fsl_esai.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869
  1. /*
  2. * Freescale ESAI ALSA SoC Digital Audio Interface (DAI) driver
  3. *
  4. * Copyright (C) 2014 Freescale Semiconductor, Inc.
  5. *
  6. * This file is licensed under the terms of the GNU General Public License
  7. * version 2. This program is licensed "as is" without any warranty of any
  8. * kind, whether express or implied.
  9. */
  10. #include <linux/clk.h>
  11. #include <linux/dmaengine.h>
  12. #include <linux/module.h>
  13. #include <linux/of_irq.h>
  14. #include <linux/of_platform.h>
  15. #include <sound/dmaengine_pcm.h>
  16. #include <sound/pcm_params.h>
  17. #include "fsl_esai.h"
  18. #include "imx-pcm.h"
  19. #define FSL_ESAI_RATES SNDRV_PCM_RATE_8000_192000
  20. #define FSL_ESAI_FORMATS (SNDRV_PCM_FMTBIT_S8 | \
  21. SNDRV_PCM_FMTBIT_S16_LE | \
  22. SNDRV_PCM_FMTBIT_S20_3LE | \
  23. SNDRV_PCM_FMTBIT_S24_LE)
  24. /**
  25. * fsl_esai: ESAI private data
  26. *
  27. * @dma_params_rx: DMA parameters for receive channel
  28. * @dma_params_tx: DMA parameters for transmit channel
  29. * @pdev: platform device pointer
  30. * @regmap: regmap handler
  31. * @coreclk: clock source to access register
  32. * @extalclk: esai clock source to derive HCK, SCK and FS
  33. * @fsysclk: system clock source to derive HCK, SCK and FS
  34. * @fifo_depth: depth of tx/rx FIFO
  35. * @slot_width: width of each DAI slot
  36. * @slots: number of slots
  37. * @hck_rate: clock rate of desired HCKx clock
  38. * @sck_rate: clock rate of desired SCKx clock
  39. * @hck_dir: the direction of HCKx pads
  40. * @sck_div: if using PSR/PM dividers for SCKx clock
  41. * @slave_mode: if fully using DAI slave mode
  42. * @synchronous: if using tx/rx synchronous mode
  43. * @name: driver name
  44. */
  45. struct fsl_esai {
  46. struct snd_dmaengine_dai_dma_data dma_params_rx;
  47. struct snd_dmaengine_dai_dma_data dma_params_tx;
  48. struct platform_device *pdev;
  49. struct regmap *regmap;
  50. struct clk *coreclk;
  51. struct clk *extalclk;
  52. struct clk *fsysclk;
  53. u32 fifo_depth;
  54. u32 slot_width;
  55. u32 slots;
  56. u32 hck_rate[2];
  57. u32 sck_rate[2];
  58. bool hck_dir[2];
  59. bool sck_div[2];
  60. bool slave_mode;
  61. bool synchronous;
  62. char name[32];
  63. };
  64. static irqreturn_t esai_isr(int irq, void *devid)
  65. {
  66. struct fsl_esai *esai_priv = (struct fsl_esai *)devid;
  67. struct platform_device *pdev = esai_priv->pdev;
  68. u32 esr;
  69. regmap_read(esai_priv->regmap, REG_ESAI_ESR, &esr);
  70. if (esr & ESAI_ESR_TINIT_MASK)
  71. dev_dbg(&pdev->dev, "isr: Transmition Initialized\n");
  72. if (esr & ESAI_ESR_RFF_MASK)
  73. dev_warn(&pdev->dev, "isr: Receiving overrun\n");
  74. if (esr & ESAI_ESR_TFE_MASK)
  75. dev_warn(&pdev->dev, "isr: Transmition underrun\n");
  76. if (esr & ESAI_ESR_TLS_MASK)
  77. dev_dbg(&pdev->dev, "isr: Just transmitted the last slot\n");
  78. if (esr & ESAI_ESR_TDE_MASK)
  79. dev_dbg(&pdev->dev, "isr: Transmition data exception\n");
  80. if (esr & ESAI_ESR_TED_MASK)
  81. dev_dbg(&pdev->dev, "isr: Transmitting even slots\n");
  82. if (esr & ESAI_ESR_TD_MASK)
  83. dev_dbg(&pdev->dev, "isr: Transmitting data\n");
  84. if (esr & ESAI_ESR_RLS_MASK)
  85. dev_dbg(&pdev->dev, "isr: Just received the last slot\n");
  86. if (esr & ESAI_ESR_RDE_MASK)
  87. dev_dbg(&pdev->dev, "isr: Receiving data exception\n");
  88. if (esr & ESAI_ESR_RED_MASK)
  89. dev_dbg(&pdev->dev, "isr: Receiving even slots\n");
  90. if (esr & ESAI_ESR_RD_MASK)
  91. dev_dbg(&pdev->dev, "isr: Receiving data\n");
  92. return IRQ_HANDLED;
  93. }
  94. /**
  95. * This function is used to calculate the divisors of psr, pm, fp and it is
  96. * supposed to be called in set_dai_sysclk() and set_bclk().
  97. *
  98. * @ratio: desired overall ratio for the paticipating dividers
  99. * @usefp: for HCK setting, there is no need to set fp divider
  100. * @fp: bypass other dividers by setting fp directly if fp != 0
  101. * @tx: current setting is for playback or capture
  102. */
  103. static int fsl_esai_divisor_cal(struct snd_soc_dai *dai, bool tx, u32 ratio,
  104. bool usefp, u32 fp)
  105. {
  106. struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);
  107. u32 psr, pm = 999, maxfp, prod, sub, savesub, i, j;
  108. maxfp = usefp ? 16 : 1;
  109. if (usefp && fp)
  110. goto out_fp;
  111. if (ratio > 2 * 8 * 256 * maxfp || ratio < 2) {
  112. dev_err(dai->dev, "the ratio is out of range (2 ~ %d)\n",
  113. 2 * 8 * 256 * maxfp);
  114. return -EINVAL;
  115. } else if (ratio % 2) {
  116. dev_err(dai->dev, "the raio must be even if using upper divider\n");
  117. return -EINVAL;
  118. }
  119. ratio /= 2;
  120. psr = ratio <= 256 * maxfp ? ESAI_xCCR_xPSR_BYPASS : ESAI_xCCR_xPSR_DIV8;
  121. /* Set the max fluctuation -- 0.1% of the max devisor */
  122. savesub = (psr ? 1 : 8) * 256 * maxfp / 1000;
  123. /* Find the best value for PM */
  124. for (i = 1; i <= 256; i++) {
  125. for (j = 1; j <= maxfp; j++) {
  126. /* PSR (1 or 8) * PM (1 ~ 256) * FP (1 ~ 16) */
  127. prod = (psr ? 1 : 8) * i * j;
  128. if (prod == ratio)
  129. sub = 0;
  130. else if (prod / ratio == 1)
  131. sub = prod - ratio;
  132. else if (ratio / prod == 1)
  133. sub = ratio - prod;
  134. else
  135. continue;
  136. /* Calculate the fraction */
  137. sub = sub * 1000 / ratio;
  138. if (sub < savesub) {
  139. savesub = sub;
  140. pm = i;
  141. fp = j;
  142. }
  143. /* We are lucky */
  144. if (savesub == 0)
  145. goto out;
  146. }
  147. }
  148. if (pm == 999) {
  149. dev_err(dai->dev, "failed to calculate proper divisors\n");
  150. return -EINVAL;
  151. }
  152. out:
  153. regmap_update_bits(esai_priv->regmap, REG_ESAI_xCCR(tx),
  154. ESAI_xCCR_xPSR_MASK | ESAI_xCCR_xPM_MASK,
  155. psr | ESAI_xCCR_xPM(pm));
  156. out_fp:
  157. /* Bypass fp if not being required */
  158. if (maxfp <= 1)
  159. return 0;
  160. regmap_update_bits(esai_priv->regmap, REG_ESAI_xCCR(tx),
  161. ESAI_xCCR_xFP_MASK, ESAI_xCCR_xFP(fp));
  162. return 0;
  163. }
  164. /**
  165. * This function mainly configures the clock frequency of MCLK (HCKT/HCKR)
  166. *
  167. * @Parameters:
  168. * clk_id: The clock source of HCKT/HCKR
  169. * (Input from outside; output from inside, FSYS or EXTAL)
  170. * freq: The required clock rate of HCKT/HCKR
  171. * dir: The clock direction of HCKT/HCKR
  172. *
  173. * Note: If the direction is input, we do not care about clk_id.
  174. */
  175. static int fsl_esai_set_dai_sysclk(struct snd_soc_dai *dai, int clk_id,
  176. unsigned int freq, int dir)
  177. {
  178. struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);
  179. struct clk *clksrc = esai_priv->extalclk;
  180. bool tx = clk_id <= ESAI_HCKT_EXTAL;
  181. bool in = dir == SND_SOC_CLOCK_IN;
  182. u32 ratio, ecr = 0;
  183. unsigned long clk_rate;
  184. int ret;
  185. /* Bypass divider settings if the requirement doesn't change */
  186. if (freq == esai_priv->hck_rate[tx] && dir == esai_priv->hck_dir[tx])
  187. return 0;
  188. /* sck_div can be only bypassed if ETO/ERO=0 and SNC_SOC_CLOCK_OUT */
  189. esai_priv->sck_div[tx] = true;
  190. /* Set the direction of HCKT/HCKR pins */
  191. regmap_update_bits(esai_priv->regmap, REG_ESAI_xCCR(tx),
  192. ESAI_xCCR_xHCKD, in ? 0 : ESAI_xCCR_xHCKD);
  193. if (in)
  194. goto out;
  195. switch (clk_id) {
  196. case ESAI_HCKT_FSYS:
  197. case ESAI_HCKR_FSYS:
  198. clksrc = esai_priv->fsysclk;
  199. break;
  200. case ESAI_HCKT_EXTAL:
  201. ecr |= ESAI_ECR_ETI;
  202. case ESAI_HCKR_EXTAL:
  203. ecr |= ESAI_ECR_ERI;
  204. break;
  205. default:
  206. return -EINVAL;
  207. }
  208. if (IS_ERR(clksrc)) {
  209. dev_err(dai->dev, "no assigned %s clock\n",
  210. clk_id % 2 ? "extal" : "fsys");
  211. return PTR_ERR(clksrc);
  212. }
  213. clk_rate = clk_get_rate(clksrc);
  214. ratio = clk_rate / freq;
  215. if (ratio * freq > clk_rate)
  216. ret = ratio * freq - clk_rate;
  217. else if (ratio * freq < clk_rate)
  218. ret = clk_rate - ratio * freq;
  219. else
  220. ret = 0;
  221. /* Block if clock source can not be divided into the required rate */
  222. if (ret != 0 && clk_rate / ret < 1000) {
  223. dev_err(dai->dev, "failed to derive required HCK%c rate\n",
  224. tx ? 'T' : 'R');
  225. return -EINVAL;
  226. }
  227. /* Only EXTAL source can be output directly without using PSR and PM */
  228. if (ratio == 1 && clksrc == esai_priv->extalclk) {
  229. /* Bypass all the dividers if not being needed */
  230. ecr |= tx ? ESAI_ECR_ETO : ESAI_ECR_ERO;
  231. goto out;
  232. } else if (ratio < 2) {
  233. /* The ratio should be no less than 2 if using other sources */
  234. dev_err(dai->dev, "failed to derive required HCK%c rate\n",
  235. tx ? 'T' : 'R');
  236. return -EINVAL;
  237. }
  238. ret = fsl_esai_divisor_cal(dai, tx, ratio, false, 0);
  239. if (ret)
  240. return ret;
  241. esai_priv->sck_div[tx] = false;
  242. out:
  243. esai_priv->hck_dir[tx] = dir;
  244. esai_priv->hck_rate[tx] = freq;
  245. regmap_update_bits(esai_priv->regmap, REG_ESAI_ECR,
  246. tx ? ESAI_ECR_ETI | ESAI_ECR_ETO :
  247. ESAI_ECR_ERI | ESAI_ECR_ERO, ecr);
  248. return 0;
  249. }
  250. /**
  251. * This function configures the related dividers according to the bclk rate
  252. */
  253. static int fsl_esai_set_bclk(struct snd_soc_dai *dai, bool tx, u32 freq)
  254. {
  255. struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);
  256. u32 hck_rate = esai_priv->hck_rate[tx];
  257. u32 sub, ratio = hck_rate / freq;
  258. int ret;
  259. /* Don't apply for fully slave mode or unchanged bclk */
  260. if (esai_priv->slave_mode || esai_priv->sck_rate[tx] == freq)
  261. return 0;
  262. if (ratio * freq > hck_rate)
  263. sub = ratio * freq - hck_rate;
  264. else if (ratio * freq < hck_rate)
  265. sub = hck_rate - ratio * freq;
  266. else
  267. sub = 0;
  268. /* Block if clock source can not be divided into the required rate */
  269. if (sub != 0 && hck_rate / sub < 1000) {
  270. dev_err(dai->dev, "failed to derive required SCK%c rate\n",
  271. tx ? 'T' : 'R');
  272. return -EINVAL;
  273. }
  274. /* The ratio should be contented by FP alone if bypassing PM and PSR */
  275. if (!esai_priv->sck_div[tx] && (ratio > 16 || ratio == 0)) {
  276. dev_err(dai->dev, "the ratio is out of range (1 ~ 16)\n");
  277. return -EINVAL;
  278. }
  279. ret = fsl_esai_divisor_cal(dai, tx, ratio, true,
  280. esai_priv->sck_div[tx] ? 0 : ratio);
  281. if (ret)
  282. return ret;
  283. /* Save current bclk rate */
  284. esai_priv->sck_rate[tx] = freq;
  285. return 0;
  286. }
  287. static int fsl_esai_set_dai_tdm_slot(struct snd_soc_dai *dai, u32 tx_mask,
  288. u32 rx_mask, int slots, int slot_width)
  289. {
  290. struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);
  291. regmap_update_bits(esai_priv->regmap, REG_ESAI_TCCR,
  292. ESAI_xCCR_xDC_MASK, ESAI_xCCR_xDC(slots));
  293. regmap_update_bits(esai_priv->regmap, REG_ESAI_TSMA,
  294. ESAI_xSMA_xS_MASK, ESAI_xSMA_xS(tx_mask));
  295. regmap_update_bits(esai_priv->regmap, REG_ESAI_TSMB,
  296. ESAI_xSMB_xS_MASK, ESAI_xSMB_xS(tx_mask));
  297. regmap_update_bits(esai_priv->regmap, REG_ESAI_RCCR,
  298. ESAI_xCCR_xDC_MASK, ESAI_xCCR_xDC(slots));
  299. regmap_update_bits(esai_priv->regmap, REG_ESAI_RSMA,
  300. ESAI_xSMA_xS_MASK, ESAI_xSMA_xS(rx_mask));
  301. regmap_update_bits(esai_priv->regmap, REG_ESAI_RSMB,
  302. ESAI_xSMB_xS_MASK, ESAI_xSMB_xS(rx_mask));
  303. esai_priv->slot_width = slot_width;
  304. esai_priv->slots = slots;
  305. return 0;
  306. }
  307. static int fsl_esai_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt)
  308. {
  309. struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);
  310. u32 xcr = 0, xccr = 0, mask;
  311. /* DAI mode */
  312. switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
  313. case SND_SOC_DAIFMT_I2S:
  314. /* Data on rising edge of bclk, frame low, 1clk before data */
  315. xcr |= ESAI_xCR_xFSR;
  316. xccr |= ESAI_xCCR_xFSP | ESAI_xCCR_xCKP | ESAI_xCCR_xHCKP;
  317. break;
  318. case SND_SOC_DAIFMT_LEFT_J:
  319. /* Data on rising edge of bclk, frame high */
  320. xccr |= ESAI_xCCR_xCKP | ESAI_xCCR_xHCKP;
  321. break;
  322. case SND_SOC_DAIFMT_RIGHT_J:
  323. /* Data on rising edge of bclk, frame high, right aligned */
  324. xccr |= ESAI_xCCR_xCKP | ESAI_xCCR_xHCKP | ESAI_xCR_xWA;
  325. break;
  326. case SND_SOC_DAIFMT_DSP_A:
  327. /* Data on rising edge of bclk, frame high, 1clk before data */
  328. xcr |= ESAI_xCR_xFSL | ESAI_xCR_xFSR;
  329. xccr |= ESAI_xCCR_xCKP | ESAI_xCCR_xHCKP;
  330. break;
  331. case SND_SOC_DAIFMT_DSP_B:
  332. /* Data on rising edge of bclk, frame high */
  333. xcr |= ESAI_xCR_xFSL;
  334. xccr |= ESAI_xCCR_xCKP | ESAI_xCCR_xHCKP;
  335. break;
  336. default:
  337. return -EINVAL;
  338. }
  339. /* DAI clock inversion */
  340. switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
  341. case SND_SOC_DAIFMT_NB_NF:
  342. /* Nothing to do for both normal cases */
  343. break;
  344. case SND_SOC_DAIFMT_IB_NF:
  345. /* Invert bit clock */
  346. xccr ^= ESAI_xCCR_xCKP | ESAI_xCCR_xHCKP;
  347. break;
  348. case SND_SOC_DAIFMT_NB_IF:
  349. /* Invert frame clock */
  350. xccr ^= ESAI_xCCR_xFSP;
  351. break;
  352. case SND_SOC_DAIFMT_IB_IF:
  353. /* Invert both clocks */
  354. xccr ^= ESAI_xCCR_xCKP | ESAI_xCCR_xHCKP | ESAI_xCCR_xFSP;
  355. break;
  356. default:
  357. return -EINVAL;
  358. }
  359. esai_priv->slave_mode = false;
  360. /* DAI clock master masks */
  361. switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
  362. case SND_SOC_DAIFMT_CBM_CFM:
  363. esai_priv->slave_mode = true;
  364. break;
  365. case SND_SOC_DAIFMT_CBS_CFM:
  366. xccr |= ESAI_xCCR_xCKD;
  367. break;
  368. case SND_SOC_DAIFMT_CBM_CFS:
  369. xccr |= ESAI_xCCR_xFSD;
  370. break;
  371. case SND_SOC_DAIFMT_CBS_CFS:
  372. xccr |= ESAI_xCCR_xFSD | ESAI_xCCR_xCKD;
  373. break;
  374. default:
  375. return -EINVAL;
  376. }
  377. mask = ESAI_xCR_xFSL | ESAI_xCR_xFSR;
  378. regmap_update_bits(esai_priv->regmap, REG_ESAI_TCR, mask, xcr);
  379. regmap_update_bits(esai_priv->regmap, REG_ESAI_RCR, mask, xcr);
  380. mask = ESAI_xCCR_xCKP | ESAI_xCCR_xHCKP | ESAI_xCCR_xFSP |
  381. ESAI_xCCR_xFSD | ESAI_xCCR_xCKD | ESAI_xCR_xWA;
  382. regmap_update_bits(esai_priv->regmap, REG_ESAI_TCCR, mask, xccr);
  383. regmap_update_bits(esai_priv->regmap, REG_ESAI_RCCR, mask, xccr);
  384. return 0;
  385. }
  386. static int fsl_esai_startup(struct snd_pcm_substream *substream,
  387. struct snd_soc_dai *dai)
  388. {
  389. struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);
  390. int ret;
  391. /*
  392. * Some platforms might use the same bit to gate all three or two of
  393. * clocks, so keep all clocks open/close at the same time for safety
  394. */
  395. ret = clk_prepare_enable(esai_priv->coreclk);
  396. if (ret)
  397. return ret;
  398. if (!IS_ERR(esai_priv->extalclk)) {
  399. ret = clk_prepare_enable(esai_priv->extalclk);
  400. if (ret)
  401. goto err_extalck;
  402. }
  403. if (!IS_ERR(esai_priv->fsysclk)) {
  404. ret = clk_prepare_enable(esai_priv->fsysclk);
  405. if (ret)
  406. goto err_fsysclk;
  407. }
  408. if (!dai->active) {
  409. /* Set synchronous mode */
  410. regmap_update_bits(esai_priv->regmap, REG_ESAI_SAICR,
  411. ESAI_SAICR_SYNC, esai_priv->synchronous ?
  412. ESAI_SAICR_SYNC : 0);
  413. /* Set a default slot number -- 2 */
  414. regmap_update_bits(esai_priv->regmap, REG_ESAI_TCCR,
  415. ESAI_xCCR_xDC_MASK, ESAI_xCCR_xDC(2));
  416. regmap_update_bits(esai_priv->regmap, REG_ESAI_RCCR,
  417. ESAI_xCCR_xDC_MASK, ESAI_xCCR_xDC(2));
  418. }
  419. return 0;
  420. err_fsysclk:
  421. if (!IS_ERR(esai_priv->extalclk))
  422. clk_disable_unprepare(esai_priv->extalclk);
  423. err_extalck:
  424. clk_disable_unprepare(esai_priv->coreclk);
  425. return ret;
  426. }
  427. static int fsl_esai_hw_params(struct snd_pcm_substream *substream,
  428. struct snd_pcm_hw_params *params,
  429. struct snd_soc_dai *dai)
  430. {
  431. struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);
  432. bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
  433. u32 width = snd_pcm_format_width(params_format(params));
  434. u32 channels = params_channels(params);
  435. u32 pins = DIV_ROUND_UP(channels, esai_priv->slots);
  436. u32 slot_width = width;
  437. u32 bclk, mask, val;
  438. int ret;
  439. /* Override slot_width if being specifically set */
  440. if (esai_priv->slot_width)
  441. slot_width = esai_priv->slot_width;
  442. bclk = params_rate(params) * slot_width * esai_priv->slots;
  443. ret = fsl_esai_set_bclk(dai, tx, bclk);
  444. if (ret)
  445. return ret;
  446. /* Use Normal mode to support monaural audio */
  447. regmap_update_bits(esai_priv->regmap, REG_ESAI_xCR(tx),
  448. ESAI_xCR_xMOD_MASK, params_channels(params) > 1 ?
  449. ESAI_xCR_xMOD_NETWORK : 0);
  450. regmap_update_bits(esai_priv->regmap, REG_ESAI_xFCR(tx),
  451. ESAI_xFCR_xFR_MASK, ESAI_xFCR_xFR);
  452. mask = ESAI_xFCR_xFR_MASK | ESAI_xFCR_xWA_MASK | ESAI_xFCR_xFWM_MASK |
  453. (tx ? ESAI_xFCR_TE_MASK | ESAI_xFCR_TIEN : ESAI_xFCR_RE_MASK);
  454. val = ESAI_xFCR_xWA(width) | ESAI_xFCR_xFWM(esai_priv->fifo_depth) |
  455. (tx ? ESAI_xFCR_TE(pins) | ESAI_xFCR_TIEN : ESAI_xFCR_RE(pins));
  456. regmap_update_bits(esai_priv->regmap, REG_ESAI_xFCR(tx), mask, val);
  457. mask = ESAI_xCR_xSWS_MASK | (tx ? ESAI_xCR_PADC : 0);
  458. val = ESAI_xCR_xSWS(slot_width, width) | (tx ? ESAI_xCR_PADC : 0);
  459. regmap_update_bits(esai_priv->regmap, REG_ESAI_xCR(tx), mask, val);
  460. /* Remove ESAI personal reset by configuring ESAI_PCRC and ESAI_PRRC */
  461. regmap_update_bits(esai_priv->regmap, REG_ESAI_PRRC,
  462. ESAI_PRRC_PDC_MASK, ESAI_PRRC_PDC(ESAI_GPIO));
  463. regmap_update_bits(esai_priv->regmap, REG_ESAI_PCRC,
  464. ESAI_PCRC_PC_MASK, ESAI_PCRC_PC(ESAI_GPIO));
  465. return 0;
  466. }
  467. static void fsl_esai_shutdown(struct snd_pcm_substream *substream,
  468. struct snd_soc_dai *dai)
  469. {
  470. struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);
  471. if (!IS_ERR(esai_priv->fsysclk))
  472. clk_disable_unprepare(esai_priv->fsysclk);
  473. if (!IS_ERR(esai_priv->extalclk))
  474. clk_disable_unprepare(esai_priv->extalclk);
  475. clk_disable_unprepare(esai_priv->coreclk);
  476. }
  477. static int fsl_esai_trigger(struct snd_pcm_substream *substream, int cmd,
  478. struct snd_soc_dai *dai)
  479. {
  480. struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);
  481. bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
  482. u8 i, channels = substream->runtime->channels;
  483. u32 pins = DIV_ROUND_UP(channels, esai_priv->slots);
  484. switch (cmd) {
  485. case SNDRV_PCM_TRIGGER_START:
  486. case SNDRV_PCM_TRIGGER_RESUME:
  487. case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
  488. regmap_update_bits(esai_priv->regmap, REG_ESAI_xFCR(tx),
  489. ESAI_xFCR_xFEN_MASK, ESAI_xFCR_xFEN);
  490. /* Write initial words reqiured by ESAI as normal procedure */
  491. for (i = 0; tx && i < channels; i++)
  492. regmap_write(esai_priv->regmap, REG_ESAI_ETDR, 0x0);
  493. regmap_update_bits(esai_priv->regmap, REG_ESAI_xCR(tx),
  494. tx ? ESAI_xCR_TE_MASK : ESAI_xCR_RE_MASK,
  495. tx ? ESAI_xCR_TE(pins) : ESAI_xCR_RE(pins));
  496. break;
  497. case SNDRV_PCM_TRIGGER_SUSPEND:
  498. case SNDRV_PCM_TRIGGER_STOP:
  499. case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
  500. regmap_update_bits(esai_priv->regmap, REG_ESAI_xCR(tx),
  501. tx ? ESAI_xCR_TE_MASK : ESAI_xCR_RE_MASK, 0);
  502. /* Disable and reset FIFO */
  503. regmap_update_bits(esai_priv->regmap, REG_ESAI_xFCR(tx),
  504. ESAI_xFCR_xFR | ESAI_xFCR_xFEN, ESAI_xFCR_xFR);
  505. regmap_update_bits(esai_priv->regmap, REG_ESAI_xFCR(tx),
  506. ESAI_xFCR_xFR, 0);
  507. break;
  508. default:
  509. return -EINVAL;
  510. }
  511. return 0;
  512. }
  513. static struct snd_soc_dai_ops fsl_esai_dai_ops = {
  514. .startup = fsl_esai_startup,
  515. .shutdown = fsl_esai_shutdown,
  516. .trigger = fsl_esai_trigger,
  517. .hw_params = fsl_esai_hw_params,
  518. .set_sysclk = fsl_esai_set_dai_sysclk,
  519. .set_fmt = fsl_esai_set_dai_fmt,
  520. .set_tdm_slot = fsl_esai_set_dai_tdm_slot,
  521. };
  522. static int fsl_esai_dai_probe(struct snd_soc_dai *dai)
  523. {
  524. struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);
  525. snd_soc_dai_init_dma_data(dai, &esai_priv->dma_params_tx,
  526. &esai_priv->dma_params_rx);
  527. return 0;
  528. }
  529. static struct snd_soc_dai_driver fsl_esai_dai = {
  530. .probe = fsl_esai_dai_probe,
  531. .playback = {
  532. .stream_name = "CPU-Playback",
  533. .channels_min = 1,
  534. .channels_max = 12,
  535. .rates = FSL_ESAI_RATES,
  536. .formats = FSL_ESAI_FORMATS,
  537. },
  538. .capture = {
  539. .stream_name = "CPU-Capture",
  540. .channels_min = 1,
  541. .channels_max = 8,
  542. .rates = FSL_ESAI_RATES,
  543. .formats = FSL_ESAI_FORMATS,
  544. },
  545. .ops = &fsl_esai_dai_ops,
  546. };
  547. static const struct snd_soc_component_driver fsl_esai_component = {
  548. .name = "fsl-esai",
  549. };
  550. static bool fsl_esai_readable_reg(struct device *dev, unsigned int reg)
  551. {
  552. switch (reg) {
  553. case REG_ESAI_ERDR:
  554. case REG_ESAI_ECR:
  555. case REG_ESAI_ESR:
  556. case REG_ESAI_TFCR:
  557. case REG_ESAI_TFSR:
  558. case REG_ESAI_RFCR:
  559. case REG_ESAI_RFSR:
  560. case REG_ESAI_RX0:
  561. case REG_ESAI_RX1:
  562. case REG_ESAI_RX2:
  563. case REG_ESAI_RX3:
  564. case REG_ESAI_SAISR:
  565. case REG_ESAI_SAICR:
  566. case REG_ESAI_TCR:
  567. case REG_ESAI_TCCR:
  568. case REG_ESAI_RCR:
  569. case REG_ESAI_RCCR:
  570. case REG_ESAI_TSMA:
  571. case REG_ESAI_TSMB:
  572. case REG_ESAI_RSMA:
  573. case REG_ESAI_RSMB:
  574. case REG_ESAI_PRRC:
  575. case REG_ESAI_PCRC:
  576. return true;
  577. default:
  578. return false;
  579. }
  580. }
  581. static bool fsl_esai_writeable_reg(struct device *dev, unsigned int reg)
  582. {
  583. switch (reg) {
  584. case REG_ESAI_ETDR:
  585. case REG_ESAI_ECR:
  586. case REG_ESAI_TFCR:
  587. case REG_ESAI_RFCR:
  588. case REG_ESAI_TX0:
  589. case REG_ESAI_TX1:
  590. case REG_ESAI_TX2:
  591. case REG_ESAI_TX3:
  592. case REG_ESAI_TX4:
  593. case REG_ESAI_TX5:
  594. case REG_ESAI_TSR:
  595. case REG_ESAI_SAICR:
  596. case REG_ESAI_TCR:
  597. case REG_ESAI_TCCR:
  598. case REG_ESAI_RCR:
  599. case REG_ESAI_RCCR:
  600. case REG_ESAI_TSMA:
  601. case REG_ESAI_TSMB:
  602. case REG_ESAI_RSMA:
  603. case REG_ESAI_RSMB:
  604. case REG_ESAI_PRRC:
  605. case REG_ESAI_PCRC:
  606. return true;
  607. default:
  608. return false;
  609. }
  610. }
  611. static const struct regmap_config fsl_esai_regmap_config = {
  612. .reg_bits = 32,
  613. .reg_stride = 4,
  614. .val_bits = 32,
  615. .max_register = REG_ESAI_PCRC,
  616. .readable_reg = fsl_esai_readable_reg,
  617. .writeable_reg = fsl_esai_writeable_reg,
  618. };
  619. static int fsl_esai_probe(struct platform_device *pdev)
  620. {
  621. struct device_node *np = pdev->dev.of_node;
  622. struct fsl_esai *esai_priv;
  623. struct resource *res;
  624. const uint32_t *iprop;
  625. void __iomem *regs;
  626. int irq, ret;
  627. esai_priv = devm_kzalloc(&pdev->dev, sizeof(*esai_priv), GFP_KERNEL);
  628. if (!esai_priv)
  629. return -ENOMEM;
  630. esai_priv->pdev = pdev;
  631. strncpy(esai_priv->name, np->name, sizeof(esai_priv->name) - 1);
  632. /* Get the addresses and IRQ */
  633. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  634. regs = devm_ioremap_resource(&pdev->dev, res);
  635. if (IS_ERR(regs))
  636. return PTR_ERR(regs);
  637. esai_priv->regmap = devm_regmap_init_mmio_clk(&pdev->dev,
  638. "core", regs, &fsl_esai_regmap_config);
  639. if (IS_ERR(esai_priv->regmap)) {
  640. dev_err(&pdev->dev, "failed to init regmap: %ld\n",
  641. PTR_ERR(esai_priv->regmap));
  642. return PTR_ERR(esai_priv->regmap);
  643. }
  644. esai_priv->coreclk = devm_clk_get(&pdev->dev, "core");
  645. if (IS_ERR(esai_priv->coreclk)) {
  646. dev_err(&pdev->dev, "failed to get core clock: %ld\n",
  647. PTR_ERR(esai_priv->coreclk));
  648. return PTR_ERR(esai_priv->coreclk);
  649. }
  650. esai_priv->extalclk = devm_clk_get(&pdev->dev, "extal");
  651. if (IS_ERR(esai_priv->extalclk))
  652. dev_warn(&pdev->dev, "failed to get extal clock: %ld\n",
  653. PTR_ERR(esai_priv->extalclk));
  654. esai_priv->fsysclk = devm_clk_get(&pdev->dev, "fsys");
  655. if (IS_ERR(esai_priv->fsysclk))
  656. dev_warn(&pdev->dev, "failed to get fsys clock: %ld\n",
  657. PTR_ERR(esai_priv->fsysclk));
  658. irq = platform_get_irq(pdev, 0);
  659. if (irq < 0) {
  660. dev_err(&pdev->dev, "no irq for node %s\n", pdev->name);
  661. return irq;
  662. }
  663. ret = devm_request_irq(&pdev->dev, irq, esai_isr, 0,
  664. esai_priv->name, esai_priv);
  665. if (ret) {
  666. dev_err(&pdev->dev, "failed to claim irq %u\n", irq);
  667. return ret;
  668. }
  669. /* Set a default slot number */
  670. esai_priv->slots = 2;
  671. /* Set a default master/slave state */
  672. esai_priv->slave_mode = true;
  673. /* Determine the FIFO depth */
  674. iprop = of_get_property(np, "fsl,fifo-depth", NULL);
  675. if (iprop)
  676. esai_priv->fifo_depth = be32_to_cpup(iprop);
  677. else
  678. esai_priv->fifo_depth = 64;
  679. esai_priv->dma_params_tx.maxburst = 16;
  680. esai_priv->dma_params_rx.maxburst = 16;
  681. esai_priv->dma_params_tx.addr = res->start + REG_ESAI_ETDR;
  682. esai_priv->dma_params_rx.addr = res->start + REG_ESAI_ERDR;
  683. esai_priv->synchronous =
  684. of_property_read_bool(np, "fsl,esai-synchronous");
  685. /* Implement full symmetry for synchronous mode */
  686. if (esai_priv->synchronous) {
  687. fsl_esai_dai.symmetric_rates = 1;
  688. fsl_esai_dai.symmetric_channels = 1;
  689. fsl_esai_dai.symmetric_samplebits = 1;
  690. }
  691. dev_set_drvdata(&pdev->dev, esai_priv);
  692. /* Reset ESAI unit */
  693. ret = regmap_write(esai_priv->regmap, REG_ESAI_ECR, ESAI_ECR_ERST);
  694. if (ret) {
  695. dev_err(&pdev->dev, "failed to reset ESAI: %d\n", ret);
  696. return ret;
  697. }
  698. /*
  699. * We need to enable ESAI so as to access some of its registers.
  700. * Otherwise, we would fail to dump regmap from user space.
  701. */
  702. ret = regmap_write(esai_priv->regmap, REG_ESAI_ECR, ESAI_ECR_ESAIEN);
  703. if (ret) {
  704. dev_err(&pdev->dev, "failed to enable ESAI: %d\n", ret);
  705. return ret;
  706. }
  707. ret = devm_snd_soc_register_component(&pdev->dev, &fsl_esai_component,
  708. &fsl_esai_dai, 1);
  709. if (ret) {
  710. dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
  711. return ret;
  712. }
  713. ret = imx_pcm_dma_init(pdev, IMX_ESAI_DMABUF_SIZE);
  714. if (ret)
  715. dev_err(&pdev->dev, "failed to init imx pcm dma: %d\n", ret);
  716. return ret;
  717. }
  718. static const struct of_device_id fsl_esai_dt_ids[] = {
  719. { .compatible = "fsl,imx35-esai", },
  720. { .compatible = "fsl,vf610-esai", },
  721. {}
  722. };
  723. MODULE_DEVICE_TABLE(of, fsl_esai_dt_ids);
  724. static struct platform_driver fsl_esai_driver = {
  725. .probe = fsl_esai_probe,
  726. .driver = {
  727. .name = "fsl-esai-dai",
  728. .of_match_table = fsl_esai_dt_ids,
  729. },
  730. };
  731. module_platform_driver(fsl_esai_driver);
  732. MODULE_AUTHOR("Freescale Semiconductor, Inc.");
  733. MODULE_DESCRIPTION("Freescale ESAI CPU DAI driver");
  734. MODULE_LICENSE("GPL v2");
  735. MODULE_ALIAS("platform:fsl-esai-dai");