data.c 38 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660
  1. /*
  2. * fs/f2fs/data.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/buffer_head.h>
  14. #include <linux/mpage.h>
  15. #include <linux/writeback.h>
  16. #include <linux/backing-dev.h>
  17. #include <linux/pagevec.h>
  18. #include <linux/blkdev.h>
  19. #include <linux/bio.h>
  20. #include <linux/prefetch.h>
  21. #include <linux/uio.h>
  22. #include <linux/cleancache.h>
  23. #include "f2fs.h"
  24. #include "node.h"
  25. #include "segment.h"
  26. #include "trace.h"
  27. #include <trace/events/f2fs.h>
  28. static void f2fs_read_end_io(struct bio *bio)
  29. {
  30. struct bio_vec *bvec;
  31. int i;
  32. if (f2fs_bio_encrypted(bio)) {
  33. if (bio->bi_error) {
  34. f2fs_release_crypto_ctx(bio->bi_private);
  35. } else {
  36. f2fs_end_io_crypto_work(bio->bi_private, bio);
  37. return;
  38. }
  39. }
  40. bio_for_each_segment_all(bvec, bio, i) {
  41. struct page *page = bvec->bv_page;
  42. if (!bio->bi_error) {
  43. SetPageUptodate(page);
  44. } else {
  45. ClearPageUptodate(page);
  46. SetPageError(page);
  47. }
  48. unlock_page(page);
  49. }
  50. bio_put(bio);
  51. }
  52. static void f2fs_write_end_io(struct bio *bio)
  53. {
  54. struct f2fs_sb_info *sbi = bio->bi_private;
  55. struct bio_vec *bvec;
  56. int i;
  57. bio_for_each_segment_all(bvec, bio, i) {
  58. struct page *page = bvec->bv_page;
  59. f2fs_restore_and_release_control_page(&page);
  60. if (unlikely(bio->bi_error)) {
  61. set_page_dirty(page);
  62. set_bit(AS_EIO, &page->mapping->flags);
  63. f2fs_stop_checkpoint(sbi);
  64. }
  65. end_page_writeback(page);
  66. dec_page_count(sbi, F2FS_WRITEBACK);
  67. }
  68. if (!get_pages(sbi, F2FS_WRITEBACK) &&
  69. !list_empty(&sbi->cp_wait.task_list))
  70. wake_up(&sbi->cp_wait);
  71. bio_put(bio);
  72. }
  73. /*
  74. * Low-level block read/write IO operations.
  75. */
  76. static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
  77. int npages, bool is_read)
  78. {
  79. struct bio *bio;
  80. bio = f2fs_bio_alloc(npages);
  81. bio->bi_bdev = sbi->sb->s_bdev;
  82. bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
  83. bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
  84. bio->bi_private = is_read ? NULL : sbi;
  85. return bio;
  86. }
  87. static void __submit_merged_bio(struct f2fs_bio_info *io)
  88. {
  89. struct f2fs_io_info *fio = &io->fio;
  90. if (!io->bio)
  91. return;
  92. if (is_read_io(fio->rw))
  93. trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
  94. else
  95. trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
  96. submit_bio(fio->rw, io->bio);
  97. io->bio = NULL;
  98. }
  99. void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
  100. enum page_type type, int rw)
  101. {
  102. enum page_type btype = PAGE_TYPE_OF_BIO(type);
  103. struct f2fs_bio_info *io;
  104. io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
  105. down_write(&io->io_rwsem);
  106. /* change META to META_FLUSH in the checkpoint procedure */
  107. if (type >= META_FLUSH) {
  108. io->fio.type = META_FLUSH;
  109. if (test_opt(sbi, NOBARRIER))
  110. io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
  111. else
  112. io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
  113. }
  114. __submit_merged_bio(io);
  115. up_write(&io->io_rwsem);
  116. }
  117. /*
  118. * Fill the locked page with data located in the block address.
  119. * Return unlocked page.
  120. */
  121. int f2fs_submit_page_bio(struct f2fs_io_info *fio)
  122. {
  123. struct bio *bio;
  124. struct page *page = fio->encrypted_page ? fio->encrypted_page : fio->page;
  125. trace_f2fs_submit_page_bio(page, fio);
  126. f2fs_trace_ios(fio, 0);
  127. /* Allocate a new bio */
  128. bio = __bio_alloc(fio->sbi, fio->blk_addr, 1, is_read_io(fio->rw));
  129. if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
  130. bio_put(bio);
  131. return -EFAULT;
  132. }
  133. submit_bio(fio->rw, bio);
  134. return 0;
  135. }
  136. void f2fs_submit_page_mbio(struct f2fs_io_info *fio)
  137. {
  138. struct f2fs_sb_info *sbi = fio->sbi;
  139. enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
  140. struct f2fs_bio_info *io;
  141. bool is_read = is_read_io(fio->rw);
  142. struct page *bio_page;
  143. io = is_read ? &sbi->read_io : &sbi->write_io[btype];
  144. verify_block_addr(sbi, fio->blk_addr);
  145. down_write(&io->io_rwsem);
  146. if (!is_read)
  147. inc_page_count(sbi, F2FS_WRITEBACK);
  148. if (io->bio && (io->last_block_in_bio != fio->blk_addr - 1 ||
  149. io->fio.rw != fio->rw))
  150. __submit_merged_bio(io);
  151. alloc_new:
  152. if (io->bio == NULL) {
  153. int bio_blocks = MAX_BIO_BLOCKS(sbi);
  154. io->bio = __bio_alloc(sbi, fio->blk_addr, bio_blocks, is_read);
  155. io->fio = *fio;
  156. }
  157. bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
  158. if (bio_add_page(io->bio, bio_page, PAGE_CACHE_SIZE, 0) <
  159. PAGE_CACHE_SIZE) {
  160. __submit_merged_bio(io);
  161. goto alloc_new;
  162. }
  163. io->last_block_in_bio = fio->blk_addr;
  164. f2fs_trace_ios(fio, 0);
  165. up_write(&io->io_rwsem);
  166. trace_f2fs_submit_page_mbio(fio->page, fio);
  167. }
  168. /*
  169. * Lock ordering for the change of data block address:
  170. * ->data_page
  171. * ->node_page
  172. * update block addresses in the node page
  173. */
  174. void set_data_blkaddr(struct dnode_of_data *dn)
  175. {
  176. struct f2fs_node *rn;
  177. __le32 *addr_array;
  178. struct page *node_page = dn->node_page;
  179. unsigned int ofs_in_node = dn->ofs_in_node;
  180. f2fs_wait_on_page_writeback(node_page, NODE);
  181. rn = F2FS_NODE(node_page);
  182. /* Get physical address of data block */
  183. addr_array = blkaddr_in_node(rn);
  184. addr_array[ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
  185. set_page_dirty(node_page);
  186. }
  187. int reserve_new_block(struct dnode_of_data *dn)
  188. {
  189. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  190. if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
  191. return -EPERM;
  192. if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
  193. return -ENOSPC;
  194. trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
  195. dn->data_blkaddr = NEW_ADDR;
  196. set_data_blkaddr(dn);
  197. mark_inode_dirty(dn->inode);
  198. sync_inode_page(dn);
  199. return 0;
  200. }
  201. int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
  202. {
  203. bool need_put = dn->inode_page ? false : true;
  204. int err;
  205. err = get_dnode_of_data(dn, index, ALLOC_NODE);
  206. if (err)
  207. return err;
  208. if (dn->data_blkaddr == NULL_ADDR)
  209. err = reserve_new_block(dn);
  210. if (err || need_put)
  211. f2fs_put_dnode(dn);
  212. return err;
  213. }
  214. int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
  215. {
  216. struct extent_info ei;
  217. struct inode *inode = dn->inode;
  218. if (f2fs_lookup_extent_cache(inode, index, &ei)) {
  219. dn->data_blkaddr = ei.blk + index - ei.fofs;
  220. return 0;
  221. }
  222. return f2fs_reserve_block(dn, index);
  223. }
  224. struct page *get_read_data_page(struct inode *inode, pgoff_t index, int rw)
  225. {
  226. struct address_space *mapping = inode->i_mapping;
  227. struct dnode_of_data dn;
  228. struct page *page;
  229. struct extent_info ei;
  230. int err;
  231. struct f2fs_io_info fio = {
  232. .sbi = F2FS_I_SB(inode),
  233. .type = DATA,
  234. .rw = rw,
  235. .encrypted_page = NULL,
  236. };
  237. if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
  238. return read_mapping_page(mapping, index, NULL);
  239. page = grab_cache_page(mapping, index);
  240. if (!page)
  241. return ERR_PTR(-ENOMEM);
  242. if (f2fs_lookup_extent_cache(inode, index, &ei)) {
  243. dn.data_blkaddr = ei.blk + index - ei.fofs;
  244. goto got_it;
  245. }
  246. set_new_dnode(&dn, inode, NULL, NULL, 0);
  247. err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
  248. if (err)
  249. goto put_err;
  250. f2fs_put_dnode(&dn);
  251. if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
  252. err = -ENOENT;
  253. goto put_err;
  254. }
  255. got_it:
  256. if (PageUptodate(page)) {
  257. unlock_page(page);
  258. return page;
  259. }
  260. /*
  261. * A new dentry page is allocated but not able to be written, since its
  262. * new inode page couldn't be allocated due to -ENOSPC.
  263. * In such the case, its blkaddr can be remained as NEW_ADDR.
  264. * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
  265. */
  266. if (dn.data_blkaddr == NEW_ADDR) {
  267. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  268. SetPageUptodate(page);
  269. unlock_page(page);
  270. return page;
  271. }
  272. fio.blk_addr = dn.data_blkaddr;
  273. fio.page = page;
  274. err = f2fs_submit_page_bio(&fio);
  275. if (err)
  276. goto put_err;
  277. return page;
  278. put_err:
  279. f2fs_put_page(page, 1);
  280. return ERR_PTR(err);
  281. }
  282. struct page *find_data_page(struct inode *inode, pgoff_t index)
  283. {
  284. struct address_space *mapping = inode->i_mapping;
  285. struct page *page;
  286. page = find_get_page(mapping, index);
  287. if (page && PageUptodate(page))
  288. return page;
  289. f2fs_put_page(page, 0);
  290. page = get_read_data_page(inode, index, READ_SYNC);
  291. if (IS_ERR(page))
  292. return page;
  293. if (PageUptodate(page))
  294. return page;
  295. wait_on_page_locked(page);
  296. if (unlikely(!PageUptodate(page))) {
  297. f2fs_put_page(page, 0);
  298. return ERR_PTR(-EIO);
  299. }
  300. return page;
  301. }
  302. /*
  303. * If it tries to access a hole, return an error.
  304. * Because, the callers, functions in dir.c and GC, should be able to know
  305. * whether this page exists or not.
  306. */
  307. struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
  308. {
  309. struct address_space *mapping = inode->i_mapping;
  310. struct page *page;
  311. repeat:
  312. page = get_read_data_page(inode, index, READ_SYNC);
  313. if (IS_ERR(page))
  314. return page;
  315. /* wait for read completion */
  316. lock_page(page);
  317. if (unlikely(!PageUptodate(page))) {
  318. f2fs_put_page(page, 1);
  319. return ERR_PTR(-EIO);
  320. }
  321. if (unlikely(page->mapping != mapping)) {
  322. f2fs_put_page(page, 1);
  323. goto repeat;
  324. }
  325. return page;
  326. }
  327. /*
  328. * Caller ensures that this data page is never allocated.
  329. * A new zero-filled data page is allocated in the page cache.
  330. *
  331. * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
  332. * f2fs_unlock_op().
  333. * Note that, ipage is set only by make_empty_dir, and if any error occur,
  334. * ipage should be released by this function.
  335. */
  336. struct page *get_new_data_page(struct inode *inode,
  337. struct page *ipage, pgoff_t index, bool new_i_size)
  338. {
  339. struct address_space *mapping = inode->i_mapping;
  340. struct page *page;
  341. struct dnode_of_data dn;
  342. int err;
  343. repeat:
  344. page = grab_cache_page(mapping, index);
  345. if (!page) {
  346. /*
  347. * before exiting, we should make sure ipage will be released
  348. * if any error occur.
  349. */
  350. f2fs_put_page(ipage, 1);
  351. return ERR_PTR(-ENOMEM);
  352. }
  353. set_new_dnode(&dn, inode, ipage, NULL, 0);
  354. err = f2fs_reserve_block(&dn, index);
  355. if (err) {
  356. f2fs_put_page(page, 1);
  357. return ERR_PTR(err);
  358. }
  359. if (!ipage)
  360. f2fs_put_dnode(&dn);
  361. if (PageUptodate(page))
  362. goto got_it;
  363. if (dn.data_blkaddr == NEW_ADDR) {
  364. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  365. SetPageUptodate(page);
  366. } else {
  367. f2fs_put_page(page, 1);
  368. page = get_read_data_page(inode, index, READ_SYNC);
  369. if (IS_ERR(page))
  370. goto repeat;
  371. /* wait for read completion */
  372. lock_page(page);
  373. }
  374. got_it:
  375. if (new_i_size &&
  376. i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
  377. i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
  378. /* Only the directory inode sets new_i_size */
  379. set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
  380. }
  381. return page;
  382. }
  383. static int __allocate_data_block(struct dnode_of_data *dn)
  384. {
  385. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  386. struct f2fs_inode_info *fi = F2FS_I(dn->inode);
  387. struct f2fs_summary sum;
  388. struct node_info ni;
  389. int seg = CURSEG_WARM_DATA;
  390. pgoff_t fofs;
  391. if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
  392. return -EPERM;
  393. dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
  394. if (dn->data_blkaddr == NEW_ADDR)
  395. goto alloc;
  396. if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
  397. return -ENOSPC;
  398. alloc:
  399. get_node_info(sbi, dn->nid, &ni);
  400. set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
  401. if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
  402. seg = CURSEG_DIRECT_IO;
  403. allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
  404. &sum, seg);
  405. set_data_blkaddr(dn);
  406. /* update i_size */
  407. fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
  408. dn->ofs_in_node;
  409. if (i_size_read(dn->inode) < ((fofs + 1) << PAGE_CACHE_SHIFT))
  410. i_size_write(dn->inode, ((fofs + 1) << PAGE_CACHE_SHIFT));
  411. /* direct IO doesn't use extent cache to maximize the performance */
  412. f2fs_drop_largest_extent(dn->inode, fofs);
  413. return 0;
  414. }
  415. static void __allocate_data_blocks(struct inode *inode, loff_t offset,
  416. size_t count)
  417. {
  418. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  419. struct dnode_of_data dn;
  420. u64 start = F2FS_BYTES_TO_BLK(offset);
  421. u64 len = F2FS_BYTES_TO_BLK(count);
  422. bool allocated;
  423. u64 end_offset;
  424. while (len) {
  425. f2fs_balance_fs(sbi);
  426. f2fs_lock_op(sbi);
  427. /* When reading holes, we need its node page */
  428. set_new_dnode(&dn, inode, NULL, NULL, 0);
  429. if (get_dnode_of_data(&dn, start, ALLOC_NODE))
  430. goto out;
  431. allocated = false;
  432. end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
  433. while (dn.ofs_in_node < end_offset && len) {
  434. block_t blkaddr;
  435. blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
  436. if (blkaddr == NULL_ADDR || blkaddr == NEW_ADDR) {
  437. if (__allocate_data_block(&dn))
  438. goto sync_out;
  439. allocated = true;
  440. }
  441. len--;
  442. start++;
  443. dn.ofs_in_node++;
  444. }
  445. if (allocated)
  446. sync_inode_page(&dn);
  447. f2fs_put_dnode(&dn);
  448. f2fs_unlock_op(sbi);
  449. }
  450. return;
  451. sync_out:
  452. if (allocated)
  453. sync_inode_page(&dn);
  454. f2fs_put_dnode(&dn);
  455. out:
  456. f2fs_unlock_op(sbi);
  457. return;
  458. }
  459. /*
  460. * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
  461. * f2fs_map_blocks structure.
  462. * If original data blocks are allocated, then give them to blockdev.
  463. * Otherwise,
  464. * a. preallocate requested block addresses
  465. * b. do not use extent cache for better performance
  466. * c. give the block addresses to blockdev
  467. */
  468. static int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
  469. int create, int flag)
  470. {
  471. unsigned int maxblocks = map->m_len;
  472. struct dnode_of_data dn;
  473. int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
  474. pgoff_t pgofs, end_offset;
  475. int err = 0, ofs = 1;
  476. struct extent_info ei;
  477. bool allocated = false;
  478. map->m_len = 0;
  479. map->m_flags = 0;
  480. /* it only supports block size == page size */
  481. pgofs = (pgoff_t)map->m_lblk;
  482. if (f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
  483. map->m_pblk = ei.blk + pgofs - ei.fofs;
  484. map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
  485. map->m_flags = F2FS_MAP_MAPPED;
  486. goto out;
  487. }
  488. if (create)
  489. f2fs_lock_op(F2FS_I_SB(inode));
  490. /* When reading holes, we need its node page */
  491. set_new_dnode(&dn, inode, NULL, NULL, 0);
  492. err = get_dnode_of_data(&dn, pgofs, mode);
  493. if (err) {
  494. if (err == -ENOENT)
  495. err = 0;
  496. goto unlock_out;
  497. }
  498. if (dn.data_blkaddr == NEW_ADDR) {
  499. if (flag == F2FS_GET_BLOCK_BMAP) {
  500. err = -ENOENT;
  501. goto put_out;
  502. } else if (flag == F2FS_GET_BLOCK_READ ||
  503. flag == F2FS_GET_BLOCK_DIO) {
  504. goto put_out;
  505. }
  506. /*
  507. * if it is in fiemap call path (flag = F2FS_GET_BLOCK_FIEMAP),
  508. * mark it as mapped and unwritten block.
  509. */
  510. }
  511. if (dn.data_blkaddr != NULL_ADDR) {
  512. map->m_flags = F2FS_MAP_MAPPED;
  513. map->m_pblk = dn.data_blkaddr;
  514. if (dn.data_blkaddr == NEW_ADDR)
  515. map->m_flags |= F2FS_MAP_UNWRITTEN;
  516. } else if (create) {
  517. err = __allocate_data_block(&dn);
  518. if (err)
  519. goto put_out;
  520. allocated = true;
  521. map->m_flags = F2FS_MAP_NEW | F2FS_MAP_MAPPED;
  522. map->m_pblk = dn.data_blkaddr;
  523. } else {
  524. if (flag == F2FS_GET_BLOCK_BMAP)
  525. err = -ENOENT;
  526. goto put_out;
  527. }
  528. end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
  529. map->m_len = 1;
  530. dn.ofs_in_node++;
  531. pgofs++;
  532. get_next:
  533. if (dn.ofs_in_node >= end_offset) {
  534. if (allocated)
  535. sync_inode_page(&dn);
  536. allocated = false;
  537. f2fs_put_dnode(&dn);
  538. set_new_dnode(&dn, inode, NULL, NULL, 0);
  539. err = get_dnode_of_data(&dn, pgofs, mode);
  540. if (err) {
  541. if (err == -ENOENT)
  542. err = 0;
  543. goto unlock_out;
  544. }
  545. if (dn.data_blkaddr == NEW_ADDR &&
  546. flag != F2FS_GET_BLOCK_FIEMAP)
  547. goto put_out;
  548. end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
  549. }
  550. if (maxblocks > map->m_len) {
  551. block_t blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
  552. if (blkaddr == NULL_ADDR && create) {
  553. err = __allocate_data_block(&dn);
  554. if (err)
  555. goto sync_out;
  556. allocated = true;
  557. map->m_flags |= F2FS_MAP_NEW;
  558. blkaddr = dn.data_blkaddr;
  559. }
  560. /* Give more consecutive addresses for the readahead */
  561. if ((map->m_pblk != NEW_ADDR &&
  562. blkaddr == (map->m_pblk + ofs)) ||
  563. (map->m_pblk == NEW_ADDR &&
  564. blkaddr == NEW_ADDR)) {
  565. ofs++;
  566. dn.ofs_in_node++;
  567. pgofs++;
  568. map->m_len++;
  569. goto get_next;
  570. }
  571. }
  572. sync_out:
  573. if (allocated)
  574. sync_inode_page(&dn);
  575. put_out:
  576. f2fs_put_dnode(&dn);
  577. unlock_out:
  578. if (create)
  579. f2fs_unlock_op(F2FS_I_SB(inode));
  580. out:
  581. trace_f2fs_map_blocks(inode, map, err);
  582. return err;
  583. }
  584. static int __get_data_block(struct inode *inode, sector_t iblock,
  585. struct buffer_head *bh, int create, int flag)
  586. {
  587. struct f2fs_map_blocks map;
  588. int ret;
  589. map.m_lblk = iblock;
  590. map.m_len = bh->b_size >> inode->i_blkbits;
  591. ret = f2fs_map_blocks(inode, &map, create, flag);
  592. if (!ret) {
  593. map_bh(bh, inode->i_sb, map.m_pblk);
  594. bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
  595. bh->b_size = map.m_len << inode->i_blkbits;
  596. }
  597. return ret;
  598. }
  599. static int get_data_block(struct inode *inode, sector_t iblock,
  600. struct buffer_head *bh_result, int create, int flag)
  601. {
  602. return __get_data_block(inode, iblock, bh_result, create, flag);
  603. }
  604. static int get_data_block_dio(struct inode *inode, sector_t iblock,
  605. struct buffer_head *bh_result, int create)
  606. {
  607. return __get_data_block(inode, iblock, bh_result, create,
  608. F2FS_GET_BLOCK_DIO);
  609. }
  610. static int get_data_block_bmap(struct inode *inode, sector_t iblock,
  611. struct buffer_head *bh_result, int create)
  612. {
  613. return __get_data_block(inode, iblock, bh_result, create,
  614. F2FS_GET_BLOCK_BMAP);
  615. }
  616. static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
  617. {
  618. return (offset >> inode->i_blkbits);
  619. }
  620. static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
  621. {
  622. return (blk << inode->i_blkbits);
  623. }
  624. int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
  625. u64 start, u64 len)
  626. {
  627. struct buffer_head map_bh;
  628. sector_t start_blk, last_blk;
  629. loff_t isize = i_size_read(inode);
  630. u64 logical = 0, phys = 0, size = 0;
  631. u32 flags = 0;
  632. bool past_eof = false, whole_file = false;
  633. int ret = 0;
  634. ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
  635. if (ret)
  636. return ret;
  637. mutex_lock(&inode->i_mutex);
  638. if (len >= isize) {
  639. whole_file = true;
  640. len = isize;
  641. }
  642. if (logical_to_blk(inode, len) == 0)
  643. len = blk_to_logical(inode, 1);
  644. start_blk = logical_to_blk(inode, start);
  645. last_blk = logical_to_blk(inode, start + len - 1);
  646. next:
  647. memset(&map_bh, 0, sizeof(struct buffer_head));
  648. map_bh.b_size = len;
  649. ret = get_data_block(inode, start_blk, &map_bh, 0,
  650. F2FS_GET_BLOCK_FIEMAP);
  651. if (ret)
  652. goto out;
  653. /* HOLE */
  654. if (!buffer_mapped(&map_bh)) {
  655. start_blk++;
  656. if (!past_eof && blk_to_logical(inode, start_blk) >= isize)
  657. past_eof = 1;
  658. if (past_eof && size) {
  659. flags |= FIEMAP_EXTENT_LAST;
  660. ret = fiemap_fill_next_extent(fieinfo, logical,
  661. phys, size, flags);
  662. } else if (size) {
  663. ret = fiemap_fill_next_extent(fieinfo, logical,
  664. phys, size, flags);
  665. size = 0;
  666. }
  667. /* if we have holes up to/past EOF then we're done */
  668. if (start_blk > last_blk || past_eof || ret)
  669. goto out;
  670. } else {
  671. if (start_blk > last_blk && !whole_file) {
  672. ret = fiemap_fill_next_extent(fieinfo, logical,
  673. phys, size, flags);
  674. goto out;
  675. }
  676. /*
  677. * if size != 0 then we know we already have an extent
  678. * to add, so add it.
  679. */
  680. if (size) {
  681. ret = fiemap_fill_next_extent(fieinfo, logical,
  682. phys, size, flags);
  683. if (ret)
  684. goto out;
  685. }
  686. logical = blk_to_logical(inode, start_blk);
  687. phys = blk_to_logical(inode, map_bh.b_blocknr);
  688. size = map_bh.b_size;
  689. flags = 0;
  690. if (buffer_unwritten(&map_bh))
  691. flags = FIEMAP_EXTENT_UNWRITTEN;
  692. start_blk += logical_to_blk(inode, size);
  693. /*
  694. * If we are past the EOF, then we need to make sure as
  695. * soon as we find a hole that the last extent we found
  696. * is marked with FIEMAP_EXTENT_LAST
  697. */
  698. if (!past_eof && logical + size >= isize)
  699. past_eof = true;
  700. }
  701. cond_resched();
  702. if (fatal_signal_pending(current))
  703. ret = -EINTR;
  704. else
  705. goto next;
  706. out:
  707. if (ret == 1)
  708. ret = 0;
  709. mutex_unlock(&inode->i_mutex);
  710. return ret;
  711. }
  712. /*
  713. * This function was originally taken from fs/mpage.c, and customized for f2fs.
  714. * Major change was from block_size == page_size in f2fs by default.
  715. */
  716. static int f2fs_mpage_readpages(struct address_space *mapping,
  717. struct list_head *pages, struct page *page,
  718. unsigned nr_pages)
  719. {
  720. struct bio *bio = NULL;
  721. unsigned page_idx;
  722. sector_t last_block_in_bio = 0;
  723. struct inode *inode = mapping->host;
  724. const unsigned blkbits = inode->i_blkbits;
  725. const unsigned blocksize = 1 << blkbits;
  726. sector_t block_in_file;
  727. sector_t last_block;
  728. sector_t last_block_in_file;
  729. sector_t block_nr;
  730. struct block_device *bdev = inode->i_sb->s_bdev;
  731. struct f2fs_map_blocks map;
  732. map.m_pblk = 0;
  733. map.m_lblk = 0;
  734. map.m_len = 0;
  735. map.m_flags = 0;
  736. for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
  737. prefetchw(&page->flags);
  738. if (pages) {
  739. page = list_entry(pages->prev, struct page, lru);
  740. list_del(&page->lru);
  741. if (add_to_page_cache_lru(page, mapping,
  742. page->index, GFP_KERNEL))
  743. goto next_page;
  744. }
  745. block_in_file = (sector_t)page->index;
  746. last_block = block_in_file + nr_pages;
  747. last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
  748. blkbits;
  749. if (last_block > last_block_in_file)
  750. last_block = last_block_in_file;
  751. /*
  752. * Map blocks using the previous result first.
  753. */
  754. if ((map.m_flags & F2FS_MAP_MAPPED) &&
  755. block_in_file > map.m_lblk &&
  756. block_in_file < (map.m_lblk + map.m_len))
  757. goto got_it;
  758. /*
  759. * Then do more f2fs_map_blocks() calls until we are
  760. * done with this page.
  761. */
  762. map.m_flags = 0;
  763. if (block_in_file < last_block) {
  764. map.m_lblk = block_in_file;
  765. map.m_len = last_block - block_in_file;
  766. if (f2fs_map_blocks(inode, &map, 0, false))
  767. goto set_error_page;
  768. }
  769. got_it:
  770. if ((map.m_flags & F2FS_MAP_MAPPED)) {
  771. block_nr = map.m_pblk + block_in_file - map.m_lblk;
  772. SetPageMappedToDisk(page);
  773. if (!PageUptodate(page) && !cleancache_get_page(page)) {
  774. SetPageUptodate(page);
  775. goto confused;
  776. }
  777. } else {
  778. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  779. SetPageUptodate(page);
  780. unlock_page(page);
  781. goto next_page;
  782. }
  783. /*
  784. * This page will go to BIO. Do we need to send this
  785. * BIO off first?
  786. */
  787. if (bio && (last_block_in_bio != block_nr - 1)) {
  788. submit_and_realloc:
  789. submit_bio(READ, bio);
  790. bio = NULL;
  791. }
  792. if (bio == NULL) {
  793. struct f2fs_crypto_ctx *ctx = NULL;
  794. if (f2fs_encrypted_inode(inode) &&
  795. S_ISREG(inode->i_mode)) {
  796. struct page *cpage;
  797. ctx = f2fs_get_crypto_ctx(inode);
  798. if (IS_ERR(ctx))
  799. goto set_error_page;
  800. /* wait the page to be moved by cleaning */
  801. cpage = find_lock_page(
  802. META_MAPPING(F2FS_I_SB(inode)),
  803. block_nr);
  804. if (cpage) {
  805. f2fs_wait_on_page_writeback(cpage,
  806. DATA);
  807. f2fs_put_page(cpage, 1);
  808. }
  809. }
  810. bio = bio_alloc(GFP_KERNEL,
  811. min_t(int, nr_pages, BIO_MAX_PAGES));
  812. if (!bio) {
  813. if (ctx)
  814. f2fs_release_crypto_ctx(ctx);
  815. goto set_error_page;
  816. }
  817. bio->bi_bdev = bdev;
  818. bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(block_nr);
  819. bio->bi_end_io = f2fs_read_end_io;
  820. bio->bi_private = ctx;
  821. }
  822. if (bio_add_page(bio, page, blocksize, 0) < blocksize)
  823. goto submit_and_realloc;
  824. last_block_in_bio = block_nr;
  825. goto next_page;
  826. set_error_page:
  827. SetPageError(page);
  828. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  829. unlock_page(page);
  830. goto next_page;
  831. confused:
  832. if (bio) {
  833. submit_bio(READ, bio);
  834. bio = NULL;
  835. }
  836. unlock_page(page);
  837. next_page:
  838. if (pages)
  839. page_cache_release(page);
  840. }
  841. BUG_ON(pages && !list_empty(pages));
  842. if (bio)
  843. submit_bio(READ, bio);
  844. return 0;
  845. }
  846. static int f2fs_read_data_page(struct file *file, struct page *page)
  847. {
  848. struct inode *inode = page->mapping->host;
  849. int ret = -EAGAIN;
  850. trace_f2fs_readpage(page, DATA);
  851. /* If the file has inline data, try to read it directly */
  852. if (f2fs_has_inline_data(inode))
  853. ret = f2fs_read_inline_data(inode, page);
  854. if (ret == -EAGAIN)
  855. ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
  856. return ret;
  857. }
  858. static int f2fs_read_data_pages(struct file *file,
  859. struct address_space *mapping,
  860. struct list_head *pages, unsigned nr_pages)
  861. {
  862. struct inode *inode = file->f_mapping->host;
  863. /* If the file has inline data, skip readpages */
  864. if (f2fs_has_inline_data(inode))
  865. return 0;
  866. return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
  867. }
  868. int do_write_data_page(struct f2fs_io_info *fio)
  869. {
  870. struct page *page = fio->page;
  871. struct inode *inode = page->mapping->host;
  872. struct dnode_of_data dn;
  873. int err = 0;
  874. set_new_dnode(&dn, inode, NULL, NULL, 0);
  875. err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
  876. if (err)
  877. return err;
  878. fio->blk_addr = dn.data_blkaddr;
  879. /* This page is already truncated */
  880. if (fio->blk_addr == NULL_ADDR) {
  881. ClearPageUptodate(page);
  882. goto out_writepage;
  883. }
  884. if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
  885. fio->encrypted_page = f2fs_encrypt(inode, fio->page);
  886. if (IS_ERR(fio->encrypted_page)) {
  887. err = PTR_ERR(fio->encrypted_page);
  888. goto out_writepage;
  889. }
  890. }
  891. set_page_writeback(page);
  892. /*
  893. * If current allocation needs SSR,
  894. * it had better in-place writes for updated data.
  895. */
  896. if (unlikely(fio->blk_addr != NEW_ADDR &&
  897. !is_cold_data(page) &&
  898. need_inplace_update(inode))) {
  899. rewrite_data_page(fio);
  900. set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE);
  901. trace_f2fs_do_write_data_page(page, IPU);
  902. } else {
  903. write_data_page(&dn, fio);
  904. set_data_blkaddr(&dn);
  905. f2fs_update_extent_cache(&dn);
  906. trace_f2fs_do_write_data_page(page, OPU);
  907. set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
  908. if (page->index == 0)
  909. set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
  910. }
  911. out_writepage:
  912. f2fs_put_dnode(&dn);
  913. return err;
  914. }
  915. static int f2fs_write_data_page(struct page *page,
  916. struct writeback_control *wbc)
  917. {
  918. struct inode *inode = page->mapping->host;
  919. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  920. loff_t i_size = i_size_read(inode);
  921. const pgoff_t end_index = ((unsigned long long) i_size)
  922. >> PAGE_CACHE_SHIFT;
  923. unsigned offset = 0;
  924. bool need_balance_fs = false;
  925. int err = 0;
  926. struct f2fs_io_info fio = {
  927. .sbi = sbi,
  928. .type = DATA,
  929. .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
  930. .page = page,
  931. .encrypted_page = NULL,
  932. };
  933. trace_f2fs_writepage(page, DATA);
  934. if (page->index < end_index)
  935. goto write;
  936. /*
  937. * If the offset is out-of-range of file size,
  938. * this page does not have to be written to disk.
  939. */
  940. offset = i_size & (PAGE_CACHE_SIZE - 1);
  941. if ((page->index >= end_index + 1) || !offset)
  942. goto out;
  943. zero_user_segment(page, offset, PAGE_CACHE_SIZE);
  944. write:
  945. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  946. goto redirty_out;
  947. if (f2fs_is_drop_cache(inode))
  948. goto out;
  949. if (f2fs_is_volatile_file(inode) && !wbc->for_reclaim &&
  950. available_free_memory(sbi, BASE_CHECK))
  951. goto redirty_out;
  952. /* Dentry blocks are controlled by checkpoint */
  953. if (S_ISDIR(inode->i_mode)) {
  954. if (unlikely(f2fs_cp_error(sbi)))
  955. goto redirty_out;
  956. err = do_write_data_page(&fio);
  957. goto done;
  958. }
  959. /* we should bypass data pages to proceed the kworkder jobs */
  960. if (unlikely(f2fs_cp_error(sbi))) {
  961. SetPageError(page);
  962. goto out;
  963. }
  964. if (!wbc->for_reclaim)
  965. need_balance_fs = true;
  966. else if (has_not_enough_free_secs(sbi, 0))
  967. goto redirty_out;
  968. err = -EAGAIN;
  969. f2fs_lock_op(sbi);
  970. if (f2fs_has_inline_data(inode))
  971. err = f2fs_write_inline_data(inode, page);
  972. if (err == -EAGAIN)
  973. err = do_write_data_page(&fio);
  974. f2fs_unlock_op(sbi);
  975. done:
  976. if (err && err != -ENOENT)
  977. goto redirty_out;
  978. clear_cold_data(page);
  979. out:
  980. inode_dec_dirty_pages(inode);
  981. if (err)
  982. ClearPageUptodate(page);
  983. unlock_page(page);
  984. if (need_balance_fs)
  985. f2fs_balance_fs(sbi);
  986. if (wbc->for_reclaim)
  987. f2fs_submit_merged_bio(sbi, DATA, WRITE);
  988. return 0;
  989. redirty_out:
  990. redirty_page_for_writepage(wbc, page);
  991. return AOP_WRITEPAGE_ACTIVATE;
  992. }
  993. static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
  994. void *data)
  995. {
  996. struct address_space *mapping = data;
  997. int ret = mapping->a_ops->writepage(page, wbc);
  998. mapping_set_error(mapping, ret);
  999. return ret;
  1000. }
  1001. /*
  1002. * This function was copied from write_cche_pages from mm/page-writeback.c.
  1003. * The major change is making write step of cold data page separately from
  1004. * warm/hot data page.
  1005. */
  1006. static int f2fs_write_cache_pages(struct address_space *mapping,
  1007. struct writeback_control *wbc, writepage_t writepage,
  1008. void *data)
  1009. {
  1010. int ret = 0;
  1011. int done = 0;
  1012. struct pagevec pvec;
  1013. int nr_pages;
  1014. pgoff_t uninitialized_var(writeback_index);
  1015. pgoff_t index;
  1016. pgoff_t end; /* Inclusive */
  1017. pgoff_t done_index;
  1018. int cycled;
  1019. int range_whole = 0;
  1020. int tag;
  1021. int step = 0;
  1022. pagevec_init(&pvec, 0);
  1023. next:
  1024. if (wbc->range_cyclic) {
  1025. writeback_index = mapping->writeback_index; /* prev offset */
  1026. index = writeback_index;
  1027. if (index == 0)
  1028. cycled = 1;
  1029. else
  1030. cycled = 0;
  1031. end = -1;
  1032. } else {
  1033. index = wbc->range_start >> PAGE_CACHE_SHIFT;
  1034. end = wbc->range_end >> PAGE_CACHE_SHIFT;
  1035. if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
  1036. range_whole = 1;
  1037. cycled = 1; /* ignore range_cyclic tests */
  1038. }
  1039. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1040. tag = PAGECACHE_TAG_TOWRITE;
  1041. else
  1042. tag = PAGECACHE_TAG_DIRTY;
  1043. retry:
  1044. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1045. tag_pages_for_writeback(mapping, index, end);
  1046. done_index = index;
  1047. while (!done && (index <= end)) {
  1048. int i;
  1049. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
  1050. min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1);
  1051. if (nr_pages == 0)
  1052. break;
  1053. for (i = 0; i < nr_pages; i++) {
  1054. struct page *page = pvec.pages[i];
  1055. if (page->index > end) {
  1056. done = 1;
  1057. break;
  1058. }
  1059. done_index = page->index;
  1060. lock_page(page);
  1061. if (unlikely(page->mapping != mapping)) {
  1062. continue_unlock:
  1063. unlock_page(page);
  1064. continue;
  1065. }
  1066. if (!PageDirty(page)) {
  1067. /* someone wrote it for us */
  1068. goto continue_unlock;
  1069. }
  1070. if (step == is_cold_data(page))
  1071. goto continue_unlock;
  1072. if (PageWriteback(page)) {
  1073. if (wbc->sync_mode != WB_SYNC_NONE)
  1074. f2fs_wait_on_page_writeback(page, DATA);
  1075. else
  1076. goto continue_unlock;
  1077. }
  1078. BUG_ON(PageWriteback(page));
  1079. if (!clear_page_dirty_for_io(page))
  1080. goto continue_unlock;
  1081. ret = (*writepage)(page, wbc, data);
  1082. if (unlikely(ret)) {
  1083. if (ret == AOP_WRITEPAGE_ACTIVATE) {
  1084. unlock_page(page);
  1085. ret = 0;
  1086. } else {
  1087. done_index = page->index + 1;
  1088. done = 1;
  1089. break;
  1090. }
  1091. }
  1092. if (--wbc->nr_to_write <= 0 &&
  1093. wbc->sync_mode == WB_SYNC_NONE) {
  1094. done = 1;
  1095. break;
  1096. }
  1097. }
  1098. pagevec_release(&pvec);
  1099. cond_resched();
  1100. }
  1101. if (step < 1) {
  1102. step++;
  1103. goto next;
  1104. }
  1105. if (!cycled && !done) {
  1106. cycled = 1;
  1107. index = 0;
  1108. end = writeback_index - 1;
  1109. goto retry;
  1110. }
  1111. if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
  1112. mapping->writeback_index = done_index;
  1113. return ret;
  1114. }
  1115. static int f2fs_write_data_pages(struct address_space *mapping,
  1116. struct writeback_control *wbc)
  1117. {
  1118. struct inode *inode = mapping->host;
  1119. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1120. bool locked = false;
  1121. int ret;
  1122. long diff;
  1123. trace_f2fs_writepages(mapping->host, wbc, DATA);
  1124. /* deal with chardevs and other special file */
  1125. if (!mapping->a_ops->writepage)
  1126. return 0;
  1127. /* skip writing if there is no dirty page in this inode */
  1128. if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
  1129. return 0;
  1130. if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
  1131. get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
  1132. available_free_memory(sbi, DIRTY_DENTS))
  1133. goto skip_write;
  1134. /* during POR, we don't need to trigger writepage at all. */
  1135. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  1136. goto skip_write;
  1137. diff = nr_pages_to_write(sbi, DATA, wbc);
  1138. if (!S_ISDIR(inode->i_mode)) {
  1139. mutex_lock(&sbi->writepages);
  1140. locked = true;
  1141. }
  1142. ret = f2fs_write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
  1143. f2fs_submit_merged_bio(sbi, DATA, WRITE);
  1144. if (locked)
  1145. mutex_unlock(&sbi->writepages);
  1146. remove_dirty_dir_inode(inode);
  1147. wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
  1148. return ret;
  1149. skip_write:
  1150. wbc->pages_skipped += get_dirty_pages(inode);
  1151. return 0;
  1152. }
  1153. static void f2fs_write_failed(struct address_space *mapping, loff_t to)
  1154. {
  1155. struct inode *inode = mapping->host;
  1156. if (to > inode->i_size) {
  1157. truncate_pagecache(inode, inode->i_size);
  1158. truncate_blocks(inode, inode->i_size, true);
  1159. }
  1160. }
  1161. static int f2fs_write_begin(struct file *file, struct address_space *mapping,
  1162. loff_t pos, unsigned len, unsigned flags,
  1163. struct page **pagep, void **fsdata)
  1164. {
  1165. struct inode *inode = mapping->host;
  1166. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1167. struct page *page = NULL;
  1168. struct page *ipage;
  1169. pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
  1170. struct dnode_of_data dn;
  1171. int err = 0;
  1172. trace_f2fs_write_begin(inode, pos, len, flags);
  1173. f2fs_balance_fs(sbi);
  1174. /*
  1175. * We should check this at this moment to avoid deadlock on inode page
  1176. * and #0 page. The locking rule for inline_data conversion should be:
  1177. * lock_page(page #0) -> lock_page(inode_page)
  1178. */
  1179. if (index != 0) {
  1180. err = f2fs_convert_inline_inode(inode);
  1181. if (err)
  1182. goto fail;
  1183. }
  1184. repeat:
  1185. page = grab_cache_page_write_begin(mapping, index, flags);
  1186. if (!page) {
  1187. err = -ENOMEM;
  1188. goto fail;
  1189. }
  1190. *pagep = page;
  1191. f2fs_lock_op(sbi);
  1192. /* check inline_data */
  1193. ipage = get_node_page(sbi, inode->i_ino);
  1194. if (IS_ERR(ipage)) {
  1195. err = PTR_ERR(ipage);
  1196. goto unlock_fail;
  1197. }
  1198. set_new_dnode(&dn, inode, ipage, ipage, 0);
  1199. if (f2fs_has_inline_data(inode)) {
  1200. if (pos + len <= MAX_INLINE_DATA) {
  1201. read_inline_data(page, ipage);
  1202. set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
  1203. sync_inode_page(&dn);
  1204. goto put_next;
  1205. }
  1206. err = f2fs_convert_inline_page(&dn, page);
  1207. if (err)
  1208. goto put_fail;
  1209. }
  1210. err = f2fs_get_block(&dn, index);
  1211. if (err)
  1212. goto put_fail;
  1213. put_next:
  1214. f2fs_put_dnode(&dn);
  1215. f2fs_unlock_op(sbi);
  1216. f2fs_wait_on_page_writeback(page, DATA);
  1217. if (len == PAGE_CACHE_SIZE)
  1218. goto out_update;
  1219. if (PageUptodate(page))
  1220. goto out_clear;
  1221. if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
  1222. unsigned start = pos & (PAGE_CACHE_SIZE - 1);
  1223. unsigned end = start + len;
  1224. /* Reading beyond i_size is simple: memset to zero */
  1225. zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
  1226. goto out_update;
  1227. }
  1228. if (dn.data_blkaddr == NEW_ADDR) {
  1229. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  1230. } else {
  1231. struct f2fs_io_info fio = {
  1232. .sbi = sbi,
  1233. .type = DATA,
  1234. .rw = READ_SYNC,
  1235. .blk_addr = dn.data_blkaddr,
  1236. .page = page,
  1237. .encrypted_page = NULL,
  1238. };
  1239. err = f2fs_submit_page_bio(&fio);
  1240. if (err)
  1241. goto fail;
  1242. lock_page(page);
  1243. if (unlikely(!PageUptodate(page))) {
  1244. err = -EIO;
  1245. goto fail;
  1246. }
  1247. if (unlikely(page->mapping != mapping)) {
  1248. f2fs_put_page(page, 1);
  1249. goto repeat;
  1250. }
  1251. /* avoid symlink page */
  1252. if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
  1253. err = f2fs_decrypt_one(inode, page);
  1254. if (err)
  1255. goto fail;
  1256. }
  1257. }
  1258. out_update:
  1259. SetPageUptodate(page);
  1260. out_clear:
  1261. clear_cold_data(page);
  1262. return 0;
  1263. put_fail:
  1264. f2fs_put_dnode(&dn);
  1265. unlock_fail:
  1266. f2fs_unlock_op(sbi);
  1267. fail:
  1268. f2fs_put_page(page, 1);
  1269. f2fs_write_failed(mapping, pos + len);
  1270. return err;
  1271. }
  1272. static int f2fs_write_end(struct file *file,
  1273. struct address_space *mapping,
  1274. loff_t pos, unsigned len, unsigned copied,
  1275. struct page *page, void *fsdata)
  1276. {
  1277. struct inode *inode = page->mapping->host;
  1278. trace_f2fs_write_end(inode, pos, len, copied);
  1279. set_page_dirty(page);
  1280. if (pos + copied > i_size_read(inode)) {
  1281. i_size_write(inode, pos + copied);
  1282. mark_inode_dirty(inode);
  1283. update_inode_page(inode);
  1284. }
  1285. f2fs_put_page(page, 1);
  1286. return copied;
  1287. }
  1288. static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
  1289. loff_t offset)
  1290. {
  1291. unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
  1292. if (offset & blocksize_mask)
  1293. return -EINVAL;
  1294. if (iov_iter_alignment(iter) & blocksize_mask)
  1295. return -EINVAL;
  1296. return 0;
  1297. }
  1298. static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
  1299. loff_t offset)
  1300. {
  1301. struct file *file = iocb->ki_filp;
  1302. struct address_space *mapping = file->f_mapping;
  1303. struct inode *inode = mapping->host;
  1304. size_t count = iov_iter_count(iter);
  1305. int err;
  1306. /* we don't need to use inline_data strictly */
  1307. if (f2fs_has_inline_data(inode)) {
  1308. err = f2fs_convert_inline_inode(inode);
  1309. if (err)
  1310. return err;
  1311. }
  1312. if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
  1313. return 0;
  1314. err = check_direct_IO(inode, iter, offset);
  1315. if (err)
  1316. return err;
  1317. trace_f2fs_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
  1318. if (iov_iter_rw(iter) == WRITE)
  1319. __allocate_data_blocks(inode, offset, count);
  1320. err = blockdev_direct_IO(iocb, inode, iter, offset, get_data_block_dio);
  1321. if (err < 0 && iov_iter_rw(iter) == WRITE)
  1322. f2fs_write_failed(mapping, offset + count);
  1323. trace_f2fs_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), err);
  1324. return err;
  1325. }
  1326. void f2fs_invalidate_page(struct page *page, unsigned int offset,
  1327. unsigned int length)
  1328. {
  1329. struct inode *inode = page->mapping->host;
  1330. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1331. if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
  1332. (offset % PAGE_CACHE_SIZE || length != PAGE_CACHE_SIZE))
  1333. return;
  1334. if (PageDirty(page)) {
  1335. if (inode->i_ino == F2FS_META_INO(sbi))
  1336. dec_page_count(sbi, F2FS_DIRTY_META);
  1337. else if (inode->i_ino == F2FS_NODE_INO(sbi))
  1338. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1339. else
  1340. inode_dec_dirty_pages(inode);
  1341. }
  1342. /* This is atomic written page, keep Private */
  1343. if (IS_ATOMIC_WRITTEN_PAGE(page))
  1344. return;
  1345. ClearPagePrivate(page);
  1346. }
  1347. int f2fs_release_page(struct page *page, gfp_t wait)
  1348. {
  1349. /* If this is dirty page, keep PagePrivate */
  1350. if (PageDirty(page))
  1351. return 0;
  1352. /* This is atomic written page, keep Private */
  1353. if (IS_ATOMIC_WRITTEN_PAGE(page))
  1354. return 0;
  1355. ClearPagePrivate(page);
  1356. return 1;
  1357. }
  1358. static int f2fs_set_data_page_dirty(struct page *page)
  1359. {
  1360. struct address_space *mapping = page->mapping;
  1361. struct inode *inode = mapping->host;
  1362. trace_f2fs_set_page_dirty(page, DATA);
  1363. SetPageUptodate(page);
  1364. if (f2fs_is_atomic_file(inode)) {
  1365. if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
  1366. register_inmem_page(inode, page);
  1367. return 1;
  1368. }
  1369. /*
  1370. * Previously, this page has been registered, we just
  1371. * return here.
  1372. */
  1373. return 0;
  1374. }
  1375. if (!PageDirty(page)) {
  1376. __set_page_dirty_nobuffers(page);
  1377. update_dirty_page(inode, page);
  1378. return 1;
  1379. }
  1380. return 0;
  1381. }
  1382. static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
  1383. {
  1384. struct inode *inode = mapping->host;
  1385. /* we don't need to use inline_data strictly */
  1386. if (f2fs_has_inline_data(inode)) {
  1387. int err = f2fs_convert_inline_inode(inode);
  1388. if (err)
  1389. return err;
  1390. }
  1391. return generic_block_bmap(mapping, block, get_data_block_bmap);
  1392. }
  1393. const struct address_space_operations f2fs_dblock_aops = {
  1394. .readpage = f2fs_read_data_page,
  1395. .readpages = f2fs_read_data_pages,
  1396. .writepage = f2fs_write_data_page,
  1397. .writepages = f2fs_write_data_pages,
  1398. .write_begin = f2fs_write_begin,
  1399. .write_end = f2fs_write_end,
  1400. .set_page_dirty = f2fs_set_data_page_dirty,
  1401. .invalidatepage = f2fs_invalidate_page,
  1402. .releasepage = f2fs_release_page,
  1403. .direct_IO = f2fs_direct_IO,
  1404. .bmap = f2fs_bmap,
  1405. };