slab.c 110 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382
  1. /*
  2. * linux/mm/slab.c
  3. * Written by Mark Hemment, 1996/97.
  4. * (markhe@nextd.demon.co.uk)
  5. *
  6. * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
  7. *
  8. * Major cleanup, different bufctl logic, per-cpu arrays
  9. * (c) 2000 Manfred Spraul
  10. *
  11. * Cleanup, make the head arrays unconditional, preparation for NUMA
  12. * (c) 2002 Manfred Spraul
  13. *
  14. * An implementation of the Slab Allocator as described in outline in;
  15. * UNIX Internals: The New Frontiers by Uresh Vahalia
  16. * Pub: Prentice Hall ISBN 0-13-101908-2
  17. * or with a little more detail in;
  18. * The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19. * Jeff Bonwick (Sun Microsystems).
  20. * Presented at: USENIX Summer 1994 Technical Conference
  21. *
  22. * The memory is organized in caches, one cache for each object type.
  23. * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24. * Each cache consists out of many slabs (they are small (usually one
  25. * page long) and always contiguous), and each slab contains multiple
  26. * initialized objects.
  27. *
  28. * This means, that your constructor is used only for newly allocated
  29. * slabs and you must pass objects with the same initializations to
  30. * kmem_cache_free.
  31. *
  32. * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33. * normal). If you need a special memory type, then must create a new
  34. * cache for that memory type.
  35. *
  36. * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37. * full slabs with 0 free objects
  38. * partial slabs
  39. * empty slabs with no allocated objects
  40. *
  41. * If partial slabs exist, then new allocations come from these slabs,
  42. * otherwise from empty slabs or new slabs are allocated.
  43. *
  44. * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45. * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46. *
  47. * Each cache has a short per-cpu head array, most allocs
  48. * and frees go into that array, and if that array overflows, then 1/2
  49. * of the entries in the array are given back into the global cache.
  50. * The head array is strictly LIFO and should improve the cache hit rates.
  51. * On SMP, it additionally reduces the spinlock operations.
  52. *
  53. * The c_cpuarray may not be read with enabled local interrupts -
  54. * it's changed with a smp_call_function().
  55. *
  56. * SMP synchronization:
  57. * constructors and destructors are called without any locking.
  58. * Several members in struct kmem_cache and struct slab never change, they
  59. * are accessed without any locking.
  60. * The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61. * and local interrupts are disabled so slab code is preempt-safe.
  62. * The non-constant members are protected with a per-cache irq spinlock.
  63. *
  64. * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65. * in 2000 - many ideas in the current implementation are derived from
  66. * his patch.
  67. *
  68. * Further notes from the original documentation:
  69. *
  70. * 11 April '97. Started multi-threading - markhe
  71. * The global cache-chain is protected by the mutex 'slab_mutex'.
  72. * The sem is only needed when accessing/extending the cache-chain, which
  73. * can never happen inside an interrupt (kmem_cache_create(),
  74. * kmem_cache_shrink() and kmem_cache_reap()).
  75. *
  76. * At present, each engine can be growing a cache. This should be blocked.
  77. *
  78. * 15 March 2005. NUMA slab allocator.
  79. * Shai Fultheim <shai@scalex86.org>.
  80. * Shobhit Dayal <shobhit@calsoftinc.com>
  81. * Alok N Kataria <alokk@calsoftinc.com>
  82. * Christoph Lameter <christoph@lameter.com>
  83. *
  84. * Modified the slab allocator to be node aware on NUMA systems.
  85. * Each node has its own list of partial, free and full slabs.
  86. * All object allocations for a node occur from node specific slab lists.
  87. */
  88. #include <linux/slab.h>
  89. #include <linux/mm.h>
  90. #include <linux/poison.h>
  91. #include <linux/swap.h>
  92. #include <linux/cache.h>
  93. #include <linux/interrupt.h>
  94. #include <linux/init.h>
  95. #include <linux/compiler.h>
  96. #include <linux/cpuset.h>
  97. #include <linux/proc_fs.h>
  98. #include <linux/seq_file.h>
  99. #include <linux/notifier.h>
  100. #include <linux/kallsyms.h>
  101. #include <linux/cpu.h>
  102. #include <linux/sysctl.h>
  103. #include <linux/module.h>
  104. #include <linux/rcupdate.h>
  105. #include <linux/string.h>
  106. #include <linux/uaccess.h>
  107. #include <linux/nodemask.h>
  108. #include <linux/kmemleak.h>
  109. #include <linux/mempolicy.h>
  110. #include <linux/mutex.h>
  111. #include <linux/fault-inject.h>
  112. #include <linux/rtmutex.h>
  113. #include <linux/reciprocal_div.h>
  114. #include <linux/debugobjects.h>
  115. #include <linux/kmemcheck.h>
  116. #include <linux/memory.h>
  117. #include <linux/prefetch.h>
  118. #include <net/sock.h>
  119. #include <asm/cacheflush.h>
  120. #include <asm/tlbflush.h>
  121. #include <asm/page.h>
  122. #include <trace/events/kmem.h>
  123. #include "internal.h"
  124. #include "slab.h"
  125. /*
  126. * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
  127. * 0 for faster, smaller code (especially in the critical paths).
  128. *
  129. * STATS - 1 to collect stats for /proc/slabinfo.
  130. * 0 for faster, smaller code (especially in the critical paths).
  131. *
  132. * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
  133. */
  134. #ifdef CONFIG_DEBUG_SLAB
  135. #define DEBUG 1
  136. #define STATS 1
  137. #define FORCED_DEBUG 1
  138. #else
  139. #define DEBUG 0
  140. #define STATS 0
  141. #define FORCED_DEBUG 0
  142. #endif
  143. /* Shouldn't this be in a header file somewhere? */
  144. #define BYTES_PER_WORD sizeof(void *)
  145. #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
  146. #ifndef ARCH_KMALLOC_FLAGS
  147. #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
  148. #endif
  149. #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
  150. <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
  151. #if FREELIST_BYTE_INDEX
  152. typedef unsigned char freelist_idx_t;
  153. #else
  154. typedef unsigned short freelist_idx_t;
  155. #endif
  156. #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
  157. /*
  158. * true if a page was allocated from pfmemalloc reserves for network-based
  159. * swap
  160. */
  161. static bool pfmemalloc_active __read_mostly;
  162. /*
  163. * struct array_cache
  164. *
  165. * Purpose:
  166. * - LIFO ordering, to hand out cache-warm objects from _alloc
  167. * - reduce the number of linked list operations
  168. * - reduce spinlock operations
  169. *
  170. * The limit is stored in the per-cpu structure to reduce the data cache
  171. * footprint.
  172. *
  173. */
  174. struct array_cache {
  175. unsigned int avail;
  176. unsigned int limit;
  177. unsigned int batchcount;
  178. unsigned int touched;
  179. spinlock_t lock;
  180. void *entry[]; /*
  181. * Must have this definition in here for the proper
  182. * alignment of array_cache. Also simplifies accessing
  183. * the entries.
  184. *
  185. * Entries should not be directly dereferenced as
  186. * entries belonging to slabs marked pfmemalloc will
  187. * have the lower bits set SLAB_OBJ_PFMEMALLOC
  188. */
  189. };
  190. #define SLAB_OBJ_PFMEMALLOC 1
  191. static inline bool is_obj_pfmemalloc(void *objp)
  192. {
  193. return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
  194. }
  195. static inline void set_obj_pfmemalloc(void **objp)
  196. {
  197. *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
  198. return;
  199. }
  200. static inline void clear_obj_pfmemalloc(void **objp)
  201. {
  202. *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
  203. }
  204. /*
  205. * bootstrap: The caches do not work without cpuarrays anymore, but the
  206. * cpuarrays are allocated from the generic caches...
  207. */
  208. #define BOOT_CPUCACHE_ENTRIES 1
  209. struct arraycache_init {
  210. struct array_cache cache;
  211. void *entries[BOOT_CPUCACHE_ENTRIES];
  212. };
  213. /*
  214. * Need this for bootstrapping a per node allocator.
  215. */
  216. #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
  217. static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
  218. #define CACHE_CACHE 0
  219. #define SIZE_AC MAX_NUMNODES
  220. #define SIZE_NODE (2 * MAX_NUMNODES)
  221. static int drain_freelist(struct kmem_cache *cache,
  222. struct kmem_cache_node *n, int tofree);
  223. static void free_block(struct kmem_cache *cachep, void **objpp, int len,
  224. int node);
  225. static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
  226. static void cache_reap(struct work_struct *unused);
  227. static int slab_early_init = 1;
  228. #define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
  229. #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
  230. static void kmem_cache_node_init(struct kmem_cache_node *parent)
  231. {
  232. INIT_LIST_HEAD(&parent->slabs_full);
  233. INIT_LIST_HEAD(&parent->slabs_partial);
  234. INIT_LIST_HEAD(&parent->slabs_free);
  235. parent->shared = NULL;
  236. parent->alien = NULL;
  237. parent->colour_next = 0;
  238. spin_lock_init(&parent->list_lock);
  239. parent->free_objects = 0;
  240. parent->free_touched = 0;
  241. }
  242. #define MAKE_LIST(cachep, listp, slab, nodeid) \
  243. do { \
  244. INIT_LIST_HEAD(listp); \
  245. list_splice(&(cachep->node[nodeid]->slab), listp); \
  246. } while (0)
  247. #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
  248. do { \
  249. MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
  250. MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
  251. MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
  252. } while (0)
  253. #define CFLGS_OFF_SLAB (0x80000000UL)
  254. #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
  255. #define BATCHREFILL_LIMIT 16
  256. /*
  257. * Optimization question: fewer reaps means less probability for unnessary
  258. * cpucache drain/refill cycles.
  259. *
  260. * OTOH the cpuarrays can contain lots of objects,
  261. * which could lock up otherwise freeable slabs.
  262. */
  263. #define REAPTIMEOUT_AC (2*HZ)
  264. #define REAPTIMEOUT_NODE (4*HZ)
  265. #if STATS
  266. #define STATS_INC_ACTIVE(x) ((x)->num_active++)
  267. #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
  268. #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
  269. #define STATS_INC_GROWN(x) ((x)->grown++)
  270. #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
  271. #define STATS_SET_HIGH(x) \
  272. do { \
  273. if ((x)->num_active > (x)->high_mark) \
  274. (x)->high_mark = (x)->num_active; \
  275. } while (0)
  276. #define STATS_INC_ERR(x) ((x)->errors++)
  277. #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
  278. #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
  279. #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
  280. #define STATS_SET_FREEABLE(x, i) \
  281. do { \
  282. if ((x)->max_freeable < i) \
  283. (x)->max_freeable = i; \
  284. } while (0)
  285. #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
  286. #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
  287. #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
  288. #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
  289. #else
  290. #define STATS_INC_ACTIVE(x) do { } while (0)
  291. #define STATS_DEC_ACTIVE(x) do { } while (0)
  292. #define STATS_INC_ALLOCED(x) do { } while (0)
  293. #define STATS_INC_GROWN(x) do { } while (0)
  294. #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
  295. #define STATS_SET_HIGH(x) do { } while (0)
  296. #define STATS_INC_ERR(x) do { } while (0)
  297. #define STATS_INC_NODEALLOCS(x) do { } while (0)
  298. #define STATS_INC_NODEFREES(x) do { } while (0)
  299. #define STATS_INC_ACOVERFLOW(x) do { } while (0)
  300. #define STATS_SET_FREEABLE(x, i) do { } while (0)
  301. #define STATS_INC_ALLOCHIT(x) do { } while (0)
  302. #define STATS_INC_ALLOCMISS(x) do { } while (0)
  303. #define STATS_INC_FREEHIT(x) do { } while (0)
  304. #define STATS_INC_FREEMISS(x) do { } while (0)
  305. #endif
  306. #if DEBUG
  307. /*
  308. * memory layout of objects:
  309. * 0 : objp
  310. * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
  311. * the end of an object is aligned with the end of the real
  312. * allocation. Catches writes behind the end of the allocation.
  313. * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
  314. * redzone word.
  315. * cachep->obj_offset: The real object.
  316. * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
  317. * cachep->size - 1* BYTES_PER_WORD: last caller address
  318. * [BYTES_PER_WORD long]
  319. */
  320. static int obj_offset(struct kmem_cache *cachep)
  321. {
  322. return cachep->obj_offset;
  323. }
  324. static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
  325. {
  326. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  327. return (unsigned long long*) (objp + obj_offset(cachep) -
  328. sizeof(unsigned long long));
  329. }
  330. static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
  331. {
  332. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  333. if (cachep->flags & SLAB_STORE_USER)
  334. return (unsigned long long *)(objp + cachep->size -
  335. sizeof(unsigned long long) -
  336. REDZONE_ALIGN);
  337. return (unsigned long long *) (objp + cachep->size -
  338. sizeof(unsigned long long));
  339. }
  340. static void **dbg_userword(struct kmem_cache *cachep, void *objp)
  341. {
  342. BUG_ON(!(cachep->flags & SLAB_STORE_USER));
  343. return (void **)(objp + cachep->size - BYTES_PER_WORD);
  344. }
  345. #else
  346. #define obj_offset(x) 0
  347. #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
  348. #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
  349. #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
  350. #endif
  351. /*
  352. * Do not go above this order unless 0 objects fit into the slab or
  353. * overridden on the command line.
  354. */
  355. #define SLAB_MAX_ORDER_HI 1
  356. #define SLAB_MAX_ORDER_LO 0
  357. static int slab_max_order = SLAB_MAX_ORDER_LO;
  358. static bool slab_max_order_set __initdata;
  359. static inline struct kmem_cache *virt_to_cache(const void *obj)
  360. {
  361. struct page *page = virt_to_head_page(obj);
  362. return page->slab_cache;
  363. }
  364. static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
  365. unsigned int idx)
  366. {
  367. return page->s_mem + cache->size * idx;
  368. }
  369. /*
  370. * We want to avoid an expensive divide : (offset / cache->size)
  371. * Using the fact that size is a constant for a particular cache,
  372. * we can replace (offset / cache->size) by
  373. * reciprocal_divide(offset, cache->reciprocal_buffer_size)
  374. */
  375. static inline unsigned int obj_to_index(const struct kmem_cache *cache,
  376. const struct page *page, void *obj)
  377. {
  378. u32 offset = (obj - page->s_mem);
  379. return reciprocal_divide(offset, cache->reciprocal_buffer_size);
  380. }
  381. static struct arraycache_init initarray_generic =
  382. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  383. /* internal cache of cache description objs */
  384. static struct kmem_cache kmem_cache_boot = {
  385. .batchcount = 1,
  386. .limit = BOOT_CPUCACHE_ENTRIES,
  387. .shared = 1,
  388. .size = sizeof(struct kmem_cache),
  389. .name = "kmem_cache",
  390. };
  391. #define BAD_ALIEN_MAGIC 0x01020304ul
  392. #ifdef CONFIG_LOCKDEP
  393. /*
  394. * Slab sometimes uses the kmalloc slabs to store the slab headers
  395. * for other slabs "off slab".
  396. * The locking for this is tricky in that it nests within the locks
  397. * of all other slabs in a few places; to deal with this special
  398. * locking we put on-slab caches into a separate lock-class.
  399. *
  400. * We set lock class for alien array caches which are up during init.
  401. * The lock annotation will be lost if all cpus of a node goes down and
  402. * then comes back up during hotplug
  403. */
  404. static struct lock_class_key on_slab_l3_key;
  405. static struct lock_class_key on_slab_alc_key;
  406. static struct lock_class_key debugobj_l3_key;
  407. static struct lock_class_key debugobj_alc_key;
  408. static void slab_set_lock_classes(struct kmem_cache *cachep,
  409. struct lock_class_key *l3_key, struct lock_class_key *alc_key,
  410. int q)
  411. {
  412. struct array_cache **alc;
  413. struct kmem_cache_node *n;
  414. int r;
  415. n = cachep->node[q];
  416. if (!n)
  417. return;
  418. lockdep_set_class(&n->list_lock, l3_key);
  419. alc = n->alien;
  420. /*
  421. * FIXME: This check for BAD_ALIEN_MAGIC
  422. * should go away when common slab code is taught to
  423. * work even without alien caches.
  424. * Currently, non NUMA code returns BAD_ALIEN_MAGIC
  425. * for alloc_alien_cache,
  426. */
  427. if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
  428. return;
  429. for_each_node(r) {
  430. if (alc[r])
  431. lockdep_set_class(&alc[r]->lock, alc_key);
  432. }
  433. }
  434. static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
  435. {
  436. slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
  437. }
  438. static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
  439. {
  440. int node;
  441. for_each_online_node(node)
  442. slab_set_debugobj_lock_classes_node(cachep, node);
  443. }
  444. static void init_node_lock_keys(int q)
  445. {
  446. int i;
  447. if (slab_state < UP)
  448. return;
  449. for (i = 1; i <= KMALLOC_SHIFT_HIGH; i++) {
  450. struct kmem_cache_node *n;
  451. struct kmem_cache *cache = kmalloc_caches[i];
  452. if (!cache)
  453. continue;
  454. n = cache->node[q];
  455. if (!n || OFF_SLAB(cache))
  456. continue;
  457. slab_set_lock_classes(cache, &on_slab_l3_key,
  458. &on_slab_alc_key, q);
  459. }
  460. }
  461. static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
  462. {
  463. if (!cachep->node[q])
  464. return;
  465. slab_set_lock_classes(cachep, &on_slab_l3_key,
  466. &on_slab_alc_key, q);
  467. }
  468. static inline void on_slab_lock_classes(struct kmem_cache *cachep)
  469. {
  470. int node;
  471. VM_BUG_ON(OFF_SLAB(cachep));
  472. for_each_node(node)
  473. on_slab_lock_classes_node(cachep, node);
  474. }
  475. static inline void init_lock_keys(void)
  476. {
  477. int node;
  478. for_each_node(node)
  479. init_node_lock_keys(node);
  480. }
  481. #else
  482. static void init_node_lock_keys(int q)
  483. {
  484. }
  485. static inline void init_lock_keys(void)
  486. {
  487. }
  488. static inline void on_slab_lock_classes(struct kmem_cache *cachep)
  489. {
  490. }
  491. static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
  492. {
  493. }
  494. static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
  495. {
  496. }
  497. static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
  498. {
  499. }
  500. #endif
  501. static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
  502. static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
  503. {
  504. return cachep->array[smp_processor_id()];
  505. }
  506. static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
  507. size_t idx_size, size_t align)
  508. {
  509. int nr_objs;
  510. size_t freelist_size;
  511. /*
  512. * Ignore padding for the initial guess. The padding
  513. * is at most @align-1 bytes, and @buffer_size is at
  514. * least @align. In the worst case, this result will
  515. * be one greater than the number of objects that fit
  516. * into the memory allocation when taking the padding
  517. * into account.
  518. */
  519. nr_objs = slab_size / (buffer_size + idx_size);
  520. /*
  521. * This calculated number will be either the right
  522. * amount, or one greater than what we want.
  523. */
  524. freelist_size = slab_size - nr_objs * buffer_size;
  525. if (freelist_size < ALIGN(nr_objs * idx_size, align))
  526. nr_objs--;
  527. return nr_objs;
  528. }
  529. /*
  530. * Calculate the number of objects and left-over bytes for a given buffer size.
  531. */
  532. static void cache_estimate(unsigned long gfporder, size_t buffer_size,
  533. size_t align, int flags, size_t *left_over,
  534. unsigned int *num)
  535. {
  536. int nr_objs;
  537. size_t mgmt_size;
  538. size_t slab_size = PAGE_SIZE << gfporder;
  539. /*
  540. * The slab management structure can be either off the slab or
  541. * on it. For the latter case, the memory allocated for a
  542. * slab is used for:
  543. *
  544. * - One unsigned int for each object
  545. * - Padding to respect alignment of @align
  546. * - @buffer_size bytes for each object
  547. *
  548. * If the slab management structure is off the slab, then the
  549. * alignment will already be calculated into the size. Because
  550. * the slabs are all pages aligned, the objects will be at the
  551. * correct alignment when allocated.
  552. */
  553. if (flags & CFLGS_OFF_SLAB) {
  554. mgmt_size = 0;
  555. nr_objs = slab_size / buffer_size;
  556. } else {
  557. nr_objs = calculate_nr_objs(slab_size, buffer_size,
  558. sizeof(freelist_idx_t), align);
  559. mgmt_size = ALIGN(nr_objs * sizeof(freelist_idx_t), align);
  560. }
  561. *num = nr_objs;
  562. *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
  563. }
  564. #if DEBUG
  565. #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
  566. static void __slab_error(const char *function, struct kmem_cache *cachep,
  567. char *msg)
  568. {
  569. printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
  570. function, cachep->name, msg);
  571. dump_stack();
  572. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  573. }
  574. #endif
  575. /*
  576. * By default on NUMA we use alien caches to stage the freeing of
  577. * objects allocated from other nodes. This causes massive memory
  578. * inefficiencies when using fake NUMA setup to split memory into a
  579. * large number of small nodes, so it can be disabled on the command
  580. * line
  581. */
  582. static int use_alien_caches __read_mostly = 1;
  583. static int __init noaliencache_setup(char *s)
  584. {
  585. use_alien_caches = 0;
  586. return 1;
  587. }
  588. __setup("noaliencache", noaliencache_setup);
  589. static int __init slab_max_order_setup(char *str)
  590. {
  591. get_option(&str, &slab_max_order);
  592. slab_max_order = slab_max_order < 0 ? 0 :
  593. min(slab_max_order, MAX_ORDER - 1);
  594. slab_max_order_set = true;
  595. return 1;
  596. }
  597. __setup("slab_max_order=", slab_max_order_setup);
  598. #ifdef CONFIG_NUMA
  599. /*
  600. * Special reaping functions for NUMA systems called from cache_reap().
  601. * These take care of doing round robin flushing of alien caches (containing
  602. * objects freed on different nodes from which they were allocated) and the
  603. * flushing of remote pcps by calling drain_node_pages.
  604. */
  605. static DEFINE_PER_CPU(unsigned long, slab_reap_node);
  606. static void init_reap_node(int cpu)
  607. {
  608. int node;
  609. node = next_node(cpu_to_mem(cpu), node_online_map);
  610. if (node == MAX_NUMNODES)
  611. node = first_node(node_online_map);
  612. per_cpu(slab_reap_node, cpu) = node;
  613. }
  614. static void next_reap_node(void)
  615. {
  616. int node = __this_cpu_read(slab_reap_node);
  617. node = next_node(node, node_online_map);
  618. if (unlikely(node >= MAX_NUMNODES))
  619. node = first_node(node_online_map);
  620. __this_cpu_write(slab_reap_node, node);
  621. }
  622. #else
  623. #define init_reap_node(cpu) do { } while (0)
  624. #define next_reap_node(void) do { } while (0)
  625. #endif
  626. /*
  627. * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
  628. * via the workqueue/eventd.
  629. * Add the CPU number into the expiration time to minimize the possibility of
  630. * the CPUs getting into lockstep and contending for the global cache chain
  631. * lock.
  632. */
  633. static void start_cpu_timer(int cpu)
  634. {
  635. struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
  636. /*
  637. * When this gets called from do_initcalls via cpucache_init(),
  638. * init_workqueues() has already run, so keventd will be setup
  639. * at that time.
  640. */
  641. if (keventd_up() && reap_work->work.func == NULL) {
  642. init_reap_node(cpu);
  643. INIT_DEFERRABLE_WORK(reap_work, cache_reap);
  644. schedule_delayed_work_on(cpu, reap_work,
  645. __round_jiffies_relative(HZ, cpu));
  646. }
  647. }
  648. static struct array_cache *alloc_arraycache(int node, int entries,
  649. int batchcount, gfp_t gfp)
  650. {
  651. int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
  652. struct array_cache *nc = NULL;
  653. nc = kmalloc_node(memsize, gfp, node);
  654. /*
  655. * The array_cache structures contain pointers to free object.
  656. * However, when such objects are allocated or transferred to another
  657. * cache the pointers are not cleared and they could be counted as
  658. * valid references during a kmemleak scan. Therefore, kmemleak must
  659. * not scan such objects.
  660. */
  661. kmemleak_no_scan(nc);
  662. if (nc) {
  663. nc->avail = 0;
  664. nc->limit = entries;
  665. nc->batchcount = batchcount;
  666. nc->touched = 0;
  667. spin_lock_init(&nc->lock);
  668. }
  669. return nc;
  670. }
  671. static inline bool is_slab_pfmemalloc(struct page *page)
  672. {
  673. return PageSlabPfmemalloc(page);
  674. }
  675. /* Clears pfmemalloc_active if no slabs have pfmalloc set */
  676. static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
  677. struct array_cache *ac)
  678. {
  679. struct kmem_cache_node *n = cachep->node[numa_mem_id()];
  680. struct page *page;
  681. unsigned long flags;
  682. if (!pfmemalloc_active)
  683. return;
  684. spin_lock_irqsave(&n->list_lock, flags);
  685. list_for_each_entry(page, &n->slabs_full, lru)
  686. if (is_slab_pfmemalloc(page))
  687. goto out;
  688. list_for_each_entry(page, &n->slabs_partial, lru)
  689. if (is_slab_pfmemalloc(page))
  690. goto out;
  691. list_for_each_entry(page, &n->slabs_free, lru)
  692. if (is_slab_pfmemalloc(page))
  693. goto out;
  694. pfmemalloc_active = false;
  695. out:
  696. spin_unlock_irqrestore(&n->list_lock, flags);
  697. }
  698. static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
  699. gfp_t flags, bool force_refill)
  700. {
  701. int i;
  702. void *objp = ac->entry[--ac->avail];
  703. /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
  704. if (unlikely(is_obj_pfmemalloc(objp))) {
  705. struct kmem_cache_node *n;
  706. if (gfp_pfmemalloc_allowed(flags)) {
  707. clear_obj_pfmemalloc(&objp);
  708. return objp;
  709. }
  710. /* The caller cannot use PFMEMALLOC objects, find another one */
  711. for (i = 0; i < ac->avail; i++) {
  712. /* If a !PFMEMALLOC object is found, swap them */
  713. if (!is_obj_pfmemalloc(ac->entry[i])) {
  714. objp = ac->entry[i];
  715. ac->entry[i] = ac->entry[ac->avail];
  716. ac->entry[ac->avail] = objp;
  717. return objp;
  718. }
  719. }
  720. /*
  721. * If there are empty slabs on the slabs_free list and we are
  722. * being forced to refill the cache, mark this one !pfmemalloc.
  723. */
  724. n = cachep->node[numa_mem_id()];
  725. if (!list_empty(&n->slabs_free) && force_refill) {
  726. struct page *page = virt_to_head_page(objp);
  727. ClearPageSlabPfmemalloc(page);
  728. clear_obj_pfmemalloc(&objp);
  729. recheck_pfmemalloc_active(cachep, ac);
  730. return objp;
  731. }
  732. /* No !PFMEMALLOC objects available */
  733. ac->avail++;
  734. objp = NULL;
  735. }
  736. return objp;
  737. }
  738. static inline void *ac_get_obj(struct kmem_cache *cachep,
  739. struct array_cache *ac, gfp_t flags, bool force_refill)
  740. {
  741. void *objp;
  742. if (unlikely(sk_memalloc_socks()))
  743. objp = __ac_get_obj(cachep, ac, flags, force_refill);
  744. else
  745. objp = ac->entry[--ac->avail];
  746. return objp;
  747. }
  748. static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
  749. void *objp)
  750. {
  751. if (unlikely(pfmemalloc_active)) {
  752. /* Some pfmemalloc slabs exist, check if this is one */
  753. struct page *page = virt_to_head_page(objp);
  754. if (PageSlabPfmemalloc(page))
  755. set_obj_pfmemalloc(&objp);
  756. }
  757. return objp;
  758. }
  759. static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
  760. void *objp)
  761. {
  762. if (unlikely(sk_memalloc_socks()))
  763. objp = __ac_put_obj(cachep, ac, objp);
  764. ac->entry[ac->avail++] = objp;
  765. }
  766. /*
  767. * Transfer objects in one arraycache to another.
  768. * Locking must be handled by the caller.
  769. *
  770. * Return the number of entries transferred.
  771. */
  772. static int transfer_objects(struct array_cache *to,
  773. struct array_cache *from, unsigned int max)
  774. {
  775. /* Figure out how many entries to transfer */
  776. int nr = min3(from->avail, max, to->limit - to->avail);
  777. if (!nr)
  778. return 0;
  779. memcpy(to->entry + to->avail, from->entry + from->avail -nr,
  780. sizeof(void *) *nr);
  781. from->avail -= nr;
  782. to->avail += nr;
  783. return nr;
  784. }
  785. #ifndef CONFIG_NUMA
  786. #define drain_alien_cache(cachep, alien) do { } while (0)
  787. #define reap_alien(cachep, n) do { } while (0)
  788. static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
  789. {
  790. return (struct array_cache **)BAD_ALIEN_MAGIC;
  791. }
  792. static inline void free_alien_cache(struct array_cache **ac_ptr)
  793. {
  794. }
  795. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  796. {
  797. return 0;
  798. }
  799. static inline void *alternate_node_alloc(struct kmem_cache *cachep,
  800. gfp_t flags)
  801. {
  802. return NULL;
  803. }
  804. static inline void *____cache_alloc_node(struct kmem_cache *cachep,
  805. gfp_t flags, int nodeid)
  806. {
  807. return NULL;
  808. }
  809. #else /* CONFIG_NUMA */
  810. static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
  811. static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
  812. static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
  813. {
  814. struct array_cache **ac_ptr;
  815. int memsize = sizeof(void *) * nr_node_ids;
  816. int i;
  817. if (limit > 1)
  818. limit = 12;
  819. ac_ptr = kzalloc_node(memsize, gfp, node);
  820. if (ac_ptr) {
  821. for_each_node(i) {
  822. if (i == node || !node_online(i))
  823. continue;
  824. ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
  825. if (!ac_ptr[i]) {
  826. for (i--; i >= 0; i--)
  827. kfree(ac_ptr[i]);
  828. kfree(ac_ptr);
  829. return NULL;
  830. }
  831. }
  832. }
  833. return ac_ptr;
  834. }
  835. static void free_alien_cache(struct array_cache **ac_ptr)
  836. {
  837. int i;
  838. if (!ac_ptr)
  839. return;
  840. for_each_node(i)
  841. kfree(ac_ptr[i]);
  842. kfree(ac_ptr);
  843. }
  844. static void __drain_alien_cache(struct kmem_cache *cachep,
  845. struct array_cache *ac, int node)
  846. {
  847. struct kmem_cache_node *n = cachep->node[node];
  848. if (ac->avail) {
  849. spin_lock(&n->list_lock);
  850. /*
  851. * Stuff objects into the remote nodes shared array first.
  852. * That way we could avoid the overhead of putting the objects
  853. * into the free lists and getting them back later.
  854. */
  855. if (n->shared)
  856. transfer_objects(n->shared, ac, ac->limit);
  857. free_block(cachep, ac->entry, ac->avail, node);
  858. ac->avail = 0;
  859. spin_unlock(&n->list_lock);
  860. }
  861. }
  862. /*
  863. * Called from cache_reap() to regularly drain alien caches round robin.
  864. */
  865. static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
  866. {
  867. int node = __this_cpu_read(slab_reap_node);
  868. if (n->alien) {
  869. struct array_cache *ac = n->alien[node];
  870. if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
  871. __drain_alien_cache(cachep, ac, node);
  872. spin_unlock_irq(&ac->lock);
  873. }
  874. }
  875. }
  876. static void drain_alien_cache(struct kmem_cache *cachep,
  877. struct array_cache **alien)
  878. {
  879. int i = 0;
  880. struct array_cache *ac;
  881. unsigned long flags;
  882. for_each_online_node(i) {
  883. ac = alien[i];
  884. if (ac) {
  885. spin_lock_irqsave(&ac->lock, flags);
  886. __drain_alien_cache(cachep, ac, i);
  887. spin_unlock_irqrestore(&ac->lock, flags);
  888. }
  889. }
  890. }
  891. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  892. {
  893. int nodeid = page_to_nid(virt_to_page(objp));
  894. struct kmem_cache_node *n;
  895. struct array_cache *alien = NULL;
  896. int node;
  897. node = numa_mem_id();
  898. /*
  899. * Make sure we are not freeing a object from another node to the array
  900. * cache on this cpu.
  901. */
  902. if (likely(nodeid == node))
  903. return 0;
  904. n = cachep->node[node];
  905. STATS_INC_NODEFREES(cachep);
  906. if (n->alien && n->alien[nodeid]) {
  907. alien = n->alien[nodeid];
  908. spin_lock(&alien->lock);
  909. if (unlikely(alien->avail == alien->limit)) {
  910. STATS_INC_ACOVERFLOW(cachep);
  911. __drain_alien_cache(cachep, alien, nodeid);
  912. }
  913. ac_put_obj(cachep, alien, objp);
  914. spin_unlock(&alien->lock);
  915. } else {
  916. spin_lock(&(cachep->node[nodeid])->list_lock);
  917. free_block(cachep, &objp, 1, nodeid);
  918. spin_unlock(&(cachep->node[nodeid])->list_lock);
  919. }
  920. return 1;
  921. }
  922. #endif
  923. /*
  924. * Allocates and initializes node for a node on each slab cache, used for
  925. * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
  926. * will be allocated off-node since memory is not yet online for the new node.
  927. * When hotplugging memory or a cpu, existing node are not replaced if
  928. * already in use.
  929. *
  930. * Must hold slab_mutex.
  931. */
  932. static int init_cache_node_node(int node)
  933. {
  934. struct kmem_cache *cachep;
  935. struct kmem_cache_node *n;
  936. const int memsize = sizeof(struct kmem_cache_node);
  937. list_for_each_entry(cachep, &slab_caches, list) {
  938. /*
  939. * Set up the kmem_cache_node for cpu before we can
  940. * begin anything. Make sure some other cpu on this
  941. * node has not already allocated this
  942. */
  943. if (!cachep->node[node]) {
  944. n = kmalloc_node(memsize, GFP_KERNEL, node);
  945. if (!n)
  946. return -ENOMEM;
  947. kmem_cache_node_init(n);
  948. n->next_reap = jiffies + REAPTIMEOUT_NODE +
  949. ((unsigned long)cachep) % REAPTIMEOUT_NODE;
  950. /*
  951. * The kmem_cache_nodes don't come and go as CPUs
  952. * come and go. slab_mutex is sufficient
  953. * protection here.
  954. */
  955. cachep->node[node] = n;
  956. }
  957. spin_lock_irq(&cachep->node[node]->list_lock);
  958. cachep->node[node]->free_limit =
  959. (1 + nr_cpus_node(node)) *
  960. cachep->batchcount + cachep->num;
  961. spin_unlock_irq(&cachep->node[node]->list_lock);
  962. }
  963. return 0;
  964. }
  965. static inline int slabs_tofree(struct kmem_cache *cachep,
  966. struct kmem_cache_node *n)
  967. {
  968. return (n->free_objects + cachep->num - 1) / cachep->num;
  969. }
  970. static void cpuup_canceled(long cpu)
  971. {
  972. struct kmem_cache *cachep;
  973. struct kmem_cache_node *n = NULL;
  974. int node = cpu_to_mem(cpu);
  975. const struct cpumask *mask = cpumask_of_node(node);
  976. list_for_each_entry(cachep, &slab_caches, list) {
  977. struct array_cache *nc;
  978. struct array_cache *shared;
  979. struct array_cache **alien;
  980. /* cpu is dead; no one can alloc from it. */
  981. nc = cachep->array[cpu];
  982. cachep->array[cpu] = NULL;
  983. n = cachep->node[node];
  984. if (!n)
  985. goto free_array_cache;
  986. spin_lock_irq(&n->list_lock);
  987. /* Free limit for this kmem_cache_node */
  988. n->free_limit -= cachep->batchcount;
  989. if (nc)
  990. free_block(cachep, nc->entry, nc->avail, node);
  991. if (!cpumask_empty(mask)) {
  992. spin_unlock_irq(&n->list_lock);
  993. goto free_array_cache;
  994. }
  995. shared = n->shared;
  996. if (shared) {
  997. free_block(cachep, shared->entry,
  998. shared->avail, node);
  999. n->shared = NULL;
  1000. }
  1001. alien = n->alien;
  1002. n->alien = NULL;
  1003. spin_unlock_irq(&n->list_lock);
  1004. kfree(shared);
  1005. if (alien) {
  1006. drain_alien_cache(cachep, alien);
  1007. free_alien_cache(alien);
  1008. }
  1009. free_array_cache:
  1010. kfree(nc);
  1011. }
  1012. /*
  1013. * In the previous loop, all the objects were freed to
  1014. * the respective cache's slabs, now we can go ahead and
  1015. * shrink each nodelist to its limit.
  1016. */
  1017. list_for_each_entry(cachep, &slab_caches, list) {
  1018. n = cachep->node[node];
  1019. if (!n)
  1020. continue;
  1021. drain_freelist(cachep, n, slabs_tofree(cachep, n));
  1022. }
  1023. }
  1024. static int cpuup_prepare(long cpu)
  1025. {
  1026. struct kmem_cache *cachep;
  1027. struct kmem_cache_node *n = NULL;
  1028. int node = cpu_to_mem(cpu);
  1029. int err;
  1030. /*
  1031. * We need to do this right in the beginning since
  1032. * alloc_arraycache's are going to use this list.
  1033. * kmalloc_node allows us to add the slab to the right
  1034. * kmem_cache_node and not this cpu's kmem_cache_node
  1035. */
  1036. err = init_cache_node_node(node);
  1037. if (err < 0)
  1038. goto bad;
  1039. /*
  1040. * Now we can go ahead with allocating the shared arrays and
  1041. * array caches
  1042. */
  1043. list_for_each_entry(cachep, &slab_caches, list) {
  1044. struct array_cache *nc;
  1045. struct array_cache *shared = NULL;
  1046. struct array_cache **alien = NULL;
  1047. nc = alloc_arraycache(node, cachep->limit,
  1048. cachep->batchcount, GFP_KERNEL);
  1049. if (!nc)
  1050. goto bad;
  1051. if (cachep->shared) {
  1052. shared = alloc_arraycache(node,
  1053. cachep->shared * cachep->batchcount,
  1054. 0xbaadf00d, GFP_KERNEL);
  1055. if (!shared) {
  1056. kfree(nc);
  1057. goto bad;
  1058. }
  1059. }
  1060. if (use_alien_caches) {
  1061. alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
  1062. if (!alien) {
  1063. kfree(shared);
  1064. kfree(nc);
  1065. goto bad;
  1066. }
  1067. }
  1068. cachep->array[cpu] = nc;
  1069. n = cachep->node[node];
  1070. BUG_ON(!n);
  1071. spin_lock_irq(&n->list_lock);
  1072. if (!n->shared) {
  1073. /*
  1074. * We are serialised from CPU_DEAD or
  1075. * CPU_UP_CANCELLED by the cpucontrol lock
  1076. */
  1077. n->shared = shared;
  1078. shared = NULL;
  1079. }
  1080. #ifdef CONFIG_NUMA
  1081. if (!n->alien) {
  1082. n->alien = alien;
  1083. alien = NULL;
  1084. }
  1085. #endif
  1086. spin_unlock_irq(&n->list_lock);
  1087. kfree(shared);
  1088. free_alien_cache(alien);
  1089. if (cachep->flags & SLAB_DEBUG_OBJECTS)
  1090. slab_set_debugobj_lock_classes_node(cachep, node);
  1091. else if (!OFF_SLAB(cachep) &&
  1092. !(cachep->flags & SLAB_DESTROY_BY_RCU))
  1093. on_slab_lock_classes_node(cachep, node);
  1094. }
  1095. init_node_lock_keys(node);
  1096. return 0;
  1097. bad:
  1098. cpuup_canceled(cpu);
  1099. return -ENOMEM;
  1100. }
  1101. static int cpuup_callback(struct notifier_block *nfb,
  1102. unsigned long action, void *hcpu)
  1103. {
  1104. long cpu = (long)hcpu;
  1105. int err = 0;
  1106. switch (action) {
  1107. case CPU_UP_PREPARE:
  1108. case CPU_UP_PREPARE_FROZEN:
  1109. mutex_lock(&slab_mutex);
  1110. err = cpuup_prepare(cpu);
  1111. mutex_unlock(&slab_mutex);
  1112. break;
  1113. case CPU_ONLINE:
  1114. case CPU_ONLINE_FROZEN:
  1115. start_cpu_timer(cpu);
  1116. break;
  1117. #ifdef CONFIG_HOTPLUG_CPU
  1118. case CPU_DOWN_PREPARE:
  1119. case CPU_DOWN_PREPARE_FROZEN:
  1120. /*
  1121. * Shutdown cache reaper. Note that the slab_mutex is
  1122. * held so that if cache_reap() is invoked it cannot do
  1123. * anything expensive but will only modify reap_work
  1124. * and reschedule the timer.
  1125. */
  1126. cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
  1127. /* Now the cache_reaper is guaranteed to be not running. */
  1128. per_cpu(slab_reap_work, cpu).work.func = NULL;
  1129. break;
  1130. case CPU_DOWN_FAILED:
  1131. case CPU_DOWN_FAILED_FROZEN:
  1132. start_cpu_timer(cpu);
  1133. break;
  1134. case CPU_DEAD:
  1135. case CPU_DEAD_FROZEN:
  1136. /*
  1137. * Even if all the cpus of a node are down, we don't free the
  1138. * kmem_cache_node of any cache. This to avoid a race between
  1139. * cpu_down, and a kmalloc allocation from another cpu for
  1140. * memory from the node of the cpu going down. The node
  1141. * structure is usually allocated from kmem_cache_create() and
  1142. * gets destroyed at kmem_cache_destroy().
  1143. */
  1144. /* fall through */
  1145. #endif
  1146. case CPU_UP_CANCELED:
  1147. case CPU_UP_CANCELED_FROZEN:
  1148. mutex_lock(&slab_mutex);
  1149. cpuup_canceled(cpu);
  1150. mutex_unlock(&slab_mutex);
  1151. break;
  1152. }
  1153. return notifier_from_errno(err);
  1154. }
  1155. static struct notifier_block cpucache_notifier = {
  1156. &cpuup_callback, NULL, 0
  1157. };
  1158. #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
  1159. /*
  1160. * Drains freelist for a node on each slab cache, used for memory hot-remove.
  1161. * Returns -EBUSY if all objects cannot be drained so that the node is not
  1162. * removed.
  1163. *
  1164. * Must hold slab_mutex.
  1165. */
  1166. static int __meminit drain_cache_node_node(int node)
  1167. {
  1168. struct kmem_cache *cachep;
  1169. int ret = 0;
  1170. list_for_each_entry(cachep, &slab_caches, list) {
  1171. struct kmem_cache_node *n;
  1172. n = cachep->node[node];
  1173. if (!n)
  1174. continue;
  1175. drain_freelist(cachep, n, slabs_tofree(cachep, n));
  1176. if (!list_empty(&n->slabs_full) ||
  1177. !list_empty(&n->slabs_partial)) {
  1178. ret = -EBUSY;
  1179. break;
  1180. }
  1181. }
  1182. return ret;
  1183. }
  1184. static int __meminit slab_memory_callback(struct notifier_block *self,
  1185. unsigned long action, void *arg)
  1186. {
  1187. struct memory_notify *mnb = arg;
  1188. int ret = 0;
  1189. int nid;
  1190. nid = mnb->status_change_nid;
  1191. if (nid < 0)
  1192. goto out;
  1193. switch (action) {
  1194. case MEM_GOING_ONLINE:
  1195. mutex_lock(&slab_mutex);
  1196. ret = init_cache_node_node(nid);
  1197. mutex_unlock(&slab_mutex);
  1198. break;
  1199. case MEM_GOING_OFFLINE:
  1200. mutex_lock(&slab_mutex);
  1201. ret = drain_cache_node_node(nid);
  1202. mutex_unlock(&slab_mutex);
  1203. break;
  1204. case MEM_ONLINE:
  1205. case MEM_OFFLINE:
  1206. case MEM_CANCEL_ONLINE:
  1207. case MEM_CANCEL_OFFLINE:
  1208. break;
  1209. }
  1210. out:
  1211. return notifier_from_errno(ret);
  1212. }
  1213. #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
  1214. /*
  1215. * swap the static kmem_cache_node with kmalloced memory
  1216. */
  1217. static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
  1218. int nodeid)
  1219. {
  1220. struct kmem_cache_node *ptr;
  1221. ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
  1222. BUG_ON(!ptr);
  1223. memcpy(ptr, list, sizeof(struct kmem_cache_node));
  1224. /*
  1225. * Do not assume that spinlocks can be initialized via memcpy:
  1226. */
  1227. spin_lock_init(&ptr->list_lock);
  1228. MAKE_ALL_LISTS(cachep, ptr, nodeid);
  1229. cachep->node[nodeid] = ptr;
  1230. }
  1231. /*
  1232. * For setting up all the kmem_cache_node for cache whose buffer_size is same as
  1233. * size of kmem_cache_node.
  1234. */
  1235. static void __init set_up_node(struct kmem_cache *cachep, int index)
  1236. {
  1237. int node;
  1238. for_each_online_node(node) {
  1239. cachep->node[node] = &init_kmem_cache_node[index + node];
  1240. cachep->node[node]->next_reap = jiffies +
  1241. REAPTIMEOUT_NODE +
  1242. ((unsigned long)cachep) % REAPTIMEOUT_NODE;
  1243. }
  1244. }
  1245. /*
  1246. * The memory after the last cpu cache pointer is used for the
  1247. * the node pointer.
  1248. */
  1249. static void setup_node_pointer(struct kmem_cache *cachep)
  1250. {
  1251. cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
  1252. }
  1253. /*
  1254. * Initialisation. Called after the page allocator have been initialised and
  1255. * before smp_init().
  1256. */
  1257. void __init kmem_cache_init(void)
  1258. {
  1259. int i;
  1260. BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
  1261. sizeof(struct rcu_head));
  1262. kmem_cache = &kmem_cache_boot;
  1263. setup_node_pointer(kmem_cache);
  1264. if (num_possible_nodes() == 1)
  1265. use_alien_caches = 0;
  1266. for (i = 0; i < NUM_INIT_LISTS; i++)
  1267. kmem_cache_node_init(&init_kmem_cache_node[i]);
  1268. set_up_node(kmem_cache, CACHE_CACHE);
  1269. /*
  1270. * Fragmentation resistance on low memory - only use bigger
  1271. * page orders on machines with more than 32MB of memory if
  1272. * not overridden on the command line.
  1273. */
  1274. if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
  1275. slab_max_order = SLAB_MAX_ORDER_HI;
  1276. /* Bootstrap is tricky, because several objects are allocated
  1277. * from caches that do not exist yet:
  1278. * 1) initialize the kmem_cache cache: it contains the struct
  1279. * kmem_cache structures of all caches, except kmem_cache itself:
  1280. * kmem_cache is statically allocated.
  1281. * Initially an __init data area is used for the head array and the
  1282. * kmem_cache_node structures, it's replaced with a kmalloc allocated
  1283. * array at the end of the bootstrap.
  1284. * 2) Create the first kmalloc cache.
  1285. * The struct kmem_cache for the new cache is allocated normally.
  1286. * An __init data area is used for the head array.
  1287. * 3) Create the remaining kmalloc caches, with minimally sized
  1288. * head arrays.
  1289. * 4) Replace the __init data head arrays for kmem_cache and the first
  1290. * kmalloc cache with kmalloc allocated arrays.
  1291. * 5) Replace the __init data for kmem_cache_node for kmem_cache and
  1292. * the other cache's with kmalloc allocated memory.
  1293. * 6) Resize the head arrays of the kmalloc caches to their final sizes.
  1294. */
  1295. /* 1) create the kmem_cache */
  1296. /*
  1297. * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
  1298. */
  1299. create_boot_cache(kmem_cache, "kmem_cache",
  1300. offsetof(struct kmem_cache, array[nr_cpu_ids]) +
  1301. nr_node_ids * sizeof(struct kmem_cache_node *),
  1302. SLAB_HWCACHE_ALIGN);
  1303. list_add(&kmem_cache->list, &slab_caches);
  1304. /* 2+3) create the kmalloc caches */
  1305. /*
  1306. * Initialize the caches that provide memory for the array cache and the
  1307. * kmem_cache_node structures first. Without this, further allocations will
  1308. * bug.
  1309. */
  1310. kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
  1311. kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
  1312. if (INDEX_AC != INDEX_NODE)
  1313. kmalloc_caches[INDEX_NODE] =
  1314. create_kmalloc_cache("kmalloc-node",
  1315. kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
  1316. slab_early_init = 0;
  1317. /* 4) Replace the bootstrap head arrays */
  1318. {
  1319. struct array_cache *ptr;
  1320. ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
  1321. memcpy(ptr, cpu_cache_get(kmem_cache),
  1322. sizeof(struct arraycache_init));
  1323. /*
  1324. * Do not assume that spinlocks can be initialized via memcpy:
  1325. */
  1326. spin_lock_init(&ptr->lock);
  1327. kmem_cache->array[smp_processor_id()] = ptr;
  1328. ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
  1329. BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
  1330. != &initarray_generic.cache);
  1331. memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
  1332. sizeof(struct arraycache_init));
  1333. /*
  1334. * Do not assume that spinlocks can be initialized via memcpy:
  1335. */
  1336. spin_lock_init(&ptr->lock);
  1337. kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
  1338. }
  1339. /* 5) Replace the bootstrap kmem_cache_node */
  1340. {
  1341. int nid;
  1342. for_each_online_node(nid) {
  1343. init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
  1344. init_list(kmalloc_caches[INDEX_AC],
  1345. &init_kmem_cache_node[SIZE_AC + nid], nid);
  1346. if (INDEX_AC != INDEX_NODE) {
  1347. init_list(kmalloc_caches[INDEX_NODE],
  1348. &init_kmem_cache_node[SIZE_NODE + nid], nid);
  1349. }
  1350. }
  1351. }
  1352. create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
  1353. }
  1354. void __init kmem_cache_init_late(void)
  1355. {
  1356. struct kmem_cache *cachep;
  1357. slab_state = UP;
  1358. /* 6) resize the head arrays to their final sizes */
  1359. mutex_lock(&slab_mutex);
  1360. list_for_each_entry(cachep, &slab_caches, list)
  1361. if (enable_cpucache(cachep, GFP_NOWAIT))
  1362. BUG();
  1363. mutex_unlock(&slab_mutex);
  1364. /* Annotate slab for lockdep -- annotate the malloc caches */
  1365. init_lock_keys();
  1366. /* Done! */
  1367. slab_state = FULL;
  1368. /*
  1369. * Register a cpu startup notifier callback that initializes
  1370. * cpu_cache_get for all new cpus
  1371. */
  1372. register_cpu_notifier(&cpucache_notifier);
  1373. #ifdef CONFIG_NUMA
  1374. /*
  1375. * Register a memory hotplug callback that initializes and frees
  1376. * node.
  1377. */
  1378. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  1379. #endif
  1380. /*
  1381. * The reap timers are started later, with a module init call: That part
  1382. * of the kernel is not yet operational.
  1383. */
  1384. }
  1385. static int __init cpucache_init(void)
  1386. {
  1387. int cpu;
  1388. /*
  1389. * Register the timers that return unneeded pages to the page allocator
  1390. */
  1391. for_each_online_cpu(cpu)
  1392. start_cpu_timer(cpu);
  1393. /* Done! */
  1394. slab_state = FULL;
  1395. return 0;
  1396. }
  1397. __initcall(cpucache_init);
  1398. static noinline void
  1399. slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
  1400. {
  1401. #if DEBUG
  1402. struct kmem_cache_node *n;
  1403. struct page *page;
  1404. unsigned long flags;
  1405. int node;
  1406. static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
  1407. DEFAULT_RATELIMIT_BURST);
  1408. if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
  1409. return;
  1410. printk(KERN_WARNING
  1411. "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1412. nodeid, gfpflags);
  1413. printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
  1414. cachep->name, cachep->size, cachep->gfporder);
  1415. for_each_online_node(node) {
  1416. unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
  1417. unsigned long active_slabs = 0, num_slabs = 0;
  1418. n = cachep->node[node];
  1419. if (!n)
  1420. continue;
  1421. spin_lock_irqsave(&n->list_lock, flags);
  1422. list_for_each_entry(page, &n->slabs_full, lru) {
  1423. active_objs += cachep->num;
  1424. active_slabs++;
  1425. }
  1426. list_for_each_entry(page, &n->slabs_partial, lru) {
  1427. active_objs += page->active;
  1428. active_slabs++;
  1429. }
  1430. list_for_each_entry(page, &n->slabs_free, lru)
  1431. num_slabs++;
  1432. free_objects += n->free_objects;
  1433. spin_unlock_irqrestore(&n->list_lock, flags);
  1434. num_slabs += active_slabs;
  1435. num_objs = num_slabs * cachep->num;
  1436. printk(KERN_WARNING
  1437. " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
  1438. node, active_slabs, num_slabs, active_objs, num_objs,
  1439. free_objects);
  1440. }
  1441. #endif
  1442. }
  1443. /*
  1444. * Interface to system's page allocator. No need to hold the cache-lock.
  1445. *
  1446. * If we requested dmaable memory, we will get it. Even if we
  1447. * did not request dmaable memory, we might get it, but that
  1448. * would be relatively rare and ignorable.
  1449. */
  1450. static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
  1451. int nodeid)
  1452. {
  1453. struct page *page;
  1454. int nr_pages;
  1455. flags |= cachep->allocflags;
  1456. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1457. flags |= __GFP_RECLAIMABLE;
  1458. if (memcg_charge_slab(cachep, flags, cachep->gfporder))
  1459. return NULL;
  1460. page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
  1461. if (!page) {
  1462. memcg_uncharge_slab(cachep, cachep->gfporder);
  1463. slab_out_of_memory(cachep, flags, nodeid);
  1464. return NULL;
  1465. }
  1466. /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
  1467. if (unlikely(page->pfmemalloc))
  1468. pfmemalloc_active = true;
  1469. nr_pages = (1 << cachep->gfporder);
  1470. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1471. add_zone_page_state(page_zone(page),
  1472. NR_SLAB_RECLAIMABLE, nr_pages);
  1473. else
  1474. add_zone_page_state(page_zone(page),
  1475. NR_SLAB_UNRECLAIMABLE, nr_pages);
  1476. __SetPageSlab(page);
  1477. if (page->pfmemalloc)
  1478. SetPageSlabPfmemalloc(page);
  1479. if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
  1480. kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
  1481. if (cachep->ctor)
  1482. kmemcheck_mark_uninitialized_pages(page, nr_pages);
  1483. else
  1484. kmemcheck_mark_unallocated_pages(page, nr_pages);
  1485. }
  1486. return page;
  1487. }
  1488. /*
  1489. * Interface to system's page release.
  1490. */
  1491. static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
  1492. {
  1493. const unsigned long nr_freed = (1 << cachep->gfporder);
  1494. kmemcheck_free_shadow(page, cachep->gfporder);
  1495. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1496. sub_zone_page_state(page_zone(page),
  1497. NR_SLAB_RECLAIMABLE, nr_freed);
  1498. else
  1499. sub_zone_page_state(page_zone(page),
  1500. NR_SLAB_UNRECLAIMABLE, nr_freed);
  1501. BUG_ON(!PageSlab(page));
  1502. __ClearPageSlabPfmemalloc(page);
  1503. __ClearPageSlab(page);
  1504. page_mapcount_reset(page);
  1505. page->mapping = NULL;
  1506. if (current->reclaim_state)
  1507. current->reclaim_state->reclaimed_slab += nr_freed;
  1508. __free_pages(page, cachep->gfporder);
  1509. memcg_uncharge_slab(cachep, cachep->gfporder);
  1510. }
  1511. static void kmem_rcu_free(struct rcu_head *head)
  1512. {
  1513. struct kmem_cache *cachep;
  1514. struct page *page;
  1515. page = container_of(head, struct page, rcu_head);
  1516. cachep = page->slab_cache;
  1517. kmem_freepages(cachep, page);
  1518. }
  1519. #if DEBUG
  1520. #ifdef CONFIG_DEBUG_PAGEALLOC
  1521. static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
  1522. unsigned long caller)
  1523. {
  1524. int size = cachep->object_size;
  1525. addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
  1526. if (size < 5 * sizeof(unsigned long))
  1527. return;
  1528. *addr++ = 0x12345678;
  1529. *addr++ = caller;
  1530. *addr++ = smp_processor_id();
  1531. size -= 3 * sizeof(unsigned long);
  1532. {
  1533. unsigned long *sptr = &caller;
  1534. unsigned long svalue;
  1535. while (!kstack_end(sptr)) {
  1536. svalue = *sptr++;
  1537. if (kernel_text_address(svalue)) {
  1538. *addr++ = svalue;
  1539. size -= sizeof(unsigned long);
  1540. if (size <= sizeof(unsigned long))
  1541. break;
  1542. }
  1543. }
  1544. }
  1545. *addr++ = 0x87654321;
  1546. }
  1547. #endif
  1548. static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
  1549. {
  1550. int size = cachep->object_size;
  1551. addr = &((char *)addr)[obj_offset(cachep)];
  1552. memset(addr, val, size);
  1553. *(unsigned char *)(addr + size - 1) = POISON_END;
  1554. }
  1555. static void dump_line(char *data, int offset, int limit)
  1556. {
  1557. int i;
  1558. unsigned char error = 0;
  1559. int bad_count = 0;
  1560. printk(KERN_ERR "%03x: ", offset);
  1561. for (i = 0; i < limit; i++) {
  1562. if (data[offset + i] != POISON_FREE) {
  1563. error = data[offset + i];
  1564. bad_count++;
  1565. }
  1566. }
  1567. print_hex_dump(KERN_CONT, "", 0, 16, 1,
  1568. &data[offset], limit, 1);
  1569. if (bad_count == 1) {
  1570. error ^= POISON_FREE;
  1571. if (!(error & (error - 1))) {
  1572. printk(KERN_ERR "Single bit error detected. Probably "
  1573. "bad RAM.\n");
  1574. #ifdef CONFIG_X86
  1575. printk(KERN_ERR "Run memtest86+ or a similar memory "
  1576. "test tool.\n");
  1577. #else
  1578. printk(KERN_ERR "Run a memory test tool.\n");
  1579. #endif
  1580. }
  1581. }
  1582. }
  1583. #endif
  1584. #if DEBUG
  1585. static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
  1586. {
  1587. int i, size;
  1588. char *realobj;
  1589. if (cachep->flags & SLAB_RED_ZONE) {
  1590. printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
  1591. *dbg_redzone1(cachep, objp),
  1592. *dbg_redzone2(cachep, objp));
  1593. }
  1594. if (cachep->flags & SLAB_STORE_USER) {
  1595. printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
  1596. *dbg_userword(cachep, objp),
  1597. *dbg_userword(cachep, objp));
  1598. }
  1599. realobj = (char *)objp + obj_offset(cachep);
  1600. size = cachep->object_size;
  1601. for (i = 0; i < size && lines; i += 16, lines--) {
  1602. int limit;
  1603. limit = 16;
  1604. if (i + limit > size)
  1605. limit = size - i;
  1606. dump_line(realobj, i, limit);
  1607. }
  1608. }
  1609. static void check_poison_obj(struct kmem_cache *cachep, void *objp)
  1610. {
  1611. char *realobj;
  1612. int size, i;
  1613. int lines = 0;
  1614. realobj = (char *)objp + obj_offset(cachep);
  1615. size = cachep->object_size;
  1616. for (i = 0; i < size; i++) {
  1617. char exp = POISON_FREE;
  1618. if (i == size - 1)
  1619. exp = POISON_END;
  1620. if (realobj[i] != exp) {
  1621. int limit;
  1622. /* Mismatch ! */
  1623. /* Print header */
  1624. if (lines == 0) {
  1625. printk(KERN_ERR
  1626. "Slab corruption (%s): %s start=%p, len=%d\n",
  1627. print_tainted(), cachep->name, realobj, size);
  1628. print_objinfo(cachep, objp, 0);
  1629. }
  1630. /* Hexdump the affected line */
  1631. i = (i / 16) * 16;
  1632. limit = 16;
  1633. if (i + limit > size)
  1634. limit = size - i;
  1635. dump_line(realobj, i, limit);
  1636. i += 16;
  1637. lines++;
  1638. /* Limit to 5 lines */
  1639. if (lines > 5)
  1640. break;
  1641. }
  1642. }
  1643. if (lines != 0) {
  1644. /* Print some data about the neighboring objects, if they
  1645. * exist:
  1646. */
  1647. struct page *page = virt_to_head_page(objp);
  1648. unsigned int objnr;
  1649. objnr = obj_to_index(cachep, page, objp);
  1650. if (objnr) {
  1651. objp = index_to_obj(cachep, page, objnr - 1);
  1652. realobj = (char *)objp + obj_offset(cachep);
  1653. printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
  1654. realobj, size);
  1655. print_objinfo(cachep, objp, 2);
  1656. }
  1657. if (objnr + 1 < cachep->num) {
  1658. objp = index_to_obj(cachep, page, objnr + 1);
  1659. realobj = (char *)objp + obj_offset(cachep);
  1660. printk(KERN_ERR "Next obj: start=%p, len=%d\n",
  1661. realobj, size);
  1662. print_objinfo(cachep, objp, 2);
  1663. }
  1664. }
  1665. }
  1666. #endif
  1667. #if DEBUG
  1668. static void slab_destroy_debugcheck(struct kmem_cache *cachep,
  1669. struct page *page)
  1670. {
  1671. int i;
  1672. for (i = 0; i < cachep->num; i++) {
  1673. void *objp = index_to_obj(cachep, page, i);
  1674. if (cachep->flags & SLAB_POISON) {
  1675. #ifdef CONFIG_DEBUG_PAGEALLOC
  1676. if (cachep->size % PAGE_SIZE == 0 &&
  1677. OFF_SLAB(cachep))
  1678. kernel_map_pages(virt_to_page(objp),
  1679. cachep->size / PAGE_SIZE, 1);
  1680. else
  1681. check_poison_obj(cachep, objp);
  1682. #else
  1683. check_poison_obj(cachep, objp);
  1684. #endif
  1685. }
  1686. if (cachep->flags & SLAB_RED_ZONE) {
  1687. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  1688. slab_error(cachep, "start of a freed object "
  1689. "was overwritten");
  1690. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  1691. slab_error(cachep, "end of a freed object "
  1692. "was overwritten");
  1693. }
  1694. }
  1695. }
  1696. #else
  1697. static void slab_destroy_debugcheck(struct kmem_cache *cachep,
  1698. struct page *page)
  1699. {
  1700. }
  1701. #endif
  1702. /**
  1703. * slab_destroy - destroy and release all objects in a slab
  1704. * @cachep: cache pointer being destroyed
  1705. * @page: page pointer being destroyed
  1706. *
  1707. * Destroy all the objs in a slab, and release the mem back to the system.
  1708. * Before calling the slab must have been unlinked from the cache. The
  1709. * cache-lock is not held/needed.
  1710. */
  1711. static void slab_destroy(struct kmem_cache *cachep, struct page *page)
  1712. {
  1713. void *freelist;
  1714. freelist = page->freelist;
  1715. slab_destroy_debugcheck(cachep, page);
  1716. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
  1717. struct rcu_head *head;
  1718. /*
  1719. * RCU free overloads the RCU head over the LRU.
  1720. * slab_page has been overloeaded over the LRU,
  1721. * however it is not used from now on so that
  1722. * we can use it safely.
  1723. */
  1724. head = (void *)&page->rcu_head;
  1725. call_rcu(head, kmem_rcu_free);
  1726. } else {
  1727. kmem_freepages(cachep, page);
  1728. }
  1729. /*
  1730. * From now on, we don't use freelist
  1731. * although actual page can be freed in rcu context
  1732. */
  1733. if (OFF_SLAB(cachep))
  1734. kmem_cache_free(cachep->freelist_cache, freelist);
  1735. }
  1736. /**
  1737. * calculate_slab_order - calculate size (page order) of slabs
  1738. * @cachep: pointer to the cache that is being created
  1739. * @size: size of objects to be created in this cache.
  1740. * @align: required alignment for the objects.
  1741. * @flags: slab allocation flags
  1742. *
  1743. * Also calculates the number of objects per slab.
  1744. *
  1745. * This could be made much more intelligent. For now, try to avoid using
  1746. * high order pages for slabs. When the gfp() functions are more friendly
  1747. * towards high-order requests, this should be changed.
  1748. */
  1749. static size_t calculate_slab_order(struct kmem_cache *cachep,
  1750. size_t size, size_t align, unsigned long flags)
  1751. {
  1752. unsigned long offslab_limit;
  1753. size_t left_over = 0;
  1754. int gfporder;
  1755. for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
  1756. unsigned int num;
  1757. size_t remainder;
  1758. cache_estimate(gfporder, size, align, flags, &remainder, &num);
  1759. if (!num)
  1760. continue;
  1761. /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
  1762. if (num > SLAB_OBJ_MAX_NUM)
  1763. break;
  1764. if (flags & CFLGS_OFF_SLAB) {
  1765. /*
  1766. * Max number of objs-per-slab for caches which
  1767. * use off-slab slabs. Needed to avoid a possible
  1768. * looping condition in cache_grow().
  1769. */
  1770. offslab_limit = size;
  1771. offslab_limit /= sizeof(freelist_idx_t);
  1772. if (num > offslab_limit)
  1773. break;
  1774. }
  1775. /* Found something acceptable - save it away */
  1776. cachep->num = num;
  1777. cachep->gfporder = gfporder;
  1778. left_over = remainder;
  1779. /*
  1780. * A VFS-reclaimable slab tends to have most allocations
  1781. * as GFP_NOFS and we really don't want to have to be allocating
  1782. * higher-order pages when we are unable to shrink dcache.
  1783. */
  1784. if (flags & SLAB_RECLAIM_ACCOUNT)
  1785. break;
  1786. /*
  1787. * Large number of objects is good, but very large slabs are
  1788. * currently bad for the gfp()s.
  1789. */
  1790. if (gfporder >= slab_max_order)
  1791. break;
  1792. /*
  1793. * Acceptable internal fragmentation?
  1794. */
  1795. if (left_over * 8 <= (PAGE_SIZE << gfporder))
  1796. break;
  1797. }
  1798. return left_over;
  1799. }
  1800. static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
  1801. {
  1802. if (slab_state >= FULL)
  1803. return enable_cpucache(cachep, gfp);
  1804. if (slab_state == DOWN) {
  1805. /*
  1806. * Note: Creation of first cache (kmem_cache).
  1807. * The setup_node is taken care
  1808. * of by the caller of __kmem_cache_create
  1809. */
  1810. cachep->array[smp_processor_id()] = &initarray_generic.cache;
  1811. slab_state = PARTIAL;
  1812. } else if (slab_state == PARTIAL) {
  1813. /*
  1814. * Note: the second kmem_cache_create must create the cache
  1815. * that's used by kmalloc(24), otherwise the creation of
  1816. * further caches will BUG().
  1817. */
  1818. cachep->array[smp_processor_id()] = &initarray_generic.cache;
  1819. /*
  1820. * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
  1821. * the second cache, then we need to set up all its node/,
  1822. * otherwise the creation of further caches will BUG().
  1823. */
  1824. set_up_node(cachep, SIZE_AC);
  1825. if (INDEX_AC == INDEX_NODE)
  1826. slab_state = PARTIAL_NODE;
  1827. else
  1828. slab_state = PARTIAL_ARRAYCACHE;
  1829. } else {
  1830. /* Remaining boot caches */
  1831. cachep->array[smp_processor_id()] =
  1832. kmalloc(sizeof(struct arraycache_init), gfp);
  1833. if (slab_state == PARTIAL_ARRAYCACHE) {
  1834. set_up_node(cachep, SIZE_NODE);
  1835. slab_state = PARTIAL_NODE;
  1836. } else {
  1837. int node;
  1838. for_each_online_node(node) {
  1839. cachep->node[node] =
  1840. kmalloc_node(sizeof(struct kmem_cache_node),
  1841. gfp, node);
  1842. BUG_ON(!cachep->node[node]);
  1843. kmem_cache_node_init(cachep->node[node]);
  1844. }
  1845. }
  1846. }
  1847. cachep->node[numa_mem_id()]->next_reap =
  1848. jiffies + REAPTIMEOUT_NODE +
  1849. ((unsigned long)cachep) % REAPTIMEOUT_NODE;
  1850. cpu_cache_get(cachep)->avail = 0;
  1851. cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
  1852. cpu_cache_get(cachep)->batchcount = 1;
  1853. cpu_cache_get(cachep)->touched = 0;
  1854. cachep->batchcount = 1;
  1855. cachep->limit = BOOT_CPUCACHE_ENTRIES;
  1856. return 0;
  1857. }
  1858. /**
  1859. * __kmem_cache_create - Create a cache.
  1860. * @cachep: cache management descriptor
  1861. * @flags: SLAB flags
  1862. *
  1863. * Returns a ptr to the cache on success, NULL on failure.
  1864. * Cannot be called within a int, but can be interrupted.
  1865. * The @ctor is run when new pages are allocated by the cache.
  1866. *
  1867. * The flags are
  1868. *
  1869. * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
  1870. * to catch references to uninitialised memory.
  1871. *
  1872. * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
  1873. * for buffer overruns.
  1874. *
  1875. * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
  1876. * cacheline. This can be beneficial if you're counting cycles as closely
  1877. * as davem.
  1878. */
  1879. int
  1880. __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
  1881. {
  1882. size_t left_over, freelist_size, ralign;
  1883. gfp_t gfp;
  1884. int err;
  1885. size_t size = cachep->size;
  1886. #if DEBUG
  1887. #if FORCED_DEBUG
  1888. /*
  1889. * Enable redzoning and last user accounting, except for caches with
  1890. * large objects, if the increased size would increase the object size
  1891. * above the next power of two: caches with object sizes just above a
  1892. * power of two have a significant amount of internal fragmentation.
  1893. */
  1894. if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
  1895. 2 * sizeof(unsigned long long)))
  1896. flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
  1897. if (!(flags & SLAB_DESTROY_BY_RCU))
  1898. flags |= SLAB_POISON;
  1899. #endif
  1900. if (flags & SLAB_DESTROY_BY_RCU)
  1901. BUG_ON(flags & SLAB_POISON);
  1902. #endif
  1903. /*
  1904. * Check that size is in terms of words. This is needed to avoid
  1905. * unaligned accesses for some archs when redzoning is used, and makes
  1906. * sure any on-slab bufctl's are also correctly aligned.
  1907. */
  1908. if (size & (BYTES_PER_WORD - 1)) {
  1909. size += (BYTES_PER_WORD - 1);
  1910. size &= ~(BYTES_PER_WORD - 1);
  1911. }
  1912. /*
  1913. * Redzoning and user store require word alignment or possibly larger.
  1914. * Note this will be overridden by architecture or caller mandated
  1915. * alignment if either is greater than BYTES_PER_WORD.
  1916. */
  1917. if (flags & SLAB_STORE_USER)
  1918. ralign = BYTES_PER_WORD;
  1919. if (flags & SLAB_RED_ZONE) {
  1920. ralign = REDZONE_ALIGN;
  1921. /* If redzoning, ensure that the second redzone is suitably
  1922. * aligned, by adjusting the object size accordingly. */
  1923. size += REDZONE_ALIGN - 1;
  1924. size &= ~(REDZONE_ALIGN - 1);
  1925. }
  1926. /* 3) caller mandated alignment */
  1927. if (ralign < cachep->align) {
  1928. ralign = cachep->align;
  1929. }
  1930. /* disable debug if necessary */
  1931. if (ralign > __alignof__(unsigned long long))
  1932. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  1933. /*
  1934. * 4) Store it.
  1935. */
  1936. cachep->align = ralign;
  1937. if (slab_is_available())
  1938. gfp = GFP_KERNEL;
  1939. else
  1940. gfp = GFP_NOWAIT;
  1941. setup_node_pointer(cachep);
  1942. #if DEBUG
  1943. /*
  1944. * Both debugging options require word-alignment which is calculated
  1945. * into align above.
  1946. */
  1947. if (flags & SLAB_RED_ZONE) {
  1948. /* add space for red zone words */
  1949. cachep->obj_offset += sizeof(unsigned long long);
  1950. size += 2 * sizeof(unsigned long long);
  1951. }
  1952. if (flags & SLAB_STORE_USER) {
  1953. /* user store requires one word storage behind the end of
  1954. * the real object. But if the second red zone needs to be
  1955. * aligned to 64 bits, we must allow that much space.
  1956. */
  1957. if (flags & SLAB_RED_ZONE)
  1958. size += REDZONE_ALIGN;
  1959. else
  1960. size += BYTES_PER_WORD;
  1961. }
  1962. #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
  1963. if (size >= kmalloc_size(INDEX_NODE + 1)
  1964. && cachep->object_size > cache_line_size()
  1965. && ALIGN(size, cachep->align) < PAGE_SIZE) {
  1966. cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
  1967. size = PAGE_SIZE;
  1968. }
  1969. #endif
  1970. #endif
  1971. /*
  1972. * Determine if the slab management is 'on' or 'off' slab.
  1973. * (bootstrapping cannot cope with offslab caches so don't do
  1974. * it too early on. Always use on-slab management when
  1975. * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
  1976. */
  1977. if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init &&
  1978. !(flags & SLAB_NOLEAKTRACE))
  1979. /*
  1980. * Size is large, assume best to place the slab management obj
  1981. * off-slab (should allow better packing of objs).
  1982. */
  1983. flags |= CFLGS_OFF_SLAB;
  1984. size = ALIGN(size, cachep->align);
  1985. /*
  1986. * We should restrict the number of objects in a slab to implement
  1987. * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
  1988. */
  1989. if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
  1990. size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
  1991. left_over = calculate_slab_order(cachep, size, cachep->align, flags);
  1992. if (!cachep->num)
  1993. return -E2BIG;
  1994. freelist_size =
  1995. ALIGN(cachep->num * sizeof(freelist_idx_t), cachep->align);
  1996. /*
  1997. * If the slab has been placed off-slab, and we have enough space then
  1998. * move it on-slab. This is at the expense of any extra colouring.
  1999. */
  2000. if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
  2001. flags &= ~CFLGS_OFF_SLAB;
  2002. left_over -= freelist_size;
  2003. }
  2004. if (flags & CFLGS_OFF_SLAB) {
  2005. /* really off slab. No need for manual alignment */
  2006. freelist_size = cachep->num * sizeof(freelist_idx_t);
  2007. #ifdef CONFIG_PAGE_POISONING
  2008. /* If we're going to use the generic kernel_map_pages()
  2009. * poisoning, then it's going to smash the contents of
  2010. * the redzone and userword anyhow, so switch them off.
  2011. */
  2012. if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
  2013. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  2014. #endif
  2015. }
  2016. cachep->colour_off = cache_line_size();
  2017. /* Offset must be a multiple of the alignment. */
  2018. if (cachep->colour_off < cachep->align)
  2019. cachep->colour_off = cachep->align;
  2020. cachep->colour = left_over / cachep->colour_off;
  2021. cachep->freelist_size = freelist_size;
  2022. cachep->flags = flags;
  2023. cachep->allocflags = __GFP_COMP;
  2024. if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
  2025. cachep->allocflags |= GFP_DMA;
  2026. cachep->size = size;
  2027. cachep->reciprocal_buffer_size = reciprocal_value(size);
  2028. if (flags & CFLGS_OFF_SLAB) {
  2029. cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
  2030. /*
  2031. * This is a possibility for one of the kmalloc_{dma,}_caches.
  2032. * But since we go off slab only for object size greater than
  2033. * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created
  2034. * in ascending order,this should not happen at all.
  2035. * But leave a BUG_ON for some lucky dude.
  2036. */
  2037. BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
  2038. }
  2039. err = setup_cpu_cache(cachep, gfp);
  2040. if (err) {
  2041. __kmem_cache_shutdown(cachep);
  2042. return err;
  2043. }
  2044. if (flags & SLAB_DEBUG_OBJECTS) {
  2045. /*
  2046. * Would deadlock through slab_destroy()->call_rcu()->
  2047. * debug_object_activate()->kmem_cache_alloc().
  2048. */
  2049. WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
  2050. slab_set_debugobj_lock_classes(cachep);
  2051. } else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
  2052. on_slab_lock_classes(cachep);
  2053. return 0;
  2054. }
  2055. #if DEBUG
  2056. static void check_irq_off(void)
  2057. {
  2058. BUG_ON(!irqs_disabled());
  2059. }
  2060. static void check_irq_on(void)
  2061. {
  2062. BUG_ON(irqs_disabled());
  2063. }
  2064. static void check_spinlock_acquired(struct kmem_cache *cachep)
  2065. {
  2066. #ifdef CONFIG_SMP
  2067. check_irq_off();
  2068. assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock);
  2069. #endif
  2070. }
  2071. static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
  2072. {
  2073. #ifdef CONFIG_SMP
  2074. check_irq_off();
  2075. assert_spin_locked(&cachep->node[node]->list_lock);
  2076. #endif
  2077. }
  2078. #else
  2079. #define check_irq_off() do { } while(0)
  2080. #define check_irq_on() do { } while(0)
  2081. #define check_spinlock_acquired(x) do { } while(0)
  2082. #define check_spinlock_acquired_node(x, y) do { } while(0)
  2083. #endif
  2084. static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
  2085. struct array_cache *ac,
  2086. int force, int node);
  2087. static void do_drain(void *arg)
  2088. {
  2089. struct kmem_cache *cachep = arg;
  2090. struct array_cache *ac;
  2091. int node = numa_mem_id();
  2092. check_irq_off();
  2093. ac = cpu_cache_get(cachep);
  2094. spin_lock(&cachep->node[node]->list_lock);
  2095. free_block(cachep, ac->entry, ac->avail, node);
  2096. spin_unlock(&cachep->node[node]->list_lock);
  2097. ac->avail = 0;
  2098. }
  2099. static void drain_cpu_caches(struct kmem_cache *cachep)
  2100. {
  2101. struct kmem_cache_node *n;
  2102. int node;
  2103. on_each_cpu(do_drain, cachep, 1);
  2104. check_irq_on();
  2105. for_each_online_node(node) {
  2106. n = cachep->node[node];
  2107. if (n && n->alien)
  2108. drain_alien_cache(cachep, n->alien);
  2109. }
  2110. for_each_online_node(node) {
  2111. n = cachep->node[node];
  2112. if (n)
  2113. drain_array(cachep, n, n->shared, 1, node);
  2114. }
  2115. }
  2116. /*
  2117. * Remove slabs from the list of free slabs.
  2118. * Specify the number of slabs to drain in tofree.
  2119. *
  2120. * Returns the actual number of slabs released.
  2121. */
  2122. static int drain_freelist(struct kmem_cache *cache,
  2123. struct kmem_cache_node *n, int tofree)
  2124. {
  2125. struct list_head *p;
  2126. int nr_freed;
  2127. struct page *page;
  2128. nr_freed = 0;
  2129. while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
  2130. spin_lock_irq(&n->list_lock);
  2131. p = n->slabs_free.prev;
  2132. if (p == &n->slabs_free) {
  2133. spin_unlock_irq(&n->list_lock);
  2134. goto out;
  2135. }
  2136. page = list_entry(p, struct page, lru);
  2137. #if DEBUG
  2138. BUG_ON(page->active);
  2139. #endif
  2140. list_del(&page->lru);
  2141. /*
  2142. * Safe to drop the lock. The slab is no longer linked
  2143. * to the cache.
  2144. */
  2145. n->free_objects -= cache->num;
  2146. spin_unlock_irq(&n->list_lock);
  2147. slab_destroy(cache, page);
  2148. nr_freed++;
  2149. }
  2150. out:
  2151. return nr_freed;
  2152. }
  2153. int __kmem_cache_shrink(struct kmem_cache *cachep)
  2154. {
  2155. int ret = 0, i = 0;
  2156. struct kmem_cache_node *n;
  2157. drain_cpu_caches(cachep);
  2158. check_irq_on();
  2159. for_each_online_node(i) {
  2160. n = cachep->node[i];
  2161. if (!n)
  2162. continue;
  2163. drain_freelist(cachep, n, slabs_tofree(cachep, n));
  2164. ret += !list_empty(&n->slabs_full) ||
  2165. !list_empty(&n->slabs_partial);
  2166. }
  2167. return (ret ? 1 : 0);
  2168. }
  2169. int __kmem_cache_shutdown(struct kmem_cache *cachep)
  2170. {
  2171. int i;
  2172. struct kmem_cache_node *n;
  2173. int rc = __kmem_cache_shrink(cachep);
  2174. if (rc)
  2175. return rc;
  2176. for_each_online_cpu(i)
  2177. kfree(cachep->array[i]);
  2178. /* NUMA: free the node structures */
  2179. for_each_online_node(i) {
  2180. n = cachep->node[i];
  2181. if (n) {
  2182. kfree(n->shared);
  2183. free_alien_cache(n->alien);
  2184. kfree(n);
  2185. }
  2186. }
  2187. return 0;
  2188. }
  2189. /*
  2190. * Get the memory for a slab management obj.
  2191. *
  2192. * For a slab cache when the slab descriptor is off-slab, the
  2193. * slab descriptor can't come from the same cache which is being created,
  2194. * Because if it is the case, that means we defer the creation of
  2195. * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
  2196. * And we eventually call down to __kmem_cache_create(), which
  2197. * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
  2198. * This is a "chicken-and-egg" problem.
  2199. *
  2200. * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
  2201. * which are all initialized during kmem_cache_init().
  2202. */
  2203. static void *alloc_slabmgmt(struct kmem_cache *cachep,
  2204. struct page *page, int colour_off,
  2205. gfp_t local_flags, int nodeid)
  2206. {
  2207. void *freelist;
  2208. void *addr = page_address(page);
  2209. if (OFF_SLAB(cachep)) {
  2210. /* Slab management obj is off-slab. */
  2211. freelist = kmem_cache_alloc_node(cachep->freelist_cache,
  2212. local_flags, nodeid);
  2213. if (!freelist)
  2214. return NULL;
  2215. } else {
  2216. freelist = addr + colour_off;
  2217. colour_off += cachep->freelist_size;
  2218. }
  2219. page->active = 0;
  2220. page->s_mem = addr + colour_off;
  2221. return freelist;
  2222. }
  2223. static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
  2224. {
  2225. return ((freelist_idx_t *)page->freelist)[idx];
  2226. }
  2227. static inline void set_free_obj(struct page *page,
  2228. unsigned int idx, freelist_idx_t val)
  2229. {
  2230. ((freelist_idx_t *)(page->freelist))[idx] = val;
  2231. }
  2232. static void cache_init_objs(struct kmem_cache *cachep,
  2233. struct page *page)
  2234. {
  2235. int i;
  2236. for (i = 0; i < cachep->num; i++) {
  2237. void *objp = index_to_obj(cachep, page, i);
  2238. #if DEBUG
  2239. /* need to poison the objs? */
  2240. if (cachep->flags & SLAB_POISON)
  2241. poison_obj(cachep, objp, POISON_FREE);
  2242. if (cachep->flags & SLAB_STORE_USER)
  2243. *dbg_userword(cachep, objp) = NULL;
  2244. if (cachep->flags & SLAB_RED_ZONE) {
  2245. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2246. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2247. }
  2248. /*
  2249. * Constructors are not allowed to allocate memory from the same
  2250. * cache which they are a constructor for. Otherwise, deadlock.
  2251. * They must also be threaded.
  2252. */
  2253. if (cachep->ctor && !(cachep->flags & SLAB_POISON))
  2254. cachep->ctor(objp + obj_offset(cachep));
  2255. if (cachep->flags & SLAB_RED_ZONE) {
  2256. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  2257. slab_error(cachep, "constructor overwrote the"
  2258. " end of an object");
  2259. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  2260. slab_error(cachep, "constructor overwrote the"
  2261. " start of an object");
  2262. }
  2263. if ((cachep->size % PAGE_SIZE) == 0 &&
  2264. OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
  2265. kernel_map_pages(virt_to_page(objp),
  2266. cachep->size / PAGE_SIZE, 0);
  2267. #else
  2268. if (cachep->ctor)
  2269. cachep->ctor(objp);
  2270. #endif
  2271. set_free_obj(page, i, i);
  2272. }
  2273. }
  2274. static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
  2275. {
  2276. if (CONFIG_ZONE_DMA_FLAG) {
  2277. if (flags & GFP_DMA)
  2278. BUG_ON(!(cachep->allocflags & GFP_DMA));
  2279. else
  2280. BUG_ON(cachep->allocflags & GFP_DMA);
  2281. }
  2282. }
  2283. static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
  2284. int nodeid)
  2285. {
  2286. void *objp;
  2287. objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
  2288. page->active++;
  2289. #if DEBUG
  2290. WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
  2291. #endif
  2292. return objp;
  2293. }
  2294. static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
  2295. void *objp, int nodeid)
  2296. {
  2297. unsigned int objnr = obj_to_index(cachep, page, objp);
  2298. #if DEBUG
  2299. unsigned int i;
  2300. /* Verify that the slab belongs to the intended node */
  2301. WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
  2302. /* Verify double free bug */
  2303. for (i = page->active; i < cachep->num; i++) {
  2304. if (get_free_obj(page, i) == objnr) {
  2305. printk(KERN_ERR "slab: double free detected in cache "
  2306. "'%s', objp %p\n", cachep->name, objp);
  2307. BUG();
  2308. }
  2309. }
  2310. #endif
  2311. page->active--;
  2312. set_free_obj(page, page->active, objnr);
  2313. }
  2314. /*
  2315. * Map pages beginning at addr to the given cache and slab. This is required
  2316. * for the slab allocator to be able to lookup the cache and slab of a
  2317. * virtual address for kfree, ksize, and slab debugging.
  2318. */
  2319. static void slab_map_pages(struct kmem_cache *cache, struct page *page,
  2320. void *freelist)
  2321. {
  2322. page->slab_cache = cache;
  2323. page->freelist = freelist;
  2324. }
  2325. /*
  2326. * Grow (by 1) the number of slabs within a cache. This is called by
  2327. * kmem_cache_alloc() when there are no active objs left in a cache.
  2328. */
  2329. static int cache_grow(struct kmem_cache *cachep,
  2330. gfp_t flags, int nodeid, struct page *page)
  2331. {
  2332. void *freelist;
  2333. size_t offset;
  2334. gfp_t local_flags;
  2335. struct kmem_cache_node *n;
  2336. /*
  2337. * Be lazy and only check for valid flags here, keeping it out of the
  2338. * critical path in kmem_cache_alloc().
  2339. */
  2340. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  2341. local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
  2342. /* Take the node list lock to change the colour_next on this node */
  2343. check_irq_off();
  2344. n = cachep->node[nodeid];
  2345. spin_lock(&n->list_lock);
  2346. /* Get colour for the slab, and cal the next value. */
  2347. offset = n->colour_next;
  2348. n->colour_next++;
  2349. if (n->colour_next >= cachep->colour)
  2350. n->colour_next = 0;
  2351. spin_unlock(&n->list_lock);
  2352. offset *= cachep->colour_off;
  2353. if (local_flags & __GFP_WAIT)
  2354. local_irq_enable();
  2355. /*
  2356. * The test for missing atomic flag is performed here, rather than
  2357. * the more obvious place, simply to reduce the critical path length
  2358. * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
  2359. * will eventually be caught here (where it matters).
  2360. */
  2361. kmem_flagcheck(cachep, flags);
  2362. /*
  2363. * Get mem for the objs. Attempt to allocate a physical page from
  2364. * 'nodeid'.
  2365. */
  2366. if (!page)
  2367. page = kmem_getpages(cachep, local_flags, nodeid);
  2368. if (!page)
  2369. goto failed;
  2370. /* Get slab management. */
  2371. freelist = alloc_slabmgmt(cachep, page, offset,
  2372. local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
  2373. if (!freelist)
  2374. goto opps1;
  2375. slab_map_pages(cachep, page, freelist);
  2376. cache_init_objs(cachep, page);
  2377. if (local_flags & __GFP_WAIT)
  2378. local_irq_disable();
  2379. check_irq_off();
  2380. spin_lock(&n->list_lock);
  2381. /* Make slab active. */
  2382. list_add_tail(&page->lru, &(n->slabs_free));
  2383. STATS_INC_GROWN(cachep);
  2384. n->free_objects += cachep->num;
  2385. spin_unlock(&n->list_lock);
  2386. return 1;
  2387. opps1:
  2388. kmem_freepages(cachep, page);
  2389. failed:
  2390. if (local_flags & __GFP_WAIT)
  2391. local_irq_disable();
  2392. return 0;
  2393. }
  2394. #if DEBUG
  2395. /*
  2396. * Perform extra freeing checks:
  2397. * - detect bad pointers.
  2398. * - POISON/RED_ZONE checking
  2399. */
  2400. static void kfree_debugcheck(const void *objp)
  2401. {
  2402. if (!virt_addr_valid(objp)) {
  2403. printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
  2404. (unsigned long)objp);
  2405. BUG();
  2406. }
  2407. }
  2408. static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
  2409. {
  2410. unsigned long long redzone1, redzone2;
  2411. redzone1 = *dbg_redzone1(cache, obj);
  2412. redzone2 = *dbg_redzone2(cache, obj);
  2413. /*
  2414. * Redzone is ok.
  2415. */
  2416. if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
  2417. return;
  2418. if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
  2419. slab_error(cache, "double free detected");
  2420. else
  2421. slab_error(cache, "memory outside object was overwritten");
  2422. printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
  2423. obj, redzone1, redzone2);
  2424. }
  2425. static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
  2426. unsigned long caller)
  2427. {
  2428. unsigned int objnr;
  2429. struct page *page;
  2430. BUG_ON(virt_to_cache(objp) != cachep);
  2431. objp -= obj_offset(cachep);
  2432. kfree_debugcheck(objp);
  2433. page = virt_to_head_page(objp);
  2434. if (cachep->flags & SLAB_RED_ZONE) {
  2435. verify_redzone_free(cachep, objp);
  2436. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2437. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2438. }
  2439. if (cachep->flags & SLAB_STORE_USER)
  2440. *dbg_userword(cachep, objp) = (void *)caller;
  2441. objnr = obj_to_index(cachep, page, objp);
  2442. BUG_ON(objnr >= cachep->num);
  2443. BUG_ON(objp != index_to_obj(cachep, page, objnr));
  2444. if (cachep->flags & SLAB_POISON) {
  2445. #ifdef CONFIG_DEBUG_PAGEALLOC
  2446. if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
  2447. store_stackinfo(cachep, objp, caller);
  2448. kernel_map_pages(virt_to_page(objp),
  2449. cachep->size / PAGE_SIZE, 0);
  2450. } else {
  2451. poison_obj(cachep, objp, POISON_FREE);
  2452. }
  2453. #else
  2454. poison_obj(cachep, objp, POISON_FREE);
  2455. #endif
  2456. }
  2457. return objp;
  2458. }
  2459. #else
  2460. #define kfree_debugcheck(x) do { } while(0)
  2461. #define cache_free_debugcheck(x,objp,z) (objp)
  2462. #endif
  2463. static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
  2464. bool force_refill)
  2465. {
  2466. int batchcount;
  2467. struct kmem_cache_node *n;
  2468. struct array_cache *ac;
  2469. int node;
  2470. check_irq_off();
  2471. node = numa_mem_id();
  2472. if (unlikely(force_refill))
  2473. goto force_grow;
  2474. retry:
  2475. ac = cpu_cache_get(cachep);
  2476. batchcount = ac->batchcount;
  2477. if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
  2478. /*
  2479. * If there was little recent activity on this cache, then
  2480. * perform only a partial refill. Otherwise we could generate
  2481. * refill bouncing.
  2482. */
  2483. batchcount = BATCHREFILL_LIMIT;
  2484. }
  2485. n = cachep->node[node];
  2486. BUG_ON(ac->avail > 0 || !n);
  2487. spin_lock(&n->list_lock);
  2488. /* See if we can refill from the shared array */
  2489. if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
  2490. n->shared->touched = 1;
  2491. goto alloc_done;
  2492. }
  2493. while (batchcount > 0) {
  2494. struct list_head *entry;
  2495. struct page *page;
  2496. /* Get slab alloc is to come from. */
  2497. entry = n->slabs_partial.next;
  2498. if (entry == &n->slabs_partial) {
  2499. n->free_touched = 1;
  2500. entry = n->slabs_free.next;
  2501. if (entry == &n->slabs_free)
  2502. goto must_grow;
  2503. }
  2504. page = list_entry(entry, struct page, lru);
  2505. check_spinlock_acquired(cachep);
  2506. /*
  2507. * The slab was either on partial or free list so
  2508. * there must be at least one object available for
  2509. * allocation.
  2510. */
  2511. BUG_ON(page->active >= cachep->num);
  2512. while (page->active < cachep->num && batchcount--) {
  2513. STATS_INC_ALLOCED(cachep);
  2514. STATS_INC_ACTIVE(cachep);
  2515. STATS_SET_HIGH(cachep);
  2516. ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
  2517. node));
  2518. }
  2519. /* move slabp to correct slabp list: */
  2520. list_del(&page->lru);
  2521. if (page->active == cachep->num)
  2522. list_add(&page->lru, &n->slabs_full);
  2523. else
  2524. list_add(&page->lru, &n->slabs_partial);
  2525. }
  2526. must_grow:
  2527. n->free_objects -= ac->avail;
  2528. alloc_done:
  2529. spin_unlock(&n->list_lock);
  2530. if (unlikely(!ac->avail)) {
  2531. int x;
  2532. force_grow:
  2533. x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
  2534. /* cache_grow can reenable interrupts, then ac could change. */
  2535. ac = cpu_cache_get(cachep);
  2536. node = numa_mem_id();
  2537. /* no objects in sight? abort */
  2538. if (!x && (ac->avail == 0 || force_refill))
  2539. return NULL;
  2540. if (!ac->avail) /* objects refilled by interrupt? */
  2541. goto retry;
  2542. }
  2543. ac->touched = 1;
  2544. return ac_get_obj(cachep, ac, flags, force_refill);
  2545. }
  2546. static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
  2547. gfp_t flags)
  2548. {
  2549. might_sleep_if(flags & __GFP_WAIT);
  2550. #if DEBUG
  2551. kmem_flagcheck(cachep, flags);
  2552. #endif
  2553. }
  2554. #if DEBUG
  2555. static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
  2556. gfp_t flags, void *objp, unsigned long caller)
  2557. {
  2558. if (!objp)
  2559. return objp;
  2560. if (cachep->flags & SLAB_POISON) {
  2561. #ifdef CONFIG_DEBUG_PAGEALLOC
  2562. if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
  2563. kernel_map_pages(virt_to_page(objp),
  2564. cachep->size / PAGE_SIZE, 1);
  2565. else
  2566. check_poison_obj(cachep, objp);
  2567. #else
  2568. check_poison_obj(cachep, objp);
  2569. #endif
  2570. poison_obj(cachep, objp, POISON_INUSE);
  2571. }
  2572. if (cachep->flags & SLAB_STORE_USER)
  2573. *dbg_userword(cachep, objp) = (void *)caller;
  2574. if (cachep->flags & SLAB_RED_ZONE) {
  2575. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
  2576. *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
  2577. slab_error(cachep, "double free, or memory outside"
  2578. " object was overwritten");
  2579. printk(KERN_ERR
  2580. "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
  2581. objp, *dbg_redzone1(cachep, objp),
  2582. *dbg_redzone2(cachep, objp));
  2583. }
  2584. *dbg_redzone1(cachep, objp) = RED_ACTIVE;
  2585. *dbg_redzone2(cachep, objp) = RED_ACTIVE;
  2586. }
  2587. objp += obj_offset(cachep);
  2588. if (cachep->ctor && cachep->flags & SLAB_POISON)
  2589. cachep->ctor(objp);
  2590. if (ARCH_SLAB_MINALIGN &&
  2591. ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
  2592. printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
  2593. objp, (int)ARCH_SLAB_MINALIGN);
  2594. }
  2595. return objp;
  2596. }
  2597. #else
  2598. #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
  2599. #endif
  2600. static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
  2601. {
  2602. if (cachep == kmem_cache)
  2603. return false;
  2604. return should_failslab(cachep->object_size, flags, cachep->flags);
  2605. }
  2606. static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2607. {
  2608. void *objp;
  2609. struct array_cache *ac;
  2610. bool force_refill = false;
  2611. check_irq_off();
  2612. ac = cpu_cache_get(cachep);
  2613. if (likely(ac->avail)) {
  2614. ac->touched = 1;
  2615. objp = ac_get_obj(cachep, ac, flags, false);
  2616. /*
  2617. * Allow for the possibility all avail objects are not allowed
  2618. * by the current flags
  2619. */
  2620. if (objp) {
  2621. STATS_INC_ALLOCHIT(cachep);
  2622. goto out;
  2623. }
  2624. force_refill = true;
  2625. }
  2626. STATS_INC_ALLOCMISS(cachep);
  2627. objp = cache_alloc_refill(cachep, flags, force_refill);
  2628. /*
  2629. * the 'ac' may be updated by cache_alloc_refill(),
  2630. * and kmemleak_erase() requires its correct value.
  2631. */
  2632. ac = cpu_cache_get(cachep);
  2633. out:
  2634. /*
  2635. * To avoid a false negative, if an object that is in one of the
  2636. * per-CPU caches is leaked, we need to make sure kmemleak doesn't
  2637. * treat the array pointers as a reference to the object.
  2638. */
  2639. if (objp)
  2640. kmemleak_erase(&ac->entry[ac->avail]);
  2641. return objp;
  2642. }
  2643. #ifdef CONFIG_NUMA
  2644. /*
  2645. * Try allocating on another node if PF_SPREAD_SLAB is a mempolicy is set.
  2646. *
  2647. * If we are in_interrupt, then process context, including cpusets and
  2648. * mempolicy, may not apply and should not be used for allocation policy.
  2649. */
  2650. static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
  2651. {
  2652. int nid_alloc, nid_here;
  2653. if (in_interrupt() || (flags & __GFP_THISNODE))
  2654. return NULL;
  2655. nid_alloc = nid_here = numa_mem_id();
  2656. if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
  2657. nid_alloc = cpuset_slab_spread_node();
  2658. else if (current->mempolicy)
  2659. nid_alloc = mempolicy_slab_node();
  2660. if (nid_alloc != nid_here)
  2661. return ____cache_alloc_node(cachep, flags, nid_alloc);
  2662. return NULL;
  2663. }
  2664. /*
  2665. * Fallback function if there was no memory available and no objects on a
  2666. * certain node and fall back is permitted. First we scan all the
  2667. * available node for available objects. If that fails then we
  2668. * perform an allocation without specifying a node. This allows the page
  2669. * allocator to do its reclaim / fallback magic. We then insert the
  2670. * slab into the proper nodelist and then allocate from it.
  2671. */
  2672. static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
  2673. {
  2674. struct zonelist *zonelist;
  2675. gfp_t local_flags;
  2676. struct zoneref *z;
  2677. struct zone *zone;
  2678. enum zone_type high_zoneidx = gfp_zone(flags);
  2679. void *obj = NULL;
  2680. int nid;
  2681. unsigned int cpuset_mems_cookie;
  2682. if (flags & __GFP_THISNODE)
  2683. return NULL;
  2684. local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
  2685. retry_cpuset:
  2686. cpuset_mems_cookie = read_mems_allowed_begin();
  2687. zonelist = node_zonelist(mempolicy_slab_node(), flags);
  2688. retry:
  2689. /*
  2690. * Look through allowed nodes for objects available
  2691. * from existing per node queues.
  2692. */
  2693. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  2694. nid = zone_to_nid(zone);
  2695. if (cpuset_zone_allowed_hardwall(zone, flags) &&
  2696. cache->node[nid] &&
  2697. cache->node[nid]->free_objects) {
  2698. obj = ____cache_alloc_node(cache,
  2699. flags | GFP_THISNODE, nid);
  2700. if (obj)
  2701. break;
  2702. }
  2703. }
  2704. if (!obj) {
  2705. /*
  2706. * This allocation will be performed within the constraints
  2707. * of the current cpuset / memory policy requirements.
  2708. * We may trigger various forms of reclaim on the allowed
  2709. * set and go into memory reserves if necessary.
  2710. */
  2711. struct page *page;
  2712. if (local_flags & __GFP_WAIT)
  2713. local_irq_enable();
  2714. kmem_flagcheck(cache, flags);
  2715. page = kmem_getpages(cache, local_flags, numa_mem_id());
  2716. if (local_flags & __GFP_WAIT)
  2717. local_irq_disable();
  2718. if (page) {
  2719. /*
  2720. * Insert into the appropriate per node queues
  2721. */
  2722. nid = page_to_nid(page);
  2723. if (cache_grow(cache, flags, nid, page)) {
  2724. obj = ____cache_alloc_node(cache,
  2725. flags | GFP_THISNODE, nid);
  2726. if (!obj)
  2727. /*
  2728. * Another processor may allocate the
  2729. * objects in the slab since we are
  2730. * not holding any locks.
  2731. */
  2732. goto retry;
  2733. } else {
  2734. /* cache_grow already freed obj */
  2735. obj = NULL;
  2736. }
  2737. }
  2738. }
  2739. if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
  2740. goto retry_cpuset;
  2741. return obj;
  2742. }
  2743. /*
  2744. * A interface to enable slab creation on nodeid
  2745. */
  2746. static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
  2747. int nodeid)
  2748. {
  2749. struct list_head *entry;
  2750. struct page *page;
  2751. struct kmem_cache_node *n;
  2752. void *obj;
  2753. int x;
  2754. VM_BUG_ON(nodeid > num_online_nodes());
  2755. n = cachep->node[nodeid];
  2756. BUG_ON(!n);
  2757. retry:
  2758. check_irq_off();
  2759. spin_lock(&n->list_lock);
  2760. entry = n->slabs_partial.next;
  2761. if (entry == &n->slabs_partial) {
  2762. n->free_touched = 1;
  2763. entry = n->slabs_free.next;
  2764. if (entry == &n->slabs_free)
  2765. goto must_grow;
  2766. }
  2767. page = list_entry(entry, struct page, lru);
  2768. check_spinlock_acquired_node(cachep, nodeid);
  2769. STATS_INC_NODEALLOCS(cachep);
  2770. STATS_INC_ACTIVE(cachep);
  2771. STATS_SET_HIGH(cachep);
  2772. BUG_ON(page->active == cachep->num);
  2773. obj = slab_get_obj(cachep, page, nodeid);
  2774. n->free_objects--;
  2775. /* move slabp to correct slabp list: */
  2776. list_del(&page->lru);
  2777. if (page->active == cachep->num)
  2778. list_add(&page->lru, &n->slabs_full);
  2779. else
  2780. list_add(&page->lru, &n->slabs_partial);
  2781. spin_unlock(&n->list_lock);
  2782. goto done;
  2783. must_grow:
  2784. spin_unlock(&n->list_lock);
  2785. x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
  2786. if (x)
  2787. goto retry;
  2788. return fallback_alloc(cachep, flags);
  2789. done:
  2790. return obj;
  2791. }
  2792. static __always_inline void *
  2793. slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
  2794. unsigned long caller)
  2795. {
  2796. unsigned long save_flags;
  2797. void *ptr;
  2798. int slab_node = numa_mem_id();
  2799. flags &= gfp_allowed_mask;
  2800. lockdep_trace_alloc(flags);
  2801. if (slab_should_failslab(cachep, flags))
  2802. return NULL;
  2803. cachep = memcg_kmem_get_cache(cachep, flags);
  2804. cache_alloc_debugcheck_before(cachep, flags);
  2805. local_irq_save(save_flags);
  2806. if (nodeid == NUMA_NO_NODE)
  2807. nodeid = slab_node;
  2808. if (unlikely(!cachep->node[nodeid])) {
  2809. /* Node not bootstrapped yet */
  2810. ptr = fallback_alloc(cachep, flags);
  2811. goto out;
  2812. }
  2813. if (nodeid == slab_node) {
  2814. /*
  2815. * Use the locally cached objects if possible.
  2816. * However ____cache_alloc does not allow fallback
  2817. * to other nodes. It may fail while we still have
  2818. * objects on other nodes available.
  2819. */
  2820. ptr = ____cache_alloc(cachep, flags);
  2821. if (ptr)
  2822. goto out;
  2823. }
  2824. /* ___cache_alloc_node can fall back to other nodes */
  2825. ptr = ____cache_alloc_node(cachep, flags, nodeid);
  2826. out:
  2827. local_irq_restore(save_flags);
  2828. ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
  2829. kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
  2830. flags);
  2831. if (likely(ptr)) {
  2832. kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
  2833. if (unlikely(flags & __GFP_ZERO))
  2834. memset(ptr, 0, cachep->object_size);
  2835. }
  2836. return ptr;
  2837. }
  2838. static __always_inline void *
  2839. __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
  2840. {
  2841. void *objp;
  2842. if (current->mempolicy || unlikely(current->flags & PF_SPREAD_SLAB)) {
  2843. objp = alternate_node_alloc(cache, flags);
  2844. if (objp)
  2845. goto out;
  2846. }
  2847. objp = ____cache_alloc(cache, flags);
  2848. /*
  2849. * We may just have run out of memory on the local node.
  2850. * ____cache_alloc_node() knows how to locate memory on other nodes
  2851. */
  2852. if (!objp)
  2853. objp = ____cache_alloc_node(cache, flags, numa_mem_id());
  2854. out:
  2855. return objp;
  2856. }
  2857. #else
  2858. static __always_inline void *
  2859. __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2860. {
  2861. return ____cache_alloc(cachep, flags);
  2862. }
  2863. #endif /* CONFIG_NUMA */
  2864. static __always_inline void *
  2865. slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
  2866. {
  2867. unsigned long save_flags;
  2868. void *objp;
  2869. flags &= gfp_allowed_mask;
  2870. lockdep_trace_alloc(flags);
  2871. if (slab_should_failslab(cachep, flags))
  2872. return NULL;
  2873. cachep = memcg_kmem_get_cache(cachep, flags);
  2874. cache_alloc_debugcheck_before(cachep, flags);
  2875. local_irq_save(save_flags);
  2876. objp = __do_cache_alloc(cachep, flags);
  2877. local_irq_restore(save_flags);
  2878. objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
  2879. kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
  2880. flags);
  2881. prefetchw(objp);
  2882. if (likely(objp)) {
  2883. kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
  2884. if (unlikely(flags & __GFP_ZERO))
  2885. memset(objp, 0, cachep->object_size);
  2886. }
  2887. return objp;
  2888. }
  2889. /*
  2890. * Caller needs to acquire correct kmem_cache_node's list_lock
  2891. */
  2892. static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
  2893. int node)
  2894. {
  2895. int i;
  2896. struct kmem_cache_node *n;
  2897. for (i = 0; i < nr_objects; i++) {
  2898. void *objp;
  2899. struct page *page;
  2900. clear_obj_pfmemalloc(&objpp[i]);
  2901. objp = objpp[i];
  2902. page = virt_to_head_page(objp);
  2903. n = cachep->node[node];
  2904. list_del(&page->lru);
  2905. check_spinlock_acquired_node(cachep, node);
  2906. slab_put_obj(cachep, page, objp, node);
  2907. STATS_DEC_ACTIVE(cachep);
  2908. n->free_objects++;
  2909. /* fixup slab chains */
  2910. if (page->active == 0) {
  2911. if (n->free_objects > n->free_limit) {
  2912. n->free_objects -= cachep->num;
  2913. /* No need to drop any previously held
  2914. * lock here, even if we have a off-slab slab
  2915. * descriptor it is guaranteed to come from
  2916. * a different cache, refer to comments before
  2917. * alloc_slabmgmt.
  2918. */
  2919. slab_destroy(cachep, page);
  2920. } else {
  2921. list_add(&page->lru, &n->slabs_free);
  2922. }
  2923. } else {
  2924. /* Unconditionally move a slab to the end of the
  2925. * partial list on free - maximum time for the
  2926. * other objects to be freed, too.
  2927. */
  2928. list_add_tail(&page->lru, &n->slabs_partial);
  2929. }
  2930. }
  2931. }
  2932. static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
  2933. {
  2934. int batchcount;
  2935. struct kmem_cache_node *n;
  2936. int node = numa_mem_id();
  2937. batchcount = ac->batchcount;
  2938. #if DEBUG
  2939. BUG_ON(!batchcount || batchcount > ac->avail);
  2940. #endif
  2941. check_irq_off();
  2942. n = cachep->node[node];
  2943. spin_lock(&n->list_lock);
  2944. if (n->shared) {
  2945. struct array_cache *shared_array = n->shared;
  2946. int max = shared_array->limit - shared_array->avail;
  2947. if (max) {
  2948. if (batchcount > max)
  2949. batchcount = max;
  2950. memcpy(&(shared_array->entry[shared_array->avail]),
  2951. ac->entry, sizeof(void *) * batchcount);
  2952. shared_array->avail += batchcount;
  2953. goto free_done;
  2954. }
  2955. }
  2956. free_block(cachep, ac->entry, batchcount, node);
  2957. free_done:
  2958. #if STATS
  2959. {
  2960. int i = 0;
  2961. struct list_head *p;
  2962. p = n->slabs_free.next;
  2963. while (p != &(n->slabs_free)) {
  2964. struct page *page;
  2965. page = list_entry(p, struct page, lru);
  2966. BUG_ON(page->active);
  2967. i++;
  2968. p = p->next;
  2969. }
  2970. STATS_SET_FREEABLE(cachep, i);
  2971. }
  2972. #endif
  2973. spin_unlock(&n->list_lock);
  2974. ac->avail -= batchcount;
  2975. memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
  2976. }
  2977. /*
  2978. * Release an obj back to its cache. If the obj has a constructed state, it must
  2979. * be in this state _before_ it is released. Called with disabled ints.
  2980. */
  2981. static inline void __cache_free(struct kmem_cache *cachep, void *objp,
  2982. unsigned long caller)
  2983. {
  2984. struct array_cache *ac = cpu_cache_get(cachep);
  2985. check_irq_off();
  2986. kmemleak_free_recursive(objp, cachep->flags);
  2987. objp = cache_free_debugcheck(cachep, objp, caller);
  2988. kmemcheck_slab_free(cachep, objp, cachep->object_size);
  2989. /*
  2990. * Skip calling cache_free_alien() when the platform is not numa.
  2991. * This will avoid cache misses that happen while accessing slabp (which
  2992. * is per page memory reference) to get nodeid. Instead use a global
  2993. * variable to skip the call, which is mostly likely to be present in
  2994. * the cache.
  2995. */
  2996. if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
  2997. return;
  2998. if (likely(ac->avail < ac->limit)) {
  2999. STATS_INC_FREEHIT(cachep);
  3000. } else {
  3001. STATS_INC_FREEMISS(cachep);
  3002. cache_flusharray(cachep, ac);
  3003. }
  3004. ac_put_obj(cachep, ac, objp);
  3005. }
  3006. /**
  3007. * kmem_cache_alloc - Allocate an object
  3008. * @cachep: The cache to allocate from.
  3009. * @flags: See kmalloc().
  3010. *
  3011. * Allocate an object from this cache. The flags are only relevant
  3012. * if the cache has no available objects.
  3013. */
  3014. void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  3015. {
  3016. void *ret = slab_alloc(cachep, flags, _RET_IP_);
  3017. trace_kmem_cache_alloc(_RET_IP_, ret,
  3018. cachep->object_size, cachep->size, flags);
  3019. return ret;
  3020. }
  3021. EXPORT_SYMBOL(kmem_cache_alloc);
  3022. #ifdef CONFIG_TRACING
  3023. void *
  3024. kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
  3025. {
  3026. void *ret;
  3027. ret = slab_alloc(cachep, flags, _RET_IP_);
  3028. trace_kmalloc(_RET_IP_, ret,
  3029. size, cachep->size, flags);
  3030. return ret;
  3031. }
  3032. EXPORT_SYMBOL(kmem_cache_alloc_trace);
  3033. #endif
  3034. #ifdef CONFIG_NUMA
  3035. /**
  3036. * kmem_cache_alloc_node - Allocate an object on the specified node
  3037. * @cachep: The cache to allocate from.
  3038. * @flags: See kmalloc().
  3039. * @nodeid: node number of the target node.
  3040. *
  3041. * Identical to kmem_cache_alloc but it will allocate memory on the given
  3042. * node, which can improve the performance for cpu bound structures.
  3043. *
  3044. * Fallback to other node is possible if __GFP_THISNODE is not set.
  3045. */
  3046. void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  3047. {
  3048. void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
  3049. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  3050. cachep->object_size, cachep->size,
  3051. flags, nodeid);
  3052. return ret;
  3053. }
  3054. EXPORT_SYMBOL(kmem_cache_alloc_node);
  3055. #ifdef CONFIG_TRACING
  3056. void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
  3057. gfp_t flags,
  3058. int nodeid,
  3059. size_t size)
  3060. {
  3061. void *ret;
  3062. ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
  3063. trace_kmalloc_node(_RET_IP_, ret,
  3064. size, cachep->size,
  3065. flags, nodeid);
  3066. return ret;
  3067. }
  3068. EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
  3069. #endif
  3070. static __always_inline void *
  3071. __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
  3072. {
  3073. struct kmem_cache *cachep;
  3074. cachep = kmalloc_slab(size, flags);
  3075. if (unlikely(ZERO_OR_NULL_PTR(cachep)))
  3076. return cachep;
  3077. return kmem_cache_alloc_node_trace(cachep, flags, node, size);
  3078. }
  3079. #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
  3080. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  3081. {
  3082. return __do_kmalloc_node(size, flags, node, _RET_IP_);
  3083. }
  3084. EXPORT_SYMBOL(__kmalloc_node);
  3085. void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
  3086. int node, unsigned long caller)
  3087. {
  3088. return __do_kmalloc_node(size, flags, node, caller);
  3089. }
  3090. EXPORT_SYMBOL(__kmalloc_node_track_caller);
  3091. #else
  3092. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  3093. {
  3094. return __do_kmalloc_node(size, flags, node, 0);
  3095. }
  3096. EXPORT_SYMBOL(__kmalloc_node);
  3097. #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
  3098. #endif /* CONFIG_NUMA */
  3099. /**
  3100. * __do_kmalloc - allocate memory
  3101. * @size: how many bytes of memory are required.
  3102. * @flags: the type of memory to allocate (see kmalloc).
  3103. * @caller: function caller for debug tracking of the caller
  3104. */
  3105. static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
  3106. unsigned long caller)
  3107. {
  3108. struct kmem_cache *cachep;
  3109. void *ret;
  3110. cachep = kmalloc_slab(size, flags);
  3111. if (unlikely(ZERO_OR_NULL_PTR(cachep)))
  3112. return cachep;
  3113. ret = slab_alloc(cachep, flags, caller);
  3114. trace_kmalloc(caller, ret,
  3115. size, cachep->size, flags);
  3116. return ret;
  3117. }
  3118. #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
  3119. void *__kmalloc(size_t size, gfp_t flags)
  3120. {
  3121. return __do_kmalloc(size, flags, _RET_IP_);
  3122. }
  3123. EXPORT_SYMBOL(__kmalloc);
  3124. void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
  3125. {
  3126. return __do_kmalloc(size, flags, caller);
  3127. }
  3128. EXPORT_SYMBOL(__kmalloc_track_caller);
  3129. #else
  3130. void *__kmalloc(size_t size, gfp_t flags)
  3131. {
  3132. return __do_kmalloc(size, flags, 0);
  3133. }
  3134. EXPORT_SYMBOL(__kmalloc);
  3135. #endif
  3136. /**
  3137. * kmem_cache_free - Deallocate an object
  3138. * @cachep: The cache the allocation was from.
  3139. * @objp: The previously allocated object.
  3140. *
  3141. * Free an object which was previously allocated from this
  3142. * cache.
  3143. */
  3144. void kmem_cache_free(struct kmem_cache *cachep, void *objp)
  3145. {
  3146. unsigned long flags;
  3147. cachep = cache_from_obj(cachep, objp);
  3148. if (!cachep)
  3149. return;
  3150. local_irq_save(flags);
  3151. debug_check_no_locks_freed(objp, cachep->object_size);
  3152. if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
  3153. debug_check_no_obj_freed(objp, cachep->object_size);
  3154. __cache_free(cachep, objp, _RET_IP_);
  3155. local_irq_restore(flags);
  3156. trace_kmem_cache_free(_RET_IP_, objp);
  3157. }
  3158. EXPORT_SYMBOL(kmem_cache_free);
  3159. /**
  3160. * kfree - free previously allocated memory
  3161. * @objp: pointer returned by kmalloc.
  3162. *
  3163. * If @objp is NULL, no operation is performed.
  3164. *
  3165. * Don't free memory not originally allocated by kmalloc()
  3166. * or you will run into trouble.
  3167. */
  3168. void kfree(const void *objp)
  3169. {
  3170. struct kmem_cache *c;
  3171. unsigned long flags;
  3172. trace_kfree(_RET_IP_, objp);
  3173. if (unlikely(ZERO_OR_NULL_PTR(objp)))
  3174. return;
  3175. local_irq_save(flags);
  3176. kfree_debugcheck(objp);
  3177. c = virt_to_cache(objp);
  3178. debug_check_no_locks_freed(objp, c->object_size);
  3179. debug_check_no_obj_freed(objp, c->object_size);
  3180. __cache_free(c, (void *)objp, _RET_IP_);
  3181. local_irq_restore(flags);
  3182. }
  3183. EXPORT_SYMBOL(kfree);
  3184. /*
  3185. * This initializes kmem_cache_node or resizes various caches for all nodes.
  3186. */
  3187. static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
  3188. {
  3189. int node;
  3190. struct kmem_cache_node *n;
  3191. struct array_cache *new_shared;
  3192. struct array_cache **new_alien = NULL;
  3193. for_each_online_node(node) {
  3194. if (use_alien_caches) {
  3195. new_alien = alloc_alien_cache(node, cachep->limit, gfp);
  3196. if (!new_alien)
  3197. goto fail;
  3198. }
  3199. new_shared = NULL;
  3200. if (cachep->shared) {
  3201. new_shared = alloc_arraycache(node,
  3202. cachep->shared*cachep->batchcount,
  3203. 0xbaadf00d, gfp);
  3204. if (!new_shared) {
  3205. free_alien_cache(new_alien);
  3206. goto fail;
  3207. }
  3208. }
  3209. n = cachep->node[node];
  3210. if (n) {
  3211. struct array_cache *shared = n->shared;
  3212. spin_lock_irq(&n->list_lock);
  3213. if (shared)
  3214. free_block(cachep, shared->entry,
  3215. shared->avail, node);
  3216. n->shared = new_shared;
  3217. if (!n->alien) {
  3218. n->alien = new_alien;
  3219. new_alien = NULL;
  3220. }
  3221. n->free_limit = (1 + nr_cpus_node(node)) *
  3222. cachep->batchcount + cachep->num;
  3223. spin_unlock_irq(&n->list_lock);
  3224. kfree(shared);
  3225. free_alien_cache(new_alien);
  3226. continue;
  3227. }
  3228. n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
  3229. if (!n) {
  3230. free_alien_cache(new_alien);
  3231. kfree(new_shared);
  3232. goto fail;
  3233. }
  3234. kmem_cache_node_init(n);
  3235. n->next_reap = jiffies + REAPTIMEOUT_NODE +
  3236. ((unsigned long)cachep) % REAPTIMEOUT_NODE;
  3237. n->shared = new_shared;
  3238. n->alien = new_alien;
  3239. n->free_limit = (1 + nr_cpus_node(node)) *
  3240. cachep->batchcount + cachep->num;
  3241. cachep->node[node] = n;
  3242. }
  3243. return 0;
  3244. fail:
  3245. if (!cachep->list.next) {
  3246. /* Cache is not active yet. Roll back what we did */
  3247. node--;
  3248. while (node >= 0) {
  3249. if (cachep->node[node]) {
  3250. n = cachep->node[node];
  3251. kfree(n->shared);
  3252. free_alien_cache(n->alien);
  3253. kfree(n);
  3254. cachep->node[node] = NULL;
  3255. }
  3256. node--;
  3257. }
  3258. }
  3259. return -ENOMEM;
  3260. }
  3261. struct ccupdate_struct {
  3262. struct kmem_cache *cachep;
  3263. struct array_cache *new[0];
  3264. };
  3265. static void do_ccupdate_local(void *info)
  3266. {
  3267. struct ccupdate_struct *new = info;
  3268. struct array_cache *old;
  3269. check_irq_off();
  3270. old = cpu_cache_get(new->cachep);
  3271. new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
  3272. new->new[smp_processor_id()] = old;
  3273. }
  3274. /* Always called with the slab_mutex held */
  3275. static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
  3276. int batchcount, int shared, gfp_t gfp)
  3277. {
  3278. struct ccupdate_struct *new;
  3279. int i;
  3280. new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
  3281. gfp);
  3282. if (!new)
  3283. return -ENOMEM;
  3284. for_each_online_cpu(i) {
  3285. new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
  3286. batchcount, gfp);
  3287. if (!new->new[i]) {
  3288. for (i--; i >= 0; i--)
  3289. kfree(new->new[i]);
  3290. kfree(new);
  3291. return -ENOMEM;
  3292. }
  3293. }
  3294. new->cachep = cachep;
  3295. on_each_cpu(do_ccupdate_local, (void *)new, 1);
  3296. check_irq_on();
  3297. cachep->batchcount = batchcount;
  3298. cachep->limit = limit;
  3299. cachep->shared = shared;
  3300. for_each_online_cpu(i) {
  3301. struct array_cache *ccold = new->new[i];
  3302. if (!ccold)
  3303. continue;
  3304. spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
  3305. free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
  3306. spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
  3307. kfree(ccold);
  3308. }
  3309. kfree(new);
  3310. return alloc_kmem_cache_node(cachep, gfp);
  3311. }
  3312. static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
  3313. int batchcount, int shared, gfp_t gfp)
  3314. {
  3315. int ret;
  3316. struct kmem_cache *c = NULL;
  3317. int i = 0;
  3318. ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
  3319. if (slab_state < FULL)
  3320. return ret;
  3321. if ((ret < 0) || !is_root_cache(cachep))
  3322. return ret;
  3323. VM_BUG_ON(!mutex_is_locked(&slab_mutex));
  3324. for_each_memcg_cache_index(i) {
  3325. c = cache_from_memcg_idx(cachep, i);
  3326. if (c)
  3327. /* return value determined by the parent cache only */
  3328. __do_tune_cpucache(c, limit, batchcount, shared, gfp);
  3329. }
  3330. return ret;
  3331. }
  3332. /* Called with slab_mutex held always */
  3333. static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
  3334. {
  3335. int err;
  3336. int limit = 0;
  3337. int shared = 0;
  3338. int batchcount = 0;
  3339. if (!is_root_cache(cachep)) {
  3340. struct kmem_cache *root = memcg_root_cache(cachep);
  3341. limit = root->limit;
  3342. shared = root->shared;
  3343. batchcount = root->batchcount;
  3344. }
  3345. if (limit && shared && batchcount)
  3346. goto skip_setup;
  3347. /*
  3348. * The head array serves three purposes:
  3349. * - create a LIFO ordering, i.e. return objects that are cache-warm
  3350. * - reduce the number of spinlock operations.
  3351. * - reduce the number of linked list operations on the slab and
  3352. * bufctl chains: array operations are cheaper.
  3353. * The numbers are guessed, we should auto-tune as described by
  3354. * Bonwick.
  3355. */
  3356. if (cachep->size > 131072)
  3357. limit = 1;
  3358. else if (cachep->size > PAGE_SIZE)
  3359. limit = 8;
  3360. else if (cachep->size > 1024)
  3361. limit = 24;
  3362. else if (cachep->size > 256)
  3363. limit = 54;
  3364. else
  3365. limit = 120;
  3366. /*
  3367. * CPU bound tasks (e.g. network routing) can exhibit cpu bound
  3368. * allocation behaviour: Most allocs on one cpu, most free operations
  3369. * on another cpu. For these cases, an efficient object passing between
  3370. * cpus is necessary. This is provided by a shared array. The array
  3371. * replaces Bonwick's magazine layer.
  3372. * On uniprocessor, it's functionally equivalent (but less efficient)
  3373. * to a larger limit. Thus disabled by default.
  3374. */
  3375. shared = 0;
  3376. if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
  3377. shared = 8;
  3378. #if DEBUG
  3379. /*
  3380. * With debugging enabled, large batchcount lead to excessively long
  3381. * periods with disabled local interrupts. Limit the batchcount
  3382. */
  3383. if (limit > 32)
  3384. limit = 32;
  3385. #endif
  3386. batchcount = (limit + 1) / 2;
  3387. skip_setup:
  3388. err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
  3389. if (err)
  3390. printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
  3391. cachep->name, -err);
  3392. return err;
  3393. }
  3394. /*
  3395. * Drain an array if it contains any elements taking the node lock only if
  3396. * necessary. Note that the node listlock also protects the array_cache
  3397. * if drain_array() is used on the shared array.
  3398. */
  3399. static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
  3400. struct array_cache *ac, int force, int node)
  3401. {
  3402. int tofree;
  3403. if (!ac || !ac->avail)
  3404. return;
  3405. if (ac->touched && !force) {
  3406. ac->touched = 0;
  3407. } else {
  3408. spin_lock_irq(&n->list_lock);
  3409. if (ac->avail) {
  3410. tofree = force ? ac->avail : (ac->limit + 4) / 5;
  3411. if (tofree > ac->avail)
  3412. tofree = (ac->avail + 1) / 2;
  3413. free_block(cachep, ac->entry, tofree, node);
  3414. ac->avail -= tofree;
  3415. memmove(ac->entry, &(ac->entry[tofree]),
  3416. sizeof(void *) * ac->avail);
  3417. }
  3418. spin_unlock_irq(&n->list_lock);
  3419. }
  3420. }
  3421. /**
  3422. * cache_reap - Reclaim memory from caches.
  3423. * @w: work descriptor
  3424. *
  3425. * Called from workqueue/eventd every few seconds.
  3426. * Purpose:
  3427. * - clear the per-cpu caches for this CPU.
  3428. * - return freeable pages to the main free memory pool.
  3429. *
  3430. * If we cannot acquire the cache chain mutex then just give up - we'll try
  3431. * again on the next iteration.
  3432. */
  3433. static void cache_reap(struct work_struct *w)
  3434. {
  3435. struct kmem_cache *searchp;
  3436. struct kmem_cache_node *n;
  3437. int node = numa_mem_id();
  3438. struct delayed_work *work = to_delayed_work(w);
  3439. if (!mutex_trylock(&slab_mutex))
  3440. /* Give up. Setup the next iteration. */
  3441. goto out;
  3442. list_for_each_entry(searchp, &slab_caches, list) {
  3443. check_irq_on();
  3444. /*
  3445. * We only take the node lock if absolutely necessary and we
  3446. * have established with reasonable certainty that
  3447. * we can do some work if the lock was obtained.
  3448. */
  3449. n = searchp->node[node];
  3450. reap_alien(searchp, n);
  3451. drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
  3452. /*
  3453. * These are racy checks but it does not matter
  3454. * if we skip one check or scan twice.
  3455. */
  3456. if (time_after(n->next_reap, jiffies))
  3457. goto next;
  3458. n->next_reap = jiffies + REAPTIMEOUT_NODE;
  3459. drain_array(searchp, n, n->shared, 0, node);
  3460. if (n->free_touched)
  3461. n->free_touched = 0;
  3462. else {
  3463. int freed;
  3464. freed = drain_freelist(searchp, n, (n->free_limit +
  3465. 5 * searchp->num - 1) / (5 * searchp->num));
  3466. STATS_ADD_REAPED(searchp, freed);
  3467. }
  3468. next:
  3469. cond_resched();
  3470. }
  3471. check_irq_on();
  3472. mutex_unlock(&slab_mutex);
  3473. next_reap_node();
  3474. out:
  3475. /* Set up the next iteration */
  3476. schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
  3477. }
  3478. #ifdef CONFIG_SLABINFO
  3479. void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
  3480. {
  3481. struct page *page;
  3482. unsigned long active_objs;
  3483. unsigned long num_objs;
  3484. unsigned long active_slabs = 0;
  3485. unsigned long num_slabs, free_objects = 0, shared_avail = 0;
  3486. const char *name;
  3487. char *error = NULL;
  3488. int node;
  3489. struct kmem_cache_node *n;
  3490. active_objs = 0;
  3491. num_slabs = 0;
  3492. for_each_online_node(node) {
  3493. n = cachep->node[node];
  3494. if (!n)
  3495. continue;
  3496. check_irq_on();
  3497. spin_lock_irq(&n->list_lock);
  3498. list_for_each_entry(page, &n->slabs_full, lru) {
  3499. if (page->active != cachep->num && !error)
  3500. error = "slabs_full accounting error";
  3501. active_objs += cachep->num;
  3502. active_slabs++;
  3503. }
  3504. list_for_each_entry(page, &n->slabs_partial, lru) {
  3505. if (page->active == cachep->num && !error)
  3506. error = "slabs_partial accounting error";
  3507. if (!page->active && !error)
  3508. error = "slabs_partial accounting error";
  3509. active_objs += page->active;
  3510. active_slabs++;
  3511. }
  3512. list_for_each_entry(page, &n->slabs_free, lru) {
  3513. if (page->active && !error)
  3514. error = "slabs_free accounting error";
  3515. num_slabs++;
  3516. }
  3517. free_objects += n->free_objects;
  3518. if (n->shared)
  3519. shared_avail += n->shared->avail;
  3520. spin_unlock_irq(&n->list_lock);
  3521. }
  3522. num_slabs += active_slabs;
  3523. num_objs = num_slabs * cachep->num;
  3524. if (num_objs - active_objs != free_objects && !error)
  3525. error = "free_objects accounting error";
  3526. name = cachep->name;
  3527. if (error)
  3528. printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
  3529. sinfo->active_objs = active_objs;
  3530. sinfo->num_objs = num_objs;
  3531. sinfo->active_slabs = active_slabs;
  3532. sinfo->num_slabs = num_slabs;
  3533. sinfo->shared_avail = shared_avail;
  3534. sinfo->limit = cachep->limit;
  3535. sinfo->batchcount = cachep->batchcount;
  3536. sinfo->shared = cachep->shared;
  3537. sinfo->objects_per_slab = cachep->num;
  3538. sinfo->cache_order = cachep->gfporder;
  3539. }
  3540. void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
  3541. {
  3542. #if STATS
  3543. { /* node stats */
  3544. unsigned long high = cachep->high_mark;
  3545. unsigned long allocs = cachep->num_allocations;
  3546. unsigned long grown = cachep->grown;
  3547. unsigned long reaped = cachep->reaped;
  3548. unsigned long errors = cachep->errors;
  3549. unsigned long max_freeable = cachep->max_freeable;
  3550. unsigned long node_allocs = cachep->node_allocs;
  3551. unsigned long node_frees = cachep->node_frees;
  3552. unsigned long overflows = cachep->node_overflow;
  3553. seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
  3554. "%4lu %4lu %4lu %4lu %4lu",
  3555. allocs, high, grown,
  3556. reaped, errors, max_freeable, node_allocs,
  3557. node_frees, overflows);
  3558. }
  3559. /* cpu stats */
  3560. {
  3561. unsigned long allochit = atomic_read(&cachep->allochit);
  3562. unsigned long allocmiss = atomic_read(&cachep->allocmiss);
  3563. unsigned long freehit = atomic_read(&cachep->freehit);
  3564. unsigned long freemiss = atomic_read(&cachep->freemiss);
  3565. seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
  3566. allochit, allocmiss, freehit, freemiss);
  3567. }
  3568. #endif
  3569. }
  3570. #define MAX_SLABINFO_WRITE 128
  3571. /**
  3572. * slabinfo_write - Tuning for the slab allocator
  3573. * @file: unused
  3574. * @buffer: user buffer
  3575. * @count: data length
  3576. * @ppos: unused
  3577. */
  3578. ssize_t slabinfo_write(struct file *file, const char __user *buffer,
  3579. size_t count, loff_t *ppos)
  3580. {
  3581. char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
  3582. int limit, batchcount, shared, res;
  3583. struct kmem_cache *cachep;
  3584. if (count > MAX_SLABINFO_WRITE)
  3585. return -EINVAL;
  3586. if (copy_from_user(&kbuf, buffer, count))
  3587. return -EFAULT;
  3588. kbuf[MAX_SLABINFO_WRITE] = '\0';
  3589. tmp = strchr(kbuf, ' ');
  3590. if (!tmp)
  3591. return -EINVAL;
  3592. *tmp = '\0';
  3593. tmp++;
  3594. if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
  3595. return -EINVAL;
  3596. /* Find the cache in the chain of caches. */
  3597. mutex_lock(&slab_mutex);
  3598. res = -EINVAL;
  3599. list_for_each_entry(cachep, &slab_caches, list) {
  3600. if (!strcmp(cachep->name, kbuf)) {
  3601. if (limit < 1 || batchcount < 1 ||
  3602. batchcount > limit || shared < 0) {
  3603. res = 0;
  3604. } else {
  3605. res = do_tune_cpucache(cachep, limit,
  3606. batchcount, shared,
  3607. GFP_KERNEL);
  3608. }
  3609. break;
  3610. }
  3611. }
  3612. mutex_unlock(&slab_mutex);
  3613. if (res >= 0)
  3614. res = count;
  3615. return res;
  3616. }
  3617. #ifdef CONFIG_DEBUG_SLAB_LEAK
  3618. static void *leaks_start(struct seq_file *m, loff_t *pos)
  3619. {
  3620. mutex_lock(&slab_mutex);
  3621. return seq_list_start(&slab_caches, *pos);
  3622. }
  3623. static inline int add_caller(unsigned long *n, unsigned long v)
  3624. {
  3625. unsigned long *p;
  3626. int l;
  3627. if (!v)
  3628. return 1;
  3629. l = n[1];
  3630. p = n + 2;
  3631. while (l) {
  3632. int i = l/2;
  3633. unsigned long *q = p + 2 * i;
  3634. if (*q == v) {
  3635. q[1]++;
  3636. return 1;
  3637. }
  3638. if (*q > v) {
  3639. l = i;
  3640. } else {
  3641. p = q + 2;
  3642. l -= i + 1;
  3643. }
  3644. }
  3645. if (++n[1] == n[0])
  3646. return 0;
  3647. memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
  3648. p[0] = v;
  3649. p[1] = 1;
  3650. return 1;
  3651. }
  3652. static void handle_slab(unsigned long *n, struct kmem_cache *c,
  3653. struct page *page)
  3654. {
  3655. void *p;
  3656. int i, j;
  3657. if (n[0] == n[1])
  3658. return;
  3659. for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
  3660. bool active = true;
  3661. for (j = page->active; j < c->num; j++) {
  3662. /* Skip freed item */
  3663. if (get_free_obj(page, j) == i) {
  3664. active = false;
  3665. break;
  3666. }
  3667. }
  3668. if (!active)
  3669. continue;
  3670. if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
  3671. return;
  3672. }
  3673. }
  3674. static void show_symbol(struct seq_file *m, unsigned long address)
  3675. {
  3676. #ifdef CONFIG_KALLSYMS
  3677. unsigned long offset, size;
  3678. char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
  3679. if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
  3680. seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
  3681. if (modname[0])
  3682. seq_printf(m, " [%s]", modname);
  3683. return;
  3684. }
  3685. #endif
  3686. seq_printf(m, "%p", (void *)address);
  3687. }
  3688. static int leaks_show(struct seq_file *m, void *p)
  3689. {
  3690. struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
  3691. struct page *page;
  3692. struct kmem_cache_node *n;
  3693. const char *name;
  3694. unsigned long *x = m->private;
  3695. int node;
  3696. int i;
  3697. if (!(cachep->flags & SLAB_STORE_USER))
  3698. return 0;
  3699. if (!(cachep->flags & SLAB_RED_ZONE))
  3700. return 0;
  3701. /* OK, we can do it */
  3702. x[1] = 0;
  3703. for_each_online_node(node) {
  3704. n = cachep->node[node];
  3705. if (!n)
  3706. continue;
  3707. check_irq_on();
  3708. spin_lock_irq(&n->list_lock);
  3709. list_for_each_entry(page, &n->slabs_full, lru)
  3710. handle_slab(x, cachep, page);
  3711. list_for_each_entry(page, &n->slabs_partial, lru)
  3712. handle_slab(x, cachep, page);
  3713. spin_unlock_irq(&n->list_lock);
  3714. }
  3715. name = cachep->name;
  3716. if (x[0] == x[1]) {
  3717. /* Increase the buffer size */
  3718. mutex_unlock(&slab_mutex);
  3719. m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
  3720. if (!m->private) {
  3721. /* Too bad, we are really out */
  3722. m->private = x;
  3723. mutex_lock(&slab_mutex);
  3724. return -ENOMEM;
  3725. }
  3726. *(unsigned long *)m->private = x[0] * 2;
  3727. kfree(x);
  3728. mutex_lock(&slab_mutex);
  3729. /* Now make sure this entry will be retried */
  3730. m->count = m->size;
  3731. return 0;
  3732. }
  3733. for (i = 0; i < x[1]; i++) {
  3734. seq_printf(m, "%s: %lu ", name, x[2*i+3]);
  3735. show_symbol(m, x[2*i+2]);
  3736. seq_putc(m, '\n');
  3737. }
  3738. return 0;
  3739. }
  3740. static const struct seq_operations slabstats_op = {
  3741. .start = leaks_start,
  3742. .next = slab_next,
  3743. .stop = slab_stop,
  3744. .show = leaks_show,
  3745. };
  3746. static int slabstats_open(struct inode *inode, struct file *file)
  3747. {
  3748. unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
  3749. int ret = -ENOMEM;
  3750. if (n) {
  3751. ret = seq_open(file, &slabstats_op);
  3752. if (!ret) {
  3753. struct seq_file *m = file->private_data;
  3754. *n = PAGE_SIZE / (2 * sizeof(unsigned long));
  3755. m->private = n;
  3756. n = NULL;
  3757. }
  3758. kfree(n);
  3759. }
  3760. return ret;
  3761. }
  3762. static const struct file_operations proc_slabstats_operations = {
  3763. .open = slabstats_open,
  3764. .read = seq_read,
  3765. .llseek = seq_lseek,
  3766. .release = seq_release_private,
  3767. };
  3768. #endif
  3769. static int __init slab_proc_init(void)
  3770. {
  3771. #ifdef CONFIG_DEBUG_SLAB_LEAK
  3772. proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
  3773. #endif
  3774. return 0;
  3775. }
  3776. module_init(slab_proc_init);
  3777. #endif
  3778. /**
  3779. * ksize - get the actual amount of memory allocated for a given object
  3780. * @objp: Pointer to the object
  3781. *
  3782. * kmalloc may internally round up allocations and return more memory
  3783. * than requested. ksize() can be used to determine the actual amount of
  3784. * memory allocated. The caller may use this additional memory, even though
  3785. * a smaller amount of memory was initially specified with the kmalloc call.
  3786. * The caller must guarantee that objp points to a valid object previously
  3787. * allocated with either kmalloc() or kmem_cache_alloc(). The object
  3788. * must not be freed during the duration of the call.
  3789. */
  3790. size_t ksize(const void *objp)
  3791. {
  3792. BUG_ON(!objp);
  3793. if (unlikely(objp == ZERO_SIZE_PTR))
  3794. return 0;
  3795. return virt_to_cache(objp)->object_size;
  3796. }
  3797. EXPORT_SYMBOL(ksize);