gc.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856
  1. /*
  2. * fs/f2fs/gc.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/module.h>
  13. #include <linux/backing-dev.h>
  14. #include <linux/init.h>
  15. #include <linux/f2fs_fs.h>
  16. #include <linux/kthread.h>
  17. #include <linux/delay.h>
  18. #include <linux/freezer.h>
  19. #include <linux/blkdev.h>
  20. #include "f2fs.h"
  21. #include "node.h"
  22. #include "segment.h"
  23. #include "gc.h"
  24. #include <trace/events/f2fs.h>
  25. static int gc_thread_func(void *data)
  26. {
  27. struct f2fs_sb_info *sbi = data;
  28. struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
  29. wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head;
  30. long wait_ms;
  31. wait_ms = gc_th->min_sleep_time;
  32. do {
  33. if (try_to_freeze())
  34. continue;
  35. else
  36. wait_event_interruptible_timeout(*wq,
  37. kthread_should_stop(),
  38. msecs_to_jiffies(wait_ms));
  39. if (kthread_should_stop())
  40. break;
  41. if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) {
  42. increase_sleep_time(gc_th, &wait_ms);
  43. continue;
  44. }
  45. /*
  46. * [GC triggering condition]
  47. * 0. GC is not conducted currently.
  48. * 1. There are enough dirty segments.
  49. * 2. IO subsystem is idle by checking the # of writeback pages.
  50. * 3. IO subsystem is idle by checking the # of requests in
  51. * bdev's request list.
  52. *
  53. * Note) We have to avoid triggering GCs frequently.
  54. * Because it is possible that some segments can be
  55. * invalidated soon after by user update or deletion.
  56. * So, I'd like to wait some time to collect dirty segments.
  57. */
  58. if (!mutex_trylock(&sbi->gc_mutex))
  59. continue;
  60. if (!is_idle(sbi)) {
  61. increase_sleep_time(gc_th, &wait_ms);
  62. mutex_unlock(&sbi->gc_mutex);
  63. continue;
  64. }
  65. if (has_enough_invalid_blocks(sbi))
  66. decrease_sleep_time(gc_th, &wait_ms);
  67. else
  68. increase_sleep_time(gc_th, &wait_ms);
  69. stat_inc_bggc_count(sbi);
  70. /* if return value is not zero, no victim was selected */
  71. if (f2fs_gc(sbi))
  72. wait_ms = gc_th->no_gc_sleep_time;
  73. /* balancing f2fs's metadata periodically */
  74. f2fs_balance_fs_bg(sbi);
  75. } while (!kthread_should_stop());
  76. return 0;
  77. }
  78. int start_gc_thread(struct f2fs_sb_info *sbi)
  79. {
  80. struct f2fs_gc_kthread *gc_th;
  81. dev_t dev = sbi->sb->s_bdev->bd_dev;
  82. int err = 0;
  83. gc_th = kmalloc(sizeof(struct f2fs_gc_kthread), GFP_KERNEL);
  84. if (!gc_th) {
  85. err = -ENOMEM;
  86. goto out;
  87. }
  88. gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME;
  89. gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME;
  90. gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME;
  91. gc_th->gc_idle = 0;
  92. sbi->gc_thread = gc_th;
  93. init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head);
  94. sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi,
  95. "f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev));
  96. if (IS_ERR(gc_th->f2fs_gc_task)) {
  97. err = PTR_ERR(gc_th->f2fs_gc_task);
  98. kfree(gc_th);
  99. sbi->gc_thread = NULL;
  100. }
  101. out:
  102. return err;
  103. }
  104. void stop_gc_thread(struct f2fs_sb_info *sbi)
  105. {
  106. struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
  107. if (!gc_th)
  108. return;
  109. kthread_stop(gc_th->f2fs_gc_task);
  110. kfree(gc_th);
  111. sbi->gc_thread = NULL;
  112. }
  113. static int select_gc_type(struct f2fs_gc_kthread *gc_th, int gc_type)
  114. {
  115. int gc_mode = (gc_type == BG_GC) ? GC_CB : GC_GREEDY;
  116. if (gc_th && gc_th->gc_idle) {
  117. if (gc_th->gc_idle == 1)
  118. gc_mode = GC_CB;
  119. else if (gc_th->gc_idle == 2)
  120. gc_mode = GC_GREEDY;
  121. }
  122. return gc_mode;
  123. }
  124. static void select_policy(struct f2fs_sb_info *sbi, int gc_type,
  125. int type, struct victim_sel_policy *p)
  126. {
  127. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  128. if (p->alloc_mode == SSR) {
  129. p->gc_mode = GC_GREEDY;
  130. p->dirty_segmap = dirty_i->dirty_segmap[type];
  131. p->max_search = dirty_i->nr_dirty[type];
  132. p->ofs_unit = 1;
  133. } else {
  134. p->gc_mode = select_gc_type(sbi->gc_thread, gc_type);
  135. p->dirty_segmap = dirty_i->dirty_segmap[DIRTY];
  136. p->max_search = dirty_i->nr_dirty[DIRTY];
  137. p->ofs_unit = sbi->segs_per_sec;
  138. }
  139. if (p->max_search > sbi->max_victim_search)
  140. p->max_search = sbi->max_victim_search;
  141. p->offset = sbi->last_victim[p->gc_mode];
  142. }
  143. static unsigned int get_max_cost(struct f2fs_sb_info *sbi,
  144. struct victim_sel_policy *p)
  145. {
  146. /* SSR allocates in a segment unit */
  147. if (p->alloc_mode == SSR)
  148. return 1 << sbi->log_blocks_per_seg;
  149. if (p->gc_mode == GC_GREEDY)
  150. return (1 << sbi->log_blocks_per_seg) * p->ofs_unit;
  151. else if (p->gc_mode == GC_CB)
  152. return UINT_MAX;
  153. else /* No other gc_mode */
  154. return 0;
  155. }
  156. static unsigned int check_bg_victims(struct f2fs_sb_info *sbi)
  157. {
  158. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  159. unsigned int secno;
  160. /*
  161. * If the gc_type is FG_GC, we can select victim segments
  162. * selected by background GC before.
  163. * Those segments guarantee they have small valid blocks.
  164. */
  165. for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) {
  166. if (sec_usage_check(sbi, secno))
  167. continue;
  168. clear_bit(secno, dirty_i->victim_secmap);
  169. return secno * sbi->segs_per_sec;
  170. }
  171. return NULL_SEGNO;
  172. }
  173. static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno)
  174. {
  175. struct sit_info *sit_i = SIT_I(sbi);
  176. unsigned int secno = GET_SECNO(sbi, segno);
  177. unsigned int start = secno * sbi->segs_per_sec;
  178. unsigned long long mtime = 0;
  179. unsigned int vblocks;
  180. unsigned char age = 0;
  181. unsigned char u;
  182. unsigned int i;
  183. for (i = 0; i < sbi->segs_per_sec; i++)
  184. mtime += get_seg_entry(sbi, start + i)->mtime;
  185. vblocks = get_valid_blocks(sbi, segno, sbi->segs_per_sec);
  186. mtime = div_u64(mtime, sbi->segs_per_sec);
  187. vblocks = div_u64(vblocks, sbi->segs_per_sec);
  188. u = (vblocks * 100) >> sbi->log_blocks_per_seg;
  189. /* Handle if the system time has changed by the user */
  190. if (mtime < sit_i->min_mtime)
  191. sit_i->min_mtime = mtime;
  192. if (mtime > sit_i->max_mtime)
  193. sit_i->max_mtime = mtime;
  194. if (sit_i->max_mtime != sit_i->min_mtime)
  195. age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime),
  196. sit_i->max_mtime - sit_i->min_mtime);
  197. return UINT_MAX - ((100 * (100 - u) * age) / (100 + u));
  198. }
  199. static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi,
  200. unsigned int segno, struct victim_sel_policy *p)
  201. {
  202. if (p->alloc_mode == SSR)
  203. return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
  204. /* alloc_mode == LFS */
  205. if (p->gc_mode == GC_GREEDY)
  206. return get_valid_blocks(sbi, segno, sbi->segs_per_sec);
  207. else
  208. return get_cb_cost(sbi, segno);
  209. }
  210. /*
  211. * This function is called from two paths.
  212. * One is garbage collection and the other is SSR segment selection.
  213. * When it is called during GC, it just gets a victim segment
  214. * and it does not remove it from dirty seglist.
  215. * When it is called from SSR segment selection, it finds a segment
  216. * which has minimum valid blocks and removes it from dirty seglist.
  217. */
  218. static int get_victim_by_default(struct f2fs_sb_info *sbi,
  219. unsigned int *result, int gc_type, int type, char alloc_mode)
  220. {
  221. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  222. struct victim_sel_policy p;
  223. unsigned int secno, max_cost;
  224. int nsearched = 0;
  225. mutex_lock(&dirty_i->seglist_lock);
  226. p.alloc_mode = alloc_mode;
  227. select_policy(sbi, gc_type, type, &p);
  228. p.min_segno = NULL_SEGNO;
  229. p.min_cost = max_cost = get_max_cost(sbi, &p);
  230. if (p.alloc_mode == LFS && gc_type == FG_GC) {
  231. p.min_segno = check_bg_victims(sbi);
  232. if (p.min_segno != NULL_SEGNO)
  233. goto got_it;
  234. }
  235. while (1) {
  236. unsigned long cost;
  237. unsigned int segno;
  238. segno = find_next_bit(p.dirty_segmap, MAIN_SEGS(sbi), p.offset);
  239. if (segno >= MAIN_SEGS(sbi)) {
  240. if (sbi->last_victim[p.gc_mode]) {
  241. sbi->last_victim[p.gc_mode] = 0;
  242. p.offset = 0;
  243. continue;
  244. }
  245. break;
  246. }
  247. p.offset = segno + p.ofs_unit;
  248. if (p.ofs_unit > 1)
  249. p.offset -= segno % p.ofs_unit;
  250. secno = GET_SECNO(sbi, segno);
  251. if (sec_usage_check(sbi, secno))
  252. continue;
  253. if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap))
  254. continue;
  255. cost = get_gc_cost(sbi, segno, &p);
  256. if (p.min_cost > cost) {
  257. p.min_segno = segno;
  258. p.min_cost = cost;
  259. } else if (unlikely(cost == max_cost)) {
  260. continue;
  261. }
  262. if (nsearched++ >= p.max_search) {
  263. sbi->last_victim[p.gc_mode] = segno;
  264. break;
  265. }
  266. }
  267. if (p.min_segno != NULL_SEGNO) {
  268. got_it:
  269. if (p.alloc_mode == LFS) {
  270. secno = GET_SECNO(sbi, p.min_segno);
  271. if (gc_type == FG_GC)
  272. sbi->cur_victim_sec = secno;
  273. else
  274. set_bit(secno, dirty_i->victim_secmap);
  275. }
  276. *result = (p.min_segno / p.ofs_unit) * p.ofs_unit;
  277. trace_f2fs_get_victim(sbi->sb, type, gc_type, &p,
  278. sbi->cur_victim_sec,
  279. prefree_segments(sbi), free_segments(sbi));
  280. }
  281. mutex_unlock(&dirty_i->seglist_lock);
  282. return (p.min_segno == NULL_SEGNO) ? 0 : 1;
  283. }
  284. static const struct victim_selection default_v_ops = {
  285. .get_victim = get_victim_by_default,
  286. };
  287. static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino)
  288. {
  289. struct inode_entry *ie;
  290. ie = radix_tree_lookup(&gc_list->iroot, ino);
  291. if (ie)
  292. return ie->inode;
  293. return NULL;
  294. }
  295. static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode)
  296. {
  297. struct inode_entry *new_ie;
  298. if (inode == find_gc_inode(gc_list, inode->i_ino)) {
  299. iput(inode);
  300. return;
  301. }
  302. new_ie = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
  303. new_ie->inode = inode;
  304. f2fs_radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie);
  305. list_add_tail(&new_ie->list, &gc_list->ilist);
  306. }
  307. static void put_gc_inode(struct gc_inode_list *gc_list)
  308. {
  309. struct inode_entry *ie, *next_ie;
  310. list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) {
  311. radix_tree_delete(&gc_list->iroot, ie->inode->i_ino);
  312. iput(ie->inode);
  313. list_del(&ie->list);
  314. kmem_cache_free(inode_entry_slab, ie);
  315. }
  316. }
  317. static int check_valid_map(struct f2fs_sb_info *sbi,
  318. unsigned int segno, int offset)
  319. {
  320. struct sit_info *sit_i = SIT_I(sbi);
  321. struct seg_entry *sentry;
  322. int ret;
  323. mutex_lock(&sit_i->sentry_lock);
  324. sentry = get_seg_entry(sbi, segno);
  325. ret = f2fs_test_bit(offset, sentry->cur_valid_map);
  326. mutex_unlock(&sit_i->sentry_lock);
  327. return ret;
  328. }
  329. /*
  330. * This function compares node address got in summary with that in NAT.
  331. * On validity, copy that node with cold status, otherwise (invalid node)
  332. * ignore that.
  333. */
  334. static int gc_node_segment(struct f2fs_sb_info *sbi,
  335. struct f2fs_summary *sum, unsigned int segno, int gc_type)
  336. {
  337. bool initial = true;
  338. struct f2fs_summary *entry;
  339. block_t start_addr;
  340. int off;
  341. start_addr = START_BLOCK(sbi, segno);
  342. next_step:
  343. entry = sum;
  344. for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
  345. nid_t nid = le32_to_cpu(entry->nid);
  346. struct page *node_page;
  347. struct node_info ni;
  348. /* stop BG_GC if there is not enough free sections. */
  349. if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0))
  350. return 0;
  351. if (check_valid_map(sbi, segno, off) == 0)
  352. continue;
  353. if (initial) {
  354. ra_node_page(sbi, nid);
  355. continue;
  356. }
  357. node_page = get_node_page(sbi, nid);
  358. if (IS_ERR(node_page))
  359. continue;
  360. /* block may become invalid during get_node_page */
  361. if (check_valid_map(sbi, segno, off) == 0) {
  362. f2fs_put_page(node_page, 1);
  363. continue;
  364. }
  365. get_node_info(sbi, nid, &ni);
  366. if (ni.blk_addr != start_addr + off) {
  367. f2fs_put_page(node_page, 1);
  368. continue;
  369. }
  370. /* set page dirty and write it */
  371. if (gc_type == FG_GC) {
  372. f2fs_wait_on_page_writeback(node_page, NODE);
  373. set_page_dirty(node_page);
  374. } else {
  375. if (!PageWriteback(node_page))
  376. set_page_dirty(node_page);
  377. }
  378. f2fs_put_page(node_page, 1);
  379. stat_inc_node_blk_count(sbi, 1, gc_type);
  380. }
  381. if (initial) {
  382. initial = false;
  383. goto next_step;
  384. }
  385. if (gc_type == FG_GC) {
  386. struct writeback_control wbc = {
  387. .sync_mode = WB_SYNC_ALL,
  388. .nr_to_write = LONG_MAX,
  389. .for_reclaim = 0,
  390. };
  391. sync_node_pages(sbi, 0, &wbc);
  392. /* return 1 only if FG_GC succefully reclaimed one */
  393. if (get_valid_blocks(sbi, segno, 1) == 0)
  394. return 1;
  395. }
  396. return 0;
  397. }
  398. /*
  399. * Calculate start block index indicating the given node offset.
  400. * Be careful, caller should give this node offset only indicating direct node
  401. * blocks. If any node offsets, which point the other types of node blocks such
  402. * as indirect or double indirect node blocks, are given, it must be a caller's
  403. * bug.
  404. */
  405. block_t start_bidx_of_node(unsigned int node_ofs, struct f2fs_inode_info *fi)
  406. {
  407. unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4;
  408. unsigned int bidx;
  409. if (node_ofs == 0)
  410. return 0;
  411. if (node_ofs <= 2) {
  412. bidx = node_ofs - 1;
  413. } else if (node_ofs <= indirect_blks) {
  414. int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1);
  415. bidx = node_ofs - 2 - dec;
  416. } else {
  417. int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1);
  418. bidx = node_ofs - 5 - dec;
  419. }
  420. return bidx * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi);
  421. }
  422. static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
  423. struct node_info *dni, block_t blkaddr, unsigned int *nofs)
  424. {
  425. struct page *node_page;
  426. nid_t nid;
  427. unsigned int ofs_in_node;
  428. block_t source_blkaddr;
  429. nid = le32_to_cpu(sum->nid);
  430. ofs_in_node = le16_to_cpu(sum->ofs_in_node);
  431. node_page = get_node_page(sbi, nid);
  432. if (IS_ERR(node_page))
  433. return false;
  434. get_node_info(sbi, nid, dni);
  435. if (sum->version != dni->version) {
  436. f2fs_put_page(node_page, 1);
  437. return false;
  438. }
  439. *nofs = ofs_of_node(node_page);
  440. source_blkaddr = datablock_addr(node_page, ofs_in_node);
  441. f2fs_put_page(node_page, 1);
  442. if (source_blkaddr != blkaddr)
  443. return false;
  444. return true;
  445. }
  446. static void move_encrypted_block(struct inode *inode, block_t bidx)
  447. {
  448. struct f2fs_io_info fio = {
  449. .sbi = F2FS_I_SB(inode),
  450. .type = DATA,
  451. .rw = READ_SYNC,
  452. .encrypted_page = NULL,
  453. };
  454. struct dnode_of_data dn;
  455. struct f2fs_summary sum;
  456. struct node_info ni;
  457. struct page *page;
  458. int err;
  459. /* do not read out */
  460. page = grab_cache_page(inode->i_mapping, bidx);
  461. if (!page)
  462. return;
  463. set_new_dnode(&dn, inode, NULL, NULL, 0);
  464. err = get_dnode_of_data(&dn, bidx, LOOKUP_NODE);
  465. if (err)
  466. goto out;
  467. if (unlikely(dn.data_blkaddr == NULL_ADDR))
  468. goto put_out;
  469. get_node_info(fio.sbi, dn.nid, &ni);
  470. set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
  471. /* read page */
  472. fio.page = page;
  473. fio.blk_addr = dn.data_blkaddr;
  474. fio.encrypted_page = pagecache_get_page(META_MAPPING(fio.sbi),
  475. fio.blk_addr,
  476. FGP_LOCK|FGP_CREAT,
  477. GFP_NOFS);
  478. if (!fio.encrypted_page)
  479. goto put_out;
  480. err = f2fs_submit_page_bio(&fio);
  481. if (err)
  482. goto put_page_out;
  483. /* write page */
  484. lock_page(fio.encrypted_page);
  485. if (unlikely(!PageUptodate(fio.encrypted_page)))
  486. goto put_page_out;
  487. if (unlikely(fio.encrypted_page->mapping != META_MAPPING(fio.sbi)))
  488. goto put_page_out;
  489. set_page_dirty(fio.encrypted_page);
  490. f2fs_wait_on_page_writeback(fio.encrypted_page, META);
  491. if (clear_page_dirty_for_io(fio.encrypted_page))
  492. dec_page_count(fio.sbi, F2FS_DIRTY_META);
  493. set_page_writeback(fio.encrypted_page);
  494. /* allocate block address */
  495. f2fs_wait_on_page_writeback(dn.node_page, NODE);
  496. allocate_data_block(fio.sbi, NULL, fio.blk_addr,
  497. &fio.blk_addr, &sum, CURSEG_COLD_DATA);
  498. fio.rw = WRITE_SYNC;
  499. f2fs_submit_page_mbio(&fio);
  500. dn.data_blkaddr = fio.blk_addr;
  501. set_data_blkaddr(&dn);
  502. f2fs_update_extent_cache(&dn);
  503. set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
  504. if (page->index == 0)
  505. set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
  506. put_page_out:
  507. f2fs_put_page(fio.encrypted_page, 1);
  508. put_out:
  509. f2fs_put_dnode(&dn);
  510. out:
  511. f2fs_put_page(page, 1);
  512. }
  513. static void move_data_page(struct inode *inode, block_t bidx, int gc_type)
  514. {
  515. struct page *page;
  516. page = get_lock_data_page(inode, bidx);
  517. if (IS_ERR(page))
  518. return;
  519. if (gc_type == BG_GC) {
  520. if (PageWriteback(page))
  521. goto out;
  522. set_page_dirty(page);
  523. set_cold_data(page);
  524. } else {
  525. struct f2fs_io_info fio = {
  526. .sbi = F2FS_I_SB(inode),
  527. .type = DATA,
  528. .rw = WRITE_SYNC,
  529. .page = page,
  530. .encrypted_page = NULL,
  531. };
  532. set_page_dirty(page);
  533. f2fs_wait_on_page_writeback(page, DATA);
  534. if (clear_page_dirty_for_io(page))
  535. inode_dec_dirty_pages(inode);
  536. set_cold_data(page);
  537. do_write_data_page(&fio);
  538. clear_cold_data(page);
  539. }
  540. out:
  541. f2fs_put_page(page, 1);
  542. }
  543. /*
  544. * This function tries to get parent node of victim data block, and identifies
  545. * data block validity. If the block is valid, copy that with cold status and
  546. * modify parent node.
  547. * If the parent node is not valid or the data block address is different,
  548. * the victim data block is ignored.
  549. */
  550. static int gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
  551. struct gc_inode_list *gc_list, unsigned int segno, int gc_type)
  552. {
  553. struct super_block *sb = sbi->sb;
  554. struct f2fs_summary *entry;
  555. block_t start_addr;
  556. int off;
  557. int phase = 0;
  558. start_addr = START_BLOCK(sbi, segno);
  559. next_step:
  560. entry = sum;
  561. for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
  562. struct page *data_page;
  563. struct inode *inode;
  564. struct node_info dni; /* dnode info for the data */
  565. unsigned int ofs_in_node, nofs;
  566. block_t start_bidx;
  567. /* stop BG_GC if there is not enough free sections. */
  568. if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0))
  569. return 0;
  570. if (check_valid_map(sbi, segno, off) == 0)
  571. continue;
  572. if (phase == 0) {
  573. ra_node_page(sbi, le32_to_cpu(entry->nid));
  574. continue;
  575. }
  576. /* Get an inode by ino with checking validity */
  577. if (!is_alive(sbi, entry, &dni, start_addr + off, &nofs))
  578. continue;
  579. if (phase == 1) {
  580. ra_node_page(sbi, dni.ino);
  581. continue;
  582. }
  583. ofs_in_node = le16_to_cpu(entry->ofs_in_node);
  584. if (phase == 2) {
  585. inode = f2fs_iget(sb, dni.ino);
  586. if (IS_ERR(inode) || is_bad_inode(inode))
  587. continue;
  588. /* if encrypted inode, let's go phase 3 */
  589. if (f2fs_encrypted_inode(inode) &&
  590. S_ISREG(inode->i_mode)) {
  591. add_gc_inode(gc_list, inode);
  592. continue;
  593. }
  594. start_bidx = start_bidx_of_node(nofs, F2FS_I(inode));
  595. data_page = get_read_data_page(inode,
  596. start_bidx + ofs_in_node, READA);
  597. if (IS_ERR(data_page)) {
  598. iput(inode);
  599. continue;
  600. }
  601. f2fs_put_page(data_page, 0);
  602. add_gc_inode(gc_list, inode);
  603. continue;
  604. }
  605. /* phase 3 */
  606. inode = find_gc_inode(gc_list, dni.ino);
  607. if (inode) {
  608. start_bidx = start_bidx_of_node(nofs, F2FS_I(inode))
  609. + ofs_in_node;
  610. if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
  611. move_encrypted_block(inode, start_bidx);
  612. else
  613. move_data_page(inode, start_bidx, gc_type);
  614. stat_inc_data_blk_count(sbi, 1, gc_type);
  615. }
  616. }
  617. if (++phase < 4)
  618. goto next_step;
  619. if (gc_type == FG_GC) {
  620. f2fs_submit_merged_bio(sbi, DATA, WRITE);
  621. /* return 1 only if FG_GC succefully reclaimed one */
  622. if (get_valid_blocks(sbi, segno, 1) == 0)
  623. return 1;
  624. }
  625. return 0;
  626. }
  627. static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim,
  628. int gc_type)
  629. {
  630. struct sit_info *sit_i = SIT_I(sbi);
  631. int ret;
  632. mutex_lock(&sit_i->sentry_lock);
  633. ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type,
  634. NO_CHECK_TYPE, LFS);
  635. mutex_unlock(&sit_i->sentry_lock);
  636. return ret;
  637. }
  638. static int do_garbage_collect(struct f2fs_sb_info *sbi, unsigned int segno,
  639. struct gc_inode_list *gc_list, int gc_type)
  640. {
  641. struct page *sum_page;
  642. struct f2fs_summary_block *sum;
  643. struct blk_plug plug;
  644. int nfree = 0;
  645. /* read segment summary of victim */
  646. sum_page = get_sum_page(sbi, segno);
  647. blk_start_plug(&plug);
  648. sum = page_address(sum_page);
  649. /*
  650. * this is to avoid deadlock:
  651. * - lock_page(sum_page) - f2fs_replace_block
  652. * - check_valid_map() - mutex_lock(sentry_lock)
  653. * - mutex_lock(sentry_lock) - change_curseg()
  654. * - lock_page(sum_page)
  655. */
  656. unlock_page(sum_page);
  657. switch (GET_SUM_TYPE((&sum->footer))) {
  658. case SUM_TYPE_NODE:
  659. nfree = gc_node_segment(sbi, sum->entries, segno, gc_type);
  660. break;
  661. case SUM_TYPE_DATA:
  662. nfree = gc_data_segment(sbi, sum->entries, gc_list,
  663. segno, gc_type);
  664. break;
  665. }
  666. blk_finish_plug(&plug);
  667. stat_inc_seg_count(sbi, GET_SUM_TYPE((&sum->footer)), gc_type);
  668. stat_inc_call_count(sbi->stat_info);
  669. f2fs_put_page(sum_page, 0);
  670. return nfree;
  671. }
  672. int f2fs_gc(struct f2fs_sb_info *sbi)
  673. {
  674. unsigned int segno = NULL_SEGNO;
  675. unsigned int i;
  676. int gc_type = BG_GC;
  677. int nfree = 0;
  678. int ret = -1;
  679. struct cp_control cpc;
  680. struct gc_inode_list gc_list = {
  681. .ilist = LIST_HEAD_INIT(gc_list.ilist),
  682. .iroot = RADIX_TREE_INIT(GFP_NOFS),
  683. };
  684. cpc.reason = __get_cp_reason(sbi);
  685. gc_more:
  686. if (unlikely(!(sbi->sb->s_flags & MS_ACTIVE)))
  687. goto stop;
  688. if (unlikely(f2fs_cp_error(sbi)))
  689. goto stop;
  690. if (gc_type == BG_GC && has_not_enough_free_secs(sbi, nfree)) {
  691. gc_type = FG_GC;
  692. if (__get_victim(sbi, &segno, gc_type) || prefree_segments(sbi))
  693. write_checkpoint(sbi, &cpc);
  694. }
  695. if (segno == NULL_SEGNO && !__get_victim(sbi, &segno, gc_type))
  696. goto stop;
  697. ret = 0;
  698. /* readahead multi ssa blocks those have contiguous address */
  699. if (sbi->segs_per_sec > 1)
  700. ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno), sbi->segs_per_sec,
  701. META_SSA);
  702. for (i = 0; i < sbi->segs_per_sec; i++)
  703. nfree += do_garbage_collect(sbi, segno + i, &gc_list, gc_type);
  704. if (gc_type == FG_GC)
  705. sbi->cur_victim_sec = NULL_SEGNO;
  706. if (has_not_enough_free_secs(sbi, nfree))
  707. goto gc_more;
  708. if (gc_type == FG_GC)
  709. write_checkpoint(sbi, &cpc);
  710. stop:
  711. mutex_unlock(&sbi->gc_mutex);
  712. put_gc_inode(&gc_list);
  713. return ret;
  714. }
  715. void build_gc_manager(struct f2fs_sb_info *sbi)
  716. {
  717. DIRTY_I(sbi)->v_ops = &default_v_ops;
  718. }