file.c 39 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724
  1. /*
  2. * fs/f2fs/file.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/stat.h>
  14. #include <linux/buffer_head.h>
  15. #include <linux/writeback.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/falloc.h>
  18. #include <linux/types.h>
  19. #include <linux/compat.h>
  20. #include <linux/uaccess.h>
  21. #include <linux/mount.h>
  22. #include <linux/pagevec.h>
  23. #include <linux/random.h>
  24. #include "f2fs.h"
  25. #include "node.h"
  26. #include "segment.h"
  27. #include "xattr.h"
  28. #include "acl.h"
  29. #include "gc.h"
  30. #include "trace.h"
  31. #include <trace/events/f2fs.h>
  32. static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
  33. struct vm_fault *vmf)
  34. {
  35. struct page *page = vmf->page;
  36. struct inode *inode = file_inode(vma->vm_file);
  37. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  38. struct dnode_of_data dn;
  39. int err;
  40. f2fs_balance_fs(sbi);
  41. sb_start_pagefault(inode->i_sb);
  42. f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
  43. /* block allocation */
  44. f2fs_lock_op(sbi);
  45. set_new_dnode(&dn, inode, NULL, NULL, 0);
  46. err = f2fs_reserve_block(&dn, page->index);
  47. if (err) {
  48. f2fs_unlock_op(sbi);
  49. goto out;
  50. }
  51. f2fs_put_dnode(&dn);
  52. f2fs_unlock_op(sbi);
  53. file_update_time(vma->vm_file);
  54. lock_page(page);
  55. if (unlikely(page->mapping != inode->i_mapping ||
  56. page_offset(page) > i_size_read(inode) ||
  57. !PageUptodate(page))) {
  58. unlock_page(page);
  59. err = -EFAULT;
  60. goto out;
  61. }
  62. /*
  63. * check to see if the page is mapped already (no holes)
  64. */
  65. if (PageMappedToDisk(page))
  66. goto mapped;
  67. /* page is wholly or partially inside EOF */
  68. if (((page->index + 1) << PAGE_CACHE_SHIFT) > i_size_read(inode)) {
  69. unsigned offset;
  70. offset = i_size_read(inode) & ~PAGE_CACHE_MASK;
  71. zero_user_segment(page, offset, PAGE_CACHE_SIZE);
  72. }
  73. set_page_dirty(page);
  74. SetPageUptodate(page);
  75. trace_f2fs_vm_page_mkwrite(page, DATA);
  76. mapped:
  77. /* fill the page */
  78. f2fs_wait_on_page_writeback(page, DATA);
  79. /* if gced page is attached, don't write to cold segment */
  80. clear_cold_data(page);
  81. out:
  82. sb_end_pagefault(inode->i_sb);
  83. return block_page_mkwrite_return(err);
  84. }
  85. static const struct vm_operations_struct f2fs_file_vm_ops = {
  86. .fault = filemap_fault,
  87. .map_pages = filemap_map_pages,
  88. .page_mkwrite = f2fs_vm_page_mkwrite,
  89. };
  90. static int get_parent_ino(struct inode *inode, nid_t *pino)
  91. {
  92. struct dentry *dentry;
  93. inode = igrab(inode);
  94. dentry = d_find_any_alias(inode);
  95. iput(inode);
  96. if (!dentry)
  97. return 0;
  98. if (update_dent_inode(inode, inode, &dentry->d_name)) {
  99. dput(dentry);
  100. return 0;
  101. }
  102. *pino = parent_ino(dentry);
  103. dput(dentry);
  104. return 1;
  105. }
  106. static inline bool need_do_checkpoint(struct inode *inode)
  107. {
  108. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  109. bool need_cp = false;
  110. if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
  111. need_cp = true;
  112. else if (file_enc_name(inode) && need_dentry_mark(sbi, inode->i_ino))
  113. need_cp = true;
  114. else if (file_wrong_pino(inode))
  115. need_cp = true;
  116. else if (!space_for_roll_forward(sbi))
  117. need_cp = true;
  118. else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
  119. need_cp = true;
  120. else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi)))
  121. need_cp = true;
  122. else if (test_opt(sbi, FASTBOOT))
  123. need_cp = true;
  124. else if (sbi->active_logs == 2)
  125. need_cp = true;
  126. return need_cp;
  127. }
  128. static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
  129. {
  130. struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
  131. bool ret = false;
  132. /* But we need to avoid that there are some inode updates */
  133. if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
  134. ret = true;
  135. f2fs_put_page(i, 0);
  136. return ret;
  137. }
  138. static void try_to_fix_pino(struct inode *inode)
  139. {
  140. struct f2fs_inode_info *fi = F2FS_I(inode);
  141. nid_t pino;
  142. down_write(&fi->i_sem);
  143. fi->xattr_ver = 0;
  144. if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
  145. get_parent_ino(inode, &pino)) {
  146. fi->i_pino = pino;
  147. file_got_pino(inode);
  148. up_write(&fi->i_sem);
  149. mark_inode_dirty_sync(inode);
  150. f2fs_write_inode(inode, NULL);
  151. } else {
  152. up_write(&fi->i_sem);
  153. }
  154. }
  155. int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  156. {
  157. struct inode *inode = file->f_mapping->host;
  158. struct f2fs_inode_info *fi = F2FS_I(inode);
  159. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  160. nid_t ino = inode->i_ino;
  161. int ret = 0;
  162. bool need_cp = false;
  163. struct writeback_control wbc = {
  164. .sync_mode = WB_SYNC_ALL,
  165. .nr_to_write = LONG_MAX,
  166. .for_reclaim = 0,
  167. };
  168. if (unlikely(f2fs_readonly(inode->i_sb)))
  169. return 0;
  170. trace_f2fs_sync_file_enter(inode);
  171. /* if fdatasync is triggered, let's do in-place-update */
  172. if (get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
  173. set_inode_flag(fi, FI_NEED_IPU);
  174. ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
  175. clear_inode_flag(fi, FI_NEED_IPU);
  176. if (ret) {
  177. trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
  178. return ret;
  179. }
  180. /* if the inode is dirty, let's recover all the time */
  181. if (!datasync) {
  182. f2fs_write_inode(inode, NULL);
  183. goto go_write;
  184. }
  185. /*
  186. * if there is no written data, don't waste time to write recovery info.
  187. */
  188. if (!is_inode_flag_set(fi, FI_APPEND_WRITE) &&
  189. !exist_written_data(sbi, ino, APPEND_INO)) {
  190. /* it may call write_inode just prior to fsync */
  191. if (need_inode_page_update(sbi, ino))
  192. goto go_write;
  193. if (is_inode_flag_set(fi, FI_UPDATE_WRITE) ||
  194. exist_written_data(sbi, ino, UPDATE_INO))
  195. goto flush_out;
  196. goto out;
  197. }
  198. go_write:
  199. /* guarantee free sections for fsync */
  200. f2fs_balance_fs(sbi);
  201. /*
  202. * Both of fdatasync() and fsync() are able to be recovered from
  203. * sudden-power-off.
  204. */
  205. down_read(&fi->i_sem);
  206. need_cp = need_do_checkpoint(inode);
  207. up_read(&fi->i_sem);
  208. if (need_cp) {
  209. /* all the dirty node pages should be flushed for POR */
  210. ret = f2fs_sync_fs(inode->i_sb, 1);
  211. /*
  212. * We've secured consistency through sync_fs. Following pino
  213. * will be used only for fsynced inodes after checkpoint.
  214. */
  215. try_to_fix_pino(inode);
  216. clear_inode_flag(fi, FI_APPEND_WRITE);
  217. clear_inode_flag(fi, FI_UPDATE_WRITE);
  218. goto out;
  219. }
  220. sync_nodes:
  221. sync_node_pages(sbi, ino, &wbc);
  222. /* if cp_error was enabled, we should avoid infinite loop */
  223. if (unlikely(f2fs_cp_error(sbi)))
  224. goto out;
  225. if (need_inode_block_update(sbi, ino)) {
  226. mark_inode_dirty_sync(inode);
  227. f2fs_write_inode(inode, NULL);
  228. goto sync_nodes;
  229. }
  230. ret = wait_on_node_pages_writeback(sbi, ino);
  231. if (ret)
  232. goto out;
  233. /* once recovery info is written, don't need to tack this */
  234. remove_dirty_inode(sbi, ino, APPEND_INO);
  235. clear_inode_flag(fi, FI_APPEND_WRITE);
  236. flush_out:
  237. remove_dirty_inode(sbi, ino, UPDATE_INO);
  238. clear_inode_flag(fi, FI_UPDATE_WRITE);
  239. ret = f2fs_issue_flush(sbi);
  240. out:
  241. trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
  242. f2fs_trace_ios(NULL, 1);
  243. return ret;
  244. }
  245. static pgoff_t __get_first_dirty_index(struct address_space *mapping,
  246. pgoff_t pgofs, int whence)
  247. {
  248. struct pagevec pvec;
  249. int nr_pages;
  250. if (whence != SEEK_DATA)
  251. return 0;
  252. /* find first dirty page index */
  253. pagevec_init(&pvec, 0);
  254. nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
  255. PAGECACHE_TAG_DIRTY, 1);
  256. pgofs = nr_pages ? pvec.pages[0]->index : LONG_MAX;
  257. pagevec_release(&pvec);
  258. return pgofs;
  259. }
  260. static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
  261. int whence)
  262. {
  263. switch (whence) {
  264. case SEEK_DATA:
  265. if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
  266. (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
  267. return true;
  268. break;
  269. case SEEK_HOLE:
  270. if (blkaddr == NULL_ADDR)
  271. return true;
  272. break;
  273. }
  274. return false;
  275. }
  276. static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
  277. {
  278. struct inode *inode = file->f_mapping->host;
  279. loff_t maxbytes = inode->i_sb->s_maxbytes;
  280. struct dnode_of_data dn;
  281. pgoff_t pgofs, end_offset, dirty;
  282. loff_t data_ofs = offset;
  283. loff_t isize;
  284. int err = 0;
  285. mutex_lock(&inode->i_mutex);
  286. isize = i_size_read(inode);
  287. if (offset >= isize)
  288. goto fail;
  289. /* handle inline data case */
  290. if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
  291. if (whence == SEEK_HOLE)
  292. data_ofs = isize;
  293. goto found;
  294. }
  295. pgofs = (pgoff_t)(offset >> PAGE_CACHE_SHIFT);
  296. dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
  297. for (; data_ofs < isize; data_ofs = pgofs << PAGE_CACHE_SHIFT) {
  298. set_new_dnode(&dn, inode, NULL, NULL, 0);
  299. err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE_RA);
  300. if (err && err != -ENOENT) {
  301. goto fail;
  302. } else if (err == -ENOENT) {
  303. /* direct node does not exists */
  304. if (whence == SEEK_DATA) {
  305. pgofs = PGOFS_OF_NEXT_DNODE(pgofs,
  306. F2FS_I(inode));
  307. continue;
  308. } else {
  309. goto found;
  310. }
  311. }
  312. end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
  313. /* find data/hole in dnode block */
  314. for (; dn.ofs_in_node < end_offset;
  315. dn.ofs_in_node++, pgofs++,
  316. data_ofs = (loff_t)pgofs << PAGE_CACHE_SHIFT) {
  317. block_t blkaddr;
  318. blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
  319. if (__found_offset(blkaddr, dirty, pgofs, whence)) {
  320. f2fs_put_dnode(&dn);
  321. goto found;
  322. }
  323. }
  324. f2fs_put_dnode(&dn);
  325. }
  326. if (whence == SEEK_DATA)
  327. goto fail;
  328. found:
  329. if (whence == SEEK_HOLE && data_ofs > isize)
  330. data_ofs = isize;
  331. mutex_unlock(&inode->i_mutex);
  332. return vfs_setpos(file, data_ofs, maxbytes);
  333. fail:
  334. mutex_unlock(&inode->i_mutex);
  335. return -ENXIO;
  336. }
  337. static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
  338. {
  339. struct inode *inode = file->f_mapping->host;
  340. loff_t maxbytes = inode->i_sb->s_maxbytes;
  341. switch (whence) {
  342. case SEEK_SET:
  343. case SEEK_CUR:
  344. case SEEK_END:
  345. return generic_file_llseek_size(file, offset, whence,
  346. maxbytes, i_size_read(inode));
  347. case SEEK_DATA:
  348. case SEEK_HOLE:
  349. if (offset < 0)
  350. return -ENXIO;
  351. return f2fs_seek_block(file, offset, whence);
  352. }
  353. return -EINVAL;
  354. }
  355. static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
  356. {
  357. struct inode *inode = file_inode(file);
  358. if (f2fs_encrypted_inode(inode)) {
  359. int err = f2fs_get_encryption_info(inode);
  360. if (err)
  361. return 0;
  362. }
  363. /* we don't need to use inline_data strictly */
  364. if (f2fs_has_inline_data(inode)) {
  365. int err = f2fs_convert_inline_inode(inode);
  366. if (err)
  367. return err;
  368. }
  369. file_accessed(file);
  370. vma->vm_ops = &f2fs_file_vm_ops;
  371. return 0;
  372. }
  373. static int f2fs_file_open(struct inode *inode, struct file *filp)
  374. {
  375. int ret = generic_file_open(inode, filp);
  376. if (!ret && f2fs_encrypted_inode(inode)) {
  377. ret = f2fs_get_encryption_info(inode);
  378. if (ret)
  379. ret = -EACCES;
  380. }
  381. return ret;
  382. }
  383. int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
  384. {
  385. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  386. struct f2fs_node *raw_node;
  387. int nr_free = 0, ofs = dn->ofs_in_node, len = count;
  388. __le32 *addr;
  389. raw_node = F2FS_NODE(dn->node_page);
  390. addr = blkaddr_in_node(raw_node) + ofs;
  391. for (; count > 0; count--, addr++, dn->ofs_in_node++) {
  392. block_t blkaddr = le32_to_cpu(*addr);
  393. if (blkaddr == NULL_ADDR)
  394. continue;
  395. dn->data_blkaddr = NULL_ADDR;
  396. set_data_blkaddr(dn);
  397. invalidate_blocks(sbi, blkaddr);
  398. if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
  399. clear_inode_flag(F2FS_I(dn->inode),
  400. FI_FIRST_BLOCK_WRITTEN);
  401. nr_free++;
  402. }
  403. if (nr_free) {
  404. pgoff_t fofs;
  405. /*
  406. * once we invalidate valid blkaddr in range [ofs, ofs + count],
  407. * we will invalidate all blkaddr in the whole range.
  408. */
  409. fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
  410. F2FS_I(dn->inode)) + ofs;
  411. f2fs_update_extent_cache_range(dn, fofs, 0, len);
  412. dec_valid_block_count(sbi, dn->inode, nr_free);
  413. set_page_dirty(dn->node_page);
  414. sync_inode_page(dn);
  415. }
  416. dn->ofs_in_node = ofs;
  417. trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
  418. dn->ofs_in_node, nr_free);
  419. return nr_free;
  420. }
  421. void truncate_data_blocks(struct dnode_of_data *dn)
  422. {
  423. truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
  424. }
  425. static int truncate_partial_data_page(struct inode *inode, u64 from,
  426. bool cache_only)
  427. {
  428. unsigned offset = from & (PAGE_CACHE_SIZE - 1);
  429. pgoff_t index = from >> PAGE_CACHE_SHIFT;
  430. struct address_space *mapping = inode->i_mapping;
  431. struct page *page;
  432. if (!offset && !cache_only)
  433. return 0;
  434. if (cache_only) {
  435. page = grab_cache_page(mapping, index);
  436. if (page && PageUptodate(page))
  437. goto truncate_out;
  438. f2fs_put_page(page, 1);
  439. return 0;
  440. }
  441. page = get_lock_data_page(inode, index);
  442. if (IS_ERR(page))
  443. return 0;
  444. truncate_out:
  445. f2fs_wait_on_page_writeback(page, DATA);
  446. zero_user(page, offset, PAGE_CACHE_SIZE - offset);
  447. if (!cache_only || !f2fs_encrypted_inode(inode) || !S_ISREG(inode->i_mode))
  448. set_page_dirty(page);
  449. f2fs_put_page(page, 1);
  450. return 0;
  451. }
  452. int truncate_blocks(struct inode *inode, u64 from, bool lock)
  453. {
  454. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  455. unsigned int blocksize = inode->i_sb->s_blocksize;
  456. struct dnode_of_data dn;
  457. pgoff_t free_from;
  458. int count = 0, err = 0;
  459. struct page *ipage;
  460. bool truncate_page = false;
  461. trace_f2fs_truncate_blocks_enter(inode, from);
  462. free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
  463. if (lock)
  464. f2fs_lock_op(sbi);
  465. ipage = get_node_page(sbi, inode->i_ino);
  466. if (IS_ERR(ipage)) {
  467. err = PTR_ERR(ipage);
  468. goto out;
  469. }
  470. if (f2fs_has_inline_data(inode)) {
  471. if (truncate_inline_inode(ipage, from))
  472. set_page_dirty(ipage);
  473. f2fs_put_page(ipage, 1);
  474. truncate_page = true;
  475. goto out;
  476. }
  477. set_new_dnode(&dn, inode, ipage, NULL, 0);
  478. err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE);
  479. if (err) {
  480. if (err == -ENOENT)
  481. goto free_next;
  482. goto out;
  483. }
  484. count = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
  485. count -= dn.ofs_in_node;
  486. f2fs_bug_on(sbi, count < 0);
  487. if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
  488. truncate_data_blocks_range(&dn, count);
  489. free_from += count;
  490. }
  491. f2fs_put_dnode(&dn);
  492. free_next:
  493. err = truncate_inode_blocks(inode, free_from);
  494. out:
  495. if (lock)
  496. f2fs_unlock_op(sbi);
  497. /* lastly zero out the first data page */
  498. if (!err)
  499. err = truncate_partial_data_page(inode, from, truncate_page);
  500. trace_f2fs_truncate_blocks_exit(inode, err);
  501. return err;
  502. }
  503. int f2fs_truncate(struct inode *inode, bool lock)
  504. {
  505. int err;
  506. if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  507. S_ISLNK(inode->i_mode)))
  508. return 0;
  509. trace_f2fs_truncate(inode);
  510. /* we should check inline_data size */
  511. if (f2fs_has_inline_data(inode) && !f2fs_may_inline_data(inode)) {
  512. err = f2fs_convert_inline_inode(inode);
  513. if (err)
  514. return err;
  515. }
  516. err = truncate_blocks(inode, i_size_read(inode), lock);
  517. if (err)
  518. return err;
  519. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  520. mark_inode_dirty(inode);
  521. return 0;
  522. }
  523. int f2fs_getattr(struct vfsmount *mnt,
  524. struct dentry *dentry, struct kstat *stat)
  525. {
  526. struct inode *inode = d_inode(dentry);
  527. generic_fillattr(inode, stat);
  528. stat->blocks <<= 3;
  529. return 0;
  530. }
  531. #ifdef CONFIG_F2FS_FS_POSIX_ACL
  532. static void __setattr_copy(struct inode *inode, const struct iattr *attr)
  533. {
  534. struct f2fs_inode_info *fi = F2FS_I(inode);
  535. unsigned int ia_valid = attr->ia_valid;
  536. if (ia_valid & ATTR_UID)
  537. inode->i_uid = attr->ia_uid;
  538. if (ia_valid & ATTR_GID)
  539. inode->i_gid = attr->ia_gid;
  540. if (ia_valid & ATTR_ATIME)
  541. inode->i_atime = timespec_trunc(attr->ia_atime,
  542. inode->i_sb->s_time_gran);
  543. if (ia_valid & ATTR_MTIME)
  544. inode->i_mtime = timespec_trunc(attr->ia_mtime,
  545. inode->i_sb->s_time_gran);
  546. if (ia_valid & ATTR_CTIME)
  547. inode->i_ctime = timespec_trunc(attr->ia_ctime,
  548. inode->i_sb->s_time_gran);
  549. if (ia_valid & ATTR_MODE) {
  550. umode_t mode = attr->ia_mode;
  551. if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
  552. mode &= ~S_ISGID;
  553. set_acl_inode(fi, mode);
  554. }
  555. }
  556. #else
  557. #define __setattr_copy setattr_copy
  558. #endif
  559. int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
  560. {
  561. struct inode *inode = d_inode(dentry);
  562. struct f2fs_inode_info *fi = F2FS_I(inode);
  563. int err;
  564. err = inode_change_ok(inode, attr);
  565. if (err)
  566. return err;
  567. if (attr->ia_valid & ATTR_SIZE) {
  568. if (f2fs_encrypted_inode(inode) &&
  569. f2fs_get_encryption_info(inode))
  570. return -EACCES;
  571. if (attr->ia_size <= i_size_read(inode)) {
  572. truncate_setsize(inode, attr->ia_size);
  573. err = f2fs_truncate(inode, true);
  574. if (err)
  575. return err;
  576. f2fs_balance_fs(F2FS_I_SB(inode));
  577. } else {
  578. /*
  579. * do not trim all blocks after i_size if target size is
  580. * larger than i_size.
  581. */
  582. truncate_setsize(inode, attr->ia_size);
  583. }
  584. }
  585. __setattr_copy(inode, attr);
  586. if (attr->ia_valid & ATTR_MODE) {
  587. err = posix_acl_chmod(inode, get_inode_mode(inode));
  588. if (err || is_inode_flag_set(fi, FI_ACL_MODE)) {
  589. inode->i_mode = fi->i_acl_mode;
  590. clear_inode_flag(fi, FI_ACL_MODE);
  591. }
  592. }
  593. mark_inode_dirty(inode);
  594. return err;
  595. }
  596. const struct inode_operations f2fs_file_inode_operations = {
  597. .getattr = f2fs_getattr,
  598. .setattr = f2fs_setattr,
  599. .get_acl = f2fs_get_acl,
  600. .set_acl = f2fs_set_acl,
  601. #ifdef CONFIG_F2FS_FS_XATTR
  602. .setxattr = generic_setxattr,
  603. .getxattr = generic_getxattr,
  604. .listxattr = f2fs_listxattr,
  605. .removexattr = generic_removexattr,
  606. #endif
  607. .fiemap = f2fs_fiemap,
  608. };
  609. static int fill_zero(struct inode *inode, pgoff_t index,
  610. loff_t start, loff_t len)
  611. {
  612. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  613. struct page *page;
  614. if (!len)
  615. return 0;
  616. f2fs_balance_fs(sbi);
  617. f2fs_lock_op(sbi);
  618. page = get_new_data_page(inode, NULL, index, false);
  619. f2fs_unlock_op(sbi);
  620. if (IS_ERR(page))
  621. return PTR_ERR(page);
  622. f2fs_wait_on_page_writeback(page, DATA);
  623. zero_user(page, start, len);
  624. set_page_dirty(page);
  625. f2fs_put_page(page, 1);
  626. return 0;
  627. }
  628. int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
  629. {
  630. pgoff_t index;
  631. int err;
  632. for (index = pg_start; index < pg_end; index++) {
  633. struct dnode_of_data dn;
  634. set_new_dnode(&dn, inode, NULL, NULL, 0);
  635. err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
  636. if (err) {
  637. if (err == -ENOENT)
  638. continue;
  639. return err;
  640. }
  641. if (dn.data_blkaddr != NULL_ADDR)
  642. truncate_data_blocks_range(&dn, 1);
  643. f2fs_put_dnode(&dn);
  644. }
  645. return 0;
  646. }
  647. static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
  648. {
  649. pgoff_t pg_start, pg_end;
  650. loff_t off_start, off_end;
  651. int ret = 0;
  652. if (!S_ISREG(inode->i_mode))
  653. return -EOPNOTSUPP;
  654. if (f2fs_has_inline_data(inode)) {
  655. ret = f2fs_convert_inline_inode(inode);
  656. if (ret)
  657. return ret;
  658. }
  659. pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
  660. pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
  661. off_start = offset & (PAGE_CACHE_SIZE - 1);
  662. off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
  663. if (pg_start == pg_end) {
  664. ret = fill_zero(inode, pg_start, off_start,
  665. off_end - off_start);
  666. if (ret)
  667. return ret;
  668. } else {
  669. if (off_start) {
  670. ret = fill_zero(inode, pg_start++, off_start,
  671. PAGE_CACHE_SIZE - off_start);
  672. if (ret)
  673. return ret;
  674. }
  675. if (off_end) {
  676. ret = fill_zero(inode, pg_end, 0, off_end);
  677. if (ret)
  678. return ret;
  679. }
  680. if (pg_start < pg_end) {
  681. struct address_space *mapping = inode->i_mapping;
  682. loff_t blk_start, blk_end;
  683. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  684. f2fs_balance_fs(sbi);
  685. blk_start = pg_start << PAGE_CACHE_SHIFT;
  686. blk_end = pg_end << PAGE_CACHE_SHIFT;
  687. truncate_inode_pages_range(mapping, blk_start,
  688. blk_end - 1);
  689. f2fs_lock_op(sbi);
  690. ret = truncate_hole(inode, pg_start, pg_end);
  691. f2fs_unlock_op(sbi);
  692. }
  693. }
  694. return ret;
  695. }
  696. static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
  697. {
  698. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  699. struct dnode_of_data dn;
  700. pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
  701. int ret = 0;
  702. for (; end < nrpages; start++, end++) {
  703. block_t new_addr, old_addr;
  704. f2fs_lock_op(sbi);
  705. set_new_dnode(&dn, inode, NULL, NULL, 0);
  706. ret = get_dnode_of_data(&dn, end, LOOKUP_NODE_RA);
  707. if (ret && ret != -ENOENT) {
  708. goto out;
  709. } else if (ret == -ENOENT) {
  710. new_addr = NULL_ADDR;
  711. } else {
  712. new_addr = dn.data_blkaddr;
  713. truncate_data_blocks_range(&dn, 1);
  714. f2fs_put_dnode(&dn);
  715. }
  716. if (new_addr == NULL_ADDR) {
  717. set_new_dnode(&dn, inode, NULL, NULL, 0);
  718. ret = get_dnode_of_data(&dn, start, LOOKUP_NODE_RA);
  719. if (ret && ret != -ENOENT) {
  720. goto out;
  721. } else if (ret == -ENOENT) {
  722. f2fs_unlock_op(sbi);
  723. continue;
  724. }
  725. if (dn.data_blkaddr == NULL_ADDR) {
  726. f2fs_put_dnode(&dn);
  727. f2fs_unlock_op(sbi);
  728. continue;
  729. } else {
  730. truncate_data_blocks_range(&dn, 1);
  731. }
  732. f2fs_put_dnode(&dn);
  733. } else {
  734. struct page *ipage;
  735. ipage = get_node_page(sbi, inode->i_ino);
  736. if (IS_ERR(ipage)) {
  737. ret = PTR_ERR(ipage);
  738. goto out;
  739. }
  740. set_new_dnode(&dn, inode, ipage, NULL, 0);
  741. ret = f2fs_reserve_block(&dn, start);
  742. if (ret)
  743. goto out;
  744. old_addr = dn.data_blkaddr;
  745. if (old_addr != NEW_ADDR && new_addr == NEW_ADDR) {
  746. dn.data_blkaddr = NULL_ADDR;
  747. f2fs_update_extent_cache(&dn);
  748. invalidate_blocks(sbi, old_addr);
  749. dn.data_blkaddr = new_addr;
  750. set_data_blkaddr(&dn);
  751. } else if (new_addr != NEW_ADDR) {
  752. struct node_info ni;
  753. get_node_info(sbi, dn.nid, &ni);
  754. f2fs_replace_block(sbi, &dn, old_addr, new_addr,
  755. ni.version, true);
  756. }
  757. f2fs_put_dnode(&dn);
  758. }
  759. f2fs_unlock_op(sbi);
  760. }
  761. return 0;
  762. out:
  763. f2fs_unlock_op(sbi);
  764. return ret;
  765. }
  766. static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
  767. {
  768. pgoff_t pg_start, pg_end;
  769. loff_t new_size;
  770. int ret;
  771. if (!S_ISREG(inode->i_mode))
  772. return -EINVAL;
  773. if (offset + len >= i_size_read(inode))
  774. return -EINVAL;
  775. /* collapse range should be aligned to block size of f2fs. */
  776. if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
  777. return -EINVAL;
  778. f2fs_balance_fs(F2FS_I_SB(inode));
  779. if (f2fs_has_inline_data(inode)) {
  780. ret = f2fs_convert_inline_inode(inode);
  781. if (ret)
  782. return ret;
  783. }
  784. pg_start = offset >> PAGE_CACHE_SHIFT;
  785. pg_end = (offset + len) >> PAGE_CACHE_SHIFT;
  786. /* write out all dirty pages from offset */
  787. ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  788. if (ret)
  789. return ret;
  790. truncate_pagecache(inode, offset);
  791. ret = f2fs_do_collapse(inode, pg_start, pg_end);
  792. if (ret)
  793. return ret;
  794. new_size = i_size_read(inode) - len;
  795. ret = truncate_blocks(inode, new_size, true);
  796. if (!ret)
  797. i_size_write(inode, new_size);
  798. return ret;
  799. }
  800. static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
  801. int mode)
  802. {
  803. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  804. struct address_space *mapping = inode->i_mapping;
  805. pgoff_t index, pg_start, pg_end;
  806. loff_t new_size = i_size_read(inode);
  807. loff_t off_start, off_end;
  808. int ret = 0;
  809. if (!S_ISREG(inode->i_mode))
  810. return -EINVAL;
  811. ret = inode_newsize_ok(inode, (len + offset));
  812. if (ret)
  813. return ret;
  814. f2fs_balance_fs(sbi);
  815. if (f2fs_has_inline_data(inode)) {
  816. ret = f2fs_convert_inline_inode(inode);
  817. if (ret)
  818. return ret;
  819. }
  820. ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
  821. if (ret)
  822. return ret;
  823. truncate_pagecache_range(inode, offset, offset + len - 1);
  824. pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
  825. pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
  826. off_start = offset & (PAGE_CACHE_SIZE - 1);
  827. off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
  828. if (pg_start == pg_end) {
  829. ret = fill_zero(inode, pg_start, off_start,
  830. off_end - off_start);
  831. if (ret)
  832. return ret;
  833. if (offset + len > new_size)
  834. new_size = offset + len;
  835. new_size = max_t(loff_t, new_size, offset + len);
  836. } else {
  837. if (off_start) {
  838. ret = fill_zero(inode, pg_start++, off_start,
  839. PAGE_CACHE_SIZE - off_start);
  840. if (ret)
  841. return ret;
  842. new_size = max_t(loff_t, new_size,
  843. pg_start << PAGE_CACHE_SHIFT);
  844. }
  845. for (index = pg_start; index < pg_end; index++) {
  846. struct dnode_of_data dn;
  847. struct page *ipage;
  848. f2fs_lock_op(sbi);
  849. ipage = get_node_page(sbi, inode->i_ino);
  850. if (IS_ERR(ipage)) {
  851. ret = PTR_ERR(ipage);
  852. f2fs_unlock_op(sbi);
  853. goto out;
  854. }
  855. set_new_dnode(&dn, inode, ipage, NULL, 0);
  856. ret = f2fs_reserve_block(&dn, index);
  857. if (ret) {
  858. f2fs_unlock_op(sbi);
  859. goto out;
  860. }
  861. if (dn.data_blkaddr != NEW_ADDR) {
  862. invalidate_blocks(sbi, dn.data_blkaddr);
  863. dn.data_blkaddr = NEW_ADDR;
  864. set_data_blkaddr(&dn);
  865. dn.data_blkaddr = NULL_ADDR;
  866. f2fs_update_extent_cache(&dn);
  867. }
  868. f2fs_put_dnode(&dn);
  869. f2fs_unlock_op(sbi);
  870. new_size = max_t(loff_t, new_size,
  871. (index + 1) << PAGE_CACHE_SHIFT);
  872. }
  873. if (off_end) {
  874. ret = fill_zero(inode, pg_end, 0, off_end);
  875. if (ret)
  876. goto out;
  877. new_size = max_t(loff_t, new_size, offset + len);
  878. }
  879. }
  880. out:
  881. if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size) {
  882. i_size_write(inode, new_size);
  883. mark_inode_dirty(inode);
  884. update_inode_page(inode);
  885. }
  886. return ret;
  887. }
  888. static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
  889. {
  890. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  891. pgoff_t pg_start, pg_end, delta, nrpages, idx;
  892. loff_t new_size;
  893. int ret;
  894. if (!S_ISREG(inode->i_mode))
  895. return -EINVAL;
  896. new_size = i_size_read(inode) + len;
  897. if (new_size > inode->i_sb->s_maxbytes)
  898. return -EFBIG;
  899. if (offset >= i_size_read(inode))
  900. return -EINVAL;
  901. /* insert range should be aligned to block size of f2fs. */
  902. if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
  903. return -EINVAL;
  904. f2fs_balance_fs(sbi);
  905. if (f2fs_has_inline_data(inode)) {
  906. ret = f2fs_convert_inline_inode(inode);
  907. if (ret)
  908. return ret;
  909. }
  910. ret = truncate_blocks(inode, i_size_read(inode), true);
  911. if (ret)
  912. return ret;
  913. /* write out all dirty pages from offset */
  914. ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  915. if (ret)
  916. return ret;
  917. truncate_pagecache(inode, offset);
  918. pg_start = offset >> PAGE_CACHE_SHIFT;
  919. pg_end = (offset + len) >> PAGE_CACHE_SHIFT;
  920. delta = pg_end - pg_start;
  921. nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
  922. for (idx = nrpages - 1; idx >= pg_start && idx != -1; idx--) {
  923. struct dnode_of_data dn;
  924. struct page *ipage;
  925. block_t new_addr, old_addr;
  926. f2fs_lock_op(sbi);
  927. set_new_dnode(&dn, inode, NULL, NULL, 0);
  928. ret = get_dnode_of_data(&dn, idx, LOOKUP_NODE_RA);
  929. if (ret && ret != -ENOENT) {
  930. goto out;
  931. } else if (ret == -ENOENT) {
  932. goto next;
  933. } else if (dn.data_blkaddr == NULL_ADDR) {
  934. f2fs_put_dnode(&dn);
  935. goto next;
  936. } else {
  937. new_addr = dn.data_blkaddr;
  938. truncate_data_blocks_range(&dn, 1);
  939. f2fs_put_dnode(&dn);
  940. }
  941. ipage = get_node_page(sbi, inode->i_ino);
  942. if (IS_ERR(ipage)) {
  943. ret = PTR_ERR(ipage);
  944. goto out;
  945. }
  946. set_new_dnode(&dn, inode, ipage, NULL, 0);
  947. ret = f2fs_reserve_block(&dn, idx + delta);
  948. if (ret)
  949. goto out;
  950. old_addr = dn.data_blkaddr;
  951. f2fs_bug_on(sbi, old_addr != NEW_ADDR);
  952. if (new_addr != NEW_ADDR) {
  953. struct node_info ni;
  954. get_node_info(sbi, dn.nid, &ni);
  955. f2fs_replace_block(sbi, &dn, old_addr, new_addr,
  956. ni.version, true);
  957. }
  958. f2fs_put_dnode(&dn);
  959. next:
  960. f2fs_unlock_op(sbi);
  961. }
  962. i_size_write(inode, new_size);
  963. return 0;
  964. out:
  965. f2fs_unlock_op(sbi);
  966. return ret;
  967. }
  968. static int expand_inode_data(struct inode *inode, loff_t offset,
  969. loff_t len, int mode)
  970. {
  971. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  972. pgoff_t index, pg_start, pg_end;
  973. loff_t new_size = i_size_read(inode);
  974. loff_t off_start, off_end;
  975. int ret = 0;
  976. f2fs_balance_fs(sbi);
  977. ret = inode_newsize_ok(inode, (len + offset));
  978. if (ret)
  979. return ret;
  980. if (f2fs_has_inline_data(inode)) {
  981. ret = f2fs_convert_inline_inode(inode);
  982. if (ret)
  983. return ret;
  984. }
  985. pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
  986. pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
  987. off_start = offset & (PAGE_CACHE_SIZE - 1);
  988. off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
  989. f2fs_lock_op(sbi);
  990. for (index = pg_start; index <= pg_end; index++) {
  991. struct dnode_of_data dn;
  992. if (index == pg_end && !off_end)
  993. goto noalloc;
  994. set_new_dnode(&dn, inode, NULL, NULL, 0);
  995. ret = f2fs_reserve_block(&dn, index);
  996. if (ret)
  997. break;
  998. noalloc:
  999. if (pg_start == pg_end)
  1000. new_size = offset + len;
  1001. else if (index == pg_start && off_start)
  1002. new_size = (index + 1) << PAGE_CACHE_SHIFT;
  1003. else if (index == pg_end)
  1004. new_size = (index << PAGE_CACHE_SHIFT) + off_end;
  1005. else
  1006. new_size += PAGE_CACHE_SIZE;
  1007. }
  1008. if (!(mode & FALLOC_FL_KEEP_SIZE) &&
  1009. i_size_read(inode) < new_size) {
  1010. i_size_write(inode, new_size);
  1011. mark_inode_dirty(inode);
  1012. update_inode_page(inode);
  1013. }
  1014. f2fs_unlock_op(sbi);
  1015. return ret;
  1016. }
  1017. static long f2fs_fallocate(struct file *file, int mode,
  1018. loff_t offset, loff_t len)
  1019. {
  1020. struct inode *inode = file_inode(file);
  1021. long ret = 0;
  1022. if (f2fs_encrypted_inode(inode) &&
  1023. (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
  1024. return -EOPNOTSUPP;
  1025. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
  1026. FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
  1027. FALLOC_FL_INSERT_RANGE))
  1028. return -EOPNOTSUPP;
  1029. mutex_lock(&inode->i_mutex);
  1030. if (mode & FALLOC_FL_PUNCH_HOLE) {
  1031. if (offset >= inode->i_size)
  1032. goto out;
  1033. ret = punch_hole(inode, offset, len);
  1034. } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
  1035. ret = f2fs_collapse_range(inode, offset, len);
  1036. } else if (mode & FALLOC_FL_ZERO_RANGE) {
  1037. ret = f2fs_zero_range(inode, offset, len, mode);
  1038. } else if (mode & FALLOC_FL_INSERT_RANGE) {
  1039. ret = f2fs_insert_range(inode, offset, len);
  1040. } else {
  1041. ret = expand_inode_data(inode, offset, len, mode);
  1042. }
  1043. if (!ret) {
  1044. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  1045. mark_inode_dirty(inode);
  1046. }
  1047. out:
  1048. mutex_unlock(&inode->i_mutex);
  1049. trace_f2fs_fallocate(inode, mode, offset, len, ret);
  1050. return ret;
  1051. }
  1052. static int f2fs_release_file(struct inode *inode, struct file *filp)
  1053. {
  1054. /* some remained atomic pages should discarded */
  1055. if (f2fs_is_atomic_file(inode))
  1056. commit_inmem_pages(inode, true);
  1057. if (f2fs_is_volatile_file(inode)) {
  1058. set_inode_flag(F2FS_I(inode), FI_DROP_CACHE);
  1059. filemap_fdatawrite(inode->i_mapping);
  1060. clear_inode_flag(F2FS_I(inode), FI_DROP_CACHE);
  1061. }
  1062. return 0;
  1063. }
  1064. #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
  1065. #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
  1066. static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
  1067. {
  1068. if (S_ISDIR(mode))
  1069. return flags;
  1070. else if (S_ISREG(mode))
  1071. return flags & F2FS_REG_FLMASK;
  1072. else
  1073. return flags & F2FS_OTHER_FLMASK;
  1074. }
  1075. static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
  1076. {
  1077. struct inode *inode = file_inode(filp);
  1078. struct f2fs_inode_info *fi = F2FS_I(inode);
  1079. unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
  1080. return put_user(flags, (int __user *)arg);
  1081. }
  1082. static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
  1083. {
  1084. struct inode *inode = file_inode(filp);
  1085. struct f2fs_inode_info *fi = F2FS_I(inode);
  1086. unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
  1087. unsigned int oldflags;
  1088. int ret;
  1089. ret = mnt_want_write_file(filp);
  1090. if (ret)
  1091. return ret;
  1092. if (!inode_owner_or_capable(inode)) {
  1093. ret = -EACCES;
  1094. goto out;
  1095. }
  1096. if (get_user(flags, (int __user *)arg)) {
  1097. ret = -EFAULT;
  1098. goto out;
  1099. }
  1100. flags = f2fs_mask_flags(inode->i_mode, flags);
  1101. mutex_lock(&inode->i_mutex);
  1102. oldflags = fi->i_flags;
  1103. if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
  1104. if (!capable(CAP_LINUX_IMMUTABLE)) {
  1105. mutex_unlock(&inode->i_mutex);
  1106. ret = -EPERM;
  1107. goto out;
  1108. }
  1109. }
  1110. flags = flags & FS_FL_USER_MODIFIABLE;
  1111. flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
  1112. fi->i_flags = flags;
  1113. mutex_unlock(&inode->i_mutex);
  1114. f2fs_set_inode_flags(inode);
  1115. inode->i_ctime = CURRENT_TIME;
  1116. mark_inode_dirty(inode);
  1117. out:
  1118. mnt_drop_write_file(filp);
  1119. return ret;
  1120. }
  1121. static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
  1122. {
  1123. struct inode *inode = file_inode(filp);
  1124. return put_user(inode->i_generation, (int __user *)arg);
  1125. }
  1126. static int f2fs_ioc_start_atomic_write(struct file *filp)
  1127. {
  1128. struct inode *inode = file_inode(filp);
  1129. int ret;
  1130. if (!inode_owner_or_capable(inode))
  1131. return -EACCES;
  1132. f2fs_balance_fs(F2FS_I_SB(inode));
  1133. if (f2fs_is_atomic_file(inode))
  1134. return 0;
  1135. ret = f2fs_convert_inline_inode(inode);
  1136. if (ret)
  1137. return ret;
  1138. set_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
  1139. return 0;
  1140. }
  1141. static int f2fs_ioc_commit_atomic_write(struct file *filp)
  1142. {
  1143. struct inode *inode = file_inode(filp);
  1144. int ret;
  1145. if (!inode_owner_or_capable(inode))
  1146. return -EACCES;
  1147. if (f2fs_is_volatile_file(inode))
  1148. return 0;
  1149. ret = mnt_want_write_file(filp);
  1150. if (ret)
  1151. return ret;
  1152. if (f2fs_is_atomic_file(inode)) {
  1153. clear_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
  1154. ret = commit_inmem_pages(inode, false);
  1155. if (ret)
  1156. goto err_out;
  1157. }
  1158. ret = f2fs_sync_file(filp, 0, LLONG_MAX, 0);
  1159. err_out:
  1160. mnt_drop_write_file(filp);
  1161. return ret;
  1162. }
  1163. static int f2fs_ioc_start_volatile_write(struct file *filp)
  1164. {
  1165. struct inode *inode = file_inode(filp);
  1166. int ret;
  1167. if (!inode_owner_or_capable(inode))
  1168. return -EACCES;
  1169. if (f2fs_is_volatile_file(inode))
  1170. return 0;
  1171. ret = f2fs_convert_inline_inode(inode);
  1172. if (ret)
  1173. return ret;
  1174. set_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
  1175. return 0;
  1176. }
  1177. static int f2fs_ioc_release_volatile_write(struct file *filp)
  1178. {
  1179. struct inode *inode = file_inode(filp);
  1180. if (!inode_owner_or_capable(inode))
  1181. return -EACCES;
  1182. if (!f2fs_is_volatile_file(inode))
  1183. return 0;
  1184. if (!f2fs_is_first_block_written(inode))
  1185. return truncate_partial_data_page(inode, 0, true);
  1186. punch_hole(inode, 0, F2FS_BLKSIZE);
  1187. return 0;
  1188. }
  1189. static int f2fs_ioc_abort_volatile_write(struct file *filp)
  1190. {
  1191. struct inode *inode = file_inode(filp);
  1192. int ret;
  1193. if (!inode_owner_or_capable(inode))
  1194. return -EACCES;
  1195. ret = mnt_want_write_file(filp);
  1196. if (ret)
  1197. return ret;
  1198. f2fs_balance_fs(F2FS_I_SB(inode));
  1199. if (f2fs_is_atomic_file(inode)) {
  1200. clear_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
  1201. commit_inmem_pages(inode, true);
  1202. }
  1203. if (f2fs_is_volatile_file(inode))
  1204. clear_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
  1205. mnt_drop_write_file(filp);
  1206. return ret;
  1207. }
  1208. static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
  1209. {
  1210. struct inode *inode = file_inode(filp);
  1211. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1212. struct super_block *sb = sbi->sb;
  1213. __u32 in;
  1214. if (!capable(CAP_SYS_ADMIN))
  1215. return -EPERM;
  1216. if (get_user(in, (__u32 __user *)arg))
  1217. return -EFAULT;
  1218. switch (in) {
  1219. case F2FS_GOING_DOWN_FULLSYNC:
  1220. sb = freeze_bdev(sb->s_bdev);
  1221. if (sb && !IS_ERR(sb)) {
  1222. f2fs_stop_checkpoint(sbi);
  1223. thaw_bdev(sb->s_bdev, sb);
  1224. }
  1225. break;
  1226. case F2FS_GOING_DOWN_METASYNC:
  1227. /* do checkpoint only */
  1228. f2fs_sync_fs(sb, 1);
  1229. f2fs_stop_checkpoint(sbi);
  1230. break;
  1231. case F2FS_GOING_DOWN_NOSYNC:
  1232. f2fs_stop_checkpoint(sbi);
  1233. break;
  1234. default:
  1235. return -EINVAL;
  1236. }
  1237. return 0;
  1238. }
  1239. static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
  1240. {
  1241. struct inode *inode = file_inode(filp);
  1242. struct super_block *sb = inode->i_sb;
  1243. struct request_queue *q = bdev_get_queue(sb->s_bdev);
  1244. struct fstrim_range range;
  1245. int ret;
  1246. if (!capable(CAP_SYS_ADMIN))
  1247. return -EPERM;
  1248. if (!blk_queue_discard(q))
  1249. return -EOPNOTSUPP;
  1250. if (copy_from_user(&range, (struct fstrim_range __user *)arg,
  1251. sizeof(range)))
  1252. return -EFAULT;
  1253. range.minlen = max((unsigned int)range.minlen,
  1254. q->limits.discard_granularity);
  1255. ret = f2fs_trim_fs(F2FS_SB(sb), &range);
  1256. if (ret < 0)
  1257. return ret;
  1258. if (copy_to_user((struct fstrim_range __user *)arg, &range,
  1259. sizeof(range)))
  1260. return -EFAULT;
  1261. return 0;
  1262. }
  1263. static bool uuid_is_nonzero(__u8 u[16])
  1264. {
  1265. int i;
  1266. for (i = 0; i < 16; i++)
  1267. if (u[i])
  1268. return true;
  1269. return false;
  1270. }
  1271. static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
  1272. {
  1273. #ifdef CONFIG_F2FS_FS_ENCRYPTION
  1274. struct f2fs_encryption_policy policy;
  1275. struct inode *inode = file_inode(filp);
  1276. if (copy_from_user(&policy, (struct f2fs_encryption_policy __user *)arg,
  1277. sizeof(policy)))
  1278. return -EFAULT;
  1279. return f2fs_process_policy(&policy, inode);
  1280. #else
  1281. return -EOPNOTSUPP;
  1282. #endif
  1283. }
  1284. static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
  1285. {
  1286. #ifdef CONFIG_F2FS_FS_ENCRYPTION
  1287. struct f2fs_encryption_policy policy;
  1288. struct inode *inode = file_inode(filp);
  1289. int err;
  1290. err = f2fs_get_policy(inode, &policy);
  1291. if (err)
  1292. return err;
  1293. if (copy_to_user((struct f2fs_encryption_policy __user *)arg, &policy,
  1294. sizeof(policy)))
  1295. return -EFAULT;
  1296. return 0;
  1297. #else
  1298. return -EOPNOTSUPP;
  1299. #endif
  1300. }
  1301. static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
  1302. {
  1303. struct inode *inode = file_inode(filp);
  1304. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1305. int err;
  1306. if (!f2fs_sb_has_crypto(inode->i_sb))
  1307. return -EOPNOTSUPP;
  1308. if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
  1309. goto got_it;
  1310. err = mnt_want_write_file(filp);
  1311. if (err)
  1312. return err;
  1313. /* update superblock with uuid */
  1314. generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
  1315. err = f2fs_commit_super(sbi, false);
  1316. mnt_drop_write_file(filp);
  1317. if (err) {
  1318. /* undo new data */
  1319. memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
  1320. return err;
  1321. }
  1322. got_it:
  1323. if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
  1324. 16))
  1325. return -EFAULT;
  1326. return 0;
  1327. }
  1328. static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
  1329. {
  1330. struct inode *inode = file_inode(filp);
  1331. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1332. __u32 i, count;
  1333. if (!capable(CAP_SYS_ADMIN))
  1334. return -EPERM;
  1335. if (get_user(count, (__u32 __user *)arg))
  1336. return -EFAULT;
  1337. if (!count || count > F2FS_BATCH_GC_MAX_NUM)
  1338. return -EINVAL;
  1339. for (i = 0; i < count; i++) {
  1340. if (!mutex_trylock(&sbi->gc_mutex))
  1341. break;
  1342. if (f2fs_gc(sbi))
  1343. break;
  1344. }
  1345. if (put_user(i, (__u32 __user *)arg))
  1346. return -EFAULT;
  1347. return 0;
  1348. }
  1349. long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
  1350. {
  1351. switch (cmd) {
  1352. case F2FS_IOC_GETFLAGS:
  1353. return f2fs_ioc_getflags(filp, arg);
  1354. case F2FS_IOC_SETFLAGS:
  1355. return f2fs_ioc_setflags(filp, arg);
  1356. case F2FS_IOC_GETVERSION:
  1357. return f2fs_ioc_getversion(filp, arg);
  1358. case F2FS_IOC_START_ATOMIC_WRITE:
  1359. return f2fs_ioc_start_atomic_write(filp);
  1360. case F2FS_IOC_COMMIT_ATOMIC_WRITE:
  1361. return f2fs_ioc_commit_atomic_write(filp);
  1362. case F2FS_IOC_START_VOLATILE_WRITE:
  1363. return f2fs_ioc_start_volatile_write(filp);
  1364. case F2FS_IOC_RELEASE_VOLATILE_WRITE:
  1365. return f2fs_ioc_release_volatile_write(filp);
  1366. case F2FS_IOC_ABORT_VOLATILE_WRITE:
  1367. return f2fs_ioc_abort_volatile_write(filp);
  1368. case F2FS_IOC_SHUTDOWN:
  1369. return f2fs_ioc_shutdown(filp, arg);
  1370. case FITRIM:
  1371. return f2fs_ioc_fitrim(filp, arg);
  1372. case F2FS_IOC_SET_ENCRYPTION_POLICY:
  1373. return f2fs_ioc_set_encryption_policy(filp, arg);
  1374. case F2FS_IOC_GET_ENCRYPTION_POLICY:
  1375. return f2fs_ioc_get_encryption_policy(filp, arg);
  1376. case F2FS_IOC_GET_ENCRYPTION_PWSALT:
  1377. return f2fs_ioc_get_encryption_pwsalt(filp, arg);
  1378. case F2FS_IOC_GARBAGE_COLLECT:
  1379. return f2fs_ioc_gc(filp, arg);
  1380. default:
  1381. return -ENOTTY;
  1382. }
  1383. }
  1384. static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
  1385. {
  1386. struct inode *inode = file_inode(iocb->ki_filp);
  1387. if (f2fs_encrypted_inode(inode) &&
  1388. !f2fs_has_encryption_key(inode) &&
  1389. f2fs_get_encryption_info(inode))
  1390. return -EACCES;
  1391. return generic_file_write_iter(iocb, from);
  1392. }
  1393. #ifdef CONFIG_COMPAT
  1394. long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  1395. {
  1396. switch (cmd) {
  1397. case F2FS_IOC32_GETFLAGS:
  1398. cmd = F2FS_IOC_GETFLAGS;
  1399. break;
  1400. case F2FS_IOC32_SETFLAGS:
  1401. cmd = F2FS_IOC_SETFLAGS;
  1402. break;
  1403. default:
  1404. return -ENOIOCTLCMD;
  1405. }
  1406. return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
  1407. }
  1408. #endif
  1409. const struct file_operations f2fs_file_operations = {
  1410. .llseek = f2fs_llseek,
  1411. .read_iter = generic_file_read_iter,
  1412. .write_iter = f2fs_file_write_iter,
  1413. .open = f2fs_file_open,
  1414. .release = f2fs_release_file,
  1415. .mmap = f2fs_file_mmap,
  1416. .fsync = f2fs_sync_file,
  1417. .fallocate = f2fs_fallocate,
  1418. .unlocked_ioctl = f2fs_ioctl,
  1419. #ifdef CONFIG_COMPAT
  1420. .compat_ioctl = f2fs_compat_ioctl,
  1421. #endif
  1422. .splice_read = generic_file_splice_read,
  1423. .splice_write = iter_file_splice_write,
  1424. };