inode.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435
  1. /*
  2. * fs/f2fs/inode.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/buffer_head.h>
  14. #include <linux/writeback.h>
  15. #include "f2fs.h"
  16. #include "node.h"
  17. #include <trace/events/f2fs.h>
  18. void f2fs_set_inode_flags(struct inode *inode)
  19. {
  20. unsigned int flags = F2FS_I(inode)->i_flags;
  21. unsigned int new_fl = 0;
  22. if (flags & FS_SYNC_FL)
  23. new_fl |= S_SYNC;
  24. if (flags & FS_APPEND_FL)
  25. new_fl |= S_APPEND;
  26. if (flags & FS_IMMUTABLE_FL)
  27. new_fl |= S_IMMUTABLE;
  28. if (flags & FS_NOATIME_FL)
  29. new_fl |= S_NOATIME;
  30. if (flags & FS_DIRSYNC_FL)
  31. new_fl |= S_DIRSYNC;
  32. inode_set_flags(inode, new_fl,
  33. S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
  34. }
  35. static void __get_inode_rdev(struct inode *inode, struct f2fs_inode *ri)
  36. {
  37. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
  38. S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
  39. if (ri->i_addr[0])
  40. inode->i_rdev =
  41. old_decode_dev(le32_to_cpu(ri->i_addr[0]));
  42. else
  43. inode->i_rdev =
  44. new_decode_dev(le32_to_cpu(ri->i_addr[1]));
  45. }
  46. }
  47. static bool __written_first_block(struct f2fs_inode *ri)
  48. {
  49. block_t addr = le32_to_cpu(ri->i_addr[0]);
  50. if (addr != NEW_ADDR && addr != NULL_ADDR)
  51. return true;
  52. return false;
  53. }
  54. static void __set_inode_rdev(struct inode *inode, struct f2fs_inode *ri)
  55. {
  56. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  57. if (old_valid_dev(inode->i_rdev)) {
  58. ri->i_addr[0] =
  59. cpu_to_le32(old_encode_dev(inode->i_rdev));
  60. ri->i_addr[1] = 0;
  61. } else {
  62. ri->i_addr[0] = 0;
  63. ri->i_addr[1] =
  64. cpu_to_le32(new_encode_dev(inode->i_rdev));
  65. ri->i_addr[2] = 0;
  66. }
  67. }
  68. }
  69. static void __recover_inline_status(struct inode *inode, struct page *ipage)
  70. {
  71. void *inline_data = inline_data_addr(ipage);
  72. __le32 *start = inline_data;
  73. __le32 *end = start + MAX_INLINE_DATA / sizeof(__le32);
  74. while (start < end) {
  75. if (*start++) {
  76. f2fs_wait_on_page_writeback(ipage, NODE);
  77. set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
  78. set_raw_inline(F2FS_I(inode), F2FS_INODE(ipage));
  79. set_page_dirty(ipage);
  80. return;
  81. }
  82. }
  83. return;
  84. }
  85. static int do_read_inode(struct inode *inode)
  86. {
  87. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  88. struct f2fs_inode_info *fi = F2FS_I(inode);
  89. struct page *node_page;
  90. struct f2fs_inode *ri;
  91. /* Check if ino is within scope */
  92. if (check_nid_range(sbi, inode->i_ino)) {
  93. f2fs_msg(inode->i_sb, KERN_ERR, "bad inode number: %lu",
  94. (unsigned long) inode->i_ino);
  95. WARN_ON(1);
  96. return -EINVAL;
  97. }
  98. node_page = get_node_page(sbi, inode->i_ino);
  99. if (IS_ERR(node_page))
  100. return PTR_ERR(node_page);
  101. ri = F2FS_INODE(node_page);
  102. inode->i_mode = le16_to_cpu(ri->i_mode);
  103. i_uid_write(inode, le32_to_cpu(ri->i_uid));
  104. i_gid_write(inode, le32_to_cpu(ri->i_gid));
  105. set_nlink(inode, le32_to_cpu(ri->i_links));
  106. inode->i_size = le64_to_cpu(ri->i_size);
  107. inode->i_blocks = le64_to_cpu(ri->i_blocks);
  108. inode->i_atime.tv_sec = le64_to_cpu(ri->i_atime);
  109. inode->i_ctime.tv_sec = le64_to_cpu(ri->i_ctime);
  110. inode->i_mtime.tv_sec = le64_to_cpu(ri->i_mtime);
  111. inode->i_atime.tv_nsec = le32_to_cpu(ri->i_atime_nsec);
  112. inode->i_ctime.tv_nsec = le32_to_cpu(ri->i_ctime_nsec);
  113. inode->i_mtime.tv_nsec = le32_to_cpu(ri->i_mtime_nsec);
  114. inode->i_generation = le32_to_cpu(ri->i_generation);
  115. fi->i_current_depth = le32_to_cpu(ri->i_current_depth);
  116. fi->i_xattr_nid = le32_to_cpu(ri->i_xattr_nid);
  117. fi->i_flags = le32_to_cpu(ri->i_flags);
  118. fi->flags = 0;
  119. fi->i_advise = ri->i_advise;
  120. fi->i_pino = le32_to_cpu(ri->i_pino);
  121. fi->i_dir_level = ri->i_dir_level;
  122. f2fs_init_extent_tree(inode, &ri->i_ext);
  123. get_inline_info(fi, ri);
  124. /* check data exist */
  125. if (f2fs_has_inline_data(inode) && !f2fs_exist_data(inode))
  126. __recover_inline_status(inode, node_page);
  127. /* get rdev by using inline_info */
  128. __get_inode_rdev(inode, ri);
  129. if (__written_first_block(ri))
  130. set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
  131. f2fs_put_page(node_page, 1);
  132. stat_inc_inline_xattr(inode);
  133. stat_inc_inline_inode(inode);
  134. stat_inc_inline_dir(inode);
  135. return 0;
  136. }
  137. struct inode *f2fs_iget(struct super_block *sb, unsigned long ino)
  138. {
  139. struct f2fs_sb_info *sbi = F2FS_SB(sb);
  140. struct inode *inode;
  141. int ret = 0;
  142. inode = iget_locked(sb, ino);
  143. if (!inode)
  144. return ERR_PTR(-ENOMEM);
  145. if (!(inode->i_state & I_NEW)) {
  146. trace_f2fs_iget(inode);
  147. return inode;
  148. }
  149. if (ino == F2FS_NODE_INO(sbi) || ino == F2FS_META_INO(sbi))
  150. goto make_now;
  151. ret = do_read_inode(inode);
  152. if (ret)
  153. goto bad_inode;
  154. make_now:
  155. if (ino == F2FS_NODE_INO(sbi)) {
  156. inode->i_mapping->a_ops = &f2fs_node_aops;
  157. mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);
  158. } else if (ino == F2FS_META_INO(sbi)) {
  159. inode->i_mapping->a_ops = &f2fs_meta_aops;
  160. mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);
  161. } else if (S_ISREG(inode->i_mode)) {
  162. inode->i_op = &f2fs_file_inode_operations;
  163. inode->i_fop = &f2fs_file_operations;
  164. inode->i_mapping->a_ops = &f2fs_dblock_aops;
  165. } else if (S_ISDIR(inode->i_mode)) {
  166. inode->i_op = &f2fs_dir_inode_operations;
  167. inode->i_fop = &f2fs_dir_operations;
  168. inode->i_mapping->a_ops = &f2fs_dblock_aops;
  169. mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_HIGH_ZERO);
  170. } else if (S_ISLNK(inode->i_mode)) {
  171. if (f2fs_encrypted_inode(inode))
  172. inode->i_op = &f2fs_encrypted_symlink_inode_operations;
  173. else
  174. inode->i_op = &f2fs_symlink_inode_operations;
  175. inode->i_mapping->a_ops = &f2fs_dblock_aops;
  176. } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
  177. S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
  178. inode->i_op = &f2fs_special_inode_operations;
  179. init_special_inode(inode, inode->i_mode, inode->i_rdev);
  180. } else {
  181. ret = -EIO;
  182. goto bad_inode;
  183. }
  184. unlock_new_inode(inode);
  185. trace_f2fs_iget(inode);
  186. return inode;
  187. bad_inode:
  188. iget_failed(inode);
  189. trace_f2fs_iget_exit(inode, ret);
  190. return ERR_PTR(ret);
  191. }
  192. void update_inode(struct inode *inode, struct page *node_page)
  193. {
  194. struct f2fs_inode *ri;
  195. f2fs_wait_on_page_writeback(node_page, NODE);
  196. ri = F2FS_INODE(node_page);
  197. ri->i_mode = cpu_to_le16(inode->i_mode);
  198. ri->i_advise = F2FS_I(inode)->i_advise;
  199. ri->i_uid = cpu_to_le32(i_uid_read(inode));
  200. ri->i_gid = cpu_to_le32(i_gid_read(inode));
  201. ri->i_links = cpu_to_le32(inode->i_nlink);
  202. ri->i_size = cpu_to_le64(i_size_read(inode));
  203. ri->i_blocks = cpu_to_le64(inode->i_blocks);
  204. if (F2FS_I(inode)->extent_tree)
  205. set_raw_extent(&F2FS_I(inode)->extent_tree->largest,
  206. &ri->i_ext);
  207. else
  208. memset(&ri->i_ext, 0, sizeof(ri->i_ext));
  209. set_raw_inline(F2FS_I(inode), ri);
  210. ri->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
  211. ri->i_ctime = cpu_to_le64(inode->i_ctime.tv_sec);
  212. ri->i_mtime = cpu_to_le64(inode->i_mtime.tv_sec);
  213. ri->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
  214. ri->i_ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
  215. ri->i_mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
  216. ri->i_current_depth = cpu_to_le32(F2FS_I(inode)->i_current_depth);
  217. ri->i_xattr_nid = cpu_to_le32(F2FS_I(inode)->i_xattr_nid);
  218. ri->i_flags = cpu_to_le32(F2FS_I(inode)->i_flags);
  219. ri->i_pino = cpu_to_le32(F2FS_I(inode)->i_pino);
  220. ri->i_generation = cpu_to_le32(inode->i_generation);
  221. ri->i_dir_level = F2FS_I(inode)->i_dir_level;
  222. __set_inode_rdev(inode, ri);
  223. set_cold_node(inode, node_page);
  224. set_page_dirty(node_page);
  225. clear_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
  226. }
  227. void update_inode_page(struct inode *inode)
  228. {
  229. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  230. struct page *node_page;
  231. retry:
  232. node_page = get_node_page(sbi, inode->i_ino);
  233. if (IS_ERR(node_page)) {
  234. int err = PTR_ERR(node_page);
  235. if (err == -ENOMEM) {
  236. cond_resched();
  237. goto retry;
  238. } else if (err != -ENOENT) {
  239. f2fs_stop_checkpoint(sbi);
  240. }
  241. return;
  242. }
  243. update_inode(inode, node_page);
  244. f2fs_put_page(node_page, 1);
  245. }
  246. int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc)
  247. {
  248. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  249. if (inode->i_ino == F2FS_NODE_INO(sbi) ||
  250. inode->i_ino == F2FS_META_INO(sbi))
  251. return 0;
  252. if (!is_inode_flag_set(F2FS_I(inode), FI_DIRTY_INODE))
  253. return 0;
  254. /*
  255. * We need to lock here to prevent from producing dirty node pages
  256. * during the urgent cleaning time when runing out of free sections.
  257. */
  258. f2fs_lock_op(sbi);
  259. update_inode_page(inode);
  260. f2fs_unlock_op(sbi);
  261. if (wbc)
  262. f2fs_balance_fs(sbi);
  263. return 0;
  264. }
  265. /*
  266. * Called at the last iput() if i_nlink is zero
  267. */
  268. void f2fs_evict_inode(struct inode *inode)
  269. {
  270. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  271. struct f2fs_inode_info *fi = F2FS_I(inode);
  272. nid_t xnid = fi->i_xattr_nid;
  273. int err = 0;
  274. /* some remained atomic pages should discarded */
  275. if (f2fs_is_atomic_file(inode))
  276. commit_inmem_pages(inode, true);
  277. trace_f2fs_evict_inode(inode);
  278. truncate_inode_pages_final(&inode->i_data);
  279. if (inode->i_ino == F2FS_NODE_INO(sbi) ||
  280. inode->i_ino == F2FS_META_INO(sbi))
  281. goto out_clear;
  282. f2fs_bug_on(sbi, get_dirty_pages(inode));
  283. remove_dirty_dir_inode(inode);
  284. f2fs_destroy_extent_tree(inode);
  285. if (inode->i_nlink || is_bad_inode(inode))
  286. goto no_delete;
  287. sb_start_intwrite(inode->i_sb);
  288. set_inode_flag(fi, FI_NO_ALLOC);
  289. i_size_write(inode, 0);
  290. if (F2FS_HAS_BLOCKS(inode))
  291. err = f2fs_truncate(inode, true);
  292. if (!err) {
  293. f2fs_lock_op(sbi);
  294. err = remove_inode_page(inode);
  295. f2fs_unlock_op(sbi);
  296. }
  297. sb_end_intwrite(inode->i_sb);
  298. no_delete:
  299. stat_dec_inline_xattr(inode);
  300. stat_dec_inline_dir(inode);
  301. stat_dec_inline_inode(inode);
  302. invalidate_mapping_pages(NODE_MAPPING(sbi), inode->i_ino, inode->i_ino);
  303. if (xnid)
  304. invalidate_mapping_pages(NODE_MAPPING(sbi), xnid, xnid);
  305. if (is_inode_flag_set(fi, FI_APPEND_WRITE))
  306. add_dirty_inode(sbi, inode->i_ino, APPEND_INO);
  307. if (is_inode_flag_set(fi, FI_UPDATE_WRITE))
  308. add_dirty_inode(sbi, inode->i_ino, UPDATE_INO);
  309. if (is_inode_flag_set(fi, FI_FREE_NID)) {
  310. if (err && err != -ENOENT)
  311. alloc_nid_done(sbi, inode->i_ino);
  312. else
  313. alloc_nid_failed(sbi, inode->i_ino);
  314. clear_inode_flag(fi, FI_FREE_NID);
  315. }
  316. if (err && err != -ENOENT) {
  317. if (!exist_written_data(sbi, inode->i_ino, ORPHAN_INO)) {
  318. /*
  319. * get here because we failed to release resource
  320. * of inode previously, reminder our user to run fsck
  321. * for fixing.
  322. */
  323. set_sbi_flag(sbi, SBI_NEED_FSCK);
  324. f2fs_msg(sbi->sb, KERN_WARNING,
  325. "inode (ino:%lu) resource leak, run fsck "
  326. "to fix this issue!", inode->i_ino);
  327. }
  328. }
  329. out_clear:
  330. #ifdef CONFIG_F2FS_FS_ENCRYPTION
  331. if (fi->i_crypt_info)
  332. f2fs_free_encryption_info(inode, fi->i_crypt_info);
  333. #endif
  334. clear_inode(inode);
  335. }
  336. /* caller should call f2fs_lock_op() */
  337. void handle_failed_inode(struct inode *inode)
  338. {
  339. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  340. int err = 0;
  341. clear_nlink(inode);
  342. make_bad_inode(inode);
  343. unlock_new_inode(inode);
  344. i_size_write(inode, 0);
  345. if (F2FS_HAS_BLOCKS(inode))
  346. err = f2fs_truncate(inode, false);
  347. if (!err)
  348. err = remove_inode_page(inode);
  349. /*
  350. * if we skip truncate_node in remove_inode_page bacause we failed
  351. * before, it's better to find another way to release resource of
  352. * this inode (e.g. valid block count, node block or nid). Here we
  353. * choose to add this inode to orphan list, so that we can call iput
  354. * for releasing in orphan recovery flow.
  355. *
  356. * Note: we should add inode to orphan list before f2fs_unlock_op()
  357. * so we can prevent losing this orphan when encoutering checkpoint
  358. * and following suddenly power-off.
  359. */
  360. if (err && err != -ENOENT) {
  361. err = acquire_orphan_inode(sbi);
  362. if (!err)
  363. add_orphan_inode(sbi, inode->i_ino);
  364. }
  365. set_inode_flag(F2FS_I(inode), FI_FREE_NID);
  366. f2fs_unlock_op(sbi);
  367. /* iput will drop the inode object */
  368. iput(inode);
  369. }