huge_memory.c 81 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8. #include <linux/mm.h>
  9. #include <linux/sched.h>
  10. #include <linux/highmem.h>
  11. #include <linux/hugetlb.h>
  12. #include <linux/mmu_notifier.h>
  13. #include <linux/rmap.h>
  14. #include <linux/swap.h>
  15. #include <linux/shrinker.h>
  16. #include <linux/mm_inline.h>
  17. #include <linux/dax.h>
  18. #include <linux/kthread.h>
  19. #include <linux/khugepaged.h>
  20. #include <linux/freezer.h>
  21. #include <linux/mman.h>
  22. #include <linux/pagemap.h>
  23. #include <linux/migrate.h>
  24. #include <linux/hashtable.h>
  25. #include <linux/userfaultfd_k.h>
  26. #include <linux/page_idle.h>
  27. #include <asm/tlb.h>
  28. #include <asm/pgalloc.h>
  29. #include "internal.h"
  30. /*
  31. * By default transparent hugepage support is disabled in order that avoid
  32. * to risk increase the memory footprint of applications without a guaranteed
  33. * benefit. When transparent hugepage support is enabled, is for all mappings,
  34. * and khugepaged scans all mappings.
  35. * Defrag is invoked by khugepaged hugepage allocations and by page faults
  36. * for all hugepage allocations.
  37. */
  38. unsigned long transparent_hugepage_flags __read_mostly =
  39. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  40. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  41. #endif
  42. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  43. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  44. #endif
  45. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  46. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  47. (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  48. /* default scan 8*512 pte (or vmas) every 30 second */
  49. static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  50. static unsigned int khugepaged_pages_collapsed;
  51. static unsigned int khugepaged_full_scans;
  52. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  53. /* during fragmentation poll the hugepage allocator once every minute */
  54. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  55. static struct task_struct *khugepaged_thread __read_mostly;
  56. static DEFINE_MUTEX(khugepaged_mutex);
  57. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  58. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  59. /*
  60. * default collapse hugepages if there is at least one pte mapped like
  61. * it would have happened if the vma was large enough during page
  62. * fault.
  63. */
  64. static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  65. static int khugepaged(void *none);
  66. static int khugepaged_slab_init(void);
  67. static void khugepaged_slab_exit(void);
  68. #define MM_SLOTS_HASH_BITS 10
  69. static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
  70. static struct kmem_cache *mm_slot_cache __read_mostly;
  71. /**
  72. * struct mm_slot - hash lookup from mm to mm_slot
  73. * @hash: hash collision list
  74. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  75. * @mm: the mm that this information is valid for
  76. */
  77. struct mm_slot {
  78. struct hlist_node hash;
  79. struct list_head mm_node;
  80. struct mm_struct *mm;
  81. };
  82. /**
  83. * struct khugepaged_scan - cursor for scanning
  84. * @mm_head: the head of the mm list to scan
  85. * @mm_slot: the current mm_slot we are scanning
  86. * @address: the next address inside that to be scanned
  87. *
  88. * There is only the one khugepaged_scan instance of this cursor structure.
  89. */
  90. struct khugepaged_scan {
  91. struct list_head mm_head;
  92. struct mm_slot *mm_slot;
  93. unsigned long address;
  94. };
  95. static struct khugepaged_scan khugepaged_scan = {
  96. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  97. };
  98. static void set_recommended_min_free_kbytes(void)
  99. {
  100. struct zone *zone;
  101. int nr_zones = 0;
  102. unsigned long recommended_min;
  103. for_each_populated_zone(zone)
  104. nr_zones++;
  105. /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
  106. recommended_min = pageblock_nr_pages * nr_zones * 2;
  107. /*
  108. * Make sure that on average at least two pageblocks are almost free
  109. * of another type, one for a migratetype to fall back to and a
  110. * second to avoid subsequent fallbacks of other types There are 3
  111. * MIGRATE_TYPES we care about.
  112. */
  113. recommended_min += pageblock_nr_pages * nr_zones *
  114. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  115. /* don't ever allow to reserve more than 5% of the lowmem */
  116. recommended_min = min(recommended_min,
  117. (unsigned long) nr_free_buffer_pages() / 20);
  118. recommended_min <<= (PAGE_SHIFT-10);
  119. if (recommended_min > min_free_kbytes) {
  120. if (user_min_free_kbytes >= 0)
  121. pr_info("raising min_free_kbytes from %d to %lu "
  122. "to help transparent hugepage allocations\n",
  123. min_free_kbytes, recommended_min);
  124. min_free_kbytes = recommended_min;
  125. }
  126. setup_per_zone_wmarks();
  127. }
  128. static int start_stop_khugepaged(void)
  129. {
  130. int err = 0;
  131. if (khugepaged_enabled()) {
  132. if (!khugepaged_thread)
  133. khugepaged_thread = kthread_run(khugepaged, NULL,
  134. "khugepaged");
  135. if (unlikely(IS_ERR(khugepaged_thread))) {
  136. pr_err("khugepaged: kthread_run(khugepaged) failed\n");
  137. err = PTR_ERR(khugepaged_thread);
  138. khugepaged_thread = NULL;
  139. goto fail;
  140. }
  141. if (!list_empty(&khugepaged_scan.mm_head))
  142. wake_up_interruptible(&khugepaged_wait);
  143. set_recommended_min_free_kbytes();
  144. } else if (khugepaged_thread) {
  145. kthread_stop(khugepaged_thread);
  146. khugepaged_thread = NULL;
  147. }
  148. fail:
  149. return err;
  150. }
  151. static atomic_t huge_zero_refcount;
  152. struct page *huge_zero_page __read_mostly;
  153. struct page *get_huge_zero_page(void)
  154. {
  155. struct page *zero_page;
  156. retry:
  157. if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  158. return READ_ONCE(huge_zero_page);
  159. zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  160. HPAGE_PMD_ORDER);
  161. if (!zero_page) {
  162. count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
  163. return NULL;
  164. }
  165. count_vm_event(THP_ZERO_PAGE_ALLOC);
  166. preempt_disable();
  167. if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
  168. preempt_enable();
  169. __free_pages(zero_page, compound_order(zero_page));
  170. goto retry;
  171. }
  172. /* We take additional reference here. It will be put back by shrinker */
  173. atomic_set(&huge_zero_refcount, 2);
  174. preempt_enable();
  175. return READ_ONCE(huge_zero_page);
  176. }
  177. static void put_huge_zero_page(void)
  178. {
  179. /*
  180. * Counter should never go to zero here. Only shrinker can put
  181. * last reference.
  182. */
  183. BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
  184. }
  185. static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
  186. struct shrink_control *sc)
  187. {
  188. /* we can free zero page only if last reference remains */
  189. return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
  190. }
  191. static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
  192. struct shrink_control *sc)
  193. {
  194. if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
  195. struct page *zero_page = xchg(&huge_zero_page, NULL);
  196. BUG_ON(zero_page == NULL);
  197. __free_pages(zero_page, compound_order(zero_page));
  198. return HPAGE_PMD_NR;
  199. }
  200. return 0;
  201. }
  202. static struct shrinker huge_zero_page_shrinker = {
  203. .count_objects = shrink_huge_zero_page_count,
  204. .scan_objects = shrink_huge_zero_page_scan,
  205. .seeks = DEFAULT_SEEKS,
  206. };
  207. #ifdef CONFIG_SYSFS
  208. static ssize_t double_flag_show(struct kobject *kobj,
  209. struct kobj_attribute *attr, char *buf,
  210. enum transparent_hugepage_flag enabled,
  211. enum transparent_hugepage_flag req_madv)
  212. {
  213. if (test_bit(enabled, &transparent_hugepage_flags)) {
  214. VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
  215. return sprintf(buf, "[always] madvise never\n");
  216. } else if (test_bit(req_madv, &transparent_hugepage_flags))
  217. return sprintf(buf, "always [madvise] never\n");
  218. else
  219. return sprintf(buf, "always madvise [never]\n");
  220. }
  221. static ssize_t double_flag_store(struct kobject *kobj,
  222. struct kobj_attribute *attr,
  223. const char *buf, size_t count,
  224. enum transparent_hugepage_flag enabled,
  225. enum transparent_hugepage_flag req_madv)
  226. {
  227. if (!memcmp("always", buf,
  228. min(sizeof("always")-1, count))) {
  229. set_bit(enabled, &transparent_hugepage_flags);
  230. clear_bit(req_madv, &transparent_hugepage_flags);
  231. } else if (!memcmp("madvise", buf,
  232. min(sizeof("madvise")-1, count))) {
  233. clear_bit(enabled, &transparent_hugepage_flags);
  234. set_bit(req_madv, &transparent_hugepage_flags);
  235. } else if (!memcmp("never", buf,
  236. min(sizeof("never")-1, count))) {
  237. clear_bit(enabled, &transparent_hugepage_flags);
  238. clear_bit(req_madv, &transparent_hugepage_flags);
  239. } else
  240. return -EINVAL;
  241. return count;
  242. }
  243. static ssize_t enabled_show(struct kobject *kobj,
  244. struct kobj_attribute *attr, char *buf)
  245. {
  246. return double_flag_show(kobj, attr, buf,
  247. TRANSPARENT_HUGEPAGE_FLAG,
  248. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  249. }
  250. static ssize_t enabled_store(struct kobject *kobj,
  251. struct kobj_attribute *attr,
  252. const char *buf, size_t count)
  253. {
  254. ssize_t ret;
  255. ret = double_flag_store(kobj, attr, buf, count,
  256. TRANSPARENT_HUGEPAGE_FLAG,
  257. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  258. if (ret > 0) {
  259. int err;
  260. mutex_lock(&khugepaged_mutex);
  261. err = start_stop_khugepaged();
  262. mutex_unlock(&khugepaged_mutex);
  263. if (err)
  264. ret = err;
  265. }
  266. return ret;
  267. }
  268. static struct kobj_attribute enabled_attr =
  269. __ATTR(enabled, 0644, enabled_show, enabled_store);
  270. static ssize_t single_flag_show(struct kobject *kobj,
  271. struct kobj_attribute *attr, char *buf,
  272. enum transparent_hugepage_flag flag)
  273. {
  274. return sprintf(buf, "%d\n",
  275. !!test_bit(flag, &transparent_hugepage_flags));
  276. }
  277. static ssize_t single_flag_store(struct kobject *kobj,
  278. struct kobj_attribute *attr,
  279. const char *buf, size_t count,
  280. enum transparent_hugepage_flag flag)
  281. {
  282. unsigned long value;
  283. int ret;
  284. ret = kstrtoul(buf, 10, &value);
  285. if (ret < 0)
  286. return ret;
  287. if (value > 1)
  288. return -EINVAL;
  289. if (value)
  290. set_bit(flag, &transparent_hugepage_flags);
  291. else
  292. clear_bit(flag, &transparent_hugepage_flags);
  293. return count;
  294. }
  295. /*
  296. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  297. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  298. * memory just to allocate one more hugepage.
  299. */
  300. static ssize_t defrag_show(struct kobject *kobj,
  301. struct kobj_attribute *attr, char *buf)
  302. {
  303. return double_flag_show(kobj, attr, buf,
  304. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  305. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  306. }
  307. static ssize_t defrag_store(struct kobject *kobj,
  308. struct kobj_attribute *attr,
  309. const char *buf, size_t count)
  310. {
  311. return double_flag_store(kobj, attr, buf, count,
  312. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  313. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  314. }
  315. static struct kobj_attribute defrag_attr =
  316. __ATTR(defrag, 0644, defrag_show, defrag_store);
  317. static ssize_t use_zero_page_show(struct kobject *kobj,
  318. struct kobj_attribute *attr, char *buf)
  319. {
  320. return single_flag_show(kobj, attr, buf,
  321. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  322. }
  323. static ssize_t use_zero_page_store(struct kobject *kobj,
  324. struct kobj_attribute *attr, const char *buf, size_t count)
  325. {
  326. return single_flag_store(kobj, attr, buf, count,
  327. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  328. }
  329. static struct kobj_attribute use_zero_page_attr =
  330. __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
  331. #ifdef CONFIG_DEBUG_VM
  332. static ssize_t debug_cow_show(struct kobject *kobj,
  333. struct kobj_attribute *attr, char *buf)
  334. {
  335. return single_flag_show(kobj, attr, buf,
  336. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  337. }
  338. static ssize_t debug_cow_store(struct kobject *kobj,
  339. struct kobj_attribute *attr,
  340. const char *buf, size_t count)
  341. {
  342. return single_flag_store(kobj, attr, buf, count,
  343. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  344. }
  345. static struct kobj_attribute debug_cow_attr =
  346. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  347. #endif /* CONFIG_DEBUG_VM */
  348. static struct attribute *hugepage_attr[] = {
  349. &enabled_attr.attr,
  350. &defrag_attr.attr,
  351. &use_zero_page_attr.attr,
  352. #ifdef CONFIG_DEBUG_VM
  353. &debug_cow_attr.attr,
  354. #endif
  355. NULL,
  356. };
  357. static struct attribute_group hugepage_attr_group = {
  358. .attrs = hugepage_attr,
  359. };
  360. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  361. struct kobj_attribute *attr,
  362. char *buf)
  363. {
  364. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  365. }
  366. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  367. struct kobj_attribute *attr,
  368. const char *buf, size_t count)
  369. {
  370. unsigned long msecs;
  371. int err;
  372. err = kstrtoul(buf, 10, &msecs);
  373. if (err || msecs > UINT_MAX)
  374. return -EINVAL;
  375. khugepaged_scan_sleep_millisecs = msecs;
  376. wake_up_interruptible(&khugepaged_wait);
  377. return count;
  378. }
  379. static struct kobj_attribute scan_sleep_millisecs_attr =
  380. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  381. scan_sleep_millisecs_store);
  382. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  383. struct kobj_attribute *attr,
  384. char *buf)
  385. {
  386. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  387. }
  388. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  389. struct kobj_attribute *attr,
  390. const char *buf, size_t count)
  391. {
  392. unsigned long msecs;
  393. int err;
  394. err = kstrtoul(buf, 10, &msecs);
  395. if (err || msecs > UINT_MAX)
  396. return -EINVAL;
  397. khugepaged_alloc_sleep_millisecs = msecs;
  398. wake_up_interruptible(&khugepaged_wait);
  399. return count;
  400. }
  401. static struct kobj_attribute alloc_sleep_millisecs_attr =
  402. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  403. alloc_sleep_millisecs_store);
  404. static ssize_t pages_to_scan_show(struct kobject *kobj,
  405. struct kobj_attribute *attr,
  406. char *buf)
  407. {
  408. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  409. }
  410. static ssize_t pages_to_scan_store(struct kobject *kobj,
  411. struct kobj_attribute *attr,
  412. const char *buf, size_t count)
  413. {
  414. int err;
  415. unsigned long pages;
  416. err = kstrtoul(buf, 10, &pages);
  417. if (err || !pages || pages > UINT_MAX)
  418. return -EINVAL;
  419. khugepaged_pages_to_scan = pages;
  420. return count;
  421. }
  422. static struct kobj_attribute pages_to_scan_attr =
  423. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  424. pages_to_scan_store);
  425. static ssize_t pages_collapsed_show(struct kobject *kobj,
  426. struct kobj_attribute *attr,
  427. char *buf)
  428. {
  429. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  430. }
  431. static struct kobj_attribute pages_collapsed_attr =
  432. __ATTR_RO(pages_collapsed);
  433. static ssize_t full_scans_show(struct kobject *kobj,
  434. struct kobj_attribute *attr,
  435. char *buf)
  436. {
  437. return sprintf(buf, "%u\n", khugepaged_full_scans);
  438. }
  439. static struct kobj_attribute full_scans_attr =
  440. __ATTR_RO(full_scans);
  441. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  442. struct kobj_attribute *attr, char *buf)
  443. {
  444. return single_flag_show(kobj, attr, buf,
  445. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  446. }
  447. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  448. struct kobj_attribute *attr,
  449. const char *buf, size_t count)
  450. {
  451. return single_flag_store(kobj, attr, buf, count,
  452. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  453. }
  454. static struct kobj_attribute khugepaged_defrag_attr =
  455. __ATTR(defrag, 0644, khugepaged_defrag_show,
  456. khugepaged_defrag_store);
  457. /*
  458. * max_ptes_none controls if khugepaged should collapse hugepages over
  459. * any unmapped ptes in turn potentially increasing the memory
  460. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  461. * reduce the available free memory in the system as it
  462. * runs. Increasing max_ptes_none will instead potentially reduce the
  463. * free memory in the system during the khugepaged scan.
  464. */
  465. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  466. struct kobj_attribute *attr,
  467. char *buf)
  468. {
  469. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  470. }
  471. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  472. struct kobj_attribute *attr,
  473. const char *buf, size_t count)
  474. {
  475. int err;
  476. unsigned long max_ptes_none;
  477. err = kstrtoul(buf, 10, &max_ptes_none);
  478. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  479. return -EINVAL;
  480. khugepaged_max_ptes_none = max_ptes_none;
  481. return count;
  482. }
  483. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  484. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  485. khugepaged_max_ptes_none_store);
  486. static struct attribute *khugepaged_attr[] = {
  487. &khugepaged_defrag_attr.attr,
  488. &khugepaged_max_ptes_none_attr.attr,
  489. &pages_to_scan_attr.attr,
  490. &pages_collapsed_attr.attr,
  491. &full_scans_attr.attr,
  492. &scan_sleep_millisecs_attr.attr,
  493. &alloc_sleep_millisecs_attr.attr,
  494. NULL,
  495. };
  496. static struct attribute_group khugepaged_attr_group = {
  497. .attrs = khugepaged_attr,
  498. .name = "khugepaged",
  499. };
  500. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  501. {
  502. int err;
  503. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  504. if (unlikely(!*hugepage_kobj)) {
  505. pr_err("failed to create transparent hugepage kobject\n");
  506. return -ENOMEM;
  507. }
  508. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  509. if (err) {
  510. pr_err("failed to register transparent hugepage group\n");
  511. goto delete_obj;
  512. }
  513. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  514. if (err) {
  515. pr_err("failed to register transparent hugepage group\n");
  516. goto remove_hp_group;
  517. }
  518. return 0;
  519. remove_hp_group:
  520. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  521. delete_obj:
  522. kobject_put(*hugepage_kobj);
  523. return err;
  524. }
  525. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  526. {
  527. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  528. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  529. kobject_put(hugepage_kobj);
  530. }
  531. #else
  532. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  533. {
  534. return 0;
  535. }
  536. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  537. {
  538. }
  539. #endif /* CONFIG_SYSFS */
  540. static int __init hugepage_init(void)
  541. {
  542. int err;
  543. struct kobject *hugepage_kobj;
  544. if (!has_transparent_hugepage()) {
  545. transparent_hugepage_flags = 0;
  546. return -EINVAL;
  547. }
  548. err = hugepage_init_sysfs(&hugepage_kobj);
  549. if (err)
  550. goto err_sysfs;
  551. err = khugepaged_slab_init();
  552. if (err)
  553. goto err_slab;
  554. err = register_shrinker(&huge_zero_page_shrinker);
  555. if (err)
  556. goto err_hzp_shrinker;
  557. /*
  558. * By default disable transparent hugepages on smaller systems,
  559. * where the extra memory used could hurt more than TLB overhead
  560. * is likely to save. The admin can still enable it through /sys.
  561. */
  562. if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
  563. transparent_hugepage_flags = 0;
  564. return 0;
  565. }
  566. err = start_stop_khugepaged();
  567. if (err)
  568. goto err_khugepaged;
  569. return 0;
  570. err_khugepaged:
  571. unregister_shrinker(&huge_zero_page_shrinker);
  572. err_hzp_shrinker:
  573. khugepaged_slab_exit();
  574. err_slab:
  575. hugepage_exit_sysfs(hugepage_kobj);
  576. err_sysfs:
  577. return err;
  578. }
  579. subsys_initcall(hugepage_init);
  580. static int __init setup_transparent_hugepage(char *str)
  581. {
  582. int ret = 0;
  583. if (!str)
  584. goto out;
  585. if (!strcmp(str, "always")) {
  586. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  587. &transparent_hugepage_flags);
  588. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  589. &transparent_hugepage_flags);
  590. ret = 1;
  591. } else if (!strcmp(str, "madvise")) {
  592. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  593. &transparent_hugepage_flags);
  594. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  595. &transparent_hugepage_flags);
  596. ret = 1;
  597. } else if (!strcmp(str, "never")) {
  598. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  599. &transparent_hugepage_flags);
  600. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  601. &transparent_hugepage_flags);
  602. ret = 1;
  603. }
  604. out:
  605. if (!ret)
  606. pr_warn("transparent_hugepage= cannot parse, ignored\n");
  607. return ret;
  608. }
  609. __setup("transparent_hugepage=", setup_transparent_hugepage);
  610. pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  611. {
  612. if (likely(vma->vm_flags & VM_WRITE))
  613. pmd = pmd_mkwrite(pmd);
  614. return pmd;
  615. }
  616. static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
  617. {
  618. pmd_t entry;
  619. entry = mk_pmd(page, prot);
  620. entry = pmd_mkhuge(entry);
  621. return entry;
  622. }
  623. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  624. struct vm_area_struct *vma,
  625. unsigned long address, pmd_t *pmd,
  626. struct page *page, gfp_t gfp,
  627. unsigned int flags)
  628. {
  629. struct mem_cgroup *memcg;
  630. pgtable_t pgtable;
  631. spinlock_t *ptl;
  632. unsigned long haddr = address & HPAGE_PMD_MASK;
  633. VM_BUG_ON_PAGE(!PageCompound(page), page);
  634. if (mem_cgroup_try_charge(page, mm, gfp, &memcg)) {
  635. put_page(page);
  636. count_vm_event(THP_FAULT_FALLBACK);
  637. return VM_FAULT_FALLBACK;
  638. }
  639. pgtable = pte_alloc_one(mm, haddr);
  640. if (unlikely(!pgtable)) {
  641. mem_cgroup_cancel_charge(page, memcg);
  642. put_page(page);
  643. return VM_FAULT_OOM;
  644. }
  645. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  646. /*
  647. * The memory barrier inside __SetPageUptodate makes sure that
  648. * clear_huge_page writes become visible before the set_pmd_at()
  649. * write.
  650. */
  651. __SetPageUptodate(page);
  652. ptl = pmd_lock(mm, pmd);
  653. if (unlikely(!pmd_none(*pmd))) {
  654. spin_unlock(ptl);
  655. mem_cgroup_cancel_charge(page, memcg);
  656. put_page(page);
  657. pte_free(mm, pgtable);
  658. } else {
  659. pmd_t entry;
  660. /* Deliver the page fault to userland */
  661. if (userfaultfd_missing(vma)) {
  662. int ret;
  663. spin_unlock(ptl);
  664. mem_cgroup_cancel_charge(page, memcg);
  665. put_page(page);
  666. pte_free(mm, pgtable);
  667. ret = handle_userfault(vma, address, flags,
  668. VM_UFFD_MISSING);
  669. VM_BUG_ON(ret & VM_FAULT_FALLBACK);
  670. return ret;
  671. }
  672. entry = mk_huge_pmd(page, vma->vm_page_prot);
  673. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  674. page_add_new_anon_rmap(page, vma, haddr);
  675. mem_cgroup_commit_charge(page, memcg, false);
  676. lru_cache_add_active_or_unevictable(page, vma);
  677. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  678. set_pmd_at(mm, haddr, pmd, entry);
  679. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  680. atomic_long_inc(&mm->nr_ptes);
  681. spin_unlock(ptl);
  682. count_vm_event(THP_FAULT_ALLOC);
  683. }
  684. return 0;
  685. }
  686. static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
  687. {
  688. return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
  689. }
  690. /* Caller must hold page table lock. */
  691. static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
  692. struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
  693. struct page *zero_page)
  694. {
  695. pmd_t entry;
  696. if (!pmd_none(*pmd))
  697. return false;
  698. entry = mk_pmd(zero_page, vma->vm_page_prot);
  699. entry = pmd_mkhuge(entry);
  700. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  701. set_pmd_at(mm, haddr, pmd, entry);
  702. atomic_long_inc(&mm->nr_ptes);
  703. return true;
  704. }
  705. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  706. unsigned long address, pmd_t *pmd,
  707. unsigned int flags)
  708. {
  709. gfp_t gfp;
  710. struct page *page;
  711. unsigned long haddr = address & HPAGE_PMD_MASK;
  712. if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
  713. return VM_FAULT_FALLBACK;
  714. if (unlikely(anon_vma_prepare(vma)))
  715. return VM_FAULT_OOM;
  716. if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
  717. return VM_FAULT_OOM;
  718. if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
  719. transparent_hugepage_use_zero_page()) {
  720. spinlock_t *ptl;
  721. pgtable_t pgtable;
  722. struct page *zero_page;
  723. bool set;
  724. int ret;
  725. pgtable = pte_alloc_one(mm, haddr);
  726. if (unlikely(!pgtable))
  727. return VM_FAULT_OOM;
  728. zero_page = get_huge_zero_page();
  729. if (unlikely(!zero_page)) {
  730. pte_free(mm, pgtable);
  731. count_vm_event(THP_FAULT_FALLBACK);
  732. return VM_FAULT_FALLBACK;
  733. }
  734. ptl = pmd_lock(mm, pmd);
  735. ret = 0;
  736. set = false;
  737. if (pmd_none(*pmd)) {
  738. if (userfaultfd_missing(vma)) {
  739. spin_unlock(ptl);
  740. ret = handle_userfault(vma, address, flags,
  741. VM_UFFD_MISSING);
  742. VM_BUG_ON(ret & VM_FAULT_FALLBACK);
  743. } else {
  744. set_huge_zero_page(pgtable, mm, vma,
  745. haddr, pmd,
  746. zero_page);
  747. spin_unlock(ptl);
  748. set = true;
  749. }
  750. } else
  751. spin_unlock(ptl);
  752. if (!set) {
  753. pte_free(mm, pgtable);
  754. put_huge_zero_page();
  755. }
  756. return ret;
  757. }
  758. gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
  759. page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
  760. if (unlikely(!page)) {
  761. count_vm_event(THP_FAULT_FALLBACK);
  762. return VM_FAULT_FALLBACK;
  763. }
  764. return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
  765. flags);
  766. }
  767. static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
  768. pmd_t *pmd, unsigned long pfn, pgprot_t prot, bool write)
  769. {
  770. struct mm_struct *mm = vma->vm_mm;
  771. pmd_t entry;
  772. spinlock_t *ptl;
  773. ptl = pmd_lock(mm, pmd);
  774. if (pmd_none(*pmd)) {
  775. entry = pmd_mkhuge(pfn_pmd(pfn, prot));
  776. if (write) {
  777. entry = pmd_mkyoung(pmd_mkdirty(entry));
  778. entry = maybe_pmd_mkwrite(entry, vma);
  779. }
  780. set_pmd_at(mm, addr, pmd, entry);
  781. update_mmu_cache_pmd(vma, addr, pmd);
  782. }
  783. spin_unlock(ptl);
  784. }
  785. int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
  786. pmd_t *pmd, unsigned long pfn, bool write)
  787. {
  788. pgprot_t pgprot = vma->vm_page_prot;
  789. /*
  790. * If we had pmd_special, we could avoid all these restrictions,
  791. * but we need to be consistent with PTEs and architectures that
  792. * can't support a 'special' bit.
  793. */
  794. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  795. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  796. (VM_PFNMAP|VM_MIXEDMAP));
  797. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  798. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  799. if (addr < vma->vm_start || addr >= vma->vm_end)
  800. return VM_FAULT_SIGBUS;
  801. if (track_pfn_insert(vma, &pgprot, pfn))
  802. return VM_FAULT_SIGBUS;
  803. insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
  804. return VM_FAULT_NOPAGE;
  805. }
  806. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  807. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  808. struct vm_area_struct *vma)
  809. {
  810. spinlock_t *dst_ptl, *src_ptl;
  811. struct page *src_page;
  812. pmd_t pmd;
  813. pgtable_t pgtable;
  814. int ret;
  815. ret = -ENOMEM;
  816. pgtable = pte_alloc_one(dst_mm, addr);
  817. if (unlikely(!pgtable))
  818. goto out;
  819. dst_ptl = pmd_lock(dst_mm, dst_pmd);
  820. src_ptl = pmd_lockptr(src_mm, src_pmd);
  821. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  822. ret = -EAGAIN;
  823. pmd = *src_pmd;
  824. if (unlikely(!pmd_trans_huge(pmd))) {
  825. pte_free(dst_mm, pgtable);
  826. goto out_unlock;
  827. }
  828. /*
  829. * When page table lock is held, the huge zero pmd should not be
  830. * under splitting since we don't split the page itself, only pmd to
  831. * a page table.
  832. */
  833. if (is_huge_zero_pmd(pmd)) {
  834. struct page *zero_page;
  835. /*
  836. * get_huge_zero_page() will never allocate a new page here,
  837. * since we already have a zero page to copy. It just takes a
  838. * reference.
  839. */
  840. zero_page = get_huge_zero_page();
  841. set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
  842. zero_page);
  843. ret = 0;
  844. goto out_unlock;
  845. }
  846. if (unlikely(pmd_trans_splitting(pmd))) {
  847. /* split huge page running from under us */
  848. spin_unlock(src_ptl);
  849. spin_unlock(dst_ptl);
  850. pte_free(dst_mm, pgtable);
  851. wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
  852. goto out;
  853. }
  854. src_page = pmd_page(pmd);
  855. VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
  856. get_page(src_page);
  857. page_dup_rmap(src_page);
  858. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  859. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  860. pmd = pmd_mkold(pmd_wrprotect(pmd));
  861. pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
  862. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  863. atomic_long_inc(&dst_mm->nr_ptes);
  864. ret = 0;
  865. out_unlock:
  866. spin_unlock(src_ptl);
  867. spin_unlock(dst_ptl);
  868. out:
  869. return ret;
  870. }
  871. void huge_pmd_set_accessed(struct mm_struct *mm,
  872. struct vm_area_struct *vma,
  873. unsigned long address,
  874. pmd_t *pmd, pmd_t orig_pmd,
  875. int dirty)
  876. {
  877. spinlock_t *ptl;
  878. pmd_t entry;
  879. unsigned long haddr;
  880. ptl = pmd_lock(mm, pmd);
  881. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  882. goto unlock;
  883. entry = pmd_mkyoung(orig_pmd);
  884. haddr = address & HPAGE_PMD_MASK;
  885. if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
  886. update_mmu_cache_pmd(vma, address, pmd);
  887. unlock:
  888. spin_unlock(ptl);
  889. }
  890. /*
  891. * Save CONFIG_DEBUG_PAGEALLOC from faulting falsely on tail pages
  892. * during copy_user_huge_page()'s copy_page_rep(): in the case when
  893. * the source page gets split and a tail freed before copy completes.
  894. * Called under pmd_lock of checked pmd, so safe from splitting itself.
  895. */
  896. static void get_user_huge_page(struct page *page)
  897. {
  898. if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
  899. struct page *endpage = page + HPAGE_PMD_NR;
  900. atomic_add(HPAGE_PMD_NR, &page->_count);
  901. while (++page < endpage)
  902. get_huge_page_tail(page);
  903. } else {
  904. get_page(page);
  905. }
  906. }
  907. static void put_user_huge_page(struct page *page)
  908. {
  909. if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
  910. struct page *endpage = page + HPAGE_PMD_NR;
  911. while (page < endpage)
  912. put_page(page++);
  913. } else {
  914. put_page(page);
  915. }
  916. }
  917. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  918. struct vm_area_struct *vma,
  919. unsigned long address,
  920. pmd_t *pmd, pmd_t orig_pmd,
  921. struct page *page,
  922. unsigned long haddr)
  923. {
  924. struct mem_cgroup *memcg;
  925. spinlock_t *ptl;
  926. pgtable_t pgtable;
  927. pmd_t _pmd;
  928. int ret = 0, i;
  929. struct page **pages;
  930. unsigned long mmun_start; /* For mmu_notifiers */
  931. unsigned long mmun_end; /* For mmu_notifiers */
  932. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  933. GFP_KERNEL);
  934. if (unlikely(!pages)) {
  935. ret |= VM_FAULT_OOM;
  936. goto out;
  937. }
  938. for (i = 0; i < HPAGE_PMD_NR; i++) {
  939. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
  940. __GFP_OTHER_NODE,
  941. vma, address, page_to_nid(page));
  942. if (unlikely(!pages[i] ||
  943. mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
  944. &memcg))) {
  945. if (pages[i])
  946. put_page(pages[i]);
  947. while (--i >= 0) {
  948. memcg = (void *)page_private(pages[i]);
  949. set_page_private(pages[i], 0);
  950. mem_cgroup_cancel_charge(pages[i], memcg);
  951. put_page(pages[i]);
  952. }
  953. kfree(pages);
  954. ret |= VM_FAULT_OOM;
  955. goto out;
  956. }
  957. set_page_private(pages[i], (unsigned long)memcg);
  958. }
  959. for (i = 0; i < HPAGE_PMD_NR; i++) {
  960. copy_user_highpage(pages[i], page + i,
  961. haddr + PAGE_SIZE * i, vma);
  962. __SetPageUptodate(pages[i]);
  963. cond_resched();
  964. }
  965. mmun_start = haddr;
  966. mmun_end = haddr + HPAGE_PMD_SIZE;
  967. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  968. ptl = pmd_lock(mm, pmd);
  969. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  970. goto out_free_pages;
  971. VM_BUG_ON_PAGE(!PageHead(page), page);
  972. pmdp_huge_clear_flush_notify(vma, haddr, pmd);
  973. /* leave pmd empty until pte is filled */
  974. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  975. pmd_populate(mm, &_pmd, pgtable);
  976. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  977. pte_t *pte, entry;
  978. entry = mk_pte(pages[i], vma->vm_page_prot);
  979. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  980. memcg = (void *)page_private(pages[i]);
  981. set_page_private(pages[i], 0);
  982. page_add_new_anon_rmap(pages[i], vma, haddr);
  983. mem_cgroup_commit_charge(pages[i], memcg, false);
  984. lru_cache_add_active_or_unevictable(pages[i], vma);
  985. pte = pte_offset_map(&_pmd, haddr);
  986. VM_BUG_ON(!pte_none(*pte));
  987. set_pte_at(mm, haddr, pte, entry);
  988. pte_unmap(pte);
  989. }
  990. kfree(pages);
  991. smp_wmb(); /* make pte visible before pmd */
  992. pmd_populate(mm, pmd, pgtable);
  993. page_remove_rmap(page);
  994. spin_unlock(ptl);
  995. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  996. ret |= VM_FAULT_WRITE;
  997. put_page(page);
  998. out:
  999. return ret;
  1000. out_free_pages:
  1001. spin_unlock(ptl);
  1002. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1003. for (i = 0; i < HPAGE_PMD_NR; i++) {
  1004. memcg = (void *)page_private(pages[i]);
  1005. set_page_private(pages[i], 0);
  1006. mem_cgroup_cancel_charge(pages[i], memcg);
  1007. put_page(pages[i]);
  1008. }
  1009. kfree(pages);
  1010. goto out;
  1011. }
  1012. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1013. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  1014. {
  1015. spinlock_t *ptl;
  1016. int ret = 0;
  1017. struct page *page = NULL, *new_page;
  1018. struct mem_cgroup *memcg;
  1019. unsigned long haddr;
  1020. unsigned long mmun_start; /* For mmu_notifiers */
  1021. unsigned long mmun_end; /* For mmu_notifiers */
  1022. gfp_t huge_gfp; /* for allocation and charge */
  1023. ptl = pmd_lockptr(mm, pmd);
  1024. VM_BUG_ON_VMA(!vma->anon_vma, vma);
  1025. haddr = address & HPAGE_PMD_MASK;
  1026. if (is_huge_zero_pmd(orig_pmd))
  1027. goto alloc;
  1028. spin_lock(ptl);
  1029. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  1030. goto out_unlock;
  1031. page = pmd_page(orig_pmd);
  1032. VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
  1033. if (page_mapcount(page) == 1) {
  1034. pmd_t entry;
  1035. entry = pmd_mkyoung(orig_pmd);
  1036. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  1037. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  1038. update_mmu_cache_pmd(vma, address, pmd);
  1039. ret |= VM_FAULT_WRITE;
  1040. goto out_unlock;
  1041. }
  1042. get_user_huge_page(page);
  1043. spin_unlock(ptl);
  1044. alloc:
  1045. if (transparent_hugepage_enabled(vma) &&
  1046. !transparent_hugepage_debug_cow()) {
  1047. huge_gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
  1048. new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
  1049. } else
  1050. new_page = NULL;
  1051. if (unlikely(!new_page)) {
  1052. if (!page) {
  1053. split_huge_page_pmd(vma, address, pmd);
  1054. ret |= VM_FAULT_FALLBACK;
  1055. } else {
  1056. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  1057. pmd, orig_pmd, page, haddr);
  1058. if (ret & VM_FAULT_OOM) {
  1059. split_huge_page(page);
  1060. ret |= VM_FAULT_FALLBACK;
  1061. }
  1062. put_user_huge_page(page);
  1063. }
  1064. count_vm_event(THP_FAULT_FALLBACK);
  1065. goto out;
  1066. }
  1067. if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg))) {
  1068. put_page(new_page);
  1069. if (page) {
  1070. split_huge_page(page);
  1071. put_user_huge_page(page);
  1072. } else
  1073. split_huge_page_pmd(vma, address, pmd);
  1074. ret |= VM_FAULT_FALLBACK;
  1075. count_vm_event(THP_FAULT_FALLBACK);
  1076. goto out;
  1077. }
  1078. count_vm_event(THP_FAULT_ALLOC);
  1079. if (!page)
  1080. clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
  1081. else
  1082. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  1083. __SetPageUptodate(new_page);
  1084. mmun_start = haddr;
  1085. mmun_end = haddr + HPAGE_PMD_SIZE;
  1086. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1087. spin_lock(ptl);
  1088. if (page)
  1089. put_user_huge_page(page);
  1090. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  1091. spin_unlock(ptl);
  1092. mem_cgroup_cancel_charge(new_page, memcg);
  1093. put_page(new_page);
  1094. goto out_mn;
  1095. } else {
  1096. pmd_t entry;
  1097. entry = mk_huge_pmd(new_page, vma->vm_page_prot);
  1098. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  1099. pmdp_huge_clear_flush_notify(vma, haddr, pmd);
  1100. page_add_new_anon_rmap(new_page, vma, haddr);
  1101. mem_cgroup_commit_charge(new_page, memcg, false);
  1102. lru_cache_add_active_or_unevictable(new_page, vma);
  1103. set_pmd_at(mm, haddr, pmd, entry);
  1104. update_mmu_cache_pmd(vma, address, pmd);
  1105. if (!page) {
  1106. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  1107. put_huge_zero_page();
  1108. } else {
  1109. VM_BUG_ON_PAGE(!PageHead(page), page);
  1110. page_remove_rmap(page);
  1111. put_page(page);
  1112. }
  1113. ret |= VM_FAULT_WRITE;
  1114. }
  1115. spin_unlock(ptl);
  1116. out_mn:
  1117. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1118. out:
  1119. return ret;
  1120. out_unlock:
  1121. spin_unlock(ptl);
  1122. return ret;
  1123. }
  1124. struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
  1125. unsigned long addr,
  1126. pmd_t *pmd,
  1127. unsigned int flags)
  1128. {
  1129. struct mm_struct *mm = vma->vm_mm;
  1130. struct page *page = NULL;
  1131. assert_spin_locked(pmd_lockptr(mm, pmd));
  1132. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  1133. goto out;
  1134. /* Avoid dumping huge zero page */
  1135. if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
  1136. return ERR_PTR(-EFAULT);
  1137. /* Full NUMA hinting faults to serialise migration in fault paths */
  1138. if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
  1139. goto out;
  1140. page = pmd_page(*pmd);
  1141. VM_BUG_ON_PAGE(!PageHead(page), page);
  1142. if (flags & FOLL_TOUCH) {
  1143. pmd_t _pmd;
  1144. /*
  1145. * We should set the dirty bit only for FOLL_WRITE but
  1146. * for now the dirty bit in the pmd is meaningless.
  1147. * And if the dirty bit will become meaningful and
  1148. * we'll only set it with FOLL_WRITE, an atomic
  1149. * set_bit will be required on the pmd to set the
  1150. * young bit, instead of the current set_pmd_at.
  1151. */
  1152. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  1153. if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
  1154. pmd, _pmd, 1))
  1155. update_mmu_cache_pmd(vma, addr, pmd);
  1156. }
  1157. if ((flags & FOLL_POPULATE) && (vma->vm_flags & VM_LOCKED)) {
  1158. if (page->mapping && trylock_page(page)) {
  1159. lru_add_drain();
  1160. if (page->mapping)
  1161. mlock_vma_page(page);
  1162. unlock_page(page);
  1163. }
  1164. }
  1165. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  1166. VM_BUG_ON_PAGE(!PageCompound(page), page);
  1167. if (flags & FOLL_GET)
  1168. get_page_foll(page);
  1169. out:
  1170. return page;
  1171. }
  1172. /* NUMA hinting page fault entry point for trans huge pmds */
  1173. int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1174. unsigned long addr, pmd_t pmd, pmd_t *pmdp)
  1175. {
  1176. spinlock_t *ptl;
  1177. struct anon_vma *anon_vma = NULL;
  1178. struct page *page;
  1179. unsigned long haddr = addr & HPAGE_PMD_MASK;
  1180. int page_nid = -1, this_nid = numa_node_id();
  1181. int target_nid, last_cpupid = -1;
  1182. bool page_locked;
  1183. bool migrated = false;
  1184. bool was_writable;
  1185. int flags = 0;
  1186. /* A PROT_NONE fault should not end up here */
  1187. BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
  1188. ptl = pmd_lock(mm, pmdp);
  1189. if (unlikely(!pmd_same(pmd, *pmdp)))
  1190. goto out_unlock;
  1191. /*
  1192. * If there are potential migrations, wait for completion and retry
  1193. * without disrupting NUMA hinting information. Do not relock and
  1194. * check_same as the page may no longer be mapped.
  1195. */
  1196. if (unlikely(pmd_trans_migrating(*pmdp))) {
  1197. page = pmd_page(*pmdp);
  1198. spin_unlock(ptl);
  1199. wait_on_page_locked(page);
  1200. goto out;
  1201. }
  1202. page = pmd_page(pmd);
  1203. BUG_ON(is_huge_zero_page(page));
  1204. page_nid = page_to_nid(page);
  1205. last_cpupid = page_cpupid_last(page);
  1206. count_vm_numa_event(NUMA_HINT_FAULTS);
  1207. if (page_nid == this_nid) {
  1208. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  1209. flags |= TNF_FAULT_LOCAL;
  1210. }
  1211. /* See similar comment in do_numa_page for explanation */
  1212. if (!(vma->vm_flags & VM_WRITE))
  1213. flags |= TNF_NO_GROUP;
  1214. /*
  1215. * Acquire the page lock to serialise THP migrations but avoid dropping
  1216. * page_table_lock if at all possible
  1217. */
  1218. page_locked = trylock_page(page);
  1219. target_nid = mpol_misplaced(page, vma, haddr);
  1220. if (target_nid == -1) {
  1221. /* If the page was locked, there are no parallel migrations */
  1222. if (page_locked)
  1223. goto clear_pmdnuma;
  1224. }
  1225. /* Migration could have started since the pmd_trans_migrating check */
  1226. if (!page_locked) {
  1227. spin_unlock(ptl);
  1228. wait_on_page_locked(page);
  1229. page_nid = -1;
  1230. goto out;
  1231. }
  1232. /*
  1233. * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
  1234. * to serialises splits
  1235. */
  1236. get_page(page);
  1237. spin_unlock(ptl);
  1238. anon_vma = page_lock_anon_vma_read(page);
  1239. /* Confirm the PMD did not change while page_table_lock was released */
  1240. spin_lock(ptl);
  1241. if (unlikely(!pmd_same(pmd, *pmdp))) {
  1242. unlock_page(page);
  1243. put_page(page);
  1244. page_nid = -1;
  1245. goto out_unlock;
  1246. }
  1247. /* Bail if we fail to protect against THP splits for any reason */
  1248. if (unlikely(!anon_vma)) {
  1249. put_page(page);
  1250. page_nid = -1;
  1251. goto clear_pmdnuma;
  1252. }
  1253. /*
  1254. * Migrate the THP to the requested node, returns with page unlocked
  1255. * and access rights restored.
  1256. */
  1257. spin_unlock(ptl);
  1258. migrated = migrate_misplaced_transhuge_page(mm, vma,
  1259. pmdp, pmd, addr, page, target_nid);
  1260. if (migrated) {
  1261. flags |= TNF_MIGRATED;
  1262. page_nid = target_nid;
  1263. } else
  1264. flags |= TNF_MIGRATE_FAIL;
  1265. goto out;
  1266. clear_pmdnuma:
  1267. BUG_ON(!PageLocked(page));
  1268. was_writable = pmd_write(pmd);
  1269. pmd = pmd_modify(pmd, vma->vm_page_prot);
  1270. pmd = pmd_mkyoung(pmd);
  1271. if (was_writable)
  1272. pmd = pmd_mkwrite(pmd);
  1273. set_pmd_at(mm, haddr, pmdp, pmd);
  1274. update_mmu_cache_pmd(vma, addr, pmdp);
  1275. unlock_page(page);
  1276. out_unlock:
  1277. spin_unlock(ptl);
  1278. out:
  1279. if (anon_vma)
  1280. page_unlock_anon_vma_read(anon_vma);
  1281. if (page_nid != -1)
  1282. task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
  1283. return 0;
  1284. }
  1285. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1286. pmd_t *pmd, unsigned long addr)
  1287. {
  1288. pmd_t orig_pmd;
  1289. spinlock_t *ptl;
  1290. if (__pmd_trans_huge_lock(pmd, vma, &ptl) != 1)
  1291. return 0;
  1292. /*
  1293. * For architectures like ppc64 we look at deposited pgtable
  1294. * when calling pmdp_huge_get_and_clear. So do the
  1295. * pgtable_trans_huge_withdraw after finishing pmdp related
  1296. * operations.
  1297. */
  1298. orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
  1299. tlb->fullmm);
  1300. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1301. if (vma_is_dax(vma)) {
  1302. spin_unlock(ptl);
  1303. if (is_huge_zero_pmd(orig_pmd))
  1304. put_huge_zero_page();
  1305. } else if (is_huge_zero_pmd(orig_pmd)) {
  1306. pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
  1307. atomic_long_dec(&tlb->mm->nr_ptes);
  1308. spin_unlock(ptl);
  1309. put_huge_zero_page();
  1310. } else {
  1311. struct page *page = pmd_page(orig_pmd);
  1312. page_remove_rmap(page);
  1313. VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
  1314. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  1315. VM_BUG_ON_PAGE(!PageHead(page), page);
  1316. pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
  1317. atomic_long_dec(&tlb->mm->nr_ptes);
  1318. spin_unlock(ptl);
  1319. tlb_remove_page(tlb, page);
  1320. }
  1321. return 1;
  1322. }
  1323. int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
  1324. unsigned long old_addr,
  1325. unsigned long new_addr, unsigned long old_end,
  1326. pmd_t *old_pmd, pmd_t *new_pmd)
  1327. {
  1328. spinlock_t *old_ptl, *new_ptl;
  1329. int ret = 0;
  1330. pmd_t pmd;
  1331. struct mm_struct *mm = vma->vm_mm;
  1332. if ((old_addr & ~HPAGE_PMD_MASK) ||
  1333. (new_addr & ~HPAGE_PMD_MASK) ||
  1334. old_end - old_addr < HPAGE_PMD_SIZE ||
  1335. (new_vma->vm_flags & VM_NOHUGEPAGE))
  1336. goto out;
  1337. /*
  1338. * The destination pmd shouldn't be established, free_pgtables()
  1339. * should have release it.
  1340. */
  1341. if (WARN_ON(!pmd_none(*new_pmd))) {
  1342. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  1343. goto out;
  1344. }
  1345. /*
  1346. * We don't have to worry about the ordering of src and dst
  1347. * ptlocks because exclusive mmap_sem prevents deadlock.
  1348. */
  1349. ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
  1350. if (ret == 1) {
  1351. new_ptl = pmd_lockptr(mm, new_pmd);
  1352. if (new_ptl != old_ptl)
  1353. spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
  1354. pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
  1355. VM_BUG_ON(!pmd_none(*new_pmd));
  1356. if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
  1357. pgtable_t pgtable;
  1358. pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
  1359. pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
  1360. }
  1361. set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
  1362. if (new_ptl != old_ptl)
  1363. spin_unlock(new_ptl);
  1364. spin_unlock(old_ptl);
  1365. }
  1366. out:
  1367. return ret;
  1368. }
  1369. /*
  1370. * Returns
  1371. * - 0 if PMD could not be locked
  1372. * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
  1373. * - HPAGE_PMD_NR is protections changed and TLB flush necessary
  1374. */
  1375. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1376. unsigned long addr, pgprot_t newprot, int prot_numa)
  1377. {
  1378. struct mm_struct *mm = vma->vm_mm;
  1379. spinlock_t *ptl;
  1380. int ret = 0;
  1381. if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
  1382. pmd_t entry;
  1383. bool preserve_write = prot_numa && pmd_write(*pmd);
  1384. ret = 1;
  1385. /*
  1386. * Avoid trapping faults against the zero page. The read-only
  1387. * data is likely to be read-cached on the local CPU and
  1388. * local/remote hits to the zero page are not interesting.
  1389. */
  1390. if (prot_numa && is_huge_zero_pmd(*pmd)) {
  1391. spin_unlock(ptl);
  1392. return ret;
  1393. }
  1394. if (!prot_numa || !pmd_protnone(*pmd)) {
  1395. entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
  1396. entry = pmd_modify(entry, newprot);
  1397. if (preserve_write)
  1398. entry = pmd_mkwrite(entry);
  1399. ret = HPAGE_PMD_NR;
  1400. set_pmd_at(mm, addr, pmd, entry);
  1401. BUG_ON(!preserve_write && pmd_write(entry));
  1402. }
  1403. spin_unlock(ptl);
  1404. }
  1405. return ret;
  1406. }
  1407. /*
  1408. * Returns 1 if a given pmd maps a stable (not under splitting) thp.
  1409. * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
  1410. *
  1411. * Note that if it returns 1, this routine returns without unlocking page
  1412. * table locks. So callers must unlock them.
  1413. */
  1414. int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
  1415. spinlock_t **ptl)
  1416. {
  1417. *ptl = pmd_lock(vma->vm_mm, pmd);
  1418. if (likely(pmd_trans_huge(*pmd))) {
  1419. if (unlikely(pmd_trans_splitting(*pmd))) {
  1420. spin_unlock(*ptl);
  1421. wait_split_huge_page(vma->anon_vma, pmd);
  1422. return -1;
  1423. } else {
  1424. /* Thp mapped by 'pmd' is stable, so we can
  1425. * handle it as it is. */
  1426. return 1;
  1427. }
  1428. }
  1429. spin_unlock(*ptl);
  1430. return 0;
  1431. }
  1432. /*
  1433. * This function returns whether a given @page is mapped onto the @address
  1434. * in the virtual space of @mm.
  1435. *
  1436. * When it's true, this function returns *pmd with holding the page table lock
  1437. * and passing it back to the caller via @ptl.
  1438. * If it's false, returns NULL without holding the page table lock.
  1439. */
  1440. pmd_t *page_check_address_pmd(struct page *page,
  1441. struct mm_struct *mm,
  1442. unsigned long address,
  1443. enum page_check_address_pmd_flag flag,
  1444. spinlock_t **ptl)
  1445. {
  1446. pgd_t *pgd;
  1447. pud_t *pud;
  1448. pmd_t *pmd;
  1449. if (address & ~HPAGE_PMD_MASK)
  1450. return NULL;
  1451. pgd = pgd_offset(mm, address);
  1452. if (!pgd_present(*pgd))
  1453. return NULL;
  1454. pud = pud_offset(pgd, address);
  1455. if (!pud_present(*pud))
  1456. return NULL;
  1457. pmd = pmd_offset(pud, address);
  1458. *ptl = pmd_lock(mm, pmd);
  1459. if (!pmd_present(*pmd))
  1460. goto unlock;
  1461. if (pmd_page(*pmd) != page)
  1462. goto unlock;
  1463. /*
  1464. * split_vma() may create temporary aliased mappings. There is
  1465. * no risk as long as all huge pmd are found and have their
  1466. * splitting bit set before __split_huge_page_refcount
  1467. * runs. Finding the same huge pmd more than once during the
  1468. * same rmap walk is not a problem.
  1469. */
  1470. if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
  1471. pmd_trans_splitting(*pmd))
  1472. goto unlock;
  1473. if (pmd_trans_huge(*pmd)) {
  1474. VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
  1475. !pmd_trans_splitting(*pmd));
  1476. return pmd;
  1477. }
  1478. unlock:
  1479. spin_unlock(*ptl);
  1480. return NULL;
  1481. }
  1482. static int __split_huge_page_splitting(struct page *page,
  1483. struct vm_area_struct *vma,
  1484. unsigned long address)
  1485. {
  1486. struct mm_struct *mm = vma->vm_mm;
  1487. spinlock_t *ptl;
  1488. pmd_t *pmd;
  1489. int ret = 0;
  1490. /* For mmu_notifiers */
  1491. const unsigned long mmun_start = address;
  1492. const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
  1493. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1494. pmd = page_check_address_pmd(page, mm, address,
  1495. PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
  1496. if (pmd) {
  1497. /*
  1498. * We can't temporarily set the pmd to null in order
  1499. * to split it, the pmd must remain marked huge at all
  1500. * times or the VM won't take the pmd_trans_huge paths
  1501. * and it won't wait on the anon_vma->root->rwsem to
  1502. * serialize against split_huge_page*.
  1503. */
  1504. pmdp_splitting_flush(vma, address, pmd);
  1505. ret = 1;
  1506. spin_unlock(ptl);
  1507. }
  1508. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1509. return ret;
  1510. }
  1511. static void __split_huge_page_refcount(struct page *page,
  1512. struct list_head *list)
  1513. {
  1514. int i;
  1515. struct zone *zone = page_zone(page);
  1516. struct lruvec *lruvec;
  1517. int tail_count = 0;
  1518. /* prevent PageLRU to go away from under us, and freeze lru stats */
  1519. spin_lock_irq(&zone->lru_lock);
  1520. lruvec = mem_cgroup_page_lruvec(page, zone);
  1521. compound_lock(page);
  1522. /* complete memcg works before add pages to LRU */
  1523. mem_cgroup_split_huge_fixup(page);
  1524. for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
  1525. struct page *page_tail = page + i;
  1526. /* tail_page->_mapcount cannot change */
  1527. BUG_ON(page_mapcount(page_tail) < 0);
  1528. tail_count += page_mapcount(page_tail);
  1529. /* check for overflow */
  1530. BUG_ON(tail_count < 0);
  1531. BUG_ON(atomic_read(&page_tail->_count) != 0);
  1532. /*
  1533. * tail_page->_count is zero and not changing from
  1534. * under us. But get_page_unless_zero() may be running
  1535. * from under us on the tail_page. If we used
  1536. * atomic_set() below instead of atomic_add(), we
  1537. * would then run atomic_set() concurrently with
  1538. * get_page_unless_zero(), and atomic_set() is
  1539. * implemented in C not using locked ops. spin_unlock
  1540. * on x86 sometime uses locked ops because of PPro
  1541. * errata 66, 92, so unless somebody can guarantee
  1542. * atomic_set() here would be safe on all archs (and
  1543. * not only on x86), it's safer to use atomic_add().
  1544. */
  1545. atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
  1546. &page_tail->_count);
  1547. /* after clearing PageTail the gup refcount can be released */
  1548. smp_mb__after_atomic();
  1549. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  1550. page_tail->flags |= (page->flags &
  1551. ((1L << PG_referenced) |
  1552. (1L << PG_swapbacked) |
  1553. (1L << PG_mlocked) |
  1554. (1L << PG_uptodate) |
  1555. (1L << PG_active) |
  1556. (1L << PG_unevictable)));
  1557. page_tail->flags |= (1L << PG_dirty);
  1558. /* clear PageTail before overwriting first_page */
  1559. smp_wmb();
  1560. if (page_is_young(page))
  1561. set_page_young(page_tail);
  1562. if (page_is_idle(page))
  1563. set_page_idle(page_tail);
  1564. /*
  1565. * __split_huge_page_splitting() already set the
  1566. * splitting bit in all pmd that could map this
  1567. * hugepage, that will ensure no CPU can alter the
  1568. * mapcount on the head page. The mapcount is only
  1569. * accounted in the head page and it has to be
  1570. * transferred to all tail pages in the below code. So
  1571. * for this code to be safe, the split the mapcount
  1572. * can't change. But that doesn't mean userland can't
  1573. * keep changing and reading the page contents while
  1574. * we transfer the mapcount, so the pmd splitting
  1575. * status is achieved setting a reserved bit in the
  1576. * pmd, not by clearing the present bit.
  1577. */
  1578. page_tail->_mapcount = page->_mapcount;
  1579. BUG_ON(page_tail->mapping);
  1580. page_tail->mapping = page->mapping;
  1581. page_tail->index = page->index + i;
  1582. page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
  1583. BUG_ON(!PageAnon(page_tail));
  1584. BUG_ON(!PageUptodate(page_tail));
  1585. BUG_ON(!PageDirty(page_tail));
  1586. BUG_ON(!PageSwapBacked(page_tail));
  1587. lru_add_page_tail(page, page_tail, lruvec, list);
  1588. }
  1589. atomic_sub(tail_count, &page->_count);
  1590. BUG_ON(atomic_read(&page->_count) <= 0);
  1591. __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
  1592. ClearPageCompound(page);
  1593. compound_unlock(page);
  1594. spin_unlock_irq(&zone->lru_lock);
  1595. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1596. struct page *page_tail = page + i;
  1597. BUG_ON(page_count(page_tail) <= 0);
  1598. /*
  1599. * Tail pages may be freed if there wasn't any mapping
  1600. * like if add_to_swap() is running on a lru page that
  1601. * had its mapping zapped. And freeing these pages
  1602. * requires taking the lru_lock so we do the put_page
  1603. * of the tail pages after the split is complete.
  1604. */
  1605. put_page(page_tail);
  1606. }
  1607. /*
  1608. * Only the head page (now become a regular page) is required
  1609. * to be pinned by the caller.
  1610. */
  1611. BUG_ON(page_count(page) <= 0);
  1612. }
  1613. static int __split_huge_page_map(struct page *page,
  1614. struct vm_area_struct *vma,
  1615. unsigned long address)
  1616. {
  1617. struct mm_struct *mm = vma->vm_mm;
  1618. spinlock_t *ptl;
  1619. pmd_t *pmd, _pmd;
  1620. int ret = 0, i;
  1621. pgtable_t pgtable;
  1622. unsigned long haddr;
  1623. pmd = page_check_address_pmd(page, mm, address,
  1624. PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
  1625. if (pmd) {
  1626. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  1627. pmd_populate(mm, &_pmd, pgtable);
  1628. if (pmd_write(*pmd))
  1629. BUG_ON(page_mapcount(page) != 1);
  1630. haddr = address;
  1631. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1632. pte_t *pte, entry;
  1633. BUG_ON(PageCompound(page+i));
  1634. /*
  1635. * Note that NUMA hinting access restrictions are not
  1636. * transferred to avoid any possibility of altering
  1637. * permissions across VMAs.
  1638. */
  1639. entry = mk_pte(page + i, vma->vm_page_prot);
  1640. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1641. if (!pmd_write(*pmd))
  1642. entry = pte_wrprotect(entry);
  1643. if (!pmd_young(*pmd))
  1644. entry = pte_mkold(entry);
  1645. pte = pte_offset_map(&_pmd, haddr);
  1646. BUG_ON(!pte_none(*pte));
  1647. set_pte_at(mm, haddr, pte, entry);
  1648. pte_unmap(pte);
  1649. }
  1650. smp_wmb(); /* make pte visible before pmd */
  1651. /*
  1652. * Up to this point the pmd is present and huge and
  1653. * userland has the whole access to the hugepage
  1654. * during the split (which happens in place). If we
  1655. * overwrite the pmd with the not-huge version
  1656. * pointing to the pte here (which of course we could
  1657. * if all CPUs were bug free), userland could trigger
  1658. * a small page size TLB miss on the small sized TLB
  1659. * while the hugepage TLB entry is still established
  1660. * in the huge TLB. Some CPU doesn't like that. See
  1661. * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
  1662. * Erratum 383 on page 93. Intel should be safe but is
  1663. * also warns that it's only safe if the permission
  1664. * and cache attributes of the two entries loaded in
  1665. * the two TLB is identical (which should be the case
  1666. * here). But it is generally safer to never allow
  1667. * small and huge TLB entries for the same virtual
  1668. * address to be loaded simultaneously. So instead of
  1669. * doing "pmd_populate(); flush_tlb_range();" we first
  1670. * mark the current pmd notpresent (atomically because
  1671. * here the pmd_trans_huge and pmd_trans_splitting
  1672. * must remain set at all times on the pmd until the
  1673. * split is complete for this pmd), then we flush the
  1674. * SMP TLB and finally we write the non-huge version
  1675. * of the pmd entry with pmd_populate.
  1676. */
  1677. pmdp_invalidate(vma, address, pmd);
  1678. pmd_populate(mm, pmd, pgtable);
  1679. ret = 1;
  1680. spin_unlock(ptl);
  1681. }
  1682. return ret;
  1683. }
  1684. /* must be called with anon_vma->root->rwsem held */
  1685. static void __split_huge_page(struct page *page,
  1686. struct anon_vma *anon_vma,
  1687. struct list_head *list)
  1688. {
  1689. int mapcount, mapcount2;
  1690. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1691. struct anon_vma_chain *avc;
  1692. BUG_ON(!PageHead(page));
  1693. BUG_ON(PageTail(page));
  1694. mapcount = 0;
  1695. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1696. struct vm_area_struct *vma = avc->vma;
  1697. unsigned long addr = vma_address(page, vma);
  1698. BUG_ON(is_vma_temporary_stack(vma));
  1699. mapcount += __split_huge_page_splitting(page, vma, addr);
  1700. }
  1701. /*
  1702. * It is critical that new vmas are added to the tail of the
  1703. * anon_vma list. This guarantes that if copy_huge_pmd() runs
  1704. * and establishes a child pmd before
  1705. * __split_huge_page_splitting() freezes the parent pmd (so if
  1706. * we fail to prevent copy_huge_pmd() from running until the
  1707. * whole __split_huge_page() is complete), we will still see
  1708. * the newly established pmd of the child later during the
  1709. * walk, to be able to set it as pmd_trans_splitting too.
  1710. */
  1711. if (mapcount != page_mapcount(page)) {
  1712. pr_err("mapcount %d page_mapcount %d\n",
  1713. mapcount, page_mapcount(page));
  1714. BUG();
  1715. }
  1716. __split_huge_page_refcount(page, list);
  1717. mapcount2 = 0;
  1718. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1719. struct vm_area_struct *vma = avc->vma;
  1720. unsigned long addr = vma_address(page, vma);
  1721. BUG_ON(is_vma_temporary_stack(vma));
  1722. mapcount2 += __split_huge_page_map(page, vma, addr);
  1723. }
  1724. if (mapcount != mapcount2) {
  1725. pr_err("mapcount %d mapcount2 %d page_mapcount %d\n",
  1726. mapcount, mapcount2, page_mapcount(page));
  1727. BUG();
  1728. }
  1729. }
  1730. /*
  1731. * Split a hugepage into normal pages. This doesn't change the position of head
  1732. * page. If @list is null, tail pages will be added to LRU list, otherwise, to
  1733. * @list. Both head page and tail pages will inherit mapping, flags, and so on
  1734. * from the hugepage.
  1735. * Return 0 if the hugepage is split successfully otherwise return 1.
  1736. */
  1737. int split_huge_page_to_list(struct page *page, struct list_head *list)
  1738. {
  1739. struct anon_vma *anon_vma;
  1740. int ret = 1;
  1741. BUG_ON(is_huge_zero_page(page));
  1742. BUG_ON(!PageAnon(page));
  1743. /*
  1744. * The caller does not necessarily hold an mmap_sem that would prevent
  1745. * the anon_vma disappearing so we first we take a reference to it
  1746. * and then lock the anon_vma for write. This is similar to
  1747. * page_lock_anon_vma_read except the write lock is taken to serialise
  1748. * against parallel split or collapse operations.
  1749. */
  1750. anon_vma = page_get_anon_vma(page);
  1751. if (!anon_vma)
  1752. goto out;
  1753. anon_vma_lock_write(anon_vma);
  1754. ret = 0;
  1755. if (!PageCompound(page))
  1756. goto out_unlock;
  1757. BUG_ON(!PageSwapBacked(page));
  1758. __split_huge_page(page, anon_vma, list);
  1759. count_vm_event(THP_SPLIT);
  1760. BUG_ON(PageCompound(page));
  1761. out_unlock:
  1762. anon_vma_unlock_write(anon_vma);
  1763. put_anon_vma(anon_vma);
  1764. out:
  1765. return ret;
  1766. }
  1767. #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
  1768. int hugepage_madvise(struct vm_area_struct *vma,
  1769. unsigned long *vm_flags, int advice)
  1770. {
  1771. switch (advice) {
  1772. case MADV_HUGEPAGE:
  1773. #ifdef CONFIG_S390
  1774. /*
  1775. * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
  1776. * can't handle this properly after s390_enable_sie, so we simply
  1777. * ignore the madvise to prevent qemu from causing a SIGSEGV.
  1778. */
  1779. if (mm_has_pgste(vma->vm_mm))
  1780. return 0;
  1781. #endif
  1782. /*
  1783. * Be somewhat over-protective like KSM for now!
  1784. */
  1785. if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
  1786. return -EINVAL;
  1787. *vm_flags &= ~VM_NOHUGEPAGE;
  1788. *vm_flags |= VM_HUGEPAGE;
  1789. /*
  1790. * If the vma become good for khugepaged to scan,
  1791. * register it here without waiting a page fault that
  1792. * may not happen any time soon.
  1793. */
  1794. if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
  1795. return -ENOMEM;
  1796. break;
  1797. case MADV_NOHUGEPAGE:
  1798. /*
  1799. * Be somewhat over-protective like KSM for now!
  1800. */
  1801. if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
  1802. return -EINVAL;
  1803. *vm_flags &= ~VM_HUGEPAGE;
  1804. *vm_flags |= VM_NOHUGEPAGE;
  1805. /*
  1806. * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
  1807. * this vma even if we leave the mm registered in khugepaged if
  1808. * it got registered before VM_NOHUGEPAGE was set.
  1809. */
  1810. break;
  1811. }
  1812. return 0;
  1813. }
  1814. static int __init khugepaged_slab_init(void)
  1815. {
  1816. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1817. sizeof(struct mm_slot),
  1818. __alignof__(struct mm_slot), 0, NULL);
  1819. if (!mm_slot_cache)
  1820. return -ENOMEM;
  1821. return 0;
  1822. }
  1823. static void __init khugepaged_slab_exit(void)
  1824. {
  1825. kmem_cache_destroy(mm_slot_cache);
  1826. }
  1827. static inline struct mm_slot *alloc_mm_slot(void)
  1828. {
  1829. if (!mm_slot_cache) /* initialization failed */
  1830. return NULL;
  1831. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1832. }
  1833. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1834. {
  1835. kmem_cache_free(mm_slot_cache, mm_slot);
  1836. }
  1837. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1838. {
  1839. struct mm_slot *mm_slot;
  1840. hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
  1841. if (mm == mm_slot->mm)
  1842. return mm_slot;
  1843. return NULL;
  1844. }
  1845. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1846. struct mm_slot *mm_slot)
  1847. {
  1848. mm_slot->mm = mm;
  1849. hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
  1850. }
  1851. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1852. {
  1853. return atomic_read(&mm->mm_users) == 0;
  1854. }
  1855. int __khugepaged_enter(struct mm_struct *mm)
  1856. {
  1857. struct mm_slot *mm_slot;
  1858. int wakeup;
  1859. mm_slot = alloc_mm_slot();
  1860. if (!mm_slot)
  1861. return -ENOMEM;
  1862. /* __khugepaged_exit() must not run from under us */
  1863. VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
  1864. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1865. free_mm_slot(mm_slot);
  1866. return 0;
  1867. }
  1868. spin_lock(&khugepaged_mm_lock);
  1869. insert_to_mm_slots_hash(mm, mm_slot);
  1870. /*
  1871. * Insert just behind the scanning cursor, to let the area settle
  1872. * down a little.
  1873. */
  1874. wakeup = list_empty(&khugepaged_scan.mm_head);
  1875. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1876. spin_unlock(&khugepaged_mm_lock);
  1877. atomic_inc(&mm->mm_count);
  1878. if (wakeup)
  1879. wake_up_interruptible(&khugepaged_wait);
  1880. return 0;
  1881. }
  1882. int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
  1883. unsigned long vm_flags)
  1884. {
  1885. unsigned long hstart, hend;
  1886. if (!vma->anon_vma)
  1887. /*
  1888. * Not yet faulted in so we will register later in the
  1889. * page fault if needed.
  1890. */
  1891. return 0;
  1892. if (vma->vm_ops)
  1893. /* khugepaged not yet working on file or special mappings */
  1894. return 0;
  1895. VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
  1896. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1897. hend = vma->vm_end & HPAGE_PMD_MASK;
  1898. if (hstart < hend)
  1899. return khugepaged_enter(vma, vm_flags);
  1900. return 0;
  1901. }
  1902. void __khugepaged_exit(struct mm_struct *mm)
  1903. {
  1904. struct mm_slot *mm_slot;
  1905. int free = 0;
  1906. spin_lock(&khugepaged_mm_lock);
  1907. mm_slot = get_mm_slot(mm);
  1908. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1909. hash_del(&mm_slot->hash);
  1910. list_del(&mm_slot->mm_node);
  1911. free = 1;
  1912. }
  1913. spin_unlock(&khugepaged_mm_lock);
  1914. if (free) {
  1915. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1916. free_mm_slot(mm_slot);
  1917. mmdrop(mm);
  1918. } else if (mm_slot) {
  1919. /*
  1920. * This is required to serialize against
  1921. * khugepaged_test_exit() (which is guaranteed to run
  1922. * under mmap sem read mode). Stop here (after we
  1923. * return all pagetables will be destroyed) until
  1924. * khugepaged has finished working on the pagetables
  1925. * under the mmap_sem.
  1926. */
  1927. down_write(&mm->mmap_sem);
  1928. up_write(&mm->mmap_sem);
  1929. }
  1930. }
  1931. static void release_pte_page(struct page *page)
  1932. {
  1933. /* 0 stands for page_is_file_cache(page) == false */
  1934. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1935. unlock_page(page);
  1936. putback_lru_page(page);
  1937. }
  1938. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1939. {
  1940. while (--_pte >= pte) {
  1941. pte_t pteval = *_pte;
  1942. if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
  1943. release_pte_page(pte_page(pteval));
  1944. }
  1945. }
  1946. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1947. unsigned long address,
  1948. pte_t *pte)
  1949. {
  1950. struct page *page;
  1951. pte_t *_pte;
  1952. int none_or_zero = 0;
  1953. bool referenced = false, writable = false;
  1954. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1955. _pte++, address += PAGE_SIZE) {
  1956. pte_t pteval = *_pte;
  1957. if (pte_none(pteval) || (pte_present(pteval) &&
  1958. is_zero_pfn(pte_pfn(pteval)))) {
  1959. if (!userfaultfd_armed(vma) &&
  1960. ++none_or_zero <= khugepaged_max_ptes_none)
  1961. continue;
  1962. else
  1963. goto out;
  1964. }
  1965. if (!pte_present(pteval))
  1966. goto out;
  1967. page = vm_normal_page(vma, address, pteval);
  1968. if (unlikely(!page))
  1969. goto out;
  1970. VM_BUG_ON_PAGE(PageCompound(page), page);
  1971. VM_BUG_ON_PAGE(!PageAnon(page), page);
  1972. VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
  1973. /*
  1974. * We can do it before isolate_lru_page because the
  1975. * page can't be freed from under us. NOTE: PG_lock
  1976. * is needed to serialize against split_huge_page
  1977. * when invoked from the VM.
  1978. */
  1979. if (!trylock_page(page))
  1980. goto out;
  1981. /*
  1982. * cannot use mapcount: can't collapse if there's a gup pin.
  1983. * The page must only be referenced by the scanned process
  1984. * and page swap cache.
  1985. */
  1986. if (page_count(page) != 1 + !!PageSwapCache(page)) {
  1987. unlock_page(page);
  1988. goto out;
  1989. }
  1990. if (pte_write(pteval)) {
  1991. writable = true;
  1992. } else {
  1993. if (PageSwapCache(page) && !reuse_swap_page(page)) {
  1994. unlock_page(page);
  1995. goto out;
  1996. }
  1997. /*
  1998. * Page is not in the swap cache. It can be collapsed
  1999. * into a THP.
  2000. */
  2001. }
  2002. /*
  2003. * Isolate the page to avoid collapsing an hugepage
  2004. * currently in use by the VM.
  2005. */
  2006. if (isolate_lru_page(page)) {
  2007. unlock_page(page);
  2008. goto out;
  2009. }
  2010. /* 0 stands for page_is_file_cache(page) == false */
  2011. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  2012. VM_BUG_ON_PAGE(!PageLocked(page), page);
  2013. VM_BUG_ON_PAGE(PageLRU(page), page);
  2014. /* If there is no mapped pte young don't collapse the page */
  2015. if (pte_young(pteval) ||
  2016. page_is_young(page) || PageReferenced(page) ||
  2017. mmu_notifier_test_young(vma->vm_mm, address))
  2018. referenced = true;
  2019. }
  2020. if (likely(referenced && writable))
  2021. return 1;
  2022. out:
  2023. release_pte_pages(pte, _pte);
  2024. return 0;
  2025. }
  2026. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  2027. struct vm_area_struct *vma,
  2028. unsigned long address,
  2029. spinlock_t *ptl)
  2030. {
  2031. pte_t *_pte;
  2032. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  2033. pte_t pteval = *_pte;
  2034. struct page *src_page;
  2035. if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
  2036. clear_user_highpage(page, address);
  2037. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  2038. if (is_zero_pfn(pte_pfn(pteval))) {
  2039. /*
  2040. * ptl mostly unnecessary.
  2041. */
  2042. spin_lock(ptl);
  2043. /*
  2044. * paravirt calls inside pte_clear here are
  2045. * superfluous.
  2046. */
  2047. pte_clear(vma->vm_mm, address, _pte);
  2048. spin_unlock(ptl);
  2049. }
  2050. } else {
  2051. src_page = pte_page(pteval);
  2052. copy_user_highpage(page, src_page, address, vma);
  2053. VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
  2054. release_pte_page(src_page);
  2055. /*
  2056. * ptl mostly unnecessary, but preempt has to
  2057. * be disabled to update the per-cpu stats
  2058. * inside page_remove_rmap().
  2059. */
  2060. spin_lock(ptl);
  2061. /*
  2062. * paravirt calls inside pte_clear here are
  2063. * superfluous.
  2064. */
  2065. pte_clear(vma->vm_mm, address, _pte);
  2066. page_remove_rmap(src_page);
  2067. spin_unlock(ptl);
  2068. free_page_and_swap_cache(src_page);
  2069. }
  2070. address += PAGE_SIZE;
  2071. page++;
  2072. }
  2073. }
  2074. static void khugepaged_alloc_sleep(void)
  2075. {
  2076. DEFINE_WAIT(wait);
  2077. add_wait_queue(&khugepaged_wait, &wait);
  2078. freezable_schedule_timeout_interruptible(
  2079. msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
  2080. remove_wait_queue(&khugepaged_wait, &wait);
  2081. }
  2082. static int khugepaged_node_load[MAX_NUMNODES];
  2083. static bool khugepaged_scan_abort(int nid)
  2084. {
  2085. int i;
  2086. /*
  2087. * If zone_reclaim_mode is disabled, then no extra effort is made to
  2088. * allocate memory locally.
  2089. */
  2090. if (!zone_reclaim_mode)
  2091. return false;
  2092. /* If there is a count for this node already, it must be acceptable */
  2093. if (khugepaged_node_load[nid])
  2094. return false;
  2095. for (i = 0; i < MAX_NUMNODES; i++) {
  2096. if (!khugepaged_node_load[i])
  2097. continue;
  2098. if (node_distance(nid, i) > RECLAIM_DISTANCE)
  2099. return true;
  2100. }
  2101. return false;
  2102. }
  2103. #ifdef CONFIG_NUMA
  2104. static int khugepaged_find_target_node(void)
  2105. {
  2106. static int last_khugepaged_target_node = NUMA_NO_NODE;
  2107. int nid, target_node = 0, max_value = 0;
  2108. /* find first node with max normal pages hit */
  2109. for (nid = 0; nid < MAX_NUMNODES; nid++)
  2110. if (khugepaged_node_load[nid] > max_value) {
  2111. max_value = khugepaged_node_load[nid];
  2112. target_node = nid;
  2113. }
  2114. /* do some balance if several nodes have the same hit record */
  2115. if (target_node <= last_khugepaged_target_node)
  2116. for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
  2117. nid++)
  2118. if (max_value == khugepaged_node_load[nid]) {
  2119. target_node = nid;
  2120. break;
  2121. }
  2122. last_khugepaged_target_node = target_node;
  2123. return target_node;
  2124. }
  2125. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  2126. {
  2127. if (IS_ERR(*hpage)) {
  2128. if (!*wait)
  2129. return false;
  2130. *wait = false;
  2131. *hpage = NULL;
  2132. khugepaged_alloc_sleep();
  2133. } else if (*hpage) {
  2134. put_page(*hpage);
  2135. *hpage = NULL;
  2136. }
  2137. return true;
  2138. }
  2139. static struct page *
  2140. khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
  2141. struct vm_area_struct *vma, unsigned long address,
  2142. int node)
  2143. {
  2144. VM_BUG_ON_PAGE(*hpage, *hpage);
  2145. /*
  2146. * Before allocating the hugepage, release the mmap_sem read lock.
  2147. * The allocation can take potentially a long time if it involves
  2148. * sync compaction, and we do not need to hold the mmap_sem during
  2149. * that. We will recheck the vma after taking it again in write mode.
  2150. */
  2151. up_read(&mm->mmap_sem);
  2152. *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
  2153. if (unlikely(!*hpage)) {
  2154. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  2155. *hpage = ERR_PTR(-ENOMEM);
  2156. return NULL;
  2157. }
  2158. count_vm_event(THP_COLLAPSE_ALLOC);
  2159. return *hpage;
  2160. }
  2161. #else
  2162. static int khugepaged_find_target_node(void)
  2163. {
  2164. return 0;
  2165. }
  2166. static inline struct page *alloc_hugepage(int defrag)
  2167. {
  2168. return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
  2169. HPAGE_PMD_ORDER);
  2170. }
  2171. static struct page *khugepaged_alloc_hugepage(bool *wait)
  2172. {
  2173. struct page *hpage;
  2174. do {
  2175. hpage = alloc_hugepage(khugepaged_defrag());
  2176. if (!hpage) {
  2177. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  2178. if (!*wait)
  2179. return NULL;
  2180. *wait = false;
  2181. khugepaged_alloc_sleep();
  2182. } else
  2183. count_vm_event(THP_COLLAPSE_ALLOC);
  2184. } while (unlikely(!hpage) && likely(khugepaged_enabled()));
  2185. return hpage;
  2186. }
  2187. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  2188. {
  2189. if (!*hpage)
  2190. *hpage = khugepaged_alloc_hugepage(wait);
  2191. if (unlikely(!*hpage))
  2192. return false;
  2193. return true;
  2194. }
  2195. static struct page *
  2196. khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
  2197. struct vm_area_struct *vma, unsigned long address,
  2198. int node)
  2199. {
  2200. up_read(&mm->mmap_sem);
  2201. VM_BUG_ON(!*hpage);
  2202. return *hpage;
  2203. }
  2204. #endif
  2205. static bool hugepage_vma_check(struct vm_area_struct *vma)
  2206. {
  2207. if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
  2208. (vma->vm_flags & VM_NOHUGEPAGE))
  2209. return false;
  2210. if (!vma->anon_vma || vma->vm_ops)
  2211. return false;
  2212. if (is_vma_temporary_stack(vma))
  2213. return false;
  2214. VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
  2215. return true;
  2216. }
  2217. static void collapse_huge_page(struct mm_struct *mm,
  2218. unsigned long address,
  2219. struct page **hpage,
  2220. struct vm_area_struct *vma,
  2221. int node)
  2222. {
  2223. pmd_t *pmd, _pmd;
  2224. pte_t *pte;
  2225. pgtable_t pgtable;
  2226. struct page *new_page;
  2227. spinlock_t *pmd_ptl, *pte_ptl;
  2228. int isolated;
  2229. unsigned long hstart, hend;
  2230. struct mem_cgroup *memcg;
  2231. unsigned long mmun_start; /* For mmu_notifiers */
  2232. unsigned long mmun_end; /* For mmu_notifiers */
  2233. gfp_t gfp;
  2234. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  2235. /* Only allocate from the target node */
  2236. gfp = alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE) |
  2237. __GFP_THISNODE;
  2238. /* release the mmap_sem read lock. */
  2239. new_page = khugepaged_alloc_page(hpage, gfp, mm, vma, address, node);
  2240. if (!new_page)
  2241. return;
  2242. if (unlikely(mem_cgroup_try_charge(new_page, mm,
  2243. gfp, &memcg)))
  2244. return;
  2245. /*
  2246. * Prevent all access to pagetables with the exception of
  2247. * gup_fast later hanlded by the ptep_clear_flush and the VM
  2248. * handled by the anon_vma lock + PG_lock.
  2249. */
  2250. down_write(&mm->mmap_sem);
  2251. if (unlikely(khugepaged_test_exit(mm)))
  2252. goto out;
  2253. vma = find_vma(mm, address);
  2254. if (!vma)
  2255. goto out;
  2256. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  2257. hend = vma->vm_end & HPAGE_PMD_MASK;
  2258. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  2259. goto out;
  2260. if (!hugepage_vma_check(vma))
  2261. goto out;
  2262. pmd = mm_find_pmd(mm, address);
  2263. if (!pmd)
  2264. goto out;
  2265. anon_vma_lock_write(vma->anon_vma);
  2266. pte = pte_offset_map(pmd, address);
  2267. pte_ptl = pte_lockptr(mm, pmd);
  2268. mmun_start = address;
  2269. mmun_end = address + HPAGE_PMD_SIZE;
  2270. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2271. pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
  2272. /*
  2273. * After this gup_fast can't run anymore. This also removes
  2274. * any huge TLB entry from the CPU so we won't allow
  2275. * huge and small TLB entries for the same virtual address
  2276. * to avoid the risk of CPU bugs in that area.
  2277. */
  2278. _pmd = pmdp_collapse_flush(vma, address, pmd);
  2279. spin_unlock(pmd_ptl);
  2280. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2281. spin_lock(pte_ptl);
  2282. isolated = __collapse_huge_page_isolate(vma, address, pte);
  2283. spin_unlock(pte_ptl);
  2284. if (unlikely(!isolated)) {
  2285. pte_unmap(pte);
  2286. spin_lock(pmd_ptl);
  2287. BUG_ON(!pmd_none(*pmd));
  2288. /*
  2289. * We can only use set_pmd_at when establishing
  2290. * hugepmds and never for establishing regular pmds that
  2291. * points to regular pagetables. Use pmd_populate for that
  2292. */
  2293. pmd_populate(mm, pmd, pmd_pgtable(_pmd));
  2294. spin_unlock(pmd_ptl);
  2295. anon_vma_unlock_write(vma->anon_vma);
  2296. goto out;
  2297. }
  2298. /*
  2299. * All pages are isolated and locked so anon_vma rmap
  2300. * can't run anymore.
  2301. */
  2302. anon_vma_unlock_write(vma->anon_vma);
  2303. __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
  2304. pte_unmap(pte);
  2305. __SetPageUptodate(new_page);
  2306. pgtable = pmd_pgtable(_pmd);
  2307. _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
  2308. _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
  2309. /*
  2310. * spin_lock() below is not the equivalent of smp_wmb(), so
  2311. * this is needed to avoid the copy_huge_page writes to become
  2312. * visible after the set_pmd_at() write.
  2313. */
  2314. smp_wmb();
  2315. spin_lock(pmd_ptl);
  2316. BUG_ON(!pmd_none(*pmd));
  2317. page_add_new_anon_rmap(new_page, vma, address);
  2318. mem_cgroup_commit_charge(new_page, memcg, false);
  2319. lru_cache_add_active_or_unevictable(new_page, vma);
  2320. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  2321. set_pmd_at(mm, address, pmd, _pmd);
  2322. update_mmu_cache_pmd(vma, address, pmd);
  2323. spin_unlock(pmd_ptl);
  2324. *hpage = NULL;
  2325. khugepaged_pages_collapsed++;
  2326. out_up_write:
  2327. up_write(&mm->mmap_sem);
  2328. return;
  2329. out:
  2330. mem_cgroup_cancel_charge(new_page, memcg);
  2331. goto out_up_write;
  2332. }
  2333. static int khugepaged_scan_pmd(struct mm_struct *mm,
  2334. struct vm_area_struct *vma,
  2335. unsigned long address,
  2336. struct page **hpage)
  2337. {
  2338. pmd_t *pmd;
  2339. pte_t *pte, *_pte;
  2340. int ret = 0, none_or_zero = 0;
  2341. struct page *page;
  2342. unsigned long _address;
  2343. spinlock_t *ptl;
  2344. int node = NUMA_NO_NODE;
  2345. bool writable = false, referenced = false;
  2346. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  2347. pmd = mm_find_pmd(mm, address);
  2348. if (!pmd)
  2349. goto out;
  2350. memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
  2351. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2352. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  2353. _pte++, _address += PAGE_SIZE) {
  2354. pte_t pteval = *_pte;
  2355. if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
  2356. if (!userfaultfd_armed(vma) &&
  2357. ++none_or_zero <= khugepaged_max_ptes_none)
  2358. continue;
  2359. else
  2360. goto out_unmap;
  2361. }
  2362. if (!pte_present(pteval))
  2363. goto out_unmap;
  2364. if (pte_write(pteval))
  2365. writable = true;
  2366. page = vm_normal_page(vma, _address, pteval);
  2367. if (unlikely(!page))
  2368. goto out_unmap;
  2369. /*
  2370. * Record which node the original page is from and save this
  2371. * information to khugepaged_node_load[].
  2372. * Khupaged will allocate hugepage from the node has the max
  2373. * hit record.
  2374. */
  2375. node = page_to_nid(page);
  2376. if (khugepaged_scan_abort(node))
  2377. goto out_unmap;
  2378. khugepaged_node_load[node]++;
  2379. VM_BUG_ON_PAGE(PageCompound(page), page);
  2380. if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
  2381. goto out_unmap;
  2382. /*
  2383. * cannot use mapcount: can't collapse if there's a gup pin.
  2384. * The page must only be referenced by the scanned process
  2385. * and page swap cache.
  2386. */
  2387. if (page_count(page) != 1 + !!PageSwapCache(page))
  2388. goto out_unmap;
  2389. if (pte_young(pteval) ||
  2390. page_is_young(page) || PageReferenced(page) ||
  2391. mmu_notifier_test_young(vma->vm_mm, address))
  2392. referenced = true;
  2393. }
  2394. if (referenced && writable)
  2395. ret = 1;
  2396. out_unmap:
  2397. pte_unmap_unlock(pte, ptl);
  2398. if (ret) {
  2399. node = khugepaged_find_target_node();
  2400. /* collapse_huge_page will return with the mmap_sem released */
  2401. collapse_huge_page(mm, address, hpage, vma, node);
  2402. }
  2403. out:
  2404. return ret;
  2405. }
  2406. static void collect_mm_slot(struct mm_slot *mm_slot)
  2407. {
  2408. struct mm_struct *mm = mm_slot->mm;
  2409. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2410. if (khugepaged_test_exit(mm)) {
  2411. /* free mm_slot */
  2412. hash_del(&mm_slot->hash);
  2413. list_del(&mm_slot->mm_node);
  2414. /*
  2415. * Not strictly needed because the mm exited already.
  2416. *
  2417. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  2418. */
  2419. /* khugepaged_mm_lock actually not necessary for the below */
  2420. free_mm_slot(mm_slot);
  2421. mmdrop(mm);
  2422. }
  2423. }
  2424. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  2425. struct page **hpage)
  2426. __releases(&khugepaged_mm_lock)
  2427. __acquires(&khugepaged_mm_lock)
  2428. {
  2429. struct mm_slot *mm_slot;
  2430. struct mm_struct *mm;
  2431. struct vm_area_struct *vma;
  2432. int progress = 0;
  2433. VM_BUG_ON(!pages);
  2434. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2435. if (khugepaged_scan.mm_slot)
  2436. mm_slot = khugepaged_scan.mm_slot;
  2437. else {
  2438. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  2439. struct mm_slot, mm_node);
  2440. khugepaged_scan.address = 0;
  2441. khugepaged_scan.mm_slot = mm_slot;
  2442. }
  2443. spin_unlock(&khugepaged_mm_lock);
  2444. mm = mm_slot->mm;
  2445. down_read(&mm->mmap_sem);
  2446. if (unlikely(khugepaged_test_exit(mm)))
  2447. vma = NULL;
  2448. else
  2449. vma = find_vma(mm, khugepaged_scan.address);
  2450. progress++;
  2451. for (; vma; vma = vma->vm_next) {
  2452. unsigned long hstart, hend;
  2453. cond_resched();
  2454. if (unlikely(khugepaged_test_exit(mm))) {
  2455. progress++;
  2456. break;
  2457. }
  2458. if (!hugepage_vma_check(vma)) {
  2459. skip:
  2460. progress++;
  2461. continue;
  2462. }
  2463. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  2464. hend = vma->vm_end & HPAGE_PMD_MASK;
  2465. if (hstart >= hend)
  2466. goto skip;
  2467. if (khugepaged_scan.address > hend)
  2468. goto skip;
  2469. if (khugepaged_scan.address < hstart)
  2470. khugepaged_scan.address = hstart;
  2471. VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  2472. while (khugepaged_scan.address < hend) {
  2473. int ret;
  2474. cond_resched();
  2475. if (unlikely(khugepaged_test_exit(mm)))
  2476. goto breakouterloop;
  2477. VM_BUG_ON(khugepaged_scan.address < hstart ||
  2478. khugepaged_scan.address + HPAGE_PMD_SIZE >
  2479. hend);
  2480. ret = khugepaged_scan_pmd(mm, vma,
  2481. khugepaged_scan.address,
  2482. hpage);
  2483. /* move to next address */
  2484. khugepaged_scan.address += HPAGE_PMD_SIZE;
  2485. progress += HPAGE_PMD_NR;
  2486. if (ret)
  2487. /* we released mmap_sem so break loop */
  2488. goto breakouterloop_mmap_sem;
  2489. if (progress >= pages)
  2490. goto breakouterloop;
  2491. }
  2492. }
  2493. breakouterloop:
  2494. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  2495. breakouterloop_mmap_sem:
  2496. spin_lock(&khugepaged_mm_lock);
  2497. VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  2498. /*
  2499. * Release the current mm_slot if this mm is about to die, or
  2500. * if we scanned all vmas of this mm.
  2501. */
  2502. if (khugepaged_test_exit(mm) || !vma) {
  2503. /*
  2504. * Make sure that if mm_users is reaching zero while
  2505. * khugepaged runs here, khugepaged_exit will find
  2506. * mm_slot not pointing to the exiting mm.
  2507. */
  2508. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  2509. khugepaged_scan.mm_slot = list_entry(
  2510. mm_slot->mm_node.next,
  2511. struct mm_slot, mm_node);
  2512. khugepaged_scan.address = 0;
  2513. } else {
  2514. khugepaged_scan.mm_slot = NULL;
  2515. khugepaged_full_scans++;
  2516. }
  2517. collect_mm_slot(mm_slot);
  2518. }
  2519. return progress;
  2520. }
  2521. static int khugepaged_has_work(void)
  2522. {
  2523. return !list_empty(&khugepaged_scan.mm_head) &&
  2524. khugepaged_enabled();
  2525. }
  2526. static int khugepaged_wait_event(void)
  2527. {
  2528. return !list_empty(&khugepaged_scan.mm_head) ||
  2529. kthread_should_stop();
  2530. }
  2531. static void khugepaged_do_scan(void)
  2532. {
  2533. struct page *hpage = NULL;
  2534. unsigned int progress = 0, pass_through_head = 0;
  2535. unsigned int pages = khugepaged_pages_to_scan;
  2536. bool wait = true;
  2537. barrier(); /* write khugepaged_pages_to_scan to local stack */
  2538. while (progress < pages) {
  2539. if (!khugepaged_prealloc_page(&hpage, &wait))
  2540. break;
  2541. cond_resched();
  2542. if (unlikely(kthread_should_stop() || try_to_freeze()))
  2543. break;
  2544. spin_lock(&khugepaged_mm_lock);
  2545. if (!khugepaged_scan.mm_slot)
  2546. pass_through_head++;
  2547. if (khugepaged_has_work() &&
  2548. pass_through_head < 2)
  2549. progress += khugepaged_scan_mm_slot(pages - progress,
  2550. &hpage);
  2551. else
  2552. progress = pages;
  2553. spin_unlock(&khugepaged_mm_lock);
  2554. }
  2555. if (!IS_ERR_OR_NULL(hpage))
  2556. put_page(hpage);
  2557. }
  2558. static void khugepaged_wait_work(void)
  2559. {
  2560. if (khugepaged_has_work()) {
  2561. if (!khugepaged_scan_sleep_millisecs)
  2562. return;
  2563. wait_event_freezable_timeout(khugepaged_wait,
  2564. kthread_should_stop(),
  2565. msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
  2566. return;
  2567. }
  2568. if (khugepaged_enabled())
  2569. wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
  2570. }
  2571. static int khugepaged(void *none)
  2572. {
  2573. struct mm_slot *mm_slot;
  2574. set_freezable();
  2575. set_user_nice(current, MAX_NICE);
  2576. while (!kthread_should_stop()) {
  2577. khugepaged_do_scan();
  2578. khugepaged_wait_work();
  2579. }
  2580. spin_lock(&khugepaged_mm_lock);
  2581. mm_slot = khugepaged_scan.mm_slot;
  2582. khugepaged_scan.mm_slot = NULL;
  2583. if (mm_slot)
  2584. collect_mm_slot(mm_slot);
  2585. spin_unlock(&khugepaged_mm_lock);
  2586. return 0;
  2587. }
  2588. static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
  2589. unsigned long haddr, pmd_t *pmd)
  2590. {
  2591. struct mm_struct *mm = vma->vm_mm;
  2592. pgtable_t pgtable;
  2593. pmd_t _pmd;
  2594. int i;
  2595. pmdp_huge_clear_flush_notify(vma, haddr, pmd);
  2596. /* leave pmd empty until pte is filled */
  2597. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  2598. pmd_populate(mm, &_pmd, pgtable);
  2599. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  2600. pte_t *pte, entry;
  2601. entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
  2602. entry = pte_mkspecial(entry);
  2603. pte = pte_offset_map(&_pmd, haddr);
  2604. VM_BUG_ON(!pte_none(*pte));
  2605. set_pte_at(mm, haddr, pte, entry);
  2606. pte_unmap(pte);
  2607. }
  2608. smp_wmb(); /* make pte visible before pmd */
  2609. pmd_populate(mm, pmd, pgtable);
  2610. put_huge_zero_page();
  2611. }
  2612. void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
  2613. pmd_t *pmd)
  2614. {
  2615. spinlock_t *ptl;
  2616. struct page *page = NULL;
  2617. struct mm_struct *mm = vma->vm_mm;
  2618. unsigned long haddr = address & HPAGE_PMD_MASK;
  2619. unsigned long mmun_start; /* For mmu_notifiers */
  2620. unsigned long mmun_end; /* For mmu_notifiers */
  2621. BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
  2622. mmun_start = haddr;
  2623. mmun_end = haddr + HPAGE_PMD_SIZE;
  2624. again:
  2625. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2626. ptl = pmd_lock(mm, pmd);
  2627. if (unlikely(!pmd_trans_huge(*pmd)))
  2628. goto unlock;
  2629. if (vma_is_dax(vma)) {
  2630. pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
  2631. if (is_huge_zero_pmd(_pmd))
  2632. put_huge_zero_page();
  2633. } else if (is_huge_zero_pmd(*pmd)) {
  2634. __split_huge_zero_page_pmd(vma, haddr, pmd);
  2635. } else {
  2636. page = pmd_page(*pmd);
  2637. VM_BUG_ON_PAGE(!page_count(page), page);
  2638. get_page(page);
  2639. }
  2640. unlock:
  2641. spin_unlock(ptl);
  2642. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2643. if (!page)
  2644. return;
  2645. split_huge_page(page);
  2646. put_page(page);
  2647. /*
  2648. * We don't always have down_write of mmap_sem here: a racing
  2649. * do_huge_pmd_wp_page() might have copied-on-write to another
  2650. * huge page before our split_huge_page() got the anon_vma lock.
  2651. */
  2652. if (unlikely(pmd_trans_huge(*pmd)))
  2653. goto again;
  2654. }
  2655. void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
  2656. pmd_t *pmd)
  2657. {
  2658. struct vm_area_struct *vma;
  2659. vma = find_vma(mm, address);
  2660. BUG_ON(vma == NULL);
  2661. split_huge_page_pmd(vma, address, pmd);
  2662. }
  2663. static void split_huge_page_address(struct mm_struct *mm,
  2664. unsigned long address)
  2665. {
  2666. pgd_t *pgd;
  2667. pud_t *pud;
  2668. pmd_t *pmd;
  2669. VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
  2670. pgd = pgd_offset(mm, address);
  2671. if (!pgd_present(*pgd))
  2672. return;
  2673. pud = pud_offset(pgd, address);
  2674. if (!pud_present(*pud))
  2675. return;
  2676. pmd = pmd_offset(pud, address);
  2677. if (!pmd_present(*pmd))
  2678. return;
  2679. /*
  2680. * Caller holds the mmap_sem write mode, so a huge pmd cannot
  2681. * materialize from under us.
  2682. */
  2683. split_huge_page_pmd_mm(mm, address, pmd);
  2684. }
  2685. void vma_adjust_trans_huge(struct vm_area_struct *vma,
  2686. unsigned long start,
  2687. unsigned long end,
  2688. long adjust_next)
  2689. {
  2690. /*
  2691. * If the new start address isn't hpage aligned and it could
  2692. * previously contain an hugepage: check if we need to split
  2693. * an huge pmd.
  2694. */
  2695. if (start & ~HPAGE_PMD_MASK &&
  2696. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2697. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2698. split_huge_page_address(vma->vm_mm, start);
  2699. /*
  2700. * If the new end address isn't hpage aligned and it could
  2701. * previously contain an hugepage: check if we need to split
  2702. * an huge pmd.
  2703. */
  2704. if (end & ~HPAGE_PMD_MASK &&
  2705. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2706. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2707. split_huge_page_address(vma->vm_mm, end);
  2708. /*
  2709. * If we're also updating the vma->vm_next->vm_start, if the new
  2710. * vm_next->vm_start isn't page aligned and it could previously
  2711. * contain an hugepage: check if we need to split an huge pmd.
  2712. */
  2713. if (adjust_next > 0) {
  2714. struct vm_area_struct *next = vma->vm_next;
  2715. unsigned long nstart = next->vm_start;
  2716. nstart += adjust_next << PAGE_SHIFT;
  2717. if (nstart & ~HPAGE_PMD_MASK &&
  2718. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2719. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2720. split_huge_page_address(next->vm_mm, nstart);
  2721. }
  2722. }