call.
  1868. * @prev: the thread we just switched away from.
  1869. */
  1870. asmlinkage void schedule_tail(struct task_struct *prev)
  1871. __releases(rq->lock)
  1872. {
  1873. struct rq *rq = this_rq();
  1874. finish_task_switch(rq, prev);
  1875. /*
  1876. * FIXME: do we need to worry about rq being invalidated by the
  1877. * task_switch?
  1878. */
  1879. post_schedule(rq);
  1880. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1881. /* In this case, finish_task_switch does not reenable preemption */
  1882. preempt_enable();
  1883. #endif
  1884. if (current->set_child_tid)
  1885. put_user(task_pid_vnr(current), current->set_child_tid);
  1886. }
  1887. /*
  1888. * context_switch - switch to the new MM and the new
  1889. * thread's register state.
  1890. */
  1891. static inline void
  1892. context_switch(struct rq *rq, struct task_struct *prev,
  1893. struct task_struct *next)
  1894. {
  1895. struct mm_struct *mm, *oldmm;
  1896. prepare_task_switch(rq, prev, next);
  1897. mm = next->mm;
  1898. oldmm = prev->active_mm;
  1899. /*
  1900. * For paravirt, this is coupled with an exit in switch_to to
  1901. * combine the page table reload and the switch backend into
  1902. * one hypercall.
  1903. */
  1904. arch_start_context_switch(prev);
  1905. if (!mm) {
  1906. next->active_mm = oldmm;
  1907. atomic_inc(&oldmm->mm_count);
  1908. enter_lazy_tlb(oldmm, next);
  1909. } else
  1910. switch_mm(oldmm, mm, next);
  1911. if (!prev->mm) {
  1912. prev->active_mm = NULL;
  1913. rq->prev_mm = oldmm;
  1914. }
  1915. /*
  1916. * Since the runqueue lock will be released by the next
  1917. * task (which is an invalid locking op but in the case
  1918. * of the scheduler it's an obvious special-case), so we
  1919. * do an early lockdep release here:
  1920. */
  1921. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1922. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1923. #endif
  1924. context_tracking_task_switch(prev, next);
  1925. /* Here we just switch the register state and the stack. */
  1926. switch_to(prev, next, prev);
  1927. barrier();
  1928. /*
  1929. * this_rq must be evaluated again because prev may have moved
  1930. * CPUs since it called schedule(), thus the 'rq' on its stack
  1931. * frame will be invalid.
  1932. */
  1933. finish_task_switch(this_rq(), prev);
  1934. }
  1935. /*
  1936. * nr_running and nr_context_switches:
  1937. *
  1938. * externally visible scheduler statistics: current number of runnable
  1939. * threads, total number of context switches performed since bootup.
  1940. */
  1941. unsigned long nr_running(void)
  1942. {
  1943. unsigned long i, sum = 0;
  1944. for_each_online_cpu(i)
  1945. sum += cpu_rq(i)->nr_running;
  1946. return sum;
  1947. }
  1948. unsigned long long nr_context_switches(void)
  1949. {
  1950. int i;
  1951. unsigned long long sum = 0;
  1952. for_each_possible_cpu(i)
  1953. sum += cpu_rq(i)->nr_switches;
  1954. return sum;
  1955. }
  1956. unsigned long nr_iowait(void)
  1957. {
  1958. unsigned long i, sum = 0;
  1959. for_each_possible_cpu(i)
  1960. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1961. return sum;
  1962. }
  1963. unsigned long nr_iowait_cpu(int cpu)
  1964. {
  1965. struct rq *this = cpu_rq(cpu);
  1966. return atomic_read(&this->nr_iowait);
  1967. }
  1968. #ifdef CONFIG_SMP
  1969. /*
  1970. * sched_exec - execve() is a valuable balancing opportunity, because at
  1971. * this point the task has the smallest effective memory and cache footprint.
  1972. */
  1973. void sched_exec(void)
  1974. {
  1975. struct task_struct *p = current;
  1976. unsigned long flags;
  1977. int dest_cpu;
  1978. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1979. dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
  1980. if (dest_cpu == smp_processor_id())
  1981. goto unlock;
  1982. if (likely(cpu_active(dest_cpu))) {
  1983. struct migration_arg arg = { p, dest_cpu };
  1984. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1985. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  1986. return;
  1987. }
  1988. unlock:
  1989. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1990. }
  1991. #endif
  1992. DEFINE_PER_CPU(struct kernel_stat, kstat);
  1993. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  1994. EXPORT_PER_CPU_SYMBOL(kstat);
  1995. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  1996. /*
  1997. * Return any ns on the sched_clock that have not yet been accounted in
  1998. * @p in case that task is currently running.
  1999. *
  2000. * Called with task_rq_lock() held on @rq.
  2001. */
  2002. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2003. {
  2004. u64 ns = 0;
  2005. if (task_current(rq, p)) {
  2006. update_rq_clock(rq);
  2007. ns = rq_clock_task(rq) - p->se.exec_start;
  2008. if ((s64)ns < 0)
  2009. ns = 0;
  2010. }
  2011. return ns;
  2012. }
  2013. unsigned long long task_delta_exec(struct task_struct *p)
  2014. {
  2015. unsigned long flags;
  2016. struct rq *rq;
  2017. u64 ns = 0;
  2018. rq = task_rq_lock(p, &flags);
  2019. ns = do_task_delta_exec(p, rq);
  2020. task_rq_unlock(rq, p, &flags);
  2021. return ns;
  2022. }
  2023. /*
  2024. * Return accounted runtime for the task.
  2025. * In case the task is currently running, return the runtime plus current's
  2026. * pending runtime that have not been accounted yet.
  2027. */
  2028. unsigned long long task_sched_runtime(struct task_struct *p)
  2029. {
  2030. unsigned long flags;
  2031. struct rq *rq;
  2032. u64 ns = 0;
  2033. #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
  2034. /*
  2035. * 64-bit doesn't need locks to atomically read a 64bit value.
  2036. * So we have a optimization chance when the task's delta_exec is 0.
  2037. * Reading ->on_cpu is racy, but this is ok.
  2038. *
  2039. * If we race with it leaving cpu, we'll take a lock. So we're correct.
  2040. * If we race with it entering cpu, unaccounted time is 0. This is
  2041. * indistinguishable from the read occurring a few cycles earlier.
  2042. */
  2043. if (!p->on_cpu)
  2044. return p->se.sum_exec_runtime;
  2045. #endif
  2046. rq = task_rq_lock(p, &flags);
  2047. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2048. task_rq_unlock(rq, p, &flags);
  2049. return ns;
  2050. }
  2051. /*
  2052. * This function gets called by the timer code, with HZ frequency.
  2053. * We call it with interrupts disabled.
  2054. */
  2055. void scheduler_tick(void)
  2056. {
  2057. int cpu = smp_processor_id();
  2058. struct rq *rq = cpu_rq(cpu);
  2059. struct task_struct *curr = rq->curr;
  2060. sched_clock_tick();
  2061. raw_spin_lock(&rq->lock);
  2062. update_rq_clock(rq);
  2063. curr->sched_class->task_tick(rq, curr, 0);
  2064. update_cpu_load_active(rq);
  2065. raw_spin_unlock(&rq->lock);
  2066. perf_event_task_tick();
  2067. #ifdef CONFIG_SMP
  2068. rq->idle_balance = idle_cpu(cpu);
  2069. trigger_load_balance(rq);
  2070. #endif
  2071. rq_last_tick_reset(rq);
  2072. }
  2073. #ifdef CONFIG_NO_HZ_FULL
  2074. /**
  2075. * scheduler_tick_max_deferment
  2076. *
  2077. * Keep at least one tick per second when a single
  2078. * active task is running because the scheduler doesn't
  2079. * yet completely support full dynticks environment.
  2080. *
  2081. * This makes sure that uptime, CFS vruntime, load
  2082. * balancing, etc... continue to move forward, even
  2083. * with a very low granularity.
  2084. *
  2085. * Return: Maximum deferment in nanoseconds.
  2086. */
  2087. u64 scheduler_tick_max_deferment(void)
  2088. {
  2089. struct rq *rq = this_rq();
  2090. unsigned long next, now = ACCESS_ONCE(jiffies);
  2091. next = rq->last_sched_tick + HZ;
  2092. if (time_before_eq(next, now))
  2093. return 0;
  2094. return jiffies_to_nsecs(next - now);
  2095. }
  2096. #endif
  2097. notrace unsigned long get_parent_ip(unsigned long addr)
  2098. {
  2099. if (in_lock_functions(addr)) {
  2100. addr = CALLER_ADDR2;
  2101. if (in_lock_functions(addr))
  2102. addr = CALLER_ADDR3;
  2103. }
  2104. return addr;
  2105. }
  2106. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2107. defined(CONFIG_PREEMPT_TRACER))
  2108. void __kprobes preempt_count_add(int val)
  2109. {
  2110. #ifdef CONFIG_DEBUG_PREEMPT
  2111. /*
  2112. * Underflow?
  2113. */
  2114. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2115. return;
  2116. #endif
  2117. __preempt_count_add(val);
  2118. #ifdef CONFIG_DEBUG_PREEMPT
  2119. /*
  2120. * Spinlock count overflowing soon?
  2121. */
  2122. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2123. PREEMPT_MASK - 10);
  2124. #endif
  2125. if (preempt_count() == val)
  2126. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2127. }
  2128. EXPORT_SYMBOL(preempt_count_add);
  2129. void __kprobes preempt_count_sub(int val)
  2130. {
  2131. #ifdef CONFIG_DEBUG_PREEMPT
  2132. /*
  2133. * Underflow?
  2134. */
  2135. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2136. return;
  2137. /*
  2138. * Is the spinlock portion underflowing?
  2139. */
  2140. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2141. !(preempt_count() & PREEMPT_MASK)))
  2142. return;
  2143. #endif
  2144. if (preempt_count() == val)
  2145. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2146. __preempt_count_sub(val);
  2147. }
  2148. EXPORT_SYMBOL(preempt_count_sub);
  2149. #endif
  2150. /*
  2151. * Print scheduling while atomic bug:
  2152. */
  2153. static noinline void __schedule_bug(struct task_struct *prev)
  2154. {
  2155. if (oops_in_progress)
  2156. return;
  2157. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2158. prev->comm, prev->pid, preempt_count());
  2159. debug_show_held_locks(prev);
  2160. print_modules();
  2161. if (irqs_disabled())
  2162. print_irqtrace_events(prev);
  2163. dump_stack();
  2164. add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
  2165. }
  2166. /*
  2167. * Various schedule()-time debugging checks and statistics:
  2168. */
  2169. static inline void schedule_debug(struct task_struct *prev)
  2170. {
  2171. /*
  2172. * Test if we are atomic. Since do_exit() needs to call into
  2173. * schedule() atomically, we ignore that path. Otherwise whine
  2174. * if we are scheduling when we should not.
  2175. */
  2176. if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
  2177. __schedule_bug(prev);
  2178. rcu_sleep_check();
  2179. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2180. schedstat_inc(this_rq(), sched_count);
  2181. }
  2182. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  2183. {
  2184. if (prev->on_rq || rq->skip_clock_update < 0)
  2185. update_rq_clock(rq);
  2186. prev->sched_class->put_prev_task(rq, prev);
  2187. }
  2188. /*
  2189. * Pick up the highest-prio task:
  2190. */
  2191. static inline struct task_struct *
  2192. pick_next_task(struct rq *rq)
  2193. {
  2194. const struct sched_class *class;
  2195. struct task_struct *p;
  2196. /*
  2197. * Optimization: we know that if all tasks are in
  2198. * the fair class we can call that function directly:
  2199. */
  2200. if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
  2201. p = fair_sched_class.pick_next_task(rq);
  2202. if (likely(p))
  2203. return p;
  2204. }
  2205. for_each_class(class) {
  2206. p = class->pick_next_task(rq);
  2207. if (p)
  2208. return p;
  2209. }
  2210. BUG(); /* the idle class will always have a runnable task */
  2211. }
  2212. /*
  2213. * __schedule() is the main scheduler function.
  2214. *
  2215. * The main means of driving the scheduler and thus entering this function are:
  2216. *
  2217. * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
  2218. *
  2219. * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
  2220. * paths. For example, see arch/x86/entry_64.S.
  2221. *
  2222. * To drive preemption between tasks, the scheduler sets the flag in timer
  2223. * interrupt handler scheduler_tick().
  2224. *
  2225. * 3. Wakeups don't really cause entry into schedule(). They add a
  2226. * task to the run-queue and that's it.
  2227. *
  2228. * Now, if the new task added to the run-queue preempts the current
  2229. * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
  2230. * called on the nearest possible occasion:
  2231. *
  2232. * - If the kernel is preemptible (CONFIG_PREEMPT=y):
  2233. *
  2234. * - in syscall or exception context, at the next outmost
  2235. * preempt_enable(). (this might be as soon as the wake_up()'s
  2236. * spin_unlock()!)
  2237. *
  2238. * - in IRQ context, return from interrupt-handler to
  2239. * preemptible context
  2240. *
  2241. * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
  2242. * then at the next:
  2243. *
  2244. * - cond_resched() call
  2245. * - explicit schedule() call
  2246. * - return from syscall or exception to user-space
  2247. * - return from interrupt-handler to user-space
  2248. */
  2249. static void __sched __schedule(void)
  2250. {
  2251. struct task_struct *prev, *next;
  2252. unsigned long *switch_count;
  2253. struct rq *rq;
  2254. int cpu;
  2255. need_resched:
  2256. preempt_disable();
  2257. cpu = smp_processor_id();
  2258. rq = cpu_rq(cpu);
  2259. rcu_note_context_switch(cpu);
  2260. prev = rq->curr;
  2261. schedule_debug(prev);
  2262. if (sched_feat(HRTICK))
  2263. hrtick_clear(rq);
  2264. /*
  2265. * Make sure that signal_pending_state()->signal_pending() below
  2266. * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
  2267. * done by the caller to avoid the race with signal_wake_up().
  2268. */
  2269. smp_mb__before_spinlock();
  2270. raw_spin_lock_irq(&rq->lock);
  2271. switch_count = &prev->nivcsw;
  2272. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2273. if (unlikely(signal_pending_state(prev->state, prev))) {
  2274. prev->state = TASK_RUNNING;
  2275. } else {
  2276. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2277. prev->on_rq = 0;
  2278. /*
  2279. * If a worker went to sleep, notify and ask workqueue
  2280. * whether it wants to wake up a task to maintain
  2281. * concurrency.
  2282. */
  2283. if (prev->flags & PF_WQ_WORKER) {
  2284. struct task_struct *to_wakeup;
  2285. to_wakeup = wq_worker_sleeping(prev, cpu);
  2286. if (to_wakeup)
  2287. try_to_wake_up_local(to_wakeup);
  2288. }
  2289. }
  2290. switch_count = &prev->nvcsw;
  2291. }
  2292. pre_schedule(rq, prev);
  2293. if (unlikely(!rq->nr_running))
  2294. idle_balance(cpu, rq);
  2295. put_prev_task(rq, prev);
  2296. next = pick_next_task(rq);
  2297. clear_tsk_need_resched(prev);
  2298. clear_preempt_need_resched();
  2299. rq->skip_clock_update = 0;
  2300. if (likely(prev != next)) {
  2301. rq->nr_switches++;
  2302. rq->curr = next;
  2303. ++*switch_count;
  2304. context_switch(rq, prev, next); /* unlocks the rq */
  2305. /*
  2306. * The context switch have flipped the stack from under us
  2307. * and restored the local variables which were saved when
  2308. * this task called schedule() in the past. prev == current
  2309. * is still correct, but it can be moved to another cpu/rq.
  2310. */
  2311. cpu = smp_processor_id();
  2312. rq = cpu_rq(cpu);
  2313. } else
  2314. raw_spin_unlock_irq(&rq->lock);
  2315. post_schedule(rq);
  2316. sched_preempt_enable_no_resched();
  2317. if (need_resched())
  2318. goto need_resched;
  2319. }
  2320. static inline void sched_submit_work(struct task_struct *tsk)
  2321. {
  2322. if (!tsk->state || tsk_is_pi_blocked(tsk))
  2323. return;
  2324. /*
  2325. * If we are going to sleep and we have plugged IO queued,
  2326. * make sure to submit it to avoid deadlocks.
  2327. */
  2328. if (blk_needs_flush_plug(tsk))
  2329. blk_schedule_flush_plug(tsk);
  2330. }
  2331. asmlinkage void __sched schedule(void)
  2332. {
  2333. struct task_struct *tsk = current;
  2334. sched_submit_work(tsk);
  2335. __schedule();
  2336. }
  2337. EXPORT_SYMBOL(schedule);
  2338. #ifdef CONFIG_CONTEXT_TRACKING
  2339. asmlinkage void __sched schedule_user(void)
  2340. {
  2341. /*
  2342. * If we come here after a random call to set_need_resched(),
  2343. * or we have been woken up remotely but the IPI has not yet arrived,
  2344. * we haven't yet exited the RCU idle mode. Do it here manually until
  2345. * we find a better solution.
  2346. */
  2347. user_exit();
  2348. schedule();
  2349. user_enter();
  2350. }
  2351. #endif
  2352. /**
  2353. * schedule_preempt_disabled - called with preemption disabled
  2354. *
  2355. * Returns with preemption disabled. Note: preempt_count must be 1
  2356. */
  2357. void __sched schedule_preempt_disabled(void)
  2358. {
  2359. sched_preempt_enable_no_resched();
  2360. schedule();
  2361. preempt_disable();
  2362. }
  2363. #ifdef CONFIG_PREEMPT
  2364. /*
  2365. * this is the entry point to schedule() from in-kernel preemption
  2366. * off of preempt_enable. Kernel preemptions off return from interrupt
  2367. * occur there and call schedule directly.
  2368. */
  2369. asmlinkage void __sched notrace preempt_schedule(void)
  2370. {
  2371. /*
  2372. * If there is a non-zero preempt_count or interrupts are disabled,
  2373. * we do not want to preempt the current task. Just return..
  2374. */
  2375. if (likely(!preemptible()))
  2376. return;
  2377. do {
  2378. __preempt_count_add(PREEMPT_ACTIVE);
  2379. __schedule();
  2380. __preempt_count_sub(PREEMPT_ACTIVE);
  2381. /*
  2382. * Check again in case we missed a preemption opportunity
  2383. * between schedule and now.
  2384. */
  2385. barrier();
  2386. } while (need_resched());
  2387. }
  2388. EXPORT_SYMBOL(preempt_schedule);
  2389. #endif /* CONFIG_PREEMPT */
  2390. /*
  2391. * this is the entry point to schedule() from kernel preemption
  2392. * off of irq context.
  2393. * Note, that this is called and return with irqs disabled. This will
  2394. * protect us against recursive calling from irq.
  2395. */
  2396. asmlinkage void __sched preempt_schedule_irq(void)
  2397. {
  2398. enum ctx_state prev_state;
  2399. /* Catch callers which need to be fixed */
  2400. BUG_ON(preempt_count() || !irqs_disabled());
  2401. prev_state = exception_enter();
  2402. do {
  2403. __preempt_count_add(PREEMPT_ACTIVE);
  2404. local_irq_enable();
  2405. __schedule();
  2406. local_irq_disable();
  2407. __preempt_count_sub(PREEMPT_ACTIVE);
  2408. /*
  2409. * Check again in case we missed a preemption opportunity
  2410. * between schedule and now.
  2411. */
  2412. barrier();
  2413. } while (need_resched());
  2414. exception_exit(prev_state);
  2415. }
  2416. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  2417. void *key)
  2418. {
  2419. return try_to_wake_up(curr->private, mode, wake_flags);
  2420. }
  2421. EXPORT_SYMBOL(default_wake_function);
  2422. static long __sched
  2423. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  2424. {
  2425. unsigned long flags;
  2426. wait_queue_t wait;
  2427. init_waitqueue_entry(&wait, current);
  2428. __set_current_state(state);
  2429. spin_lock_irqsave(&q->lock, flags);
  2430. __add_wait_queue(q, &wait);
  2431. spin_unlock(&q->lock);
  2432. timeout = schedule_timeout(timeout);
  2433. spin_lock_irq(&q->lock);
  2434. __remove_wait_queue(q, &wait);
  2435. spin_unlock_irqrestore(&q->lock, flags);
  2436. return timeout;
  2437. }
  2438. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  2439. {
  2440. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  2441. }
  2442. EXPORT_SYMBOL(interruptible_sleep_on);
  2443. long __sched
  2444. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  2445. {
  2446. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  2447. }
  2448. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  2449. void __sched sleep_on(wait_queue_head_t *q)
  2450. {
  2451. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  2452. }
  2453. EXPORT_SYMBOL(sleep_on);
  2454. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  2455. {
  2456. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  2457. }
  2458. EXPORT_SYMBOL(sleep_on_timeout);
  2459. #ifdef CONFIG_RT_MUTEXES
  2460. /*
  2461. * rt_mutex_setprio - set the current priority of a task
  2462. * @p: task
  2463. * @prio: prio value (kernel-internal form)
  2464. *
  2465. * This function changes the 'effective' priority of a task. It does
  2466. * not touch ->normal_prio like __setscheduler().
  2467. *
  2468. * Used by the rt_mutex code to implement priority inheritance logic.
  2469. */
  2470. void rt_mutex_setprio(struct task_struct *p, int prio)
  2471. {
  2472. int oldprio, on_rq, running, enqueue_flag = 0;
  2473. struct rq *rq;
  2474. const struct sched_class *prev_class;
  2475. BUG_ON(prio > MAX_PRIO);
  2476. rq = __task_rq_lock(p);
  2477. /*
  2478. * Idle task boosting is a nono in general. There is one
  2479. * exception, when PREEMPT_RT and NOHZ is active:
  2480. *
  2481. * The idle task calls get_next_timer_interrupt() and holds
  2482. * the timer wheel base->lock on the CPU and another CPU wants
  2483. * to access the timer (probably to cancel it). We can safely
  2484. * ignore the boosting request, as the idle CPU runs this code
  2485. * with interrupts disabled and will complete the lock
  2486. * protected section without being interrupted. So there is no
  2487. * real need to boost.
  2488. */
  2489. if (unlikely(p == rq->idle)) {
  2490. WARN_ON(p != rq->curr);
  2491. WARN_ON(p->pi_blocked_on);
  2492. goto out_unlock;
  2493. }
  2494. trace_sched_pi_setprio(p, prio);
  2495. p->pi_top_task = rt_mutex_get_top_task(p);
  2496. oldprio = p->prio;
  2497. prev_class = p->sched_class;
  2498. on_rq = p->on_rq;
  2499. running = task_current(rq, p);
  2500. if (on_rq)
  2501. dequeue_task(rq, p, 0);
  2502. if (running)
  2503. p->sched_class->put_prev_task(rq, p);
  2504. /*
  2505. * Boosting condition are:
  2506. * 1. -rt task is running and holds mutex A
  2507. * --> -dl task blocks on mutex A
  2508. *
  2509. * 2. -dl task is running and holds mutex A
  2510. * --> -dl task blocks on mutex A and could preempt the
  2511. * running task
  2512. */
  2513. if (dl_prio(prio)) {
  2514. if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
  2515. dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
  2516. p->dl.dl_boosted = 1;
  2517. p->dl.dl_throttled = 0;
  2518. enqueue_flag = ENQUEUE_REPLENISH;
  2519. } else
  2520. p->dl.dl_boosted = 0;
  2521. p->sched_class = &dl_sched_class;
  2522. } else if (rt_prio(prio)) {
  2523. if (dl_prio(oldprio))
  2524. p->dl.dl_boosted = 0;
  2525. if (oldprio < prio)
  2526. enqueue_flag = ENQUEUE_HEAD;
  2527. p->sched_class = &rt_sched_class;
  2528. } else {
  2529. if (dl_prio(oldprio))
  2530. p->dl.dl_boosted = 0;
  2531. p->sched_class = &fair_sched_class;
  2532. }
  2533. p->prio = prio;
  2534. if (running)
  2535. p->sched_class->set_curr_task(rq);
  2536. if (on_rq)
  2537. enqueue_task(rq, p, enqueue_flag);
  2538. check_class_changed(rq, p, prev_class, oldprio);
  2539. out_unlock:
  2540. __task_rq_unlock(rq);
  2541. }
  2542. #endif
  2543. void set_user_nice(struct task_struct *p, long nice)
  2544. {
  2545. int old_prio, delta, on_rq;
  2546. unsigned long flags;
  2547. struct rq *rq;
  2548. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  2549. return;
  2550. /*
  2551. * We have to be careful, if called from sys_setpriority(),
  2552. * the task might be in the middle of scheduling on another CPU.
  2553. */
  2554. rq = task_rq_lock(p, &flags);
  2555. /*
  2556. * The RT priorities are set via sched_setscheduler(), but we still
  2557. * allow the 'normal' nice value to be set - but as expected
  2558. * it wont have any effect on scheduling until the task is
  2559. * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
  2560. */
  2561. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  2562. p->static_prio = NICE_TO_PRIO(nice);
  2563. goto out_unlock;
  2564. }
  2565. on_rq = p->on_rq;
  2566. if (on_rq)
  2567. dequeue_task(rq, p, 0);
  2568. p->static_prio = NICE_TO_PRIO(nice);
  2569. set_load_weight(p);
  2570. old_prio = p->prio;
  2571. p->prio = effective_prio(p);
  2572. delta = p->prio - old_prio;
  2573. if (on_rq) {
  2574. enqueue_task(rq, p, 0);
  2575. /*
  2576. * If the task increased its priority or is running and
  2577. * lowered its priority, then reschedule its CPU:
  2578. */
  2579. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  2580. resched_task(rq->curr);
  2581. }
  2582. out_unlock:
  2583. task_rq_unlock(rq, p, &flags);
  2584. }
  2585. EXPORT_SYMBOL(set_user_nice);
  2586. /*
  2587. * can_nice - check if a task can reduce its nice value
  2588. * @p: task
  2589. * @nice: nice value
  2590. */
  2591. int can_nice(const struct task_struct *p, const int nice)
  2592. {
  2593. /* convert nice value [19,-20] to rlimit style value [1,40] */
  2594. int nice_rlim = 20 - nice;
  2595. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  2596. capable(CAP_SYS_NICE));
  2597. }
  2598. #ifdef __ARCH_WANT_SYS_NICE
  2599. /*
  2600. * sys_nice - change the priority of the current process.
  2601. * @increment: priority increment
  2602. *
  2603. * sys_setpriority is a more generic, but much slower function that
  2604. * does similar things.
  2605. */
  2606. SYSCALL_DEFINE1(nice, int, increment)
  2607. {
  2608. long nice, retval;
  2609. /*
  2610. * Setpriority might change our priority at the same moment.
  2611. * We don't have to worry. Conceptually one call occurs first
  2612. * and we have a single winner.
  2613. */
  2614. if (increment < -40)
  2615. increment = -40;
  2616. if (increment > 40)
  2617. increment = 40;
  2618. nice = TASK_NICE(current) + increment;
  2619. if (nice < -20)
  2620. nice = -20;
  2621. if (nice > 19)
  2622. nice = 19;
  2623. if (increment < 0 && !can_nice(current, nice))
  2624. return -EPERM;
  2625. retval = security_task_setnice(current, nice);
  2626. if (retval)
  2627. return retval;
  2628. set_user_nice(current, nice);
  2629. return 0;
  2630. }
  2631. #endif
  2632. /**
  2633. * task_prio - return the priority value of a given task.
  2634. * @p: the task in question.
  2635. *
  2636. * Return: The priority value as seen by users in /proc.
  2637. * RT tasks are offset by -200. Normal tasks are centered
  2638. * around 0, value goes from -16 to +15.
  2639. */
  2640. int task_prio(const struct task_struct *p)
  2641. {
  2642. return p->prio - MAX_RT_PRIO;
  2643. }
  2644. /**
  2645. * task_nice - return the nice value of a given task.
  2646. * @p: the task in question.
  2647. *
  2648. * Return: The nice value [ -20 ... 0 ... 19 ].
  2649. */
  2650. int task_nice(const struct task_struct *p)
  2651. {
  2652. return TASK_NICE(p);
  2653. }
  2654. EXPORT_SYMBOL(task_nice);
  2655. /**
  2656. * idle_cpu - is a given cpu idle currently?
  2657. * @cpu: the processor in question.
  2658. *
  2659. * Return: 1 if the CPU is currently idle. 0 otherwise.
  2660. */
  2661. int idle_cpu(int cpu)
  2662. {
  2663. struct rq *rq = cpu_rq(cpu);
  2664. if (rq->curr != rq->idle)
  2665. return 0;
  2666. if (rq->nr_running)
  2667. return 0;
  2668. #ifdef CONFIG_SMP
  2669. if (!llist_empty(&rq->wake_list))
  2670. return 0;
  2671. #endif
  2672. return 1;
  2673. }
  2674. /**
  2675. * idle_task - return the idle task for a given cpu.
  2676. * @cpu: the processor in question.
  2677. *
  2678. * Return: The idle task for the cpu @cpu.
  2679. */
  2680. struct task_struct *idle_task(int cpu)
  2681. {
  2682. return cpu_rq(cpu)->idle;
  2683. }
  2684. /**
  2685. * find_process_by_pid - find a process with a matching PID value.
  2686. * @pid: the pid in question.
  2687. *
  2688. * The task of @pid, if found. %NULL otherwise.
  2689. */
  2690. static struct task_struct *find_process_by_pid(pid_t pid)
  2691. {
  2692. return pid ? find_task_by_vpid(pid) : current;
  2693. }
  2694. /*
  2695. * This function initializes the sched_dl_entity of a newly becoming
  2696. * SCHED_DEADLINE task.
  2697. *
  2698. * Only the static values are considered here, the actual runtime and the
  2699. * absolute deadline will be properly calculated when the task is enqueued
  2700. * for the first time with its new policy.
  2701. */
  2702. static void
  2703. __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
  2704. {
  2705. struct sched_dl_entity *dl_se = &p->dl;
  2706. init_dl_task_timer(dl_se);
  2707. dl_se->dl_runtime = attr->sched_runtime;
  2708. dl_se->dl_deadline = attr->sched_deadline;
  2709. dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
  2710. dl_se->flags = attr->sched_flags;
  2711. dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
  2712. dl_se->dl_throttled = 0;
  2713. dl_se->dl_new = 1;
  2714. }
  2715. /* Actually do priority change: must hold pi & rq lock. */
  2716. static void __setscheduler(struct rq *rq, struct task_struct *p,
  2717. const struct sched_attr *attr)
  2718. {
  2719. int policy = attr->sched_policy;
  2720. if (policy == -1) /* setparam */
  2721. policy = p->policy;
  2722. p->policy = policy;
  2723. if (dl_policy(policy))
  2724. __setparam_dl(p, attr);
  2725. else if (fair_policy(policy))
  2726. p->static_prio = NICE_TO_PRIO(attr->sched_nice);
  2727. /*
  2728. * __sched_setscheduler() ensures attr->sched_priority == 0 when
  2729. * !rt_policy. Always setting this ensures that things like
  2730. * getparam()/getattr() don't report silly values for !rt tasks.
  2731. */
  2732. p->rt_priority = attr->sched_priority;
  2733. p->normal_prio = normal_prio(p);
  2734. p->prio = rt_mutex_getprio(p);
  2735. if (dl_prio(p->prio))
  2736. p->sched_class = &dl_sched_class;
  2737. else if (rt_prio(p->prio))
  2738. p->sched_class = &rt_sched_class;
  2739. else
  2740. p->sched_class = &fair_sched_class;
  2741. set_load_weight(p);
  2742. }
  2743. static void
  2744. __getparam_dl(struct task_struct *p, struct sched_attr *attr)
  2745. {
  2746. struct sched_dl_entity *dl_se = &p->dl;
  2747. attr->sched_priority = p->rt_priority;
  2748. attr->sched_runtime = dl_se->dl_runtime;
  2749. attr->sched_deadline = dl_se->dl_deadline;
  2750. attr->sched_period = dl_se->dl_period;
  2751. attr->sched_flags = dl_se->flags;
  2752. }
  2753. /*
  2754. * This function validates the new parameters of a -deadline task.
  2755. * We ask for the deadline not being zero, and greater or equal
  2756. * than the runtime, as well as the period of being zero or
  2757. * greater than deadline. Furthermore, we have to be sure that
  2758. * user parameters are above the internal resolution (1us); we
  2759. * check sched_runtime only since it is always the smaller one.
  2760. */
  2761. static bool
  2762. __checkparam_dl(const struct sched_attr *attr)
  2763. {
  2764. return attr && attr->sched_deadline != 0 &&
  2765. (attr->sched_period == 0 ||
  2766. (s64)(attr->sched_period - attr->sched_deadline) >= 0) &&
  2767. (s64)(attr->sched_deadline - attr->sched_runtime ) >= 0 &&
  2768. attr->sched_runtime >= (2 << (DL_SCALE - 1));
  2769. }
  2770. /*
  2771. * check the target process has a UID that matches the current process's
  2772. */
  2773. static bool check_same_owner(struct task_struct *p)
  2774. {
  2775. const struct cred *cred = current_cred(), *pcred;
  2776. bool match;
  2777. rcu_read_lock();
  2778. pcred = __task_cred(p);
  2779. match = (uid_eq(cred->euid, pcred->euid) ||
  2780. uid_eq(cred->euid, pcred->uid));
  2781. rcu_read_unlock();
  2782. return match;
  2783. }
  2784. static int __sched_setscheduler(struct task_struct *p,
  2785. const struct sched_attr *attr,
  2786. bool user)
  2787. {
  2788. int retval, oldprio, oldpolicy = -1, on_rq, running;
  2789. int policy = attr->sched_policy;
  2790. unsigned long flags;
  2791. const struct sched_class *prev_class;
  2792. struct rq *rq;
  2793. int reset_on_fork;
  2794. /* may grab non-irq protected spin_locks */
  2795. BUG_ON(in_interrupt());
  2796. recheck:
  2797. /* double check policy once rq lock held */
  2798. if (policy < 0) {
  2799. reset_on_fork = p->sched_reset_on_fork;
  2800. policy = oldpolicy = p->policy;
  2801. } else {
  2802. reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
  2803. if (policy != SCHED_DEADLINE &&
  2804. policy != SCHED_FIFO && policy != SCHED_RR &&
  2805. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  2806. policy != SCHED_IDLE)
  2807. return -EINVAL;
  2808. }
  2809. if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
  2810. return -EINVAL;
  2811. /*
  2812. * Valid priorities for SCHED_FIFO and SCHED_RR are
  2813. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  2814. * SCHED_BATCH and SCHED_IDLE is 0.
  2815. */
  2816. if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
  2817. (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
  2818. return -EINVAL;
  2819. if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
  2820. (rt_policy(policy) != (attr->sched_priority != 0)))
  2821. return -EINVAL;
  2822. /*
  2823. * Allow unprivileged RT tasks to decrease priority:
  2824. */
  2825. if (user && !capable(CAP_SYS_NICE)) {
  2826. if (fair_policy(policy)) {
  2827. if (attr->sched_nice < TASK_NICE(p) &&
  2828. !can_nice(p, attr->sched_nice))
  2829. return -EPERM;
  2830. }
  2831. if (rt_policy(policy)) {
  2832. unsigned long rlim_rtprio =
  2833. task_rlimit(p, RLIMIT_RTPRIO);
  2834. /* can't set/change the rt policy */
  2835. if (policy != p->policy && !rlim_rtprio)
  2836. return -EPERM;
  2837. /* can't increase priority */
  2838. if (attr->sched_priority > p->rt_priority &&
  2839. attr->sched_priority > rlim_rtprio)
  2840. return -EPERM;
  2841. }
  2842. /*
  2843. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  2844. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  2845. */
  2846. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  2847. if (!can_nice(p, TASK_NICE(p)))
  2848. return -EPERM;
  2849. }
  2850. /* can't change other user's priorities */
  2851. if (!check_same_owner(p))
  2852. return -EPERM;
  2853. /* Normal users shall not reset the sched_reset_on_fork flag */
  2854. if (p->sched_reset_on_fork && !reset_on_fork)
  2855. return -EPERM;
  2856. }
  2857. if (user) {
  2858. retval = security_task_setscheduler(p);
  2859. if (retval)
  2860. return retval;
  2861. }
  2862. /*
  2863. * make sure no PI-waiters arrive (or leave) while we are
  2864. * changing the priority of the task:
  2865. *
  2866. * To be able to change p->policy safely, the appropriate
  2867. * runqueue lock must be held.
  2868. */
  2869. rq = task_rq_lock(p, &flags);
  2870. /*
  2871. * Changing the policy of the stop threads its a very bad idea
  2872. */
  2873. if (p == rq->stop) {
  2874. task_rq_unlock(rq, p, &flags);
  2875. return -EINVAL;
  2876. }
  2877. /*
  2878. * If not changing anything there's no need to proceed further:
  2879. */
  2880. if (unlikely(policy == p->policy)) {
  2881. if (fair_policy(policy) && attr->sched_nice != TASK_NICE(p))
  2882. goto change;
  2883. if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
  2884. goto change;
  2885. if (dl_policy(policy))
  2886. goto change;
  2887. task_rq_unlock(rq, p, &flags);
  2888. return 0;
  2889. }
  2890. change:
  2891. if (user) {
  2892. #ifdef CONFIG_RT_GROUP_SCHED
  2893. /*
  2894. * Do not allow realtime tasks into groups that have no runtime
  2895. * assigned.
  2896. */
  2897. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  2898. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  2899. !task_group_is_autogroup(task_group(p))) {
  2900. task_rq_unlock(rq, p, &flags);
  2901. return -EPERM;
  2902. }
  2903. #endif
  2904. #ifdef CONFIG_SMP
  2905. if (dl_bandwidth_enabled() && dl_policy(policy)) {
  2906. cpumask_t *span = rq->rd->span;
  2907. /*
  2908. * Don't allow tasks with an affinity mask smaller than
  2909. * the entire root_domain to become SCHED_DEADLINE. We
  2910. * will also fail if there's no bandwidth available.
  2911. */
  2912. if (!cpumask_subset(span, &p->cpus_allowed) ||
  2913. rq->rd->dl_bw.bw == 0) {
  2914. task_rq_unlock(rq, p, &flags);
  2915. return -EPERM;
  2916. }
  2917. }
  2918. #endif
  2919. }
  2920. /* recheck policy now with rq lock held */
  2921. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  2922. policy = oldpolicy = -1;
  2923. task_rq_unlock(rq, p, &flags);
  2924. goto recheck;
  2925. }
  2926. /*
  2927. * If setscheduling to SCHED_DEADLINE (or changing the parameters
  2928. * of a SCHED_DEADLINE task) we need to check if enough bandwidth
  2929. * is available.
  2930. */
  2931. if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
  2932. task_rq_unlock(rq, p, &flags);
  2933. return -EBUSY;
  2934. }
  2935. on_rq = p->on_rq;
  2936. running = task_current(rq, p);
  2937. if (on_rq)
  2938. dequeue_task(rq, p, 0);
  2939. if (running)
  2940. p->sched_class->put_prev_task(rq, p);
  2941. p->sched_reset_on_fork = reset_on_fork;
  2942. oldprio = p->prio;
  2943. prev_class = p->sched_class;
  2944. __setscheduler(rq, p, attr);
  2945. if (running)
  2946. p->sched_class->set_curr_task(rq);
  2947. if (on_rq)
  2948. enqueue_task(rq, p, 0);
  2949. check_class_changed(rq, p, prev_class, oldprio);
  2950. task_rq_unlock(rq, p, &flags);
  2951. rt_mutex_adjust_pi(p);
  2952. return 0;
  2953. }
  2954. static int _sched_setscheduler(struct task_struct *p, int policy,
  2955. const struct sched_param *param, bool check)
  2956. {
  2957. struct sched_attr attr = {
  2958. .sched_policy = policy,
  2959. .sched_priority = param->sched_priority,
  2960. .sched_nice = PRIO_TO_NICE(p->static_prio),
  2961. };
  2962. /*
  2963. * Fixup the legacy SCHED_RESET_ON_FORK hack
  2964. */
  2965. if (policy & SCHED_RESET_ON_FORK) {
  2966. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  2967. policy &= ~SCHED_RESET_ON_FORK;
  2968. attr.sched_policy = policy;
  2969. }
  2970. return __sched_setscheduler(p, &attr, check);
  2971. }
  2972. /**
  2973. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  2974. * @p: the task in question.
  2975. * @policy: new policy.
  2976. * @param: structure containing the new RT priority.
  2977. *
  2978. * Return: 0 on success. An error code otherwise.
  2979. *
  2980. * NOTE that the task may be already dead.
  2981. */
  2982. int sched_setscheduler(struct task_struct *p, int policy,
  2983. const struct sched_param *param)
  2984. {
  2985. return _sched_setscheduler(p, policy, param, true);
  2986. }
  2987. EXPORT_SYMBOL_GPL(sched_setscheduler);
  2988. int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
  2989. {
  2990. return __sched_setscheduler(p, attr, true);
  2991. }
  2992. EXPORT_SYMBOL_GPL(sched_setattr);
  2993. /**
  2994. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  2995. * @p: the task in question.
  2996. * @policy: new policy.
  2997. * @param: structure containing the new RT priority.
  2998. *
  2999. * Just like sched_setscheduler, only don't bother checking if the
  3000. * current context has permission. For example, this is needed in
  3001. * stop_machine(): we create temporary high priority worker threads,
  3002. * but our caller might not have that capability.
  3003. *
  3004. * Return: 0 on success. An error code otherwise.
  3005. */
  3006. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3007. const struct sched_param *param)
  3008. {
  3009. return _sched_setscheduler(p, policy, param, false);
  3010. }
  3011. static int
  3012. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3013. {
  3014. struct sched_param lparam;
  3015. struct task_struct *p;
  3016. int retval;
  3017. if (!param || pid < 0)
  3018. return -EINVAL;
  3019. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3020. return -EFAULT;
  3021. rcu_read_lock();
  3022. retval = -ESRCH;
  3023. p = find_process_by_pid(pid);
  3024. if (p != NULL)
  3025. retval = sched_setscheduler(p, policy, &lparam);
  3026. rcu_read_unlock();
  3027. return retval;
  3028. }
  3029. /*
  3030. * Mimics kernel/events/core.c perf_copy_attr().
  3031. */
  3032. static int sched_copy_attr(struct sched_attr __user *uattr,
  3033. struct sched_attr *attr)
  3034. {
  3035. u32 size;
  3036. int ret;
  3037. if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
  3038. return -EFAULT;
  3039. /*
  3040. * zero the full structure, so that a short copy will be nice.
  3041. */
  3042. memset(attr, 0, sizeof(*attr));
  3043. ret = get_user(size, &uattr->size);
  3044. if (ret)
  3045. return ret;
  3046. if (size > PAGE_SIZE) /* silly large */
  3047. goto err_size;
  3048. if (!size) /* abi compat */
  3049. size = SCHED_ATTR_SIZE_VER0;
  3050. if (size < SCHED_ATTR_SIZE_VER0)
  3051. goto err_size;
  3052. /*
  3053. * If we're handed a bigger struct than we know of,
  3054. * ensure all the unknown bits are 0 - i.e. new
  3055. * user-space does not rely on any kernel feature
  3056. * extensions we dont know about yet.
  3057. */
  3058. if (size > sizeof(*attr)) {
  3059. unsigned char __user *addr;
  3060. unsigned char __user *end;
  3061. unsigned char val;
  3062. addr = (void __user *)uattr + sizeof(*attr);
  3063. end = (void __user *)uattr + size;
  3064. for (; addr < end; addr++) {
  3065. ret = get_user(val, addr);
  3066. if (ret)
  3067. return ret;
  3068. if (val)
  3069. goto err_size;
  3070. }
  3071. size = sizeof(*attr);
  3072. }
  3073. ret = copy_from_user(attr, uattr, size);
  3074. if (ret)
  3075. return -EFAULT;
  3076. /*
  3077. * XXX: do we want to be lenient like existing syscalls; or do we want
  3078. * to be strict and return an error on out-of-bounds values?
  3079. */
  3080. attr->sched_nice = clamp(attr->sched_nice, -20, 19);
  3081. out:
  3082. return ret;
  3083. err_size:
  3084. put_user(sizeof(*attr), &uattr->size);
  3085. ret = -E2BIG;
  3086. goto out;
  3087. }
  3088. /**
  3089. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3090. * @pid: the pid in question.
  3091. * @policy: new policy.
  3092. * @param: structure containing the new RT priority.
  3093. *
  3094. * Return: 0 on success. An error code otherwise.
  3095. */
  3096. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3097. struct sched_param __user *, param)
  3098. {
  3099. /* negative values for policy are not valid */
  3100. if (policy < 0)
  3101. return -EINVAL;
  3102. return do_sched_setscheduler(pid, policy, param);
  3103. }
  3104. /**
  3105. * sys_sched_setparam - set/change the RT priority of a thread
  3106. * @pid: the pid in question.
  3107. * @param: structure containing the new RT priority.
  3108. *
  3109. * Return: 0 on success. An error code otherwise.
  3110. */
  3111. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3112. {
  3113. return do_sched_setscheduler(pid, -1, param);
  3114. }
  3115. /**
  3116. * sys_sched_setattr - same as above, but with extended sched_attr
  3117. * @pid: the pid in question.
  3118. * @uattr: structure containing the extended parameters.
  3119. */
  3120. SYSCALL_DEFINE2(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr)
  3121. {
  3122. struct sched_attr attr;
  3123. struct task_struct *p;
  3124. int retval;
  3125. if (!uattr || pid < 0)
  3126. return -EINVAL;
  3127. if (sched_copy_attr(uattr, &attr))
  3128. return -EFAULT;
  3129. rcu_read_lock();
  3130. retval = -ESRCH;
  3131. p = find_process_by_pid(pid);
  3132. if (p != NULL)
  3133. retval = sched_setattr(p, &attr);
  3134. rcu_read_unlock();
  3135. return retval;
  3136. }
  3137. /**
  3138. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3139. * @pid: the pid in question.
  3140. *
  3141. * Return: On success, the policy of the thread. Otherwise, a negative error
  3142. * code.
  3143. */
  3144. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3145. {
  3146. struct task_struct *p;
  3147. int retval;
  3148. if (pid < 0)
  3149. return -EINVAL;
  3150. retval = -ESRCH;
  3151. rcu_read_lock();
  3152. p = find_process_by_pid(pid);
  3153. if (p) {
  3154. retval = security_task_getscheduler(p);
  3155. if (!retval)
  3156. retval = p->policy
  3157. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3158. }
  3159. rcu_read_unlock();
  3160. return retval;
  3161. }
  3162. /**
  3163. * sys_sched_getparam - get the RT priority of a thread
  3164. * @pid: the pid in question.
  3165. * @param: structure containing the RT priority.
  3166. *
  3167. * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
  3168. * code.
  3169. */
  3170. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3171. {
  3172. struct sched_param lp;
  3173. struct task_struct *p;
  3174. int retval;
  3175. if (!param || pid < 0)
  3176. return -EINVAL;
  3177. rcu_read_lock();
  3178. p = find_process_by_pid(pid);
  3179. retval = -ESRCH;
  3180. if (!p)
  3181. goto out_unlock;
  3182. retval = security_task_getscheduler(p);
  3183. if (retval)
  3184. goto out_unlock;
  3185. if (task_has_dl_policy(p)) {
  3186. retval = -EINVAL;
  3187. goto out_unlock;
  3188. }
  3189. lp.sched_priority = p->rt_priority;
  3190. rcu_read_unlock();
  3191. /*
  3192. * This one might sleep, we cannot do it with a spinlock held ...
  3193. */
  3194. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3195. return retval;
  3196. out_unlock:
  3197. rcu_read_unlock();
  3198. return retval;
  3199. }
  3200. static int sched_read_attr(struct sched_attr __user *uattr,
  3201. struct sched_attr *attr,
  3202. unsigned int usize)
  3203. {
  3204. int ret;
  3205. if (!access_ok(VERIFY_WRITE, uattr, usize))
  3206. return -EFAULT;
  3207. /*
  3208. * If we're handed a smaller struct than we know of,
  3209. * ensure all the unknown bits are 0 - i.e. old
  3210. * user-space does not get uncomplete information.
  3211. */
  3212. if (usize < sizeof(*attr)) {
  3213. unsigned char *addr;
  3214. unsigned char *end;
  3215. addr = (void *)attr + usize;
  3216. end = (void *)attr + sizeof(*attr);
  3217. for (; addr < end; addr++) {
  3218. if (*addr)
  3219. goto err_size;
  3220. }
  3221. attr->size = usize;
  3222. }
  3223. ret = copy_to_user(uattr, attr, usize);
  3224. if (ret)
  3225. return -EFAULT;
  3226. out:
  3227. return ret;
  3228. err_size:
  3229. ret = -E2BIG;
  3230. goto out;
  3231. }
  3232. /**
  3233. * sys_sched_getattr - similar to sched_getparam, but with sched_attr
  3234. * @pid: the pid in question.
  3235. * @uattr: structure containing the extended parameters.
  3236. * @size: sizeof(attr) for fwd/bwd comp.
  3237. */
  3238. SYSCALL_DEFINE3(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
  3239. unsigned int, size)
  3240. {
  3241. struct sched_attr attr = {
  3242. .size = sizeof(struct sched_attr),
  3243. };
  3244. struct task_struct *p;
  3245. int retval;
  3246. if (!uattr || pid < 0 || size > PAGE_SIZE ||
  3247. size < SCHED_ATTR_SIZE_VER0)
  3248. return -EINVAL;
  3249. rcu_read_lock();
  3250. p = find_process_by_pid(pid);
  3251. retval = -ESRCH;
  3252. if (!p)
  3253. goto out_unlock;
  3254. retval = security_task_getscheduler(p);
  3255. if (retval)
  3256. goto out_unlock;
  3257. attr.sched_policy = p->policy;
  3258. if (p->sched_reset_on_fork)
  3259. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  3260. if (task_has_dl_policy(p))
  3261. __getparam_dl(p, &attr);
  3262. else if (task_has_rt_policy(p))
  3263. attr.sched_priority = p->rt_priority;
  3264. else
  3265. attr.sched_nice = TASK_NICE(p);
  3266. rcu_read_unlock();
  3267. retval = sched_read_attr(uattr, &attr, size);
  3268. return retval;
  3269. out_unlock:
  3270. rcu_read_unlock();
  3271. return retval;
  3272. }
  3273. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3274. {
  3275. cpumask_var_t cpus_allowed, new_mask;
  3276. struct task_struct *p;
  3277. int retval;
  3278. rcu_read_lock();
  3279. p = find_process_by_pid(pid);
  3280. if (!p) {
  3281. rcu_read_unlock();
  3282. return -ESRCH;
  3283. }
  3284. /* Prevent p going away */
  3285. get_task_struct(p);
  3286. rcu_read_unlock();
  3287. if (p->flags & PF_NO_SETAFFINITY) {
  3288. retval = -EINVAL;
  3289. goto out_put_task;
  3290. }
  3291. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3292. retval = -ENOMEM;
  3293. goto out_put_task;
  3294. }
  3295. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3296. retval = -ENOMEM;
  3297. goto out_free_cpus_allowed;
  3298. }
  3299. retval = -EPERM;
  3300. if (!check_same_owner(p)) {
  3301. rcu_read_lock();
  3302. if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
  3303. rcu_read_unlock();
  3304. goto out_unlock;
  3305. }
  3306. rcu_read_unlock();
  3307. }
  3308. retval = security_task_setscheduler(p);
  3309. if (retval)
  3310. goto out_unlock;
  3311. cpuset_cpus_allowed(p, cpus_allowed);
  3312. cpumask_and(new_mask, in_mask, cpus_allowed);
  3313. /*
  3314. * Since bandwidth control happens on root_domain basis,
  3315. * if admission test is enabled, we only admit -deadline
  3316. * tasks allowed to run on all the CPUs in the task's
  3317. * root_domain.
  3318. */
  3319. #ifdef CONFIG_SMP
  3320. if (task_has_dl_policy(p)) {
  3321. const struct cpumask *span = task_rq(p)->rd->span;
  3322. if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
  3323. retval = -EBUSY;
  3324. goto out_unlock;
  3325. }
  3326. }
  3327. #endif
  3328. again:
  3329. retval = set_cpus_allowed_ptr(p, new_mask);
  3330. if (!retval) {
  3331. cpuset_cpus_allowed(p, cpus_allowed);
  3332. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3333. /*
  3334. * We must have raced with a concurrent cpuset
  3335. * update. Just reset the cpus_allowed to the
  3336. * cpuset's cpus_allowed
  3337. */
  3338. cpumask_copy(new_mask, cpus_allowed);
  3339. goto again;
  3340. }
  3341. }
  3342. out_unlock:
  3343. free_cpumask_var(new_mask);
  3344. out_free_cpus_allowed:
  3345. free_cpumask_var(cpus_allowed);
  3346. out_put_task:
  3347. put_task_struct(p);
  3348. return retval;
  3349. }
  3350. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3351. struct cpumask *new_mask)
  3352. {
  3353. if (len < cpumask_size())
  3354. cpumask_clear(new_mask);
  3355. else if (len > cpumask_size())
  3356. len = cpumask_size();
  3357. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3358. }
  3359. /**
  3360. * sys_sched_setaffinity - set the cpu affinity of a process
  3361. * @pid: pid of the process
  3362. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3363. * @user_mask_ptr: user-space pointer to the new cpu mask
  3364. *
  3365. * Return: 0 on success. An error code otherwise.
  3366. */
  3367. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  3368. unsigned long __user *, user_mask_ptr)
  3369. {
  3370. cpumask_var_t new_mask;
  3371. int retval;
  3372. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  3373. return -ENOMEM;
  3374. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  3375. if (retval == 0)
  3376. retval = sched_setaffinity(pid, new_mask);
  3377. free_cpumask_var(new_mask);
  3378. return retval;
  3379. }
  3380. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  3381. {
  3382. struct task_struct *p;
  3383. unsigned long flags;
  3384. int retval;
  3385. rcu_read_lock();
  3386. retval = -ESRCH;
  3387. p = find_process_by_pid(pid);
  3388. if (!p)
  3389. goto out_unlock;
  3390. retval = security_task_getscheduler(p);
  3391. if (retval)
  3392. goto out_unlock;
  3393. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3394. cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
  3395. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3396. out_unlock:
  3397. rcu_read_unlock();
  3398. return retval;
  3399. }
  3400. /**
  3401. * sys_sched_getaffinity - get the cpu affinity of a process
  3402. * @pid: pid of the process
  3403. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3404. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3405. *
  3406. * Return: 0 on success. An error code otherwise.
  3407. */
  3408. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  3409. unsigned long __user *, user_mask_ptr)
  3410. {
  3411. int ret;
  3412. cpumask_var_t mask;
  3413. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  3414. return -EINVAL;
  3415. if (len & (sizeof(unsigned long)-1))
  3416. return -EINVAL;
  3417. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  3418. return -ENOMEM;
  3419. ret = sched_getaffinity(pid, mask);
  3420. if (ret == 0) {
  3421. size_t retlen = min_t(size_t, len, cpumask_size());
  3422. if (copy_to_user(user_mask_ptr, mask, retlen))
  3423. ret = -EFAULT;
  3424. else
  3425. ret = retlen;
  3426. }
  3427. free_cpumask_var(mask);
  3428. return ret;
  3429. }
  3430. /**
  3431. * sys_sched_yield - yield the current processor to other threads.
  3432. *
  3433. * This function yields the current CPU to other tasks. If there are no
  3434. * other threads running on this CPU then this function will return.
  3435. *
  3436. * Return: 0.
  3437. */
  3438. SYSCALL_DEFINE0(sched_yield)
  3439. {
  3440. struct rq *rq = this_rq_lock();
  3441. schedstat_inc(rq, yld_count);
  3442. current->sched_class->yield_task(rq);
  3443. /*
  3444. * Since we are going to call schedule() anyway, there's
  3445. * no need to preempt or enable interrupts:
  3446. */
  3447. __release(rq->lock);
  3448. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3449. do_raw_spin_unlock(&rq->lock);
  3450. sched_preempt_enable_no_resched();
  3451. schedule();
  3452. return 0;
  3453. }
  3454. static void __cond_resched(void)
  3455. {
  3456. __preempt_count_add(PREEMPT_ACTIVE);
  3457. __schedule();
  3458. __preempt_count_sub(PREEMPT_ACTIVE);
  3459. }
  3460. int __sched _cond_resched(void)
  3461. {
  3462. if (should_resched()) {
  3463. __cond_resched();
  3464. return 1;
  3465. }
  3466. return 0;
  3467. }
  3468. EXPORT_SYMBOL(_cond_resched);
  3469. /*
  3470. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3471. * call schedule, and on return reacquire the lock.
  3472. *
  3473. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3474. * operations here to prevent schedule() from being called twice (once via
  3475. * spin_unlock(), once by hand).
  3476. */
  3477. int __cond_resched_lock(spinlock_t *lock)
  3478. {
  3479. int resched = should_resched();
  3480. int ret = 0;
  3481. lockdep_assert_held(lock);
  3482. if (spin_needbreak(lock) || resched) {
  3483. spin_unlock(lock);
  3484. if (resched)
  3485. __cond_resched();
  3486. else
  3487. cpu_relax();
  3488. ret = 1;
  3489. spin_lock(lock);
  3490. }
  3491. return ret;
  3492. }
  3493. EXPORT_SYMBOL(__cond_resched_lock);
  3494. int __sched __cond_resched_softirq(void)
  3495. {
  3496. BUG_ON(!in_softirq());
  3497. if (should_resched()) {
  3498. local_bh_enable();
  3499. __cond_resched();
  3500. local_bh_disable();
  3501. return 1;
  3502. }
  3503. return 0;
  3504. }
  3505. EXPORT_SYMBOL(__cond_resched_softirq);
  3506. /**
  3507. * yield - yield the current processor to other threads.
  3508. *
  3509. * Do not ever use this function, there's a 99% chance you're doing it wrong.
  3510. *
  3511. * The scheduler is at all times free to pick the calling task as the most
  3512. * eligible task to run, if removing the yield() call from your code breaks
  3513. * it, its already broken.
  3514. *
  3515. * Typical broken usage is:
  3516. *
  3517. * while (!event)
  3518. * yield();
  3519. *
  3520. * where one assumes that yield() will let 'the other' process run that will
  3521. * make event true. If the current task is a SCHED_FIFO task that will never
  3522. * happen. Never use yield() as a progress guarantee!!
  3523. *
  3524. * If you want to use yield() to wait for something, use wait_event().
  3525. * If you want to use yield() to be 'nice' for others, use cond_resched().
  3526. * If you still want to use yield(), do not!
  3527. */
  3528. void __sched yield(void)
  3529. {
  3530. set_current_state(TASK_RUNNING);
  3531. sys_sched_yield();
  3532. }
  3533. EXPORT_SYMBOL(yield);
  3534. /**
  3535. * yield_to - yield the current processor to another thread in
  3536. * your thread group, or accelerate that thread toward the
  3537. * processor it's on.
  3538. * @p: target task
  3539. * @preempt: whether task preemption is allowed or not
  3540. *
  3541. * It's the caller's job to ensure that the target task struct
  3542. * can't go away on us before we can do any checks.
  3543. *
  3544. * Return:
  3545. * true (>0) if we indeed boosted the target task.
  3546. * false (0) if we failed to boost the target.
  3547. * -ESRCH if there's no task to yield to.
  3548. */
  3549. bool __sched yield_to(struct task_struct *p, bool preempt)
  3550. {
  3551. struct task_struct *curr = current;
  3552. struct rq *rq, *p_rq;
  3553. unsigned long flags;
  3554. int yielded = 0;
  3555. local_irq_save(flags);
  3556. rq = this_rq();
  3557. again:
  3558. p_rq = task_rq(p);
  3559. /*
  3560. * If we're the only runnable task on the rq and target rq also
  3561. * has only one task, there's absolutely no point in yielding.
  3562. */
  3563. if (rq->nr_running == 1 && p_rq->nr_running == 1) {
  3564. yielded = -ESRCH;
  3565. goto out_irq;
  3566. }
  3567. double_rq_lock(rq, p_rq);
  3568. if (task_rq(p) != p_rq) {
  3569. double_rq_unlock(rq, p_rq);
  3570. goto again;
  3571. }
  3572. if (!curr->sched_class->yield_to_task)
  3573. goto out_unlock;
  3574. if (curr->sched_class != p->sched_class)
  3575. goto out_unlock;
  3576. if (task_running(p_rq, p) || p->state)
  3577. goto out_unlock;
  3578. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  3579. if (yielded) {
  3580. schedstat_inc(rq, yld_count);
  3581. /*
  3582. * Make p's CPU reschedule; pick_next_entity takes care of
  3583. * fairness.
  3584. */
  3585. if (preempt && rq != p_rq)
  3586. resched_task(p_rq->curr);
  3587. }
  3588. out_unlock:
  3589. double_rq_unlock(rq, p_rq);
  3590. out_irq:
  3591. local_irq_restore(flags);
  3592. if (yielded > 0)
  3593. schedule();
  3594. return yielded;
  3595. }
  3596. EXPORT_SYMBOL_GPL(yield_to);
  3597. /*
  3598. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3599. * that process accounting knows that this is a task in IO wait state.
  3600. */
  3601. void __sched io_schedule(void)
  3602. {
  3603. struct rq *rq = raw_rq();
  3604. delayacct_blkio_start();
  3605. atomic_inc(&rq->nr_iowait);
  3606. blk_flush_plug(current);
  3607. current->in_iowait = 1;
  3608. schedule();
  3609. current->in_iowait = 0;
  3610. atomic_dec(&rq->nr_iowait);
  3611. delayacct_blkio_end();
  3612. }
  3613. EXPORT_SYMBOL(io_schedule);
  3614. long __sched io_schedule_timeout(long timeout)
  3615. {
  3616. struct rq *rq = raw_rq();
  3617. long ret;
  3618. delayacct_blkio_start();
  3619. atomic_inc(&rq->nr_iowait);
  3620. blk_flush_plug(current);
  3621. current->in_iowait = 1;
  3622. ret = schedule_timeout(timeout);
  3623. current->in_iowait = 0;
  3624. atomic_dec(&rq->nr_iowait);
  3625. delayacct_blkio_end();
  3626. return ret;
  3627. }
  3628. /**
  3629. * sys_sched_get_priority_max - return maximum RT priority.
  3630. * @policy: scheduling class.
  3631. *
  3632. * Return: On success, this syscall returns the maximum
  3633. * rt_priority that can be used by a given scheduling class.
  3634. * On failure, a negative error code is returned.
  3635. */
  3636. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  3637. {
  3638. int ret = -EINVAL;
  3639. switch (policy) {
  3640. case SCHED_FIFO:
  3641. case SCHED_RR:
  3642. ret = MAX_USER_RT_PRIO-1;
  3643. break;
  3644. case SCHED_DEADLINE:
  3645. case SCHED_NORMAL:
  3646. case SCHED_BATCH:
  3647. case SCHED_IDLE:
  3648. ret = 0;
  3649. break;
  3650. }
  3651. return ret;
  3652. }
  3653. /**
  3654. * sys_sched_get_priority_min - return minimum RT priority.
  3655. * @policy: scheduling class.
  3656. *
  3657. * Return: On success, this syscall returns the minimum
  3658. * rt_priority that can be used by a given scheduling class.
  3659. * On failure, a negative error code is returned.
  3660. */
  3661. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  3662. {
  3663. int ret = -EINVAL;
  3664. switch (policy) {
  3665. case SCHED_FIFO:
  3666. case SCHED_RR:
  3667. ret = 1;
  3668. break;
  3669. case SCHED_DEADLINE:
  3670. case SCHED_NORMAL:
  3671. case SCHED_BATCH:
  3672. case SCHED_IDLE:
  3673. ret = 0;
  3674. }
  3675. return ret;
  3676. }
  3677. /**
  3678. * sys_sched_rr_get_interval - return the default timeslice of a process.
  3679. * @pid: pid of the process.
  3680. * @interval: userspace pointer to the timeslice value.
  3681. *
  3682. * this syscall writes the default timeslice value of a given process
  3683. * into the user-space timespec buffer. A value of '0' means infinity.
  3684. *
  3685. * Return: On success, 0 and the timeslice is in @interval. Otherwise,
  3686. * an error code.
  3687. */
  3688. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  3689. struct timespec __user *, interval)
  3690. {
  3691. struct task_struct *p;
  3692. unsigned int time_slice;
  3693. unsigned long flags;
  3694. struct rq *rq;
  3695. int retval;
  3696. struct timespec t;
  3697. if (pid < 0)
  3698. return -EINVAL;
  3699. retval = -ESRCH;
  3700. rcu_read_lock();
  3701. p = find_process_by_pid(pid);
  3702. if (!p)
  3703. goto out_unlock;
  3704. retval = security_task_getscheduler(p);
  3705. if (retval)
  3706. goto out_unlock;
  3707. rq = task_rq_lock(p, &flags);
  3708. time_slice = 0;
  3709. if (p->sched_class->get_rr_interval)
  3710. time_slice = p->sched_class->get_rr_interval(rq, p);
  3711. task_rq_unlock(rq, p, &flags);
  3712. rcu_read_unlock();
  3713. jiffies_to_timespec(time_slice, &t);
  3714. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  3715. return retval;
  3716. out_unlock:
  3717. rcu_read_unlock();
  3718. return retval;
  3719. }
  3720. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  3721. void sched_show_task(struct task_struct *p)
  3722. {
  3723. unsigned long free = 0;
  3724. int ppid;
  3725. unsigned state;
  3726. state = p->state ? __ffs(p->state) + 1 : 0;
  3727. printk(KERN_INFO "%-15.15s %c", p->comm,
  3728. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  3729. #if BITS_PER_LONG == 32
  3730. if (state == TASK_RUNNING)
  3731. printk(KERN_CONT " running ");
  3732. else
  3733. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  3734. #else
  3735. if (state == TASK_RUNNING)
  3736. printk(KERN_CONT " running task ");
  3737. else
  3738. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  3739. #endif
  3740. #ifdef CONFIG_DEBUG_STACK_USAGE
  3741. free = stack_not_used(p);
  3742. #endif
  3743. rcu_read_lock();
  3744. ppid = task_pid_nr(rcu_dereference(p->real_parent));
  3745. rcu_read_unlock();
  3746. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  3747. task_pid_nr(p), ppid,
  3748. (unsigned long)task_thread_info(p)->flags);
  3749. print_worker_info(KERN_INFO, p);
  3750. show_stack(p, NULL);
  3751. }
  3752. void show_state_filter(unsigned long state_filter)
  3753. {
  3754. struct task_struct *g, *p;
  3755. #if BITS_PER_LONG == 32
  3756. printk(KERN_INFO
  3757. " task PC stack pid father\n");
  3758. #else
  3759. printk(KERN_INFO
  3760. " task PC stack pid father\n");
  3761. #endif
  3762. rcu_read_lock();
  3763. do_each_thread(g, p) {
  3764. /*
  3765. * reset the NMI-timeout, listing all files on a slow
  3766. * console might take a lot of time:
  3767. */
  3768. touch_nmi_watchdog();
  3769. if (!state_filter || (p->state & state_filter))
  3770. sched_show_task(p);
  3771. } while_each_thread(g, p);
  3772. touch_all_softlockup_watchdogs();
  3773. #ifdef CONFIG_SCHED_DEBUG
  3774. sysrq_sched_debug_show();
  3775. #endif
  3776. rcu_read_unlock();
  3777. /*
  3778. * Only show locks if all tasks are dumped:
  3779. */
  3780. if (!state_filter)
  3781. debug_show_all_locks();
  3782. }
  3783. void init_idle_bootup_task(struct task_struct *idle)
  3784. {
  3785. idle->sched_class = &idle_sched_class;
  3786. }
  3787. /**
  3788. * init_idle - set up an idle thread for a given CPU
  3789. * @idle: task in question
  3790. * @cpu: cpu the idle task belongs to
  3791. *
  3792. * NOTE: this function does not set the idle thread's NEED_RESCHED
  3793. * flag, to make booting more robust.
  3794. */
  3795. void init_idle(struct task_struct *idle, int cpu)
  3796. {
  3797. struct rq *rq = cpu_rq(cpu);
  3798. unsigned long flags;
  3799. raw_spin_lock_irqsave(&rq->lock, flags);
  3800. __sched_fork(0, idle);
  3801. idle->state = TASK_RUNNING;
  3802. idle->se.exec_start = sched_clock();
  3803. do_set_cpus_allowed(idle, cpumask_of(cpu));
  3804. /*
  3805. * We're having a chicken and egg problem, even though we are
  3806. * holding rq->lock, the cpu isn't yet set to this cpu so the
  3807. * lockdep check in task_group() will fail.
  3808. *
  3809. * Similar case to sched_fork(). / Alternatively we could
  3810. * use task_rq_lock() here and obtain the other rq->lock.
  3811. *
  3812. * Silence PROVE_RCU
  3813. */
  3814. rcu_read_lock();
  3815. __set_task_cpu(idle, cpu);
  3816. rcu_read_unlock();
  3817. rq->curr = rq->idle = idle;
  3818. #if defined(CONFIG_SMP)
  3819. idle->on_cpu = 1;
  3820. #endif
  3821. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3822. /* Set the preempt count _outside_ the spinlocks! */
  3823. init_idle_preempt_count(idle, cpu);
  3824. /*
  3825. * The idle tasks have their own, simple scheduling class:
  3826. */
  3827. idle->sched_class = &idle_sched_class;
  3828. ftrace_graph_init_idle_task(idle, cpu);
  3829. vtime_init_idle(idle, cpu);
  3830. #if defined(CONFIG_SMP)
  3831. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  3832. #endif
  3833. }
  3834. #ifdef CONFIG_SMP
  3835. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  3836. {
  3837. if (p->sched_class && p->sched_class->set_cpus_allowed)
  3838. p->sched_class->set_cpus_allowed(p, new_mask);
  3839. cpumask_copy(&p->cpus_allowed, new_mask);
  3840. p->nr_cpus_allowed = cpumask_weight(new_mask);
  3841. }
  3842. /*
  3843. * This is how migration works:
  3844. *
  3845. * 1) we invoke migration_cpu_stop() on the target CPU using
  3846. * stop_one_cpu().
  3847. * 2) stopper starts to run (implicitly forcing the migrated thread
  3848. * off the CPU)
  3849. * 3) it checks whether the migrated task is still in the wrong runqueue.
  3850. * 4) if it's in the wrong runqueue then the migration thread removes
  3851. * it and puts it into the right queue.
  3852. * 5) stopper completes and stop_one_cpu() returns and the migration
  3853. * is done.
  3854. */
  3855. /*
  3856. * Change a given task's CPU affinity. Migrate the thread to a
  3857. * proper CPU and schedule it away if the CPU it's executing on
  3858. * is removed from the allowed bitmask.
  3859. *
  3860. * NOTE: the caller must have a valid reference to the task, the
  3861. * task must not exit() & deallocate itself prematurely. The
  3862. * call is not atomic; no spinlocks may be held.
  3863. */
  3864. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  3865. {
  3866. unsigned long flags;
  3867. struct rq *rq;
  3868. unsigned int dest_cpu;
  3869. int ret = 0;
  3870. rq = task_rq_lock(p, &flags);
  3871. if (cpumask_equal(&p->cpus_allowed, new_mask))
  3872. goto out;
  3873. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  3874. ret = -EINVAL;
  3875. goto out;
  3876. }
  3877. do_set_cpus_allowed(p, new_mask);
  3878. /* Can the task run on the task's current CPU? If so, we're done */
  3879. if (cpumask_test_cpu(task_cpu(p), new_mask))
  3880. goto out;
  3881. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  3882. if (p->on_rq) {
  3883. struct migration_arg arg = { p, dest_cpu };
  3884. /* Need help from migration thread: drop lock and wait. */
  3885. task_rq_unlock(rq, p, &flags);
  3886. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  3887. tlb_migrate_finish(p->mm);
  3888. return 0;
  3889. }
  3890. out:
  3891. task_rq_unlock(rq, p, &flags);
  3892. return ret;
  3893. }
  3894. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  3895. /*
  3896. * Move (not current) task off this cpu, onto dest cpu. We're doing
  3897. * this because either it can't run here any more (set_cpus_allowed()
  3898. * away from this CPU, or CPU going down), or because we're
  3899. * attempting to rebalance this task on exec (sched_exec).
  3900. *
  3901. * So we race with normal scheduler movements, but that's OK, as long
  3902. * as the task is no longer on this CPU.
  3903. *
  3904. * Returns non-zero if task was successfully migrated.
  3905. */
  3906. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  3907. {
  3908. struct rq *rq_dest, *rq_src;
  3909. int ret = 0;
  3910. if (unlikely(!cpu_active(dest_cpu)))
  3911. return ret;
  3912. rq_src = cpu_rq(src_cpu);
  3913. rq_dest = cpu_rq(dest_cpu);
  3914. raw_spin_lock(&p->pi_lock);
  3915. double_rq_lock(rq_src, rq_dest);
  3916. /* Already moved. */
  3917. if (task_cpu(p) != src_cpu)
  3918. goto done;
  3919. /* Affinity changed (again). */
  3920. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  3921. goto fail;
  3922. /*
  3923. * If we're not on a rq, the next wake-up will ensure we're
  3924. * placed properly.
  3925. */
  3926. if (p->on_rq) {
  3927. dequeue_task(rq_src, p, 0);
  3928. set_task_cpu(p, dest_cpu);
  3929. enqueue_task(rq_dest, p, 0);
  3930. check_preempt_curr(rq_dest, p, 0);
  3931. }
  3932. done:
  3933. ret = 1;
  3934. fail:
  3935. double_rq_unlock(rq_src, rq_dest);
  3936. raw_spin_unlock(&p->pi_lock);
  3937. return ret;
  3938. }
  3939. #ifdef CONFIG_NUMA_BALANCING
  3940. /* Migrate current task p to target_cpu */
  3941. int migrate_task_to(struct task_struct *p, int target_cpu)
  3942. {
  3943. struct migration_arg arg = { p, target_cpu };
  3944. int curr_cpu = task_cpu(p);
  3945. if (curr_cpu == target_cpu)
  3946. return 0;
  3947. if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
  3948. return -EINVAL;
  3949. /* TODO: This is not properly updating schedstats */
  3950. trace_sched_move_numa(p, curr_cpu, target_cpu);
  3951. return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
  3952. }
  3953. /*
  3954. * Requeue a task on a given node and accurately track the number of NUMA
  3955. * tasks on the runqueues
  3956. */
  3957. void sched_setnuma(struct task_struct *p, int nid)
  3958. {
  3959. struct rq *rq;
  3960. unsigned long flags;
  3961. bool on_rq, running;
  3962. rq = task_rq_lock(p, &flags);
  3963. on_rq = p->on_rq;
  3964. running = task_current(rq, p);
  3965. if (on_rq)
  3966. dequeue_task(rq, p, 0);
  3967. if (running)
  3968. p->sched_class->put_prev_task(rq, p);
  3969. p->numa_preferred_nid = nid;
  3970. if (running)
  3971. p->sched_class->set_curr_task(rq);
  3972. if (on_rq)
  3973. enqueue_task(rq, p, 0);
  3974. task_rq_unlock(rq, p, &flags);
  3975. }
  3976. #endif
  3977. /*
  3978. * migration_cpu_stop - this will be executed by a highprio stopper thread
  3979. * and performs thread migration by bumping thread off CPU then
  3980. * 'pushing' onto another runqueue.
  3981. */
  3982. static int migration_cpu_stop(void *data)
  3983. {
  3984. struct migration_arg *arg = data;
  3985. /*
  3986. * The original target cpu might have gone down and we might
  3987. * be on another cpu but it doesn't matter.
  3988. */
  3989. local_irq_disable();
  3990. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  3991. local_irq_enable();
  3992. return 0;
  3993. }
  3994. #ifdef CONFIG_HOTPLUG_CPU
  3995. /*
  3996. * Ensures that the idle task is using init_mm right before its cpu goes
  3997. * offline.
  3998. */
  3999. void idle_task_exit(void)
  4000. {
  4001. struct mm_struct *mm = current->active_mm;
  4002. BUG_ON(cpu_online(smp_processor_id()));
  4003. if (mm != &init_mm)
  4004. switch_mm(mm, &init_mm, current);
  4005. mmdrop(mm);
  4006. }
  4007. /*
  4008. * Since this CPU is going 'away' for a while, fold any nr_active delta
  4009. * we might have. Assumes we're called after migrate_tasks() so that the
  4010. * nr_active count is stable.
  4011. *
  4012. * Also see the comment "Global load-average calculations".
  4013. */
  4014. static void calc_load_migrate(struct rq *rq)
  4015. {
  4016. long delta = calc_load_fold_active(rq);
  4017. if (delta)
  4018. atomic_long_add(delta, &calc_load_tasks);
  4019. }
  4020. /*
  4021. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4022. * try_to_wake_up()->select_task_rq().
  4023. *
  4024. * Called with rq->lock held even though we'er in stop_machine() and
  4025. * there's no concurrency possible, we hold the required locks anyway
  4026. * because of lock validation efforts.
  4027. */
  4028. static void migrate_tasks(unsigned int dead_cpu)
  4029. {
  4030. struct rq *rq = cpu_rq(dead_cpu);
  4031. struct task_struct *next, *stop = rq->stop;
  4032. int dest_cpu;
  4033. /*
  4034. * Fudge the rq selection such that the below task selection loop
  4035. * doesn't get stuck on the currently eligible stop task.
  4036. *
  4037. * We're currently inside stop_machine() and the rq is either stuck
  4038. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4039. * either way we should never end up calling schedule() until we're
  4040. * done here.
  4041. */
  4042. rq->stop = NULL;
  4043. /*
  4044. * put_prev_task() and pick_next_task() sched
  4045. * class method both need to have an up-to-date
  4046. * value of rq->clock[_task]
  4047. */
  4048. update_rq_clock(rq);
  4049. for ( ; ; ) {
  4050. /*
  4051. * There's this thread running, bail when that's the only
  4052. * remaining thread.
  4053. */
  4054. if (rq->nr_running == 1)
  4055. break;
  4056. next = pick_next_task(rq);
  4057. BUG_ON(!next);
  4058. next->sched_class->put_prev_task(rq, next);
  4059. /* Find suitable destination for @next, with force if needed. */
  4060. dest_cpu = select_fallback_rq(dead_cpu, next);
  4061. raw_spin_unlock(&rq->lock);
  4062. __migrate_task(next, dead_cpu, dest_cpu);
  4063. raw_spin_lock(&rq->lock);
  4064. }
  4065. rq->stop = stop;
  4066. }
  4067. #endif /* CONFIG_HOTPLUG_CPU */
  4068. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4069. static struct ctl_table sd_ctl_dir[] = {
  4070. {
  4071. .procname = "sched_domain",
  4072. .mode = 0555,
  4073. },
  4074. {}
  4075. };
  4076. static struct ctl_table sd_ctl_root[] = {
  4077. {
  4078. .procname = "kernel",
  4079. .mode = 0555,
  4080. .child = sd_ctl_dir,
  4081. },
  4082. {}
  4083. };
  4084. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4085. {
  4086. struct ctl_table *entry =
  4087. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4088. return entry;
  4089. }
  4090. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4091. {
  4092. struct ctl_table *entry;
  4093. /*
  4094. * In the intermediate directories, both the child directory and
  4095. * procname are dynamically allocated and could fail but the mode
  4096. * will always be set. In the lowest directory the names are
  4097. * static strings and all have proc handlers.
  4098. */
  4099. for (entry = *tablep; entry->mode; entry++) {
  4100. if (entry->child)
  4101. sd_free_ctl_entry(&entry->child);
  4102. if (entry->proc_handler == NULL)
  4103. kfree(entry->procname);
  4104. }
  4105. kfree(*tablep);
  4106. *tablep = NULL;
  4107. }
  4108. static int min_load_idx = 0;
  4109. static int max_load_idx = CPU_LOAD_IDX_MAX-1;
  4110. static void
  4111. set_table_entry(struct ctl_table *entry,
  4112. const char *procname, void *data, int maxlen,
  4113. umode_t mode, proc_handler *proc_handler,
  4114. bool load_idx)
  4115. {
  4116. entry->procname = procname;
  4117. entry->data = data;
  4118. entry->maxlen = maxlen;
  4119. entry->mode = mode;
  4120. entry->proc_handler = proc_handler;
  4121. if (load_idx) {
  4122. entry->extra1 = &min_load_idx;
  4123. entry->extra2 = &max_load_idx;
  4124. }
  4125. }
  4126. static struct ctl_table *
  4127. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4128. {
  4129. struct ctl_table *table = sd_alloc_ctl_entry(13);
  4130. if (table == NULL)
  4131. return NULL;
  4132. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4133. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4134. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4135. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4136. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4137. sizeof(int), 0644, proc_dointvec_minmax, true);
  4138. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4139. sizeof(int), 0644, proc_dointvec_minmax, true);
  4140. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4141. sizeof(int), 0644, proc_dointvec_minmax, true);
  4142. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4143. sizeof(int), 0644, proc_dointvec_minmax, true);
  4144. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4145. sizeof(int), 0644, proc_dointvec_minmax, true);
  4146. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4147. sizeof(int), 0644, proc_dointvec_minmax, false);
  4148. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4149. sizeof(int), 0644, proc_dointvec_minmax, false);
  4150. set_table_entry(&table[9], "cache_nice_tries",
  4151. &sd->cache_nice_tries,
  4152. sizeof(int), 0644, proc_dointvec_minmax, false);
  4153. set_table_entry(&table[10], "flags", &sd->flags,
  4154. sizeof(int), 0644, proc_dointvec_minmax, false);
  4155. set_table_entry(&table[11], "name", sd->name,
  4156. CORENAME_MAX_SIZE, 0444, proc_dostring, false);
  4157. /* &table[12] is terminator */
  4158. return table;
  4159. }
  4160. static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4161. {
  4162. struct ctl_table *entry, *table;
  4163. struct sched_domain *sd;
  4164. int domain_num = 0, i;
  4165. char buf[32];
  4166. for_each_domain(cpu, sd)
  4167. domain_num++;
  4168. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4169. if (table == NULL)
  4170. return NULL;
  4171. i = 0;
  4172. for_each_domain(cpu, sd) {
  4173. snprintf(buf, 32, "domain%d", i);
  4174. entry->procname = kstrdup(buf, GFP_KERNEL);
  4175. entry->mode = 0555;
  4176. entry->child = sd_alloc_ctl_domain_table(sd);
  4177. entry++;
  4178. i++;
  4179. }
  4180. return table;
  4181. }
  4182. static struct ctl_table_header *sd_sysctl_header;
  4183. static void register_sched_domain_sysctl(void)
  4184. {
  4185. int i, cpu_num = num_possible_cpus();
  4186. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4187. char buf[32];
  4188. WARN_ON(sd_ctl_dir[0].child);
  4189. sd_ctl_dir[0].child = entry;
  4190. if (entry == NULL)
  4191. return;
  4192. for_each_possible_cpu(i) {
  4193. snprintf(buf, 32, "cpu%d", i);
  4194. entry->procname = kstrdup(buf, GFP_KERNEL);
  4195. entry->mode = 0555;
  4196. entry->child = sd_alloc_ctl_cpu_table(i);
  4197. entry++;
  4198. }
  4199. WARN_ON(sd_sysctl_header);
  4200. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4201. }
  4202. /* may be called multiple times per register */
  4203. static void unregister_sched_domain_sysctl(void)
  4204. {
  4205. if (sd_sysctl_header)
  4206. unregister_sysctl_table(sd_sysctl_header);
  4207. sd_sysctl_header = NULL;
  4208. if (sd_ctl_dir[0].child)
  4209. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4210. }
  4211. #else
  4212. static void register_sched_domain_sysctl(void)
  4213. {
  4214. }
  4215. static void unregister_sched_domain_sysctl(void)
  4216. {
  4217. }
  4218. #endif
  4219. static void set_rq_online(struct rq *rq)
  4220. {
  4221. if (!rq->online) {
  4222. const struct sched_class *class;
  4223. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4224. rq->online = 1;
  4225. for_each_class(class) {
  4226. if (class->rq_online)
  4227. class->rq_online(rq);
  4228. }
  4229. }
  4230. }
  4231. static void set_rq_offline(struct rq *rq)
  4232. {
  4233. if (rq->online) {
  4234. const struct sched_class *class;
  4235. for_each_class(class) {
  4236. if (class->rq_offline)
  4237. class->rq_offline(rq);
  4238. }
  4239. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4240. rq->online = 0;
  4241. }
  4242. }
  4243. /*
  4244. * migration_call - callback that gets triggered when a CPU is added.
  4245. * Here we can start up the necessary migration thread for the new CPU.
  4246. */
  4247. static int
  4248. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4249. {
  4250. int cpu = (long)hcpu;
  4251. unsigned long flags;
  4252. struct rq *rq = cpu_rq(cpu);
  4253. switch (action & ~CPU_TASKS_FROZEN) {
  4254. case CPU_UP_PREPARE:
  4255. rq->calc_load_update = calc_load_update;
  4256. break;
  4257. case CPU_ONLINE:
  4258. /* Update our root-domain */
  4259. raw_spin_lock_irqsave(&rq->lock, flags);
  4260. if (rq->rd) {
  4261. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4262. set_rq_online(rq);
  4263. }
  4264. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4265. break;
  4266. #ifdef CONFIG_HOTPLUG_CPU
  4267. case CPU_DYING:
  4268. sched_ttwu_pending();
  4269. /* Update our root-domain */
  4270. raw_spin_lock_irqsave(&rq->lock, flags);
  4271. if (rq->rd) {
  4272. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4273. set_rq_offline(rq);
  4274. }
  4275. migrate_tasks(cpu);
  4276. BUG_ON(rq->nr_running != 1); /* the migration thread */
  4277. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4278. break;
  4279. case CPU_DEAD:
  4280. calc_load_migrate(rq);
  4281. break;
  4282. #endif
  4283. }
  4284. update_max_interval();
  4285. return NOTIFY_OK;
  4286. }
  4287. /*
  4288. * Register at high priority so that task migration (migrate_all_tasks)
  4289. * happens before everything else. This has to be lower priority than
  4290. * the notifier in the perf_event subsystem, though.
  4291. */
  4292. static struct notifier_block migration_notifier = {
  4293. .notifier_call = migration_call,
  4294. .priority = CPU_PRI_MIGRATION,
  4295. };
  4296. static int sched_cpu_active(struct notifier_block *nfb,
  4297. unsigned long action, void *hcpu)
  4298. {
  4299. switch (action & ~CPU_TASKS_FROZEN) {
  4300. case CPU_STARTING:
  4301. case CPU_DOWN_FAILED:
  4302. set_cpu_active((long)hcpu, true);
  4303. return NOTIFY_OK;
  4304. default:
  4305. return NOTIFY_DONE;
  4306. }
  4307. }
  4308. static int sched_cpu_inactive(struct notifier_block *nfb,
  4309. unsigned long action, void *hcpu)
  4310. {
  4311. unsigned long flags;
  4312. long cpu = (long)hcpu;
  4313. switch (action & ~CPU_TASKS_FROZEN) {
  4314. case CPU_DOWN_PREPARE:
  4315. set_cpu_active(cpu, false);
  4316. /* explicitly allow suspend */
  4317. if (!(action & CPU_TASKS_FROZEN)) {
  4318. struct dl_bw *dl_b = dl_bw_of(cpu);
  4319. bool overflow;
  4320. int cpus;
  4321. raw_spin_lock_irqsave(&dl_b->lock, flags);
  4322. cpus = dl_bw_cpus(cpu);
  4323. overflow = __dl_overflow(dl_b, cpus, 0, 0);
  4324. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  4325. if (overflow)
  4326. return notifier_from_errno(-EBUSY);
  4327. }
  4328. return NOTIFY_OK;
  4329. }
  4330. return NOTIFY_DONE;
  4331. }
  4332. static int __init migration_init(void)
  4333. {
  4334. void *cpu = (void *)(long)smp_processor_id();
  4335. int err;
  4336. /* Initialize migration for the boot CPU */
  4337. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4338. BUG_ON(err == NOTIFY_BAD);
  4339. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4340. register_cpu_notifier(&migration_notifier);
  4341. /* Register cpu active notifiers */
  4342. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  4343. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  4344. return 0;
  4345. }
  4346. early_initcall(migration_init);
  4347. #endif
  4348. #ifdef CONFIG_SMP
  4349. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  4350. #ifdef CONFIG_SCHED_DEBUG
  4351. static __read_mostly int sched_debug_enabled;
  4352. static int __init sched_debug_setup(char *str)
  4353. {
  4354. sched_debug_enabled = 1;
  4355. return 0;
  4356. }
  4357. early_param("sched_debug", sched_debug_setup);
  4358. static inline bool sched_debug(void)
  4359. {
  4360. return sched_debug_enabled;
  4361. }
  4362. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4363. struct cpumask *groupmask)
  4364. {
  4365. struct sched_group *group = sd->groups;
  4366. char str[256];
  4367. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  4368. cpumask_clear(groupmask);
  4369. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4370. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4371. printk("does not load-balance\n");
  4372. if (sd->parent)
  4373. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4374. " has parent");
  4375. return -1;
  4376. }
  4377. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  4378. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4379. printk(KERN_ERR "ERROR: domain->span does not contain "
  4380. "CPU%d\n", cpu);
  4381. }
  4382. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4383. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4384. " CPU%d\n", cpu);
  4385. }
  4386. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4387. do {
  4388. if (!group) {
  4389. printk("\n");
  4390. printk(KERN_ERR "ERROR: group is NULL\n");
  4391. break;
  4392. }
  4393. /*
  4394. * Even though we initialize ->power to something semi-sane,
  4395. * we leave power_orig unset. This allows us to detect if
  4396. * domain iteration is still funny without causing /0 traps.
  4397. */
  4398. if (!group->sgp->power_orig) {
  4399. printk(KERN_CONT "\n");
  4400. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4401. "set\n");
  4402. break;
  4403. }
  4404. if (!cpumask_weight(sched_group_cpus(group))) {
  4405. printk(KERN_CONT "\n");
  4406. printk(KERN_ERR "ERROR: empty group\n");
  4407. break;
  4408. }
  4409. if (!(sd->flags & SD_OVERLAP) &&
  4410. cpumask_intersects(groupmask, sched_group_cpus(group))) {
  4411. printk(KERN_CONT "\n");
  4412. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4413. break;
  4414. }
  4415. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  4416. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  4417. printk(KERN_CONT " %s", str);
  4418. if (group->sgp->power != SCHED_POWER_SCALE) {
  4419. printk(KERN_CONT " (cpu_power = %d)",
  4420. group->sgp->power);
  4421. }
  4422. group = group->next;
  4423. } while (group != sd->groups);
  4424. printk(KERN_CONT "\n");
  4425. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  4426. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4427. if (sd->parent &&
  4428. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  4429. printk(KERN_ERR "ERROR: parent span is not a superset "
  4430. "of domain->span\n");
  4431. return 0;
  4432. }
  4433. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4434. {
  4435. int level = 0;
  4436. if (!sched_debug_enabled)
  4437. return;
  4438. if (!sd) {
  4439. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4440. return;
  4441. }
  4442. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4443. for (;;) {
  4444. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  4445. break;
  4446. level++;
  4447. sd = sd->parent;
  4448. if (!sd)
  4449. break;
  4450. }
  4451. }
  4452. #else /* !CONFIG_SCHED_DEBUG */
  4453. # define sched_domain_debug(sd, cpu) do { } while (0)
  4454. static inline bool sched_debug(void)
  4455. {
  4456. return false;
  4457. }
  4458. #endif /* CONFIG_SCHED_DEBUG */
  4459. static int sd_degenerate(struct sched_domain *sd)
  4460. {
  4461. if (cpumask_weight(sched_domain_span(sd)) == 1)
  4462. return 1;
  4463. /* Following flags need at least 2 groups */
  4464. if (sd->flags & (SD_LOAD_BALANCE |
  4465. SD_BALANCE_NEWIDLE |
  4466. SD_BALANCE_FORK |
  4467. SD_BALANCE_EXEC |
  4468. SD_SHARE_CPUPOWER |
  4469. SD_SHARE_PKG_RESOURCES)) {
  4470. if (sd->groups != sd->groups->next)
  4471. return 0;
  4472. }
  4473. /* Following flags don't use groups */
  4474. if (sd->flags & (SD_WAKE_AFFINE))
  4475. return 0;
  4476. return 1;
  4477. }
  4478. static int
  4479. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4480. {
  4481. unsigned long cflags = sd->flags, pflags = parent->flags;
  4482. if (sd_degenerate(parent))
  4483. return 1;
  4484. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  4485. return 0;
  4486. /* Flags needing groups don't count if only 1 group in parent */
  4487. if (parent->groups == parent->groups->next) {
  4488. pflags &= ~(SD_LOAD_BALANCE |
  4489. SD_BALANCE_NEWIDLE |
  4490. SD_BALANCE_FORK |
  4491. SD_BALANCE_EXEC |
  4492. SD_SHARE_CPUPOWER |
  4493. SD_SHARE_PKG_RESOURCES |
  4494. SD_PREFER_SIBLING);
  4495. if (nr_node_ids == 1)
  4496. pflags &= ~SD_SERIALIZE;
  4497. }
  4498. if (~cflags & pflags)
  4499. return 0;
  4500. return 1;
  4501. }
  4502. static void free_rootdomain(struct rcu_head *rcu)
  4503. {
  4504. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  4505. cpupri_cleanup(&rd->cpupri);
  4506. cpudl_cleanup(&rd->cpudl);
  4507. free_cpumask_var(rd->dlo_mask);
  4508. free_cpumask_var(rd->rto_mask);
  4509. free_cpumask_var(rd->online);
  4510. free_cpumask_var(rd->span);
  4511. kfree(rd);
  4512. }
  4513. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  4514. {
  4515. struct root_domain *old_rd = NULL;
  4516. unsigned long flags;
  4517. raw_spin_lock_irqsave(&rq->lock, flags);
  4518. if (rq->rd) {
  4519. old_rd = rq->rd;
  4520. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  4521. set_rq_offline(rq);
  4522. cpumask_clear_cpu(rq->cpu, old_rd->span);
  4523. /*
  4524. * If we dont want to free the old_rd yet then
  4525. * set old_rd to NULL to skip the freeing later
  4526. * in this function:
  4527. */
  4528. if (!atomic_dec_and_test(&old_rd->refcount))
  4529. old_rd = NULL;
  4530. }
  4531. atomic_inc(&rd->refcount);
  4532. rq->rd = rd;
  4533. cpumask_set_cpu(rq->cpu, rd->span);
  4534. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  4535. set_rq_online(rq);
  4536. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4537. if (old_rd)
  4538. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  4539. }
  4540. static int init_rootdomain(struct root_domain *rd)
  4541. {
  4542. memset(rd, 0, sizeof(*rd));
  4543. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  4544. goto out;
  4545. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  4546. goto free_span;
  4547. if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
  4548. goto free_online;
  4549. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  4550. goto free_dlo_mask;
  4551. init_dl_bw(&rd->dl_bw);
  4552. if (cpudl_init(&rd->cpudl) != 0)
  4553. goto free_dlo_mask;
  4554. if (cpupri_init(&rd->cpupri) != 0)
  4555. goto free_rto_mask;
  4556. return 0;
  4557. free_rto_mask:
  4558. free_cpumask_var(rd->rto_mask);
  4559. free_dlo_mask:
  4560. free_cpumask_var(rd->dlo_mask);
  4561. free_online:
  4562. free_cpumask_var(rd->online);
  4563. free_span:
  4564. free_cpumask_var(rd->span);
  4565. out:
  4566. return -ENOMEM;
  4567. }
  4568. /*
  4569. * By default the system creates a single root-domain with all cpus as
  4570. * members (mimicking the global state we have today).
  4571. */
  4572. struct root_domain def_root_domain;
  4573. static void init_defrootdomain(void)
  4574. {
  4575. init_rootdomain(&def_root_domain);
  4576. atomic_set(&def_root_domain.refcount, 1);
  4577. }
  4578. static struct root_domain *alloc_rootdomain(void)
  4579. {
  4580. struct root_domain *rd;
  4581. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  4582. if (!rd)
  4583. return NULL;
  4584. if (init_rootdomain(rd) != 0) {
  4585. kfree(rd);
  4586. return NULL;
  4587. }
  4588. return rd;
  4589. }
  4590. static void free_sched_groups(struct sched_group *sg, int free_sgp)
  4591. {
  4592. struct sched_group *tmp, *first;
  4593. if (!sg)
  4594. return;
  4595. first = sg;
  4596. do {
  4597. tmp = sg->next;
  4598. if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
  4599. kfree(sg->sgp);
  4600. kfree(sg);
  4601. sg = tmp;
  4602. } while (sg != first);
  4603. }
  4604. static void free_sched_domain(struct rcu_head *rcu)
  4605. {
  4606. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  4607. /*
  4608. * If its an overlapping domain it has private groups, iterate and
  4609. * nuke them all.
  4610. */
  4611. if (sd->flags & SD_OVERLAP) {
  4612. free_sched_groups(sd->groups, 1);
  4613. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  4614. kfree(sd->groups->sgp);
  4615. kfree(sd->groups);
  4616. }
  4617. kfree(sd);
  4618. }
  4619. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  4620. {
  4621. call_rcu(&sd->rcu, free_sched_domain);
  4622. }
  4623. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  4624. {
  4625. for (; sd; sd = sd->parent)
  4626. destroy_sched_domain(sd, cpu);
  4627. }
  4628. /*
  4629. * Keep a special pointer to the highest sched_domain that has
  4630. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  4631. * allows us to avoid some pointer chasing select_idle_sibling().
  4632. *
  4633. * Also keep a unique ID per domain (we use the first cpu number in
  4634. * the cpumask of the domain), this allows us to quickly tell if
  4635. * two cpus are in the same cache domain, see cpus_share_cache().
  4636. */
  4637. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  4638. DEFINE_PER_CPU(int, sd_llc_size);
  4639. DEFINE_PER_CPU(int, sd_llc_id);
  4640. DEFINE_PER_CPU(struct sched_domain *, sd_numa);
  4641. DEFINE_PER_CPU(struct sched_domain *, sd_busy);
  4642. DEFINE_PER_CPU(struct sched_domain *, sd_asym);
  4643. static void update_top_cache_domain(int cpu)
  4644. {
  4645. struct sched_domain *sd;
  4646. struct sched_domain *busy_sd = NULL;
  4647. int id = cpu;
  4648. int size = 1;
  4649. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  4650. if (sd) {
  4651. id = cpumask_first(sched_domain_span(sd));
  4652. size = cpumask_weight(sched_domain_span(sd));
  4653. busy_sd = sd->parent; /* sd_busy */
  4654. }
  4655. rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
  4656. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  4657. per_cpu(sd_llc_size, cpu) = size;
  4658. per_cpu(sd_llc_id, cpu) = id;
  4659. sd = lowest_flag_domain(cpu, SD_NUMA);
  4660. rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
  4661. sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
  4662. rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
  4663. }
  4664. /*
  4665. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4666. * hold the hotplug lock.
  4667. */
  4668. static void
  4669. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  4670. {
  4671. struct rq *rq = cpu_rq(cpu);
  4672. struct sched_domain *tmp;
  4673. /* Remove the sched domains which do not contribute to scheduling. */
  4674. for (tmp = sd; tmp; ) {
  4675. struct sched_domain *parent = tmp->parent;
  4676. if (!parent)
  4677. break;
  4678. if (sd_parent_degenerate(tmp, parent)) {
  4679. tmp->parent = parent->parent;
  4680. if (parent->parent)
  4681. parent->parent->child = tmp;
  4682. /*
  4683. * Transfer SD_PREFER_SIBLING down in case of a
  4684. * degenerate parent; the spans match for this
  4685. * so the property transfers.
  4686. */
  4687. if (parent->flags & SD_PREFER_SIBLING)
  4688. tmp->flags |= SD_PREFER_SIBLING;
  4689. destroy_sched_domain(parent, cpu);
  4690. } else
  4691. tmp = tmp->parent;
  4692. }
  4693. if (sd && sd_degenerate(sd)) {
  4694. tmp = sd;
  4695. sd = sd->parent;
  4696. destroy_sched_domain(tmp, cpu);
  4697. if (sd)
  4698. sd->child = NULL;
  4699. }
  4700. sched_domain_debug(sd, cpu);
  4701. rq_attach_root(rq, rd);
  4702. tmp = rq->sd;
  4703. rcu_assign_pointer(rq->sd, sd);
  4704. destroy_sched_domains(tmp, cpu);
  4705. update_top_cache_domain(cpu);
  4706. }
  4707. /* cpus with isolated domains */
  4708. static cpumask_var_t cpu_isolated_map;
  4709. /* Setup the mask of cpus configured for isolated domains */
  4710. static int __init isolated_cpu_setup(char *str)
  4711. {
  4712. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  4713. cpulist_parse(str, cpu_isolated_map);
  4714. return 1;
  4715. }
  4716. __setup("isolcpus=", isolated_cpu_setup);
  4717. static const struct cpumask *cpu_cpu_mask(int cpu)
  4718. {
  4719. return cpumask_of_node(cpu_to_node(cpu));
  4720. }
  4721. struct sd_data {
  4722. struct sched_domain **__percpu sd;
  4723. struct sched_group **__percpu sg;
  4724. struct sched_group_power **__percpu sgp;
  4725. };
  4726. struct s_data {
  4727. struct sched_domain ** __percpu sd;
  4728. struct root_domain *rd;
  4729. };
  4730. enum s_alloc {
  4731. sa_rootdomain,
  4732. sa_sd,
  4733. sa_sd_storage,
  4734. sa_none,
  4735. };
  4736. struct sched_domain_topology_level;
  4737. typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
  4738. typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
  4739. #define SDTL_OVERLAP 0x01
  4740. struct sched_domain_topology_level {
  4741. sched_domain_init_f init;
  4742. sched_domain_mask_f mask;
  4743. int flags;
  4744. int numa_level;
  4745. struct sd_data data;
  4746. };
  4747. /*
  4748. * Build an iteration mask that can exclude certain CPUs from the upwards
  4749. * domain traversal.
  4750. *
  4751. * Asymmetric node setups can result in situations where the domain tree is of
  4752. * unequal depth, make sure to skip domains that already cover the entire
  4753. * range.
  4754. *
  4755. * In that case build_sched_domains() will have terminated the iteration early
  4756. * and our sibling sd spans will be empty. Domains should always include the
  4757. * cpu they're built on, so check that.
  4758. *
  4759. */
  4760. static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
  4761. {
  4762. const struct cpumask *span = sched_domain_span(sd);
  4763. struct sd_data *sdd = sd->private;
  4764. struct sched_domain *sibling;
  4765. int i;
  4766. for_each_cpu(i, span) {
  4767. sibling = *per_cpu_ptr(sdd->sd, i);
  4768. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  4769. continue;
  4770. cpumask_set_cpu(i, sched_group_mask(sg));
  4771. }
  4772. }
  4773. /*
  4774. * Return the canonical balance cpu for this group, this is the first cpu
  4775. * of this group that's also in the iteration mask.
  4776. */
  4777. int group_balance_cpu(struct sched_group *sg)
  4778. {
  4779. return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
  4780. }
  4781. static int
  4782. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  4783. {
  4784. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  4785. const struct cpumask *span = sched_domain_span(sd);
  4786. struct cpumask *covered = sched_domains_tmpmask;
  4787. struct sd_data *sdd = sd->private;
  4788. struct sched_domain *child;
  4789. int i;
  4790. cpumask_clear(covered);
  4791. for_each_cpu(i, span) {
  4792. struct cpumask *sg_span;
  4793. if (cpumask_test_cpu(i, covered))
  4794. continue;
  4795. child = *per_cpu_ptr(sdd->sd, i);
  4796. /* See the comment near build_group_mask(). */
  4797. if (!cpumask_test_cpu(i, sched_domain_span(child)))
  4798. continue;
  4799. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  4800. GFP_KERNEL, cpu_to_node(cpu));
  4801. if (!sg)
  4802. goto fail;
  4803. sg_span = sched_group_cpus(sg);
  4804. if (child->child) {
  4805. child = child->child;
  4806. cpumask_copy(sg_span, sched_domain_span(child));
  4807. } else
  4808. cpumask_set_cpu(i, sg_span);
  4809. cpumask_or(covered, covered, sg_span);
  4810. sg->sgp = *per_cpu_ptr(sdd->sgp, i);
  4811. if (atomic_inc_return(&sg->sgp->ref) == 1)
  4812. build_group_mask(sd, sg);
  4813. /*
  4814. * Initialize sgp->power such that even if we mess up the
  4815. * domains and no possible iteration will get us here, we won't
  4816. * die on a /0 trap.
  4817. */
  4818. sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
  4819. sg->sgp->power_orig = sg->sgp->power;
  4820. /*
  4821. * Make sure the first group of this domain contains the
  4822. * canonical balance cpu. Otherwise the sched_domain iteration
  4823. * breaks. See update_sg_lb_stats().
  4824. */
  4825. if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
  4826. group_balance_cpu(sg) == cpu)
  4827. groups = sg;
  4828. if (!first)
  4829. first = sg;
  4830. if (last)
  4831. last->next = sg;
  4832. last = sg;
  4833. last->next = first;
  4834. }
  4835. sd->groups = groups;
  4836. return 0;
  4837. fail:
  4838. free_sched_groups(first, 0);
  4839. return -ENOMEM;
  4840. }
  4841. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  4842. {
  4843. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  4844. struct sched_domain *child = sd->child;
  4845. if (child)
  4846. cpu = cpumask_first(sched_domain_span(child));
  4847. if (sg) {
  4848. *sg = *per_cpu_ptr(sdd->sg, cpu);
  4849. (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
  4850. atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
  4851. }
  4852. return cpu;
  4853. }
  4854. /*
  4855. * build_sched_groups will build a circular linked list of the groups
  4856. * covered by the given span, and will set each group's ->cpumask correctly,
  4857. * and ->cpu_power to 0.
  4858. *
  4859. * Assumes the sched_domain tree is fully constructed
  4860. */
  4861. static int
  4862. build_sched_groups(struct sched_domain *sd, int cpu)
  4863. {
  4864. struct sched_group *first = NULL, *last = NULL;
  4865. struct sd_data *sdd = sd->private;
  4866. const struct cpumask *span = sched_domain_span(sd);
  4867. struct cpumask *covered;
  4868. int i;
  4869. get_group(cpu, sdd, &sd->groups);
  4870. atomic_inc(&sd->groups->ref);
  4871. if (cpu != cpumask_first(span))
  4872. return 0;
  4873. lockdep_assert_held(&sched_domains_mutex);
  4874. covered = sched_domains_tmpmask;
  4875. cpumask_clear(covered);
  4876. for_each_cpu(i, span) {
  4877. struct sched_group *sg;
  4878. int group, j;
  4879. if (cpumask_test_cpu(i, covered))
  4880. continue;
  4881. group = get_group(i, sdd, &sg);
  4882. cpumask_clear(sched_group_cpus(sg));
  4883. sg->sgp->power = 0;
  4884. cpumask_setall(sched_group_mask(sg));
  4885. for_each_cpu(j, span) {
  4886. if (get_group(j, sdd, NULL) != group)
  4887. continue;
  4888. cpumask_set_cpu(j, covered);
  4889. cpumask_set_cpu(j, sched_group_cpus(sg));
  4890. }
  4891. if (!first)
  4892. first = sg;
  4893. if (last)
  4894. last->next = sg;
  4895. last = sg;
  4896. }
  4897. last->next = first;
  4898. return 0;
  4899. }
  4900. /*
  4901. * Initialize sched groups cpu_power.
  4902. *
  4903. * cpu_power indicates the capacity of sched group, which is used while
  4904. * distributing the load between different sched groups in a sched domain.
  4905. * Typically cpu_power for all the groups in a sched domain will be same unless
  4906. * there are asymmetries in the topology. If there are asymmetries, group
  4907. * having more cpu_power will pickup more load compared to the group having
  4908. * less cpu_power.
  4909. */
  4910. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  4911. {
  4912. struct sched_group *sg = sd->groups;
  4913. WARN_ON(!sg);
  4914. do {
  4915. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  4916. sg = sg->next;
  4917. } while (sg != sd->groups);
  4918. if (cpu != group_balance_cpu(sg))
  4919. return;
  4920. update_group_power(sd, cpu);
  4921. atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
  4922. }
  4923. int __weak arch_sd_sibling_asym_packing(void)
  4924. {
  4925. return 0*SD_ASYM_PACKING;
  4926. }
  4927. /*
  4928. * Initializers for schedule domains
  4929. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  4930. */
  4931. #ifdef CONFIG_SCHED_DEBUG
  4932. # define SD_INIT_NAME(sd, type) sd->name = #type
  4933. #else
  4934. # define SD_INIT_NAME(sd, type) do { } while (0)
  4935. #endif
  4936. #define SD_INIT_FUNC(type) \
  4937. static noinline struct sched_domain * \
  4938. sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
  4939. { \
  4940. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
  4941. *sd = SD_##type##_INIT; \
  4942. SD_INIT_NAME(sd, type); \
  4943. sd->private = &tl->data; \
  4944. return sd; \
  4945. }
  4946. SD_INIT_FUNC(CPU)
  4947. #ifdef CONFIG_SCHED_SMT
  4948. SD_INIT_FUNC(SIBLING)
  4949. #endif
  4950. #ifdef CONFIG_SCHED_MC
  4951. SD_INIT_FUNC(MC)
  4952. #endif
  4953. #ifdef CONFIG_SCHED_BOOK
  4954. SD_INIT_FUNC(BOOK)
  4955. #endif
  4956. static int default_relax_domain_level = -1;
  4957. int sched_domain_level_max;
  4958. static int __init setup_relax_domain_level(char *str)
  4959. {
  4960. if (kstrtoint(str, 0, &default_relax_domain_level))
  4961. pr_warn("Unable to set relax_domain_level\n");
  4962. return 1;
  4963. }
  4964. __setup("relax_domain_level=", setup_relax_domain_level);
  4965. static void set_domain_attribute(struct sched_domain *sd,
  4966. struct sched_domain_attr *attr)
  4967. {
  4968. int request;
  4969. if (!attr || attr->relax_domain_level < 0) {
  4970. if (default_relax_domain_level < 0)
  4971. return;
  4972. else
  4973. request = default_relax_domain_level;
  4974. } else
  4975. request = attr->relax_domain_level;
  4976. if (request < sd->level) {
  4977. /* turn off idle balance on this domain */
  4978. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  4979. } else {
  4980. /* turn on idle balance on this domain */
  4981. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  4982. }
  4983. }
  4984. static void __sdt_free(const struct cpumask *cpu_map);
  4985. static int __sdt_alloc(const struct cpumask *cpu_map);
  4986. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  4987. const struct cpumask *cpu_map)
  4988. {
  4989. switch (what) {
  4990. case sa_rootdomain:
  4991. if (!atomic_read(&d->rd->refcount))
  4992. free_rootdomain(&d->rd->rcu); /* fall through */
  4993. case sa_sd:
  4994. free_percpu(d->sd); /* fall through */
  4995. case sa_sd_storage:
  4996. __sdt_free(cpu_map); /* fall through */
  4997. case sa_none:
  4998. break;
  4999. }
  5000. }
  5001. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5002. const struct cpumask *cpu_map)
  5003. {
  5004. memset(d, 0, sizeof(*d));
  5005. if (__sdt_alloc(cpu_map))
  5006. return sa_sd_storage;
  5007. d->sd = alloc_percpu(struct sched_domain *);
  5008. if (!d->sd)
  5009. return sa_sd_storage;
  5010. d->rd = alloc_rootdomain();
  5011. if (!d->rd)
  5012. return sa_sd;
  5013. return sa_rootdomain;
  5014. }
  5015. /*
  5016. * NULL the sd_data elements we've used to build the sched_domain and
  5017. * sched_group structure so that the subsequent __free_domain_allocs()
  5018. * will not free the data we're using.
  5019. */
  5020. static void claim_allocations(int cpu, struct sched_domain *sd)
  5021. {
  5022. struct sd_data *sdd = sd->private;
  5023. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  5024. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  5025. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  5026. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  5027. if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
  5028. *per_cpu_ptr(sdd->sgp, cpu) = NULL;
  5029. }
  5030. #ifdef CONFIG_SCHED_SMT
  5031. static const struct cpumask *cpu_smt_mask(int cpu)
  5032. {
  5033. return topology_thread_cpumask(cpu);
  5034. }
  5035. #endif
  5036. /*
  5037. * Topology list, bottom-up.
  5038. */
  5039. static struct sched_domain_topology_level default_topology[] = {
  5040. #ifdef CONFIG_SCHED_SMT
  5041. { sd_init_SIBLING, cpu_smt_mask, },
  5042. #endif
  5043. #ifdef CONFIG_SCHED_MC
  5044. { sd_init_MC, cpu_coregroup_mask, },
  5045. #endif
  5046. #ifdef CONFIG_SCHED_BOOK
  5047. { sd_init_BOOK, cpu_book_mask, },
  5048. #endif
  5049. { sd_init_CPU, cpu_cpu_mask, },
  5050. { NULL, },
  5051. };
  5052. static struct sched_domain_topology_level *sched_domain_topology = default_topology;
  5053. #define for_each_sd_topology(tl) \
  5054. for (tl = sched_domain_topology; tl->init; tl++)
  5055. #ifdef CONFIG_NUMA
  5056. static int sched_domains_numa_levels;
  5057. static int *sched_domains_numa_distance;
  5058. static struct cpumask ***sched_domains_numa_masks;
  5059. static int sched_domains_curr_level;
  5060. static inline int sd_local_flags(int level)
  5061. {
  5062. if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
  5063. return 0;
  5064. return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
  5065. }
  5066. static struct sched_domain *
  5067. sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
  5068. {
  5069. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
  5070. int level = tl->numa_level;
  5071. int sd_weight = cpumask_weight(
  5072. sched_domains_numa_masks[level][cpu_to_node(cpu)]);
  5073. *sd = (struct sched_domain){
  5074. .min_interval = sd_weight,
  5075. .max_interval = 2*sd_weight,
  5076. .busy_factor = 32,
  5077. .imbalance_pct = 125,
  5078. .cache_nice_tries = 2,
  5079. .busy_idx = 3,
  5080. .idle_idx = 2,
  5081. .newidle_idx = 0,
  5082. .wake_idx = 0,
  5083. .forkexec_idx = 0,
  5084. .flags = 1*SD_LOAD_BALANCE
  5085. | 1*SD_BALANCE_NEWIDLE
  5086. | 0*SD_BALANCE_EXEC
  5087. | 0*SD_BALANCE_FORK
  5088. | 0*SD_BALANCE_WAKE
  5089. | 0*SD_WAKE_AFFINE
  5090. | 0*SD_SHARE_CPUPOWER
  5091. | 0*SD_SHARE_PKG_RESOURCES
  5092. | 1*SD_SERIALIZE
  5093. | 0*SD_PREFER_SIBLING
  5094. | 1*SD_NUMA
  5095. | sd_local_flags(level)
  5096. ,
  5097. .last_balance = jiffies,
  5098. .balance_interval = sd_weight,
  5099. };
  5100. SD_INIT_NAME(sd, NUMA);
  5101. sd->private = &tl->data;
  5102. /*
  5103. * Ugly hack to pass state to sd_numa_mask()...
  5104. */
  5105. sched_domains_curr_level = tl->numa_level;
  5106. return sd;
  5107. }
  5108. static const struct cpumask *sd_numa_mask(int cpu)
  5109. {
  5110. return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
  5111. }
  5112. static void sched_numa_warn(const char *str)
  5113. {
  5114. static int done = false;
  5115. int i,j;
  5116. if (done)
  5117. return;
  5118. done = true;
  5119. printk(KERN_WARNING "ERROR: %s\n\n", str);
  5120. for (i = 0; i < nr_node_ids; i++) {
  5121. printk(KERN_WARNING " ");
  5122. for (j = 0; j < nr_node_ids; j++)
  5123. printk(KERN_CONT "%02d ", node_distance(i,j));
  5124. printk(KERN_CONT "\n");
  5125. }
  5126. printk(KERN_WARNING "\n");
  5127. }
  5128. static bool find_numa_distance(int distance)
  5129. {
  5130. int i;
  5131. if (distance == node_distance(0, 0))
  5132. return true;
  5133. for (i = 0; i < sched_domains_numa_levels; i++) {
  5134. if (sched_domains_numa_distance[i] == distance)
  5135. return true;
  5136. }
  5137. return false;
  5138. }
  5139. static void sched_init_numa(void)
  5140. {
  5141. int next_distance, curr_distance = node_distance(0, 0);
  5142. struct sched_domain_topology_level *tl;
  5143. int level = 0;
  5144. int i, j, k;
  5145. sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
  5146. if (!sched_domains_numa_distance)
  5147. return;
  5148. /*
  5149. * O(nr_nodes^2) deduplicating selection sort -- in order to find the
  5150. * unique distances in the node_distance() table.
  5151. *
  5152. * Assumes node_distance(0,j) includes all distances in
  5153. * node_distance(i,j) in order to avoid cubic time.
  5154. */
  5155. next_distance = curr_distance;
  5156. for (i = 0; i < nr_node_ids; i++) {
  5157. for (j = 0; j < nr_node_ids; j++) {
  5158. for (k = 0; k < nr_node_ids; k++) {
  5159. int distance = node_distance(i, k);
  5160. if (distance > curr_distance &&
  5161. (distance < next_distance ||
  5162. next_distance == curr_distance))
  5163. next_distance = distance;
  5164. /*
  5165. * While not a strong assumption it would be nice to know
  5166. * about cases where if node A is connected to B, B is not
  5167. * equally connected to A.
  5168. */
  5169. if (sched_debug() && node_distance(k, i) != distance)
  5170. sched_numa_warn("Node-distance not symmetric");
  5171. if (sched_debug() && i && !find_numa_distance(distance))
  5172. sched_numa_warn("Node-0 not representative");
  5173. }
  5174. if (next_distance != curr_distance) {
  5175. sched_domains_numa_distance[level++] = next_distance;
  5176. sched_domains_numa_levels = level;
  5177. curr_distance = next_distance;
  5178. } else break;
  5179. }
  5180. /*
  5181. * In case of sched_debug() we verify the above assumption.
  5182. */
  5183. if (!sched_debug())
  5184. break;
  5185. }
  5186. /*
  5187. * 'level' contains the number of unique distances, excluding the
  5188. * identity distance node_distance(i,i).
  5189. *
  5190. * The sched_domains_numa_distance[] array includes the actual distance
  5191. * numbers.
  5192. */
  5193. /*
  5194. * Here, we should temporarily reset sched_domains_numa_levels to 0.
  5195. * If it fails to allocate memory for array sched_domains_numa_masks[][],
  5196. * the array will contain less then 'level' members. This could be
  5197. * dangerous when we use it to iterate array sched_domains_numa_masks[][]
  5198. * in other functions.
  5199. *
  5200. * We reset it to 'level' at the end of this function.
  5201. */
  5202. sched_domains_numa_levels = 0;
  5203. sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
  5204. if (!sched_domains_numa_masks)
  5205. return;
  5206. /*
  5207. * Now for each level, construct a mask per node which contains all
  5208. * cpus of nodes that are that many hops away from us.
  5209. */
  5210. for (i = 0; i < level; i++) {
  5211. sched_domains_numa_masks[i] =
  5212. kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
  5213. if (!sched_domains_numa_masks[i])
  5214. return;
  5215. for (j = 0; j < nr_node_ids; j++) {
  5216. struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
  5217. if (!mask)
  5218. return;
  5219. sched_domains_numa_masks[i][j] = mask;
  5220. for (k = 0; k < nr_node_ids; k++) {
  5221. if (node_distance(j, k) > sched_domains_numa_distance[i])
  5222. continue;
  5223. cpumask_or(mask, mask, cpumask_of_node(k));
  5224. }
  5225. }
  5226. }
  5227. tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
  5228. sizeof(struct sched_domain_topology_level), GFP_KERNEL);
  5229. if (!tl)
  5230. return;
  5231. /*
  5232. * Copy the default topology bits..
  5233. */
  5234. for (i = 0; default_topology[i].init; i++)
  5235. tl[i] = default_topology[i];
  5236. /*
  5237. * .. and append 'j' levels of NUMA goodness.
  5238. */
  5239. for (j = 0; j < level; i++, j++) {
  5240. tl[i] = (struct sched_domain_topology_level){
  5241. .init = sd_numa_init,
  5242. .mask = sd_numa_mask,
  5243. .flags = SDTL_OVERLAP,
  5244. .numa_level = j,
  5245. };
  5246. }
  5247. sched_domain_topology = tl;
  5248. sched_domains_numa_levels = level;
  5249. }
  5250. static void sched_domains_numa_masks_set(int cpu)
  5251. {
  5252. int i, j;
  5253. int node = cpu_to_node(cpu);
  5254. for (i = 0; i < sched_domains_numa_levels; i++) {
  5255. for (j = 0; j < nr_node_ids; j++) {
  5256. if (node_distance(j, node) <= sched_domains_numa_distance[i])
  5257. cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
  5258. }
  5259. }
  5260. }
  5261. static void sched_domains_numa_masks_clear(int cpu)
  5262. {
  5263. int i, j;
  5264. for (i = 0; i < sched_domains_numa_levels; i++) {
  5265. for (j = 0; j < nr_node_ids; j++)
  5266. cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
  5267. }
  5268. }
  5269. /*
  5270. * Update sched_domains_numa_masks[level][node] array when new cpus
  5271. * are onlined.
  5272. */
  5273. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5274. unsigned long action,
  5275. void *hcpu)
  5276. {
  5277. int cpu = (long)hcpu;
  5278. switch (action & ~CPU_TASKS_FROZEN) {
  5279. case CPU_ONLINE:
  5280. sched_domains_numa_masks_set(cpu);
  5281. break;
  5282. case CPU_DEAD:
  5283. sched_domains_numa_masks_clear(cpu);
  5284. break;
  5285. default:
  5286. return NOTIFY_DONE;
  5287. }
  5288. return NOTIFY_OK;
  5289. }
  5290. #else
  5291. static inline void sched_init_numa(void)
  5292. {
  5293. }
  5294. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5295. unsigned long action,
  5296. void *hcpu)
  5297. {
  5298. return 0;
  5299. }
  5300. #endif /* CONFIG_NUMA */
  5301. static int __sdt_alloc(const struct cpumask *cpu_map)
  5302. {
  5303. struct sched_domain_topology_level *tl;
  5304. int j;
  5305. for_each_sd_topology(tl) {
  5306. struct sd_data *sdd = &tl->data;
  5307. sdd->sd = alloc_percpu(struct sched_domain *);
  5308. if (!sdd->sd)
  5309. return -ENOMEM;
  5310. sdd->sg = alloc_percpu(struct sched_group *);
  5311. if (!sdd->sg)
  5312. return -ENOMEM;
  5313. sdd->sgp = alloc_percpu(struct sched_group_power *);
  5314. if (!sdd->sgp)
  5315. return -ENOMEM;
  5316. for_each_cpu(j, cpu_map) {
  5317. struct sched_domain *sd;
  5318. struct sched_group *sg;
  5319. struct sched_group_power *sgp;
  5320. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  5321. GFP_KERNEL, cpu_to_node(j));
  5322. if (!sd)
  5323. return -ENOMEM;
  5324. *per_cpu_ptr(sdd->sd, j) = sd;
  5325. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5326. GFP_KERNEL, cpu_to_node(j));
  5327. if (!sg)
  5328. return -ENOMEM;
  5329. sg->next = sg;
  5330. *per_cpu_ptr(sdd->sg, j) = sg;
  5331. sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
  5332. GFP_KERNEL, cpu_to_node(j));
  5333. if (!sgp)
  5334. return -ENOMEM;
  5335. *per_cpu_ptr(sdd->sgp, j) = sgp;
  5336. }
  5337. }
  5338. return 0;
  5339. }
  5340. static void __sdt_free(const struct cpumask *cpu_map)
  5341. {
  5342. struct sched_domain_topology_level *tl;
  5343. int j;
  5344. for_each_sd_topology(tl) {
  5345. struct sd_data *sdd = &tl->data;
  5346. for_each_cpu(j, cpu_map) {
  5347. struct sched_domain *sd;
  5348. if (sdd->sd) {
  5349. sd = *per_cpu_ptr(sdd->sd, j);
  5350. if (sd && (sd->flags & SD_OVERLAP))
  5351. free_sched_groups(sd->groups, 0);
  5352. kfree(*per_cpu_ptr(sdd->sd, j));
  5353. }
  5354. if (sdd->sg)
  5355. kfree(*per_cpu_ptr(sdd->sg, j));
  5356. if (sdd->sgp)
  5357. kfree(*per_cpu_ptr(sdd->sgp, j));
  5358. }
  5359. free_percpu(sdd->sd);
  5360. sdd->sd = NULL;
  5361. free_percpu(sdd->sg);
  5362. sdd->sg = NULL;
  5363. free_percpu(sdd->sgp);
  5364. sdd->sgp = NULL;
  5365. }
  5366. }
  5367. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  5368. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5369. struct sched_domain *child, int cpu)
  5370. {
  5371. struct sched_domain *sd = tl->init(tl, cpu);
  5372. if (!sd)
  5373. return child;
  5374. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  5375. if (child) {
  5376. sd->level = child->level + 1;
  5377. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  5378. child->parent = sd;
  5379. sd->child = child;
  5380. }
  5381. set_domain_attribute(sd, attr);
  5382. return sd;
  5383. }
  5384. /*
  5385. * Build sched domains for a given set of cpus and attach the sched domains
  5386. * to the individual cpus
  5387. */
  5388. static int build_sched_domains(const struct cpumask *cpu_map,
  5389. struct sched_domain_attr *attr)
  5390. {
  5391. enum s_alloc alloc_state;
  5392. struct sched_domain *sd;
  5393. struct s_data d;
  5394. int i, ret = -ENOMEM;
  5395. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5396. if (alloc_state != sa_rootdomain)
  5397. goto error;
  5398. /* Set up domains for cpus specified by the cpu_map. */
  5399. for_each_cpu(i, cpu_map) {
  5400. struct sched_domain_topology_level *tl;
  5401. sd = NULL;
  5402. for_each_sd_topology(tl) {
  5403. sd = build_sched_domain(tl, cpu_map, attr, sd, i);
  5404. if (tl == sched_domain_topology)
  5405. *per_cpu_ptr(d.sd, i) = sd;
  5406. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  5407. sd->flags |= SD_OVERLAP;
  5408. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  5409. break;
  5410. }
  5411. }
  5412. /* Build the groups for the domains */
  5413. for_each_cpu(i, cpu_map) {
  5414. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5415. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  5416. if (sd->flags & SD_OVERLAP) {
  5417. if (build_overlap_sched_groups(sd, i))
  5418. goto error;
  5419. } else {
  5420. if (build_sched_groups(sd, i))
  5421. goto error;
  5422. }
  5423. }
  5424. }
  5425. /* Calculate CPU power for physical packages and nodes */
  5426. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  5427. if (!cpumask_test_cpu(i, cpu_map))
  5428. continue;
  5429. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5430. claim_allocations(i, sd);
  5431. init_sched_groups_power(i, sd);
  5432. }
  5433. }
  5434. /* Attach the domains */
  5435. rcu_read_lock();
  5436. for_each_cpu(i, cpu_map) {
  5437. sd = *per_cpu_ptr(d.sd, i);
  5438. cpu_attach_domain(sd, d.rd, i);
  5439. }
  5440. rcu_read_unlock();
  5441. ret = 0;
  5442. error:
  5443. __free_domain_allocs(&d, alloc_state, cpu_map);
  5444. return ret;
  5445. }
  5446. static cpumask_var_t *doms_cur; /* current sched domains */
  5447. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5448. static struct sched_domain_attr *dattr_cur;
  5449. /* attribues of custom domains in 'doms_cur' */
  5450. /*
  5451. * Special case: If a kmalloc of a doms_cur partition (array of
  5452. * cpumask) fails, then fallback to a single sched domain,
  5453. * as determined by the single cpumask fallback_doms.
  5454. */
  5455. static cpumask_var_t fallback_doms;
  5456. /*
  5457. * arch_update_cpu_topology lets virtualized architectures update the
  5458. * cpu core maps. It is supposed to return 1 if the topology changed
  5459. * or 0 if it stayed the same.
  5460. */
  5461. int __attribute__((weak)) arch_update_cpu_topology(void)
  5462. {
  5463. return 0;
  5464. }
  5465. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5466. {
  5467. int i;
  5468. cpumask_var_t *doms;
  5469. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5470. if (!doms)
  5471. return NULL;
  5472. for (i = 0; i < ndoms; i++) {
  5473. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5474. free_sched_domains(doms, i);
  5475. return NULL;
  5476. }
  5477. }
  5478. return doms;
  5479. }
  5480. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5481. {
  5482. unsigned int i;
  5483. for (i = 0; i < ndoms; i++)
  5484. free_cpumask_var(doms[i]);
  5485. kfree(doms);
  5486. }
  5487. /*
  5488. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5489. * For now this just excludes isolated cpus, but could be used to
  5490. * exclude other special cases in the future.
  5491. */
  5492. static int init_sched_domains(const struct cpumask *cpu_map)
  5493. {
  5494. int err;
  5495. arch_update_cpu_topology();
  5496. ndoms_cur = 1;
  5497. doms_cur = alloc_sched_domains(ndoms_cur);
  5498. if (!doms_cur)
  5499. doms_cur = &fallback_doms;
  5500. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  5501. err = build_sched_domains(doms_cur[0], NULL);
  5502. register_sched_domain_sysctl();
  5503. return err;
  5504. }
  5505. /*
  5506. * Detach sched domains from a group of cpus specified in cpu_map
  5507. * These cpus will now be attached to the NULL domain
  5508. */
  5509. static void detach_destroy_domains(const struct cpumask *cpu_map)
  5510. {
  5511. int i;
  5512. rcu_read_lock();
  5513. for_each_cpu(i, cpu_map)
  5514. cpu_attach_domain(NULL, &def_root_domain, i);
  5515. rcu_read_unlock();
  5516. }
  5517. /* handle null as "default" */
  5518. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  5519. struct sched_domain_attr *new, int idx_new)
  5520. {
  5521. struct sched_domain_attr tmp;
  5522. /* fast path */
  5523. if (!new && !cur)
  5524. return 1;
  5525. tmp = SD_ATTR_INIT;
  5526. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  5527. new ? (new + idx_new) : &tmp,
  5528. sizeof(struct sched_domain_attr));
  5529. }
  5530. /*
  5531. * Partition sched domains as specified by the 'ndoms_new'
  5532. * cpumasks in the array doms_new[] of cpumasks. This compares
  5533. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5534. * It destroys each deleted domain and builds each new domain.
  5535. *
  5536. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  5537. * The masks don't intersect (don't overlap.) We should setup one
  5538. * sched domain for each mask. CPUs not in any of the cpumasks will
  5539. * not be load balanced. If the same cpumask appears both in the
  5540. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5541. * it as it is.
  5542. *
  5543. * The passed in 'doms_new' should be allocated using
  5544. * alloc_sched_domains. This routine takes ownership of it and will
  5545. * free_sched_domains it when done with it. If the caller failed the
  5546. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  5547. * and partition_sched_domains() will fallback to the single partition
  5548. * 'fallback_doms', it also forces the domains to be rebuilt.
  5549. *
  5550. * If doms_new == NULL it will be replaced with cpu_online_mask.
  5551. * ndoms_new == 0 is a special case for destroying existing domains,
  5552. * and it will not create the default domain.
  5553. *
  5554. * Call with hotplug lock held
  5555. */
  5556. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  5557. struct sched_domain_attr *dattr_new)
  5558. {
  5559. int i, j, n;
  5560. int new_topology;
  5561. mutex_lock(&sched_domains_mutex);
  5562. /* always unregister in case we don't destroy any domains */
  5563. unregister_sched_domain_sysctl();
  5564. /* Let architecture update cpu core mappings. */
  5565. new_topology = arch_update_cpu_topology();
  5566. n = doms_new ? ndoms_new : 0;
  5567. /* Destroy deleted domains */
  5568. for (i = 0; i < ndoms_cur; i++) {
  5569. for (j = 0; j < n && !new_topology; j++) {
  5570. if (cpumask_equal(doms_cur[i], doms_new[j])
  5571. && dattrs_equal(dattr_cur, i, dattr_new, j))
  5572. goto match1;
  5573. }
  5574. /* no match - a current sched domain not in new doms_new[] */
  5575. detach_destroy_domains(doms_cur[i]);
  5576. match1:
  5577. ;
  5578. }
  5579. n = ndoms_cur;
  5580. if (doms_new == NULL) {
  5581. n = 0;
  5582. doms_new = &fallback_doms;
  5583. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  5584. WARN_ON_ONCE(dattr_new);
  5585. }
  5586. /* Build new domains */
  5587. for (i = 0; i < ndoms_new; i++) {
  5588. for (j = 0; j < n && !new_topology; j++) {
  5589. if (cpumask_equal(doms_new[i], doms_cur[j])
  5590. && dattrs_equal(dattr_new, i, dattr_cur, j))
  5591. goto match2;
  5592. }
  5593. /* no match - add a new doms_new */
  5594. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  5595. match2:
  5596. ;
  5597. }
  5598. /* Remember the new sched domains */
  5599. if (doms_cur != &fallback_doms)
  5600. free_sched_domains(doms_cur, ndoms_cur);
  5601. kfree(dattr_cur); /* kfree(NULL) is safe */
  5602. doms_cur = doms_new;
  5603. dattr_cur = dattr_new;
  5604. ndoms_cur = ndoms_new;
  5605. register_sched_domain_sysctl();
  5606. mutex_unlock(&sched_domains_mutex);
  5607. }
  5608. static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
  5609. /*
  5610. * Update cpusets according to cpu_active mask. If cpusets are
  5611. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  5612. * around partition_sched_domains().
  5613. *
  5614. * If we come here as part of a suspend/resume, don't touch cpusets because we
  5615. * want to restore it back to its original state upon resume anyway.
  5616. */
  5617. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  5618. void *hcpu)
  5619. {
  5620. switch (action) {
  5621. case CPU_ONLINE_FROZEN:
  5622. case CPU_DOWN_FAILED_FROZEN:
  5623. /*
  5624. * num_cpus_frozen tracks how many CPUs are involved in suspend
  5625. * resume sequence. As long as this is not the last online
  5626. * operation in the resume sequence, just build a single sched
  5627. * domain, ignoring cpusets.
  5628. */
  5629. num_cpus_frozen--;
  5630. if (likely(num_cpus_frozen)) {
  5631. partition_sched_domains(1, NULL, NULL);
  5632. break;
  5633. }
  5634. /*
  5635. * This is the last CPU online operation. So fall through and
  5636. * restore the original sched domains by considering the
  5637. * cpuset configurations.
  5638. */
  5639. case CPU_ONLINE:
  5640. case CPU_DOWN_FAILED:
  5641. cpuset_update_active_cpus(true);
  5642. break;
  5643. default:
  5644. return NOTIFY_DONE;
  5645. }
  5646. return NOTIFY_OK;
  5647. }
  5648. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  5649. void *hcpu)
  5650. {
  5651. switch (action) {
  5652. case CPU_DOWN_PREPARE:
  5653. cpuset_update_active_cpus(false);
  5654. break;
  5655. case CPU_DOWN_PREPARE_FROZEN:
  5656. num_cpus_frozen++;
  5657. partition_sched_domains(1, NULL, NULL);
  5658. break;
  5659. default:
  5660. return NOTIFY_DONE;
  5661. }
  5662. return NOTIFY_OK;
  5663. }
  5664. void __init sched_init_smp(void)
  5665. {
  5666. cpumask_var_t non_isolated_cpus;
  5667. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  5668. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  5669. sched_init_numa();
  5670. /*
  5671. * There's no userspace yet to cause hotplug operations; hence all the
  5672. * cpu masks are stable and all blatant races in the below code cannot
  5673. * happen.
  5674. */
  5675. mutex_lock(&sched_domains_mutex);
  5676. init_sched_domains(cpu_active_mask);
  5677. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  5678. if (cpumask_empty(non_isolated_cpus))
  5679. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  5680. mutex_unlock(&sched_domains_mutex);
  5681. hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
  5682. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  5683. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  5684. init_hrtick();
  5685. /* Move init over to a non-isolated CPU */
  5686. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  5687. BUG();
  5688. sched_init_granularity();
  5689. free_cpumask_var(non_isolated_cpus);
  5690. init_sched_rt_class();
  5691. init_sched_dl_class();
  5692. }
  5693. #else
  5694. void __init sched_init_smp(void)
  5695. {
  5696. sched_init_granularity();
  5697. }
  5698. #endif /* CONFIG_SMP */
  5699. const_debug unsigned int sysctl_timer_migration = 1;
  5700. int in_sched_functions(unsigned long addr)
  5701. {
  5702. return in_lock_functions(addr) ||
  5703. (addr >= (unsigned long)__sched_text_start
  5704. && addr < (unsigned long)__sched_text_end);
  5705. }
  5706. #ifdef CONFIG_CGROUP_SCHED
  5707. /*
  5708. * Default task group.
  5709. * Every task in system belongs to this group at bootup.
  5710. */
  5711. struct task_group root_task_group;
  5712. LIST_HEAD(task_groups);
  5713. #endif
  5714. DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
  5715. void __init sched_init(void)
  5716. {
  5717. int i, j;
  5718. unsigned long alloc_size = 0, ptr;
  5719. #ifdef CONFIG_FAIR_GROUP_SCHED
  5720. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5721. #endif
  5722. #ifdef CONFIG_RT_GROUP_SCHED
  5723. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5724. #endif
  5725. #ifdef CONFIG_CPUMASK_OFFSTACK
  5726. alloc_size += num_possible_cpus() * cpumask_size();
  5727. #endif
  5728. if (alloc_size) {
  5729. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  5730. #ifdef CONFIG_FAIR_GROUP_SCHED
  5731. root_task_group.se = (struct sched_entity **)ptr;
  5732. ptr += nr_cpu_ids * sizeof(void **);
  5733. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  5734. ptr += nr_cpu_ids * sizeof(void **);
  5735. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5736. #ifdef CONFIG_RT_GROUP_SCHED
  5737. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  5738. ptr += nr_cpu_ids * sizeof(void **);
  5739. root_task_group.rt_rq = (struct rt_rq **)ptr;
  5740. ptr += nr_cpu_ids * sizeof(void **);
  5741. #endif /* CONFIG_RT_GROUP_SCHED */
  5742. #ifdef CONFIG_CPUMASK_OFFSTACK
  5743. for_each_possible_cpu(i) {
  5744. per_cpu(load_balance_mask, i) = (void *)ptr;
  5745. ptr += cpumask_size();
  5746. }
  5747. #endif /* CONFIG_CPUMASK_OFFSTACK */
  5748. }
  5749. init_rt_bandwidth(&def_rt_bandwidth,
  5750. global_rt_period(), global_rt_runtime());
  5751. init_dl_bandwidth(&def_dl_bandwidth,
  5752. global_rt_period(), global_rt_runtime());
  5753. #ifdef CONFIG_SMP
  5754. init_defrootdomain();
  5755. #endif
  5756. #ifdef CONFIG_RT_GROUP_SCHED
  5757. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  5758. global_rt_period(), global_rt_runtime());
  5759. #endif /* CONFIG_RT_GROUP_SCHED */
  5760. #ifdef CONFIG_CGROUP_SCHED
  5761. list_add(&root_task_group.list, &task_groups);
  5762. INIT_LIST_HEAD(&root_task_group.children);
  5763. INIT_LIST_HEAD(&root_task_group.siblings);
  5764. autogroup_init(&init_task);
  5765. #endif /* CONFIG_CGROUP_SCHED */
  5766. for_each_possible_cpu(i) {
  5767. struct rq *rq;
  5768. rq = cpu_rq(i);
  5769. raw_spin_lock_init(&rq->lock);
  5770. rq->nr_running = 0;
  5771. rq->calc_load_active = 0;
  5772. rq->calc_load_update = jiffies + LOAD_FREQ;
  5773. init_cfs_rq(&rq->cfs);
  5774. init_rt_rq(&rq->rt, rq);
  5775. init_dl_rq(&rq->dl, rq);
  5776. #ifdef CONFIG_FAIR_GROUP_SCHED
  5777. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  5778. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5779. /*
  5780. * How much cpu bandwidth does root_task_group get?
  5781. *
  5782. * In case of task-groups formed thr' the cgroup filesystem, it
  5783. * gets 100% of the cpu resources in the system. This overall
  5784. * system cpu resource is divided among the tasks of
  5785. * root_task_group and its child task-groups in a fair manner,
  5786. * based on each entity's (task or task-group's) weight
  5787. * (se->load.weight).
  5788. *
  5789. * In other words, if root_task_group has 10 tasks of weight
  5790. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  5791. * then A0's share of the cpu resource is:
  5792. *
  5793. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  5794. *
  5795. * We achieve this by letting root_task_group's tasks sit
  5796. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  5797. */
  5798. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  5799. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  5800. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5801. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  5802. #ifdef CONFIG_RT_GROUP_SCHED
  5803. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  5804. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  5805. #endif
  5806. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5807. rq->cpu_load[j] = 0;
  5808. rq->last_load_update_tick = jiffies;
  5809. #ifdef CONFIG_SMP
  5810. rq->sd = NULL;
  5811. rq->rd = NULL;
  5812. rq->cpu_power = SCHED_POWER_SCALE;
  5813. rq->post_schedule = 0;
  5814. rq->active_balance = 0;
  5815. rq->next_balance = jiffies;
  5816. rq->push_cpu = 0;
  5817. rq->cpu = i;
  5818. rq->online = 0;
  5819. rq->idle_stamp = 0;
  5820. rq->avg_idle = 2*sysctl_sched_migration_cost;
  5821. rq->max_idle_balance_cost = sysctl_sched_migration_cost;
  5822. INIT_LIST_HEAD(&rq->cfs_tasks);
  5823. rq_attach_root(rq, &def_root_domain);
  5824. #ifdef CONFIG_NO_HZ_COMMON
  5825. rq->nohz_flags = 0;
  5826. #endif
  5827. #ifdef CONFIG_NO_HZ_FULL
  5828. rq->last_sched_tick = 0;
  5829. #endif
  5830. #endif
  5831. init_rq_hrtick(rq);
  5832. atomic_set(&rq->nr_iowait, 0);
  5833. }
  5834. set_load_weight(&init_task);
  5835. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5836. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5837. #endif
  5838. /*
  5839. * The boot idle thread does lazy MMU switching as well:
  5840. */
  5841. atomic_inc(&init_mm.mm_count);
  5842. enter_lazy_tlb(&init_mm, current);
  5843. /*
  5844. * Make us the idle thread. Technically, schedule() should not be
  5845. * called from this thread, however somewhere below it might be,
  5846. * but because we are the idle thread, we just pick up running again
  5847. * when this runqueue becomes "idle".
  5848. */
  5849. init_idle(current, smp_processor_id());
  5850. calc_load_update = jiffies + LOAD_FREQ;
  5851. /*
  5852. * During early bootup we pretend to be a normal task:
  5853. */
  5854. current->sched_class = &fair_sched_class;
  5855. #ifdef CONFIG_SMP
  5856. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  5857. /* May be allocated at isolcpus cmdline parse time */
  5858. if (cpu_isolated_map == NULL)
  5859. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  5860. idle_thread_set_boot_cpu();
  5861. #endif
  5862. init_sched_fair_class();
  5863. scheduler_running = 1;
  5864. }
  5865. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  5866. static inline int preempt_count_equals(int preempt_offset)
  5867. {
  5868. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  5869. return (nested == preempt_offset);
  5870. }
  5871. void __might_sleep(const char *file, int line, int preempt_offset)
  5872. {
  5873. static unsigned long prev_jiffy; /* ratelimiting */
  5874. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  5875. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  5876. system_state != SYSTEM_RUNNING || oops_in_progress)
  5877. return;
  5878. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5879. return;
  5880. prev_jiffy = jiffies;
  5881. printk(KERN_ERR
  5882. "BUG: sleeping function called from invalid context at %s:%d\n",
  5883. file, line);
  5884. printk(KERN_ERR
  5885. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  5886. in_atomic(), irqs_disabled(),
  5887. current->pid, current->comm);
  5888. debug_show_held_locks(current);
  5889. if (irqs_disabled())
  5890. print_irqtrace_events(current);
  5891. dump_stack();
  5892. }
  5893. EXPORT_SYMBOL(__might_sleep);
  5894. #endif
  5895. #ifdef CONFIG_MAGIC_SYSRQ
  5896. static void normalize_task(struct rq *rq, struct task_struct *p)
  5897. {
  5898. const struct sched_class *prev_class = p->sched_class;
  5899. struct sched_attr attr = {
  5900. .sched_policy = SCHED_NORMAL,
  5901. };
  5902. int old_prio = p->prio;
  5903. int on_rq;
  5904. on_rq = p->on_rq;
  5905. if (on_rq)
  5906. dequeue_task(rq, p, 0);
  5907. __setscheduler(rq, p, &attr);
  5908. if (on_rq) {
  5909. enqueue_task(rq, p, 0);
  5910. resched_task(rq->curr);
  5911. }
  5912. check_class_changed(rq, p, prev_class, old_prio);
  5913. }
  5914. void normalize_rt_tasks(void)
  5915. {
  5916. struct task_struct *g, *p;
  5917. unsigned long flags;
  5918. struct rq *rq;
  5919. read_lock_irqsave(&tasklist_lock, flags);
  5920. do_each_thread(g, p) {
  5921. /*
  5922. * Only normalize user tasks:
  5923. */
  5924. if (!p->mm)
  5925. continue;
  5926. p->se.exec_start = 0;
  5927. #ifdef CONFIG_SCHEDSTATS
  5928. p->se.statistics.wait_start = 0;
  5929. p->se.statistics.sleep_start = 0;
  5930. p->se.statistics.block_start = 0;
  5931. #endif
  5932. if (!dl_task(p) && !rt_task(p)) {
  5933. /*
  5934. * Renice negative nice level userspace
  5935. * tasks back to 0:
  5936. */
  5937. if (TASK_NICE(p) < 0 && p->mm)
  5938. set_user_nice(p, 0);
  5939. continue;
  5940. }
  5941. raw_spin_lock(&p->pi_lock);
  5942. rq = __task_rq_lock(p);
  5943. normalize_task(rq, p);
  5944. __task_rq_unlock(rq);
  5945. raw_spin_unlock(&p->pi_lock);
  5946. } while_each_thread(g, p);
  5947. read_unlock_irqrestore(&tasklist_lock, flags);
  5948. }
  5949. #endif /* CONFIG_MAGIC_SYSRQ */
  5950. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  5951. /*
  5952. * These functions are only useful for the IA64 MCA handling, or kdb.
  5953. *
  5954. * They can only be called when the whole system has been
  5955. * stopped - every CPU needs to be quiescent, and no scheduling
  5956. * activity can take place. Using them for anything else would
  5957. * be a serious bug, and as a result, they aren't even visible
  5958. * under any other configuration.
  5959. */
  5960. /**
  5961. * curr_task - return the current task for a given cpu.
  5962. * @cpu: the processor in question.
  5963. *
  5964. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5965. *
  5966. * Return: The current task for @cpu.
  5967. */
  5968. struct task_struct *curr_task(int cpu)
  5969. {
  5970. return cpu_curr(cpu);
  5971. }
  5972. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  5973. #ifdef CONFIG_IA64
  5974. /**
  5975. * set_curr_task - set the current task for a given cpu.
  5976. * @cpu: the processor in question.
  5977. * @p: the task pointer to set.
  5978. *
  5979. * Description: This function must only be used when non-maskable interrupts
  5980. * are serviced on a separate stack. It allows the architecture to switch the
  5981. * notion of the current task on a cpu in a non-blocking manner. This function
  5982. * must be called with all CPU's synchronized, and interrupts disabled, the
  5983. * and caller must save the original value of the current task (see
  5984. * curr_task() above) and restore that value before reenabling interrupts and
  5985. * re-starting the system.
  5986. *
  5987. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5988. */
  5989. void set_curr_task(int cpu, struct task_struct *p)
  5990. {
  5991. cpu_curr(cpu) = p;
  5992. }
  5993. #endif
  5994. #ifdef CONFIG_CGROUP_SCHED
  5995. /* task_group_lock serializes the addition/removal of task groups */
  5996. static DEFINE_SPINLOCK(task_group_lock);
  5997. static void free_sched_group(struct task_group *tg)
  5998. {
  5999. free_fair_sched_group(tg);
  6000. free_rt_sched_group(tg);
  6001. autogroup_free(tg);
  6002. kfree(tg);
  6003. }
  6004. /* allocate runqueue etc for a new task group */
  6005. struct task_group *sched_create_group(struct task_group *parent)
  6006. {
  6007. struct task_group *tg;
  6008. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6009. if (!tg)
  6010. return ERR_PTR(-ENOMEM);
  6011. if (!alloc_fair_sched_group(tg, parent))
  6012. goto err;
  6013. if (!alloc_rt_sched_group(tg, parent))
  6014. goto err;
  6015. return tg;
  6016. err:
  6017. free_sched_group(tg);
  6018. return ERR_PTR(-ENOMEM);
  6019. }
  6020. void sched_online_group(struct task_group *tg, struct task_group *parent)
  6021. {
  6022. unsigned long flags;
  6023. spin_lock_irqsave(&task_group_lock, flags);
  6024. list_add_rcu(&tg->list, &task_groups);
  6025. WARN_ON(!parent); /* root should already exist */
  6026. tg->parent = parent;
  6027. INIT_LIST_HEAD(&tg->children);
  6028. list_add_rcu(&tg->siblings, &parent->children);
  6029. spin_unlock_irqrestore(&task_group_lock, flags);
  6030. }
  6031. /* rcu callback to free various structures associated with a task group */
  6032. static void free_sched_group_rcu(struct rcu_head *rhp)
  6033. {
  6034. /* now it should be safe to free those cfs_rqs */
  6035. free_sched_group(container_of(rhp, struct task_group, rcu));
  6036. }
  6037. /* Destroy runqueue etc associated with a task group */
  6038. void sched_destroy_group(struct task_group *tg)
  6039. {
  6040. /* wait for possible concurrent references to cfs_rqs complete */
  6041. call_rcu(&tg->rcu, free_sched_group_rcu);
  6042. }
  6043. void sched_offline_group(struct task_group *tg)
  6044. {
  6045. unsigned long flags;
  6046. int i;
  6047. /* end participation in shares distribution */
  6048. for_each_possible_cpu(i)
  6049. unregister_fair_sched_group(tg, i);
  6050. spin_lock_irqsave(&task_group_lock, flags);
  6051. list_del_rcu(&tg->list);
  6052. list_del_rcu(&tg->siblings);
  6053. spin_unlock_irqrestore(&task_group_lock, flags);
  6054. }
  6055. /* change task's runqueue when it moves between groups.
  6056. * The caller of this function should have put the task in its new group
  6057. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6058. * reflect its new group.
  6059. */
  6060. void sched_move_task(struct task_struct *tsk)
  6061. {
  6062. struct task_group *tg;
  6063. int on_rq, running;
  6064. unsigned long flags;
  6065. struct rq *rq;
  6066. rq = task_rq_lock(tsk, &flags);
  6067. running = task_current(rq, tsk);
  6068. on_rq = tsk->on_rq;
  6069. if (on_rq)
  6070. dequeue_task(rq, tsk, 0);
  6071. if (unlikely(running))
  6072. tsk->sched_class->put_prev_task(rq, tsk);
  6073. tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
  6074. lockdep_is_held(&tsk->sighand->siglock)),
  6075. struct task_group, css);
  6076. tg = autogroup_task_group(tsk, tg);
  6077. tsk->sched_task_group = tg;
  6078. #ifdef CONFIG_FAIR_GROUP_SCHED
  6079. if (tsk->sched_class->task_move_group)
  6080. tsk->sched_class->task_move_group(tsk, on_rq);
  6081. else
  6082. #endif
  6083. set_task_rq(tsk, task_cpu(tsk));
  6084. if (unlikely(running))
  6085. tsk->sched_class->set_curr_task(rq);
  6086. if (on_rq)
  6087. enqueue_task(rq, tsk, 0);
  6088. task_rq_unlock(rq, tsk, &flags);
  6089. }
  6090. #endif /* CONFIG_CGROUP_SCHED */
  6091. #ifdef CONFIG_RT_GROUP_SCHED
  6092. /*
  6093. * Ensure that the real time constraints are schedulable.
  6094. */
  6095. static DEFINE_MUTEX(rt_constraints_mutex);
  6096. /* Must be called with tasklist_lock held */
  6097. static inline int tg_has_rt_tasks(struct task_group *tg)
  6098. {
  6099. struct task_struct *g, *p;
  6100. do_each_thread(g, p) {
  6101. if (rt_task(p) && task_rq(p)->rt.tg == tg)
  6102. return 1;
  6103. } while_each_thread(g, p);
  6104. return 0;
  6105. }
  6106. struct rt_schedulable_data {
  6107. struct task_group *tg;
  6108. u64 rt_period;
  6109. u64 rt_runtime;
  6110. };
  6111. static int tg_rt_schedulable(struct task_group *tg, void *data)
  6112. {
  6113. struct rt_schedulable_data *d = data;
  6114. struct task_group *child;
  6115. unsigned long total, sum = 0;
  6116. u64 period, runtime;
  6117. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6118. runtime = tg->rt_bandwidth.rt_runtime;
  6119. if (tg == d->tg) {
  6120. period = d->rt_period;
  6121. runtime = d->rt_runtime;
  6122. }
  6123. /*
  6124. * Cannot have more runtime than the period.
  6125. */
  6126. if (runtime > period && runtime != RUNTIME_INF)
  6127. return -EINVAL;
  6128. /*
  6129. * Ensure we don't starve existing RT tasks.
  6130. */
  6131. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  6132. return -EBUSY;
  6133. total = to_ratio(period, runtime);
  6134. /*
  6135. * Nobody can have more than the global setting allows.
  6136. */
  6137. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  6138. return -EINVAL;
  6139. /*
  6140. * The sum of our children's runtime should not exceed our own.
  6141. */
  6142. list_for_each_entry_rcu(child, &tg->children, siblings) {
  6143. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  6144. runtime = child->rt_bandwidth.rt_runtime;
  6145. if (child == d->tg) {
  6146. period = d->rt_period;
  6147. runtime = d->rt_runtime;
  6148. }
  6149. sum += to_ratio(period, runtime);
  6150. }
  6151. if (sum > total)
  6152. return -EINVAL;
  6153. return 0;
  6154. }
  6155. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6156. {
  6157. int ret;
  6158. struct rt_schedulable_data data = {
  6159. .tg = tg,
  6160. .rt_period = period,
  6161. .rt_runtime = runtime,
  6162. };
  6163. rcu_read_lock();
  6164. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  6165. rcu_read_unlock();
  6166. return ret;
  6167. }
  6168. static int tg_set_rt_bandwidth(struct task_group *tg,
  6169. u64 rt_period, u64 rt_runtime)
  6170. {
  6171. int i, err = 0;
  6172. mutex_lock(&rt_constraints_mutex);
  6173. read_lock(&tasklist_lock);
  6174. err = __rt_schedulable(tg, rt_period, rt_runtime);
  6175. if (err)
  6176. goto unlock;
  6177. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6178. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6179. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6180. for_each_possible_cpu(i) {
  6181. struct rt_rq *rt_rq = tg->rt_rq[i];
  6182. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6183. rt_rq->rt_runtime = rt_runtime;
  6184. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6185. }
  6186. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6187. unlock:
  6188. read_unlock(&tasklist_lock);
  6189. mutex_unlock(&rt_constraints_mutex);
  6190. return err;
  6191. }
  6192. static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6193. {
  6194. u64 rt_runtime, rt_period;
  6195. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6196. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6197. if (rt_runtime_us < 0)
  6198. rt_runtime = RUNTIME_INF;
  6199. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6200. }
  6201. static long sched_group_rt_runtime(struct task_group *tg)
  6202. {
  6203. u64 rt_runtime_us;
  6204. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6205. return -1;
  6206. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6207. do_div(rt_runtime_us, NSEC_PER_USEC);
  6208. return rt_runtime_us;
  6209. }
  6210. static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  6211. {
  6212. u64 rt_runtime, rt_period;
  6213. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  6214. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6215. if (rt_period == 0)
  6216. return -EINVAL;
  6217. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6218. }
  6219. static long sched_group_rt_period(struct task_group *tg)
  6220. {
  6221. u64 rt_period_us;
  6222. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6223. do_div(rt_period_us, NSEC_PER_USEC);
  6224. return rt_period_us;
  6225. }
  6226. #endif /* CONFIG_RT_GROUP_SCHED */
  6227. #ifdef CONFIG_RT_GROUP_SCHED
  6228. static int sched_rt_global_constraints(void)
  6229. {
  6230. int ret = 0;
  6231. mutex_lock(&rt_constraints_mutex);
  6232. read_lock(&tasklist_lock);
  6233. ret = __rt_schedulable(NULL, 0, 0);
  6234. read_unlock(&tasklist_lock);
  6235. mutex_unlock(&rt_constraints_mutex);
  6236. return ret;
  6237. }
  6238. static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  6239. {
  6240. /* Don't accept realtime tasks when there is no way for them to run */
  6241. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  6242. return 0;
  6243. return 1;
  6244. }
  6245. #else /* !CONFIG_RT_GROUP_SCHED */
  6246. static int sched_rt_global_constraints(void)
  6247. {
  6248. unsigned long flags;
  6249. int i, ret = 0;
  6250. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6251. for_each_possible_cpu(i) {
  6252. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6253. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6254. rt_rq->rt_runtime = global_rt_runtime();
  6255. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6256. }
  6257. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6258. return ret;
  6259. }
  6260. #endif /* CONFIG_RT_GROUP_SCHED */
  6261. static int sched_dl_global_constraints(void)
  6262. {
  6263. u64 runtime = global_rt_runtime();
  6264. u64 period = global_rt_period();
  6265. u64 new_bw = to_ratio(period, runtime);
  6266. int cpu, ret = 0;
  6267. /*
  6268. * Here we want to check the bandwidth not being set to some
  6269. * value smaller than the currently allocated bandwidth in
  6270. * any of the root_domains.
  6271. *
  6272. * FIXME: Cycling on all the CPUs is overdoing, but simpler than
  6273. * cycling on root_domains... Discussion on different/better
  6274. * solutions is welcome!
  6275. */
  6276. for_each_possible_cpu(cpu) {
  6277. struct dl_bw *dl_b = dl_bw_of(cpu);
  6278. raw_spin_lock(&dl_b->lock);
  6279. if (new_bw < dl_b->total_bw)
  6280. ret = -EBUSY;
  6281. raw_spin_unlock(&dl_b->lock);
  6282. if (ret)
  6283. break;
  6284. }
  6285. return ret;
  6286. }
  6287. static void sched_dl_do_global(void)
  6288. {
  6289. u64 new_bw = -1;
  6290. int cpu;
  6291. def_dl_bandwidth.dl_period = global_rt_period();
  6292. def_dl_bandwidth.dl_runtime = global_rt_runtime();
  6293. if (global_rt_runtime() != RUNTIME_INF)
  6294. new_bw = to_ratio(global_rt_period(), global_rt_runtime());
  6295. /*
  6296. * FIXME: As above...
  6297. */
  6298. for_each_possible_cpu(cpu) {
  6299. struct dl_bw *dl_b = dl_bw_of(cpu);
  6300. raw_spin_lock(&dl_b->lock);
  6301. dl_b->bw = new_bw;
  6302. raw_spin_unlock(&dl_b->lock);
  6303. }
  6304. }
  6305. static int sched_rt_global_validate(void)
  6306. {
  6307. if (sysctl_sched_rt_period <= 0)
  6308. return -EINVAL;
  6309. if (sysctl_sched_rt_runtime > sysctl_sched_rt_period)
  6310. return -EINVAL;
  6311. return 0;
  6312. }
  6313. static void sched_rt_do_global(void)
  6314. {
  6315. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6316. def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
  6317. }
  6318. int sched_rt_handler(struct ctl_table *table, int write,
  6319. void __user *buffer, size_t *lenp,
  6320. loff_t *ppos)
  6321. {
  6322. int old_period, old_runtime;
  6323. static DEFINE_MUTEX(mutex);
  6324. int ret;
  6325. mutex_lock(&mutex);
  6326. old_period = sysctl_sched_rt_period;
  6327. old_runtime = sysctl_sched_rt_runtime;
  6328. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6329. if (!ret && write) {
  6330. ret = sched_rt_global_validate();
  6331. if (ret)
  6332. goto undo;
  6333. ret = sched_rt_global_constraints();
  6334. if (ret)
  6335. goto undo;
  6336. ret = sched_dl_global_constraints();
  6337. if (ret)
  6338. goto undo;
  6339. sched_rt_do_global();
  6340. sched_dl_do_global();
  6341. }
  6342. if (0) {
  6343. undo:
  6344. sysctl_sched_rt_period = old_period;
  6345. sysctl_sched_rt_runtime = old_runtime;
  6346. }
  6347. mutex_unlock(&mutex);
  6348. return ret;
  6349. }
  6350. int sched_rr_handler(struct ctl_table *table, int write,
  6351. void __user *buffer, size_t *lenp,
  6352. loff_t *ppos)
  6353. {
  6354. int ret;
  6355. static DEFINE_MUTEX(mutex);
  6356. mutex_lock(&mutex);
  6357. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6358. /* make sure that internally we keep jiffies */
  6359. /* also, writing zero resets timeslice to default */
  6360. if (!ret && write) {
  6361. sched_rr_timeslice = sched_rr_timeslice <= 0 ?
  6362. RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
  6363. }
  6364. mutex_unlock(&mutex);
  6365. return ret;
  6366. }
  6367. #ifdef CONFIG_CGROUP_SCHED
  6368. static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
  6369. {
  6370. return css ? container_of(css, struct task_group, css) : NULL;
  6371. }
  6372. static struct cgroup_subsys_state *
  6373. cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
  6374. {
  6375. struct task_group *parent = css_tg(parent_css);
  6376. struct task_group *tg;
  6377. if (!parent) {
  6378. /* This is early initialization for the top cgroup */
  6379. return &root_task_group.css;
  6380. }
  6381. tg = sched_create_group(parent);
  6382. if (IS_ERR(tg))
  6383. return ERR_PTR(-ENOMEM);
  6384. return &tg->css;
  6385. }
  6386. static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
  6387. {
  6388. struct task_group *tg = css_tg(css);
  6389. struct task_group *parent = css_tg(css_parent(css));
  6390. if (parent)
  6391. sched_online_group(tg, parent);
  6392. return 0;
  6393. }
  6394. static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
  6395. {
  6396. struct task_group *tg = css_tg(css);
  6397. sched_destroy_group(tg);
  6398. }
  6399. static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
  6400. {
  6401. struct task_group *tg = css_tg(css);
  6402. sched_offline_group(tg);
  6403. }
  6404. static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
  6405. struct cgroup_taskset *tset)
  6406. {
  6407. struct task_struct *task;
  6408. cgroup_taskset_for_each(task, css, tset) {
  6409. #ifdef CONFIG_RT_GROUP_SCHED
  6410. if (!sched_rt_can_attach(css_tg(css), task))
  6411. return -EINVAL;
  6412. #else
  6413. /* We don't support RT-tasks being in separate groups */
  6414. if (task->sched_class != &fair_sched_class)
  6415. return -EINVAL;
  6416. #endif
  6417. }
  6418. return 0;
  6419. }
  6420. static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
  6421. struct cgroup_taskset *tset)
  6422. {
  6423. struct task_struct *task;
  6424. cgroup_taskset_for_each(task, css, tset)
  6425. sched_move_task(task);
  6426. }
  6427. static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
  6428. struct cgroup_subsys_state *old_css,
  6429. struct task_struct *task)
  6430. {
  6431. /*
  6432. * cgroup_exit() is called in the copy_process() failure path.
  6433. * Ignore this case since the task hasn't ran yet, this avoids
  6434. * trying to poke a half freed task state from generic code.
  6435. */
  6436. if (!(task->flags & PF_EXITING))
  6437. return;
  6438. sched_move_task(task);
  6439. }
  6440. #ifdef CONFIG_FAIR_GROUP_SCHED
  6441. static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
  6442. struct cftype *cftype, u64 shareval)
  6443. {
  6444. return sched_group_set_shares(css_tg(css), scale_load(shareval));
  6445. }
  6446. static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
  6447. struct cftype *cft)
  6448. {
  6449. struct task_group *tg = css_tg(css);
  6450. return (u64) scale_load_down(tg->shares);
  6451. }
  6452. #ifdef CONFIG_CFS_BANDWIDTH
  6453. static DEFINE_MUTEX(cfs_constraints_mutex);
  6454. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  6455. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  6456. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  6457. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  6458. {
  6459. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  6460. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6461. if (tg == &root_task_group)
  6462. return -EINVAL;
  6463. /*
  6464. * Ensure we have at some amount of bandwidth every period. This is
  6465. * to prevent reaching a state of large arrears when throttled via
  6466. * entity_tick() resulting in prolonged exit starvation.
  6467. */
  6468. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  6469. return -EINVAL;
  6470. /*
  6471. * Likewise, bound things on the otherside by preventing insane quota
  6472. * periods. This also allows us to normalize in computing quota
  6473. * feasibility.
  6474. */
  6475. if (period > max_cfs_quota_period)
  6476. return -EINVAL;
  6477. mutex_lock(&cfs_constraints_mutex);
  6478. ret = __cfs_schedulable(tg, period, quota);
  6479. if (ret)
  6480. goto out_unlock;
  6481. runtime_enabled = quota != RUNTIME_INF;
  6482. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  6483. /*
  6484. * If we need to toggle cfs_bandwidth_used, off->on must occur
  6485. * before making related changes, and on->off must occur afterwards
  6486. */
  6487. if (runtime_enabled && !runtime_was_enabled)
  6488. cfs_bandwidth_usage_inc();
  6489. raw_spin_lock_irq(&cfs_b->lock);
  6490. cfs_b->period = ns_to_ktime(period);
  6491. cfs_b->quota = quota;
  6492. __refill_cfs_bandwidth_runtime(cfs_b);
  6493. /* restart the period timer (if active) to handle new period expiry */
  6494. if (runtime_enabled && cfs_b->timer_active) {
  6495. /* force a reprogram */
  6496. cfs_b->timer_active = 0;
  6497. __start_cfs_bandwidth(cfs_b);
  6498. }
  6499. raw_spin_unlock_irq(&cfs_b->lock);
  6500. for_each_possible_cpu(i) {
  6501. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  6502. struct rq *rq = cfs_rq->rq;
  6503. raw_spin_lock_irq(&rq->lock);
  6504. cfs_rq->runtime_enabled = runtime_enabled;
  6505. cfs_rq->runtime_remaining = 0;
  6506. if (cfs_rq->throttled)
  6507. unthrottle_cfs_rq(cfs_rq);
  6508. raw_spin_unlock_irq(&rq->lock);
  6509. }
  6510. if (runtime_was_enabled && !runtime_enabled)
  6511. cfs_bandwidth_usage_dec();
  6512. out_unlock:
  6513. mutex_unlock(&cfs_constraints_mutex);
  6514. return ret;
  6515. }
  6516. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  6517. {
  6518. u64 quota, period;
  6519. period = ktime_to_ns(tg->cfs_bandwidth.period);
  6520. if (cfs_quota_us < 0)
  6521. quota = RUNTIME_INF;
  6522. else
  6523. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  6524. return tg_set_cfs_bandwidth(tg, period, quota);
  6525. }
  6526. long tg_get_cfs_quota(struct task_group *tg)
  6527. {
  6528. u64 quota_us;
  6529. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  6530. return -1;
  6531. quota_us = tg->cfs_bandwidth.quota;
  6532. do_div(quota_us, NSEC_PER_USEC);
  6533. return quota_us;
  6534. }
  6535. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  6536. {
  6537. u64 quota, period;
  6538. period = (u64)cfs_period_us * NSEC_PER_USEC;
  6539. quota = tg->cfs_bandwidth.quota;
  6540. return tg_set_cfs_bandwidth(tg, period, quota);
  6541. }
  6542. long tg_get_cfs_period(struct task_group *tg)
  6543. {
  6544. u64 cfs_period_us;
  6545. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  6546. do_div(cfs_period_us, NSEC_PER_USEC);
  6547. return cfs_period_us;
  6548. }
  6549. static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
  6550. struct cftype *cft)
  6551. {
  6552. return tg_get_cfs_quota(css_tg(css));
  6553. }
  6554. static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
  6555. struct cftype *cftype, s64 cfs_quota_us)
  6556. {
  6557. return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
  6558. }
  6559. static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
  6560. struct cftype *cft)
  6561. {
  6562. return tg_get_cfs_period(css_tg(css));
  6563. }
  6564. static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
  6565. struct cftype *cftype, u64 cfs_period_us)
  6566. {
  6567. return tg_set_cfs_period(css_tg(css), cfs_period_us);
  6568. }
  6569. struct cfs_schedulable_data {
  6570. struct task_group *tg;
  6571. u64 period, quota;
  6572. };
  6573. /*
  6574. * normalize group quota/period to be quota/max_period
  6575. * note: units are usecs
  6576. */
  6577. static u64 normalize_cfs_quota(struct task_group *tg,
  6578. struct cfs_schedulable_data *d)
  6579. {
  6580. u64 quota, period;
  6581. if (tg == d->tg) {
  6582. period = d->period;
  6583. quota = d->quota;
  6584. } else {
  6585. period = tg_get_cfs_period(tg);
  6586. quota = tg_get_cfs_quota(tg);
  6587. }
  6588. /* note: these should typically be equivalent */
  6589. if (quota == RUNTIME_INF || quota == -1)
  6590. return RUNTIME_INF;
  6591. return to_ratio(period, quota);
  6592. }
  6593. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  6594. {
  6595. struct cfs_schedulable_data *d = data;
  6596. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6597. s64 quota = 0, parent_quota = -1;
  6598. if (!tg->parent) {
  6599. quota = RUNTIME_INF;
  6600. } else {
  6601. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  6602. quota = normalize_cfs_quota(tg, d);
  6603. parent_quota = parent_b->hierarchal_quota;
  6604. /*
  6605. * ensure max(child_quota) <= parent_quota, inherit when no
  6606. * limit is set
  6607. */
  6608. if (quota == RUNTIME_INF)
  6609. quota = parent_quota;
  6610. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  6611. return -EINVAL;
  6612. }
  6613. cfs_b->hierarchal_quota = quota;
  6614. return 0;
  6615. }
  6616. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  6617. {
  6618. int ret;
  6619. struct cfs_schedulable_data data = {
  6620. .tg = tg,
  6621. .period = period,
  6622. .quota = quota,
  6623. };
  6624. if (quota != RUNTIME_INF) {
  6625. do_div(data.period, NSEC_PER_USEC);
  6626. do_div(data.quota, NSEC_PER_USEC);
  6627. }
  6628. rcu_read_lock();
  6629. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  6630. rcu_read_unlock();
  6631. return ret;
  6632. }
  6633. static int cpu_stats_show(struct seq_file *sf, void *v)
  6634. {
  6635. struct task_group *tg = css_tg(seq_css(sf));
  6636. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6637. seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
  6638. seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
  6639. seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
  6640. return 0;
  6641. }
  6642. #endif /* CONFIG_CFS_BANDWIDTH */
  6643. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6644. #ifdef CONFIG_RT_GROUP_SCHED
  6645. static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
  6646. struct cftype *cft, s64 val)
  6647. {
  6648. return sched_group_set_rt_runtime(css_tg(css), val);
  6649. }
  6650. static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
  6651. struct cftype *cft)
  6652. {
  6653. return sched_group_rt_runtime(css_tg(css));
  6654. }
  6655. static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
  6656. struct cftype *cftype, u64 rt_period_us)
  6657. {
  6658. return sched_group_set_rt_period(css_tg(css), rt_period_us);
  6659. }
  6660. static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
  6661. struct cftype *cft)
  6662. {
  6663. return sched_group_rt_period(css_tg(css));
  6664. }
  6665. #endif /* CONFIG_RT_GROUP_SCHED */
  6666. static struct cftype cpu_files[] = {
  6667. #ifdef CONFIG_FAIR_GROUP_SCHED
  6668. {
  6669. .name = "shares",
  6670. .read_u64 = cpu_shares_read_u64,
  6671. .write_u64 = cpu_shares_write_u64,
  6672. },
  6673. #endif
  6674. #ifdef CONFIG_CFS_BANDWIDTH
  6675. {
  6676. .name = "cfs_quota_us",
  6677. .read_s64 = cpu_cfs_quota_read_s64,
  6678. .write_s64 = cpu_cfs_quota_write_s64,
  6679. },
  6680. {
  6681. .name = "cfs_period_us",
  6682. .read_u64 = cpu_cfs_period_read_u64,
  6683. .write_u64 = cpu_cfs_period_write_u64,
  6684. },
  6685. {
  6686. .name = "stat",
  6687. .seq_show = cpu_stats_show,
  6688. },
  6689. #endif
  6690. #ifdef CONFIG_RT_GROUP_SCHED
  6691. {
  6692. .name = "rt_runtime_us",
  6693. .read_s64 = cpu_rt_runtime_read,
  6694. .write_s64 = cpu_rt_runtime_write,
  6695. },
  6696. {
  6697. .name = "rt_period_us",
  6698. .read_u64 = cpu_rt_period_read_uint,
  6699. .write_u64 = cpu_rt_period_write_uint,
  6700. },
  6701. #endif
  6702. { } /* terminate */
  6703. };
  6704. struct cgroup_subsys cpu_cgroup_subsys = {
  6705. .name = "cpu",
  6706. .css_alloc = cpu_cgroup_css_alloc,
  6707. .css_free = cpu_cgroup_css_free,
  6708. .css_online = cpu_cgroup_css_online,
  6709. .css_offline = cpu_cgroup_css_offline,
  6710. .can_attach = cpu_cgroup_can_attach,
  6711. .attach = cpu_cgroup_attach,
  6712. .exit = cpu_cgroup_exit,
  6713. .subsys_id = cpu_cgroup_subsys_id,
  6714. .base_cftypes = cpu_files,
  6715. .early_init = 1,
  6716. };
  6717. #endif /* CONFIG_CGROUP_SCHED */
  6718. void dump_cpu_task(int cpu)
  6719. {
  6720. pr_info("Task dump for CPU %d:\n", cpu);
  6721. sched_show_task(cpu_curr(cpu));
  6722. }