compiler.h 3.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102
  1. #ifndef _TOOLS_LINUX_COMPILER_H_
  2. #define _TOOLS_LINUX_COMPILER_H_
  3. /* Optimization barrier */
  4. /* The "volatile" is due to gcc bugs */
  5. #define barrier() __asm__ __volatile__("": : :"memory")
  6. #ifndef __always_inline
  7. # define __always_inline inline __attribute__((always_inline))
  8. #endif
  9. #define __user
  10. #ifndef __attribute_const__
  11. # define __attribute_const__
  12. #endif
  13. #ifndef __maybe_unused
  14. # define __maybe_unused __attribute__((unused))
  15. #endif
  16. #ifndef __packed
  17. # define __packed __attribute__((__packed__))
  18. #endif
  19. #ifndef __force
  20. # define __force
  21. #endif
  22. #ifndef __weak
  23. # define __weak __attribute__((weak))
  24. #endif
  25. #ifndef likely
  26. # define likely(x) __builtin_expect(!!(x), 1)
  27. #endif
  28. #ifndef unlikely
  29. # define unlikely(x) __builtin_expect(!!(x), 0)
  30. #endif
  31. #define ACCESS_ONCE(x) (*(volatile typeof(x) *)&(x))
  32. #include <linux/types.h>
  33. static __always_inline void __read_once_size(const volatile void *p, void *res, int size)
  34. {
  35. switch (size) {
  36. case 1: *(__u8 *)res = *(volatile __u8 *)p; break;
  37. case 2: *(__u16 *)res = *(volatile __u16 *)p; break;
  38. case 4: *(__u32 *)res = *(volatile __u32 *)p; break;
  39. case 8: *(__u64 *)res = *(volatile __u64 *)p; break;
  40. default:
  41. barrier();
  42. __builtin_memcpy((void *)res, (const void *)p, size);
  43. barrier();
  44. }
  45. }
  46. static __always_inline void __write_once_size(volatile void *p, void *res, int size)
  47. {
  48. switch (size) {
  49. case 1: *(volatile __u8 *)p = *(__u8 *)res; break;
  50. case 2: *(volatile __u16 *)p = *(__u16 *)res; break;
  51. case 4: *(volatile __u32 *)p = *(__u32 *)res; break;
  52. case 8: *(volatile __u64 *)p = *(__u64 *)res; break;
  53. default:
  54. barrier();
  55. __builtin_memcpy((void *)p, (const void *)res, size);
  56. barrier();
  57. }
  58. }
  59. /*
  60. * Prevent the compiler from merging or refetching reads or writes. The
  61. * compiler is also forbidden from reordering successive instances of
  62. * READ_ONCE, WRITE_ONCE and ACCESS_ONCE (see below), but only when the
  63. * compiler is aware of some particular ordering. One way to make the
  64. * compiler aware of ordering is to put the two invocations of READ_ONCE,
  65. * WRITE_ONCE or ACCESS_ONCE() in different C statements.
  66. *
  67. * In contrast to ACCESS_ONCE these two macros will also work on aggregate
  68. * data types like structs or unions. If the size of the accessed data
  69. * type exceeds the word size of the machine (e.g., 32 bits or 64 bits)
  70. * READ_ONCE() and WRITE_ONCE() will fall back to memcpy and print a
  71. * compile-time warning.
  72. *
  73. * Their two major use cases are: (1) Mediating communication between
  74. * process-level code and irq/NMI handlers, all running on the same CPU,
  75. * and (2) Ensuring that the compiler does not fold, spindle, or otherwise
  76. * mutilate accesses that either do not require ordering or that interact
  77. * with an explicit memory barrier or atomic instruction that provides the
  78. * required ordering.
  79. */
  80. #define READ_ONCE(x) \
  81. ({ union { typeof(x) __val; char __c[1]; } __u; __read_once_size(&(x), __u.__c, sizeof(x)); __u.__val; })
  82. #define WRITE_ONCE(x, val) \
  83. ({ union { typeof(x) __val; char __c[1]; } __u = { .__val = (val) }; __write_once_size(&(x), __u.__c, sizeof(x)); __u.__val; })
  84. #endif /* _TOOLS_LINUX_COMPILER_H */