checkpoint.c 28 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154
  1. /*
  2. * fs/f2fs/checkpoint.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/bio.h>
  13. #include <linux/mpage.h>
  14. #include <linux/writeback.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/f2fs_fs.h>
  17. #include <linux/pagevec.h>
  18. #include <linux/swap.h>
  19. #include "f2fs.h"
  20. #include "node.h"
  21. #include "segment.h"
  22. #include "trace.h"
  23. #include <trace/events/f2fs.h>
  24. static struct kmem_cache *ino_entry_slab;
  25. struct kmem_cache *inode_entry_slab;
  26. /*
  27. * We guarantee no failure on the returned page.
  28. */
  29. struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  30. {
  31. struct address_space *mapping = META_MAPPING(sbi);
  32. struct page *page = NULL;
  33. repeat:
  34. page = grab_cache_page(mapping, index);
  35. if (!page) {
  36. cond_resched();
  37. goto repeat;
  38. }
  39. f2fs_wait_on_page_writeback(page, META);
  40. SetPageUptodate(page);
  41. return page;
  42. }
  43. /*
  44. * We guarantee no failure on the returned page.
  45. */
  46. struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  47. {
  48. struct address_space *mapping = META_MAPPING(sbi);
  49. struct page *page;
  50. struct f2fs_io_info fio = {
  51. .sbi = sbi,
  52. .type = META,
  53. .rw = READ_SYNC | REQ_META | REQ_PRIO,
  54. .blk_addr = index,
  55. .encrypted_page = NULL,
  56. };
  57. repeat:
  58. page = grab_cache_page(mapping, index);
  59. if (!page) {
  60. cond_resched();
  61. goto repeat;
  62. }
  63. if (PageUptodate(page))
  64. goto out;
  65. fio.page = page;
  66. if (f2fs_submit_page_bio(&fio)) {
  67. f2fs_put_page(page, 1);
  68. goto repeat;
  69. }
  70. lock_page(page);
  71. if (unlikely(page->mapping != mapping)) {
  72. f2fs_put_page(page, 1);
  73. goto repeat;
  74. }
  75. /*
  76. * if there is any IO error when accessing device, make our filesystem
  77. * readonly and make sure do not write checkpoint with non-uptodate
  78. * meta page.
  79. */
  80. if (unlikely(!PageUptodate(page)))
  81. f2fs_stop_checkpoint(sbi);
  82. out:
  83. return page;
  84. }
  85. bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
  86. {
  87. switch (type) {
  88. case META_NAT:
  89. break;
  90. case META_SIT:
  91. if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
  92. return false;
  93. break;
  94. case META_SSA:
  95. if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
  96. blkaddr < SM_I(sbi)->ssa_blkaddr))
  97. return false;
  98. break;
  99. case META_CP:
  100. if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
  101. blkaddr < __start_cp_addr(sbi)))
  102. return false;
  103. break;
  104. case META_POR:
  105. if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
  106. blkaddr < MAIN_BLKADDR(sbi)))
  107. return false;
  108. break;
  109. default:
  110. BUG();
  111. }
  112. return true;
  113. }
  114. /*
  115. * Readahead CP/NAT/SIT/SSA pages
  116. */
  117. int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, int type)
  118. {
  119. block_t prev_blk_addr = 0;
  120. struct page *page;
  121. block_t blkno = start;
  122. struct f2fs_io_info fio = {
  123. .sbi = sbi,
  124. .type = META,
  125. .rw = READ_SYNC | REQ_META | REQ_PRIO,
  126. .encrypted_page = NULL,
  127. };
  128. for (; nrpages-- > 0; blkno++) {
  129. if (!is_valid_blkaddr(sbi, blkno, type))
  130. goto out;
  131. switch (type) {
  132. case META_NAT:
  133. if (unlikely(blkno >=
  134. NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
  135. blkno = 0;
  136. /* get nat block addr */
  137. fio.blk_addr = current_nat_addr(sbi,
  138. blkno * NAT_ENTRY_PER_BLOCK);
  139. break;
  140. case META_SIT:
  141. /* get sit block addr */
  142. fio.blk_addr = current_sit_addr(sbi,
  143. blkno * SIT_ENTRY_PER_BLOCK);
  144. if (blkno != start && prev_blk_addr + 1 != fio.blk_addr)
  145. goto out;
  146. prev_blk_addr = fio.blk_addr;
  147. break;
  148. case META_SSA:
  149. case META_CP:
  150. case META_POR:
  151. fio.blk_addr = blkno;
  152. break;
  153. default:
  154. BUG();
  155. }
  156. page = grab_cache_page(META_MAPPING(sbi), fio.blk_addr);
  157. if (!page)
  158. continue;
  159. if (PageUptodate(page)) {
  160. f2fs_put_page(page, 1);
  161. continue;
  162. }
  163. fio.page = page;
  164. f2fs_submit_page_mbio(&fio);
  165. f2fs_put_page(page, 0);
  166. }
  167. out:
  168. f2fs_submit_merged_bio(sbi, META, READ);
  169. return blkno - start;
  170. }
  171. void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
  172. {
  173. struct page *page;
  174. bool readahead = false;
  175. page = find_get_page(META_MAPPING(sbi), index);
  176. if (!page || (page && !PageUptodate(page)))
  177. readahead = true;
  178. f2fs_put_page(page, 0);
  179. if (readahead)
  180. ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR);
  181. }
  182. static int f2fs_write_meta_page(struct page *page,
  183. struct writeback_control *wbc)
  184. {
  185. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  186. trace_f2fs_writepage(page, META);
  187. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  188. goto redirty_out;
  189. if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
  190. goto redirty_out;
  191. if (unlikely(f2fs_cp_error(sbi)))
  192. goto redirty_out;
  193. f2fs_wait_on_page_writeback(page, META);
  194. write_meta_page(sbi, page);
  195. dec_page_count(sbi, F2FS_DIRTY_META);
  196. unlock_page(page);
  197. if (wbc->for_reclaim)
  198. f2fs_submit_merged_bio(sbi, META, WRITE);
  199. return 0;
  200. redirty_out:
  201. redirty_page_for_writepage(wbc, page);
  202. return AOP_WRITEPAGE_ACTIVATE;
  203. }
  204. static int f2fs_write_meta_pages(struct address_space *mapping,
  205. struct writeback_control *wbc)
  206. {
  207. struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
  208. long diff, written;
  209. trace_f2fs_writepages(mapping->host, wbc, META);
  210. /* collect a number of dirty meta pages and write together */
  211. if (wbc->for_kupdate ||
  212. get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
  213. goto skip_write;
  214. /* if mounting is failed, skip writing node pages */
  215. mutex_lock(&sbi->cp_mutex);
  216. diff = nr_pages_to_write(sbi, META, wbc);
  217. written = sync_meta_pages(sbi, META, wbc->nr_to_write);
  218. mutex_unlock(&sbi->cp_mutex);
  219. wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
  220. return 0;
  221. skip_write:
  222. wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
  223. return 0;
  224. }
  225. long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
  226. long nr_to_write)
  227. {
  228. struct address_space *mapping = META_MAPPING(sbi);
  229. pgoff_t index = 0, end = LONG_MAX;
  230. struct pagevec pvec;
  231. long nwritten = 0;
  232. struct writeback_control wbc = {
  233. .for_reclaim = 0,
  234. };
  235. pagevec_init(&pvec, 0);
  236. while (index <= end) {
  237. int i, nr_pages;
  238. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
  239. PAGECACHE_TAG_DIRTY,
  240. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  241. if (unlikely(nr_pages == 0))
  242. break;
  243. for (i = 0; i < nr_pages; i++) {
  244. struct page *page = pvec.pages[i];
  245. lock_page(page);
  246. if (unlikely(page->mapping != mapping)) {
  247. continue_unlock:
  248. unlock_page(page);
  249. continue;
  250. }
  251. if (!PageDirty(page)) {
  252. /* someone wrote it for us */
  253. goto continue_unlock;
  254. }
  255. if (!clear_page_dirty_for_io(page))
  256. goto continue_unlock;
  257. if (mapping->a_ops->writepage(page, &wbc)) {
  258. unlock_page(page);
  259. break;
  260. }
  261. nwritten++;
  262. if (unlikely(nwritten >= nr_to_write))
  263. break;
  264. }
  265. pagevec_release(&pvec);
  266. cond_resched();
  267. }
  268. if (nwritten)
  269. f2fs_submit_merged_bio(sbi, type, WRITE);
  270. return nwritten;
  271. }
  272. static int f2fs_set_meta_page_dirty(struct page *page)
  273. {
  274. trace_f2fs_set_page_dirty(page, META);
  275. SetPageUptodate(page);
  276. if (!PageDirty(page)) {
  277. __set_page_dirty_nobuffers(page);
  278. inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
  279. SetPagePrivate(page);
  280. f2fs_trace_pid(page);
  281. return 1;
  282. }
  283. return 0;
  284. }
  285. const struct address_space_operations f2fs_meta_aops = {
  286. .writepage = f2fs_write_meta_page,
  287. .writepages = f2fs_write_meta_pages,
  288. .set_page_dirty = f2fs_set_meta_page_dirty,
  289. .invalidatepage = f2fs_invalidate_page,
  290. .releasepage = f2fs_release_page,
  291. };
  292. static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  293. {
  294. struct inode_management *im = &sbi->im[type];
  295. struct ino_entry *e, *tmp;
  296. tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
  297. retry:
  298. radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
  299. spin_lock(&im->ino_lock);
  300. e = radix_tree_lookup(&im->ino_root, ino);
  301. if (!e) {
  302. e = tmp;
  303. if (radix_tree_insert(&im->ino_root, ino, e)) {
  304. spin_unlock(&im->ino_lock);
  305. radix_tree_preload_end();
  306. goto retry;
  307. }
  308. memset(e, 0, sizeof(struct ino_entry));
  309. e->ino = ino;
  310. list_add_tail(&e->list, &im->ino_list);
  311. if (type != ORPHAN_INO)
  312. im->ino_num++;
  313. }
  314. spin_unlock(&im->ino_lock);
  315. radix_tree_preload_end();
  316. if (e != tmp)
  317. kmem_cache_free(ino_entry_slab, tmp);
  318. }
  319. static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  320. {
  321. struct inode_management *im = &sbi->im[type];
  322. struct ino_entry *e;
  323. spin_lock(&im->ino_lock);
  324. e = radix_tree_lookup(&im->ino_root, ino);
  325. if (e) {
  326. list_del(&e->list);
  327. radix_tree_delete(&im->ino_root, ino);
  328. im->ino_num--;
  329. spin_unlock(&im->ino_lock);
  330. kmem_cache_free(ino_entry_slab, e);
  331. return;
  332. }
  333. spin_unlock(&im->ino_lock);
  334. }
  335. void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
  336. {
  337. /* add new dirty ino entry into list */
  338. __add_ino_entry(sbi, ino, type);
  339. }
  340. void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
  341. {
  342. /* remove dirty ino entry from list */
  343. __remove_ino_entry(sbi, ino, type);
  344. }
  345. /* mode should be APPEND_INO or UPDATE_INO */
  346. bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
  347. {
  348. struct inode_management *im = &sbi->im[mode];
  349. struct ino_entry *e;
  350. spin_lock(&im->ino_lock);
  351. e = radix_tree_lookup(&im->ino_root, ino);
  352. spin_unlock(&im->ino_lock);
  353. return e ? true : false;
  354. }
  355. void release_dirty_inode(struct f2fs_sb_info *sbi)
  356. {
  357. struct ino_entry *e, *tmp;
  358. int i;
  359. for (i = APPEND_INO; i <= UPDATE_INO; i++) {
  360. struct inode_management *im = &sbi->im[i];
  361. spin_lock(&im->ino_lock);
  362. list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
  363. list_del(&e->list);
  364. radix_tree_delete(&im->ino_root, e->ino);
  365. kmem_cache_free(ino_entry_slab, e);
  366. im->ino_num--;
  367. }
  368. spin_unlock(&im->ino_lock);
  369. }
  370. }
  371. int acquire_orphan_inode(struct f2fs_sb_info *sbi)
  372. {
  373. struct inode_management *im = &sbi->im[ORPHAN_INO];
  374. int err = 0;
  375. spin_lock(&im->ino_lock);
  376. if (unlikely(im->ino_num >= sbi->max_orphans))
  377. err = -ENOSPC;
  378. else
  379. im->ino_num++;
  380. spin_unlock(&im->ino_lock);
  381. return err;
  382. }
  383. void release_orphan_inode(struct f2fs_sb_info *sbi)
  384. {
  385. struct inode_management *im = &sbi->im[ORPHAN_INO];
  386. spin_lock(&im->ino_lock);
  387. f2fs_bug_on(sbi, im->ino_num == 0);
  388. im->ino_num--;
  389. spin_unlock(&im->ino_lock);
  390. }
  391. void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  392. {
  393. /* add new orphan ino entry into list */
  394. __add_ino_entry(sbi, ino, ORPHAN_INO);
  395. }
  396. void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  397. {
  398. /* remove orphan entry from orphan list */
  399. __remove_ino_entry(sbi, ino, ORPHAN_INO);
  400. }
  401. static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  402. {
  403. struct inode *inode;
  404. inode = f2fs_iget(sbi->sb, ino);
  405. if (IS_ERR(inode)) {
  406. /*
  407. * there should be a bug that we can't find the entry
  408. * to orphan inode.
  409. */
  410. f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
  411. return PTR_ERR(inode);
  412. }
  413. clear_nlink(inode);
  414. /* truncate all the data during iput */
  415. iput(inode);
  416. return 0;
  417. }
  418. int recover_orphan_inodes(struct f2fs_sb_info *sbi)
  419. {
  420. block_t start_blk, orphan_blocks, i, j;
  421. int err;
  422. if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
  423. return 0;
  424. start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
  425. orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
  426. ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP);
  427. for (i = 0; i < orphan_blocks; i++) {
  428. struct page *page = get_meta_page(sbi, start_blk + i);
  429. struct f2fs_orphan_block *orphan_blk;
  430. orphan_blk = (struct f2fs_orphan_block *)page_address(page);
  431. for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
  432. nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
  433. err = recover_orphan_inode(sbi, ino);
  434. if (err) {
  435. f2fs_put_page(page, 1);
  436. return err;
  437. }
  438. }
  439. f2fs_put_page(page, 1);
  440. }
  441. /* clear Orphan Flag */
  442. clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
  443. return 0;
  444. }
  445. static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
  446. {
  447. struct list_head *head;
  448. struct f2fs_orphan_block *orphan_blk = NULL;
  449. unsigned int nentries = 0;
  450. unsigned short index = 1;
  451. unsigned short orphan_blocks;
  452. struct page *page = NULL;
  453. struct ino_entry *orphan = NULL;
  454. struct inode_management *im = &sbi->im[ORPHAN_INO];
  455. orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
  456. /*
  457. * we don't need to do spin_lock(&im->ino_lock) here, since all the
  458. * orphan inode operations are covered under f2fs_lock_op().
  459. * And, spin_lock should be avoided due to page operations below.
  460. */
  461. head = &im->ino_list;
  462. /* loop for each orphan inode entry and write them in Jornal block */
  463. list_for_each_entry(orphan, head, list) {
  464. if (!page) {
  465. page = grab_meta_page(sbi, start_blk++);
  466. orphan_blk =
  467. (struct f2fs_orphan_block *)page_address(page);
  468. memset(orphan_blk, 0, sizeof(*orphan_blk));
  469. }
  470. orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
  471. if (nentries == F2FS_ORPHANS_PER_BLOCK) {
  472. /*
  473. * an orphan block is full of 1020 entries,
  474. * then we need to flush current orphan blocks
  475. * and bring another one in memory
  476. */
  477. orphan_blk->blk_addr = cpu_to_le16(index);
  478. orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
  479. orphan_blk->entry_count = cpu_to_le32(nentries);
  480. set_page_dirty(page);
  481. f2fs_put_page(page, 1);
  482. index++;
  483. nentries = 0;
  484. page = NULL;
  485. }
  486. }
  487. if (page) {
  488. orphan_blk->blk_addr = cpu_to_le16(index);
  489. orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
  490. orphan_blk->entry_count = cpu_to_le32(nentries);
  491. set_page_dirty(page);
  492. f2fs_put_page(page, 1);
  493. }
  494. }
  495. static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
  496. block_t cp_addr, unsigned long long *version)
  497. {
  498. struct page *cp_page_1, *cp_page_2 = NULL;
  499. unsigned long blk_size = sbi->blocksize;
  500. struct f2fs_checkpoint *cp_block;
  501. unsigned long long cur_version = 0, pre_version = 0;
  502. size_t crc_offset;
  503. __u32 crc = 0;
  504. /* Read the 1st cp block in this CP pack */
  505. cp_page_1 = get_meta_page(sbi, cp_addr);
  506. /* get the version number */
  507. cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
  508. crc_offset = le32_to_cpu(cp_block->checksum_offset);
  509. if (crc_offset >= blk_size)
  510. goto invalid_cp1;
  511. crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
  512. if (!f2fs_crc_valid(crc, cp_block, crc_offset))
  513. goto invalid_cp1;
  514. pre_version = cur_cp_version(cp_block);
  515. /* Read the 2nd cp block in this CP pack */
  516. cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
  517. cp_page_2 = get_meta_page(sbi, cp_addr);
  518. cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
  519. crc_offset = le32_to_cpu(cp_block->checksum_offset);
  520. if (crc_offset >= blk_size)
  521. goto invalid_cp2;
  522. crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
  523. if (!f2fs_crc_valid(crc, cp_block, crc_offset))
  524. goto invalid_cp2;
  525. cur_version = cur_cp_version(cp_block);
  526. if (cur_version == pre_version) {
  527. *version = cur_version;
  528. f2fs_put_page(cp_page_2, 1);
  529. return cp_page_1;
  530. }
  531. invalid_cp2:
  532. f2fs_put_page(cp_page_2, 1);
  533. invalid_cp1:
  534. f2fs_put_page(cp_page_1, 1);
  535. return NULL;
  536. }
  537. int get_valid_checkpoint(struct f2fs_sb_info *sbi)
  538. {
  539. struct f2fs_checkpoint *cp_block;
  540. struct f2fs_super_block *fsb = sbi->raw_super;
  541. struct page *cp1, *cp2, *cur_page;
  542. unsigned long blk_size = sbi->blocksize;
  543. unsigned long long cp1_version = 0, cp2_version = 0;
  544. unsigned long long cp_start_blk_no;
  545. unsigned int cp_blks = 1 + __cp_payload(sbi);
  546. block_t cp_blk_no;
  547. int i;
  548. sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
  549. if (!sbi->ckpt)
  550. return -ENOMEM;
  551. /*
  552. * Finding out valid cp block involves read both
  553. * sets( cp pack1 and cp pack 2)
  554. */
  555. cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
  556. cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
  557. /* The second checkpoint pack should start at the next segment */
  558. cp_start_blk_no += ((unsigned long long)1) <<
  559. le32_to_cpu(fsb->log_blocks_per_seg);
  560. cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
  561. if (cp1 && cp2) {
  562. if (ver_after(cp2_version, cp1_version))
  563. cur_page = cp2;
  564. else
  565. cur_page = cp1;
  566. } else if (cp1) {
  567. cur_page = cp1;
  568. } else if (cp2) {
  569. cur_page = cp2;
  570. } else {
  571. goto fail_no_cp;
  572. }
  573. cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
  574. memcpy(sbi->ckpt, cp_block, blk_size);
  575. if (cp_blks <= 1)
  576. goto done;
  577. cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
  578. if (cur_page == cp2)
  579. cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
  580. for (i = 1; i < cp_blks; i++) {
  581. void *sit_bitmap_ptr;
  582. unsigned char *ckpt = (unsigned char *)sbi->ckpt;
  583. cur_page = get_meta_page(sbi, cp_blk_no + i);
  584. sit_bitmap_ptr = page_address(cur_page);
  585. memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
  586. f2fs_put_page(cur_page, 1);
  587. }
  588. done:
  589. f2fs_put_page(cp1, 1);
  590. f2fs_put_page(cp2, 1);
  591. return 0;
  592. fail_no_cp:
  593. kfree(sbi->ckpt);
  594. return -EINVAL;
  595. }
  596. static int __add_dirty_inode(struct inode *inode, struct inode_entry *new)
  597. {
  598. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  599. if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR))
  600. return -EEXIST;
  601. set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
  602. F2FS_I(inode)->dirty_dir = new;
  603. list_add_tail(&new->list, &sbi->dir_inode_list);
  604. stat_inc_dirty_dir(sbi);
  605. return 0;
  606. }
  607. void update_dirty_page(struct inode *inode, struct page *page)
  608. {
  609. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  610. struct inode_entry *new;
  611. int ret = 0;
  612. if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
  613. !S_ISLNK(inode->i_mode))
  614. return;
  615. if (!S_ISDIR(inode->i_mode)) {
  616. inode_inc_dirty_pages(inode);
  617. goto out;
  618. }
  619. new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
  620. new->inode = inode;
  621. INIT_LIST_HEAD(&new->list);
  622. spin_lock(&sbi->dir_inode_lock);
  623. ret = __add_dirty_inode(inode, new);
  624. inode_inc_dirty_pages(inode);
  625. spin_unlock(&sbi->dir_inode_lock);
  626. if (ret)
  627. kmem_cache_free(inode_entry_slab, new);
  628. out:
  629. SetPagePrivate(page);
  630. f2fs_trace_pid(page);
  631. }
  632. void add_dirty_dir_inode(struct inode *inode)
  633. {
  634. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  635. struct inode_entry *new =
  636. f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
  637. int ret = 0;
  638. new->inode = inode;
  639. INIT_LIST_HEAD(&new->list);
  640. spin_lock(&sbi->dir_inode_lock);
  641. ret = __add_dirty_inode(inode, new);
  642. spin_unlock(&sbi->dir_inode_lock);
  643. if (ret)
  644. kmem_cache_free(inode_entry_slab, new);
  645. }
  646. void remove_dirty_dir_inode(struct inode *inode)
  647. {
  648. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  649. struct inode_entry *entry;
  650. if (!S_ISDIR(inode->i_mode))
  651. return;
  652. spin_lock(&sbi->dir_inode_lock);
  653. if (get_dirty_pages(inode) ||
  654. !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) {
  655. spin_unlock(&sbi->dir_inode_lock);
  656. return;
  657. }
  658. entry = F2FS_I(inode)->dirty_dir;
  659. list_del(&entry->list);
  660. F2FS_I(inode)->dirty_dir = NULL;
  661. clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
  662. stat_dec_dirty_dir(sbi);
  663. spin_unlock(&sbi->dir_inode_lock);
  664. kmem_cache_free(inode_entry_slab, entry);
  665. /* Only from the recovery routine */
  666. if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
  667. clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
  668. iput(inode);
  669. }
  670. }
  671. void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
  672. {
  673. struct list_head *head;
  674. struct inode_entry *entry;
  675. struct inode *inode;
  676. retry:
  677. if (unlikely(f2fs_cp_error(sbi)))
  678. return;
  679. spin_lock(&sbi->dir_inode_lock);
  680. head = &sbi->dir_inode_list;
  681. if (list_empty(head)) {
  682. spin_unlock(&sbi->dir_inode_lock);
  683. return;
  684. }
  685. entry = list_entry(head->next, struct inode_entry, list);
  686. inode = igrab(entry->inode);
  687. spin_unlock(&sbi->dir_inode_lock);
  688. if (inode) {
  689. filemap_fdatawrite(inode->i_mapping);
  690. iput(inode);
  691. } else {
  692. /*
  693. * We should submit bio, since it exists several
  694. * wribacking dentry pages in the freeing inode.
  695. */
  696. f2fs_submit_merged_bio(sbi, DATA, WRITE);
  697. cond_resched();
  698. }
  699. goto retry;
  700. }
  701. /*
  702. * Freeze all the FS-operations for checkpoint.
  703. */
  704. static int block_operations(struct f2fs_sb_info *sbi)
  705. {
  706. struct writeback_control wbc = {
  707. .sync_mode = WB_SYNC_ALL,
  708. .nr_to_write = LONG_MAX,
  709. .for_reclaim = 0,
  710. };
  711. struct blk_plug plug;
  712. int err = 0;
  713. blk_start_plug(&plug);
  714. retry_flush_dents:
  715. f2fs_lock_all(sbi);
  716. /* write all the dirty dentry pages */
  717. if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
  718. f2fs_unlock_all(sbi);
  719. sync_dirty_dir_inodes(sbi);
  720. if (unlikely(f2fs_cp_error(sbi))) {
  721. err = -EIO;
  722. goto out;
  723. }
  724. goto retry_flush_dents;
  725. }
  726. /*
  727. * POR: we should ensure that there are no dirty node pages
  728. * until finishing nat/sit flush.
  729. */
  730. retry_flush_nodes:
  731. down_write(&sbi->node_write);
  732. if (get_pages(sbi, F2FS_DIRTY_NODES)) {
  733. up_write(&sbi->node_write);
  734. sync_node_pages(sbi, 0, &wbc);
  735. if (unlikely(f2fs_cp_error(sbi))) {
  736. f2fs_unlock_all(sbi);
  737. err = -EIO;
  738. goto out;
  739. }
  740. goto retry_flush_nodes;
  741. }
  742. out:
  743. blk_finish_plug(&plug);
  744. return err;
  745. }
  746. static void unblock_operations(struct f2fs_sb_info *sbi)
  747. {
  748. up_write(&sbi->node_write);
  749. f2fs_unlock_all(sbi);
  750. }
  751. static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
  752. {
  753. DEFINE_WAIT(wait);
  754. for (;;) {
  755. prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
  756. if (!get_pages(sbi, F2FS_WRITEBACK))
  757. break;
  758. io_schedule();
  759. }
  760. finish_wait(&sbi->cp_wait, &wait);
  761. }
  762. static void do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  763. {
  764. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  765. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
  766. struct f2fs_nm_info *nm_i = NM_I(sbi);
  767. unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
  768. nid_t last_nid = nm_i->next_scan_nid;
  769. block_t start_blk;
  770. unsigned int data_sum_blocks, orphan_blocks;
  771. __u32 crc32 = 0;
  772. int i;
  773. int cp_payload_blks = __cp_payload(sbi);
  774. block_t discard_blk = NEXT_FREE_BLKADDR(sbi, curseg);
  775. bool invalidate = false;
  776. /*
  777. * This avoids to conduct wrong roll-forward operations and uses
  778. * metapages, so should be called prior to sync_meta_pages below.
  779. */
  780. if (discard_next_dnode(sbi, discard_blk))
  781. invalidate = true;
  782. /* Flush all the NAT/SIT pages */
  783. while (get_pages(sbi, F2FS_DIRTY_META)) {
  784. sync_meta_pages(sbi, META, LONG_MAX);
  785. if (unlikely(f2fs_cp_error(sbi)))
  786. return;
  787. }
  788. next_free_nid(sbi, &last_nid);
  789. /*
  790. * modify checkpoint
  791. * version number is already updated
  792. */
  793. ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
  794. ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
  795. ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
  796. for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
  797. ckpt->cur_node_segno[i] =
  798. cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
  799. ckpt->cur_node_blkoff[i] =
  800. cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
  801. ckpt->alloc_type[i + CURSEG_HOT_NODE] =
  802. curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
  803. }
  804. for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
  805. ckpt->cur_data_segno[i] =
  806. cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
  807. ckpt->cur_data_blkoff[i] =
  808. cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
  809. ckpt->alloc_type[i + CURSEG_HOT_DATA] =
  810. curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
  811. }
  812. ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
  813. ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
  814. ckpt->next_free_nid = cpu_to_le32(last_nid);
  815. /* 2 cp + n data seg summary + orphan inode blocks */
  816. data_sum_blocks = npages_for_summary_flush(sbi, false);
  817. if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
  818. set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
  819. else
  820. clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
  821. orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
  822. ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
  823. orphan_blocks);
  824. if (__remain_node_summaries(cpc->reason))
  825. ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
  826. cp_payload_blks + data_sum_blocks +
  827. orphan_blocks + NR_CURSEG_NODE_TYPE);
  828. else
  829. ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
  830. cp_payload_blks + data_sum_blocks +
  831. orphan_blocks);
  832. if (cpc->reason == CP_UMOUNT)
  833. set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
  834. else
  835. clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
  836. if (cpc->reason == CP_FASTBOOT)
  837. set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
  838. else
  839. clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
  840. if (orphan_num)
  841. set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
  842. else
  843. clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
  844. if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
  845. set_ckpt_flags(ckpt, CP_FSCK_FLAG);
  846. /* update SIT/NAT bitmap */
  847. get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
  848. get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
  849. crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
  850. *((__le32 *)((unsigned char *)ckpt +
  851. le32_to_cpu(ckpt->checksum_offset)))
  852. = cpu_to_le32(crc32);
  853. start_blk = __start_cp_addr(sbi);
  854. /* write out checkpoint buffer at block 0 */
  855. update_meta_page(sbi, ckpt, start_blk++);
  856. for (i = 1; i < 1 + cp_payload_blks; i++)
  857. update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
  858. start_blk++);
  859. if (orphan_num) {
  860. write_orphan_inodes(sbi, start_blk);
  861. start_blk += orphan_blocks;
  862. }
  863. write_data_summaries(sbi, start_blk);
  864. start_blk += data_sum_blocks;
  865. if (__remain_node_summaries(cpc->reason)) {
  866. write_node_summaries(sbi, start_blk);
  867. start_blk += NR_CURSEG_NODE_TYPE;
  868. }
  869. /* writeout checkpoint block */
  870. update_meta_page(sbi, ckpt, start_blk);
  871. /* wait for previous submitted node/meta pages writeback */
  872. wait_on_all_pages_writeback(sbi);
  873. if (unlikely(f2fs_cp_error(sbi)))
  874. return;
  875. filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
  876. filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
  877. /* update user_block_counts */
  878. sbi->last_valid_block_count = sbi->total_valid_block_count;
  879. sbi->alloc_valid_block_count = 0;
  880. /* Here, we only have one bio having CP pack */
  881. sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
  882. /* wait for previous submitted meta pages writeback */
  883. wait_on_all_pages_writeback(sbi);
  884. /*
  885. * invalidate meta page which is used temporarily for zeroing out
  886. * block at the end of warm node chain.
  887. */
  888. if (invalidate)
  889. invalidate_mapping_pages(META_MAPPING(sbi), discard_blk,
  890. discard_blk);
  891. release_dirty_inode(sbi);
  892. if (unlikely(f2fs_cp_error(sbi)))
  893. return;
  894. clear_prefree_segments(sbi, cpc);
  895. clear_sbi_flag(sbi, SBI_IS_DIRTY);
  896. }
  897. /*
  898. * We guarantee that this checkpoint procedure will not fail.
  899. */
  900. void write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  901. {
  902. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  903. unsigned long long ckpt_ver;
  904. mutex_lock(&sbi->cp_mutex);
  905. if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
  906. (cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC ||
  907. (cpc->reason == CP_DISCARD && !sbi->discard_blks)))
  908. goto out;
  909. if (unlikely(f2fs_cp_error(sbi)))
  910. goto out;
  911. if (f2fs_readonly(sbi->sb))
  912. goto out;
  913. trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
  914. if (block_operations(sbi))
  915. goto out;
  916. trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
  917. f2fs_submit_merged_bio(sbi, DATA, WRITE);
  918. f2fs_submit_merged_bio(sbi, NODE, WRITE);
  919. f2fs_submit_merged_bio(sbi, META, WRITE);
  920. /*
  921. * update checkpoint pack index
  922. * Increase the version number so that
  923. * SIT entries and seg summaries are written at correct place
  924. */
  925. ckpt_ver = cur_cp_version(ckpt);
  926. ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
  927. /* write cached NAT/SIT entries to NAT/SIT area */
  928. flush_nat_entries(sbi);
  929. flush_sit_entries(sbi, cpc);
  930. /* unlock all the fs_lock[] in do_checkpoint() */
  931. do_checkpoint(sbi, cpc);
  932. unblock_operations(sbi);
  933. stat_inc_cp_count(sbi->stat_info);
  934. if (cpc->reason == CP_RECOVERY)
  935. f2fs_msg(sbi->sb, KERN_NOTICE,
  936. "checkpoint: version = %llx", ckpt_ver);
  937. out:
  938. mutex_unlock(&sbi->cp_mutex);
  939. trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
  940. }
  941. void init_ino_entry_info(struct f2fs_sb_info *sbi)
  942. {
  943. int i;
  944. for (i = 0; i < MAX_INO_ENTRY; i++) {
  945. struct inode_management *im = &sbi->im[i];
  946. INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
  947. spin_lock_init(&im->ino_lock);
  948. INIT_LIST_HEAD(&im->ino_list);
  949. im->ino_num = 0;
  950. }
  951. sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
  952. NR_CURSEG_TYPE - __cp_payload(sbi)) *
  953. F2FS_ORPHANS_PER_BLOCK;
  954. }
  955. int __init create_checkpoint_caches(void)
  956. {
  957. ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
  958. sizeof(struct ino_entry));
  959. if (!ino_entry_slab)
  960. return -ENOMEM;
  961. inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
  962. sizeof(struct inode_entry));
  963. if (!inode_entry_slab) {
  964. kmem_cache_destroy(ino_entry_slab);
  965. return -ENOMEM;
  966. }
  967. return 0;
  968. }
  969. void destroy_checkpoint_caches(void)
  970. {
  971. kmem_cache_destroy(ino_entry_slab);
  972. kmem_cache_destroy(inode_entry_slab);
  973. }