inline.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570
  1. /*
  2. * fs/f2fs/inline.c
  3. * Copyright (c) 2013, Intel Corporation
  4. * Authors: Huajun Li <huajun.li@intel.com>
  5. * Haicheng Li <haicheng.li@intel.com>
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/fs.h>
  11. #include <linux/f2fs_fs.h>
  12. #include "f2fs.h"
  13. bool f2fs_may_inline_data(struct inode *inode)
  14. {
  15. if (!test_opt(F2FS_I_SB(inode), INLINE_DATA))
  16. return false;
  17. if (f2fs_is_atomic_file(inode))
  18. return false;
  19. if (!S_ISREG(inode->i_mode) && !S_ISLNK(inode->i_mode))
  20. return false;
  21. if (i_size_read(inode) > MAX_INLINE_DATA)
  22. return false;
  23. if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
  24. return false;
  25. return true;
  26. }
  27. bool f2fs_may_inline_dentry(struct inode *inode)
  28. {
  29. if (!test_opt(F2FS_I_SB(inode), INLINE_DENTRY))
  30. return false;
  31. if (!S_ISDIR(inode->i_mode))
  32. return false;
  33. return true;
  34. }
  35. void read_inline_data(struct page *page, struct page *ipage)
  36. {
  37. void *src_addr, *dst_addr;
  38. if (PageUptodate(page))
  39. return;
  40. f2fs_bug_on(F2FS_P_SB(page), page->index);
  41. zero_user_segment(page, MAX_INLINE_DATA, PAGE_CACHE_SIZE);
  42. /* Copy the whole inline data block */
  43. src_addr = inline_data_addr(ipage);
  44. dst_addr = kmap_atomic(page);
  45. memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
  46. flush_dcache_page(page);
  47. kunmap_atomic(dst_addr);
  48. SetPageUptodate(page);
  49. }
  50. bool truncate_inline_inode(struct page *ipage, u64 from)
  51. {
  52. void *addr;
  53. if (from >= MAX_INLINE_DATA)
  54. return false;
  55. addr = inline_data_addr(ipage);
  56. f2fs_wait_on_page_writeback(ipage, NODE);
  57. memset(addr + from, 0, MAX_INLINE_DATA - from);
  58. return true;
  59. }
  60. int f2fs_read_inline_data(struct inode *inode, struct page *page)
  61. {
  62. struct page *ipage;
  63. ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
  64. if (IS_ERR(ipage)) {
  65. unlock_page(page);
  66. return PTR_ERR(ipage);
  67. }
  68. if (!f2fs_has_inline_data(inode)) {
  69. f2fs_put_page(ipage, 1);
  70. return -EAGAIN;
  71. }
  72. if (page->index)
  73. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  74. else
  75. read_inline_data(page, ipage);
  76. SetPageUptodate(page);
  77. f2fs_put_page(ipage, 1);
  78. unlock_page(page);
  79. return 0;
  80. }
  81. int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page)
  82. {
  83. void *src_addr, *dst_addr;
  84. struct f2fs_io_info fio = {
  85. .sbi = F2FS_I_SB(dn->inode),
  86. .type = DATA,
  87. .rw = WRITE_SYNC | REQ_PRIO,
  88. .page = page,
  89. .encrypted_page = NULL,
  90. };
  91. int dirty, err;
  92. f2fs_bug_on(F2FS_I_SB(dn->inode), page->index);
  93. if (!f2fs_exist_data(dn->inode))
  94. goto clear_out;
  95. err = f2fs_reserve_block(dn, 0);
  96. if (err)
  97. return err;
  98. f2fs_wait_on_page_writeback(page, DATA);
  99. if (PageUptodate(page))
  100. goto no_update;
  101. zero_user_segment(page, MAX_INLINE_DATA, PAGE_CACHE_SIZE);
  102. /* Copy the whole inline data block */
  103. src_addr = inline_data_addr(dn->inode_page);
  104. dst_addr = kmap_atomic(page);
  105. memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
  106. flush_dcache_page(page);
  107. kunmap_atomic(dst_addr);
  108. SetPageUptodate(page);
  109. no_update:
  110. set_page_dirty(page);
  111. /* clear dirty state */
  112. dirty = clear_page_dirty_for_io(page);
  113. /* write data page to try to make data consistent */
  114. set_page_writeback(page);
  115. fio.blk_addr = dn->data_blkaddr;
  116. write_data_page(dn, &fio);
  117. set_data_blkaddr(dn);
  118. f2fs_update_extent_cache(dn);
  119. f2fs_wait_on_page_writeback(page, DATA);
  120. if (dirty)
  121. inode_dec_dirty_pages(dn->inode);
  122. /* this converted inline_data should be recovered. */
  123. set_inode_flag(F2FS_I(dn->inode), FI_APPEND_WRITE);
  124. /* clear inline data and flag after data writeback */
  125. truncate_inline_inode(dn->inode_page, 0);
  126. clear_out:
  127. stat_dec_inline_inode(dn->inode);
  128. f2fs_clear_inline_inode(dn->inode);
  129. sync_inode_page(dn);
  130. f2fs_put_dnode(dn);
  131. return 0;
  132. }
  133. int f2fs_convert_inline_inode(struct inode *inode)
  134. {
  135. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  136. struct dnode_of_data dn;
  137. struct page *ipage, *page;
  138. int err = 0;
  139. page = grab_cache_page(inode->i_mapping, 0);
  140. if (!page)
  141. return -ENOMEM;
  142. f2fs_lock_op(sbi);
  143. ipage = get_node_page(sbi, inode->i_ino);
  144. if (IS_ERR(ipage)) {
  145. err = PTR_ERR(ipage);
  146. goto out;
  147. }
  148. set_new_dnode(&dn, inode, ipage, ipage, 0);
  149. if (f2fs_has_inline_data(inode))
  150. err = f2fs_convert_inline_page(&dn, page);
  151. f2fs_put_dnode(&dn);
  152. out:
  153. f2fs_unlock_op(sbi);
  154. f2fs_put_page(page, 1);
  155. return err;
  156. }
  157. int f2fs_write_inline_data(struct inode *inode, struct page *page)
  158. {
  159. void *src_addr, *dst_addr;
  160. struct dnode_of_data dn;
  161. int err;
  162. set_new_dnode(&dn, inode, NULL, NULL, 0);
  163. err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
  164. if (err)
  165. return err;
  166. if (!f2fs_has_inline_data(inode)) {
  167. f2fs_put_dnode(&dn);
  168. return -EAGAIN;
  169. }
  170. f2fs_bug_on(F2FS_I_SB(inode), page->index);
  171. f2fs_wait_on_page_writeback(dn.inode_page, NODE);
  172. src_addr = kmap_atomic(page);
  173. dst_addr = inline_data_addr(dn.inode_page);
  174. memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
  175. kunmap_atomic(src_addr);
  176. set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
  177. set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
  178. sync_inode_page(&dn);
  179. f2fs_put_dnode(&dn);
  180. return 0;
  181. }
  182. bool recover_inline_data(struct inode *inode, struct page *npage)
  183. {
  184. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  185. struct f2fs_inode *ri = NULL;
  186. void *src_addr, *dst_addr;
  187. struct page *ipage;
  188. /*
  189. * The inline_data recovery policy is as follows.
  190. * [prev.] [next] of inline_data flag
  191. * o o -> recover inline_data
  192. * o x -> remove inline_data, and then recover data blocks
  193. * x o -> remove inline_data, and then recover inline_data
  194. * x x -> recover data blocks
  195. */
  196. if (IS_INODE(npage))
  197. ri = F2FS_INODE(npage);
  198. if (f2fs_has_inline_data(inode) &&
  199. ri && (ri->i_inline & F2FS_INLINE_DATA)) {
  200. process_inline:
  201. ipage = get_node_page(sbi, inode->i_ino);
  202. f2fs_bug_on(sbi, IS_ERR(ipage));
  203. f2fs_wait_on_page_writeback(ipage, NODE);
  204. src_addr = inline_data_addr(npage);
  205. dst_addr = inline_data_addr(ipage);
  206. memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
  207. set_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
  208. set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
  209. update_inode(inode, ipage);
  210. f2fs_put_page(ipage, 1);
  211. return true;
  212. }
  213. if (f2fs_has_inline_data(inode)) {
  214. ipage = get_node_page(sbi, inode->i_ino);
  215. f2fs_bug_on(sbi, IS_ERR(ipage));
  216. truncate_inline_inode(ipage, 0);
  217. f2fs_clear_inline_inode(inode);
  218. update_inode(inode, ipage);
  219. f2fs_put_page(ipage, 1);
  220. } else if (ri && (ri->i_inline & F2FS_INLINE_DATA)) {
  221. truncate_blocks(inode, 0, false);
  222. goto process_inline;
  223. }
  224. return false;
  225. }
  226. struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
  227. struct f2fs_filename *fname, struct page **res_page)
  228. {
  229. struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
  230. struct f2fs_inline_dentry *inline_dentry;
  231. struct qstr name = FSTR_TO_QSTR(&fname->disk_name);
  232. struct f2fs_dir_entry *de;
  233. struct f2fs_dentry_ptr d;
  234. struct page *ipage;
  235. f2fs_hash_t namehash;
  236. ipage = get_node_page(sbi, dir->i_ino);
  237. if (IS_ERR(ipage))
  238. return NULL;
  239. namehash = f2fs_dentry_hash(&name);
  240. inline_dentry = inline_data_addr(ipage);
  241. make_dentry_ptr(NULL, &d, (void *)inline_dentry, 2);
  242. de = find_target_dentry(fname, namehash, NULL, &d);
  243. unlock_page(ipage);
  244. if (de)
  245. *res_page = ipage;
  246. else
  247. f2fs_put_page(ipage, 0);
  248. /*
  249. * For the most part, it should be a bug when name_len is zero.
  250. * We stop here for figuring out where the bugs has occurred.
  251. */
  252. f2fs_bug_on(sbi, d.max < 0);
  253. return de;
  254. }
  255. struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *dir,
  256. struct page **p)
  257. {
  258. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  259. struct page *ipage;
  260. struct f2fs_dir_entry *de;
  261. struct f2fs_inline_dentry *dentry_blk;
  262. ipage = get_node_page(sbi, dir->i_ino);
  263. if (IS_ERR(ipage))
  264. return NULL;
  265. dentry_blk = inline_data_addr(ipage);
  266. de = &dentry_blk->dentry[1];
  267. *p = ipage;
  268. unlock_page(ipage);
  269. return de;
  270. }
  271. int make_empty_inline_dir(struct inode *inode, struct inode *parent,
  272. struct page *ipage)
  273. {
  274. struct f2fs_inline_dentry *dentry_blk;
  275. struct f2fs_dentry_ptr d;
  276. dentry_blk = inline_data_addr(ipage);
  277. make_dentry_ptr(NULL, &d, (void *)dentry_blk, 2);
  278. do_make_empty_dir(inode, parent, &d);
  279. set_page_dirty(ipage);
  280. /* update i_size to MAX_INLINE_DATA */
  281. if (i_size_read(inode) < MAX_INLINE_DATA) {
  282. i_size_write(inode, MAX_INLINE_DATA);
  283. set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
  284. }
  285. return 0;
  286. }
  287. /*
  288. * NOTE: ipage is grabbed by caller, but if any error occurs, we should
  289. * release ipage in this function.
  290. */
  291. static int f2fs_convert_inline_dir(struct inode *dir, struct page *ipage,
  292. struct f2fs_inline_dentry *inline_dentry)
  293. {
  294. struct page *page;
  295. struct dnode_of_data dn;
  296. struct f2fs_dentry_block *dentry_blk;
  297. int err;
  298. page = grab_cache_page(dir->i_mapping, 0);
  299. if (!page) {
  300. f2fs_put_page(ipage, 1);
  301. return -ENOMEM;
  302. }
  303. set_new_dnode(&dn, dir, ipage, NULL, 0);
  304. err = f2fs_reserve_block(&dn, 0);
  305. if (err)
  306. goto out;
  307. f2fs_wait_on_page_writeback(page, DATA);
  308. zero_user_segment(page, MAX_INLINE_DATA, PAGE_CACHE_SIZE);
  309. dentry_blk = kmap_atomic(page);
  310. /* copy data from inline dentry block to new dentry block */
  311. memcpy(dentry_blk->dentry_bitmap, inline_dentry->dentry_bitmap,
  312. INLINE_DENTRY_BITMAP_SIZE);
  313. memset(dentry_blk->dentry_bitmap + INLINE_DENTRY_BITMAP_SIZE, 0,
  314. SIZE_OF_DENTRY_BITMAP - INLINE_DENTRY_BITMAP_SIZE);
  315. /*
  316. * we do not need to zero out remainder part of dentry and filename
  317. * field, since we have used bitmap for marking the usage status of
  318. * them, besides, we can also ignore copying/zeroing reserved space
  319. * of dentry block, because them haven't been used so far.
  320. */
  321. memcpy(dentry_blk->dentry, inline_dentry->dentry,
  322. sizeof(struct f2fs_dir_entry) * NR_INLINE_DENTRY);
  323. memcpy(dentry_blk->filename, inline_dentry->filename,
  324. NR_INLINE_DENTRY * F2FS_SLOT_LEN);
  325. kunmap_atomic(dentry_blk);
  326. SetPageUptodate(page);
  327. set_page_dirty(page);
  328. /* clear inline dir and flag after data writeback */
  329. truncate_inline_inode(ipage, 0);
  330. stat_dec_inline_dir(dir);
  331. clear_inode_flag(F2FS_I(dir), FI_INLINE_DENTRY);
  332. if (i_size_read(dir) < PAGE_CACHE_SIZE) {
  333. i_size_write(dir, PAGE_CACHE_SIZE);
  334. set_inode_flag(F2FS_I(dir), FI_UPDATE_DIR);
  335. }
  336. sync_inode_page(&dn);
  337. out:
  338. f2fs_put_page(page, 1);
  339. return err;
  340. }
  341. int f2fs_add_inline_entry(struct inode *dir, const struct qstr *name,
  342. struct inode *inode, nid_t ino, umode_t mode)
  343. {
  344. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  345. struct page *ipage;
  346. unsigned int bit_pos;
  347. f2fs_hash_t name_hash;
  348. size_t namelen = name->len;
  349. struct f2fs_inline_dentry *dentry_blk = NULL;
  350. struct f2fs_dentry_ptr d;
  351. int slots = GET_DENTRY_SLOTS(namelen);
  352. struct page *page = NULL;
  353. int err = 0;
  354. ipage = get_node_page(sbi, dir->i_ino);
  355. if (IS_ERR(ipage))
  356. return PTR_ERR(ipage);
  357. dentry_blk = inline_data_addr(ipage);
  358. bit_pos = room_for_filename(&dentry_blk->dentry_bitmap,
  359. slots, NR_INLINE_DENTRY);
  360. if (bit_pos >= NR_INLINE_DENTRY) {
  361. err = f2fs_convert_inline_dir(dir, ipage, dentry_blk);
  362. if (err)
  363. return err;
  364. err = -EAGAIN;
  365. goto out;
  366. }
  367. if (inode) {
  368. down_write(&F2FS_I(inode)->i_sem);
  369. page = init_inode_metadata(inode, dir, name, ipage);
  370. if (IS_ERR(page)) {
  371. err = PTR_ERR(page);
  372. goto fail;
  373. }
  374. }
  375. f2fs_wait_on_page_writeback(ipage, NODE);
  376. name_hash = f2fs_dentry_hash(name);
  377. make_dentry_ptr(NULL, &d, (void *)dentry_blk, 2);
  378. f2fs_update_dentry(ino, mode, &d, name, name_hash, bit_pos);
  379. set_page_dirty(ipage);
  380. /* we don't need to mark_inode_dirty now */
  381. if (inode) {
  382. F2FS_I(inode)->i_pino = dir->i_ino;
  383. update_inode(inode, page);
  384. f2fs_put_page(page, 1);
  385. }
  386. update_parent_metadata(dir, inode, 0);
  387. fail:
  388. if (inode)
  389. up_write(&F2FS_I(inode)->i_sem);
  390. if (is_inode_flag_set(F2FS_I(dir), FI_UPDATE_DIR)) {
  391. update_inode(dir, ipage);
  392. clear_inode_flag(F2FS_I(dir), FI_UPDATE_DIR);
  393. }
  394. out:
  395. f2fs_put_page(ipage, 1);
  396. return err;
  397. }
  398. void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
  399. struct inode *dir, struct inode *inode)
  400. {
  401. struct f2fs_inline_dentry *inline_dentry;
  402. int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
  403. unsigned int bit_pos;
  404. int i;
  405. lock_page(page);
  406. f2fs_wait_on_page_writeback(page, NODE);
  407. inline_dentry = inline_data_addr(page);
  408. bit_pos = dentry - inline_dentry->dentry;
  409. for (i = 0; i < slots; i++)
  410. test_and_clear_bit_le(bit_pos + i,
  411. &inline_dentry->dentry_bitmap);
  412. set_page_dirty(page);
  413. dir->i_ctime = dir->i_mtime = CURRENT_TIME;
  414. if (inode)
  415. f2fs_drop_nlink(dir, inode, page);
  416. f2fs_put_page(page, 1);
  417. }
  418. bool f2fs_empty_inline_dir(struct inode *dir)
  419. {
  420. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  421. struct page *ipage;
  422. unsigned int bit_pos = 2;
  423. struct f2fs_inline_dentry *dentry_blk;
  424. ipage = get_node_page(sbi, dir->i_ino);
  425. if (IS_ERR(ipage))
  426. return false;
  427. dentry_blk = inline_data_addr(ipage);
  428. bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
  429. NR_INLINE_DENTRY,
  430. bit_pos);
  431. f2fs_put_page(ipage, 1);
  432. if (bit_pos < NR_INLINE_DENTRY)
  433. return false;
  434. return true;
  435. }
  436. int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
  437. struct f2fs_str *fstr)
  438. {
  439. struct inode *inode = file_inode(file);
  440. struct f2fs_inline_dentry *inline_dentry = NULL;
  441. struct page *ipage = NULL;
  442. struct f2fs_dentry_ptr d;
  443. if (ctx->pos == NR_INLINE_DENTRY)
  444. return 0;
  445. ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
  446. if (IS_ERR(ipage))
  447. return PTR_ERR(ipage);
  448. inline_dentry = inline_data_addr(ipage);
  449. make_dentry_ptr(inode, &d, (void *)inline_dentry, 2);
  450. if (!f2fs_fill_dentries(ctx, &d, 0, fstr))
  451. ctx->pos = NR_INLINE_DENTRY;
  452. f2fs_put_page(ipage, 1);
  453. return 0;
  454. }