node.c 51 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132
  1. /*
  2. * fs/f2fs/node.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/mpage.h>
  14. #include <linux/backing-dev.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/pagevec.h>
  17. #include <linux/swap.h>
  18. #include "f2fs.h"
  19. #include "node.h"
  20. #include "segment.h"
  21. #include "trace.h"
  22. #include <trace/events/f2fs.h>
  23. #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
  24. static struct kmem_cache *nat_entry_slab;
  25. static struct kmem_cache *free_nid_slab;
  26. static struct kmem_cache *nat_entry_set_slab;
  27. bool available_free_memory(struct f2fs_sb_info *sbi, int type)
  28. {
  29. struct f2fs_nm_info *nm_i = NM_I(sbi);
  30. struct sysinfo val;
  31. unsigned long avail_ram;
  32. unsigned long mem_size = 0;
  33. bool res = false;
  34. si_meminfo(&val);
  35. /* only uses low memory */
  36. avail_ram = val.totalram - val.totalhigh;
  37. /*
  38. * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
  39. */
  40. if (type == FREE_NIDS) {
  41. mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >>
  42. PAGE_CACHE_SHIFT;
  43. res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  44. } else if (type == NAT_ENTRIES) {
  45. mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
  46. PAGE_CACHE_SHIFT;
  47. res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  48. } else if (type == DIRTY_DENTS) {
  49. if (sbi->sb->s_bdi->wb.dirty_exceeded)
  50. return false;
  51. mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
  52. res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  53. } else if (type == INO_ENTRIES) {
  54. int i;
  55. for (i = 0; i <= UPDATE_INO; i++)
  56. mem_size += (sbi->im[i].ino_num *
  57. sizeof(struct ino_entry)) >> PAGE_CACHE_SHIFT;
  58. res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  59. } else if (type == EXTENT_CACHE) {
  60. mem_size = (sbi->total_ext_tree * sizeof(struct extent_tree) +
  61. atomic_read(&sbi->total_ext_node) *
  62. sizeof(struct extent_node)) >> PAGE_CACHE_SHIFT;
  63. res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  64. } else {
  65. if (sbi->sb->s_bdi->wb.dirty_exceeded)
  66. return false;
  67. }
  68. return res;
  69. }
  70. static void clear_node_page_dirty(struct page *page)
  71. {
  72. struct address_space *mapping = page->mapping;
  73. unsigned int long flags;
  74. if (PageDirty(page)) {
  75. spin_lock_irqsave(&mapping->tree_lock, flags);
  76. radix_tree_tag_clear(&mapping->page_tree,
  77. page_index(page),
  78. PAGECACHE_TAG_DIRTY);
  79. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  80. clear_page_dirty_for_io(page);
  81. dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
  82. }
  83. ClearPageUptodate(page);
  84. }
  85. static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  86. {
  87. pgoff_t index = current_nat_addr(sbi, nid);
  88. return get_meta_page(sbi, index);
  89. }
  90. static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  91. {
  92. struct page *src_page;
  93. struct page *dst_page;
  94. pgoff_t src_off;
  95. pgoff_t dst_off;
  96. void *src_addr;
  97. void *dst_addr;
  98. struct f2fs_nm_info *nm_i = NM_I(sbi);
  99. src_off = current_nat_addr(sbi, nid);
  100. dst_off = next_nat_addr(sbi, src_off);
  101. /* get current nat block page with lock */
  102. src_page = get_meta_page(sbi, src_off);
  103. dst_page = grab_meta_page(sbi, dst_off);
  104. f2fs_bug_on(sbi, PageDirty(src_page));
  105. src_addr = page_address(src_page);
  106. dst_addr = page_address(dst_page);
  107. memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
  108. set_page_dirty(dst_page);
  109. f2fs_put_page(src_page, 1);
  110. set_to_next_nat(nm_i, nid);
  111. return dst_page;
  112. }
  113. static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
  114. {
  115. return radix_tree_lookup(&nm_i->nat_root, n);
  116. }
  117. static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
  118. nid_t start, unsigned int nr, struct nat_entry **ep)
  119. {
  120. return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
  121. }
  122. static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
  123. {
  124. list_del(&e->list);
  125. radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
  126. nm_i->nat_cnt--;
  127. kmem_cache_free(nat_entry_slab, e);
  128. }
  129. static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
  130. struct nat_entry *ne)
  131. {
  132. nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
  133. struct nat_entry_set *head;
  134. if (get_nat_flag(ne, IS_DIRTY))
  135. return;
  136. head = radix_tree_lookup(&nm_i->nat_set_root, set);
  137. if (!head) {
  138. head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
  139. INIT_LIST_HEAD(&head->entry_list);
  140. INIT_LIST_HEAD(&head->set_list);
  141. head->set = set;
  142. head->entry_cnt = 0;
  143. f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
  144. }
  145. list_move_tail(&ne->list, &head->entry_list);
  146. nm_i->dirty_nat_cnt++;
  147. head->entry_cnt++;
  148. set_nat_flag(ne, IS_DIRTY, true);
  149. }
  150. static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
  151. struct nat_entry *ne)
  152. {
  153. nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
  154. struct nat_entry_set *head;
  155. head = radix_tree_lookup(&nm_i->nat_set_root, set);
  156. if (head) {
  157. list_move_tail(&ne->list, &nm_i->nat_entries);
  158. set_nat_flag(ne, IS_DIRTY, false);
  159. head->entry_cnt--;
  160. nm_i->dirty_nat_cnt--;
  161. }
  162. }
  163. static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
  164. nid_t start, unsigned int nr, struct nat_entry_set **ep)
  165. {
  166. return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
  167. start, nr);
  168. }
  169. int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
  170. {
  171. struct f2fs_nm_info *nm_i = NM_I(sbi);
  172. struct nat_entry *e;
  173. bool need = false;
  174. down_read(&nm_i->nat_tree_lock);
  175. e = __lookup_nat_cache(nm_i, nid);
  176. if (e) {
  177. if (!get_nat_flag(e, IS_CHECKPOINTED) &&
  178. !get_nat_flag(e, HAS_FSYNCED_INODE))
  179. need = true;
  180. }
  181. up_read(&nm_i->nat_tree_lock);
  182. return need;
  183. }
  184. bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
  185. {
  186. struct f2fs_nm_info *nm_i = NM_I(sbi);
  187. struct nat_entry *e;
  188. bool is_cp = true;
  189. down_read(&nm_i->nat_tree_lock);
  190. e = __lookup_nat_cache(nm_i, nid);
  191. if (e && !get_nat_flag(e, IS_CHECKPOINTED))
  192. is_cp = false;
  193. up_read(&nm_i->nat_tree_lock);
  194. return is_cp;
  195. }
  196. bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
  197. {
  198. struct f2fs_nm_info *nm_i = NM_I(sbi);
  199. struct nat_entry *e;
  200. bool need_update = true;
  201. down_read(&nm_i->nat_tree_lock);
  202. e = __lookup_nat_cache(nm_i, ino);
  203. if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
  204. (get_nat_flag(e, IS_CHECKPOINTED) ||
  205. get_nat_flag(e, HAS_FSYNCED_INODE)))
  206. need_update = false;
  207. up_read(&nm_i->nat_tree_lock);
  208. return need_update;
  209. }
  210. static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
  211. {
  212. struct nat_entry *new;
  213. new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
  214. f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
  215. memset(new, 0, sizeof(struct nat_entry));
  216. nat_set_nid(new, nid);
  217. nat_reset_flag(new);
  218. list_add_tail(&new->list, &nm_i->nat_entries);
  219. nm_i->nat_cnt++;
  220. return new;
  221. }
  222. static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
  223. struct f2fs_nat_entry *ne)
  224. {
  225. struct nat_entry *e;
  226. down_write(&nm_i->nat_tree_lock);
  227. e = __lookup_nat_cache(nm_i, nid);
  228. if (!e) {
  229. e = grab_nat_entry(nm_i, nid);
  230. node_info_from_raw_nat(&e->ni, ne);
  231. }
  232. up_write(&nm_i->nat_tree_lock);
  233. }
  234. static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
  235. block_t new_blkaddr, bool fsync_done)
  236. {
  237. struct f2fs_nm_info *nm_i = NM_I(sbi);
  238. struct nat_entry *e;
  239. down_write(&nm_i->nat_tree_lock);
  240. e = __lookup_nat_cache(nm_i, ni->nid);
  241. if (!e) {
  242. e = grab_nat_entry(nm_i, ni->nid);
  243. copy_node_info(&e->ni, ni);
  244. f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
  245. } else if (new_blkaddr == NEW_ADDR) {
  246. /*
  247. * when nid is reallocated,
  248. * previous nat entry can be remained in nat cache.
  249. * So, reinitialize it with new information.
  250. */
  251. copy_node_info(&e->ni, ni);
  252. f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
  253. }
  254. /* sanity check */
  255. f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
  256. f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
  257. new_blkaddr == NULL_ADDR);
  258. f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
  259. new_blkaddr == NEW_ADDR);
  260. f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
  261. nat_get_blkaddr(e) != NULL_ADDR &&
  262. new_blkaddr == NEW_ADDR);
  263. /* increment version no as node is removed */
  264. if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
  265. unsigned char version = nat_get_version(e);
  266. nat_set_version(e, inc_node_version(version));
  267. /* in order to reuse the nid */
  268. if (nm_i->next_scan_nid > ni->nid)
  269. nm_i->next_scan_nid = ni->nid;
  270. }
  271. /* change address */
  272. nat_set_blkaddr(e, new_blkaddr);
  273. if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
  274. set_nat_flag(e, IS_CHECKPOINTED, false);
  275. __set_nat_cache_dirty(nm_i, e);
  276. /* update fsync_mark if its inode nat entry is still alive */
  277. if (ni->nid != ni->ino)
  278. e = __lookup_nat_cache(nm_i, ni->ino);
  279. if (e) {
  280. if (fsync_done && ni->nid == ni->ino)
  281. set_nat_flag(e, HAS_FSYNCED_INODE, true);
  282. set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
  283. }
  284. up_write(&nm_i->nat_tree_lock);
  285. }
  286. int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
  287. {
  288. struct f2fs_nm_info *nm_i = NM_I(sbi);
  289. int nr = nr_shrink;
  290. if (!down_write_trylock(&nm_i->nat_tree_lock))
  291. return 0;
  292. while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
  293. struct nat_entry *ne;
  294. ne = list_first_entry(&nm_i->nat_entries,
  295. struct nat_entry, list);
  296. __del_from_nat_cache(nm_i, ne);
  297. nr_shrink--;
  298. }
  299. up_write(&nm_i->nat_tree_lock);
  300. return nr - nr_shrink;
  301. }
  302. /*
  303. * This function always returns success
  304. */
  305. void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
  306. {
  307. struct f2fs_nm_info *nm_i = NM_I(sbi);
  308. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  309. struct f2fs_summary_block *sum = curseg->sum_blk;
  310. nid_t start_nid = START_NID(nid);
  311. struct f2fs_nat_block *nat_blk;
  312. struct page *page = NULL;
  313. struct f2fs_nat_entry ne;
  314. struct nat_entry *e;
  315. int i;
  316. ni->nid = nid;
  317. /* Check nat cache */
  318. down_read(&nm_i->nat_tree_lock);
  319. e = __lookup_nat_cache(nm_i, nid);
  320. if (e) {
  321. ni->ino = nat_get_ino(e);
  322. ni->blk_addr = nat_get_blkaddr(e);
  323. ni->version = nat_get_version(e);
  324. }
  325. up_read(&nm_i->nat_tree_lock);
  326. if (e)
  327. return;
  328. memset(&ne, 0, sizeof(struct f2fs_nat_entry));
  329. /* Check current segment summary */
  330. mutex_lock(&curseg->curseg_mutex);
  331. i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
  332. if (i >= 0) {
  333. ne = nat_in_journal(sum, i);
  334. node_info_from_raw_nat(ni, &ne);
  335. }
  336. mutex_unlock(&curseg->curseg_mutex);
  337. if (i >= 0)
  338. goto cache;
  339. /* Fill node_info from nat page */
  340. page = get_current_nat_page(sbi, start_nid);
  341. nat_blk = (struct f2fs_nat_block *)page_address(page);
  342. ne = nat_blk->entries[nid - start_nid];
  343. node_info_from_raw_nat(ni, &ne);
  344. f2fs_put_page(page, 1);
  345. cache:
  346. /* cache nat entry */
  347. cache_nat_entry(NM_I(sbi), nid, &ne);
  348. }
  349. /*
  350. * The maximum depth is four.
  351. * Offset[0] will have raw inode offset.
  352. */
  353. static int get_node_path(struct f2fs_inode_info *fi, long block,
  354. int offset[4], unsigned int noffset[4])
  355. {
  356. const long direct_index = ADDRS_PER_INODE(fi);
  357. const long direct_blks = ADDRS_PER_BLOCK;
  358. const long dptrs_per_blk = NIDS_PER_BLOCK;
  359. const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
  360. const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
  361. int n = 0;
  362. int level = 0;
  363. noffset[0] = 0;
  364. if (block < direct_index) {
  365. offset[n] = block;
  366. goto got;
  367. }
  368. block -= direct_index;
  369. if (block < direct_blks) {
  370. offset[n++] = NODE_DIR1_BLOCK;
  371. noffset[n] = 1;
  372. offset[n] = block;
  373. level = 1;
  374. goto got;
  375. }
  376. block -= direct_blks;
  377. if (block < direct_blks) {
  378. offset[n++] = NODE_DIR2_BLOCK;
  379. noffset[n] = 2;
  380. offset[n] = block;
  381. level = 1;
  382. goto got;
  383. }
  384. block -= direct_blks;
  385. if (block < indirect_blks) {
  386. offset[n++] = NODE_IND1_BLOCK;
  387. noffset[n] = 3;
  388. offset[n++] = block / direct_blks;
  389. noffset[n] = 4 + offset[n - 1];
  390. offset[n] = block % direct_blks;
  391. level = 2;
  392. goto got;
  393. }
  394. block -= indirect_blks;
  395. if (block < indirect_blks) {
  396. offset[n++] = NODE_IND2_BLOCK;
  397. noffset[n] = 4 + dptrs_per_blk;
  398. offset[n++] = block / direct_blks;
  399. noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
  400. offset[n] = block % direct_blks;
  401. level = 2;
  402. goto got;
  403. }
  404. block -= indirect_blks;
  405. if (block < dindirect_blks) {
  406. offset[n++] = NODE_DIND_BLOCK;
  407. noffset[n] = 5 + (dptrs_per_blk * 2);
  408. offset[n++] = block / indirect_blks;
  409. noffset[n] = 6 + (dptrs_per_blk * 2) +
  410. offset[n - 1] * (dptrs_per_blk + 1);
  411. offset[n++] = (block / direct_blks) % dptrs_per_blk;
  412. noffset[n] = 7 + (dptrs_per_blk * 2) +
  413. offset[n - 2] * (dptrs_per_blk + 1) +
  414. offset[n - 1];
  415. offset[n] = block % direct_blks;
  416. level = 3;
  417. goto got;
  418. } else {
  419. BUG();
  420. }
  421. got:
  422. return level;
  423. }
  424. /*
  425. * Caller should call f2fs_put_dnode(dn).
  426. * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
  427. * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
  428. * In the case of RDONLY_NODE, we don't need to care about mutex.
  429. */
  430. int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
  431. {
  432. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  433. struct page *npage[4];
  434. struct page *parent = NULL;
  435. int offset[4];
  436. unsigned int noffset[4];
  437. nid_t nids[4];
  438. int level, i;
  439. int err = 0;
  440. level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
  441. nids[0] = dn->inode->i_ino;
  442. npage[0] = dn->inode_page;
  443. if (!npage[0]) {
  444. npage[0] = get_node_page(sbi, nids[0]);
  445. if (IS_ERR(npage[0]))
  446. return PTR_ERR(npage[0]);
  447. }
  448. /* if inline_data is set, should not report any block indices */
  449. if (f2fs_has_inline_data(dn->inode) && index) {
  450. err = -ENOENT;
  451. f2fs_put_page(npage[0], 1);
  452. goto release_out;
  453. }
  454. parent = npage[0];
  455. if (level != 0)
  456. nids[1] = get_nid(parent, offset[0], true);
  457. dn->inode_page = npage[0];
  458. dn->inode_page_locked = true;
  459. /* get indirect or direct nodes */
  460. for (i = 1; i <= level; i++) {
  461. bool done = false;
  462. if (!nids[i] && mode == ALLOC_NODE) {
  463. /* alloc new node */
  464. if (!alloc_nid(sbi, &(nids[i]))) {
  465. err = -ENOSPC;
  466. goto release_pages;
  467. }
  468. dn->nid = nids[i];
  469. npage[i] = new_node_page(dn, noffset[i], NULL);
  470. if (IS_ERR(npage[i])) {
  471. alloc_nid_failed(sbi, nids[i]);
  472. err = PTR_ERR(npage[i]);
  473. goto release_pages;
  474. }
  475. set_nid(parent, offset[i - 1], nids[i], i == 1);
  476. alloc_nid_done(sbi, nids[i]);
  477. done = true;
  478. } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
  479. npage[i] = get_node_page_ra(parent, offset[i - 1]);
  480. if (IS_ERR(npage[i])) {
  481. err = PTR_ERR(npage[i]);
  482. goto release_pages;
  483. }
  484. done = true;
  485. }
  486. if (i == 1) {
  487. dn->inode_page_locked = false;
  488. unlock_page(parent);
  489. } else {
  490. f2fs_put_page(parent, 1);
  491. }
  492. if (!done) {
  493. npage[i] = get_node_page(sbi, nids[i]);
  494. if (IS_ERR(npage[i])) {
  495. err = PTR_ERR(npage[i]);
  496. f2fs_put_page(npage[0], 0);
  497. goto release_out;
  498. }
  499. }
  500. if (i < level) {
  501. parent = npage[i];
  502. nids[i + 1] = get_nid(parent, offset[i], false);
  503. }
  504. }
  505. dn->nid = nids[level];
  506. dn->ofs_in_node = offset[level];
  507. dn->node_page = npage[level];
  508. dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
  509. return 0;
  510. release_pages:
  511. f2fs_put_page(parent, 1);
  512. if (i > 1)
  513. f2fs_put_page(npage[0], 0);
  514. release_out:
  515. dn->inode_page = NULL;
  516. dn->node_page = NULL;
  517. return err;
  518. }
  519. static void truncate_node(struct dnode_of_data *dn)
  520. {
  521. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  522. struct node_info ni;
  523. get_node_info(sbi, dn->nid, &ni);
  524. if (dn->inode->i_blocks == 0) {
  525. f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
  526. goto invalidate;
  527. }
  528. f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
  529. /* Deallocate node address */
  530. invalidate_blocks(sbi, ni.blk_addr);
  531. dec_valid_node_count(sbi, dn->inode);
  532. set_node_addr(sbi, &ni, NULL_ADDR, false);
  533. if (dn->nid == dn->inode->i_ino) {
  534. remove_orphan_inode(sbi, dn->nid);
  535. dec_valid_inode_count(sbi);
  536. } else {
  537. sync_inode_page(dn);
  538. }
  539. invalidate:
  540. clear_node_page_dirty(dn->node_page);
  541. set_sbi_flag(sbi, SBI_IS_DIRTY);
  542. f2fs_put_page(dn->node_page, 1);
  543. invalidate_mapping_pages(NODE_MAPPING(sbi),
  544. dn->node_page->index, dn->node_page->index);
  545. dn->node_page = NULL;
  546. trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
  547. }
  548. static int truncate_dnode(struct dnode_of_data *dn)
  549. {
  550. struct page *page;
  551. if (dn->nid == 0)
  552. return 1;
  553. /* get direct node */
  554. page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
  555. if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
  556. return 1;
  557. else if (IS_ERR(page))
  558. return PTR_ERR(page);
  559. /* Make dnode_of_data for parameter */
  560. dn->node_page = page;
  561. dn->ofs_in_node = 0;
  562. truncate_data_blocks(dn);
  563. truncate_node(dn);
  564. return 1;
  565. }
  566. static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
  567. int ofs, int depth)
  568. {
  569. struct dnode_of_data rdn = *dn;
  570. struct page *page;
  571. struct f2fs_node *rn;
  572. nid_t child_nid;
  573. unsigned int child_nofs;
  574. int freed = 0;
  575. int i, ret;
  576. if (dn->nid == 0)
  577. return NIDS_PER_BLOCK + 1;
  578. trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
  579. page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
  580. if (IS_ERR(page)) {
  581. trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
  582. return PTR_ERR(page);
  583. }
  584. rn = F2FS_NODE(page);
  585. if (depth < 3) {
  586. for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
  587. child_nid = le32_to_cpu(rn->in.nid[i]);
  588. if (child_nid == 0)
  589. continue;
  590. rdn.nid = child_nid;
  591. ret = truncate_dnode(&rdn);
  592. if (ret < 0)
  593. goto out_err;
  594. set_nid(page, i, 0, false);
  595. }
  596. } else {
  597. child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
  598. for (i = ofs; i < NIDS_PER_BLOCK; i++) {
  599. child_nid = le32_to_cpu(rn->in.nid[i]);
  600. if (child_nid == 0) {
  601. child_nofs += NIDS_PER_BLOCK + 1;
  602. continue;
  603. }
  604. rdn.nid = child_nid;
  605. ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
  606. if (ret == (NIDS_PER_BLOCK + 1)) {
  607. set_nid(page, i, 0, false);
  608. child_nofs += ret;
  609. } else if (ret < 0 && ret != -ENOENT) {
  610. goto out_err;
  611. }
  612. }
  613. freed = child_nofs;
  614. }
  615. if (!ofs) {
  616. /* remove current indirect node */
  617. dn->node_page = page;
  618. truncate_node(dn);
  619. freed++;
  620. } else {
  621. f2fs_put_page(page, 1);
  622. }
  623. trace_f2fs_truncate_nodes_exit(dn->inode, freed);
  624. return freed;
  625. out_err:
  626. f2fs_put_page(page, 1);
  627. trace_f2fs_truncate_nodes_exit(dn->inode, ret);
  628. return ret;
  629. }
  630. static int truncate_partial_nodes(struct dnode_of_data *dn,
  631. struct f2fs_inode *ri, int *offset, int depth)
  632. {
  633. struct page *pages[2];
  634. nid_t nid[3];
  635. nid_t child_nid;
  636. int err = 0;
  637. int i;
  638. int idx = depth - 2;
  639. nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
  640. if (!nid[0])
  641. return 0;
  642. /* get indirect nodes in the path */
  643. for (i = 0; i < idx + 1; i++) {
  644. /* reference count'll be increased */
  645. pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
  646. if (IS_ERR(pages[i])) {
  647. err = PTR_ERR(pages[i]);
  648. idx = i - 1;
  649. goto fail;
  650. }
  651. nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
  652. }
  653. /* free direct nodes linked to a partial indirect node */
  654. for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
  655. child_nid = get_nid(pages[idx], i, false);
  656. if (!child_nid)
  657. continue;
  658. dn->nid = child_nid;
  659. err = truncate_dnode(dn);
  660. if (err < 0)
  661. goto fail;
  662. set_nid(pages[idx], i, 0, false);
  663. }
  664. if (offset[idx + 1] == 0) {
  665. dn->node_page = pages[idx];
  666. dn->nid = nid[idx];
  667. truncate_node(dn);
  668. } else {
  669. f2fs_put_page(pages[idx], 1);
  670. }
  671. offset[idx]++;
  672. offset[idx + 1] = 0;
  673. idx--;
  674. fail:
  675. for (i = idx; i >= 0; i--)
  676. f2fs_put_page(pages[i], 1);
  677. trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
  678. return err;
  679. }
  680. /*
  681. * All the block addresses of data and nodes should be nullified.
  682. */
  683. int truncate_inode_blocks(struct inode *inode, pgoff_t from)
  684. {
  685. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  686. int err = 0, cont = 1;
  687. int level, offset[4], noffset[4];
  688. unsigned int nofs = 0;
  689. struct f2fs_inode *ri;
  690. struct dnode_of_data dn;
  691. struct page *page;
  692. trace_f2fs_truncate_inode_blocks_enter(inode, from);
  693. level = get_node_path(F2FS_I(inode), from, offset, noffset);
  694. restart:
  695. page = get_node_page(sbi, inode->i_ino);
  696. if (IS_ERR(page)) {
  697. trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
  698. return PTR_ERR(page);
  699. }
  700. set_new_dnode(&dn, inode, page, NULL, 0);
  701. unlock_page(page);
  702. ri = F2FS_INODE(page);
  703. switch (level) {
  704. case 0:
  705. case 1:
  706. nofs = noffset[1];
  707. break;
  708. case 2:
  709. nofs = noffset[1];
  710. if (!offset[level - 1])
  711. goto skip_partial;
  712. err = truncate_partial_nodes(&dn, ri, offset, level);
  713. if (err < 0 && err != -ENOENT)
  714. goto fail;
  715. nofs += 1 + NIDS_PER_BLOCK;
  716. break;
  717. case 3:
  718. nofs = 5 + 2 * NIDS_PER_BLOCK;
  719. if (!offset[level - 1])
  720. goto skip_partial;
  721. err = truncate_partial_nodes(&dn, ri, offset, level);
  722. if (err < 0 && err != -ENOENT)
  723. goto fail;
  724. break;
  725. default:
  726. BUG();
  727. }
  728. skip_partial:
  729. while (cont) {
  730. dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
  731. switch (offset[0]) {
  732. case NODE_DIR1_BLOCK:
  733. case NODE_DIR2_BLOCK:
  734. err = truncate_dnode(&dn);
  735. break;
  736. case NODE_IND1_BLOCK:
  737. case NODE_IND2_BLOCK:
  738. err = truncate_nodes(&dn, nofs, offset[1], 2);
  739. break;
  740. case NODE_DIND_BLOCK:
  741. err = truncate_nodes(&dn, nofs, offset[1], 3);
  742. cont = 0;
  743. break;
  744. default:
  745. BUG();
  746. }
  747. if (err < 0 && err != -ENOENT)
  748. goto fail;
  749. if (offset[1] == 0 &&
  750. ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
  751. lock_page(page);
  752. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  753. f2fs_put_page(page, 1);
  754. goto restart;
  755. }
  756. f2fs_wait_on_page_writeback(page, NODE);
  757. ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
  758. set_page_dirty(page);
  759. unlock_page(page);
  760. }
  761. offset[1] = 0;
  762. offset[0]++;
  763. nofs += err;
  764. }
  765. fail:
  766. f2fs_put_page(page, 0);
  767. trace_f2fs_truncate_inode_blocks_exit(inode, err);
  768. return err > 0 ? 0 : err;
  769. }
  770. int truncate_xattr_node(struct inode *inode, struct page *page)
  771. {
  772. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  773. nid_t nid = F2FS_I(inode)->i_xattr_nid;
  774. struct dnode_of_data dn;
  775. struct page *npage;
  776. if (!nid)
  777. return 0;
  778. npage = get_node_page(sbi, nid);
  779. if (IS_ERR(npage))
  780. return PTR_ERR(npage);
  781. F2FS_I(inode)->i_xattr_nid = 0;
  782. /* need to do checkpoint during fsync */
  783. F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
  784. set_new_dnode(&dn, inode, page, npage, nid);
  785. if (page)
  786. dn.inode_page_locked = true;
  787. truncate_node(&dn);
  788. return 0;
  789. }
  790. /*
  791. * Caller should grab and release a rwsem by calling f2fs_lock_op() and
  792. * f2fs_unlock_op().
  793. */
  794. int remove_inode_page(struct inode *inode)
  795. {
  796. struct dnode_of_data dn;
  797. int err;
  798. set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
  799. err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
  800. if (err)
  801. return err;
  802. err = truncate_xattr_node(inode, dn.inode_page);
  803. if (err) {
  804. f2fs_put_dnode(&dn);
  805. return err;
  806. }
  807. /* remove potential inline_data blocks */
  808. if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  809. S_ISLNK(inode->i_mode))
  810. truncate_data_blocks_range(&dn, 1);
  811. /* 0 is possible, after f2fs_new_inode() has failed */
  812. f2fs_bug_on(F2FS_I_SB(inode),
  813. inode->i_blocks != 0 && inode->i_blocks != 1);
  814. /* will put inode & node pages */
  815. truncate_node(&dn);
  816. return 0;
  817. }
  818. struct page *new_inode_page(struct inode *inode)
  819. {
  820. struct dnode_of_data dn;
  821. /* allocate inode page for new inode */
  822. set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
  823. /* caller should f2fs_put_page(page, 1); */
  824. return new_node_page(&dn, 0, NULL);
  825. }
  826. struct page *new_node_page(struct dnode_of_data *dn,
  827. unsigned int ofs, struct page *ipage)
  828. {
  829. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  830. struct node_info old_ni, new_ni;
  831. struct page *page;
  832. int err;
  833. if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
  834. return ERR_PTR(-EPERM);
  835. page = grab_cache_page(NODE_MAPPING(sbi), dn->nid);
  836. if (!page)
  837. return ERR_PTR(-ENOMEM);
  838. if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
  839. err = -ENOSPC;
  840. goto fail;
  841. }
  842. get_node_info(sbi, dn->nid, &old_ni);
  843. /* Reinitialize old_ni with new node page */
  844. f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
  845. new_ni = old_ni;
  846. new_ni.ino = dn->inode->i_ino;
  847. set_node_addr(sbi, &new_ni, NEW_ADDR, false);
  848. f2fs_wait_on_page_writeback(page, NODE);
  849. fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
  850. set_cold_node(dn->inode, page);
  851. SetPageUptodate(page);
  852. set_page_dirty(page);
  853. if (f2fs_has_xattr_block(ofs))
  854. F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
  855. dn->node_page = page;
  856. if (ipage)
  857. update_inode(dn->inode, ipage);
  858. else
  859. sync_inode_page(dn);
  860. if (ofs == 0)
  861. inc_valid_inode_count(sbi);
  862. return page;
  863. fail:
  864. clear_node_page_dirty(page);
  865. f2fs_put_page(page, 1);
  866. return ERR_PTR(err);
  867. }
  868. /*
  869. * Caller should do after getting the following values.
  870. * 0: f2fs_put_page(page, 0)
  871. * LOCKED_PAGE or error: f2fs_put_page(page, 1)
  872. */
  873. static int read_node_page(struct page *page, int rw)
  874. {
  875. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  876. struct node_info ni;
  877. struct f2fs_io_info fio = {
  878. .sbi = sbi,
  879. .type = NODE,
  880. .rw = rw,
  881. .page = page,
  882. .encrypted_page = NULL,
  883. };
  884. get_node_info(sbi, page->index, &ni);
  885. if (unlikely(ni.blk_addr == NULL_ADDR)) {
  886. ClearPageUptodate(page);
  887. return -ENOENT;
  888. }
  889. if (PageUptodate(page))
  890. return LOCKED_PAGE;
  891. fio.blk_addr = ni.blk_addr;
  892. return f2fs_submit_page_bio(&fio);
  893. }
  894. /*
  895. * Readahead a node page
  896. */
  897. void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
  898. {
  899. struct page *apage;
  900. int err;
  901. apage = find_get_page(NODE_MAPPING(sbi), nid);
  902. if (apage && PageUptodate(apage)) {
  903. f2fs_put_page(apage, 0);
  904. return;
  905. }
  906. f2fs_put_page(apage, 0);
  907. apage = grab_cache_page(NODE_MAPPING(sbi), nid);
  908. if (!apage)
  909. return;
  910. err = read_node_page(apage, READA);
  911. f2fs_put_page(apage, err ? 1 : 0);
  912. }
  913. struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
  914. {
  915. struct page *page;
  916. int err;
  917. repeat:
  918. page = grab_cache_page(NODE_MAPPING(sbi), nid);
  919. if (!page)
  920. return ERR_PTR(-ENOMEM);
  921. err = read_node_page(page, READ_SYNC);
  922. if (err < 0) {
  923. f2fs_put_page(page, 1);
  924. return ERR_PTR(err);
  925. } else if (err != LOCKED_PAGE) {
  926. lock_page(page);
  927. }
  928. if (unlikely(!PageUptodate(page) || nid != nid_of_node(page))) {
  929. ClearPageUptodate(page);
  930. f2fs_put_page(page, 1);
  931. return ERR_PTR(-EIO);
  932. }
  933. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  934. f2fs_put_page(page, 1);
  935. goto repeat;
  936. }
  937. return page;
  938. }
  939. /*
  940. * Return a locked page for the desired node page.
  941. * And, readahead MAX_RA_NODE number of node pages.
  942. */
  943. struct page *get_node_page_ra(struct page *parent, int start)
  944. {
  945. struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
  946. struct blk_plug plug;
  947. struct page *page;
  948. int err, i, end;
  949. nid_t nid;
  950. /* First, try getting the desired direct node. */
  951. nid = get_nid(parent, start, false);
  952. if (!nid)
  953. return ERR_PTR(-ENOENT);
  954. repeat:
  955. page = grab_cache_page(NODE_MAPPING(sbi), nid);
  956. if (!page)
  957. return ERR_PTR(-ENOMEM);
  958. err = read_node_page(page, READ_SYNC);
  959. if (err < 0) {
  960. f2fs_put_page(page, 1);
  961. return ERR_PTR(err);
  962. } else if (err == LOCKED_PAGE) {
  963. goto page_hit;
  964. }
  965. blk_start_plug(&plug);
  966. /* Then, try readahead for siblings of the desired node */
  967. end = start + MAX_RA_NODE;
  968. end = min(end, NIDS_PER_BLOCK);
  969. for (i = start + 1; i < end; i++) {
  970. nid = get_nid(parent, i, false);
  971. if (!nid)
  972. continue;
  973. ra_node_page(sbi, nid);
  974. }
  975. blk_finish_plug(&plug);
  976. lock_page(page);
  977. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  978. f2fs_put_page(page, 1);
  979. goto repeat;
  980. }
  981. page_hit:
  982. if (unlikely(!PageUptodate(page))) {
  983. f2fs_put_page(page, 1);
  984. return ERR_PTR(-EIO);
  985. }
  986. return page;
  987. }
  988. void sync_inode_page(struct dnode_of_data *dn)
  989. {
  990. if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
  991. update_inode(dn->inode, dn->node_page);
  992. } else if (dn->inode_page) {
  993. if (!dn->inode_page_locked)
  994. lock_page(dn->inode_page);
  995. update_inode(dn->inode, dn->inode_page);
  996. if (!dn->inode_page_locked)
  997. unlock_page(dn->inode_page);
  998. } else {
  999. update_inode_page(dn->inode);
  1000. }
  1001. }
  1002. int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
  1003. struct writeback_control *wbc)
  1004. {
  1005. pgoff_t index, end;
  1006. struct pagevec pvec;
  1007. int step = ino ? 2 : 0;
  1008. int nwritten = 0, wrote = 0;
  1009. pagevec_init(&pvec, 0);
  1010. next_step:
  1011. index = 0;
  1012. end = LONG_MAX;
  1013. while (index <= end) {
  1014. int i, nr_pages;
  1015. nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
  1016. PAGECACHE_TAG_DIRTY,
  1017. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  1018. if (nr_pages == 0)
  1019. break;
  1020. for (i = 0; i < nr_pages; i++) {
  1021. struct page *page = pvec.pages[i];
  1022. /*
  1023. * flushing sequence with step:
  1024. * 0. indirect nodes
  1025. * 1. dentry dnodes
  1026. * 2. file dnodes
  1027. */
  1028. if (step == 0 && IS_DNODE(page))
  1029. continue;
  1030. if (step == 1 && (!IS_DNODE(page) ||
  1031. is_cold_node(page)))
  1032. continue;
  1033. if (step == 2 && (!IS_DNODE(page) ||
  1034. !is_cold_node(page)))
  1035. continue;
  1036. /*
  1037. * If an fsync mode,
  1038. * we should not skip writing node pages.
  1039. */
  1040. if (ino && ino_of_node(page) == ino)
  1041. lock_page(page);
  1042. else if (!trylock_page(page))
  1043. continue;
  1044. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  1045. continue_unlock:
  1046. unlock_page(page);
  1047. continue;
  1048. }
  1049. if (ino && ino_of_node(page) != ino)
  1050. goto continue_unlock;
  1051. if (!PageDirty(page)) {
  1052. /* someone wrote it for us */
  1053. goto continue_unlock;
  1054. }
  1055. if (!clear_page_dirty_for_io(page))
  1056. goto continue_unlock;
  1057. /* called by fsync() */
  1058. if (ino && IS_DNODE(page)) {
  1059. set_fsync_mark(page, 1);
  1060. if (IS_INODE(page))
  1061. set_dentry_mark(page,
  1062. need_dentry_mark(sbi, ino));
  1063. nwritten++;
  1064. } else {
  1065. set_fsync_mark(page, 0);
  1066. set_dentry_mark(page, 0);
  1067. }
  1068. if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
  1069. unlock_page(page);
  1070. else
  1071. wrote++;
  1072. if (--wbc->nr_to_write == 0)
  1073. break;
  1074. }
  1075. pagevec_release(&pvec);
  1076. cond_resched();
  1077. if (wbc->nr_to_write == 0) {
  1078. step = 2;
  1079. break;
  1080. }
  1081. }
  1082. if (step < 2) {
  1083. step++;
  1084. goto next_step;
  1085. }
  1086. if (wrote)
  1087. f2fs_submit_merged_bio(sbi, NODE, WRITE);
  1088. return nwritten;
  1089. }
  1090. int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
  1091. {
  1092. pgoff_t index = 0, end = LONG_MAX;
  1093. struct pagevec pvec;
  1094. int ret2 = 0, ret = 0;
  1095. pagevec_init(&pvec, 0);
  1096. while (index <= end) {
  1097. int i, nr_pages;
  1098. nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
  1099. PAGECACHE_TAG_WRITEBACK,
  1100. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  1101. if (nr_pages == 0)
  1102. break;
  1103. for (i = 0; i < nr_pages; i++) {
  1104. struct page *page = pvec.pages[i];
  1105. /* until radix tree lookup accepts end_index */
  1106. if (unlikely(page->index > end))
  1107. continue;
  1108. if (ino && ino_of_node(page) == ino) {
  1109. f2fs_wait_on_page_writeback(page, NODE);
  1110. if (TestClearPageError(page))
  1111. ret = -EIO;
  1112. }
  1113. }
  1114. pagevec_release(&pvec);
  1115. cond_resched();
  1116. }
  1117. if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
  1118. ret2 = -ENOSPC;
  1119. if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
  1120. ret2 = -EIO;
  1121. if (!ret)
  1122. ret = ret2;
  1123. return ret;
  1124. }
  1125. static int f2fs_write_node_page(struct page *page,
  1126. struct writeback_control *wbc)
  1127. {
  1128. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  1129. nid_t nid;
  1130. struct node_info ni;
  1131. struct f2fs_io_info fio = {
  1132. .sbi = sbi,
  1133. .type = NODE,
  1134. .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
  1135. .page = page,
  1136. .encrypted_page = NULL,
  1137. };
  1138. trace_f2fs_writepage(page, NODE);
  1139. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  1140. goto redirty_out;
  1141. if (unlikely(f2fs_cp_error(sbi)))
  1142. goto redirty_out;
  1143. f2fs_wait_on_page_writeback(page, NODE);
  1144. /* get old block addr of this node page */
  1145. nid = nid_of_node(page);
  1146. f2fs_bug_on(sbi, page->index != nid);
  1147. get_node_info(sbi, nid, &ni);
  1148. /* This page is already truncated */
  1149. if (unlikely(ni.blk_addr == NULL_ADDR)) {
  1150. ClearPageUptodate(page);
  1151. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1152. unlock_page(page);
  1153. return 0;
  1154. }
  1155. if (wbc->for_reclaim) {
  1156. if (!down_read_trylock(&sbi->node_write))
  1157. goto redirty_out;
  1158. } else {
  1159. down_read(&sbi->node_write);
  1160. }
  1161. set_page_writeback(page);
  1162. fio.blk_addr = ni.blk_addr;
  1163. write_node_page(nid, &fio);
  1164. set_node_addr(sbi, &ni, fio.blk_addr, is_fsync_dnode(page));
  1165. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1166. up_read(&sbi->node_write);
  1167. unlock_page(page);
  1168. if (wbc->for_reclaim)
  1169. f2fs_submit_merged_bio(sbi, NODE, WRITE);
  1170. return 0;
  1171. redirty_out:
  1172. redirty_page_for_writepage(wbc, page);
  1173. return AOP_WRITEPAGE_ACTIVATE;
  1174. }
  1175. static int f2fs_write_node_pages(struct address_space *mapping,
  1176. struct writeback_control *wbc)
  1177. {
  1178. struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
  1179. long diff;
  1180. trace_f2fs_writepages(mapping->host, wbc, NODE);
  1181. /* balancing f2fs's metadata in background */
  1182. f2fs_balance_fs_bg(sbi);
  1183. /* collect a number of dirty node pages and write together */
  1184. if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
  1185. goto skip_write;
  1186. diff = nr_pages_to_write(sbi, NODE, wbc);
  1187. wbc->sync_mode = WB_SYNC_NONE;
  1188. sync_node_pages(sbi, 0, wbc);
  1189. wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
  1190. return 0;
  1191. skip_write:
  1192. wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
  1193. return 0;
  1194. }
  1195. static int f2fs_set_node_page_dirty(struct page *page)
  1196. {
  1197. trace_f2fs_set_page_dirty(page, NODE);
  1198. SetPageUptodate(page);
  1199. if (!PageDirty(page)) {
  1200. __set_page_dirty_nobuffers(page);
  1201. inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
  1202. SetPagePrivate(page);
  1203. f2fs_trace_pid(page);
  1204. return 1;
  1205. }
  1206. return 0;
  1207. }
  1208. /*
  1209. * Structure of the f2fs node operations
  1210. */
  1211. const struct address_space_operations f2fs_node_aops = {
  1212. .writepage = f2fs_write_node_page,
  1213. .writepages = f2fs_write_node_pages,
  1214. .set_page_dirty = f2fs_set_node_page_dirty,
  1215. .invalidatepage = f2fs_invalidate_page,
  1216. .releasepage = f2fs_release_page,
  1217. };
  1218. static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
  1219. nid_t n)
  1220. {
  1221. return radix_tree_lookup(&nm_i->free_nid_root, n);
  1222. }
  1223. static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
  1224. struct free_nid *i)
  1225. {
  1226. list_del(&i->list);
  1227. radix_tree_delete(&nm_i->free_nid_root, i->nid);
  1228. }
  1229. static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
  1230. {
  1231. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1232. struct free_nid *i;
  1233. struct nat_entry *ne;
  1234. bool allocated = false;
  1235. if (!available_free_memory(sbi, FREE_NIDS))
  1236. return -1;
  1237. /* 0 nid should not be used */
  1238. if (unlikely(nid == 0))
  1239. return 0;
  1240. if (build) {
  1241. /* do not add allocated nids */
  1242. down_read(&nm_i->nat_tree_lock);
  1243. ne = __lookup_nat_cache(nm_i, nid);
  1244. if (ne &&
  1245. (!get_nat_flag(ne, IS_CHECKPOINTED) ||
  1246. nat_get_blkaddr(ne) != NULL_ADDR))
  1247. allocated = true;
  1248. up_read(&nm_i->nat_tree_lock);
  1249. if (allocated)
  1250. return 0;
  1251. }
  1252. i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
  1253. i->nid = nid;
  1254. i->state = NID_NEW;
  1255. if (radix_tree_preload(GFP_NOFS)) {
  1256. kmem_cache_free(free_nid_slab, i);
  1257. return 0;
  1258. }
  1259. spin_lock(&nm_i->free_nid_list_lock);
  1260. if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
  1261. spin_unlock(&nm_i->free_nid_list_lock);
  1262. radix_tree_preload_end();
  1263. kmem_cache_free(free_nid_slab, i);
  1264. return 0;
  1265. }
  1266. list_add_tail(&i->list, &nm_i->free_nid_list);
  1267. nm_i->fcnt++;
  1268. spin_unlock(&nm_i->free_nid_list_lock);
  1269. radix_tree_preload_end();
  1270. return 1;
  1271. }
  1272. static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
  1273. {
  1274. struct free_nid *i;
  1275. bool need_free = false;
  1276. spin_lock(&nm_i->free_nid_list_lock);
  1277. i = __lookup_free_nid_list(nm_i, nid);
  1278. if (i && i->state == NID_NEW) {
  1279. __del_from_free_nid_list(nm_i, i);
  1280. nm_i->fcnt--;
  1281. need_free = true;
  1282. }
  1283. spin_unlock(&nm_i->free_nid_list_lock);
  1284. if (need_free)
  1285. kmem_cache_free(free_nid_slab, i);
  1286. }
  1287. static void scan_nat_page(struct f2fs_sb_info *sbi,
  1288. struct page *nat_page, nid_t start_nid)
  1289. {
  1290. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1291. struct f2fs_nat_block *nat_blk = page_address(nat_page);
  1292. block_t blk_addr;
  1293. int i;
  1294. i = start_nid % NAT_ENTRY_PER_BLOCK;
  1295. for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
  1296. if (unlikely(start_nid >= nm_i->max_nid))
  1297. break;
  1298. blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
  1299. f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
  1300. if (blk_addr == NULL_ADDR) {
  1301. if (add_free_nid(sbi, start_nid, true) < 0)
  1302. break;
  1303. }
  1304. }
  1305. }
  1306. static void build_free_nids(struct f2fs_sb_info *sbi)
  1307. {
  1308. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1309. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1310. struct f2fs_summary_block *sum = curseg->sum_blk;
  1311. int i = 0;
  1312. nid_t nid = nm_i->next_scan_nid;
  1313. /* Enough entries */
  1314. if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
  1315. return;
  1316. /* readahead nat pages to be scanned */
  1317. ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, META_NAT);
  1318. while (1) {
  1319. struct page *page = get_current_nat_page(sbi, nid);
  1320. scan_nat_page(sbi, page, nid);
  1321. f2fs_put_page(page, 1);
  1322. nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
  1323. if (unlikely(nid >= nm_i->max_nid))
  1324. nid = 0;
  1325. if (++i >= FREE_NID_PAGES)
  1326. break;
  1327. }
  1328. /* go to the next free nat pages to find free nids abundantly */
  1329. nm_i->next_scan_nid = nid;
  1330. /* find free nids from current sum_pages */
  1331. mutex_lock(&curseg->curseg_mutex);
  1332. for (i = 0; i < nats_in_cursum(sum); i++) {
  1333. block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
  1334. nid = le32_to_cpu(nid_in_journal(sum, i));
  1335. if (addr == NULL_ADDR)
  1336. add_free_nid(sbi, nid, true);
  1337. else
  1338. remove_free_nid(nm_i, nid);
  1339. }
  1340. mutex_unlock(&curseg->curseg_mutex);
  1341. }
  1342. /*
  1343. * If this function returns success, caller can obtain a new nid
  1344. * from second parameter of this function.
  1345. * The returned nid could be used ino as well as nid when inode is created.
  1346. */
  1347. bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
  1348. {
  1349. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1350. struct free_nid *i = NULL;
  1351. retry:
  1352. if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
  1353. return false;
  1354. spin_lock(&nm_i->free_nid_list_lock);
  1355. /* We should not use stale free nids created by build_free_nids */
  1356. if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
  1357. struct node_info ni;
  1358. f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
  1359. list_for_each_entry(i, &nm_i->free_nid_list, list)
  1360. if (i->state == NID_NEW)
  1361. break;
  1362. f2fs_bug_on(sbi, i->state != NID_NEW);
  1363. *nid = i->nid;
  1364. i->state = NID_ALLOC;
  1365. nm_i->fcnt--;
  1366. spin_unlock(&nm_i->free_nid_list_lock);
  1367. /* check nid is allocated already */
  1368. get_node_info(sbi, *nid, &ni);
  1369. if (ni.blk_addr != NULL_ADDR) {
  1370. alloc_nid_done(sbi, *nid);
  1371. goto retry;
  1372. }
  1373. return true;
  1374. }
  1375. spin_unlock(&nm_i->free_nid_list_lock);
  1376. /* Let's scan nat pages and its caches to get free nids */
  1377. mutex_lock(&nm_i->build_lock);
  1378. build_free_nids(sbi);
  1379. mutex_unlock(&nm_i->build_lock);
  1380. goto retry;
  1381. }
  1382. /*
  1383. * alloc_nid() should be called prior to this function.
  1384. */
  1385. void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
  1386. {
  1387. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1388. struct free_nid *i;
  1389. spin_lock(&nm_i->free_nid_list_lock);
  1390. i = __lookup_free_nid_list(nm_i, nid);
  1391. f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
  1392. __del_from_free_nid_list(nm_i, i);
  1393. spin_unlock(&nm_i->free_nid_list_lock);
  1394. kmem_cache_free(free_nid_slab, i);
  1395. }
  1396. /*
  1397. * alloc_nid() should be called prior to this function.
  1398. */
  1399. void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
  1400. {
  1401. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1402. struct free_nid *i;
  1403. bool need_free = false;
  1404. if (!nid)
  1405. return;
  1406. spin_lock(&nm_i->free_nid_list_lock);
  1407. i = __lookup_free_nid_list(nm_i, nid);
  1408. f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
  1409. if (!available_free_memory(sbi, FREE_NIDS)) {
  1410. __del_from_free_nid_list(nm_i, i);
  1411. need_free = true;
  1412. } else {
  1413. i->state = NID_NEW;
  1414. nm_i->fcnt++;
  1415. }
  1416. spin_unlock(&nm_i->free_nid_list_lock);
  1417. if (need_free)
  1418. kmem_cache_free(free_nid_slab, i);
  1419. }
  1420. int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
  1421. {
  1422. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1423. struct free_nid *i, *next;
  1424. int nr = nr_shrink;
  1425. if (!mutex_trylock(&nm_i->build_lock))
  1426. return 0;
  1427. spin_lock(&nm_i->free_nid_list_lock);
  1428. list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
  1429. if (nr_shrink <= 0 || nm_i->fcnt <= NAT_ENTRY_PER_BLOCK)
  1430. break;
  1431. if (i->state == NID_ALLOC)
  1432. continue;
  1433. __del_from_free_nid_list(nm_i, i);
  1434. kmem_cache_free(free_nid_slab, i);
  1435. nm_i->fcnt--;
  1436. nr_shrink--;
  1437. }
  1438. spin_unlock(&nm_i->free_nid_list_lock);
  1439. mutex_unlock(&nm_i->build_lock);
  1440. return nr - nr_shrink;
  1441. }
  1442. void recover_inline_xattr(struct inode *inode, struct page *page)
  1443. {
  1444. void *src_addr, *dst_addr;
  1445. size_t inline_size;
  1446. struct page *ipage;
  1447. struct f2fs_inode *ri;
  1448. ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
  1449. f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
  1450. ri = F2FS_INODE(page);
  1451. if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
  1452. clear_inode_flag(F2FS_I(inode), FI_INLINE_XATTR);
  1453. goto update_inode;
  1454. }
  1455. dst_addr = inline_xattr_addr(ipage);
  1456. src_addr = inline_xattr_addr(page);
  1457. inline_size = inline_xattr_size(inode);
  1458. f2fs_wait_on_page_writeback(ipage, NODE);
  1459. memcpy(dst_addr, src_addr, inline_size);
  1460. update_inode:
  1461. update_inode(inode, ipage);
  1462. f2fs_put_page(ipage, 1);
  1463. }
  1464. void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
  1465. {
  1466. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1467. nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
  1468. nid_t new_xnid = nid_of_node(page);
  1469. struct node_info ni;
  1470. /* 1: invalidate the previous xattr nid */
  1471. if (!prev_xnid)
  1472. goto recover_xnid;
  1473. /* Deallocate node address */
  1474. get_node_info(sbi, prev_xnid, &ni);
  1475. f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
  1476. invalidate_blocks(sbi, ni.blk_addr);
  1477. dec_valid_node_count(sbi, inode);
  1478. set_node_addr(sbi, &ni, NULL_ADDR, false);
  1479. recover_xnid:
  1480. /* 2: allocate new xattr nid */
  1481. if (unlikely(!inc_valid_node_count(sbi, inode)))
  1482. f2fs_bug_on(sbi, 1);
  1483. remove_free_nid(NM_I(sbi), new_xnid);
  1484. get_node_info(sbi, new_xnid, &ni);
  1485. ni.ino = inode->i_ino;
  1486. set_node_addr(sbi, &ni, NEW_ADDR, false);
  1487. F2FS_I(inode)->i_xattr_nid = new_xnid;
  1488. /* 3: update xattr blkaddr */
  1489. refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
  1490. set_node_addr(sbi, &ni, blkaddr, false);
  1491. update_inode_page(inode);
  1492. }
  1493. int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
  1494. {
  1495. struct f2fs_inode *src, *dst;
  1496. nid_t ino = ino_of_node(page);
  1497. struct node_info old_ni, new_ni;
  1498. struct page *ipage;
  1499. get_node_info(sbi, ino, &old_ni);
  1500. if (unlikely(old_ni.blk_addr != NULL_ADDR))
  1501. return -EINVAL;
  1502. ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
  1503. if (!ipage)
  1504. return -ENOMEM;
  1505. /* Should not use this inode from free nid list */
  1506. remove_free_nid(NM_I(sbi), ino);
  1507. SetPageUptodate(ipage);
  1508. fill_node_footer(ipage, ino, ino, 0, true);
  1509. src = F2FS_INODE(page);
  1510. dst = F2FS_INODE(ipage);
  1511. memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
  1512. dst->i_size = 0;
  1513. dst->i_blocks = cpu_to_le64(1);
  1514. dst->i_links = cpu_to_le32(1);
  1515. dst->i_xattr_nid = 0;
  1516. dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
  1517. new_ni = old_ni;
  1518. new_ni.ino = ino;
  1519. if (unlikely(!inc_valid_node_count(sbi, NULL)))
  1520. WARN_ON(1);
  1521. set_node_addr(sbi, &new_ni, NEW_ADDR, false);
  1522. inc_valid_inode_count(sbi);
  1523. set_page_dirty(ipage);
  1524. f2fs_put_page(ipage, 1);
  1525. return 0;
  1526. }
  1527. int restore_node_summary(struct f2fs_sb_info *sbi,
  1528. unsigned int segno, struct f2fs_summary_block *sum)
  1529. {
  1530. struct f2fs_node *rn;
  1531. struct f2fs_summary *sum_entry;
  1532. block_t addr;
  1533. int bio_blocks = MAX_BIO_BLOCKS(sbi);
  1534. int i, idx, last_offset, nrpages;
  1535. /* scan the node segment */
  1536. last_offset = sbi->blocks_per_seg;
  1537. addr = START_BLOCK(sbi, segno);
  1538. sum_entry = &sum->entries[0];
  1539. for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
  1540. nrpages = min(last_offset - i, bio_blocks);
  1541. /* readahead node pages */
  1542. ra_meta_pages(sbi, addr, nrpages, META_POR);
  1543. for (idx = addr; idx < addr + nrpages; idx++) {
  1544. struct page *page = get_meta_page(sbi, idx);
  1545. rn = F2FS_NODE(page);
  1546. sum_entry->nid = rn->footer.nid;
  1547. sum_entry->version = 0;
  1548. sum_entry->ofs_in_node = 0;
  1549. sum_entry++;
  1550. f2fs_put_page(page, 1);
  1551. }
  1552. invalidate_mapping_pages(META_MAPPING(sbi), addr,
  1553. addr + nrpages);
  1554. }
  1555. return 0;
  1556. }
  1557. static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
  1558. {
  1559. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1560. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1561. struct f2fs_summary_block *sum = curseg->sum_blk;
  1562. int i;
  1563. mutex_lock(&curseg->curseg_mutex);
  1564. for (i = 0; i < nats_in_cursum(sum); i++) {
  1565. struct nat_entry *ne;
  1566. struct f2fs_nat_entry raw_ne;
  1567. nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
  1568. raw_ne = nat_in_journal(sum, i);
  1569. down_write(&nm_i->nat_tree_lock);
  1570. ne = __lookup_nat_cache(nm_i, nid);
  1571. if (!ne) {
  1572. ne = grab_nat_entry(nm_i, nid);
  1573. node_info_from_raw_nat(&ne->ni, &raw_ne);
  1574. }
  1575. __set_nat_cache_dirty(nm_i, ne);
  1576. up_write(&nm_i->nat_tree_lock);
  1577. }
  1578. update_nats_in_cursum(sum, -i);
  1579. mutex_unlock(&curseg->curseg_mutex);
  1580. }
  1581. static void __adjust_nat_entry_set(struct nat_entry_set *nes,
  1582. struct list_head *head, int max)
  1583. {
  1584. struct nat_entry_set *cur;
  1585. if (nes->entry_cnt >= max)
  1586. goto add_out;
  1587. list_for_each_entry(cur, head, set_list) {
  1588. if (cur->entry_cnt >= nes->entry_cnt) {
  1589. list_add(&nes->set_list, cur->set_list.prev);
  1590. return;
  1591. }
  1592. }
  1593. add_out:
  1594. list_add_tail(&nes->set_list, head);
  1595. }
  1596. static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
  1597. struct nat_entry_set *set)
  1598. {
  1599. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1600. struct f2fs_summary_block *sum = curseg->sum_blk;
  1601. nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
  1602. bool to_journal = true;
  1603. struct f2fs_nat_block *nat_blk;
  1604. struct nat_entry *ne, *cur;
  1605. struct page *page = NULL;
  1606. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1607. /*
  1608. * there are two steps to flush nat entries:
  1609. * #1, flush nat entries to journal in current hot data summary block.
  1610. * #2, flush nat entries to nat page.
  1611. */
  1612. if (!__has_cursum_space(sum, set->entry_cnt, NAT_JOURNAL))
  1613. to_journal = false;
  1614. if (to_journal) {
  1615. mutex_lock(&curseg->curseg_mutex);
  1616. } else {
  1617. page = get_next_nat_page(sbi, start_nid);
  1618. nat_blk = page_address(page);
  1619. f2fs_bug_on(sbi, !nat_blk);
  1620. }
  1621. /* flush dirty nats in nat entry set */
  1622. list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
  1623. struct f2fs_nat_entry *raw_ne;
  1624. nid_t nid = nat_get_nid(ne);
  1625. int offset;
  1626. if (nat_get_blkaddr(ne) == NEW_ADDR)
  1627. continue;
  1628. if (to_journal) {
  1629. offset = lookup_journal_in_cursum(sum,
  1630. NAT_JOURNAL, nid, 1);
  1631. f2fs_bug_on(sbi, offset < 0);
  1632. raw_ne = &nat_in_journal(sum, offset);
  1633. nid_in_journal(sum, offset) = cpu_to_le32(nid);
  1634. } else {
  1635. raw_ne = &nat_blk->entries[nid - start_nid];
  1636. }
  1637. raw_nat_from_node_info(raw_ne, &ne->ni);
  1638. down_write(&NM_I(sbi)->nat_tree_lock);
  1639. nat_reset_flag(ne);
  1640. __clear_nat_cache_dirty(NM_I(sbi), ne);
  1641. up_write(&NM_I(sbi)->nat_tree_lock);
  1642. if (nat_get_blkaddr(ne) == NULL_ADDR)
  1643. add_free_nid(sbi, nid, false);
  1644. }
  1645. if (to_journal)
  1646. mutex_unlock(&curseg->curseg_mutex);
  1647. else
  1648. f2fs_put_page(page, 1);
  1649. f2fs_bug_on(sbi, set->entry_cnt);
  1650. down_write(&nm_i->nat_tree_lock);
  1651. radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
  1652. up_write(&nm_i->nat_tree_lock);
  1653. kmem_cache_free(nat_entry_set_slab, set);
  1654. }
  1655. /*
  1656. * This function is called during the checkpointing process.
  1657. */
  1658. void flush_nat_entries(struct f2fs_sb_info *sbi)
  1659. {
  1660. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1661. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1662. struct f2fs_summary_block *sum = curseg->sum_blk;
  1663. struct nat_entry_set *setvec[SETVEC_SIZE];
  1664. struct nat_entry_set *set, *tmp;
  1665. unsigned int found;
  1666. nid_t set_idx = 0;
  1667. LIST_HEAD(sets);
  1668. if (!nm_i->dirty_nat_cnt)
  1669. return;
  1670. /*
  1671. * if there are no enough space in journal to store dirty nat
  1672. * entries, remove all entries from journal and merge them
  1673. * into nat entry set.
  1674. */
  1675. if (!__has_cursum_space(sum, nm_i->dirty_nat_cnt, NAT_JOURNAL))
  1676. remove_nats_in_journal(sbi);
  1677. down_write(&nm_i->nat_tree_lock);
  1678. while ((found = __gang_lookup_nat_set(nm_i,
  1679. set_idx, SETVEC_SIZE, setvec))) {
  1680. unsigned idx;
  1681. set_idx = setvec[found - 1]->set + 1;
  1682. for (idx = 0; idx < found; idx++)
  1683. __adjust_nat_entry_set(setvec[idx], &sets,
  1684. MAX_NAT_JENTRIES(sum));
  1685. }
  1686. up_write(&nm_i->nat_tree_lock);
  1687. /* flush dirty nats in nat entry set */
  1688. list_for_each_entry_safe(set, tmp, &sets, set_list)
  1689. __flush_nat_entry_set(sbi, set);
  1690. f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
  1691. }
  1692. static int init_node_manager(struct f2fs_sb_info *sbi)
  1693. {
  1694. struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
  1695. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1696. unsigned char *version_bitmap;
  1697. unsigned int nat_segs, nat_blocks;
  1698. nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
  1699. /* segment_count_nat includes pair segment so divide to 2. */
  1700. nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
  1701. nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
  1702. nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
  1703. /* not used nids: 0, node, meta, (and root counted as valid node) */
  1704. nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM;
  1705. nm_i->fcnt = 0;
  1706. nm_i->nat_cnt = 0;
  1707. nm_i->ram_thresh = DEF_RAM_THRESHOLD;
  1708. INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
  1709. INIT_LIST_HEAD(&nm_i->free_nid_list);
  1710. INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
  1711. INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
  1712. INIT_LIST_HEAD(&nm_i->nat_entries);
  1713. mutex_init(&nm_i->build_lock);
  1714. spin_lock_init(&nm_i->free_nid_list_lock);
  1715. init_rwsem(&nm_i->nat_tree_lock);
  1716. nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
  1717. nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
  1718. version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
  1719. if (!version_bitmap)
  1720. return -EFAULT;
  1721. nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
  1722. GFP_KERNEL);
  1723. if (!nm_i->nat_bitmap)
  1724. return -ENOMEM;
  1725. return 0;
  1726. }
  1727. int build_node_manager(struct f2fs_sb_info *sbi)
  1728. {
  1729. int err;
  1730. sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
  1731. if (!sbi->nm_info)
  1732. return -ENOMEM;
  1733. err = init_node_manager(sbi);
  1734. if (err)
  1735. return err;
  1736. build_free_nids(sbi);
  1737. return 0;
  1738. }
  1739. void destroy_node_manager(struct f2fs_sb_info *sbi)
  1740. {
  1741. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1742. struct free_nid *i, *next_i;
  1743. struct nat_entry *natvec[NATVEC_SIZE];
  1744. struct nat_entry_set *setvec[SETVEC_SIZE];
  1745. nid_t nid = 0;
  1746. unsigned int found;
  1747. if (!nm_i)
  1748. return;
  1749. /* destroy free nid list */
  1750. spin_lock(&nm_i->free_nid_list_lock);
  1751. list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
  1752. f2fs_bug_on(sbi, i->state == NID_ALLOC);
  1753. __del_from_free_nid_list(nm_i, i);
  1754. nm_i->fcnt--;
  1755. spin_unlock(&nm_i->free_nid_list_lock);
  1756. kmem_cache_free(free_nid_slab, i);
  1757. spin_lock(&nm_i->free_nid_list_lock);
  1758. }
  1759. f2fs_bug_on(sbi, nm_i->fcnt);
  1760. spin_unlock(&nm_i->free_nid_list_lock);
  1761. /* destroy nat cache */
  1762. down_write(&nm_i->nat_tree_lock);
  1763. while ((found = __gang_lookup_nat_cache(nm_i,
  1764. nid, NATVEC_SIZE, natvec))) {
  1765. unsigned idx;
  1766. nid = nat_get_nid(natvec[found - 1]) + 1;
  1767. for (idx = 0; idx < found; idx++)
  1768. __del_from_nat_cache(nm_i, natvec[idx]);
  1769. }
  1770. f2fs_bug_on(sbi, nm_i->nat_cnt);
  1771. /* destroy nat set cache */
  1772. nid = 0;
  1773. while ((found = __gang_lookup_nat_set(nm_i,
  1774. nid, SETVEC_SIZE, setvec))) {
  1775. unsigned idx;
  1776. nid = setvec[found - 1]->set + 1;
  1777. for (idx = 0; idx < found; idx++) {
  1778. /* entry_cnt is not zero, when cp_error was occurred */
  1779. f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
  1780. radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
  1781. kmem_cache_free(nat_entry_set_slab, setvec[idx]);
  1782. }
  1783. }
  1784. up_write(&nm_i->nat_tree_lock);
  1785. kfree(nm_i->nat_bitmap);
  1786. sbi->nm_info = NULL;
  1787. kfree(nm_i);
  1788. }
  1789. int __init create_node_manager_caches(void)
  1790. {
  1791. nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
  1792. sizeof(struct nat_entry));
  1793. if (!nat_entry_slab)
  1794. goto fail;
  1795. free_nid_slab = f2fs_kmem_cache_create("free_nid",
  1796. sizeof(struct free_nid));
  1797. if (!free_nid_slab)
  1798. goto destroy_nat_entry;
  1799. nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
  1800. sizeof(struct nat_entry_set));
  1801. if (!nat_entry_set_slab)
  1802. goto destroy_free_nid;
  1803. return 0;
  1804. destroy_free_nid:
  1805. kmem_cache_destroy(free_nid_slab);
  1806. destroy_nat_entry:
  1807. kmem_cache_destroy(nat_entry_slab);
  1808. fail:
  1809. return -ENOMEM;
  1810. }
  1811. void destroy_node_manager_caches(void)
  1812. {
  1813. kmem_cache_destroy(nat_entry_set_slab);
  1814. kmem_cache_destroy(free_nid_slab);
  1815. kmem_cache_destroy(nat_entry_slab);
  1816. }